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Topological rigidity and Gromov simplicial volume

Pierre Derbez

Abstract. A natural problem in the theory of 3-manifolds is the question of whether two
3-manifolds are homeomorphic or not. The aim of this paper is to study this problem for the
class of closed Haken manifolds using degree one maps.

To this purpose we introduce an invariant T(N) = (Vol(N),||N|), where || N || denotes
the Gromov simplicial volume of N and Vol(N) is a 2-dimensional simplicial volume which
measures the volume of the base 2-orbifolds of the Seifert pieces of N.

After studying the behavior of (N } under the action of non-zero degree maps, we prove that
if M and N are closed Haken manifolds such that || M || = |deg( f)|||N || and Vol{M ) = Vol(N)
then any non-zero degree map f: M — N is homotopic to a covering map. As a corollary we
prove that if M and N are closed Haken manifolds such that t(/N) is sufficiently close to (M)
then any degree one map f: M — N is homotopic to a homeomorphism.

Mathematics Subject Classification (2000). 57M50, 51H20.

Keywords. Haken manifold, Seifert fibered space, hyperbolic 3-manifold, Gromov simplicial
volume, non-zero degree maps, Dehn filling, subgroup separability.
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1. Introduction

1.1. Simplicial volume of a manifold. Let N” be an n-dimensional manifold. The
simplicial volume of N is a homotopy invariant of N defined by M. Gromov in
|G] using the /!-pseudo norm on singular homology as follows: for an element
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h € Hy(N,dN:;R), the Gromov norm is given by

]| = inf{ZZﬂaiL when Y '=7 a;0; represents h}.
The Gromov simplicial volume of N, denoted by | N ||, is the Gromov norm of
the image of a generator of H,(N,JdN;Z) under the canonical homomorphism
H,(N,ON;Z) — H,(N,IN:R) >~ H,(N,IN.;Z) ® R.

1.2. Simplicial volume of a Haken manifold. Let N be a closed Haken manifold.
Given a submanifold K of N we denote by W(K) a regular neighborhood of K in
N. Denote by 7y the JSI-family of N, by 8(N), resp. # (N ), the Seifert, resp.
hyperbolic, components of N* = N \ W (Ty) and by Z(N) = (X(N),0) the
characteristic Seifertpair of N (see [JS] and [J]). The Cutting-off Theorem of Gromov
(IG]) combined with the fact that manifolds admitting a fixed point free S!-action
have zero Gromov simplicial volume (by the Mapping Theorem of Gromov) implies

that
INI= > [IH].

HeJ(N)

In particular this means that the Gromov simplicial volume of a Haken manifold
only depends on its hyperbolic pieces. In the following it will be convenient to
decompose § (N ) into two parts depending on the geometry of the components of
&(N). We denote by 8,(N ), resp. by $.(N), the components of §(N ) admitting a
Seifert fibration with hyperbolic, resp. Euclidean, base 2-orbifold.

1.3. Extending the simplicial volume. To get a rigidity theorem for Haken mani-
folds we need to add another invariant of N which does not vanish on § (N ) when
§(N) is “non-trivial” (i.e. when 8,(N) # #). To this purpose we define a kind of
2-dimensional simplicial volume for N. More precisely, let S be a component of
&(N). Fix a Seifert fibration for S and denote by (g the base 2-orbifold of S with
respect to the fixed Seifert fibration. Then we set Vol(S) = | x(Og)|, where x(Og)
denotes the (rational) Euler characteristic of g. We then define the 2-dimensional
volume of N by setting
VOl(N) = > Vol(S).

SeS(N)

Lemma 1.1. If N is a closed Haken manifold, the 2-dimensional volume Vol(N ),
and thus the pair t(N) = (Vol(N), || N||), is an invariant of N. Moreover t(N) = 0
iff N is a virtual torus bundle.

It will be convenient to use the following convention: we say that (a,b) > (¢, d)
if and only if @ > c and b > d, where (a,b) and (¢, d) are in R?.
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1.4. Nonzero degree maps decrease the volume. It follows from the definition of
the Gromov simplicial volume that non-zero degree maps “decrease the simplicial
volume” in the following sense. Let f: M — N be a proper non-zero degree map
between orientable n-dimensional manifolds. Then ||M || > |deg(/)|||N||. This in-
equality does not hold for (N ). Inparticular the relation Vol(M ) > |deg( /)| Vol(N)
18 not true. However we have the following comparison result.

Theorem 1.2. let f: M — N be a non-zero degree map between closed Haken
manifolds. If | M| = |deg()|||N]| then Yol(M) > Vol(N). Moreover, if there
exists a canonical torus T of M such that {|T: T — N is not my-injective, then
Vol(M) > Vol(N).

Note that the condition on the Gromov simplicial volume is necessary in Theo-
rem 1.2. Indeed by a construction of [BW] using null-homotopic hyperbolic knots,
we know that for any aspherical Seifert fibered space X there always exist a hyper-
bolic 3-manifold M and a degree one map f: M — X. In this case Vol(M) = 0
and X can be chosen so that Vol(X) > 0.

In view of Theorem 1.2 the following question is natural: If || M || = |deg( /||| V],
what happens when Vol (M )} = Vol(N)? The answer is given in the following section.

1.5. Volume and topological rigidity. The purpose of this paper is to characterize
those degree one (resp. non-zero degree) maps between closed Haken manifolds
which are homotopic to a homeomorphism (resp. covering). Then our main result
can be stated as follows.

Theorem 1.3. Ler f: M — N be a non-zero degree map between closed Haken
manifolds such that |M || = |deg(/)H||IN|. If Vol(M) = Vol(N) then f is homo-
topic to a deg( f')-fold covering.

Remark 1.4. In Theorem 1.3 we can obviously decompose f into two covering
maps which preserve the JSJ-decomposition. This means that after a homotopy, f
induces two covering maps f|H(M): (M) - H(N)and f|S(M): (M) —
S(N). Since a Seifert fibered space can be seen as a generalized S'-bundle over a
2-dimensional orbifold, it could be convenient to make precise the behavior of the
covering map f |8 (M) with respect to this anisotropic structure. Actually, when the
fibration of a Seifert manifold S is unique (up to isotopy), the action of f|S can
be unambiguously decomposed into two transversal actions: a vertical action (1.e.
an action along the S!-fibers of S) and a horizontal action (i.e. an action along the
2-orbifold of 5). Then in the proof of Theorem 1.3 we will see that the hypothesis
Vol(M) = Vol(N) implies that /|8, (M ) acts only vertically and that the horizontal
action 18 trivial.
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Remark 1.5. Note that in [W1], S. Wang proved that a proper map of non-zero
degree f: M — M from a Haken manifold M to itself necessarily induces an
injective homomorphism at the fundamental group level. Then Theorem 1.3 gives
an extension of this result since when M = N the conditions on the volume are
satisfied.

If we consider only degree one maps then one can relax the hypothesis concerning
the volumes. More precisely, combining Theorem 1.3 and Theorem 1.2 in [D] we
get the following result.

Theorem 1.6. For any closed Haken manifold M there exists a constant ny € (0, 1)
depending only on M such that any degree one map f: M — N onto a closed
Haken manifold is homotopic to a homeomorphism iff t(N) > t(M (1 — npr).

1.6. Some known results on topological rigidity

1.6.1. Rigidity of surface bundles. The above problem has been studied by S. Wang
and M. Boileau in [W] and [BW] for non-zero degree maps, when the domain M is
a surface bundle over the circle and when the target N 1s irreducible. In particular,
Wang proved in [W] that if M is a virtual torus bundle over the circle then f is
homotopic to a covering map. When M is a bundle over S! with a fiber of negative
Euler characteristic, denote by « the cohomology class corresponding to the fibration
of M. Then in [BW], Boileau and Wang proved that if there 1s a rational cohomology
class B in N with f*(f) = « and such that |ja||tn = |deg( f)|||B|ltn then f is
homotopic to a covering map. Here || - ||t denotes the Thurston norm.

Remark 1.7. Notice that the constant Vol(M ) in Theorem 1.3 can be seen as the
analogous of the Thurston norm of « in the result of Boileau and Wang in [BW,
Theorem 2.1].

1.6.2. Rigidity of hyperbolic manifolds. The rigidity problem is completely solved
for hyperbolic manifolds by a result of Gromov and Thurston which reads as follows.

Theorem 1.8 (M. Gromov, W. Thurston). Let M and N be two complete finite
volume hyperbolic 3-manifolds. Then a proper non-zero degree map [+ M — N is
homotopic to a deg( f)-fold covering iff | M| = |deg( /)| N].

Recall that T. Soma gave a generalization (see [S2]) of this result for degree one
maps by proving the following result.

Theorem 1.9 (T. Soma). For any ¢ > O there is a constant e > O which depends
only on ¢ such that any degree one map f: M — N between closed hyperbolic
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3-manifolds satisfying |M| < e and |N| = ||M||(1 — n.) is homotopic to an
isometry.

Notice that limg— oo 7, = O (see also [S2]). Note also that this kind of result
cannot be extended to Haken manifolds even if the target is a closed hyperbolic
manifold. This results from the Thurston hyperbolic surgery theorem.

Indeed, let Y be a complete finite volume orientable hyperbolic 3-manifold with
dY ~ S! x S! and let X denote an orientable graph manifold with 9X ~ S! x S!
in such a way that there exists a simple closed curve [ in dX such that the pair (X, /)
is pinchable. This means that there exists a proper degree one map 7 : (X, dX) —
(V,dV), where V is asolid torus D2 xS ! such that 7 : X — 3V is ahomeomorphism
which sends / to the meridian m = dD? x {x} in dV. To perform this operation
it is sufficient to choose X so that [ is nul-homologous in H;(X; Z) (for instance
X = FxS!, where F is an orientable surface with connected boundary and/ = 3F).

Let{l,,n € N}beasequence of simple closed curves in dY such that {lenght(/,),
n € N} defines a strictly increasing sequence with lim,, _, o, lenght(/,) = +00, where
lenght denotes the length for the Euclidean metric on dY induced by the hyperbolic
metric of int(Y'). Denote by M, the closed Haken manifold obtained by gluing X and
Y along dX and dY in such a way that / is identified with /,, and denote by N, the 3-
manifold obtained from Y after performing a Dehn filling along the curve /,,. Thus the
map 7 can be extended by the identity to construct a degrec one map f,: M, — N,.
Then | M,] = ||Y| > 0. By the Thurston hyperbolic surgery theorem, one sees that
the N,’s are closed hyperbolic manifolds for »n sufficiently large and {| N, ||,» € N}
is a strictly increasing sequence such thatlim,_, o || N, | = ||Y ||. Moreover the maps
Jn are neither homotopic to a homeomorphism.

1.7. Organization of the paper. This paper is organized as follows.

In Section 2 we recall some terminology and we state some technical results
concerning the following points: finite coverings of Haken manifolds, standard form
of non-zero degree maps, and a thick—thin decomposition of M with respect to a
non-degenerate, non-zero degreemap f: M — N.

