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On minimal surfaces bounded by two convex curves in parallel
planes

Martin Traizet

Abstract. We prove that a compact minimal surface bounded by two closed convex curves in
parallel planes close enough to each other must be topologically an annulus.

Mathematics Subject Classification (2000). 53A10.

Keywords. Minimal surface with boundary, Robin function, concentration of curvature.

1. Introduction

Let Iy and I'; be two closed convex curves in parallel planes in euclidean space, and
let M be a minimal annulus with boundary I'y and I';. In a celebrated paper [13],
B. Shiffman proved that M 1s foliated by convex curves in planes parallel to the planes
of I'y and I';. Moreover, if Iy and I'; are circles, then M is foliated by circles in
parallel planes, and is therefore a piece of a catenoid or a Riemann minimal example.

It is natural to ask whether one can relax the hypothesis that M is an annulus, or
if other topological types are possible:

Can two convex curves in parallel planes bound a compact minimal surface of
genus > 17

W. Meeks has conjectured that the answer to this question is no. Here is what is
known about this conjecture. Without loss of generality we may assume that I'; and
I'5 are in horizontal planes. R. Schoen [12] has proven that the conjecture 1s true (so
the answer to the question is no) if I'y and I'; are both symmetric with respect to the
vertical planes x; = 0 and x, = 0, using the Alexandrov moving plane technique.
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A. Ros [11] has proven that the conjecture is true if ['; is a vertical translate of I'y,
using the Lopez—Ros deformation.

Even in the case of two circles with different axes, the conjecture seems to be
open. Also using the bridge principle, one can construct examples of non-convex
curves in parallel planes bounding a minimal surface of genus one.

In this paper, we study this problem in the case of two parallel planes close o
each other. The question can be formulated more precisely as follows: let y; and y»
be two convex curves in the horizontal plane x3 = 0.

Is it true that if T is a small enough vertical translation, then y; U T (y2) does
not bound any minimal surface of genus k > 17

How small 7" must be should depend in some way on the given curves y; and
v2, because of the invariance by scaling of the minimal surface equation. The main
result of the paper is the following

Theorem 1. Let y; and y» be two smooth convex Jordan curves in the horizontal plane
x3 = 0, bounding respectively the convex domains Q21 and §25. Fix some integer
k = 0. Let (My), be a sequence of compact, connected minimal surfaces of genus k
with boundary v, and T,(y2), where (Ty,), is a sequence of vertical translations. If
k = 0, further assume that M, is not the stable annulus.

(1) (Compactness) If T, — T # 0, then a subsequence of (M), converges
smoothly to a compact minimal surface of genus k bounded by y, and T ().

(2) (Concentration) If T, — 0, then there exists k + 1 distinct points py, ..., Pr+1
in 21 N Qs and a subsequence, still denoted (M},),,, such that the curvature
of (M), concentrates at pq, ..., pri1, in the following sense: for any small
p > 0 it holds that

lim C(M, N B(p;,p)) =4n foralli,
n—o0

k+1
tim C (M, \ | B(pi.p)) =0,
n—>00
i=1
where B(p, p) denotes the euclidean ball and C(U) = [, |K|dA denotes the
total curvature of U. Moreover, the configuration py,. .., pi+1 is balanced, in
an electrostatic sense which we explain in the next section.

We will see that near a point of concentration, the surface looks in fact like a small
catenoid, which explains the 47 mass of curvature.

In Section 2.3, we will prove that there are no balanced configurations in the
genus one case (kK = 1), so T, — 0 is impossible in this case. Hence, there exists
¢ > 0 (depending on y1 and y; )} such thatif ||7'|| < €, 1 U T (y,) bounds no minimal
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surface of genus one. We will also give several partial results in the higher genus
case, under various assumptions.

It 1s of course desirable to know how & depends on y; and y,. For this, one has
to allow the curves y; and y» to depend on n. We will prove a more general result in
this case, see Theorem 2.

Remark 1. If y; U T'(y2) bounds a (connected) compact minimal surface M , then
21 N 22 cannot be empty. Also M is embedded, see Proposition 3 for these two
facts.

Aknowledgements. I had interesting discussions about this problem with L. Haus-
wirth, D. Hoffman, L. Mazet and M. Wolf. 1 am especially grateful to L. Mazet
for proving that there are no balanced configurations in the case k > 1, 21 = Q,,
see Proposition 2. 1 would like to thank R. Mazzeo for pointing out the fact that
the Robin function of a convex domain is convex, which plays an important role in
Section 2. Finally, [ would like to thank the referee for a very careful reading of the
paper, finding two errors, and suggesting reference [5].

2. Balanced configurations

Let €21 and €25 be two bounded domains in the plane with non-empty intersection.
Let G; p(z) denotes the Green function of £2;. Recall that G; ,(z) is harmonic in
Q; \ { p} with zero boundary value and a logarithmic singularity at p. One can write

Gip(z) =log|z — p| + H; p(z),

where the regular part H; ,(z) is harmonic in Q;. It is known that G; ,(z) is a
symmetric function of (z, p).

Given k + 1 distinct points { p1, ..., pr+1}in Q1 N 5, let us define forces by
F‘i - VHl,pi (pl) + VHZ,pi (pl) + Z (VGl,pj (pl) + VGZ,pj (pl)) .
J#i

Definition 1. We say the configuration {p1,..., pr+1; is balanced it F; = 0 for
i=1,....,k+ 1.

When @21 = Q25 = 2, one can interpret [ as 2-dimensional electrostatic forces.
The physical model is the following: we have a 2-dimensional vacuum chamber €2,
whose boundary is made of a conductor metal. We put inside some unit positive
charges at p; ..., pr+1. These charges induce a continuous charge on the boundary.
Then F; is the force resulting of the interaction of p; with the other particles and with
the boundary.
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Conjecture 1. If 2; and €2, are convex domains and k > 1, there are no balanced
configuration with & 4 1 points.

We will prove that the conjecture is true in the case & = 1, and give some
partial results in the case k > 2. If we relax the convexity condition, then balanced
configurations are possible. We will see an example in Section 2.5.

2.1. Facts about the Green function of a convex domain. In this section we collect
several results about the Green function G, (z) of a bounded, convex domain 2. We
write G,(z) = log |z — p| + H,(z), where H,(z) is the regular part of the Green
function. The Robin function of €2 is defined by

Rob(z) = H.(z).

The critical points of the Robin function are called the harmonic centers of 2. Since
the Robin function goes 10 +oc¢ on the boundary, any bounded domain has at least
one harmonic center (a minimum). A very useful fact is the following:

The Robin function of a convex domain is convex.

This has been proven by various authors, see [2] and the references therein. The
referee pointed out that in fact the Robin function of a bounded convex domain is
strictly convex, see [5]. Therefore, a bounded convex domain has a unique harmonic
center,

If /:1D — Q isa conformal representation of a domain Q2 on the unit disk, one
can compulte the Green function of €2, its regular part and the Robin function in term

of f:
Grm(f(2)) =log|z — p| —log |l — pz|,

Hyp(£(2)) = — log ‘ e A \

Rob(f(2)) = —log | f'(z)| — log(1 — |z[*).

Another fact about the Green function of a convex domain which we will use is the
following

—log |l — pz|,

Lemma 1. Let 2 be a convex domain. Then for any p € 2, the level lines of G, are
CONVEX CUrves.

Proof. 'This 1s very likely well known, but I could not find a reference in the literature,
so I provide a proof. Fix some point p € . lLet f: D — Q be a conformal
representation of € such that f(0) = p. Then G,(f(z)) = log|z|, so f sends the
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circles centered at the origin to the level lines of G,. Fix some r € (0, 1) and let
vr (t) = f(ret’). The image of y, is convex if arg y/ () is increasing. We have

(arg y,(r)) = (Imlog y, (1))’
_ )f”(t))
‘M(Mw

_ 'Mre” — o(rell
_Im(1 ) )—0—1. g(re'),

where the function g is harmonic in D, since f’ does not vanish. When r = 1,
arg y; (t) is increasing because 2 is convex. Hence g is non-negative on the unit
circle. By the maximum principle, g is positive in the disk, so the image of y, i
strictly convex if r < 1. W

2.2. Genus zero. In this section we discuss the case k& = 0, so there is only one
point pq. We write Rob; (z) for the Robin function of €2;. By symmetry of the Green
function, VRob; (z) = 2V H; ;(z), so

1
= E(VRObl(pl) + VRobz(p1)).

The configuration is balanced if p; is a critical point of Rob; + Rob,. Now the
function Rob; + Robs is strictly convex on €21 M 24, so it has a unique critical point
(a minimum).

Returning to minimal surfaces, it 1s known that two convex curves in parallel
planes bound at most two minimal annuli, one stable and one unstable [8]. Our result
describes what happens to the unstable annulus when the distance between the planes
goes to zero: the curvature concentrates at the minimum of the function Rob; 4 Robs.

2.3. Genus one

Proposition 1. etk > 1. If Qq and 2, are convex, then there are no balanced
configurations with k + 1 points, all on the same line L.

