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Periodic orbits of twisted geodesic flows and theWeinstein–Moser
theorem

Viktor L. Ginzburg and Başak Z. Gürel

Abstract. In this paper, we establish the existence of periodic orbits of a twisted geodesic flow
on all low energy levels and in all dimensions whenever the magnetic field form is symplectic
and spherically rational. This is a consequence of a more general theorem concerning periodic
orbits of autonomous Hamiltonian flows near Morse–Bott non-degenerate, symplectic extrema.
Namely, we show that all energy levels nearsuchextrema carry periodic orbits, provided that the
ambient manifold meets certain topological requirements. This result is a partial generalization
of the Weinstein–Moser theorem. The proof of the generalized Weinstein–Moser theorem is a

combination of a Sturm-theoretic argument and a Floer homology calculation.

Mathematics Subject Classification 2000). 53D40, 37J10, 37J45.
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1. Introduction and main results

In the early 1980s, V.I. Arnold proved, as a consequence of the Conley–Zehnder
theorem, [CZ1], the existence of periodic orbits of a twisted geodesic flow on T2
with symplectic magnetic field for all energy levels when the metric is flat and low
energy levels for an arbitrary metric, [Ar2]. Arnold’s result initiated an extensive
study of the existenceproblem forperiodicorbitsof general twisted geodesic flowsvia
Hamiltonian dynamical systems methods and in the context of symplectic topology,
mainly focusing on low energy levels. A brief and admittedly incomplete survey of
some related work is provided in Section 1.3.)

In the present paper, we establish the existence of periodic orbits of a twisted
geodesic flow on all low energy levels and in all dimensions whenever the magnetic
field form is symplectic and spherically rational. An essential point is that, in contrast

with other results of this type, we do not require any compatibility conditions
on the Hamiltonian and the magnetic field. In fact, we prove a more general theorem

The work is partially supported by theNSF and by the faculty research funds of the University of California,
Santa Cruz.
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concerning periodic orbits of autonomous Hamiltonian flows near Morse–Bott
nondegenerate, symplectic extrema. Namely, we show that all energy levels near such
extrema carry periodic orbits, provided that the ambient manifold meets certain
topological requirements. This result is a partial) generalization of theWeinstein–Moser
theorem, [Mo], [We1], asserting that a certain number of distinct periodic orbits exist
on every energy level near a non-degenerate extremum. The proof of the generalized
Weinstein–Moser theorem is a combination of a Sturm-theoretic argument utilizing
convexity of the Hamiltonian in the direction normal to the critical submanifold and

of a Floer–homological calculation that guarantees “dense existence” of periodic
orbits with certain index. The existence of periodic orbits for a twisted geodesic flow
with symplectic magnetic field is then an immediate consequence of the generalized
Weinstein–Moser theorem. The results proved in this paper are announced in [GG3].

1.1. The generalized Weinstein–Moser theorem. Throughout the paper, M will
stand for a closed symplectic submanifold of a symplectic manifold P; !/. We

denote by OE! the cohomology class of and by c1.TP/ the first Chern class of P
equipped with an almost complex structure compatible with The integrals of these

classes over a 2-cycle u will be denoted by h!; ui and, respectively, hc1.TP/; ui.
Recall also that P is said to be spherically rational if the integrals h!;ui over all
u 2 2.P / are commensurate, i.e., 0 D inffj h!;uij j u 2 2.P /g > 0 or,
equivalently, h!; 2.P /i is a discrete subgroup of R.

The key result of the paper is

Theorem 1.1 GeneralizedWeinstein–Moser theorem). LetKW P R be a smooth
function on a symplectic manifold P;!/, which attains its minimum K D 0 along a
closed symplectic submanifold M P. Assume in addition that the critical set M
is Morse–Bott non-degenerate and one of the following cohomological conditions is
satisfied:

i) M is spherically rational and c1.TP/ D 0, or

ii) c1.TP/ D OE! for some ¤ 0.

Then for every sufficiently small r2 > 0 the level K D r2 carries a contractible in
P periodic orbit of the Hamiltonian flow of K with period bounded from above by a
constant independent of r.

When M is a point, Theorem 1.1 turns into the Weinstein–Moser theorem see

[We1] and [Mo]) on the existence of periodic orbits near a non-degenerate extremum,
albeit without the lower bound dim P=2 on the number of periodic orbits.

Remark 1.2. The assertion of the theorem is local and concerns only a neighborhood

of M in P. Hence, in i) and ii), we can replace c1.TP/ by c1.TPjM/ D
c1.TM/ C c1.TM?/ and OE! by OE! jM Also note that in ii) we do not require
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to be positive, i.e., M need not be monotone. However, this condition does imply

that M is spherically rational.) We also emphasize that we do need conditions

i) and ii) in their entirety – the weaker requirements c1.TP/j 2.P / D 0 or

c1.TP/j 2.P / D OE! j 2.P /, common in symplectic topology, are not sufficient for
the proof.

Although conditions i) and ii) enter our argument in an essentialway, their role is
probably technical see Section 7.2), and one may expect the assertion of the theorem
to hold without any cohomological restrictions on P.1 For instance, this is the case

whenever codimM D 2; see [Gi2]. Furthermore, when codimM > 2 the theorem
holds without i) and ii), provided that the normal direction Hessian d2M K and
meet a certain geometrical compatibility requirement; [GK1], [GK2], [Ke1]. On
the other hand, the condition that the extremum M is Morse–Bott non-degenerate is
essential; see [GG2].

1.2. Periodic orbits of twisted geodesic flows. Let M be a closed Riemannian
manifold and let be a closed 2-form onM. Equip T M with the twisted symplectic
structure D 0 C where 0 is the standard symplectic form on T M and

W T M M is the natural projection. Denote by K the standard kinetic energy
Hamiltonian on T M corresponding to a Riemannian metric onM. The Hamiltonian
flow ofK on T M describes the motion of a charge onM in the magnetic field and

is referred to as a magnetic or twisted geodesic flow; see, e.g., [Gi3] and references
therein for more details. Clearly, c1.T T M// D 0, for T M admits a Lagrangian
distribution e.g., formed by spaces tangent to the fibers of and M is a Morse–
Bott non-degenerate minimum of K. Furthermore, M is a symplectic submanifold
of T M when the form symplectic. Hence, as an immediate application of case i)
of Theorem 1.1, we obtain

Theorem 1.3. Assume that is symplectic and spherically rational. Then for every

sufficiently small r2 > 0 the level K D r2 carries a contractible in T M periodic
orbit of the twisted geodesic flow with period bounded from above by a constant
independent of r.

Remark 1.4. The proof of Theorem 1.1 is particularly transparent when P is geometrically

bounded and symplectically aspherical i.e., j 2.P / D 0 D c1.TP/j 2.P /).
This particular case is treated in Section 4, preceding the proof of the general case.

The twisted cotangent bundle T M;!/ is geometrically bounded; see [AL], [CGK],
[Lu1]. Furthermore, T M;!/ is symplectically aspherical if and only if M; / is
weakly exact i.e., j 2.M/ D 0).

Note also that, as the example of the horocycle flow shows, a twisted geodesic
flowwith symplectic magnetic field need not have periodic orbits on all energy levels;

1Added in the proofs: The rationality requirement in i) was recently eliminated by Usher, [Us].
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see, e.g., [CMP], [Gi3] for a detailed discussion of this example and of the resulting
transition in the dynamics from low to high energy levels. Similar examples also
exist for twisted geodesic flows in dimensions greater than two, [Gi4, Section 4].

1.3. Related results. To the best of the authors’ knowledge, the existence problem
for periodic orbits of a charge in a magnetic field was first addressed by V.I. Arnold
in the early 1980s; [Ar2], [Ko]. Namely, V. I. Arnold established the existence of at

least three periodic orbits of a twisted geodesic flow on M D T2 with symplectic
magnetic field for all energy levels when the metric is flat and low energy levels for an
arbitrary metric. It is still unknown if the second of these results can be extended to
all energy levels.) Since then the question has been extensively investigated. It was
interpreted for a symplectic magnetic field) as a particular case of the generalized
Weinstein–Moser theorem in [Ke1]. Referring the reader to [Gi3], [Gi6], [Gi7] for
a detailed review and further references, we mention here only some of the results
most relevant to Theorems 1.1 and 1.3.

The problems of almost existence and dense existence of periodic orbits concern
the existence of periodic orbits on almost all energy levels and, respectively, on a

dense set of levels. In the setting of the generalized Weinstein–Moser theorem or
of twisted geodesic flows, these problems are studied for low energy levels in, e.g.,

[CGK], [Co], [CIPP], [FS], [GG2], [Gü], [Ke3], [Ma], [Lu1], [Lu2], [Sc], following
the original work of Hofer and Zehnder and of Struwe, [FHW], [HZ1], [HZ2], [HZ3],
[St]. In particular, almost existence for periodic orbits near a symplectic extremum
is established in [Lu2] under no restrictions on the ambient manifold P. When P is
geometrically bounded and stably) strongly semi-positive, almost existence isproved
for almost all lowenergy levels in [Gü] under the assumption that jM does not vanish
at any point, and in [Sc] whenM has middle-dimension and jM ¤ 0. These results
donot require the extremumM to beMorse–Bott non-degenerate. Very strong almost
existence results not restricted to low energy levels) for twisted geodesic flows with
exact magnetic fields and also for more general Lagrangian systems are obtained in
[Co], [CIPP]. The dense or almost existence results established in [CGK], [GG2],
[Ke3] follow from Theorem 1.1. However, the proof of Theorem 1.1 relies on the
almost existence theorem from [GG2] or, more precisely, on the underlying Floer
homological calculation.

As is pointed out in Section 1.1, in the setting of the generalizedWeinstein–Moser
theorem without requirements i) and ii), every low energy level carries a periodic
orbit whenever codimM D 2 or provided that the normal direction Hessian d2 KM
and meet certain geometrical compatibility conditions, which are automatically
satisfied when codimM D 2 orM is a point; see [Gi1], [Gi2], [GK1], [GK2], [Ke1],

[Mo], [We1] and references therein. Moreover, under these conditions, non-trivial
lower bounds on the number of distinct periodic orbits have also been obtained. The
question of existence of periodic orbits of twisted geodesic flows on low) energy
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levels for magnetic fields on surfaces is studied in, e.g., [No], [NT], [Ta1], [Ta2] in
the context of Morse–Novikov theory; see also [Co], [CIPP], [CMP], [Gi6] for further
references. In general, this approach requires no non-degeneracy condition on the
magnetic field.) For twisted geodesic flows on surfaces with exact magnetic fields,
existence of periodic orbits on all energy levels is proved in [CMP].

1.4. Infinitely many periodic orbits. The multiplicity results from [Ar2], [Gi1],
[Gi2], [GK1], [GK2], [Ke1] rely implicitly in some instances) on the count of “short”
periodicorbits of theHamiltonian flowonK D r2. The resulting lower bounds on the
number of periodic orbits can be viewed as a “crossing-over” between theWeinstein–
Moser type lower bounds in the normal direction to M and the Arnold conjecture
type lower bounds along M. This approach encounters serious technical difficulties
unless and d2MK meet some geometrical compatibility requirements, for otherwise
even identifying the class of short orbits is problematic.