Sections 3 and 4 are devoted to the study of non-degenerate propermaps f: M —
N of non-zero degree from a Haken graph manifold with toral boundary to a circle
bundle N. The aim of these sections 18 to give a construction allowing us to compare
the volume of the thick part of M with Vol(N ) using efficient surfaces and minimal
connection graphs (see Propositions 3.1 and 4.1). These sections are essential for the
proof of Theorem 1.2.

Section 5 1s devoted to the proof of Theorems 1.2, 1.3 and 1.6. Note that in this
paper all the 3-manifolds are orientable.

Acknowledgement. The author would like to thank the referee for many useful
comments and suggestions.
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2. Preliminaries

Let ¥ be an orientable Seifert fibered space. Then X is an S!-bundle over its base
2-orbifold @y and the S'-action is globally well defined since X is orientable. Recall
that if @5 denotes the underlying space of Oy andif ¢, . ... , ¢, denote the exceptional
points of @y with index ¢q, ..., i, respectively then

X(02)=X(@2)—Z(1—i)-

i=1 Hi

The geometry of Oy is hyperbolic, Euclidean or spherical when y (Oyx) is < 0,
= 0 or > 0, respectively. Hence the geometry of X depends of the geometry of
Oz combined with the rational Euler number e(X) of the fibration. More precisely,
when e¢(X) = 0 then we get respectively an H? x R, Euclidean, S? x R-structure
and when e(X) # 0 we get respectively a SL>(R), Nil, spherical structure. Note
that if N 1s a Sol-manifold then we consider it as a Haken manifold with non-empty
JSJ-decomposition so that the Seifert pieces of N are Euclidean manifolds.

2.1. Two-dimensional simplicial volume. In this paragraph we prove L.emma 1.1.
Since the JSI-decomposition of closed Haken manifolds is unique up to isotopy, we
only have to check that the volume Vol(N) does not depend on the chosen Seifert
fibration on the components of §(N). Let X be a Seifert piece of N. Since N is a
closed Haken manifold, ¥ admits one of the following geometries: H? x R, SL,(R),
Nil or Euclidean geometry. The only aspherical Seifert fibered spaces which admit
more than one non-isotopic Seifert fibration are Euclidean manifolds. But in this case
the Euler characteristic of the base orbifold of X is always zero. Hence the invariance
1s immediate.

It remains o check the second assertion of the lemma. Assume that N admits
a finite covering 7: N — N which is a torus bundle over the circle. Then N is
a geometric manifold and the structure depends on the monodromy of the bundle.
Then N admits a Euclidean, a Nil, or a Sol geometry. In the case of Euclidean or
Nil geometry N is a Seifert fibered space and the base 2-orbifold Oy is Euclidean
and thus 7(N) = 0. If N is a Sol-manifold then each component of N \ Ty is a
Euclidean manifold and hence t(N) = 0. Assume that (N ) = 0. If Ty = ¥ then
N has Euclidean or Nil-geometry. In any case N is a virtual torus bundle. If Ty # 0
then #(N) = & and each Seifert piece of N is a Euclidean manifold with non-empty
boundary. Then by minimality of the JSJ-decomposition either

(1) N is made of two twisted /-bundles over the Klein bottle glued along their
boundary, or

(i) N is S! xSt x I /{p), where p: S! xS! x {0} — S! xS! x {1} is an Anosov
diffeomorphism.
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In case (i1) N is a torus bundle over the circle (actually a Sol-manifold) and in case
(1) N admits a 2-fold covering that is a torus bundle over the circle. This completes
the proof of Lemma 1.1.

2.2. Dehn fillings. We define Seifert Dehn fillings. Suppose X is an orientable
Seifert fibered space with d¥ # # and let T be a component of dX. Since ¥ is
orientable, T ~ S! x S!, Let « be a simple closed curve in 7. Performing a Dehn
filling on 7 along o means that we glue a solid torus ¥V = D? x S! identifying
dD? x S' with T so that « is glued with the meridian D x {x} of V. Denote by
3 = X(«) the resulting manifold. When « is not isotopic to a generic fiber of % then
the fixed Seifert fibration of X extends to a Seifert fibration of 3 and we say that we
have performed a Seifert Dehn filling.

2.3. Morphisms. Let f: ¥ — X’ be a map between orientable Seifert fibered
spaces. We say that f is a bundle homomorphism is there exists a Seifert fibration of
¥ and ¥’ so that f is a homomorphism for the S!-bundle structures on ¥ and X',
According to [Ro], for bundle homomorphisms we define the following degrees:

The fiber degree of f is the integer |n| given by f.(h) = t", where h, resp. ¢,
denotes the generic fiber of X, resp. of ¥/, and we denote it by G ( f).

The orbifold degree G, (f) is the minimum number of regular fibers in g~ (¢),
where g runs over all bundle homomorphisms properly homotopic to f and transverse
tor.

For a bundle homomorphism f: 3 — X’ we have

|deg (/)] < Gr(f)Gan(f)-

We say that a bundle homomorphism is allowable it |deg(f)| = Gp(f)Go(f). In
particular, a bundle homomorphism f: (X,0X) — (¥/, 9X’) between orientable
Seifert fibered spaces with non-empty boundary which is proper (i.e. £~ 1(3%/) =
dX) is allowable.

2.4. Non-degenerate maps. Let f: S — N be a map from a Seifert manifold to
a Haken manifold. We say that f is non-degenerate if f,(71S) is not cyclic and if
f«([y]) # {1} for any fiber of any Seifert fibrationon S. Amap f: M — N froma
Haken manifold with toral boundary M is non-degenerate if f|.S is non-degenerate
for any Seifert piece of M. A non-degenerate map f: M — N is T -injective if for
any component T of T3y U dM themap f|T: T — N is my-injective.

2.5. Finite coverings of a ‘map. Let f: X — Y be a continuous map between
topological spaces. Let p: Y - Y bea covering map and denote by g : X — X the
covering of X corresponding to the subgroup /. (p.(71Y)). A finite covering of f
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associated to p: Y > Yis a lifting f - X > Y of f oq. In particular, if p is a finite
covering then 1 < deg(q) < deg(p) and if f is mr;-surjective then deg(p) = deg(q).

2.6. Finite coverings of Seifert and Haken manifolds

Lemma 2.1 ([JS, Lemma I1.6.1]). Let X be a Seifert fibered space. Then any finite

covering mw. X — X admits a Seifert fibration so that 7 is an allowable bundle
homomorphism. Moreover the Euler characteristic of the base orbifolds satisfy

1(05) = Gouo( ) x(Ox).

Proof. The proof can be found in [JS]. O

!

P nd

Let 7 be aunion of tori and let i be a positive integer. Call acovering p: T — 7
mi-characteristic if for each component T of J and for each component T of T over
T, the restriction p|: T — T is the covering map associated to the characteristic
subgroup of index m x m in ;7. Call a covering N — N of a Haken manifold N
m-characteristic if its restriction to T3 — Ty i8 m-characteristic.

Lemma 2.2. (i) Any orientable Seifert manifold endowed with hyperbolic base 2-
orbifold admits a fiber degree one finite covering which is homeomorphic to an ori-
entable S'-bundle over an orientable hyperbolic surface.

(i1) Any closed Haken manifold admits a 1-characteristic 2-fold covering space
which contains no embedded Klein bottle.

Proof. Point (1) follows from Selberg’s lemma (JAl]) and point (ii) is immediate using
orientation coverings. H

Lemma 2.3. ler f: M — N be a non-degenerate map from an orientable asphe-
rical Seifert manifold to an orientable circle bundle over an orientable hyperbolic
surface F. Then each Seifert fibration of M has an orientable base 2-orbifold (in

particular M is not homeomorphic to the twisted I -bundle over the Klein bottle).

Proof. Assume first that fi(ry M) 1s abelian. If M admits a fibration over a non-
orientable 2-orbifold, then there exists g € 71 M such that ghg™! = h™!, where &
denotes the homotopy class of the generic fiber of the fixed Seifert fibration on M .
Since my N is torsion free this implies that f. (/) = 1. This is a contradiction since
f is a non-degenerate map.

Suppose that f, (w1 M) is non-abelian. If M admits a fibration over a non-
orientable 2-orbifold @ps then consider the double covering p: M — M corre-
sponding to the orientation covering of Opy.

If f. (71 M) is abelian then f (71 M) contains an index 2 free abelian group H.
Now Rank(H') < 2 since N is a circle bundle over an orientable hyperbolic surface,
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and since f is non-degenerate, Rank(H ) > 2. This implies that f, (M) is the
fundamental group of a Klein bottle. This is impossible since N is an orientable
circle bundle over an orientable hyperbolic surface.

If fi(71 M) is non-abelian then f, (k) has a non-abelian centralizer, where h
denotes the homotopy class of the generic fiber of M . Then, since N contains no
embedded Klein bottle, we know by [IS] that £, (k) € (¢) and thus f.(h) € (¢),
where ¢ denotes the homotopy class of the fiber of N. Denote by a the non-zero
integer such that f. (k) = . Since Oy is non-orientable, there exists g € T M
such that ghg™! = h~!. Since ¢ is central in 71 N, this gives a contradiction. This
completes the proof of the lemma. [

Lemma 2.4. Let N be a Haken manifold and let p: N — N be a finite covering
of N. Then Vol(N) < Vol(N) = [deg(p)|Vol(N). Moreover, if p has fiber degree
one over each component of §(N) then Vol(N) = |deg(p)|Vol(N).

Proof. Let S be a component of 8(N ). Choose a component S of p~1(S) in N and
choose a Seifert fibration on S so that p|§ is a bundle homomorphism. Denote by
Os and by Oz the base 2-orbifold of S and S. Denote by n the integer such that
p(h) = h", where h and h are the homotopy classes of the generic fiber of S and
S, respectively. Then by Lemma 2.1 we know that

deg(p|S)] = |n|.Gon(p|S) and Vol(§) = Gap(p|S)VoI(S) > Vol(S).
On the other hand, notice that

deg(p)l = Y |deg(plS)].

Sep—1(S)

Hence |deg(p)|Vol(N) = Vol(N) > Vol(N). It remains to prove the second part of
the lemma. Let 2 be a componentof § (N)anddenoteby X4, . . ., X the components
of £ = p~ (D).

Denoteby &, hy, . . ., ki the homotopy class of the generic fiberof ¥, Xq, ..., Zp.
Since by hypothesis p«(h;) = h¥! fori = 1,...,k, each covering p; = p|%;
satisfies |deg(pi)| = Gob(pi) and thus Vol(Z;) = |deg(p;)|Vol(X) for any i =

..k Finally, since |deg(p)| = |deg(p|Z)| = |deg(p|Z1)[+ -+ [deg(p| k)],
we have Vol(X) = Vol(X1) +-- -+ Vol(Zg) = |deg( p)| Vol(X). This ends the proof
of the lemma. O

Lemma2.5. Let f: M — N beam-surjective non-zero degree map between Haken
manifolds and assume that there exists a finite covering f M — N of f: M - N
such that Vol(M) > Vol(N). If the covering N — N has fiber degree one over the
Seifert pieces of N then Vol(M) > Vol(N).
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Proof. We keep the same notations as above. Assume that Vol(N) < Vol(#). Since
q: N — N induces the trivial covering over the fibers, it follows from Lemma 2.4
that Vol(N ) = deg(g)Vol(N). On the other hand, Vol(M) < deg(p)Vol(M). Since
f: M — N is m-surjective, deg(p) = deg(g) and thus Vol(M) > Vol(N). This
completes the proof of the lemma., n

Lemma 2.6. Let N denote an orientable S'-bundle over an orientable hyperbolic
surface F with bundle projection §: N — F, and let U = {u1,...,uy} denote a
Sfamily of homotopically non-trivial simple closed curves in F. Then there exists a
fiber degree one finite covering p: (N, F, é) — (N, F, &) such that each component
ofﬂ = (p|FY Y (W) is of infinite order in H,(F; 7).