Proof. We may assume that the points py, ..., pk+1 are in this order on L. Let
R = 1(Roby + Roby). This is a convex function in €21 N ;. Hence the maximum
value of R at the points py, ..., pr+1 1S either achieved at py or pg+1, let us say p1.
We have

Fy =VR(p1)+ Y _VGi,,(p1) + VGap, (p1).
j=>1

The point p- is inside the convex domain R(z) < R(p1) so (VR(p1). pz_};l) 2 0
Regarding the other terms, since p; lies inside the domain Gy p;(z) < Gy p; (p1)
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which is convex by Lemma 1, we have (VG ,; (p1), pﬁ;l) > 0, and a similar

—_
statementholds for the Green function of 2. Now all vectors p; p are proportional to
— —

p2 p1, with a positive coefficient, so we get {F1, p> p1) > 0. Hence the configuration
cannot be balanced. [

In the case k = 1, since two points are always on a line, there are no balanced
configurations. This gives:

Corollary 1 (Genus one case). Given two smooth convex Jordan curves y1 and ys,
there exists ¢ > 0 (depending on y1 and y2), such that for any vertical translation T
with ||T|| < &, y1 U T (y2) cannot bound any compact minimal surface of genus one.

2.4. Higher genus. Inthecasek > 2, wehave aresultunder an additional symmetry
assumption to ensure that the points pyq,..., pr+1 are on a line:

Corollary 2. Given two smooth convex Jordan curves vy and y», both symmetric
with respect to a given line L, and some integer k > 2, there exists ¢ (depending
on k, y1 and y3) such that for any vertical translation T with |T|| < &, y1 U T(y2)
cannot bound any compact minimal surface of genus k.

Note that this corollary applies in particular to the interesting case of two circles.

Proof. Indeed, by a theorem of R. Schoen [12] (using Alexandrov’s moving plane
method), any minimal surface M with boundary y; U T(y2) will be symmetric with
respect to the vertical plane P through L. Moreover, the part of M on each side of P
is a graph over P. Hence if we have a sequence of minimal surfaces (My,), of genus
k, with boundary y1 U Ty, (y2) with T,, — 0, the curvature will concentrate at points
P1s---» Pe+1, dll on the line L (this 18 because in a neighborhood of p;, M, looks
like a small catenoid, as we shall see). By Proposition 1, we get a contradiction. [

Next we present a result which was discovered by L. Mazet.

Proposition 2. Assume that 21 and €2, have the same harmonic center. Then there
are no balanced configurations with two or more points.

Note that the proposition applies in particular to the case where 2; = £22. (Of
course, in this particular case, the Meeks conjecture is known to be true by the work
of A. Ros [11], so we do not get a new result, regarding minimal surfaces.)

Proof. 1et f;: D — ; be a conformal representation. We transport the hyper-
bolic metric 2|dz|/(1 — |z|?) on the disk to get a hyperbolic metric A;|dz| on ;.
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Explicitely,

1
S SN = £GP

The hyperbolic distance dg, on 2; and the Green function are related by

do;(z, p)
2 .

Ai(z) =

= 2exp(Rob; (z)), z € ;.

Gi,p(z) = logtanh
This comes from the fact that the hyperbolic distance on the disk 1s given by

z—-pr
1 —pz

.

dp(z, p) = 2arctanh ‘

Without loss of generality, we may assume that 0 is the harmonic center of €27 and
Qs, and that | p1| > | p;| for all j (so p1 # 0). Since Rob;(0) < Rob; (p1) and the
Robin function is strictly convex, we have

{VRob; (p1), p1) > 0.

Let us fix some indices i = 1,2 and j > 2 and consider the geodesic y from p;
to p1 for the hyperbolic metric on £2;. We know that this geodesic is minimizing.
Let 7 be the tangent vector to this geodesic at p;. I claim that {z, p;) > 0. Indeed,
if this is false, then since |p;| < |p1], there exists a point p # p; on y such that
|p| = |p1], and |z| > |p1| on the sub-arc y’ of y delimited by p and p,. Then
consider the radial projection 7 from y’ to the circle C(0,|p;|). By convexity, the
Robin function, hence the conformal factor A;, is increasing on the segment [0, z].
Hence A; (w(z)) < A;(z). Since the projection makes euclidean length smaller, the
hyperbolic length of the circular arc from p to p; 1s smaller than the hyperbolic length
of ', which contradicts the fact that y is minimizing. Now the gradient of G; p; (p1)
is proportional to 7, hence

(VGip;(p1), p1) = 0.

This implies that (I, p1) > 0, so the configuration cannot be balanced. O

2.5. Explicit computations. When we have an explicit conformal representation
f: D — Q of adomain €2, we can compute explicitly the forces using the formulae
in Section 2.1. It is convenient to identify R? with C and use complex notations, so
V= 2%. The Robin function of the domain €2 satisfies

dRob n S z
(SN x fiz) = T IR
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Take 2, = £, = Q and consider a configuration pi,..., pry+1 € 2. Wriling
pi = f(zi), zi € D, the forces are given by

_ "(z; 1 1
Fxfay=-LC oy L _,5 1
J#i ;T E

- f(@) Zi —zj

We use these formula to provide counterexamples in the case of a non-convex domain.
Consider for example
1 1

z) = o'y )
A z—a Z- 8
where a 18 some real number. Provided @ > 1 this is a conformal representation on
the unit disk ). When « is close enough to 1, the image Q2 = f(ID) is a non convex

domain. Figure 1 shows this domain in the case ¢ = 5/4.

Figure 1. A non-convex domain admitting three harmonic centers.

Assume that z is real. Then using the above formula, f(z) is a harmonic center if
z3(1 —3a?) + z(3a* —a*) = 0. Solving for z and taking f(z) gives three harmonic
centers. These points are represented in Figure 1 when a = 5/4. With a little more
computations, it is possible to check that there are no other harmonic centers (namely,
z € R).

We can also compute a balanced configuration with two points, assuming the
following symmeltry: z» = —z; € R. The balancing condition boils down (o a
degree four equation, which gives two balanced configurations. One of them is
represented in Figure 2, still in the case @ = 5/4. 1 do not know if there are other
balanced configurations.

Figure 2. A balanced configuration with two points.
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3. Proof of Theorem 1

3.1. Preliminaries. Throughout the paper we use the following notations. M is a
compact embedded minimal surface of genus &, with boundary I' = y1 U T(y,),
where T is a vertical translation of vector (0,0, ¢) and yq, y» are two convex Jordan
curves in the horizontal plane x3 = 0. € and 25 denote the convex domains in
the plane with boundary respectively y1 and y». In case we have a sequence of
minimal surfaces (M,),, we label I, = IM,,, T, = (0,0,1,) and y; , = 3%2; , the
corresponding quantities. (The genus k will always be fixed.)

The following proposition collects several elementary facts about minimal sur-
faces bounded by two convex curves in parallel planes.

Proposition 3. Let M be a compact, connected minimal surface of genus k bounded
by two convex curves y1 and T (y2). Then the following holds.

(1) The total curvarure C(M) of M is at most 4w (k + 1).

(2) M is embedded, and for any ball B(p, R), the area of M N B(p, R) is less than
27 R?.

(3) Q1 N 2, is not empty.

(4) M is contained in the intersection of the tubular neighborhood of radius t of
(21 U 23) x R with the horizontal slab 0 < x3 < t.

(5) If M is not a stable annulus, then for any disk D of radius > t included in
Q1 N Qs, M intersects the vertical cylinder D x R.

Proof. By the Gauss—Bonnet formula,

fK—I—/ kg =2m (M) =2m(2 -2k —2).
M aM

This gives

C(M):—f K:4nk—i—f Kg.
M M

Now it is well known that |k, | < |x|, where k denotes the curvature of the boundary.
As each y; is a convex planar curve, [ vi |k| = 2m. This proves the first point. The
second point is proven in [4], using the monotonicity formula for minimal surfaces
with boundary. (Indeed, the boundary has total curvature 4, and the density at p
of the cone with vertex p generated by the boundary is less than 2. The fact that the
boundary is not connected is not a problem, see Section 6 in [4].)

Regarding point 3, let us assume by contradiction that €21 N Q22 = §. Let P be
a vertical plane separating 21 and Q. Let M’ be the symmetric of M with respect
to P. Let us translate M’ horizontally in the direction of P. Since M is connected,
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M and M’ will eventually intersect (maybe from the very beginning). First assume
that 21 N Q, = @. Then the boundary of M and M’ never intersect, nor does the
boundary of one intersect the interior of the other, since the interiors are in the slab
delimited by the (two horizontal planes. Hence at a last contact point, M and M’
are tangent, contradicting the maximum principle. If Q; and Q- intersect at some
boundary point, one can slightly rotate M’ about the horizontal line contained in
P, so that the boundaries of M and M’ do not intersect. The convex hull property
guarantees that the boundaries will not intersect the interiors, and the same argument
applies.