However, looking at the question from the perspective of the Conley conjecture
see [FrHa], [Gi9], [Hi], [SZ]) rather than of the Arnold conjecture, one can expect

every low level of K to carry infinitely many periodic orbits not necessarily short),
provided that dimM 2 andM is symplectically aspherical. An indication that this
may indeed be the case is given by

Proposition 1.5. Assume that M is symplectically aspherical and not a point, and

codimM D 2 and the normal bundle toM in P is trivial. Then every level K D r2,
where r > 0 is sufficiently small, carries infinitely many distinct, contractible in P
periodic orbits of K.

This proposition does not rely on Theorem 1.1 and is an immediate consequence
of the results of [Ar2], [Gi1] and the Conley conjecture; see [Gi9] and also [FH],
[Hi], [SZ]. For the sake of completeness, a detailed argument is given in Section 4.4.

In a similar vein, in the setting of Theorem 1.3 with M D T2 and K arising from
a flat metric, the level K D r2 carries infinitely many periodic orbits for every not
necessarily small) r > 0.

1.5. Outline of the proof of Theorem 1.1 and the organization of the paper. The
proof of Theorem 1.1 hinges on an interplay of two counterparts: a version of the
Sturm comparison theorem and a Floer homological calculation. Namely, on the
one hand, a Floer homological calculation along the lines of [GG2] guarantees that
almost all low energy levels of K carry periodic orbits with Conley–Zehnder index
depending only on the dimensions of P andM. On the other hand, since the levels of

K are fiber-wise convex in a tubular neighborhood ofM, a Sturm theoretic argument
ensures that periodic orbits with large period must also have large index. Strictly
speaking, the orbits in question are degenerate and the Conley–Zehnder index is not
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defined. Hence, we work with the mean index, referred to in what follows as the
Salamon–Zehnder invariant [SZ], but the Robin–Salamon index, [RS], could be
utilized as well.) Thus, the orbits detected by Floer homology have period a priori
bounded from above and the existence of periodic orbits on all levels follows from
the Arzela–Ascoli theorem.

The paper is organized as follows. In Section 2, we recall the definition and
basic properties of the Salamon–Zehnder invariant and also prove a version of
the Sturm comparison theorem giving a lower bound for the growth of in linear
systems with positive definite Hamiltonians. This lower bound is extended to periodic
orbits of K near M in Propositions 3.1 and 3.2 of Section 3, providing the
Sturmtheoretic counterpart of the proofof Theorem 1.1. In Section 4, we proveTheorem 1.1
under the additional assumptions that P is geometrically bounded and symplectically
aspherical. In this case, clearly illustrating the interplay between Sturm theory and

Floer homology, we can directly make use of a Floer homological calculation from
[GG2]. Turning to the general case, we define in Section 5 a version of filtered Floer
or rather Floer–Novikov) homology of compactly supported Hamiltonians on open

manifolds. The relevant part of the calculation from [GG2] is extended to the general
setting in Section 6. The proof of Theorem 1.1 is completed in Section 7 where
we also discuss some other approaches to the problem. Proposition 1.5 is proved in
Section 4.4.

Acknowledgements. The authors are deeply grateful to Michael Entov, Ely Kerman,
Leonid Polterovich, and Felix Schlenk for valuable discussions and suggestions.

2. The Salamon–Zehnder invariant

In this sectionwe briefly reviewthe properties of the invariant a continuousversion
of the Conley–Zehnder index introduced in [SZ], used in the proof of Theorem 1.1.

2.1. Linear algebra. Let V; !/ be a symplectic vector space. Throughout this
paper we denote the group of linear symplectic transformations of V by Sp.V; !/
or simply Sp.V / when the form is clear from the context. Moreover, if V is also
equipped with a complex structure J we willuse the notationU.V; !; J /or justU.V /
for the group of unitary transformations, i.e., transformations preserving J and
For A 2 U.V / we denote by detC A 2 S1 the complex determinant of A.

Salamon and Zehnder, [SZ], proved that there exists a unique collection of
continuous maps W Sp.V; !/ S1 C, where V; !/ ranges through all
finitedimensional symplectic vector spaces, with the following properties:

For any A 2 Sp.V; !/ and any linear isomorphism B W W V, we have

B 1AB/ D A/. Note that B 1AB 2 Sp.W; B /.) In particular, is
conjugation invariant on Sp.V; !/.
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Whenever A1 2 Sp.V1; 1/ and A2 2 Sp.V2; 2/, we have A1 A2/ D
A1/ A2/, where A1 A2 is viewed as a symplectic transformation of V1

V2; 1 2/.
For A 2 U.V;!; J /, we have A/ D detC A.

For A without eigenvalues on the unit circle, A/ D 1.

Note that A/ is completely determined by the eigenvalues of A together with
a certain “ordering” of eigenvalues, and in fact only the eigenvalues of A on the
unit circle matter. It is also worth emphasizing that is not smooth on Sp.V /.
Furthermore, although in general AB/ ¤ A/ B/, we have

Ak/ D A/k

for all k 2 Z. In particular, A 1/ D A/.

2.2. The Salamon–Zehnder quasi-morphism

2.2.1. Definition and basic properties. In this section we recall the definition and

basic properties of the Salamon–Zehnder invariant following closely [SZ]. Let

ˆ W
OEa; b Sp.V / be a continuous path. Pick a continuous function

W
OEa; b R

such that ˆ t// D ei t/ and set

ˆ/ D
b/ a/

2 R:

It is clear that ˆ/ is independent of the choice of and that geometrically ˆ/
measures the total angle swept by ˆ t// as t varies from a to b. Note also that we
do not require ˆ a/ to be the identity transformation.

As an immediate consequence of the definition, ˆ/ is an invariant of homotopy
ofˆ with fixed end-points. In particular, gives rise to a continuous map Sp.V /
R, where Sp.V / is theuniversal coveringof Sp.V /. Furthermore, ˆ/ is an invariant
of orientation preserving) reparametrizations of ˆ On the other hand, letˆinv be the
path ˆ traversed in the opposite direction. Then

ˆinv/ D ˆ 1/ D ˆ/:
Finally, is additive with respect to concatenation of paths. More explicitly, assume

that a < c < b. Then, in obvious notation,

ˆjOEa; b / D ˆjOEa; c / C ˆjOEc; b /:
From conjugation invariance of we see that ‰ 1ˆ‰/ D ˆ/ for any two

continuous paths ˆ and ‰ in Sp.V /. Moreover, when B W W V is a symplectic
transformation,

B 1ˆB/ D ˆ/: 2.1)
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Finally, assume thatˆ 0/ DI andˆ T / I isnon-degenerate. Hereˆ W
OE0; T

Sp.V /.) Then the Conley–Zehnder index CZ.ˆ/ is defined see [CZ2] and also, e.g.,

[Sa], [SZ]) and, as is shown in [SZ],

j CZ.ˆ/ ˆ/j dim V=2: 2.2)

We refer the reader to [SZ] for proofs of these facts and for a more detailed
discussion of the invariant

2.2.2. The quasi-morphism property. One additional property of important for
the proof of Theorem 1.1 is that

W
Sp.V / R is a quasi-morphism, i.e., for any

two elements ˆ and ‰ in Sp.V /, we have

j ‰ˆ/ ‰/ ˆ/j C; 2.3)

where the constant C 0 is independent of ‰ and ˆ
To simplify the notation, throughout the rest of this section we will denote by C

a positive constant depending only on dim V – as is the case in 2.3). However, C
may assume different values in different formulas.

With this convention in mind, 2.3) is easily seen to be equivalent to that

j Aˆ/ ˆ/j C 2.4)

for any continuous path ˆ in Sp.V /, not necessarily originating at the identity, and

for any A 2 Sp.V /.
The quasi-morphism property 2.3) is well known to hold for several other maps

Sp.V / R which are similar to see [BG]) and can be established for in a

number of ways as a consequence of the quasi-morphism property for one of these

maps.
For instance, recall that every A 2 Sp.V / can be uniquely represented as a

product A D QU, where U is unitary with respect to a fixed complex structure
compatible with and Q is symmetric and positive definite. This is the so-called
polar decomposition.) Set Q.A/ D detC U and define Q in the same way as but
with Q in place of In contrast with and the maps Q and Q depend on the
choice of complex structure.) It is known that the map Q W Sp.V / R is a
quasimorphism; see [Du] and also [BG] for further references. Furthermore, as is shown
in [BG, Section C-2], ˆ/ D limk!1 Q ˆk/=k for ˆ 2 Sp.V /. Now it is easy to
see that 2.3) holds for since it holds for Q

Remark 2.1. Alternatively, to prove 2.3), one can first show that j Q j C
on Sp.V / and then use again the fact that Q is a quasi-morphism. This argument
was communicated to us by M. Entov and L. Polterovich, [EP1].) In fact, once
the inequality j Q j C is established, it is not hard to prove directly that
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both maps and Q are quasi-morphisms by using the polar decomposition and

“alternating”between these twomaps. The only step which is,perhaps, not immediate
is that 2.4) holds for when A and ˆ are both symmetric and positive definite.
This, however, follows from the elementary fact that in this case the eigenvalues of

Aˆ t/ are real for all t even though Aˆ t/ is not necessarily symmetric), and hence

Aˆ/ D ˆ/ D 0.

Remark 2.2. It is worth mentioning that any Maslov type quasi-morphism on Sp.V /
see, e.g., [BG], [EP2], [RS], [SZ]) can be used in the proof of Theorem 1.1. The

only features of a quasi-morphism essential for the argument are the normalization
behavior on U.V /) and the Sturm comparison theorem Proposition 2.3 below). The

latter obviously holds for any of these quasi-morphisms, once it isestablished forone,
for the difference between any two such quasi-morphisms is bounded. The properties
that set apart from other quasi-morphisms are that is continuous and conjugation
invariant and homogeneous i.e., ˆk/ D k ˆ/; see [SZ]). These facts, although
used in the proof for the sake of simplicity, are not really crucial for the argument.

2.3. Sturm comparison theorem. A time-dependent, quadratic Hamiltonian H.t/
on V; !/ generates a linear time-dependent flow ˆH.t/ 2 Sp.V / via the Hamilton
equation. By definition, a quadratic Hamiltonian on V is a time-dependent quadratic
form.) Once V is identified with R2n D Cn and quadratic forms are identified with
symmetric matrices, this equation takes the form

ˆP H D JH.t/ˆH.t/;
where J is the standard complex structure. We say that H1 H0 when H1 H0 is
positive semi-definite, i.e., H1 H0 is a non-negative function on V Likewise, we
write H1 H0 > 0 if H1 H0 is positive definite.

Proposition 2.3 Sturm Comparison Theorem). Assume that H1 H0 for all t
Then

ˆH1/ ˆH0/ C

as functions of t

Thisresult is yetanother version of the comparison theorem in symplectic) Sturm
theory, similar to those established in, e.g., [Ar1], [Bo], [Ed]. The proposition can

be easily verified by combining the construction of the generalized Maslov index,

[RS], with the Arnold comparison theorem, [Ar1], and utilizing 2.2). For the sake

of completeness, we give a detailed proof.