Proof. 1f u; is not of infinite order in Hy(F; Z), since the group Hy (F; Z) is torsion
free, then u; is a separating curve in F. Denote by 4 and B the components of F\ u;.
Case 1: Assume firstthat both H1 (A, u;; Z) and H{(B, u;; Z) are non-zero. Then
one can construct epimorphisms pq: H1(A;Z) — Z/27 and pp: Hi(B;Z) —
7Z,/27Z such that ker pg O {[u;]) and ker pp D {[u;]). Using the exact sequence

H((w;]sZ) - Hi(A;Z) ® Hi(B;Z) - H\(F: Z) — {0}

we get an epimorphism p: H(F; Z) — 7 /27., well defined by the formula p(x) =
pa(a) + pp(b), where (a, b) represents x in Hi(A;7Z) ® Hi(B;7Z). Then denote
by pi: (N;, F;, &) — (N, F, &) the 2-fold covering corresponding to the homomor-
phism

TN 25 mF — H(F:Z) 2> 7.)21.

Then (p; | F;) ™! (u;) consists of two simple closed curves of infinite orderin H; (F;; Z)
and {t) < (p;)« (71 N;), where ¢ denotes the homotopy class of the fiber of N.

Case 2: Assume that H1(A,u;;7Z) = {0}, say. This means that Hy(u;; Z) —
H1(A; Z) is an epimorphism and thus H1(A:Z) is {0} or Z. In the first case A is
a disk which is impossible since u; 1s homotopically non-trivial and in the second
case A is an annulus. This means that u; is d-parallel in F. Moreover, since u; is
nul-homologous, [#;]| = [0F] and in particular F has connected boundary. Since F
is hyperbolic, H{(F; Z) # {0}. Then there exists a non-trivial finite abelian group L
and an epimorphism p: H{(F;Z) — L. Wedenote by p; : (N;, F;, &) — (N, F,§)
a finite abelian covering corresponding to the homomorphism

TN =5 o F — Hy(F:Z) 5> L.

Then (p;|F;)~(u;) consists of Card(L) simple closed curves of infinite order in
Hy(Fi; Z) and (1) < (pi)s (1 N;).

Hence the covering of N corresponding to the subgroup (p1)« (7 Ny) N --- N
(pg)« (1 Ng) of m N satisfies the conclusion of the lemma. n
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2.7. Separability of fundamental groups. The following result is a direct conse-
quence of a separability result of Allman and Hamilton combined with the residual
g-nilpotence of free groups, for any prime ¢, proved by Gruenberg.

Lemma 2.7 ([AH], |Gr]). Let F be an orientable hyperbolic surface andletu € m1 F
be a non-trivial element. Then for any prime q there exists a finite group H, and an
epimorphism v: m1 F — H, such that (u) # | and q divides the order of t(u).

Proof. Consider 71 F as a discrete subgroup of PSL,(R).

Assume first that ¥ is a hyperbolic isometry (i.e. u# has exactly two fixed points
both in 9, H?1). Then the proof of the lemma follows directly from Proposition 1
of [AH] in this case. Indeed the eigenvalues of the matrix representing u in SL,(C)
are not roots of unity.

Assume now that u is a parabolic isometry (i.e. ¥ has exactly one fixed point and
it lies in 0, H* ™). In this case, necessarily 0F # @ and thus 7 F is a free group.
Then it follows from [Gr] that 71 F is residually g-nilpotent for any prime g. This
means that there exists a finite g-group H, and an epimorphism z: 71 FF — H, such
that t(u) # 1. This completes the proof of the lemma., O]

We end this section with the following result which follows from the residual
finiteness of surface groups.

Lemma 2.8. let f: S — X be a T -injective map from an orientable aspherical
Seifert fibered space to an orientable S'-bundle over an orientable hyperbolic surface
F such that f(m1S) is non-abelian. Then for any n € N there exists a finite covering
f;: Sy, — %, satisfying the following properties:

(1) the covering Tp — I has fiber degree one,

(11) each component of S, has a base 2-orbifold of genus at least n.

Proof. By Lemma 2.3, S 1s based on an orientable orbifold. Let 77, ..., 7, be the
components of dS. Denote by f the homotopy class of the fiberof X andby &é: ¥ — F

the bundle projection. Denole by dy, ..., d, the chosen sections of dS with respect
to the fixed Seifert fibration of S and let ¢y, ..., ¢; denote the homotopy classes of
the exceptional fibers of S with index w1, ..., 1, respectively.

Since fi«(71.5) is non-abelian, it follows from [JS] that fi« (v} € {¢) for any fiber
v of S. Denote by Qg the base 2-orbifold of S and by Qg the underlying space and
set gg = genus(Og).

Let g: ¥ — X be a finite regular covering. Consider the corresponding epi-
morphism ¢ : 712 — K, where K is a finite group, and denote by p: S — S the
finite covering corresponding to the homomorphism ¢ o f.. This covering induces a
branched covering of degree o between the underlying spaces of the base 2-orbifolds
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Oz of S and Og of S. Let B; denote the order of ¢fx(c;) and foreachi =1,...,p

denote by r; the number of components of 3S over T; and set n; = o/r;. Then the
Riemann—-Hurwitz formula allows us to compute the genus of O using the data of

Og and those of p: S — S:

%§=2+UG%HQS+r—2 Z}__Ezunﬁz)
1-= >

i =1

Case 1: Assume gg > 2. First note that since f,{7r1S5) is non-cyclic there exists
an element a € 1.5 such that &« o fu(a) # 1 in w1 F. Since surface groups are
residually finite, there exists a finite group K and an epimorphisme: 71 F — K such
that (&« o fi(a)) # 1. Consider the homomorphism ¢ = ¢ ¢ &,. Note that since the
regular fiber /i of S is sent via f to the fiber of X, we necessarily have o > 2. Then
the Riemann—Hurwitz formula gives

2¢5>2+0(2gs—2).

Thus, since gg > 2and o > 2, we get 2 + o (2gs — 2) > 2gs. This proves that
g5 > gs and completes the proof of the lemma in this case.

Case 2: Assume gg = 1. Then we claim that p > 1. Suppose the contrary. Let
a and b be the standard generators of 71Og and denote by g1,.. ., g- the sections
corresponding to the exceptional fibers ¢y, ..., ¢r. Since f. (k) € (¢) and since 71 F
is torsion free, it follows that fx(g;) € {¢t) fori = 1,...,r. Hence fi([a,b]) € {t)
because [a, b1 - ..q, = hP and thus [E« fi(a), & fu(P)] = lin 7 F. Since F isa
hyperbolic surface, there exists u € 1 F such that (1) = (&, fi(a), & f(D)). Let
g € m X such that £,(g) = u. Then fi.(mS) C (g.7) ~ Z x Z. A contradiction.
Now &, fi(d;) # 1 in w1 F because f|0S: dS — X is mj-injective. Thus there
exists an epimorphism ¢: 71 F — K into a finite group K such that &€&, fi (d;) # 1
fori = 1,..., p. Consider the homomorphisms ¢ = £&, and ¢ o f. and the
associated coverings 3 and S. Then it follows from our construction that n; > 2 for
i =1,..., pand o > 2. Then the Riemann—Hurwitz formula gives

%@22+G§>2.

Thus g¢ > 2 and we have a reduction to the first case.
Case 3: Assume gs = 0. In this case the fundamental group of S admits a
presentation

(dl,...,dp,ql,...,qr,h:[h,dl-] = [h,qj]zl,qf’f zhyi,dl...dpql...qrzhb).

Note that when p > 0, i.e., when dS # #, then one can choose » = 0. Since
Jf«(h) € (¢t} and since 5wy F is torsion free, itholds that f.(g;)isin {¢t)fori =1,...,r.
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Then we first check (using the presentation above and the fact that £, (7r1S) is non-
abelian) that p > 3. If p < 1 then we get fi(m1.S) C {f). A contradiction. Assume
that p = 2. Using the presentation of .S we get fu(m1S) C (fuld1),t) 2 Z X Z,
a contradiction again. From now on may we assume that p > 3.

Note that since f|dS: 0S — X is m-injective, it follows that &« f+(d;) # 1 in
1 F. Thus there exists an epimorphisme: 71 F — K into a finite group K such that
g« fu(di) # 1fori = 1,..., p. Consider the homomorphisms ¢ = &, and ¢ f«
and the associated coverings X and S. Then it follows from our construction that
n; = 2fori =1,..., pand o > 2. Then the Riemann—Hurwitz formula gives

2652 2+0 (£ -2).

Subcase 1. Assume gg = O and p > 4. This implies that gz > 1 and we have a
reduction (o the second case.

Subcase 2: Assume gg = 0 and p = 3. If the number of connected components
pof S is > 4 then we have a reduction to the subcase 1. Hence assume that p = 3.
The Riemann—Hurwitz formula gives

i=r

2g§:2—ﬁ—|—o(p—|—r—2—z
i=1

(Mi,lﬁi)) zo-i=zt

Then we get gz > 1. This completes the proof of the lemma. [

2.8. Characteristic maps between Haken manifolds. First recall that a codimen-
sion O submanifold L of a closed Haken manifold M is termed a characteristic
submanifold if L is a component of M \ 7, where J is a subfamily of 7.

Next we define characteristic maps. Let f: M — N be a map between closed
Haken manifolds. We say that f is standard if f(H(M)) < intH(N) and
f(8(M)) C intX(N), where X (N ) denotes the characteristic pair defined in Para-
graph 1.2, We say that a standard map f is characteristic if for any component
T € T the space f~1(T) is the disjoint union of components of Ts.

Lemma2.9. let f: M — N beamap between closed Haken manifolds and assume
that N is not a virtual torus bundle. If f is standard then it is homotopic to a
characteristic map.

Proof. 'The proof follows from cut and paste arguments of [Wa]. O
Lemma 2.10. let f: M — N be a non-degenerate, non-zero degree map between

closed Haken manifolds. Then if |M| = |deg( f)|||N|| then f is homotopic to a
standard map.
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Proof. 'This follows from the Mapping Theorem of [JS] and from the Rigidity The-
orem of [S1]. H

More generally we have

Lemma 2.11. Let f: M — N be a non-zero degree map between closed Haken
manifolds with |M || = deg(f)||N||. Then there exists a connected characteristic
submanifold My, C M which contains (M) in its interior (in particular if 3Q N
dMy # D for Q € M™ then Q is Seifert), a closed Haken manifold M, obtained from
M, after Seifert Dehn fillings along oMy anda T -injective non-zero degree extension
fii My — Nof fi = fIMy: My — N such that || My ]| = |deg(f)IIIN ]

Proof. The proof of Lemma 2.11 follows from the arguments used in [Rol] without
any essential change. O

2.9. A thick—thin decomposition of Haken manifolds with respect to standard
maps. Let M and N be two Haken manifolds with toral boundary (if non-empty)
and let f/: M — N be a standard map. For each Seifert piece S of M denote by
3 s the component of X (N ) such that f(S) C int(Xs). Denote by M the disjoint
union of the Seifert pieces S of M™ such that there exists a Seifert fibration on S
with fiber / and a Seifert fibration on X g with fiber r such that £, ([/]) € ([7]) (at the
mi-level) and set M = M \ (M U H(M)).