To prove point 4, let C be a horizontal circle of radius 7 in the horizontal plane
x3 = 0. There exists a catenoid A bounded by C U T(C). (The radius ¢ is not
the smallest radius such that such a catenoid exists: the smallest value is about
0.754439¢. The constants in the proposition are not optimal.) If the circle C is
disjoint from the convex hull of €2; N €25 then A does not intersect M. One can
then slide C horizontally. As long as C remains disjoint from £2; U £2,, A does not
intersect M by the maximum principle. This proves point 4.

To prove point 5, assume by contradiction that there exists a disk D C €21 N €25
of radius ¢ such that M does not intersect the vertical cylinder D x R. Let C be
the boundary of the disk D. Let us foliate each ©2; \ D, i = 1, 2, by convex curves
Yis» 8 € [0,1], sothat y; o = C and y; ; = 9%2;. From the existence of a catenoid
bounded by C and 7(C') and Lemma 2.1 in [8], there exists, for each s € [0, 1], a
unique stable annulus A; bounded by y; s U T (y2.5). Moreover, as A, is stable and
unique, it depends continuously on s by standard results (namely, curvature estimates
for stable minimal surfaces). By the maximum principle, M is disjoint from Ay for
alls € [0, 1). By point 1 of Lemma 2.1 in [8], M is contained in the compact domain
bounded by A1, 2 and T(23). Hence M = A;. O

3.2. Main theorem. In this section we state a slightly more general result than
Theorem 1, allowing the domains to depend on 7.

Let (v1,n)n and (¥2.,)n be two sequences of smooth convex Jordan curves in the
plane, bounding the domains €21, and €23 , respectively. Let 7T, be a sequence of
vertical translations and (M), be a sequence of minimal surfaces of fixed genus k&
with boundary y1,, U T (y2.4). If & = 0, assume further that M,, is not a stable
minimal annulus. By point 3 of Proposition 3, each €21 , N Q22 , 18 non-empty. We
assume that the in-radius of 21 , N 24 ,, 1s greater than r > 0, for some r independent
of n. We also assume that €2; ,, and Q5 ,, are included in the disk D(0, R) for some R
independent of n. Finally, we assume that the curvature of y; , and y» , is bounded
by some constant independent of #. Passing to a subsequence, (¥1,,)x, and (¥2.4)n
converge to two convex Jordan curves y; and y», bounding respectively two convex
domains €21 and €2, with non-empty intersection (thanks to the hypothesis on the
in-radius).
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Theorem 2. In the above setup:

(1) (Compactness) If T, — T # 0, then a subsequence of (M), converges
smoothly to a compact minimal surface of genus k bounded by vy, and T(y»).

(2) (Concentration) If Ty, — 0, then there exists k + 1 distinct points p1, ..., Pr+1
in 21 N Q2 and a subsequence, still denoted (M, )y, such that the curvature of
(My)n concentrates at p1, ..., Pr+1, in the sense of Theorem 1. Moreover, the
configuration py, ..., pk+1 is balanced, in the sense of Definition 1.

As a consequence, the constant € in Corollaries 1 and 2 depends on the following
quantities: the genus k of M, a bound on the curvature of y; and y», a bound on their
diameter, and a lower bound on the in-radius of €27 N 25,

Proof of point 1 of Theorem 2. By points 1 and 2 of Proposition 3, we have uniform
arca and total curvature estimates. By a standard compactness result, (namely by
points 1, 2, 3 of Theorem 3 in | 14]), there exists a subsequence of (M, ),, still denoted
(M,),, and a finite set S in R3, such that M,, converges on compact subsets of R*\ S
to an embedded minimal surface M with boundary included in I' = y; U T'(y2).
Morecover, M must be connected, else M, is not connected for r large enough. 1f M
is flat, then its boundary lies in a plane, so M is either in the plane x3 = O or x3 = 1.
Since ¢+ # 0, this contradicts the fact than dM, = y1., U Tu(y2.n). So M is not
flat. Let us see that the multiplicity of the limit M,, — M is one. The multiplicity
is well defined and constant in each component of M \ T". Let U be a component
of M \ T" where the multiplicity m is maximal, and assume that m > 2. Let p be a
pointon dU C I'. For small r > 0, B(p,r) N M, has m components. One of them
meets dM,,. The others do not, and are graphs over T, M of functions which converge
uniformly to the function which expresses locally M as a graph over 7, M . Since M,
lies in the horizontal slab 0 < x3 < ¢, T, M must be horizontal. By the boundary
maximum principle, since M lies in the slab 0 < x3 < ¢, M is flat, a contradiction.
Hence M, — M with multiplicity one. By the proof of point 4 in Theorem 3 in [14],
the singular set .S is empty. This proves point 1 of Theorem 2. [

The remaining of the paper is devoted to the proof of point 2 of Theorem 2.

3.3. Limits under scaling. et (M, ), be a sequence of minimal surfaces as in the
paragraph before Theorem 2. Let (1), be a sequence of homotheties of R3, with
ratio diverging (o oo as n — oo, and let ﬂn = h,(M,). The goal of this section is
to prove that the limit of (#4,,), is either flat or a catenoid.

Let y1.n» = hn(yl,n)a Yan = hn (Ty ()’Z,n)) and 'y = oM, = Yin U v2.4.
Note that since the curvature of y;, is uniformly bounded, the curvature of 1,
goes to zero as n — oo. If y; 4 has an accumulation point, then a subsequence of
(7:.n)n converges on compact subsets of R? to a horizontal line L;. Hence passing
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to a subsequence, (F )n_converges to a set " which consists of zero, one or two
horizontal lines. (When T’ = @ this means that for any R > 0, [, is outside the ball
B(0, R) for n large enough.)

By Theorem 3 in [14], there exists a finite set.S in R and a subsequence of (M),
still denoted the same, which converges on compact subsets of R3\(SUTD wa
minimal surface M with boundary included in T'. Note that M can be disconnected.

Proposition 4. If M has a non-flat component, then S and T are empty and M is a
catenoid.

Proof. There are three cases, depending on whether I is empty, one line or two lines.

First case: T is empty. Then one component of M is a complete, embedded, non-
flat minimal surface with finite total curvature. From the area estimate, point 2 of
Proposition 3, it has at most two ends. Therefore it is a catenoid by the Theorem of
R. Schoen [12]. By embeddedness M has no other component. Since the catenoid
is unstable, the multiplicity of the limit A, — M is one by a standard argument
(Proposition 4.2.1 in [9]), and the singular set .S 1s empty (Proposition 1.0.1 in [9],
see also the end of the proof of Theorem 4.3.2).

Second case: T consists of one line L. Since M, liesinthe slab0 < x3 < t,, M
lies in a half space bounded by the horizontal plane IT containing L. Extending M
by reflection in L, we obtain a non-flat, embedded minimal surface in R 3 with finite
total curvature. By Theorem 2.2.1 in [9], a non-flat, embedded minimal surface of
finite total curvature cannot intersect a plane along a line, so we get a contradiction.
('This theorem uses the argument of J. Choe and M. Soret in [3].)

Third case: T consists of two lines Ly and L,. Since M,, liesintheslab0 < x3 < ¢,
M lies in the slab bounded by the horizontal planes containing L and L,. Since
M is non-flat, these two lines do not lie in the same horizontal plane. Hence we
may assume that L lies in the plane x5 = 0 and L, lies in the plane x3 = 1. The
horizontal projections of y;, and y» , bound some convex domains Q 1,n and Q 2.
let H; = lim Qi,n. Then H; and H» are half planes, whose boundary lines are the
horizontal projections of L; and L. By point 4 of Proposition 3 applied to M, and
letting n — oo, M is inside the tubular neighborhood of radius one of (H; U H,) xR,
By point 5 of the same proposition, for any disk D of radius 1 contained in H; N Hs,
M intersects D x R. Let me call these two properties, respectively, property A and
property B. Roughly speaking, property A means that the horizontal projection of M
is contained in H; U H5, and property B means that it contains H; N H; (although
not quite). As we shall see, properties A and B severely restrict the possibilities for
the limit M .

Note that in case L1 and L are parallel, the boundaries of €21 and €2, are tangent
at some point p. Since €27 and €2, are convex with non-empty intersection, they lie



Vol. 85 (2010)  On minimal surfaces bounded by two convex curves in parallel planes 51

on the same side of this tangent line. Therefore, Hy C H, or H, C Hj (in other
words, H; N H> is not a strip).

Let € be the angle between L and Lg;\ Extending M by reflection in L and Lo,
we obtain an embedded minimal surface M in R3/S,4, where Syg is a vertical screw
motion of angle 26 if ¢ # 0, and a translation (maybe not vertical) in case # = 0.
Since M has finite total curvature, a theorem of W. Meeks and H. Rosenberg [7] says
that its ends are all simultaneously of type Scherk, helicoid or planar. We deal with
each case separately.

First case: M has Scherk type ends. Then the horizontal projection of M stays at
bounded distance from a finite set of half-lines, contradicting property B.