Proof. Due to continuity of by perturbingH1 andH0 if necessary, we may assume

without loss of generality that H1 H0 > 0 for all t Furthermore, by the
quasimorphism property 2.4), we may also assume that ˆH0 .0/ D Ĥ1 .0/.
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Set Hs D .1 s/H0 CsH1 and let ˆs.t/ stand for the flow of Hs with the initial
condition ˆs.0/ independent of s. Thus

ˆP s D JHsˆs: 2.5)

FixT > 0. The path ˆ1.t/ with t 2 OE0; T is homotopic to the concatenation of

ˆ0.t/ and the path ‰.s/ D ˆs.T /, s 2 OE0; 1 Hence, it suffices to show that

‰/ C: 2.6)

Denote by Ks.t/ the quadratic Hamiltonian generating the family s 7! ˆs.t/ for
a fixed time t 2 OE0; T To establish 2.6), let us first show that Ks.T/ > 0 for all
s 2 OE0; 1 Using continuity of as above, we may assume without loss of generality
that Ks.t/ degenerates only for a finite collection of points 0 D t0 < t1 < <
tk < T. It is well known that the positive inertia index of Ks.t/ increases as t goes

through ti provided that the restriction of KPs.ti/ to kerKs.ti/ is positive definite; see

e.g., [Ar1]. Linearizing the Hamilton equation 2.5) with respect to s, we obtain by
a simple calculation that

KPs D HPs C fKs; Hsg;
where fKs;Hsg D HsJKs KsJHs the Poisson bracket). The quadratic form

fKs; Hsg.ti/ vanishes on kerKs.ti/ since hfKs; Hsgx; xi D 2 hKsx; JHsxi.
Furthermore, HPs D H1 H0 > 0on V and, as a consequence, KPs.ti / is positive definite
on kerKs.ti /. Finally, Ks.0/ D 0, for ˆs.0/ is independent of s, and we conclude
that Ks.t/ > 0 for all s 2 OE0; 1 and all t 2 .0; T and, in particular, for t D T

Returning to the proof of 2.6), set z‰.s/ D ‰.s/‰.0/ 1. This family is again
generated by Ks.T /, but now the initial condition is z‰.0/ D I Due to the
quasimorphism property 2.4), it suffices to prove that z‰/ C. We will show that

z‰/ 0. As above, by continuity, we may assume that I z‰.s/ degenerates only
for a finite collection of points 0 D s0 < s1 < < sl < 1. In particular, I z‰.1/
is non-degenerate.) Then CZ. z‰/ is defined and, as is proved in [RS],

CZ. z‰/ D
1

2
sign.K0.T //CXi

sign Ksi T /jVi ;

where Vi D ker.I z‰si T // and sign denotes the signature of a quadratic form.
Since, Ks.T/ > 0 for all s, we see that CZ. z‰/ n and, by 2.2), z‰/ 0. This
completes the proof of 2.6) and the proof of the proposition.

Example 2.4. Let H.t/ be a quadratic Hamiltonian on R2n such that H.t/.X/
kXk

2 for all t where kXk stands for the standard Euclidean norm of X 2 R2n and
is a constant. Then, for all t

ˆH/ 2n t C:
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More generally, let H.t/ be a quadratic Hamiltonian on R2n1 R2n2 such that

H.t/..X;Y // kXk
2

kY k
2 for all t where X 2 R2n1 and Y 2 R2n2 and

and are constants. Then

ˆH/ 2.n1 n2 /t C:

These inequalities readily follow from Proposition 2.3 by a direct calculation.

2.4. The Salamon–Zehnder invariant for integral curves.

2.4.1. Definitions. Let
W

OE0; T P be an integral curve of the Hamiltonian flow

' t
H of a time-dependent Hamiltonian H D Ht on a symplectic manifold P. Let

also be a symplectic trivialization of TP along i.e., t/ is a symplectic basis

in T t/P depending smoothly or continuously on t The trivialization gives rise
to a symplectic identification of the tangent spaces T t/P with T .0/P, and hence

the linearization of 't
H along can be viewed as a family ˆ t/ 2 Sp.T .0/P/. We

set / WD ˆ/ This is the Salamon–Zehnder invariant of with respect to
Clearly, / depends on

Assume now that is a contractible T -periodic orbit of H. Recall that a capping
of is an extension of to a map v W

D2 P. A capping gives rise to a symplectic
trivialization of TP along v and hence along unique up to homotopy, and we
denote by v. / the Salamon–Zehnder invariant of evaluated with respect to this
trivialization. Note that v. / is determined entirely by the homotopy class of v and

it is well known that adding a sphere w 2 2.P / to v results in the Salamon–Zehnder
invariant changing by 2

Rw
c1.TP/. In particular, / WD v. / is independent

of v whenever c1.TP/j 2.P / D 0.
When is non-degenerate, i.e., d'TH W T .0/P T .0/P does not have one as

an eigenvalue, the Conley–Zehnder index CZ. / is defined as CZ.ˆ/ in the same

way as / by using a trivialization along ; see [CZ2], [Sa], [SZ]. Then inequality
2.2) relating and CZ turns into

j CZ. / /j dim P=2: 2.7)

Note that in general CZ. / depends on the choice of trivialization along Thus, in
2.7) we assumed that both invariants are taken with respect to the same trivialization,

e.g., with respect to the same capping, unless c1.TP/j 2.P / D 0 and the choice of
capping is immaterial for either invariant; see, e.g., [Sa]. When the choice of capping

v is essential, we will use the notation v. / and CZ. ; v/.

Example 2.5. Let KW R2n R be a convex autonomous Hamiltonian such that

d2K I at all points, where is a constant. Then, as is easy to see from
Example 2.4, / 2n T C for any integral curve

W
OE0; T R2n. Note

that here / is evaluated with respect to the standard Euclidean trivialization and
we are not assuming that the curve is closed.
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2.4.2. Change of the Hamiltonian. Consider two autonomous Hamiltonians H
and K on a symplectic manifold P such that H is an increasing function of K, i.e.,

H D f BK, where f W R R is an increasing function. Let be a periodic orbit of
K lying on an energy level, which is regular for both K and H. Then can also be
viewed, up to a change of time, as a periodic orbit ofH. Fixing a trivialization of TP
along we have the Salamon–Zehnder invariants, ; K/ and ; H/ of defined
for the flows of K and H. The following result, used in the proof of Theorem 1.1, is
nearly obvious:

Lemma 2.6. Under the above assumptions, ; K/ D ;H/.

Proof. SetHs D .1 s/KCsH, where s 2 OE0; 1 These Hamiltonians are functions
of H0 D K and the level containing is regular for each Hs. Furthermore, after
multiplying K and H by positive constants, we may assume that has period equal
to one for all Hs. Denote by ˆs.t/ the linearization of the flow 't

Hs of Hs along
interpreted, using the trivialization, as a path in Sp.TzP/, where z D .0/. Clearly,

; K/ D ˆ0/ and ;H/ D ˆ1/:

The path ˆ1.t/ is homotopic to the concatenation of ˆ0.t/ and the path ‰.s/ Dˆs.1/. Hence,

ˆ1/ D ˆ0/ C ‰/;

and it is sufficient to show that ‰/ D 0. To this end, we will prove that all maps

‰.s/ D d'1
Hs/z W TzP TzP have the same eigenvalues.

Note that for all s the maps ‰.s/ are symplectic and preserve the hyperplane E
tangent to the energy level through z. The eigenvalues of ‰.s/ are those of ‰.s/jE
and the eigenvalue one corresponding to the normal direction to E. Furthermore, all
maps ‰ also preserve the one-dimensional space E! spanned by 0.0/ and are equal
to the identity on this space. The quotient E=E! can be identified with the space

normal to 0.0/ in E and the map x‰.s/ W E=E! E=E! induced by ‰.s/jE is
the linearized return map along in the energy level containing Thus, this map
is independent of s. As a consequence, the maps ‰.s/jE, and hence ‰.s/, have the
same eigenvalues for all s 2 OE0; 1

3. Sturm comparison theorems for periodic orbits near Morse–Bott
non-degenerate symplectic extrema

3.1. Growth of Let, as in Theorem 1.1, KW P R be an autonomous Hamiltonian

attaining its Morse–Bott non-degenerate minimum K D 0 along a closed
symplectic submanifold M P. The key to the proof of Theorem 1.1 is the
following result, generalizing Example 2.5, which is essentially a version of the Sturm
comparison theorem for K:
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Proposition 3.1. Assume that c1.TP/ D 0. Then there exist constants a > 0 and c
and r0 > 0 such that, whenever 0 < r < r0,

/ a T c 3.1)

for every contractible T -periodic orbit of K on the level K D r2.

Along with this proposition, we also establish a lower bound on / that holds
without the assumption that c1.TP/ D 0. Fix a closed 2-form with OE D c1.TP/.
For instance, we can take as the Chern–Weil form representing c1 with respect to
a Hermitian connection on TP. In the notation of Section 2.4.1, we have

Proposition 3.2. There exist constants a > 0 and c and r0 > 0 such that, whenever

0 < r < r0,

v. / a T c 2Z
v

3.2)

for every contractible T -periodic orbit of K on the level K D r2 with capping v.

3.2. Proof of Propositions 3.1 and 3.2. The idea of the proof is that the fiber
contribution to / is of order T and positive, while the base contribution is of
order r T It will be convenient to prove a superficially more general form of 3.1)
and 3.2). Namely, we will show that

/ a b r/T c 3.3)

and

v. / a b r/T c 2 Z
v

3.4)

for some constants a > 0 and b and c, when r > 0 is small. This implies 3.1) and

3.2) with perhaps a slightly smaller value of a.
Throughout the rest of this section we adopt the following notational convention:

in all expressions ‘const’ stands for a constant which is independent of r and and

T once r is sufficiently small. The value of this constant immaterial for the proof)
is allowed to vary from one formula to another. A similar convention is also applied
to the constants a > 0 and b and c.

3.2.1. Particular case: an integral curve in a Darboux chart. Before turning to
the general case, let usprove 3.3) for an integral curve ofK contained in a Darboux
chart. Let U M be a contractible Darboux chart. The inclusion U M can be
extended to a symplectic embedding of an open set U V P, where V is a ball
centered at the origin) in a symplectic vector space and U V carries the product

symplectic structure. In what follows, we identify U V with its image in P and U



878 V. Ginzburg and B. Z. Gürel CMH

with U 0. Note that then T.x;0/.x V /, where x 2 U, is the symplectic orthogonal
complement TxM/! to TxM.

Let W
OE0; T U V be an integral curve of the flow of K on an energy

level K D r2. We emphasize that at this stage we do not require to be closed,
but we do require it to be entirely contained in U V The coordinate system in
U V gives rise to a symplectic trivialization of TP along and we denote by /
the Salamon–Zehnder invariant of the linearized flow along with respect to this
trivialization; see Section 2.4.1.