Lemma 2.12. Let f: M — N be a non-degenerate standard map between Haken
manifolds and let S be a Seifert piece of M. If X5 is an S'-bundle over an orientable
hyperbolic surface then we have fo(m1S) ~Z X Z for S € M_.

Proof. Let S be a Seifert piece of M_. By Lemma 2.3 each Seifert fibration on
S has an orientable basis. Due to the fact that X ¢ contains no Klein bottles, it
follows from [JS, Addendum to Theorem VIL.1.6] that £, (71.5)is abelian. Furthermore
fu(mS) >~ Z" as m N is torsion free. Since f|S is a non-degenerate map, we
have r > 2, and since N 1s a three-dimensional manifold, we have r < 3 because
the subgroup f«(71.5) must have cohomological dimension at most 3. Finally, the
fundamental group of N cannot contain a group isomorphic to Z x Z x Z since X is an
S L-bundle over an orientable hyperbolic surface. Then necessarily fx(71.5) ~ ZxZ.

O

Lemma 2.13. let f: (M,0M) — (N, dN) be a non-degenerate, proper non-zero
degree map from a Haken graph manifold with toral boundary to an orientable circle
bundle over an orientable hyperbolic surface.

Let f: M — N be a finite covering of f and let p: M — M denote the
corresponding finite covering of M. Then p~"(M_) = M_ and M = p~ 1 (M).
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Proof. 1If M is a Seifert manifold, then M = M since f is a non-zero degree map
and thus M+ — M and the result is obvious.

Assume that M is not a Seifert manifold and let S be a Seifert piece of M. Since
N 1s an orientable circle bundle over an orientable hyperbolic surface, by Lemma 2.3
S admits an H? x R structure. In particular S admits a unique Seifert fibration. The
proof of the lemma follows. [

Proposition 2.14. Let f: G — X be a T -injective proper non-zero degree map
from a Haken graph manifold with toral boundary to an orientable S'-bundle over
an orientable hyperbolic surface I'. Let L be a characteristic submanifold of G
such that each Seifert piece S of L satisfies fy(71S) > 7 x Z. There exists a finite
covering f - G—> X of f and a finite family of vertical tori T, in )y satisfying the
following properties:

(1) Y — X has fiber degree one.

(ii) After a homotopy, for each component L of p~1(L), F(L) is contained in a
component of 71, where p: G — G denotes the finite covering correspond-

ing to f.
To prove this result, we first need some preliminary lemmas.

Lemma 2.15. Let F denote an orientable hyperbolic surface and let f: S' — F be
a geodesic loop and assume that {[ f]) is a maximal abelian subgroup of w1 F. Then
there exists a finite regular covering q . F — F such that any lifting f Sl > F of
f o pisanembedding, where p: St — S denotes the finite covering corresponding
to the subgroup 1. (q+(m ﬁ))

Proof. Denote by p: H? — F the universal covering of F and denote by t the
isometry of H? corresponding to [ #]. Note that if  is a parabolic isometry then
the lemma is obvious. Thus let us assume that 7 is a hyperbolic isometry. Let !/ be
the unique 7-invariant geodesic line in H?. Denote by D a (compact) fundamental
domain in / for the action of 7. Denote by {g1...., g} the finite subset of 7 F
defined by {g € m F\ () | g(D)N D # @}. Moreover, there exists a finite group K
and an epimorphism ¢ : 71 F — K suchthatp(g;) & ¢({r)),fori = 1,...,n. Then
the finite regular covering H?/ker(¢) — F satisfies the conclusion of the lemma.

O

Lemma 2.16. Let X denote an orientable circle bundle over an orientable hyperbolic
surface F and let f: S' x S! — X be a my-injective map. Then there exists
a finite, fiber degree one, regular covering q: Y — X such that for each lifting
f: SIxS! » ¥ of f o p there is a vertical torus T in S such that f(Sl xSt ¢ T,
where p: S! x S! — S! x S denotes the finite covering corresponding to the
subgroup . (g« (m 2)).
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Proof. Denote by G a maximal abelian subgroup of 7% of rank 2 containing
fe(m (St x S1)). Then G can be written as (¢, b), where b generates a maximal
abelian subgroup of 71 F and ¢ denotes the homotopy class of the fiber of 3. It is
well known that & is freely homotopic to an element of 771 F* which can be represented
by a closed geodesic loop g: S! — F. Then changing / by a homotopy, we may
assume that » = [g]. Denote by g: F — F the finite regular covering of F satisfy-
ing the conclusion of Lemma 2.15 with the map g. Then the finite, fiber degree one,
regular covering g : $ — ¥ obtained as a pullback of ¢ via the bundle projection
£: X — F satisfies the conclusion of the lemma. O]

In the sequel we will need the following definition: let 7" denote a vertical torus ina
Seifert manifold X endowed with a base point x. We say that 7" is a maximal vertical
torus if there are no rank 2 free abelian subgroups of 71(X, x) strictly containing
Ty (T, X ) s

Lemma 2.17. Let f: (V,doV) — (Z,T) be a T -injective map from a connected
Haken graph manifold V with toral boundary to an orientable S'-bundle ¥ over
an orientable hyperbolic surface F with bundle projection £: ¥ — F. Assume
that gV is a non-empty subset of OV, T is a maximal vertical torus in ¥ and that
J«(mS) = Z x 7 for each Seifert piece S of V. Then f is homotopic, rel. dgV, to
amap g such that g(V) C T.

Note that 71T can be presented as (¢, »), where £(») is represented by an em-
bedded geodesic curve which generates a maximal cyclic subgroup of 71 /" and 7 18
the fiber of 2. We first check the following

Claim 2.18. For each Seifert piece S of V', the map f|S is homotopic, rel. to f|doV,
to a map g such that g(S) C T.

Proof of Claim. Let S be a Seifert piece such that 95 N doV # @. Let Ty be a
component of oS N doV. Let x € T, be a base point and let y = f(x) € T.
Let H be a free abelian subgroup of 71 (X, v) such that Ky = H N w(T, y) is
a free abelian group of rank 2. Thus Ky is a finite index subgroup of /. Hence,
since Ko C (T, y) for any g € H, there exists an integer ng, € Z such that
g"¢ € w1 (T, y) = {t,b). On the other hand, there exists an integer S # 0 and an
element & € 71X such that &, («) € 71 F \ {1} and such that H = (+#,«). Then,
in particular, there exist two non-zero integers #,m € Z such that £, (a)” = &.(b)™.
It is easy to check that {£.(x), &« (b)) is an infinite cyclic subgroup of 7 F, using
the classification of isometries of H?%. Therefore, since T is a maximal torus,
Ela) e (b)), and thus H € m T .

Using the above construction with H = f.(71.5) whichcontains H N (T, y) D
Ko = f.(m1(Ty, x)) we deduce that f.(m1S) C mT. Hence one can change f|S
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by a homotopy, rel. to f|doV, such that f(S) C T. Since V is connected, this

completes the proof of the claim by repeating the argument for each Seifert piece
of V. [

Proof of Lemma 2.17. We argue by induction on the complexity of the dual graph
'y of V. Fix a Seifert piece Sy such that 95y N dyV # @. By the claim above we
may assume that f(Sy) C T.

Case 1: Assume that 'y is a tree. Let S be a Seifert piece of V adjacent to Sy.
Note that Sy N 98 is a connected canonical torus 7 since 'y is a tree. Fix a base
pointx € Tandy = f(x) € T. Itfollows from the claim above that f (71 (S, x}) is
a subgroup of 71 (T, y}. Since Sy N S is connected, it follows from the van Kampen
Theorem that f. (1 (S Ut Sp)) is a subgroup of 71 (T, y). Hence, after a homotopy
rel. to do V', we may assume that f(S Ur Sp) C T. This completes the proof of the
lemma when I'y is a tree by repeating this process.

Case 2: If 'y is not a tree then Rank(H(I'y; R)) > 1. Choose a characteristic
non-separating torus 7" in V. By Claim 2.18, one can change f by a homotopy
rel. to dpV such that f(7T) C T. Next, consider the space V' obtained by cutting
V along T'. Then Rank(H(I'y;R)) < Rank(H{('y:R)). Denote by Uy, U, the
components of av over T and write oV = 9oV U U; U U,. Consider the map
f1=f] V. (V do V) — (X, T). Weknow from the induction hypothesis that there
exists a map g1 homotopic to f; rel. to 3oV such that gl(V) < T. Thus it follows
from our construction that g; factors through V. This completes the proof of the
lemma. ]

Proof of Proposition 2.14. Let S be a Seifert piece of L. Then, by Lemma 2.16 there
exists a fiber degree one finite covering Y5 — X satisfying the following property.
Consider the covering fs: GS —~ 3 s of f corresponding to f]g — 2. Then for
each | component S over S in GS there exists a maximal vertical torus in & s containing
fg (5). Consider the covering X of ¥ corresponding to the finite index subgroup

of w1 X. Denote by f: G — ¥ the covering of f corresponding to ¥ — ¥ and
by p: G — G the corresponding covering of G. Hence for each Seifert piece S of

p~1(L), there exists a maximal vertical torus Tg in 3 contammg f (5). It remains to
prove that the same property remains true by replacing S by the connected component
L of p~'(L) which contains S. This last point follow directly from Lemma 2.17.
This completes the proof of the proposition. [

We end this section with the following result.
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Lemma2.19. Ler f: (M,0M) — (N, dN) be a T -injective, proper, non-zero degree
map from a Haken graph manifold with toral boundary to an orientable circle bundle
over an orientable hyperbolic surface. Then

(1) there exists at least one Seifert piece S of M such that f«(m1S) is non-abelian,
(1) if f«(m1.S) is non-abelian then S is a component of G 4+, and

(111) if there exists a component T of Ty shared by two Seifert pieces S1 and S» of
M then Sy or S> isin G_.

Proof. 1f f.(mS) is abelian for any Seifert piece S of M then by Proposition 2.14,
there exists a finite covering f M — N such that f* (miM) ~ Z x Z. Since
deg( f) # 0 also deg(f) # 0. This implies that 71 N contains a finite index abelian
subgroup. This is impossible since N is a circle bundle over a hyperbolic surface.

Assume that f«(m15) is non-abelian. By Lemma 2.3 we know that S admits a
Seifert fibration over an orientable basis. Morcover, the map f|S is homotopic to a
fiber preserving map since N contains no embedded Klein bottle.