Second case: M has helicoidal ends. In the case 8 = 0, the period must be vertical,
since M lies in a horizontal slab. Each asymptotic half-helicoid intersects the hori-
zontal plane x3 = 0 along a half-line. Since M intersects the plane x3 = 0O along the
line L1, it has precisely two helicoidal ends. Outside of a vertical cylinder, A has
two components, each asymptotic to a piece of a helicoid, and having two half-lines
on its boundary. Let us write L1 = L7 U L and L, = L, U L}, where L, L,
L7 and L are half-lines defined as in Figure 3. Let £ and E> be the two pieces of
helicoid that M is asymptotic to, labeled so that £; has L/ on its boundary. Note
that by property A, none of them can make a full turn, and by property B, both cover
HyN Hy. If £y climbs from L to L), then £> must climb from L7 to L7 (this can
happen only in the non-parallel case). But then none of them covers H, N H,. Hence
Ey must climb from L to L7, and E from L7 to L},. But then £ and E intersect,
which contradicts embeddedness. Therefore, M cannot have helicoidal ends.

1"
L2

y
HinH
Ly R 24

Figure 3. Definition of the four half-lines in the case where L1 and L> are not parallel (left) or
parallel (right).

Hi\ H>

Hy N H>

Third case: M has planar ends. Since M lies in the slab 0 < x3 < 1, the ends must
be asymptotic to horizontal planes. By a theorem of Y. Choe and M. Soret [3], 8 = 0,
so the lines L; and L, are parallel. We may assume without loss of generality that
H 1 is the half-plane x; > 0, then H5 is the half-plane x; > a for some a. So M is
asymptotic to the half planes x5 = 0, x; > Oand x3 = 1, x1 > a. Note that because
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of this, M cannot be a Riemann minimal example: indeed the part of a Riemann
minimal example between two consecutive horizontal lines 1s asymptotic to two half
horizontal planes pointing into opposite directions.

To obtain a contradiction, we use the argument of Choe and Soret, as explained
in [9]. We may assume that the stereographically projected Gauss map g takes on
the value O at the end at height x3 = 0. Then by embeddedness, it must take on the
value oo at the other end. Note that g is real on L and L».

By the boundary maximum principle for M, g # 0,00 on L, so g has constant
sign along L. Close to the end, M lies in x> 0,x3 >0,sowehave g > 0on L.
By a similar argument, g is also positive on L.

Arguing as in [9], for ¢ > 0 small enough, the intersection of M with 0 < x3 < &
is conformally an annulus 1 < |z| < r for some r > 1, with x3 = Oon |z| = 1
and x3 = € on |z| = r. Since x3 is harmonic, it follows that x3 = Alog|z| with
A =c¢/logr,and

¢3 = Q%dZ = A@
dz Vi
(In [9], the authors claim that A = 1, but this is only the case after a suitable scaling
of the surface.) If y is a closed curve on M, let us define

F(y) :ifg‘lqbs Zifg¢3-
Y Y

(These two integrals are equal because y is closed. F(y) represents the horizontal
part of the flux along y, seen as a complex number.) Let ys be the curve x3 = s on
M , oriented as a boundary of x3 < s. Then in the conformal representation, y; is the
circle |z| = r, with the positive orientation. Since g is holomorphicin 1 < |z| < r,

2
Foo=i [ spa=i[ ah=i[ eiide <o
lz]|=r z|=1 =0

In the same way, we can represent conformally the intersection of M with 1 — ¢ <
x3 < 1 with an annulus 1 < |z| < r for some other r > 1, with x3 = 1 — Alog|z|
and ¢p3 = —Adz/z. The level curve y,_, corresponds to the circle |z| = r, with the
negative orientation:

Fy1—e) = —i f g s = —i f g 3 =i [ (g(e*)71Aid6 > 0.
|z|=r lz|=1 8=0

However, F(y.) = F(y1—) because the two curves are homologous. Hence we have
a contradiction. ]

From Proposition 4 we get the following
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Proposition 5. Let (M), be a sequence of minimal surfaces as in the paragraph
before Theorem 2. Let (hp)n be a sequence of homotheties of R?, and let M, =
ha(M,). There exists a finite set S and a subsequence of (My, ), (still denoted (M) )
such that the curvature of (n'/}n)n is uniformly bounded on the compacts of R3 \ S.
Moreover, for any p € S and any r > 0, it holds that

limsup C(M, N B(p,r)) > 4.

The point of this proposition is that for any point of concentration of curvature,
the amount of total curvature which concentrates at this point is always at least 4.
This is well known for interior points of concentration (see for instance the proof of
Theorem 3 in [14] or Theorem 4.3.1 in [9]), but wrong in general for boundary points
of concentration. For example, if y; and y, are two convex curves which intersect at
a finite number of points and A4, is the stable annulus bounded by y; U T, (y2) with
T, — 0, then the curvature concentrates at the intersection points of y; and y,. The
mass of curvature that concentrates at each point is equal to twice the angle between
the curves at this point. (A blow-up would produce pieces of helicoids. )

This proposition can be proven exactly as Theorem 4.3.1 in [9], using a standard
blowup argument. By Proposition 4, the only limits which can appear are catenoids,
whence the 4. We omit the details.

3.4. Weak limit. In this section, we adapt the weak compactness result of A. Ros
[10] (in the case of complete embedded minimal surfaces of finite total curvature) to
our case, namely when there is a boundary.

Proposition 6. Let (M), be as in the paragraph before Theorem 2 and assume that
T, — 0. There exists a subsequence, still denote (M), and k + 1 sequences of
homotheties (hjp)n, 1 <i <k + 1, such that the following is true:

1) hin(My) converges smoothly on compact subsets of R? to a vertical catenoid,
with multiplicity one.

2) For any small ¢ > O, there exists R > 0, independent of n, such that if we let
Bin = hl_,i (B(0, R)), then C(Mu \ |J; Bin) <e.

3) For n large enough, the balls B; , are disjoint and M, \ | ) B; » has two compo-

nents Uy, and U, . Each U, is a graph over Q; , minus k 4 1 small convex
disks, for j =1, 2.

Figure 4. Weak limit, genus one.
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Remark 2. This proposition implies that lim C (M) = 4x(k + 1).

Proof. We follow the main lines of the argument of A. Ros, adapted to the case of
minimal surfaces with boundary. Passing to a subsequence, we may assume that
lim C(M,,) exists. We write im C(M,,) = 4nf + e with£ € N and 0 < ¢ < 4x.
We first prove the following partial statement:

Claim 1. In the above setup, @« = 0 and there exists L sequences of homotheties
(hyn)n, such that for 1 <i <4, (h; n(M,)), converges on compact subsets of R to
a catenoid, with multiplicity one.

Proof. 'The idea of A. Ros to detect where the curvature concentrates is to look at
balls B such that C(M, N B) = 2, and to select the smallest such ball. It turns
out that the value 2 is not important for this argument: any fixed value p € (0, 47)
works fine. We choose p as follows: if « = 0, we take . = 27, If & > 0, we take
@ = a/2, and we want to get a contradiction. (In what follows, when we use the
word “small”, it means: “small compared to p”. It is therefore important that p 1s
fixed once for all.)

First step. If £ = « = 0, then the claim is trivially true. Else lim C(My,) > u,
hence for n large enough, the family of balls B such that C(M, N B) = u is
non-empty. Let B, be a ball of minimum radius in this family. Let /1,, be the
homothety such that £ , (Bi,n) = B(0,1) and let J\A/L,n = hy,(M,). Note that
C(M 1.» N B(0,1)) = p and that B(0, 1) is a smallest ball with this property. By
Proposition 5, passing to a subsequence, there exists a finite set .S such that (M, "
converges to a minimal surface M; on compact subsets of R3\ S. If p € S, then
by Proposition 5, C(M; , N B(p, %)) > w for n large enough. As this contradicts
the choice of B, _, S must be empty. Since C(Ml,n N BO, 1) = u > 0, M

1.n°
cannot be flat. If the ratio of / , were bounded, then since 7,, — 0, M 1 would be
included in the horizontal plane, hence flat. Hence the ratio of /11 ,, is not bounded. By
Proposition 4, M, is a catenoid and the multiplicity of the limit is one. Given ¢ > 0,
there exists R; > 0 such that |C(M; N B(0, R;)) — 47| < /2. From the smooth
convergence of (Ml,n)n to M, on B(0, Ry), we get |C(M1,n NBO,Ry))—4n| <e
for n large enough. Let By, = hl_}L(B(O, Ry)). Then |C(M, N By ,) —4n| < e.
In particular lim C(M,) > 4m and £ > 1. This concludes the first step of the weak
limit process.

Second step. If £ = 1 and « = O then we are done. Else lim C(M,) > 4m + u.
By taking & small enough, for » large enough, the family of balls B such that
C([My \ B1n] N B) = p is non-empty. Let B; , be a ball of minimum radius
in this family. et %5, be the homothety such that /> (B3 ,) = B(0, 1) and let

Mz,n = hs n(My). Let El,n = hs n(B1,,). By construction, the radius of B{}n 18
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at most the radius of Bg .. Hence El,n is a ball of radius at most R;. Passing to a

subsequence, the center of El,n either converges, or goes to infinity. We treat each
case separately.