Next we claim that 3.3) holds for such an integral curve with all constants
independent of

Indeed, the linearized flow of K along is given by the quadratic Hamiltonian
equal to the Hessian d2K t/ evaluated with respect to the coordinate system. On the
other hand, since M is a critical manifold of K and d2K is positive definite in the
direction normal to M, we have

d 2K.x;y/.X; Y / akY k
2 b rkXk

2: 3.5)

Here x; y/ 2 U V and X 2 TxU and Y 2 TyV and r2 D K.x; y/. Note that the
constants a > 0 and b depend on K and the coordinate chart U V but not on
and r. The lower bound 3.3) with values of a and b different from those in 3.5))
follows now from the comparison theorem Proposition 2.3) and Example 2.4; cf.
Example 2.5.

3.2.2. Length estimate. Fix an almost complex structure J on P compatible with
and such that M is an almost complex submanifold of P, i.e., J.TM/ D TM.

The pair J and gives rise to a Hermitian metric on the complex vector bundle

TP P. We denote by l. / the length of a smooth curve in P with respect to
this metric. Furthermore, there exists a unique Hermitian connection on TP, i.e., a

unique connection such that parallel transport preserves the metric and J and hence,
Note that, unless J is integrable, this connection is different from the Levi–Civita

connection.)
Let

W
OE0; T P be an integral curve of K not necessarily closed) on the level

K D r2. Then, since M is a critical manifold of K, we have

l. / const r T: 3.6)

As the first application of 3.6), observe that Proposition 3.1 is a consequence

of Proposition 3.2, i.e., 3.4) implies 3.3). Indeed, assume that c1.TP/ D 0, i.e.,

D d for some 1-form on P. Then, by Stokes’ formula and 3.6),

Z
v

D Z const k kC0 r T;
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which, combined with 3.4), implies 3.3).
Beforeproceeding with adetailedproof of 3.4), let us briefly outline the argument.

We will cover a closed T -periodic orbit of K on the level K D r2 by a finite
collection of Darboux charts. The required number N of charts is of order l. /
r T Within every chart, as was proved in Section 3.2.1, we have a lower bound
on with respect to the Euclidean trivialization. Combined, these trivializations
can be viewed as an approximation to a Hermitian-parallel trivialization along

W
OE0; T P. We do not assume that .0/ D T /.) Furthermore, within every

chart the discrepancy between Salamon–Zehnder invariants for the two trivializations
Euclidean and Hermitian-parallel) is bounded by a constant independent of and r.

As a consequence, the difference between / and the total Salamon–Zehnder
invariant for Euclidean chart-wise trivializations is of order N r T and we
conclude that 3.3) holds for / Finally, by the Gauss–Bonnet theorem, the
effect of replacing by a trivialization associated with a capping is captured by the
integral term in 3.4).

3.2.3. Auxiliary structure: a Darboux family. To introduce a Darboux family in
P along M, let us first set some notation. Denote by Bx.i/ TxM and B?x i?/
TxM/! the balls of radii i > 0 and i? > 0, respectively, centered at the origin and

equipped with the symplectic structures inherited from TxM and TxM/!.
The first component of the Darboux family is a symplectic tubular neighborhood

W W M. This is an ordinary tubular neighborhood ofM, i.e., an identification of
a neighborhood W of M in P with a neighborhood of the zero section in TM/! D
TM? formedby the fiber-wiseballsB?x i?/, such that thediffeomorphisms between
the fibers Vx D 1.x/ and the balls B?x i?/ preserve the symplectic structure. In
particular, we obtain a family of symplectic embeddings B?x i?/ P sending the
origin to x and depending smoothly on x. The linearization of the mapB?x i?/ Vx
at x is the inclusion TxM/! TxP.

The second component is a Darboux family inM. This is a family of symplectic
embeddings TxP Bx.i/ M depending smoothly on x 2 M, sending the origin
0 2 TxM to x, and having the identity linearization at 0 2 TxM. It is easy to see that

such a Darboux family exists provided that i > 0 is sufficiently small; see [We2].
We denote the images of this embedding by Ux M.

Now we extend each pair of symplectic embeddings B?x i?/ P and Bx.i/
M to asymplectic embeddingTxP Bx.i/ B?x i?/ P, which is againrequired
to depend smoothly on x 2 M. The resulting maps will be called a Darboux family
in P along M).

Let Wx stand for the image of the embedding Bx.i/ B?x i?/ P. Note that

Wx is naturally symplectomorphic to Ux Vx with the split symplectic structure
and the tangent space to y Vx is TyM/! for every y 2 Ux. We also denote by

x W Wx Ux the projection to the first factor. At this point it is worth emphasizing
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that in general and x do not agree on Wx although Vx/ D x D x.Vx/.)
Whenever the values of radii i and i? are essential, we will use the notation Ux.i/
and Vx.i?/ and Wx.i; i?/ and W.i?/. Henceforth, we fix a Darboux family with
some i0 > 0 and i?0 > 0 and consider only Darboux families obtained by restricting
the fixed one to smaller balls.

Let us now state a few simple properties of Darboux families, which are used in
the rest of the proof. These properties require i > 0 and i? > 0 to be sufficiently
small. However, once this is the case, all constants involved are independent of i
and i?.

DF1) The Euclidean metric on Wx, arising from the Darboux diffeomorphism
of Wx with an open subset of TxP, is equivalent to the restriction of the
Hermitian metric to Wx. Moreover, the constants involved can be taken

independent of x.
As a consequence of this obvious observation we need not distinguish between

the Hermitian and Euclidean metric on Wx in DF2) and DF3) below.

DF2) The inequality 3.5) holds in each chart Wx with some constants a > 0 and

b independent of x.
DF3) The difference between Euclidean and Hermitian parallel transports along

any short curve contained
HE

in Wx is small for all x 2 M. More specifically,
denote by … and … the Euclidean and Hermitian parallel transports

T .0/P

EH

T .1/P along a curve
W

OE0; 1 Wx. For any > 0 there
exists l0, depending on but not on i and i?, such that for any x 2 M and
any curve inWx with l. / l0, the symplectic transformation.… / 1…
lies in the -neighborhood of the identity in Sp.T .0/P/.

The property DF2) isa consequence of the fact that the linearization of aDarboux
map Bx B?x Wx at the origin is the identity map on TxP. Assertion DF3) is
established by the standard argument.

Now we fix a small > 0 and i > 0 and i? > 0 such that DF1) and DF2) hold
and the distance from Vx.i?=2/ to the boundary of Wx D Wx.i; i?/ is smaller than

l0. / This is possible since l0 is independent of i and i?.

Remark 3.3. In fact, > 0 need not be particularly small. It suffices to ensure that
the value of the Salamon–Zehnder invariant on any path in the -neighborhood of
the identity is bounded by a constant independent of the path. This is always the case

when the neighborhood is simply connected and has compact closure).

3.2.4. Proof of 3.4). Let r > 0 be so small that the level K D r2 is entirely
contained in the tubular neighborhood W.i?=2/. Then this level is also contained
in the union of the charts Wx.i; i?=2/ and hence in the union of the charts Wx. Let

W
OE0; T P be a T -periodic orbit of K on the level.
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Fix a unitary frame .0/ in T .0/P and extend this frame to a Hermitian trivialization

of TP along the path by applying Hermitian parallel transport to .0/. Note
that the resulting trivialization need not be a genuine trivialization along viewed as

a closed curve: .0/ ¤ T /. Nonetheless, the Salamon–Zehnder invariant /
of with respect to is obviously defined. Namely, recall from Section 2.4.1 that

using we can view the linearized flow along as a family ˆ t/ 2 Sp.T .0/P/.
Then / D ˆ/ Our first objective is to show that 3.3) holds for / i.e.,

/ a b r/T c; 3.7)

where the constants a > 0 and b and c are independent of r and T and
To this end, consider the partition of I D OE0; T into intervals Ij D OEtj 1; tj

with j D 1; : : : ;N by points

0 D t0 < t1 < < tN 1 < tN D T

such that the length of j D jIj is exactly l0. The last segment N may have length
smaller than l0.) It is essential for what follows that, by 3.6),

N 1 C const r T: 3.8)

Note that, in contrast with the curves j the intervals Ij are not necessarily short:
the average length of Ij is T=N 1=r.) Let j be the middle point of Ij i.e.,

j D tj 1 C tj/=2, and zj D j / and xj D zj /. Due to our choice of r, we
have zj 2 Vxj i?=2/, and, by the choice of i and i?, the path j lies entirely inWxj
We denote byˆjIj the restriction of the family ˆ t/ to Ij Thus,

/ DX ˆjIj /: 3.9)

We bound ˆjIj / from below in a few steps. First, consider the family ĵ t/ 2
Sp.Tzj P/ parametrized by t 2 Ij and obtained from the linearized flow of K along

j by identifying T t/P with Tzj P via Hermitian parallel transport. It is easy to see

that

ĵ t/ D …jˆ t/ˆ j / 1… 1

j ;

where …j W Tz0P Tzj P is the Hermitian parallel transport along By conjugation

invariance of see 2.1)) and the quasi-morphism property 2.4),

ˆjIj / ĵ / const; 3.10)

where the constant depends only on dim P. Furthermore, let ‰j t/ be defined
similarly to ĵ t/, but this time making use of Euclidean parallel transport in Wzj
Clearly,

‰j t/ D Aj t/ ĵ t /;
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where Aj t/ 2 Sp.Tzj P/ measures the difference between the Hermitian and
Euclidean parallel transports along j Since l. j / l0, we infer from DF3) that Aj t/
lies in the -neighborhood of the identity and thus Aj / const, where the
constant is independent of j and and r; see Remark 3.3. Due to the quasi-morphism
property 2.3) of we have

ĵ / ‰j/ Aj / const ‰j/ const: 3.11)

By DF2), the argument from Section 3.2.1 applies to ‰j and hence

‰j / a b r/.tj tj 1/ const: 3.12)

Combining 3.10)–(3.12), we see that

ˆjIj / a b r/.tj tj 1/ const; 3.13)

where all constants are independent of and r and the chart, and a > 0.
Finally, adding up inequalities 3.13) for all j D 1; : : :; N and using 3.9), we

obtain

ˆ/ a b r/T const N;

which in conjunction with 3.8) implies 3.7).
To finish the proof of 3.4), fix a capping v of and let be a Hermitian

trivialization of TP along associated with v. Identifying the spaces T t/P via we

can view the linearized flow of K along as a family ẑ t/ 2 Sp.Tz0P/, t 2 I. By
definition, v. / D ẑ / Furthermore, without loss of generality we may assume

that .0/ D .0/ and then

ẑ t/ D B.t/ˆ t/:
Here the transformations B.t/ 2 U.Tz0P/ send the frame .0/ to the frame t/,
where the latter is regarded as a frame in Tz0P by means of Due to again the
quasi-morphism property,

ẑ / ˆ/ C B/ const:

Since the transformations B.t/ are unitary, B.t// D detC B.t/, and B/ is the

“total rotation” of det2
C B. Hence, by the Gauss–Bonnet theorem,

B/ D 2 Z
v

;

where is the Chern–Weil form representing c1.TP/. Combined with 3.7), this
concludes the proof of 3.4) and the proof of Propositions 3.1 and 3.2.
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4. Particular case: P is geometrically bounded and symplectically aspherical

To set the stage for the proof of the general case, in this section we establish Theorem

1.1 under the additional assumptions that P is geometrically bounded and
symplectically aspherical i.e., j 2.P/ D 0 D c1.TP/j 2.P/). We refer the reader to,
e.g., [AL], [CGK], [GG2] for the definition and a detailed discussion of geometrically
bounded manifolds. Here we only mention that among such manifolds are all closed
symplectic manifolds as well as their covering spaces, manifolds that are convex
at infinity e.g., R2n, cotangent bundles, and symplectic Stein manifolds) and also
twisted cotangent bundles.