Let T be a component of 7 shared by two Seifert pieces S; and S» of M such
that the maps f|S; are homotopic to fiber preserving maps. Fix a base point x in T
and denote by £;, 7 = 1,2, the homotopy class of the regular fiber in S; represented
in 7. Since the f|S; are fiber preserving, the map f|T cannot be 7{-injective by
the minimality of the JSJ decomposition. This is a contradiction and completes the
proof of the lemma. O

3. Comparing the volume of the base 2-orbifolds

Let f: (G,0G) — (X,d%) be a T -injective, proper, non-zero degree map from a
Haken graph manifold G with toral boundary to an orientable S!-bundle (X, &, F)
over an orientable hyperbolic surface F with bundle projection £: ¥ — F. Then
one can associate to f a thick—thin decomposition of G into G UG _. In this section
we give a general formula which allows us to compare Vol(G ) and Vol(X). To this
purpose we need to have a relation as precise as possible between Rank (Hy (04 Z})
and Rank(H(F;Z)), where @4 denotes the disjoint union of the base surfaces of
the Seifert pieces of G4 (see Proposition 3.1).

3.1. Efficient surfaces. Let F be a connected, embedded, orientable surface in G.
We say that F 1s an efficient surface if it satisfies the following properties:

(1) ¥ is transversal to ¢ in the sense that 3% N T = ¥ and that each component
of ¥ N ¥¢ is an essential simple closed curve in 7.

(2) The torus-decomposition of G gives a “circle” decomposition of F into ¥ * =

FA\ (T N F).
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(3) The thick—thin decomposition of G induces a thick—thin decomposition of #
such that ¥_ = F N G_ is incompressible and well-embedded in G_ and the thick
part F4 = F N G4 of ¥ is horizontal (this means that each component F of 5 is
transversal to the fibers of the Seifert piece of G containing F').

We denote by G° the characteristic submanifold of G which consists of the Seifert
pieces of G which meet . Denote by G§ and G the thick—thin decomposition of
G° and by @i the disjoint union of the base surfaces of the Seifert pieces of GY.

We associate to an efficient surface ¥ a graph I' in the following way. First
consider the dual graph I'y with respect to the circle decomposition of ¥ and denote
by Vo, resp. Eyp, the vertex space, resp. the edge space of I'y. For each edge e € Ey,
¢ N Tg then consists of a single point v.(7T ), where T denotes the component of 7
suchthate NT # @. Theset{v.(T),e € Ey, T € T} = [y N T will be termed the
middle space of Ty and we denote it by Mp. Then consider the graph I' = T'o N G_—
with vertex space V = (Vo N G_-) U My. Morcover, we always assume the following
middle condition (which can always be performed) for the vertex space:

Let x and y be two vertices of I'. Assume that x and y are in My and correspond (o
the same canonical torus 7 of G. Since two Seifert pieces of G cannot be adjacent,
by Lemma 2.19 there exists at most one Seifert piece S of G4 such that T C aS.
Then in this case x and y are in the same fiber of S

We consider the following equivalence relation on I'. Let x and y be two vertices
of I'. Then x ~ y iff ¢ither x and y are in My and live the same canonical torus of
G or x and y are in Vo N G_ and live in the same Seifert piece of G.

Denote by [ the quotient space I'/ ~andbyg: I' — T the projection. Note that
the vertex space V(f‘) of T is equal to g(V).

We define a “quotient space” of I' U F4 in the following way. Denote by
M: G, — O the Seifert projection. First note that, since IT|GS is compatible
with ~ by the middle condition, TT(I" N %) gives a subset of V(T'). Then define
the space 0% U T as the attachment of T to O¢ along T(I"' N ) = rn o°.
Hence we getamap [T Ug: F,L UT — @‘jr U T'. Next, for each component O of
@i we pick a base point xo and we connect each point of V(f‘) M d0 to xp by an

embedded arc and we denote by 'y the graph obtained from the union of ' with
these embedded arcs whose vertex space V(T'g) is V(') U (U e 5° {xp}). Now

T u @i =T'¢g U @i but the second presentation is easier for some computations
because I'# is connected.

A subset I'y of I'¢ will be termed a pseudo subgraphif I'y is a graph whose vertex
space V(I'y) is a subset of V("¢ ). We say that a connected pseudo subgraph I'; of
'y 1s a minimal connection pseudo subgraph of I'g if

(1 U @i 1s connected,

(ii) for each component O of @2, the set T'y N O is simply connected,
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(111) the edge and the vertex space of I'y satisfy
Card(V(I'1)) = Card(o ((G°)*)),

Card(E(I')) < ) Card(mo(3S)),
Se(Go)*

where (G?)*, resp. (G?)*, denotes the disjoint union of the Seifert pieces of G?,
resp. G?. Then the main result of this section 1s

Proposition 3.1. Let f: (G,0G) — (X,93X) be a T -injective, proper, non-zero
degree map from a Haken graph manifold G with toral boundary to an orientable
Sl-bundle (X, €, F) over an orientable hyperbolic surface F with bundle projection
£: ¥ — F. Assume moreover that for each component L of G_ there exists a
maximal vertical torus Ty, in X such that f(L) C Ty. Then there exists an efficient
surface ¥ in G and a minimal connection pseudo subgraph Ty of T'¢- such that

B1(T1 U O%) > B1(F).

In the following we will denote by J_ the union of vertical tori 77, where L
runs over the components of G_, and by c_ the union of the corresponding curves
c;, =&(T)in F.

Remark 3.2. Let L denote a characteristic submanifold of G such that fi(71.S) >~
Z x Z for each Seifert piece S of L and which is maximal with respect to the natural
inclusion. This means that L contains a component L of G_ but L can be larger than
L. However, by Lemma 2.17 we may assume, after a homotopy, that f (L) C Ty.

3.2. Domination of the target via essential surfaces. In this section we prove the
following result.

Lemma 3.3. There exists an efficient surface ¥ in G such that p1(I'g U @i) >

B1(F).

First we construct an efficient surface in G by pull back. Since f|G4+: G — X
is a bundle homomorphism one can choose a fiber ¢ in £\ W(7_) such that () is
a finite union of regular fibers /1, ..., by inint(G ). In the following we set X' = X
when the Euler number ¢(X) = Oand &/ = X\ W(r) when e(X) # 0. Next, denote
by G’ the space f~HE) = G\ U <; W(h;) = G’ and by f/: G’ — ¥’ the
induced proper non-zero degree map. In any case, X’ is a circle bundle over a surface
F’ with zero Euler number. Fix a section of the bundle &': ¥’ — F’ so that F’ can
be seen as an incompressible well-embedded surface in X'. After changing f/ by a
homotopy so that each component of '~ (F”) is an incompressible, well-embedded
surface in G, fix a component ¥ of #/~1(F’) such that deg(f'|F : ¥ — F’) # 0.
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Denole by 7, resp. mx, the natural quotient map 7g: G — G,resp. rx: ¥ — X,
and denote still by & the surface 7 (F). It is immediate from the construction that
F is an efficient surface of G. In the following we denote by I themap & o f.

Lemma 3.4. The efficient surface ¥ satisfies the following properties:

(1) I.(m1(F)) is a finite index subgroup of m F, L.(H\(F; Q)) = H{(F; Q) and
F is not empty.

(i1) The map I|F+: F+ — F factors through @i in such a way that there exists a
continuous map J : O — F such thar I\ = J o I1.

(iii) Let d be a simple closed curve in 0G4 \ 0G which is not homotopic to a fiber
of Gy. Then 1.(H(d;Q)) = Hi(cL;Q), where L denotes the component of
G _ which contains d.

Proof. First observe that it 1s a direct consequence of our construction that the map
fomygoi’s F' — X' — ¥ — F is my-surjective and that f/|F: F — F'isa
proper non-zero degree map. Thus ( /). (71 (F)) is a finite index subgroup of 71 F’
and (/Y. (H{(F,Q)) = H(F'; Q). Hence 1,(m(F)) is a finite index subgroup
of m " and I.(H(F:Q)) = Hi(F: Q).

If ¥4 = @ then by connexity & = F_ and there exists a component L of G_
containing . Hence I.(m1F) < {[cz]) which implies that =1 F' contains a finite
index cyclic subgroup. This is a contradiction since F 1s a hyperbolic surface. Hence
point (i) follows.

Next we check point (ii). Since f |G+ is a bundle homomorphism there exists a
continuous map J : O, — F such that |G, = J o I1. This proves point (ii).

It remains to check point (iii). Denote by 7" the component of ¥ which contains
d and by S the Seifert piece of G4+ containing 7" in its boundary. Since T is in
dG 4 \ 0G, there exists a component L of G_ adjacent to S along T'. Since f|S is
fiber preserving and since f |7 is m;-injective it follows that the map /|d: d — ¢y,
has non-zero degree. This shows (iii). ]

Lemma 3.5. The map I[|F, UT': ¥ U — F factors through @f{_ U g in such

a way that there exists a continuous map J : (53_ UTlg — F suchthat INFLUT =
Jo(ITUg).

Proof. Deform slightly f so that for any vertices x and y of T" living in the same
Seifert piece of G_ we have I(x) = I(y). Then the lemma follows directly from
Lemma 3.4. ]

Now the proof of Lemma 3.3 follows from Lemma 3.5 combined with the fol-
lowing assertion.
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Claim 3.6. The induced homomorphism
Le: H (T'UF.;Q) > Hi(F: Q)
IS surfective.

Proof. Recall that 1.: Hy (¥;Q) — H{(F;Q) is an epimorphism by Lemma 3.4,
Using the Mayer—Vietoris exact sequence one sees that Hy (F; Q) is generated by
H{(I'U F,.;Q) and H, (¥_; Q). Furthermore, for each component V' of F_ there
exists a component L of G_ containing V' and a component d of dV adjacent to
a component of ¥4 in G4. Hence it follows from Lemma 3.4 that (/.([d])) =
L. (H(V;Q)). This completes the proof of the claim. O

3.3. Connection by a minimal graph. In this section we prove Proposition 3.1. To
this purpose we need to check the following Elimination Lemma.

Lemma 3.7. There exists a connected pseudo subgraph T of Uy satisfving the
following conditions:

@O V(I = V(I's),
(i1) for each component O of 0%, the set T/ N O is simply connected,
(iii) the valence v(x) of x is 2 in [/ for any x € q(My),

(iv) the space I'" U @f;_ is still connected and the map J|I'" U @i rru @ﬂ_ — F
induces an epimorphism at the Hy-level (with coefficient Q).

Proof. First notice that I'g satisfies points (1), (i) by construction and (iv) by
Lemma 3.5 and Claim 3.6. Moreover, it follows from our construction that for
any x € g(My) we have v(x) > 2.