First case: The center of El,n diverges. Then we can argue as in the first step and
conclude that (szn)n converges on compact subsets of R3 to a catenoid Mz. There
exists Ry > O such that |C(M, N By ,) — 4n| < e, where hy (B2 ,) = B(0, Ry).
For n large enough, By , and B, , are disjoint. Hence lim C'(M,,) > 8x.

Second case: The center of El,n converges (o a point p. In this case we want to obtain
a contradiction. Passing to a subsequence, the radius of El,n has a limit r. If r > O,
then from the convergence of M, to a catenoid, we obtain that C (M, N B}, <e.
This contradicts the definition of Bg’n. Hence r = 0 and the sequence of balls (El nn

collapses into the point p. The sequence (Z% n)n CONVErges to M> with singular set
S. Clearly p € S, and in fact S = {p}, else we contradict the choice of 32 , asin

the first step. Since S is non-empty, all components of M are flat by Proposition 4.
If p & B(0, 1), then from the convergence of (ﬂz,n) to a flat minimal surface on
compact subsets of R3\ {p}, C(M,_, N B(0, 1)) — 0. This contradicts the choice
of B; ,. Hence p € B(0,1).

Fix a small r > 0. For n large enough, Eljn C B(p,r). Let X, = Mzgn N
B(p,r)\ B} ,. From the smooth convergence of (M, ), to a flat limit on B(0, 1) \
B(p,r),wehavelim C(ﬂz,nﬂB(O, D\ B(p,r)) = 0. Hencelim C(X,NB(0, 1)) =
@, IflimC(X,) > u, then since ¥ < 1 we contradict the minimality of B(0, 1).
Hence lim C(X,) = u

Zn B(0,1)

B{p.r)
M2,n

By looking at the Gauss image of %,,, we shall see that lim C(X,) is a multiple
of 47, thus obtaining a contradiction. The boundary of %, is included in the union
of the boundaries of 31 x> B(p,r) and M2 a. On each component of 9%, N BBl o
we have from the convergence to a catenoid that the Gauss map is close to a constant
value (in fact arbitrarily close, by taking R; large enough). On each component of
0%, N dB(p,r), the Gauss map is close to a a constant value: this follows from
the convergence to a flat limit on compact subsets of R? \ {p}. Finally, we need
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to understand the Gauss map on 3%, N Bﬂg,n, in case this is not empty. On the
boundary of Mz,n, the argument of the Gauss map is equal to the argument of the
horizontal vector normal to the boundary. Since the curvature of the boundary of
Mz,n is bounded, the argument of the Gauss map on Bﬂz,n N B(p,r)is close to a
constant value (arbitrarily close, by taking » > 0 small enough). We conclude that
the image by the Gauss map of each component of 9%, is either a small disk, or a
star-shaped curve bounding a small area on the sphere. Since the Gauss map 1s open,
the image of X, has area close to a multiple of 4. This contradicts the fact that
C(X,) is close to 1, and concludes the second step of our weak limit process.

We iterate this process £ times and produce £ sequences of homotheties (2; )
and balls (B; »)x as wanted. Moreover, lim C(M,,) > 4x£. If « > 0, then by taking
¢ > O small enough, we have that for n large enough, the family of balls B such that
C([M, \J Bin] N B) = i is non-empty. So we can do one more step and conclude
that lim C(M,) = 4x(£ + 1), a contradiction. Therefore « = 0. This proves the
claim. H

For n large enough, the balls B; ,, are disjoint, hence

£
C(Mn \ U Bi,n) < fe

i=1

which proves point 2 of Proposition 6 (replacing ¢ by &/£).

Claim 2. The Gauss map converges to the vertical on each component of dM,,, in
the following sense:

lim min |N3(x)| = 1.
n_>00x63 n

Proof. We prove the claim for the bottom component of dM,,, the proof for the top
component is similar. Let x,, be a point on y; 5, such that |N3(x,)| is minimum. Let
Pin be the center of B; ,. Let d, = min; d(x,, p; ,). Passing to a subsequence,
lim ‘57” € [0, oo] exists.

First case: lim %” > 0 (possibly infinite). Let /4, be the homothety of ratio 1/,

which maps x, t0 0. Let My, = h,(M,). By Proposition 5, (Mp), converges to a
minimal surface M with 1 singular set S (possibly empty). Moreover, 0 € S, because
else lim d” — 0. LetT" = lim 8Mn, then T is a horizontal line L1 through the

origin, and possibly a line L5 in the horizontal plane x3 = 1. Since I" is not empty,
all components of M are flat by Proposition 4. If [ = Lqior Liand L> are not
parallel, then all components of M must be planes or half-planes. Since M, lies in
the horizontal slab O < x3 < 1, all must be horizontal. Since Mn M smoothly in
a neighborhood of 0, we conclude that N3(x,) converges to a vertical vector. If L,



Vol. 85 (2010)  On minimal surfaces bounded by two convex curves in parallel planes 57

and L are parallel, then one component U of M might be the (non-horizontal) strip
bounded by L and L». By property B of the proof of Proposition 4, there must be
another component. This other component cannot be a half-plane, because L; and
L, already bound U. Hence it must be a horizontal plane, but then we contradict
property A of the proof of Proposition 4. We conclude that again all components of
M are horizontal planes and half-planes.

Second case: lim %’1 = 0. In this case, let /2, be the homothety of ratio 1/d, which

maps x, 10 0. Let M, = h,(M,). By Proposition 4, (M), converges {0 a minimal
surface M with singular set S # @, and d(0, S) = 1. Since S # ¥, all components
of M are flat by Proposition 4. Note thatlim dM,, is a horizontal line L containing the
origin. Let us assume that there exists a component U of M which is not horizontal.
Then since M lies in the half space x3 > 0, U must be a half-plane with boundary
L, and its multiplicity is one, so p ¢ U. The component of M containing p must
be a horizontal plane x3 = a, and its multiplicity is at least 2. If @ > 0, then we
contradict embeddedness. If @ = 0, then the density of M at the origin is greater than
or equal to % so we contradict point 2 of Proposition 3. Hence all components of A4
are horizontal, so N3(x, ) converges to a vertical vector. This proves the claim. [

It remains to prove that all catenoids are vertical, the third statement of Proposi-
tion 6, and that £ = k + 1.

Let U be a component of M, \ | J B;,. Since the balls B;, do not intersect
[, = dM,, each component of dU is either a component of I'y,, or a small circle
included in some dB; ,, (one of the two boundary components of the inside catenoid).
By the previous claim or convergence to a catenoid, on each boundary component,
the Gauss map is close to a constant. Since C(U) is small, the Gauss map is close to a
constanta on U. Let P = a+andlet 7: U — P be the projection. Then 7 is a local
diffeomorphism so 77 is open. Consider acomponentof dU of the second type, namely
a small circle y included in some dB; ,. From the convergence to a catenoid, we can
glue a disk along y in such a way that 7 remains a local diffeomorphism. Perform
this surgery for all such boundary circles y and call U the result. Then: U — P is
a local diffeomorphism hence open. If 9U does not intersect I',, then U is compact
without boundary, but then 7: U — P cannot be a local diffeomorphism. Hence
dU has a component equal to I'1 , or I'2 5, so there are at most two such components
U. Since the gauss map is close to a vertical constant on I'1 , and I'» 5, we conclude
that P is the horizontal plane and all catenoids are vertical.

If M, \ | B, has only one component U, then £ = 0. (Indeed, if £ > 1, the
Gauss map 1s close to a constant on the boundary of B , N M, but this contradicts
the convergence to a catenoid inside.) Since z has no critical point on M,,, M, is
an annulus. Since the Gauss map is close to a constant on M, M, is stable by
the Barbosa do Carmo criterium. This is a contradiction since M, is not the stable
annulus by hypothesis.
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Hence M, \ | B; , has precisely two components Uy pand Us ,, with I, C
dU; . Gluing disks as above, the projection 7 from Ul . to the horizontal plane 18
open, and is one to one on 8Ul n=DILin s0om: U, n — $2i.x 18 a diffeomorphism.
This proves the third point of Proposition 6. Finally, the genus of M, is £ — 1, so
£ =k+1. O

3.5. Flux. To make further progress we need the notion of flux. Let y be a curve on
an oriented minimal surface M, and let v be the co-normal along y, chosen so that
the basis {v, ¥’} of the tangent plane is direct (so if y is the oriented boundary of some
domain, v is the exterior co-normal). The flux along y is the vector | " vds. This
is a homology invariant vector. If we denote by X* = (X, X5, X3) the conjugate
minimal immersion, then flux(y) = [ , dX 7. If M is the graph of a function u (x, y),
and 1s oriented by the upwards pointing normal, then one has the following formulae
for the conjugate minimal immersion:

uxtydx + [1 + (uy)?]dy

dXT = \
VT o+ )
—[1 OFldx —uuy,d
axy = —LLt (o) 100 — Hatdy 1)
\/1+(ux)2+(uy)2
Xt - uxdy —uydx

T+ )2+ ()2

When Vu is small, these formulae give the following expansions, with z = x +1y:

2
dX} —idXy =idz + 2i (g—”) dz + o(|Vu|?), (2)
Z
N ou
dX5; =Im (25512) + o(|Vul). 3)

3.6. Limit rescaled graph. As we have seen, outside k£ + 1 small balls, M, has two
components U; , and U ;. Each component U; , is the graph over £2; , minus small
disks of a function which we call u; ,. Wehave 1, = 0on dQ; , andus , = t, on
d€25 . In this section, we prove that after suitable scaling, these functions converge
to explicit harmonic functions u#1 and u 2, each having k + 1 logarithmic singularities.