4.1. Conventions. Throughout the rest of the paper we adopt the following conventions

and notation. Let W
S1

T P, where S1
T D R=T Z, be a contractible loop

with capping v. The action of a T -periodic Hamiltonian H on ; v/ is defined by

AH. ; v/ D Z
v

C Z
S1T

Ht t// dt;

where Ht D H.t; / When j 2.P / D 0, the action AH. ; v/ is independent of the
choice of v and we will use the notation AH. /

All Hamiltonians considered below are assumed to be one-periodic in time or
autonomous. In the former case, we always require T to be an integer; in the latter
case, T can be an arbitrary real number.

The least action principle asserts that the critical points of AH on the space of all
capped) contractible loops

W
S1

T P are exactly capped) contractible T -periodic
orbits of the time-dependent Hamiltonian flow'tH ofH. TheHamiltonian vector field

XH of H, generating this flow, is given by iXH D dH. The Salamon–Zehnder
invariant v. / of a T -periodic orbit with capping v and the Conley–Zehnder
index CZ. ; v/, when is non-degenerate, are defined as in Section 2.4.1 using the
linearized flow d'tH and a trivialization associated with v.

At this point it is important to emphasize that our present conventions differ from
the conventions from, e.g., [Sa], utilized implicitly in Sections 2.4and3. For instance,
the Hamiltonian vector field XH defined as above is the negative of the Hamiltonian
vector field in [Sa]. As a consequence of this sign change, the values of v. / and

CZ. ; v/ also change sign. In other words, from now on the Salamon–Zehnder
invariant of a linear flow with positive definite Hamiltonian is negative; equivalently,

CZ is normalized so that CZ. / D n when is a non-degenerate maximum of
an autonomous Hamiltonian with small Hessian.) In particular, the value of in
Propositions 3.1 and 3.2 must in what follows be replaced by This change of
normalization should not lead to confusion, for the correct sign is always clear from
the context, and it will enable us to conveniently eliminate a number of negative signs
in the statements of intermediate results.
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4.2. Floer homological counterpart. The proof of the theorem uses two major
ingredients. One is the Sturm comparison theorem for K proved in Section 3. The
other is a calculation of the filtered Floer homology for a suitable reparametrization
of the flow of K.

Let, as in Section 3, KW P R be an autonomous Hamiltonian attaining its
Morse–Bott non-degenerate minimumK D 0 along a closed symplectic submanifold
M P. Pick sufficiently small r > 0 and > 0 with, say, < 0 D r2=10. Let
H W

OEr2 ; r2 C OE0;1/ be a smooth decreasing function such that

H maxH near r2 and H 0 near r2 C and H0 < 0 otherwise.

Consider now the Hamiltonian equal to H BK within the shell bounded by the levels

K D r2 and K D r2 C and extended to the entire manifold P as a locally
constant function. Abusing notation, we denote the resulting Hamiltonian by H
again. Clearly, minH D 0 on P and the maximum, maxH, is attained on the entire
domain K r2

Proposition 4.1 ([GG2]). Assume that P is geometrically bounded and symplectically

aspherical and that r > 0 is sufficiently small. Then, once maxH C.r/
where C.r/ > 0 and C.r/ 0 as r 0, we have

HF.a; b/
n0 H/ ¤ 0

for n0 D 1C.codimM dimM/=2 and some interval a; b/ witha > maxH and

b < maxH C C.r/.

Here HF a;b/ H/ stands for the filtered Floer homology of H for the interval
a; b/. We refer the reader to Floer’s papers [Fl1], [Fl2], [Fl3], [Fl4], [Fl5], to,

e.g., [BPS], [HS], [SZ], [Schw], or to [HZ3], [McSa], [Sa] for further references
and introductory accounts of the construction of Hamiltonian) Floer and Floer–
Novikovhomology. Filtered Floer homology for geometrically bounded manifolds is
discussed in detail in, e.g., [CGK], [GG2], [Gü] and [Gi8]with the aboveconventions.
Finally, the construction of filtered Floer–Novikov homology for open manifolds,
utilized in Section 6, is briefly reviewed in Section 5.

4.3. Proof of Theorem 1.1: a particular case. Now we are in a position to prove
Theorem 1.1 in the particular case where P is geometrically bounded and symplectically

aspherical. First observe that H has a non-trivial contractible one-periodic
orbit with

1 dimM D n0 dim P=2 / n0 C dim P=2 D 1 C codim M: 4.1)

Indeed, let Hz W
S1 P R be a compactly supported, C1-close to H,

nondegenerate perturbation of H. By Proposition 4.1, Hz has a non-degenerate
contractible orbit

Q with action in the interval a; b/ and Conley–Zehnder index n0.
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By 2.7),
n0 dim P=2 Q/ n0 C dim P=2:

For a suitable sequence of perturbations Hz H the orbits Q of Hz converge to an
orbit of H and 4.1) holds by continuity of The orbit is non-trivial since the
trivial orbits of H have action either zero or maxH while AH. / > a > maxH. As
a consequence, lies on a level of H with r2 < K < r2 C

Since H is a function of K, we may also view keeping the same notation for
the orbit, as a T -periodic orbit of K. Note that H is a decreasing function of K,
but otherwise the requirements of Lemma 2.6 are met. Hence, ;K/ D /
where / D ; H/. Thus 4.1) turns into

1 dimM ; K/ 1 C codim M:

On the other hand, up to a sign, inequality 3.1) of Proposition 3.1 still holds for
with constants a > 0 and c independent of H and r and > 0:

; K/ a T c:

The negative sign is a result of the convention change.) Hence, we have an a priori
bound on T :

T T0 D .1 C c C codimM/=a:

Passing to the limit as 0, we see that the T -periodic orbits of K converge,

by the Arzela–Ascoli theorem, to a periodic orbit of K on the level K D r2 with
period bounded from above by T0. This completes the proof of Theorem 1.1 in the
particular case.

Remark 4.2. In the proof above, the arguments from [CGK], [Gü], [Ke3] could
also be used in place of the result from [GG2]. The only reason for utilizing that

particular result is that its proof affords an easy, essentially word-for-word, extension
to the general case.

4.4. Proof of Proposition 1.5. In the setting of the proposition, fix a trivialization
of the normal bundle TM/!. Then, every energy level K D r2 also inherits a

trivialization via its identification with the unit sphere bundle in TM/!. When
r > 0 is small, the field of directions ker.!jKDr2/ is transverse to the horizontal
distribution. Hence, fixing a horizontal section of the S1-bundle fK D r2g M,
we obtain the Poincaré return map ' W Clearly, periodic points of ' are in
one-to-one correspondence with periodic orbits of the Hamiltonian flow on K D r2.
The restriction j is a symplectic form preserved by '. Furthermore, as is easy to
see, is symplectomorphic to M. Thus, we can view ' as a symplectomorphism

M M. It is not hard to show that ' is in fact a Hamiltonian diffeomorphism;
see [Gi1] and also [Ar2]. The proposition now follows from the Conley conjecture
proved in [Gi9].
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5. Filtered Floer–Novikov homology for open manifolds

In this section, we describe a version of Floer or Floer–Novikov) homology which is
suitable for extending Proposition 4.1 beyond the class of symplectically aspherical,
geometrically bounded manifolds. We will focus on the case where P is open, but not
necessarily geometrically bounded, for this is the setting most relevant to the proof
of Theorem 1.1. Furthermore, we also assume throughout the construction that P is
spherically rational, i.e., h!; 2.P/i D 0Z for some 0 > 0or j 2.P / D 0. In the
latter case, it is convenient to set 0 D1and 0Z D f0g.

5.1. Definitions. Fix an open setW P with compact closure. LetH W
S1 P

R be a one-periodic Hamiltonian on P, supported in W or rather in S1 W Two
cappings v0 and v1 of the same one-periodic orbit of H are said to be equivalent if
h!; wi D 0 D hc1.TP/; wi, wherew 2 2.P/ is the sphere obtained by attaching v1
to v0 along For instance, when P is symplectically aspherical any two cappings
are equivalent.) The value of the action functional AH. ;v/ and the Conley–Zehnder
index CZ. ;v/ and the Salamon–Zehnder invariant v. / are entirely determined
by the equivalenceclass of v. From nowonwe do not distinguish equivalent cappings.

Assume that all one-periodicorbits ofH with action in .0; 0/ arenon-degenerate

and that thereare only finitely many suchorbits. This is aC1-generic conditioninH,
cf. [FHS], [HS]. However, since P is open and H is compactly supported, the flow
necessarily has trivial periodic orbits. Such orbits are degenerate and have action in

0Z.) For 0 < a < b < 0 denote by CF a; b/
k H/ the vector space freely generated

over Z2 by capped) orbits x D ; v/ with CZ.x/ D k and a < AH.x/ < b. Note

that each vector space CF a;b/
k H/ has finite dimension, for changing the equivalence

class of a capping by attaching a sphere w to it shifts the action and the index by

h!; wi 2 0Z and, respectively, 2hc1.TP/; wi.
Fix an almost complex structure J compatible with on P, which we allow

to be time-dependent within W We define the Floer differential @
W

CF a;b/
k H/

CF a;b/
k 1 H/ by the standard formula:

@x DX#OEMy.x; y/ y; 5.1)

where x is a capped orbit ; v / the sum is taken over all y D C; vC/ with
index k 1 and action in a; b/, and #OEMy.x; y/ is the number mod 2) of points in
the moduli spaceMy.x; y/ of Floer anti-gradient connecting trajectories from x to y.
Let us recall the definition of this moduli space.

Let s; t/ be the coordinates on R S1. Denote byM.x; y/ the space formed by
solutions uW R S1 P of Floer’s equation

@u
@s C Jt u/

@u
@t D rHt u/ 5.2)
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which are asymptotic to at 1, i.e., u.s;t/ t/ point-wise as s 1,
and such that the capping v is equivalent to the one obtained by attaching u to
vC along C. The space M.x;y/ carries an R-action given by shifts of s. We set

My.x; y/ D M.x;y/=R. For a generic Hamiltonian H supported in W the space

M.x; y/, equipped with the topology of uniform C1-convergence on compact sets,

is a smooth manifold of dimension CZ.x/ CZ.y/; [FHS], [HS]. Furthermore,
the R-action on M.x; y/ is non-trivial unless M.x; y/ is comprised entirely of one
solution u.s; t/ independent of s, and thus C D u D and dimM.x; y/ D 0. It
follows thatMy.x; y/ is a discreet set when CZ.x/ D CZ.y/ C 1.