Now assume that there exists a point x € g{(Mjy) such that v(x) > 3. Then there
exists at least three edges €1, ¢ and ez of I'g such that x isanend of ¢; fori = 1,2, 3.
For each i denote by y; the end of ¢; such that de; = {x, y;}. Note that each y; is a
pointof g(Vo N G_) UOE@i {x0} and thus each y; corresponds to a unique Seifert
piece of G?. Denote by S;, i = 1,2, 3, the Seifert piece of G? corresponding to
v; and by 7' the canonical torus corresponding to x. Since T is shared by Sy, 5>
and Sz, there exists 7, j € {1,2,3} such that S; = §;. For simplicity assume that
S> = 83. Thus necessarily v» = y3. Since I'¢ N O is simply connected for each
component O of Q9 , obviously S; = S5 is a Seifert piece of G°. Denote by L the
component of G_ containing S» = S3 and denote by d the curve defined by e, U e,
Then J.([d]) € Hi(cp; Q), where cr, is the simple closed curve in F corresponding
to the torus Tz, of _ such that f(L) C Tr. Let U be a component of T which is
shared by L and a component S of G¢ , and let ¢ be a component of & N U. Then
by Lemma 3.4, I.({[c]})) = Hi{cr]; Q). Then there exists an integer a such that
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L([c]?) = J«([d]). Denote by sy a cross section of U with respect to the Seifert
fibration of S induced on U. Then there exists ( p, ¢) € Z x Z such that [c]* = s}, h%
with p # 0 and where i s denotes the generic fiber of .S

Denote still by s the component of 904 corresponding to U. Then J«([sy]?) =
J«([d]})) at the H-level with coefficient Q.

Consider the graph I'’ obtained from I'¢ after removing int(e, ). Then I'' satisfies
points (i), (ii) and (iv) and the valence of x in I' is strictly less than the valence of x
in I'g. The proof of the lemma follows by repeating this operation finitely many of
times. ]

Proof of Proposition 3.1. Let x be an element of g(My) N V(I''). We know by
LLemma 3.7 that v(x) = 2. Then there exist exactly two edges e1, es whose x is an
end point. Hence one can replace the edges e1, ¢a by a single edge e Uy ¢2. By
performing this operation for all points of g(Mp) we get a new graph 'y satisfying
the conclusion of Proposition 3.1, O

4. The volume decreases under non-zero degree maps
The main purpose of this section is to prove the following result.

Propositiond.1. Let : (G, 3G) — (X, 0X) bea T -injective, 1-surjective, proper,
non-zero degree map from a Haken graph manifold G with toral boundary to an
orientable S'-bundle (X, £, F) over an orientable hyperbolic surface F with bundle
projection £ ¥ — F. Assume moreover that for each component L of G_, there
exists a vertical torus Ty, in X such that f(L) C Ty. Then Vol(G) > Vol(X) and if
G_ # 0 then Vol(G) > Vol(Z).

Remark 4.2. Roughly speaking, in the proof of Proposition 4.1 we establish the
following inequality: Vol(X) < Vol(G +) + ¢, where ¢ << Vol(G_) when G_ # §.
This inequality is sufficient for our purpose. However the following question is
natural: [s it true that Vol(X) < Vol(G4)?

Throughout this section, we keep the same notations as in Section 3.1.

4.1. Domination of the target by the thick part of the domain

Lemma 4.3. Let f: (G,0G) — (X, 0%) be a map satisfying the same hypotheses
as in Proposition 4.1. Assume moreover that either

(1) J= = @ (which is equivalent to the condition G_ = @), or

(i) - # @ and the homomorphism Hi(c—;Q) — H(F;Q) induced by the
natural inclusion is surjective.
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Then
Vol(G4) = Vol(X).

Proof. Assume first that condition (i) is satisfied. If 7_ = ) then necessarily G_ =
and so G = G4 1s a Seifert fibered space by Lemma 2.19. Hence in this case
f1G: G — X is a bundle homomorphism of non-zero degree and the inequality
follows.

Assume now that condition (i1) is satisfied. Let L denote a connected characteristic
submanifold of G such that f.(m1S) >~ Z x Z for cach Secifert piece S of L and
choose L so that it is maximal with respect to the natural inclusion. Denote by
Lq,...,L, the set of all such maximal characteristic submanifolds of G. It follows
from Remark 3.2 that the submanifolds L; satisfy the following properties:

@ Uy<j<p Li 2 G-

(b) There exists a component 7; of 7_ such that f(L;} C T; and {T1,..., Ty} =
W -

(¢) There exists a canonical torus D; of G shared by L; and a Seifert piece S; of
G ¢ such that f.(1S;) is non-abelian.

On the other hand, it follows from the 7 -injectivity that f|D; : D; — T; isanon-
zero degree map. For each 7, denote by d; the simple closed curve obtained from D;
after killing the primitive curve of D; corresponding to the generic fiber of the Seifert
piece S; adjacent to D;. In this way, d; can be seen as a boundary component of the
base surface of S; denoted by @Sr Then f|D;: D; — T; descends to a non-zero
degree map f:di — ci,wherec¢; = &£(T;)isacomponentof c—. Since f|.S; is afiber
preserving map, it follows that f| | J; S; descends to themap J: | J; Os, — F. The
natural inclusion c— = | J; ¢ < F induces an epimorphism at the H (-, Q)-level
which implies that J : | J; 305, — F induces an epimorphism at the H (-, Q)-level
by properties (a) and (b).

For convenience we index the components S; by Si,..., S, in such a way that
Si # S; wheni # j. Denote by g; the genus of the base surface of S; and by p;
the number of components of d.S;. Then

q
Vol(Gy) = > " (2gi + pi — 2).
i=1

Since J: | J; 395, — F induces an epimorphism at the H (-, Q)-level, it follows
that

q
ZP:‘ > B1F.
i=1

On the other hand, we know that Vol(X) = 1 (F)—e¢, withe = 2 or 1 depending
on whether X is closed or not, and by Lemmas 2.5 and 2.8, we may assume that
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g >2wheni =1,...,q. Thus we get

q
Vol(G1) = f1(Fe) +2) (g —1) > Vol().

i=1

This proves the lemma. O

4.2. Increasing the genus of the base 2-orbifolds of the efficient thin part. In
order to prove Proposition 4.1, we first state a technical lemma which allows us to
construct suitable coverings which increase the genus of the base of the thin part of G.

Lemma 4.4. Let f: G — X be a map satisfying the hypotheses of Proposition 4.1.
Assume moreover that _ # ) and that

(C1) Hi(c_; Q) — H{(F;Q) is not surjective.

For any n € N* there exists a finite regular covering fn: Gn — Zpof f: G — X
satisfving the following properties:

(1) Any Seifert piece of Gy over a Seifert piece of G_ admils a fibration over a
2-orbifold of genus at least n.

(11) The covering X, — X has fiber degree < the fiber degree of S, — S for any
Seifert piece S of G and for any Seifert piece S, of G, over S.

In order to prove this result it will be convenient to define a set of invariants which
parametrize themap f: G — X satisfying the same hypotheses as in Proposition4.1.
Recall that we know, from Lemma 2.3, that each Seifert piece of G admits always a
fibration over an orientable 2-orbifold. Given a Seifert piece S of G, we denote by
hg its generic fiber, by ¢y, ..., ¢y its exceptional fibers and by T1(S), ..., Tp (S)
its boundary components, and for cachi = 1,..., ps denote by d; (S) a section of
T;(S)sothat d1(S) + -+ dp (S)+q1 4+ -+ g, = 0in H{(S; Z), where each
g; 1s a chosen section corresponding to the exceptional fiber ¢;.

Recall that for each component S of G_ there exists a component Ts of J_
such that f(S) C Ts. Denote by ugs a simple closed curve in T's such that m;Ts =
{[ig],t). After a homotopy on f|S we may assume that each component of
(f1S)"1(us) is a well-embedded incompressible surface in S.

In the following it will be convenient to decompose G into theunion G , UG _
where G_ , resp. G_ y, consists of the Seifert pieces S of G_ such that (f]S) (it g)
1s made of horizontal, resp. vertical surfaces.

If § denotes a Seifert piece of G4, let gg be the non-zero integer satisfying
Jelhg) = 195.

Suppose that S denotes a Seifert piece of G_ . Let (B, @s) be the integers such
that f.(hg) = ﬁgs t%s, where t denotes the fiber of . Note that by definition of
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G_pforeachi =1,..., pg there exists y_fg -+ 0 and coprime integers (a’, n's) with
als # 0 such that fu(d; S (S)hg"S) = g |
Note that Bs # 0 since f|S is not fiber preserving. On the other hand, a’; # 0

implies that Rank((dffg (S )h;ng, hg)) = 2 and since f is non-degenerate we have

g 750.

Suppose that S is a Seifert piece of G_ ,. We denote by vg the non-zero integer
A

suchthat fi (hg) = ug® and by (A%, pi) the integers such that £, (d; (S)) = ag° (M
with p's # 0.
Then we define the parameters space of the maps f by setting
gs o when S € G4,
M(f) = (aS,ﬁS),yg,afg i=1,...,ps when S € G_,

vs, (A, () when S € G_

To prove Lemma 4.4 we first check that we have the following reduction. The
hypotheses are the same as in Lemma 4.4. More precisely:

Claim 4.5. We may assume that the map f . G — X satisfies the following condition.

There exists a prime number q such that ¢(X) € gZ and
C
e gs, S € G,
q>lcemy ygos, S€G_y 1 =1,...,pg,
VS: //Lfg‘ S € G—,V

Proof. First note that if e(X) = 0 then the claim is obvious. Hence, let us assume
that e(X) # 0 which implies in particular that X is closed. By LLemma 2.6, passing
to a finite covering with fiber degree one of the target we may assume that for each
component ¢ of c_,

(%) Im (Hy (¢:Z) — H\ (F:Z)) # {0}.
On the other hand, recall that the group 7 X has a presentation
(Pe) (t.ai,bi,...,ag.bg: ai_ltaj = t,bj_ltbj =t,[a1,b1] ... lag, be] = 1"},

where n = e(X). The integer » also has the following interpretation: the group 71 X
is obtained as a central extension of {t) = Z by 71 F using the exact sequence of the
fibration

(1)~ 75 5 2 m F - {1b

Recall that central extensions of Z by 71 F correspond to elements of H?(m F, Z)
and the integer n is the element of Z ~ H?(m, F,Z) corresponding to 7 X.
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Let g be a prime number. By condition (C;), there exists an epimorphism
g Hp (F 7Z) — Zg such that kere D Hi(c—:Z). Consider the finite cover-
ing 7: ¥ — X corresponding to £ (ker(£)), where & denotes the composition
m¥F — H\((F:Z) — Z4. It follows from the construction that s is trivial over
.. On the other hand, X is an S'-bundle over a surface F that is the covering of F
corresponding (o & Note that the inclusion 7, F — 71 F gives a map

H*(mF,ZY~Z>1r>gx1eZ ~ H*(n,F,7)

and thus the integer n corresponding to the fibration of ¥ satisfies the equationsn = gn.
Note that since the covering is trivial over 7_, it follows that the covering G > G
corresponding to £, ' (£, (ker(g))) is trivial over G_ and over hg, where /g denotes
the generic fiber of S where S runs over the components of G . In particular for any
Seifert piece S in G_y, resp. G+, resp G_,y and any component S over S in G*

we have.aS as, ﬁS. Bs.vs = vs ag’ = d, 1esp. 45 = gs, 1esp. vg = Vs,
Mlg = p's and }L% = A%. In other words, this covering does not affect the parameter
space. This completes the proof of the claim. [

Lemma 4.6. Let f: G — X be a map satisfying the hypotheses of Proposition 4.1
and conditions (C1), (Cy) and (x). Let S be a geometric piece of G_. Let g be an
element of 1S which denotes either the homotopy class of an exceptional fiber or
the homotopy class of a section of a boundary component of S. Then there exists a
finite group H and an epimorphism ¢: m1 X — H such that the following holds:

(i) Separation: ¢f«(g) & (¢« (hs)).