Without loss of generality, we may assume (by changing the homotheties /; )
that all the limit catenoids are the standard catenoid cosh? x3 = x2 4+ x3. Let A; 4 be
the ratio of h; , and A, = min A; ,,. Passing to a subsequence, we may assume that
An = Ajy.n for some index iy. Passing again to a subsequence, the following limit
€XI1Sts:

c; = lim
=00

An
e [0, 1].

i.n
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Note that ¢;, = 1, so at least one ¢; is non-zero. Let p; , € R? be the horizontal
projection of the center of B; ,,. Passing to a subsequence, p; = lim p; , € €21 N Q2
exists. Note that at this point, we do not know that the points pi,..., pry1 are
distinct.

Proposition 7. The following limits exist:

k+1

n—>00 4
i=1

k+1
Uy i= nli)ngoln(uz,n — i)z} = Z ¢iG2.p;»

i=1

where G, , denotes the Green function of 2;. The convergence is the smooth con-
vergence on compact subsets of Qi \ {p1,.-., Pk+1}-

Note that in this proposition, the points p; do not need to be distinct, and may
also be on the boundary. If p € 922;, G; , should be understood as zero. Note that
if p converges to a boundary point g of €2;, then G; , converges uniformly to 0 on
compact subsets of §2; \ {g} (this is easy to check by explicit formula for the disk, so is
true for any bounded convex domain by conformal mnvariance of the Green function).
This makes this definition natural.

Proof of the proposition. We orient M, so that the normal points up in Uy ,, and down
on U, ,. Let y1,;, and y»; , denote the top and bottom boundary components of
M, N B; , (oriented as boundaries). From the convergence to catenoids we have

lim A,flux(y2;,) = — lim A,flux(y;;,.) = (0,0, 2m¢c;).
n—0o0 n—>00

This gives

k+1

lim A flux(yy,) = — m Anflux(yz,) = Y (0,0,27¢;).
n—>00 n—>00 1

Now the third coordinate of the co-normal v has constant sign on each curve y1,i .,
and y» ; » (from the convergence to catenoids), and on y; , and y2 , (from the convex
hull property). Hence for i = 1, 2 we have the estimate

f AnldX3| < C
A
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for some uniform constant C'. Since the normal is close to be vertical on each U; ,,
we have \/ 1 + |Vu; a|? < 2 for n large enough, hence from equation (1), we have

f 2| Vitin] < 2C. @
8U1',n

From this integral estimate, we must conclude the convergence of a subsequence of
(AnUinkn. If u;, were harmonic, this would be quite elementary. So we make a
conformal representation of U; , onto a planar domain. Via this representation, u;
becomes harmonic and we can conclude.

We shall only consider u; 5, the proof for u, , 1s entirely similar. By Koebe’s
theorem on uniformization of planar domains, there exists a conformal representation
Jn of Uy, onto the unit disk minus & + 1 circular disks, such that £, maps y; , to the
unit circle. Such a conformal representation 18 unique up to a Mobius transform of
thedisk. Let,: Uy, — 21, be the projection on the horizontal plane and let f, =
Jnom, 1. Using a M6bius transform of the disk, we may normalize f; by f; (zg) =0

and %(zo) > 0, where zg 1s a fixed point of 2, away from py,..., pry+1. Note

that f, is defined on compact subsets of 21\ {p1.. ... pr+1} for n large enough, and
is kn-quasi conformal with «, — 1 as n — oo (because f, is conformal and m, is
K -quasi conformal, since the Gauss map converges to a vertical vector). Since ( /5 )n
is bounded, by a standard normal family result ([6], Theorem 5.1, page 73), passing

to a subsequence, ( f,)}, converges on compact subsets of 21 \ {p1,..., Pr+1} to
a 1-quasi conformal (hence holomorphic) function f. Moreover, f(zg) = 0 and
f’(zo) > 0. By Riemann’s theorem, f extends holomorphically o p1, ..., Pr+1.

Letg; = f(pi),i = 1,...,k + 1. By [6], Theorem 5.5, page 78, f is either a
diffeomorphism, or a constant function onto a boundary point, which is not possible
since f(zo) = 0. Hence f is the unique conformal representation of £2; onto the
unit disk such that f(zo) = 0, f'(z9) > 0. Since the limit is uniquely determined,
the whole sequence ( /5 ), converges to f.

Let Q) = fo(Uy ) and

v
—1 -1 n
Un:AnXB,nOfn :Anunoﬂnofn s Pn = 9

where X3,: M, — R denotes the third coordinate of the immersion. Since M,
is minimal and f, is conformal, v, is a harmonic function so ¢, is a holomorphic
function on 2/,. From equation (4) we have

f |¢n| < C.
a2y,

Fix a small ¢ > 0 and let U, be the set of points in D(0, 1) which are at distance
greater than ¢ from dD(0, 1) and g1, ...,gx+1. Observe that for »n large enough,
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U, C Q) andif z € Ug, d(z,02)) > ¢/2. By Cauchy’s theorem we have, for n
large enough and z € U,

dw

@l = 5| [ 2

<L[|w<g.
T 27 Jyq, £/2 T me
Hence (¢,), is bounded on U,. By the theorem on normal families, a subsequence
of (¢, ), converges on compact subsets of D(0, 1)\ {g1, ..., qr+1} to a holomorphic

39;1 w—2z

function ¢p. From the above estimate, ¢ has at most simple poles ateachqy, ..., gr+1.
Since v, = 2Re f ¢n, we obtain that (v, ) converges to a harmonic function v which
has at most logarithmic singularities at g1, ..., ¢r+1 and vanishes on 0D (0, 1). (To

sce that v = O on the unit circle, we must ensure the convergence of (¢, ), on the
boundary. This can be done as follows: since v, 1s zero on the unit circle, the 1-form
wyn = ¢pdz is pure imaginary on the unit circle. By the Schwartz reflection principle,
one can extend the holomorphic one form w, by reflection in the circle namely, by
o*w, = —wy,whereo(z) = 1/Z. Fixsome r < 1closeto 1. Then (@, ), is bounded
on the circles |z| = r and |z| = % so by the maximum principle, it is bounded in
the annular region r < |z| < % Hence, passing to a subsequence, the convergence
holds up to aD(0, 1).)

Since Ay u, = vyo0 from, L, (Anup), converges to a harmonic function u4

which is zero on 9€2; and has at most logarithmic singularitics at py,..., Pr41.
By formula (3), the principal part of 1 at p; is —c;log|z — p;i|. This proves the
proposition. N

3.7. Thebalancing condition. In this section, we compute the limit of the horizontal
part of the flux, scaled by (1,)%, on 3B;, N My = Y15 U y2.i.n. Writing that this
flux 1s zero will give the balancing condition. We assume that the configuration
P1.---» Pk+1 18 regular, i the following sense:

(1) the points pq, ..., pr+1 are distinct,
(2) p; € 21N Q, foralli,

A configuration is singular when several points are equal, or when some points are
on the boundary of 21 N Q5. The case of singular configurations will be studied in
Section 3.9. Let us define

F(y) = flux, (y) —ifluxa(y) = [ dX{—idX;.
¥

By formula (2), we have

Buln 4 2
( : ) dz +o(|Vuia|%),

F(y1in) =21 f 5
z

C(p;.e)
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dup\? Juq\2
lim (A2 F (y10) = 2i f (%) dz — —4x Res,, (ﬂ) |
oo Clpie) \ 0Z 0z

Now
BGLPJ

8u1 Ci 8fllp Z
o, T A Cj

dz 2(z — pi)

This gives, expanding the square and computing the residue,

' OH 1 . 3G 1, p;
i (2P (1) = (22512 0+ a2 ),
J#i

We have the same formula for F(y2,;,»), replacing Hy, p; by Ha,p, and G1,p; by G2, .
(Regarding orientations: the normal points down in U 4, so there is a minus sign in
front of the formulae for X *, and we must give C{(p;, €) the negative orientation,
which gives another minus sign in front of the residue. These two minus signs
compensate.) Since Y1, + ¥2.i,» bounds M, N B; ,, the sum of the two fluxes is

zero, so we obtain, forall i = 1,...,k + 1,
8H1, : 8H2, ; s 2
(B + 22 ) + ey (20 + 22 () o
J#i

This 1s not quite the balancing condition yet. We still must prove that all the ¢; are
equal to one, which is the goal of the next section.