As is well known, one cannot expect to have @2
D 0 unless P satisfies some

additional topological and geometrical requirements. Moreover, the moduli spaces

My.x; y/ in 5.1) need not in general be finite and once one of these sets is infinite
@ is not even defined. The next lemma shows, however, that these problems do not
arise if the action interval a; b/ is sufficiently short.

Lemma 5.1. There exists a constant h D h.W; J/ > 0, depending only on W and J
but not onH, such that once b a < h, the zero dimensional moduli spacesMy.x; y/
in 5.1) are finite and @2

D 0.

Remark 5.2. As will be clear from the proof of Lemma 5.1, the constant h > 0
can be chosen to be the same for all almost complex structures that are sufficiently
C1-close to J This is essential to ensure generic regularity for Floer continuation
maps.

The lemma is nearly obvious. Two phenomena can interfere with compactness
of My.x; y/ or cause @2 not to be zero: bubbling-off and the existence of bounded
energy sequences of Floer connecting trajectories going to infinity in P. However,
since H is supported in W every Floer connecting trajectory is a holomorphic curve
outside W Leaving a compact neighborhood xV of W requires such a curve to have

energy exceeding some h1.V; J/ > 0. Furthermore, since P is spherically rational,
bubbling-offrequires energy 0 or greater. Alternatively, sinceFloer trajectories with
energy smaller that h1 are confined to a compact set xV one can invoke Gromov’s
compactness theorem rather than rationality of P.) Summarizing, we conclude that
neither of these phenomena can occur when b a < h D minfh1; 0g. For the sake

of completeness, we provide a more detailed argument.

Proof of Lemma 5.1. Fix an open set V SW with compact closure. Without loss

of generality we may assume that xV and SW are smooth connected manifolds with
boundary. Then Y D xV X W is a smooth compact domain whose boundary has two
components: @ SW and @ xV There exists a constant h1 D h1.W; V; J / > 0 such that
for every holomorphic curve v in Y whose boundary is contained in @Y and meets
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both components of @Y we have

E.v/ WD Z
v

> h1:

This fact is an immediate consequenceof a result ofSikorav, [AL, p. 179]. Namely,
consider a holomorphic curve through z 2 P with boundary on theR-sphere centered
at z. Then according to this result, there exist constants C and R0 > 0 depending
only on z) such that the area of the holomorphic curve is greater than CR2 whenever

0 < R < R0. Moreover, it is clear that C and R0 can be taken independent of z as

long as z varies within a fixed compact set. Let now S be a closed hypersurface in Y
separating the two boundary components of @Y Then, any holomorphic curve v as

above passes through a point z 2 S, and thus through a ball of radiusR > 0, where

R depends only on S, centered at z and contained in Y Taking R > 0 sufficiently
small and applying Sikorav’s result, we conclude thatE.v/ > CR2 DW h1.

Assume nowthat b a < h WD minfh1; 0g. Then a Floer trajectory u connecting

x to y with 0 < a < AH.y/ AH.x/ < b < 0 is necessarily contained in V
Indeed, denote by v a part of u lying in Y D xV X W Clearly, v is a holomorphic
curve with boundary on @Y since H is supported in W and

1
E.v/ E.u/ WD Z

1 @u
@s

2

L2.S1/
ds D AH.x/ AH.y/ < h1: 5.3)

Furthermore, the boundary of v meets @ SW for both x and y are in W and is entirely
contained in @ SW sinceE.v/ < h1. Hence, u takes values in V Thus we have shown
that all connecting trajectories u belong to a compact set xV

Since we also have b a < 0, bubbling-off is precluded by an energy estimate
similar to 5.3). Just a slightly more elaborate argument utilizing Gromov’s
compactness theorem shows that bubbling-off cannot occur whenever b a < h2 for
some h2 > 0, even if P is not spherically rational.) As a consequence, we infer by
what have now become standard arguments see, e.g., [HS], [Sa]) that My.x;y/ is
compact when CZ.x/ D CZ.y/ C 1, and hence finite, and @2

D 0.

Fromnowon, whenworking with the FloerhomologyHF a;b/ H/,wewillalways
assume that 0 < a < b < 0 and b a < h and that a and b are outside the action
spectrum S.H/ ofH. Note that, since P is spherically rational andH is compactly
supported, S.H/ is closed and has zero measure; see, e.g., [HZ3], [Schw].)

5.2. Properties. The Floer homology spaces defined above have the standard properties

of filtered Floer homology of compactly supported Hamiltonians on geometrically

bounded manifolds; see [CGK], [GG2], [Gi8], [Gü]. Here we recall only three
of these properties that are explicitly used in the proof of the main theorem:
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For any three real numbers a < b < c, where 0 < a < c < 0 and c a < h,
we have the long exact sequence

H/ HF.a;c/HF.a; b/ H/ HF.b;c/ H/! :

A monotone decreasing homotopy from a Hamiltonian HC to a Hamiltonian
H gives rise to homomorphisms

HC/ HF.a; b/ H /;‰HCH W HF.a;b/

which are independent of the homotopy and commute with the long exact
sequence homomorphisms.

Let Hs be a family of Hamiltonians continuously parametrized by s 2 OE0; 1
and let a.s/ < b.s/ be two continuous functions of s such that a.s/ < b.s/ and

all intervals a.s/; b.s// satisfy the above requirements. Assume also that a.s/
and b.s/ are outside S.Hs/. Then the groups HF a.s/;b.s// Hs/ are isomorphic

for all s. As a consequence, by continuity, we have HF a;b/ H/ defined even

when the orbits of H are degenerate.

The proofs of these properties and the constructions involved are identical to those

for geometrically bounded symplectically aspherical manifolds see [CGK], [Gi8],
[GG2], [Ke3]) which in turn follow closely the proofs for closed or convex manifolds
see,e.g., [BPS], [FH], [FS],[Gi9],[McSa], [Sa],[Schw],[Vi]andreferences therein).

Remark 5.3. It is worth pointing that, in contrast with the total Floer–Novikov
homology on a closed manifold, the filtered homology spaces HF a;b/ H/ are not
modules over the Novikov ring ƒ of P. See, e.g., [FHS], [Sa], [McSa] for the
definition of ƒ.) However, a part of the ƒ-module structure is retained by the filtered
homology. Namely, note first that the requirement that 0 < a < b < 0 can

be replaced by a less restrictive condition that a; b/ contains no points of 0Z.
Then attaching a sphere w 2 2.P / simultaneously to all cappings gives rise to an

isomorphism CF a;b/ H/ CF aC ;bC /
C H/ of Floer complexes, and hence of

Floer homology, where D h!; wi and D 2 hc1.TP/;wi. This is an analogue of
the action of the generators of ƒ in the total Floer complex or homology) of H.

Remark 5.4. If P is closed or geometrically bounded, some of the restrictions made
in the construction of the filtered Floer homology can be relaxed. Namely, when P
is closed and W D P, no homological conditions on P or restrictions on the action
interval a; b/ are needed, provided that a; b/ is sufficiently short. This readily
follows from Gromov’s compactness theorem, which guarantees that no bubbling-off
can occur on Floer connecting trajectories with small energy.) When P is open and
geometrically bounded, there is no need to fix an open set W with compact closure
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and the constant h is independent of the support of H. This is a consequence of
Sikorav’s version of the Gromov compactness theorem; see [AL].) However, the
assumptions that P is spherically rational and that 0 < a < b < 0, or at least that

a; b/ contains no points of 0Z, appear to be essential. In fact, it is not clear how
to define the filtered Floer homology of a compactly supported Hamiltonian on a

geometrically bounded open manifold without requiring P to be spherically rational.

6. Floer homological counterpart in the general case

Throughout this section, we assume that P satisfies the following two conditions:

a) P is spherically rational and

b) for any Hamiltonian on P, changing the equivalence class of) a capping of a

periodic orbit necessarily alters its action value, i.e.,

kerOE! j 2.P / ker c1.TP/j 2.P /:

Note that in the setting of Theorem 1.1 one can ensure that these requirements are

met, as a consequence of either i) or ii), by replacing P by a small neighborhood
of M.

6.1. Generalization of Proposition 4.1. Fix a symplectic tubular neighborhood W
of M and an almost complex structure J on P. Let KW P R be an autonomous
Hamiltonianattaining itsMorse–Bottnon-degenerate minimumK D 0alongaclosed
symplectic submanifold M P and let H be defined exactly as in Section 4.2 with

fK r2C 0g W By a), in the notation of Section 5, the filtered Floer homology

HF a;b/ H/ is defined whenever 0 < a < b < 0 and b a < h D h.W;J /. Then,
the following analogue of Proposition 4.1 holds:

Proposition 6.1. There exists a function C.r/ > 0 of r > 0 such that C.r/ 0 as

r 0 and, once r > 0 is sufficiently small, we have

HF.a; b/
n0 H/ ¤ 0

for any H as above with maxH D C.r/ and for some interval a; b/ with C.r/ <
a < b < 2C.r/. Here, as in Proposition 4.1, n0 D 1 C codimM dimM/=2.)

Remark 6.2. Since the proposition concerns only a small neighborhood of M,
requirement a) can be replaced by the condition that M is spherically rational and,
in b), OE! j 2.P / can be replaced OE! j 2.M/.
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6.2. Proof of Proposition 6.1. To prove the proposition we will, as in [GG2],
construct functions F such that

F H FC

and HF.a;b/
n0 F / Š Z2 and the monotone homotopy map

‰ W Z2 Š HF.a;b/
n0 F C/ HF.a;b/

n0 F / Š Z2

is an isomorphism ifr > 0is sufficiently small. Then HF.a; b/
n0 H/ ¤ 0, for ‰ factors

through HF.a;b/
n0 H/. The argument closely follows, with some simplifications, the

proof of Proposition 4.1 given in [GG2] and we only briefly outline its key elements.

6.2.1. Functions F and the parameters a, b and C.r/. The almost complex
structure J and the symplectic form give rise to a Hermitian metric on the normal
bundle TM/! to M. Without loss of generality we may assume that W is a tubular
neighborhood of M in P; see Section 3.2.3. In particular, W is equipped with
projection W M whose fibers are identified with fiber-wise balls in the normal
bundle TM/! and this identification preserves the symplectic structure. Denote
by

W W R the square of the Hermitian norm on TM/! divided by 4 i.e.,

X/ D kXk2=.4 / when X is viewed as a point in TM/!. It is easy to see that all
levels of are comprised of one-periodic orbits of its Hamiltonian flow. These orbits
are the Hopf circles lying in the fibers and bounding symplectic area 4 2 ; see, e.g.,

[CGK], [GG2].
The normal-direction Hessian d2M K along M can also be viewed as a fiber-wise

M KW W R. Since K is Morse–Bott non-degenerate, d2quadratic function d2 MK
is a fiber-wise metric on TM/!. In general, this metric is not Hermitian.) Recall
also that 0 < < 0 D r2=10; see Section 4.2. Thus, when r > 0 is small, the shell
r2 K r2 C is contained in the shell

Z D fr
2 2 0 d2MK r2

C 2 0g:

Set

3 D min
Z

; 2 D 2 3 3 and 1 D 3 3;

so that the points 1 and 2 divide the interval OE0;
3 into three equal parts.