(11) Action on the fibers: Let p: Y — X denote the covering of X corresponding to
@ and for any Seifert piece S of G denote by ws: S — S the finite covering of
S corresponding to ker(g o (f|S)«). Then Gy(ms) = Gp(p).

Proof. Let S be a geometric piece of G_ and let g be an element of 7.5 satisfying
the hypothesis of the lemma.

First assume that g is the homotopy class of an exceptional fiber ¢ of S and
denote by p > 1 the index of this fiber. Let (8, a) € Z? such that f,(g) = ﬁ?r“. In
particular we have i = x5 # 0, where xg = fg if S is a Seifert piece of G_, or
xs =vgif Sisin G_.

Let p be a prime number such that p|p. According to Lemma 2.7 there exists
a finite group H, and an epimorphism t: 7 F — H, such that t(ug) # 1 and
p divides the order of r(ug), where us = &(ug). Consider the homomorphism ¢
given by

0 E s o F s H,
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This completes the proof when g = c¢. Indeed suppose that there exists n € Z
such that ¢fi(g) = ¢f«(h). Then r(ug) = r(u’gﬁ“). Then p divides 1 — np. A
contradiction since p|p. Moreover, the second point of the lemma is satisfied since
the covering on the target corresponding to ¢ has fiber degree one.

Assume now that g denotes the homotopy class of a section d of a component
of d5.

Case 1: Assume that S is a Seifert piece of G_ . According to the notation of
Paragraph 4.2 we know that there exists 7 € {1,..., ps} such that d = d;(S). In

particular we have f, (d%) = ﬁ?s trshs 159 where ais + 0.

From the presentation (%,) of 73X and by condition (C;) one sees that
H(X:Z) ~ Zy ® H(F;Z) where n € qZ. Since n € g7 there exists an epi-
morphism Ay : Z,, — Z4. On the other hand, it follows from condition () that the
£(ug)’s are non-trivial elements of H1(F; Q) (when S runs over the Seifert picces of
G_). Then there exists a g-group (Fy, +) and an epimorphism 7, : H(F;Z) — F,
such that 7, (us) # O for any S in G_. Consider now the homomorphism ¢ defined
by

Agx
mE — H{(3Z) ~ T, & Hi(F; Z) 2% 7, x F,.
Using condition (C,} we claim that ¢ satisfies the conclusion of the lemma. First

we check point (i). To see this it is sufficient to check that ¢ fi (d “iS) g (pf(hg)).

Assume that there exists m € Z such that ¢fx(d%s) = ¢fs (h'g). Then using our
notations this means that

(y_ig + nfgﬁg)tq (us) =mPsty(us) and nfgaS)Lq (1) = moasiy (t).

Then ¢ divides yL + Bs(ns —m) and (n’s — m)as. Since (as,q) = 1, g divides
”ls — m and thus ¢ divides yg. A contradiction. It remains to check the second point
of the lemma. First it follows from the construction of ¢ that G, (p) = ¢, where p is
the finite covering corresponding to ¢. On the other hand, for any Seifert piece .S of
G it follows from our construction and from condition (C») that ¢ f«(hs) has order
g"s with rg > 1, since fu(hs) = 175 and (g,qs) = 1 or fu(hg) = ﬁgsto‘s and
(as.q) = 1 or & falhs) = E«(ug’) with (vs,g) = 1 depending on whether S is a
Seifert piece of G, G_ or G_ .

Case 2: Assume that S is a Seifert piece of G_ . We use the same arguments as
in the first case. Let ¢ be a prime number satisfying condition (C,). Then consider
the epimorphism

AgXT
H\(S:Z) ~Zn ® HI(F;Z) =5 Z, x F,

constructed in the first case and denote by ¢ the composition 7% — H1(Z;Z) —
Zg4 x Fy. Then

p(fxlhs)) = (0. vsy([§(s)]))
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and

p(fuld)) = (ishq(1). M5ty ([E (@s)D)-

Since g|n and since (g, ;') = 1, it follows that ¢(f+(d)) & (p(fx(hs))). On the
other hand, it follows from our construction and from condition (C>) that Gy (p) = ¢
and that for any Seifert piece S of G then ¢f«(hs) has order g™ with rg > 1. This
completes the proof of the lemma. [

Proof of Lemma 4.4. Let S be a Seifert piece of G_ and assume that the genus ggs
of the base 2-orbifold Qg of S satisfies gg > 1. Denote by dy,. ... dp, the chosen
section of dS (with respect to the fixed Seifert fibration of S) and let ¢y, ..., ¢
denote the homotopy class of the exceptional fibers of S with index gy, ..., .
Using Lemma 4.6 and Claim 4.5 we may assume that there exists a homomorphism
@: m 2 — K onto a finite group such that
(1) ofs(di) & (pfs(hs)), fori = 1,..., ps and pfe(c;) & (pfe(hs)) for j =

A o

Denote by p: S — S the covering corresponding to ¢ o ( f|S)«. This covering
induces a branched covering, whose degree is denoted by o, between the underlying
space of the base 2-orbifolds of S and S. Let + be the order of ¢f.(c;) in K and
foreachi = 1,..., pg denote by r; the number of component of 3S over T; and set
n; = ¢/r;. Then the Riemann—-Hurwitz formula allows us the compute the genus of
the base 2-orbifold of S in the following way:

L,

I=ps 1 I=rg 1
2g~:2—|—a(pg—|—2gg—|—r5—2— —— )
> ; ni ; (1ei. Bi)

By condition (i) one can check thato > 2,n; > 2fori = 1,..., ps and (u;, B;) > 2
fori = 1,...,rs. Then, since moreover pg > 1 (because G4 and G_ are non-
empty), it is easy to check that gz > gs when gg > 1. Note that condition (i1) of
Lemma 4.4 1s guaranteed by condition (i1) of Lemma 4.6.

Assume now that gg = 0. We follow here the same construction as in the case of
gs = 1 using Lemma 4.6. The Riemann—Hurwitz formula gives

2g§22+0(%—2).

Hence if pg > 4 then gg > 1 and we have a reduction to the first case. Assume that
ps = 3 and perform the same construction as above. Denote by pg the number of

boundary components of S. Then the Riemann—Hurwitz formula gives

i=i’S
1
2g~:2—p~—|—o(ps—|—rg—2— )
> > ; (pis Bi)
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Assume pg = 3. If pz > 4 then we have a reduction to the case above. If pz = 3
the Riemann—-Hurwitz formula gives, since o > 2, that 2gg > —1 + ¢ > 1 and thus
gg = 1.

Assume ps = 2. Applying the same argument (since gs = O and pg = 2 imply
rs = 1) we geta reduction to the case ps = 3or gg > 1.

Note that the case ps = 1isimpossible. Indeed it follows from the construction of
G_that f.(m1S) >~ Z x Z and from the non-degeneration condition that f. (w1 7T) >~
7, x 7. for any component T of dS. Thus we get the following commutative diagram:

m T ﬂlS-—————%>Z:XJZ CmX

| .

H(T;7) — H\(S: 7).

This implies that Rank(H(T'; Z) — H(S:Z)) = 2. If dS is connected then it fol-
lows from the exact sequence corresponding to the pair (S, d.5) that Rk(H (95 Z) —
H{(S;Z)) = 1. Hence dS cannot be connected. Next we perform this construction
for each Seifert piece of G_.

To complete the proof of the lemma it remains to check that one can find a regular
covering. More precisely assume that there exists a finite covering f,: G, — X,
satisfying the conclusion of the lemma. Denote by 7, : X, — X the associated
covering of 2, by H,, the finite index subgroup of 71 X corresponding to this covering
and denote by p,,: G, — G the finite covering corresponding to f, '(H,). Denote
by &n: S, — X, the finite covering so that m, o g, is the regular covering of X
corresponding to the normal subgroup

Ki= () gHug ' <mZ.
geEmMmE

Then consider the corresponding regular covering of f: &G — X denoted by
fn: @n — in. Since G, satisfies point (1) of Lemma 4.4 and since @n 1s a fi-
nite covering of G,, point (1) also holds for G,. On the other hand, since the fiber
of X is central in rq X, it follows from the construction the fiber degree of 7, o g, 18
equal to the fiber degree of 7,. This completes the proof of the lemma. [

4.3. Proof of Proposition 4.1. By Lemma 4.3, we may assume that G_ # ¢ and
that the inclusion c— — F induces a non-surjective homomorphism Hy(c—; Q) —
Hi(F; Q).

Case 1: Firstsuppose that genus(@s) > 1 forany Seifert piece S of G_, where O g
denotes the base 2-orbifold of S. Denote by I'y the minimal connection graph given
by Proposition 3.1. Consider the Mayer—Vietoris exact sequence corresponding (o
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the decomposition of I'y U @9, givenby (T, @%,T1 N O%). Denote by Oy, ..., Ok
the components of (93r and by X1, ..., ¥; the Seifert pieces of G?. Then we get

{0} > H (09) @ Hi (T1) »> H (T1 VOY) — Hy (T1 N OI) — -+

+o+— Ho (0%) ® Ho (1) — Ho (T1 UOY%) — {0}.

Thus, since I'y 1s connected and since (51 and @i M I'y have the same number of
components we get the following relation:

B1(0%) = B (T1 UO5) = B1(T1).

We know that B B
Vol (G®) = B1(0%) + B1(02) —k —1,

where 9° denotes the union of the base surfaces of the Seifert pieces of G°. Thus
we get B B
Vol(G®) = B1 (T1 U OL) — Bir(T) + B1(02) —k — 1

By Proposition3.1, we know that 1 (T'y U @%) > B1(F) and we know that Vol(X) =
B1(F)— ¢, where ¢ = 2 or 1 depending on whether F is closed or not.

Moreover we know that £, (I'y) = Card (E (I'1)) — Card (V (I'1)) + 1. This
implies that

Vol (G%) > Vol(X) + & — 1 + Card (V (T'1)) — k — [ + B1 (0%) — Card (E (T'1)).

Again by Proposition 3.1, we have Card (V (T"y)) = k + [. Note also that

B1 ((53) = 2521 (2g; + r; — 1), where g;, resp. r;, denotes the genus, resp. the

number boundary components, of 3;,7/ = 1,...,/. Then

{ I
Vol (G%) = Vol(Z) + 2 gy =1+ Y ri — Card (E(T'y)).
=1 =1

Finally, by Proposition 3.1, we know that Z§=1 r; — Card (E(I'y)) = 0 and since
gi > 1fori =1,...,1 we then get

!
Vol (G%) = Vol(Z) +2 ) g —1 > Vol(%).

i=1

This proves that Vol{G?) > Vol(X) since [ > 1 by hypothesis. Hence this completes
the proof in this case.