Remark 3. To prove that balanced configurations do not exist in Sections 2.3 and
2.4, we do not really need that all ¢; are equal to one: we could very well use the
above balancing condition, provided that all ¢; are positive. However, the simplest
way to prove that no ¢; vanishes seems to prove that all are in fact equal to one.

3.8. Equal neck-sizes

Proposition 8. Assume the configuration is non-singular (in the sense explained at
the beginning of Section 3.7). Then all c; are equal to one.

Proof. Tor each neck, we use catenoidal barriers to estimate the height 7, between
the boundary curves as a function of A; ,. From this estimate we conclude that all

¢; = lim AA
Given 0 < r < %, let € (r, R) be the part of the catenoid of waist radius r defined

by
A/ x% +x3 = rcosh(xs/r), +/x}+x2 <R,
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so that € (r, R)is bounded by two horizontal circles of radius R atheight -7 argcosh %
Let €% (r, R) and € (r, R) denote the upper half (in x3 > 0) and lower half (in
x3 < 0)of €(r, R).

Let pin € R? and ni.an € (0,1,) be respectively the horizontal projection and
the third coordinate of the center of B; ,, so pj» — p; and n; , — 0. Since the
configuration is non-singular, there exists ¢ > 0 such that for n large enough, the
disks D(pin,€), i = 1,...,k 4+ 1 are disjoint and inside 21, N Q2,,. From the
convergence of (A,u1,, ), to 11 on compact subsets of Q1 \{p1,..., pr+1}, we have
|Anti1,n] < C on the circles C(p; », €) for some uniform constant C.

Upper bound for n; ,. Fix some o > 1 close to one. Let %; , be the part of M,
inside the vertical cylinder D(p; ,,¢€) x (0, n; ). By convergence of h; ,(M,) to a
catenoid, the horizontal projection of the top component of d%; , is a curve close to
a circle of radius 1/A; ,, so it is inside the disk D{(p; »,a/A; ). (Here we assume,
without loss of generality, that all limit catenoids are centered at the origin.) Consider
the catenoid € («/A; », €). Translate it horizontally so that its axis is the vertical line
through p; ,. Translate it vertically up so that it is disjoint from >; ,,, and then move
it down.

By the maximum principle, the first contact point will occur when the bottom
circle touches the lower boundary component of d%; ,, so its height will be at most
C/Ay. In this situation, the catenoid will be above %; ,. The intersection of X; ,
with x3 = ;. — 1/A; 5 is close to a circle of radius cosh(1)/A; », which is greater
than the waist radius of the catenoid, so 7, , — 1/A; » must be less than the height of
the waist of the catenoid. Using that argcosh(x) < log(2x) for x > 1, this gives the

estimate o , - -
104 EAin O Ajn
n S argcosh —— < — —_—

et == An + A3!',n e a T Ay e A1',11

for some uniform constant C’. By the same argument, we have the same upper bound
for 1, — n; ». Adding the two estimates gives
log A; 2C
h <2« S A + .
AJ!',n An

)

Lower bound for n; ». Fix some 8 < 1 close to one. Consider the lower half-catenoid
€ (B/Ain. ¢). Translate it horizontally so that its axis is the vertical line through
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Pi.n. Translate it vertically down so that it is disjoint from M, and then up. By the
maximum principle, the first contact point will occur when the bottom circle of the
half-catenoid touches the boundary of M, and the part of M, inside the cylinder
D(pin,e) x(0,t,) will be above the catenoid. Using that argcosh(x) > log(x) for
x > 1, this gives the estimate

logA;, C”
Ai,n An

Nin = ﬁ

for some uniform constant C”. By the same argument, we have the same lower bound

for t, — ni ». Adding the two estimate and taking ¢/ = iy (recall that A, = A,  , by

definition), we obtain

logi, 2C”
An An

tn = 2P (6)

Combining (6) and (5), we obtain

alogki,n - ﬁlogkn B cC'+C”
A.‘i,r.c N An kn

which holds for any @ > 1 and § < 1, both close to one, and for n large enough.
From this we get

An Ain An
| . — logh, —C'—C".
ali,n b5 ( An ) = (}8 aki,n) H

The left hand side has a finite limit when n — o0, s0 ff — « f;”

< 0 for n large

enough, else the right hand side goes to +oc0. This gives ¢; > % The conclusion
follows by letting « and 8 go (o one. O]

3.9. The singular case. Let us introduce some terminology. Let p; be a point of
the configuration. If p; # p; forall j # i then we say that p; is a simple point, else
that p; 1s a multiple point. If p; 1s not on the boundary of €21 N €25 we say that p; 1s
interior. If ¢; = 0, then we say that p; 1s evanescent. Evanescent points correspond
to catenoidal necks which collapse too fast. Multiple points correspond to catenoidal
necks which collapse to the same point. We want to prove that the configuration 1s
non-singular, namely all points of the configuration are simple and interior.

If (¢4 )n 18 a sequence of homotheties of the plane with ratio 1, — oc, we define
f’zi,n = 0p(Qin), Pin = @u(pin)and U; n = ujy 0 gan_l. Passing to a subsequence,
pi = lim p; , exists in C U {oc}, and ﬁi,n converges to either a half-plane H; or the
whole plane. We have the following generalization of Proposition 7 to this setup:
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Proposition 9. If lim ﬁl,n is a half-plane H, then

k+1
nlglgo Apliy p(2) = Z ¢i log

i=1

Z—pl
z—o1(pi)|

where o1 denotes the symmeltry with respect to the boundary line of Hy. If lim Q L
is the whole plane, then

k+1 ”
— D
111’1’1 An(U1,n(2) — U1, (20)) = — th log
_ Z0 — Pi
i=1
The convergence is on compact subsets of Hy or C minus p1,..., px+1. In case
pi = o¢, the corresponding term in the above formulae should be understood as

zero. A similar statement holds for 13 .
We start by proving:

Proposition 10. The points which are not evanescent are interior and simple amongst
non-evanescent points (which simply means that they are distinct).

Proof. the proof is by contradiction. If this is not true, then by making blow-ups,
we obtain a balanced configuration as before, with the domains £2; and 2, replaced
by half-planes (in the case of a boundary point) or the whole plane (in the case of a
multiple point). We obtain a contradiction by proving that balanced configuration are
impossible in these cases. Note that forces won’t see evanescent points, which is why
we only get information about non-evanescent points. We will rule out evanescent
points in the next proposition.

Without loss of generality, we may assume that the points which are not evanescent
are pi,..., pr, forsome r > 1. Let

8n = min ({d(pi,na a(Ql,n! M QZ,n))a 1 <i =< I’} U {d(pi,na pj,n)a 1 <i< J= F}) :

We want to prove that inf 5, > 0. Assume by contradiction that inf 6, = 0. Then
we can find a subsequence such that limd, = 0. Passing to a subsequence, and
maybe changing indices, d, is always equal to the distance of p; , to the boundary
or to d(p1,n, p2.n). Let g, be the homothety of ratio i, = 1/d, in the plane which
maps p1,, to the origin. Then passing to a subsequence and using the notations
before Proposition 9, p; = lim p; , € € U {oo} and Q¢ = lim ég’n exist, £ = 1, 2.
Moreover, p; = 0, and the points pyp,..., p; are at distance at least one from each
other and from the boundary. We may assume that the points p; which are finite are
Pi,..., ps forsome s > 1.
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If Q; = C then arguing as in Section 3.7 and using Proposition 9, we have

s
- Ci¢j

A J 22
lim —F(ygln) —4m Res 5, (EZCJ log |z — pj|) = —2%% Fi—

H—>00 l,l,

If Q; = Hy is a half-plane then we have (o¢(z) denotes again the symmetry with
respect to the boundary of Hy)

)L2 a s ) B 2
Tim M—F(yg in) = —47 Resj, (EZcJ- log |z — pj| —¢jlog|z _UE(PJ)|)
n j=1
Ay
CiCj Ci Cj
— _27[( - — - f)'
;pi—pj ;Pi—aﬂ(pj)

First case: Both Ql and 522 are the whole plane C. Then necessarily s > 2, and the
above formulae give the balancing formula:

22 ‘Y =0 foralli <s.

i PP
Since s = 2, it 1s straightforward to see that there are no balanced configurations
Pi,---, Ps. (Simply consider an extremal point, namely which is not in the convex

hull of the others. The force on such a point cannot vanish.)

Second case: Q1 = Hy is a half-plane and Q, is the whole plane. By rotation and
translation, we may assume that H; is the half plane Im(z) > 0,80 0,(z) = z. The
above formulae give the balancing condition:

s
YUY 9 — 0 foralli <.

4 P B D b By

If p; has the smallest imaginary part amongst p, ..., ps, then all terms in the first
sum have non-negative imaginary part, and all terms in the second have positive
imaginary part, hence the force cannot be zero. The case where Q, is the whole
plane and Q5 is a half-plane is identical.