Furthermore, let, as in Figure 1,

C1 D max
Z

; C
2 D C1 C 1 and C

3 D C1 C 2 1 ;

and

C.r/ D 8 2 C3 :
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F H FC
C.r/

M 1 32
C
1

C
2

C
3

Figure 1. The functions F and the homotopy.

In other words, C.r/=2 is the symplectic area bounded by one-periodic orbits of
on the level D C3 It is clear that C.r/ 0 as r 0. From now on, we assume

that maxH D C.r/.
The function F W

OE0; 3 R is defined as follows see Figure 1):

F / C.r/ for 2 OE0;
1 ;

F / 0 for 2 OE

2 ; 3 ;

F / is a linear function on OE

1 ; 2 ranging from C.r/ to 0 with irrational
slope, except for close to 1 and 2 where F is concave with decreasing

F /0 0) and, respectively, convex with increasing F /0 0).

We extend the function F B from the domain f < 3 g to P by setting it to
be identically zero outside the domain and, abusing notation, refer to the resulting
Hamiltonian on P as F

It is essential that the ratio C.r/= 1 is independent of r since d2M K and are
both fiber-wise quadratic), and hence the slope of F can also be taken independent
of r.

Let also F CW OE0; C3 R be defined by

F C. / C.r/ for 2 OE0; C1 ;

F C. / D F C
1 C 1 / for 2 OE C1 ; C2 ;

F C. / 0 for 2
OE C2 ; C3

In other words, FC is obtained from F by shifting the graph of F to the left
by C

1 1 and extending it to the remaining interval OE0; C
1 1

as a function
identically equal to C.r/. In particular, FC has the same slope as F and this slope
is independent of r. Finally, we extend F C B to P in the same fashion as F B
and again keep the notation FC for the resulting Hamiltonian.

By the construction, F H F C. Set

a D C.r/ C 2 2
1 and b D C.r/ C 6 2 C

3 :
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Then a > C.r/ and, since C.r/ D 8 2 C3 we have b < 2C.r/. In what follows,
we will assume that r > 0 is sufficiently small. Thus, in particular, 2C.r/ < 0 and
b a < C.r/ < h.W; J /, and the Floer homology groups in question are defined.

6.2.2. One-periodic orbits ofF Trivial periodicorbits ofF areeither the points
where F D C.r/ or the points where F D 0. Non-trivial one-periodic orbits of
the functions F fill in entire energy levels of F We divide the corresponding
energy values into two groups D xl and D yl for each of the functions F ;
see Figure 2.

C.r/

M

F x1x
2

y2y1

1 2 3

Figure 2. The energy levels xl and yl

The first group of levels is located in the region where F is concave. We label
these levels by the corresponding values of in increasing order:

x1 < x2 < < xk ;

where all xj are close to and slightly greater than 1

The levels from the second group are located in the region where F is convex.
Again, we label these levels by the corresponding values of but now in decreasing
order:

yk < < y2 < y1 ;

where all yl
are close to and slightly smaller than 2

Note that the number k of levels in every group is completely determined by the
slope of the Hamiltonian. In particular, k is the samefor all groups and is independent
of r.

One-periodic orbits of F on the levels D xl and D yl are the fiber-wise
Hopfcircles traversed l-times. Weequip these orbits with cappingsby discscontained
in the fibers and refer to this capping as fiber-wise. Denote by A.xl / and A.yl / the
resulting action values. The action is independent of the choice of an orbit on the
level.) It is easy to see that

A.xl / D C.r/ C 4 2 lxl C D C.r/ C 4 2l 1 C
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and

A.yl / D 4 2 lyl C D 4 2l 2 C ;

where the dots denote an error that can be made arbitrarily small by making F close

to a piece-wise linear function; see [GG2]. Note that A.x1 / is in a; b/ while A.y1 /
and A.y2 / are outside this interval.

We requirer > 0to be so small that all A.xl / and A.yl / are in the range from 0
to h.W; J /. This condition is indeed met for small r > 0, as k is independent of r
and the largest of these actions does not exceed maxfA.xCk /; A.yCk /g C.r/ C
4 2k 2 C

6.2.3. Floer homology of F and the monotone homotopy map ‰. Let ; /
be an interval in a; b/ containing only one point of S.F / Denote by † the unit
sphere bundle in TM/!. Thus, the levels D xl and D yl are diffeomorphic
to †.)

Lemma 6.3. HF ; / F / D H †IZ2/, where the shift of degrees depends

on the level.

We defer the proof of the lemma to Section 6.3 and continue the proof of the
proposition.

To determine the exact value of the shift consider a non-degenerate
timedependent perturbation Fz of F that differs from F only in small neighborhoods
of the levelsxl andyl The perturbationFz canbe explicitlyconstructed see [GG2,
Section 5.2.5]) so that every level xl

and yl splits into a number of non-degenerate

orbits contained in the fibers ofW and theseorbits, equipped with fiber-wisecappings,
have Conley–Zehnder indices in the intervals

OE.2l 1/q m C 1; .2l C 1/q C m for the level D xl and

OE.2l 1/q m; .2l C 1/q C m 1 for the level D yl
where 2m D dimM and 2q D codimM. Note that the length of each of these

intervals is 2.m C q/ 1 D dim†. Hence, is the left end-point of the index
interval, i.e.,

D .2l 1/q m C 1 for D xl and D .2l 1/q m for D yl
In particular, D n0 for x and, by Lemma 6.3, HF. 1; 1/

1 n0 F / D Z2 when

1; 1/ is a small interval containing no other points of S.F / than A.x1 /.
Arguing as in [GG2], we establish the equality HF.a;b/

n0 F / D Z2 by utilizing
the Floer homology long exact sequence; see Section 5.

First note that the only action values of F and Fz in a; b/ are those of the
orbits from some of the levels xl and yl equipped with fiber-wise cappings. In
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other words, only the fiber-wise cappings are relevant. This is a consequence of b)
and the requirement that r > 0 is so small that all A.xl / and A.yl / are in .0; 0/.
Consider now a family of intervals with the left end-point sliding down from 1
to a and the right end-point increasing from 1 to b. The filtered Floer homology
of F can change only when an end-point of the interval moves through an action
value. More specifically, the homology in degree n0 can be effected only when
an end-point moves through an action value A.xl / or A.yl / with index interval
containing n0 1 or n0 or n0 C 1. In the second group, the only action values with
index intervals containing n0 1 or n0 are A.y1 / and A.y2 /, which are, however,
outside the interval a; b/ since A.y1 / < A.y2 / < a. The levels xl with l 2
and yl with l 3 have index intervals starting above n0 C 1 since q > 0. Finally,

A.x1 / 2 1; 1/ a; b/. Hence, as readily follows from the long exact sequence,

HF.a;b/
n0 F / Š HF. 1; 1/

n0 F / Š Z2.
The fact that the monotone homotopy map ‰ is an isomorphism is established

in a similar fashion. Consider a monotone homotopy F s from FC to F indicated
by the arrow in Figure 1 and obtained by sliding the graph of F C to the left until
it matches the graph of F By the long exact sequence, HF.a;b/

n0 F s/ can change
only when action values of F s with index interval containing n0 1 or n0 or n0 C1
enter or leave the interval a; b/. This, however, never happens, as is clear from the
calculation of actions and index intervals for F ; see [GG2] for more details.

To complete the argument, it remains to prove Lemma 6.3.

6.3. Local Floer homology and the proofof Lemma6.3. WhenP isgeometrically
bounded and symplectically aspherical, the lemma is an immediate consequence of
the results of Poźniak, [Poz], and, in particular, of [Poz, Corollary 3.5.4]; see also

[GG2]and [BPS]. Moreover, Corollary 3.5.4 from [Poz] can be extended to a broader
class of manifolds to apply in the setting of Lemma 6.3. However, such an extension
is not entirely straightforward even though it is essentiallya consequence of Poźniak’s
calculation of local Lagrangian Floer homology for clean intersections, and we prefer
to give a simpler ad hoc proof.

6.3.1. Local Floer homology. In this section we briefly recall the construction of
local Floer homology for autonomous Hamiltonians, following [Fl5]; see also, e.g.,

[BPS], [Gi9], [Poz].
Consider an autonomous Hamiltonian F on a spherically rational symplectic

manifold P2n or, more generally, on an open subset of P invariant under the flow
of F Let † be a compact, connected set of fixed points of ' D '1

F
Then † is

automatically invariant under the flow of F and hence comprised entirely of
oneperiodic orbits of F In what follows, we will also assume that † is isolated, i.e.,
every fixed point of ' in some neighborhood of † an isolating neighborhood) is
necessarily a point of †.
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Fix an isolating neighborhood U of † and let Fz be a one-periodic in time perturbation

of F such that F Fz is C2-small and supported in U, and all one-periodic
orbits of Fz in U are non-degenerate. Let CFk.Fz; U/ be the vector space over Z2
generated by capped one-periodic orbits of Fz in U of index k. Note that we do
not require the cappings to be contained in U.) Furthermore, fix > 0 and a

one-periodic almost complex structure J on P, and define the Floer differential
@

W CFk.Fz;U/ CFk 1.Fz; U/ by the standard formula 5.1), where now all
Floer connecting trajectories are required to have energy smaller than

The standard argument shows that @2
D 0 whenever > 0 and kF FzkC2 are

0

small enough, and, moreover, the resulting local Floer homology spaces HF F;†/
are independent of > 0, Fz and J ; see [Fl5] and also, e.g., [BPS], [Gi9], [HS],
[McSa], [Poz], [Sa], [SZ]. To be more precise, here we need to require that <
0.U; J/ and kF FzkC2 < i0.U; J; / Then the Floer anti-gradient trajectories

connecting periodic orbits in U are confined to U due to the energy estimates from,
e.g., [SZ], [Sa]. Bubbling-off cannot occur, for < As a consequence, the
standard compactness and continuation arguments apply.)

Moreover, the complex CF Fz; U/ carries a natural action filtration see Section

5) and we denote the resulting filtered local Floer homology by HF a;b/ F;†/.
This homology spaces are well-defined only when the points a and b are outside the
action spectrum S.F;†/ of F j†. By definition, S.F;†/ is comprised of action
values of one-periodic orbits of F in † with all possible cappings. It is easy to see

that S.F;†/ has zero measure and is closed and nowhere dense since P is spherically

rational.) The filtered Floer homology is essentially “localized” at the points
of S.F;†/ and hence here, in contrast with the global case, the filtration plays a

rather superficial role. We will use it only to distinguish contributions from different
cappings of the same orbit.

Filtered local Floer homology inherits, in an obvious way, most of the properties
of ordinary filtered Floer homology. We will need the following standard invariance
result cf. [BPS], [Poz], [Gi9], [Vi]):

Let F s be a family of Hamiltonians continuously parametrized by s 2 OE0; 1
and such that † is an isolated set of periodic orbits for all F s. Let a.s/ < b.s/
be two continuous functions of s such that a.s/ and b.s/ are outside S.F s;†/.
Then the groups HF a.s/;b.s// Fs;†/ are isomorphic for all s.