Case 2: If the condition on the genus of the base surfaces of the Seifert pieces in
G _ is not satisfied then, since condition (C4) is satisfied, we know from Lemma 4.4
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that there exists a finite regular covering f;: G; — X; of f: G — X satisfying
the following properties. Let 7: ¥; — X and p: G; — G denote the finite regular
coverings corresponding to f1. Then

(i) any Seifert piece of p~!(G_) admits a Seifert fibration over a 2-orbifold of
genus > 1,

(ii) for any Seifert piece S of G and for any component S; of p~1(S) it holds
that G (p|S1) = Gp ().

Since (G1)— = p~1(G_) by Lemma 2.13, one can apply the above arguments to
the map f1: G; — X;. It follows from the paragraph above that we have Vol(Gy) >
Vol(X1). Thus we get

d
Vol (1) = Vol () %8 _ vio16,) = ol (r1(G)).
Gp(m)
Denoteby O, . .., Q; the geometric components of G and by p; the induced covering

2lp~ Q) : p~HQ;) — O;. Then since p is a regular covering we have

Vol (G) =

i=l
-1 (0. .
deg(p) ;VQ] (p (Ql)) Gp(pi)-

Since f: G — X is mp-surjective we have deg(sr) = deg(p) and by (ii) we get

Gp(m)
deg ()

By combining this latter inequality with the first one we get Vol(Z) < Vol(G). This
ends the proof of Proposition 4.1.

Vol (G) > Vol (p~1 (G)).

5. Proof of the theorems

5.1. Nonzero degree maps decreases the volume. In this section we prove Theo-
rem 1.2.

Case 1: Assume that t(N) = 0. If (M) = 0 then M is a virtual torus bundle
and then 1 is homotopic to a finite covering by [W], in particular fu: 71 M — 7N
is injective. In the other cases t(M) # 0 and thus Vol(M ) > 0.

Case 2. Assume now that 7(N) # 0. Suppose that f|Ty: Ty — N is mq-
injective. By Lemmas 2.9 and 2.10, Gx = f~'(X) is a characteristic graph sub-
manifold of M for any Seifert piece ¥ of N. Choose a component G of f~1(X)
so that /|G : G — X has non-zero degree. Let X1 denote the finite covering of X
such that /|G has a m-surjective lift f1: G — X;. By Lemmas 2.2, 2.14 and 2.5,
we may assume that f; satisfies the hypothesis of Proposition 4.1. This proves that
Vol(Gx) > Vol{G) > Vol(X1) = Vol(2). Hence Vol(M) > Vol(N).



Vol. 85 (2010) Topological rigidity and Gromov simplicial volume 33

Suppose that |7y : Tpr — N is not p-injective. Then using Lemma 2.11 we
know that there exists a connected characteristic supmanifold M, € M which con-
tains # (M }inits interior, a closed Haken manifold M, obtained from M) after Seifert
Dehn fillings along dM; and a 7 -injective non-zero degree extension fi: M; > N
of fi = f|M;: My — N such that ||M| = |deg(f1)}||N|. R

_Since f|Tm: T — N is degenerate, there exists at least one Seifert piece S in
M, obtained from S after non-trivial (i.e. with slope # oo) Seifert Dehn fillings. The
base 2-orbifold Q¢ of S is obtained from the base 2-orbifold Og of $ after gluing
some cone points along some components of 3@ 5. Note that S necessarily supports
an H? x R-geomelry.

Indeed, if not then S is the twisted / -bundle over the Klein bottle and thus M = S
is a closed Seifert fibered space whose base is a 2-sphere with cone points (2,2,n).
Then M| is a Seifert fibered space whose base 2-orbifold admits a spherical geometry.
This contradicts the fact that M 1 18 a Haken manifold.

Then we get x(Os) < )(((9 g) < 0. This proves that Vol(Ml) < VOI(M)

On the other hand, since fi: M; — N has non-zero degree and since ||M 1l =

|deg( f1)| | V||, it follows that Vol(Ml) > Vol(N) by the first case. This completes
the proof of Theorem 1.2.

5.2. Proof of the rigidity theorem. In this paragraph we prove Theorem 1.3. Let
f: M — N be anon-zero degree map between closed Haken manifolds satisfying
the Volume Condition ||M || = |deg( /)|||N | and Vol(M) = Vol(N). Thenitfollows
from Theorem 1.2 that f|7as is 71-injective.

Case 1: Assume that N admits a geometry £3, Nil or Sol. This means that
(M) = 7(N) = 0. Then M is a virtual torus bundle (in particular M is geometric)
and since N is irreducible, the map f is homotopic to a deg( f')-fold covering by a
result of [W].

Case 2: Assume that N admits a geometry H? x R or §I:(2, R). Then we check
the following

Lemma 5.1. Let f: (M,dM) — (N,dN) be a proper non-zero degree map from
a Haken graph manifold M with toral boundary to an orientable Seifert manifold
with geometry H? x R or SL(2, R). If Vol(M) = Vol(N) then f is homotopic to a
covering map with Go(f) = 1 and G, (f) = |deg( f)].

Proof. Denote by f1: M — Nj the m;-surjective lift of f into the finite covering
Ny of N corresponding to fi (M),

We first check that M is a Seifert manifold. If not then we claim that Vol(M ) >
Vol(N). Indeed, to sce this, first note that by Lemmas 2.2, 2.14 and 2.5 we may
assume that f; satisfies the hypothesis of Proposition 4.1. Hence, if M is not Seifert
then M, # @ and M_ # ¥ by Lemma 2.19. This implies that Vol(M) > Vol(N{) >
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Vol(N ), by Proposition 4.1. A contradiction. Thus M = M which implies that M
is Seifert and that / and f; are homotopic to fiber preserving maps.
Since f7 is fiber preservmg, by [.emma 2.2 there exists a finite covering f1 : M —

N of fi such that M — M and N — N; have fiber degree +1 and such that N is
an S!-bundle over an orientable hyperbohc surface F. Note that it follows from our
construction that Vol(A ) = Vol(N ). Then the map #1 descends to a non-zero degree
map 7 : (9 — F, where (9 denotes the base surface of M. Note that — y (O i) =
—x(O5) > deg(m)(—x(F )) > 0 (where @ 5; denotes the base 2-orbifold of M)
and from Vol(M) = Vol(N) we conclude that 1(Oj) = x(éﬂ) = y(F) < 0.
Thus M is an S'-bundle over an orientable hyperbolic surface K=0 i = O
and deg() = 1 which implies that 7: K — F is homotopic to a homeomorphism.
Denote by 4 (resp. ¢) the homotopy class of the fiber in M (in N resp.) and let n
denote the non-zero integer such that ( f~1)* (h) = ™. Using the exact sequences

i Z (M) — 71 (K) — {1}
BN
{1} Z 3T1(N) HTH(F)%'{I},

we check that (f1)x is an isomorphism. Thus so is ( f1)« and finally, by [Wa],
f is a covering map. Moreover we claim that G, ( f) = deg(f) and G (f) = 1.
Indeed, by Lemma 2.1 wehave |y (Oar)| = Gop( f)| x{(On)| > Oand from Vol(M ) =

| x(Om)| = Vol(N) = [3(On)| # 0 we get Gop(f) = 1. Since |[deg(f)| =
Gr(f) x Gop( f) our lemma is shown. O

Case 3: Assume that N 1s hyperbolic. In this case the condition on the volume
implies that M is still a hyperbolic manifold and f is homotopic to a covering map
by a rigidity result of Soma ([S1, Theorem 1]).

Case 4: Assume that N is a non-geomelric Haken manifold. This means in
particular that 7(N) 7£ 0. Letg: N — N be the finite covering of N corresponding
to fi(mr1 M) and let f M — N denote the 11ft1ng of f. By Theorem 1.2 we know
that Vol(M) = Vol(N) and |M || = |deg(f)| IN .

By Lemmas 2.5 and 2.2, we may assume that N contains no embedded Klein
bottle. A

After adjusting f: M — N by a homotopy, we may assume, using Lemmas 2.9
and 2.10 that f is characteristic and M is necessarily a non-geometric Haken mani-
fold.

Assume that $(N) # §. Fix a Seifert piece X in N. Then necessarily = admits

a H? x R-geometry. Consider a component G of f ~1(%) so that deg( f |G: G —
¥) # 0. Applying, Lemmas 2.2, 2.14, 2.5 and Proposition 4.1 to f|G we see that
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Vol(G) > Vol(X). This implies, since Vol(M) = Vol(]/\7 }, that Vol(G) = Vol(X)
and that any component G; of f ~1(¥) \ G is a twisted /-bundle over the Klein
bottle. Then using Lemma 5.1 we know that f |G is a covering map such that
Gh(f1G) = deg(f|G) and Gep(f|G) = 1.

On the other hand, since f is characteristic, it follows from the construction that
f |G;: G; — X is a proper map. Denote by 7" the component of 9% such that
f (0G;) < T. Since f is 7 -injective, there then exists a non-zero integer » such
that f*([aGi]) = n[T] at the Hy(-; Z)-level. Since G; has connected boundary,
[0Gi] = 0 in H»(G;;7Z) and thus, since H>(X;7Z) is torsion free, [T] = 0 in
H>(%:7Z). This proves that d¥ is connected. Hence deg( f |G;) # O which is
impossible since X admits a H? x R-geometry. Thus f 1(£) = G. This proves
that f|/S(M) 8(M) — 8(N)isa covering map.

Assume that -§ (N ) = #. In this case Vol(N ) = 0 and thus Vol(M) = 0. This
means that if $(M) # ) then each Seifert piece of M is homeomorphic to a twisted
I -bundle over the Klein bottle and that for each component K of & (M) there exists a
canonical torus T of N such that f (K) € W(T). Hence f | K is non-degenerate and
f* (1 K) is abelian. We get a contradiction since K admits a Seifert fibration over a
non-orientable surface (see the proof of Lemma 2.3). This shows that S(M) = #.

On the other hand f |H(M): (M) — K (N)is a covering map by a result
of Soma in [S1]. But since f 18 7T1-Surjective, f actually is a homeomorphism,
using [Wa], and hence f is a covering map. Note that the induced proper map
fI8(M): (M) — 8(N) is a covering map such that G, ( f|S,(M)) = deg(f)
and Gop( f |$n(M)) = 1. This completes the proof of Theorem 1.3.

5.3. Proof of Theorem 1.6. We consider here degree one maps between closed
Haken manifolds. In view of Theorem 1.3, to prove Theorem 1.6 we have to check
the following

Claim 5.2. For any closed Haken manifold M there exists a constant ny € (0, 1),
which depends only on M, such that for any degree one map f : M — N into aclosed
Haken manifold N satisfying t(N) = t(M)Y(1 — np) it holds that t(M) = t(N).

Proof. Suppose the contrary. Then there is a closed Haken manifold My and a se-
quence of closed Haken manifolds N, such that there are degree one maps f,: My —
N, satisfying (N, ) > t(Mo)}(1 — 1/n) and t(N,) # ©(My) for any n € N. This
implies in particular that | My || = || Na|| = || Mo||[{1 — 1/n). Then lim, _, » || N || =
|Mo||. Hence by [D] this implies that the sequence { N, },en 18 finite up to homeo-
morphism. This contradicts the inequalities

M1 1) < T (V) < £ (M.
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This completes the proof of the claim. O

Thus one can apply Theorem 1.3 with the hypothesis deg( /) = 1. This completes
the proof of the theorem.,
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