Third case: Q1 = H; and Q, = H, are both half-planes. Note that H; N H, cannot
be a strip, because this would contradict the fact that €24 , N 25 , contains a disk of
fixed radius. So by translation and rotation we may assume that for £ = 1,2, Hy
is the half-plane y > tan(oy)x for some oy € (—%, 7). We obtain the balancing
condition:

2

> (e

+Z[ L TP L ”')DZO foralli <s. (7)

pDi — Oy (Pz Pi — 0¢ (PJ
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Fix some £ = 1,2, and write H = Hy, 0 = o;. If z,w are points in H then we
clearly have Im(o(z)) < Im(z) and |o(w) — z| > |w — z|. If Im(z) < Im(c(w))
then we have

Im( 1 1 ) _ Im(w — z) L Im(z — o (w))
z

—w  z—o(w) |z — w|? |z —o(w)|?
- Im(w—z) Im(z—o(w)) _ Im(w — o (w))

> (.

|z —wl? |z —wl]? |z —wl?

If Im(o(w)) < Im(z) < Im(w) then the same conclusion holds (this time both terms
are positive).

Now consider the point p; which has the smallest imaginary part. It follows
from what we have just seen that the first term and all brackets in (7) have positive
imaginary part. So the force on p; cannot vanish. This proves the proposition. O

Proposition 11. 7he configuration is non-singular.

Proof. 1t we look at the proof of Proposition 8, we see that to get the upper bound
for n; », we only need that the point p; 1s simple, while for the lower bound of »; 5,
we only need that the point p; is interior. Since ¢;, = 1, Proposition 10 says that p;,
1s interior. Hence the lower bound for ¢,,, equation (6), holds.

Let p; be a point of the configuration. If p; is simple, then as we observed above,
we can obtain an upper bound for 7; , and conclude that ¢; = 1 as in Section 3.8, so
pi 1s interior by Proposition 10. Therefore, to prove the proposition, we only have to
prove that all points are simple.

Assume by contradiction that there exists a multiple point. By changing indices,
we may assume that p; = py = --- = p,, for some integer m > 2. Passing (o a sub-
sequence and changing indices, we may assume that Ay , = min{A; , : 1 <7 < m}
for all n. Our first goal is to prove that ¢; > 0 by obtaining an upper bound for
n1.n- We estimate the height ny , using an extremal length argument, which 1s more
flexible than the use of a catenoidal barrier, although it gives a cruder result.

Let I be a family of curves in the plane. The extremal length A(I") of I" is defined
as follows (see Ahlfors’ book [1]):

2
mwﬂ?%%;

L) = mE L) L) = [ pldzl. (o) = [[ pdxay.
Y

Here p 1s any measurable non-negative function in the plane, such that A(p) #
0, oo. If 2 1s an annulus and I" 1s the set of curves which connect its two boundary
components, then A(T") is called the modulus of €. The modulus is a conformal
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invariant and is monotonous, namely 2 C Q' = mod(2) < mod(£2’). The modulus
of the annulus D(0, R) \ D(0,r) is - log £.

There exists € > 0 such that all points of the configuration are either equal to p; or
at distance greater than 2¢ from p;. By Proposition 7, we have |A,u; ,| < C on the
circle C( p1 5. €) for some uniform constant C. Leta, = f—n Consider the subset of
7 (Uyp) C Q1, defined by uy 5 > a,. Let X4 the component which has 7 (y1,1.,)
on its boundary, see Figure 5. (By slightly perturbing a,,, the level line v, = a,
consists of a finite number of regular Jordan curves.) The boundary of X consists
of a Jordan curve «; on which u; , = a5, and one or several small convex curves
w(y1,in) withi < m, on which uy, > a,. (The fact that / < m can be ensured by
taking the constant C large enough.)

Y1.2.n
Y1.3.n Y1.1.n

Figure 5. Definition of 27 and «/1, here m = 2.

Let p; be the function which is equal to |Vu, ,| on X, and zero elsewhere.
We first estimate the area A(p;) by the following interesting computation, writing
u = U1, and v the unit exterior co-normal along 9% :

s oo, 0
— \6[[21 div ((u —an)‘/%)

du
— a5 (0 —ay)—2
Iz, V1t [Vul?

Nion —dn
< 4 _—
20

On the first line we have used |Vu| < 1. On the second line we have used the
minimal surface equation. On the third line, the divergence theorem. For the last
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line, we estimate each boundary term: the term along «; vanishes since ¥ = a,.
Along each small convex curve 7 (y1,;,), we have u < #; , and 8’: > 0, so the

integral can be estimated by the flux along this curve, which is close to 2% < fl”n

The sum is on all indices ¢ such that 7(y; ; ) lies on the boundary of 21 There are
at most m terms. We do the same argument for the function u», ,, considering the set
Uap > 1y — ap and wriling p2 = |Vusz 4|, and we obtain

tn — Nip — a
A(PZ) < 47"72 n—Nin n
i

/ll,n

Adding the two estimates gives
ZL - Zan
A1 n

Let 4 be the annulus bounded by «; and 7 (y1,1,,). We consider the family I of
curves in 4 which connect the two boundary components. By definition of L{p1),
there exists a curve y in I" such that L, (p;) is less than say L{p1) + ﬁ If y

happens to enter one of the small disks bounded by 7(y1,;,,) (with2 </ < m), then
we replace the portion of y inside this disk (where p; = 0) by an arc on the boundary
of the disk (where p; = |Vu|). This increases L(p1) by an amount less than the
flux along this curve. We may also assume that y enters each disk at most once by
shunting all unnecessary circuits. This Way, we obtain a curve y which stays inside
> and such that L, (p1) < L(p1) + )L for some uniform constant C’. Then we
write

A(pr) + Alp2) < drm———

!/

kl n '
We do the same thing for u» , and add the two estimates, we obtain

C
o =[dusf|w| = L,(o1) < Lipy) +
Y Y

!/

2C
th —2an < L(p1) + L(p2) + 7

l.n

< 2(L(p1) + L(p2)).

To obtain the last inequality, we observe that if L(p1) + L{pz) < fl—c:l then 7, <

ZC;T“C but this is impossible since 7, 3> - by equation (6).
To estimate the modulus of the annulus A, we observe that We can find a uniform R
such that 4 is contained in the annulus D(p; . R) \D(p1.n, Yoo ) By monotonicity

of the modulus, the modulus of # is bounded by = 5= 10g(RA 1, n) Wthh we can safely
bound by log A1, for n large enough. All this gives, using the definition of the
modulus as an extremal length,

(ta —2a,)* < 4(L(p1) + L(p2))* < 8(L(p1)* + L(p2)*)

< 8log(A1,4)(A(p1) + A(p2))
logAqa
A1 n

< 32am(ty — 2ay)
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It follows that
log A1.n n 2C

A1,n An .

This upper bound for ¢, 1s similar to (5), although the constant is not as good. Using
the lower bound, equation (6), and arguing as in the last paragraph of the proof of
Proposition 8, we obtain that ¢; > 1z > 0. This implies in particular that the
point p; is interior by Proposition 10.

Letd, = min{d(p1,n. pjn) : 2 < j < m}. Observe that 8,41, — oo. Passing
to a subsequence and changing indices, we may assume that 8, = d(p1,n, p2.n). We
want to prove that ¢, > 0. Proposition 10 then implies that py # p», a contradiction.

Let g5, be the middle point of pi,,, p2.,. Fix as before some o > 1 and < 1
close to 1. Using the catenoidal barrier t’(%, 8—”) as in the proof of Proposition 8,
we can estimate 71, — 4 1,,(gx) and us (qn)’— n1.n- Adding the two estimates gives
the lower bound

th <32mm

8nk1n) L 2ﬁ C’
et By 10g(EpA1n) — —.

An - Al,n An
Let ¢, be the homothety of ratio p, = 1/6, which maps p;, to 0. Let p;, =
on(pin). Passing to a subsequence, lim p; , = p; exists (possibly infinite), with
p1 = 0and |p2| = 1. If all other p; are distinct from p,, then there exists € € (0, 1)
such that the disk D(pa, €) contains no other point p;. Going back to the original
scale, we can use the catenoidal barrier t‘f(ﬁ, dn€) to estimate 12 , — U1 4 (a,) and

2
uz,n(Qn) —Uln (gn) = 1 P argcosh (
1.n

U2.n(an) — N2,n. Adding the two estimates gives the upper bound

!

C
log(gnkz,n) -+ )L_

2.n n

20

u2,n(an) —Uln (an) i

for some uniform constant C’. Combining the two estimates, we obtain after ele-
mentary operations

Ao Al,n Aln A2
(ﬁ—a%)log(anxl,n)gc’ Lr | o2 log( 2 )

a —
2.n An A2,n A 1,n

The right member has a finite limit (for the first term, this is because ¢; > (). Since

dnA1n — 00, we must have f < oai“;’z for n large enough. Hence ﬁM"n < oz;;"n.
Passing to the limit gives fic; < wcy. Since we already know that c1 > 0, we
obtain ¢, > 0, hence by Proposition 10, p; # p», a contradiction. In case there are
several points p; equal to p,, we use instead the above extremal length argument
to estimate Uy ,(a,) — U1 n(a,), and conclude again that ¢c; > 0. This proves the

proposition. O
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