Let us now turn to some examples which are relevant to the proof.

Example 6.4. Assume that P is symplectically aspherical and hence S.F;†/ is

comprised of one point c 2 R. Then HF a;b/ F;†/ D 0 when c is outside OEa; b
and HF a; b/ F;†/ D HF F;†/ if a < c < b. Assume furthermore that † is a

Morse–Bott non-degenerate manifold of fixed points of ', i.e., ker.d'p I/ D Tp†
for all p 2 †. Then HF F;†/ D H †IZ2/ as is proved in [Poz].
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Example 6.5. In this example, we assume that P2n satisfies condition b) in addition
to being spherically rational condition a)). Let † be a Morse–Bott non-degenerate

critical manifold of a smooth function F with, say, F j† D 0. Then † is an isolated
set of fixed points of ', and

HF.a;b/ F;†/ D H F/.†IZ2/; 6.1)

whenever † is a hypersurface or, more generally, a coisotropic submanifold) and

a; b/ is a short interval containing 0. Here F/ D n index.†/, where index.†/
is the index of F at †. Note that † is also a Morse–Bott non-degenerate manifold
of fixed points of ' since † is coisotropic. Thus, if P is symplectically aspherical,
the identification 6.1) becomes a particular case of Poźniak’s result mentioned in the
previous example.

To establish the general case of 6.1), we argue as follows. First note that

HF a;b/ sF; †/ does not change as s ranges from 1 to some small value s0 > 0
such that s0F is C2-small. Here, again we use the assumption that † is coisotropic
which guarantees that † is an isolated fixed point set for all s 2 .0; 1 Furthermore,
it is clear from a) and b) that the end points a and b are not in S.sF /, provided thata
and b are sufficiently close to zero.) Then, HF a;b/ s0F;†/ can be identified, up to a

shift of degreeby n, with the local Morse homology of F at† by arguing as in [FHS],

[HS], [SZ] and using again conditions a) and b); cf. [Gi9]. Alternatively, one can

utilize the PSS isomorphism, [PSS], not relying on b).) Finally, it is a standard fact
that the local Morse homology in question is equal to H †IZ2/, up to a shift of
degree by index.†/.

Under suitable additional hypotheses, the filtered local Floer homology of F is
equal to the filtered global Floer homology. Namely, let F and P and a; b/ be as

in Section 5. Assume that a; b/ contains only one point of S.F / and that this point
also belongs to S.F;†/. Then, as is easy to see,

HF.a; b/ F;†/ D HF.a;b/ F /: 6.2)

Remark 6.6. The construction of local Floer homology outlined above goes through
with obvious modifications even when F is not autonomous; see [Fl5] and, e.g.,

[BPS], [Poz]. The only reason that F is assumed here to be independent of time
is that this assumption makes the construction much more explicit, simplifies the
wording, and is sufficient for the proof of Lemma 6.3.

6.3.2. Proof of Lemma 6.3. Let F be one of the two functions F and let † D
f D zg, where z D xl or z D yl be one of the levels in question. Consider
the Hamiltonians F0. / D F.z/ C F 0.z/. z/ and f D F F0 defined on a

neighborhood of†. Then the hypersurface† is a Morse–Bott non-degenerate critical
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manifold of f and f j† D 0. By Example 6.5, HF 0; 0/ f;†/ D H f /.†IZ2/,
when 0; 0/ is a short interval containing 0.

Denote by c the action of F on † with respect to the fiber-wise capping, i.e.,
c D A.z/, and set D 0 C c and D 0 C c. We will show that

HF. ; / F;†/ D HF 0; 0/
0 f;†/ 6.3)

for some shift of degrees 0. This will prove the lemma, since then, due to 6.1) and

6.2),
HF. ; / F / D HF. ; / F;†/ D H †IZ2/;

where D 0 C f /. Note that c and 0 can be interpreted as the action and,
respectively, the Maslov index of the loop t generated by F0, cf. [Gi9, Sections 2.3
and 3.2].)

To establish 6.3), consider a perturbation fQ of f in a small neighborhood U
of † as in the construction of local Floer homology. Without loss of generality we
may assume that fQ is autonomous and all one-periodic orbits of fQ in U are critical
points of fQ and that all such critical points are located on †. Then these orbits

enter CF 0; 0/
fQ; U/ equipped with trivial cappings. For any other capping would

necessarily, by b), move the action outside the range 0; 0/. Let J D Jt be a
timedependent) almost complex structure. A Floer anti-gradient trajectory u connecting
two one-periodic orbits of fQ in U is a sphere. We are assuming that fQ is so close
to f that u is contained in U.) Since, by the definition of local Floer homology, the
energy of u is small and the values of fQ at its critical points are close to zero, the
symplectic area of u is small. Therefore, by a) and b),

h!;ui D 0 D hc1.TP/; ui: 6.4)

The Hamiltonian flow of F0 is a one-periodic loop t
D 'tF0 of fiber-wise

rotations and the Hamiltonian Fz D F0 C fQ B
t/ 1 generating the flow t

B ' t
fQ

is a small perturbation of F Denote by HF 0; 0/
fQ; U/ and HF ; / Fz; U/ the

homology of the complexes of CF 0; 0/
fQ; U/ and, respectively, CF ; /

Fz; U/. By
the definition of local Floer homology,

HF. 0; 0/
fQ; U/ D HF. 0; 0/ f;†/ and HF. ; / Fz; U/ D HF. ; / F;†/;

and 6.3) is equivalent to the isomorphism

HF. ; / Fz; U/ Š HF 0; 0/
0

fQ; U/: 6.5)

This isomorphism is induced by the composition with the loop t
Indeed, the composition with t gives rise to a one-to-one correspondence

between one-periodic orbits of fQ contained in U and those of Fz, and the latter are close
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to fiber-wise Hopf circles perhaps, multi-covered). Furthermore, as is well known,

u/.s; t/ WD
t u.s; t// is a Floer anti-gradient trajectory for Fz in U with respect

to the almost complex structure J / WD d t
B Jt B d t/ 1 if and only if u is a

Floer anti-gradient trajectory for fQ and J contained in U; see, e.g., [Gi9], [Schw].
Moreover, the regularity requirements are satisfied for fQ; J / if and only if they are

satisfied for Fz; J//.)
Let us equip the one-periodic orbits of Fz contained in U with fiber-wise cappings.

Fz; U/, as again followsThen these capped orbits are the only orbits entering CF ; /

from a) and b). Hence, to establish 6.5) and thus finish the proof of the lemma, it
is sufficient to show that the Floer connecting trajectories u/ are compatible with
such cappings. In other words, it remains to prove that whenever u/ is a Floer
anti-gradient trajectory from 0 to 1 and v0 and v1 are cappings of 0 and 1 by
fiber-wise Hopf discs perhaps, multi-covered), the capping v1 is equivalent to the
capping v0# u/ obtained by attaching v0 to u/. To this end, consider the sphere

w obtained by attaching the suitably oriented discs v0 and v1 to u/. The cappings
v0# u/ and v1 are equivalent if and only if

h!; wi D 0 D hc1.TP/; wi:
Let

W W M be the tubular neighborhood projection. Since v0 and v1 lie in the
fibers of the projections v0/ and v1/ are points. Hence, w/ is homotopic
to l u/, where l 2 Z, for t is comprised of fiber-wise rotations. Then, by 6.4),

hc1.TP/; wi D hc1.TPjM/; w/i D l hc1.TPjM/; u/i D l hc1.TP/; ui D 0:

A similar calculation, showing that h!;wi D 0, completes the proof of 6.5) and of
the lemma.

7. Proof of the main theorem

7.1. Proof of Theorem 1.1. When i) holds, the proof of the main theorem in the
general case is identical word-for-word to the proof for geometrically bounded,
symplectically aspherical manifolds Section 4) with Proposition 6.1 used in place of
Proposition 4.1.

To establish the theorem when ii) holds, we use, in addition to the Sturm
comparison theorem for K, the action bounds from Proposition 6.1 to control the effect
of capping on the Salamon–Zehnder invariant.

Fix small parametersr > 0and > 0with < r2=10 and consider a Hamiltonian

H as in Section 6.1. Recall that ii) implies that the hypotheses a) and b) of
Section 6.1 are satisfied. Then, as in Section 4, it readily follows fromProposition 6.1
that H has a non-trivial) one-periodic orbit with capping v such that

1 dimM D n0 dim P=2 v. ;H/ n0 Cdim P=2 D 1CcodimM 7.1)
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and

a AH. ; v/ b:

Recall that 0 < C.r/ < a < b < 2C.r/ and 0 H C.r/, where C.r/ 0 as

r 0. Hence, the symplectic area of v is a priori bounded:

Z
v

const; 7.2)

where const is independent of r and and the Hamiltonian H. Throughout the rest

of the proof we adopt the notational convention from Section 3: in all expressions
const will stand for a constant which is independent of r, H, and ; v/, provided
that r is sufficiently small. The value of this constant is allowed to vary from one

formula to another. A similar convention is also applied to the constants a > 0 and

b and c.)
As in Section 4, we may view as a T -periodic orbit of K since H is a function

of K and the orbit is non-trivial. Then, by 3.6),

l. / const r T: 7.3)

Fix a 2-form representing c1.TP/. By ii), D C d with ¤ 0, for
some 1-form Then

Z
v

Z
v

C Z ;

and, from 7.2) and 7.3), we see that

Z
v

const1 r T C const2: 7.4)

By Lemma 2.6, we have v. ; K/ D v. ; H/, where the negative sign is a

consequence of the fact that H is a decreasing function of K. Thus, 7.1) turns into

1 dimM v. ; K/ 1 C codim M;

and, by Proposition 3.2,

v. ; K/ a T c 2 Z
v

;

where a > 0. The negative sign is a result of the convention change from Section 3
to Section 4.) Therefore,

T
2

a
Z

v

c C 1 C codimM
a

:

Combining this upper bound with 7.4), we conclude that if r > 0 is sufficiently
small, T T0 for some T0 that depends only on K.
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Finally, as in the proof of the particular case, passing to the limit as 0, we
see that the T -periodic orbits of K converge, by the Arzela–Ascoli theorem, to a

periodic orbit of K on the level K D r2 with period bounded from above by T0. This
completes the proof of Theorem 1.1.

Remark 7.1. As is readily seen from the proofs of Theorem 1.1 and Proposition 6.1,

one can also estimate the action and the symplectic area of the orbit of K on the
level K D r2. Namely, let v be the capping of as in the proof of Theorem 1.1.
Then,

const1 r2 Z
v

const2 r2 and jAK. ;v/j const r2;

where all constants are positive and depend only on K. This follows from the facts

that const1 r2 C.r/ < const2 r2 with, perhaps, some other values of the constants
and that the period of is bounded from above.

7.2. Concluding remarks

7.2.1. Dense existenceof periodicorbits. Proposition 6.1canbe reformulated with
some loss of information) as a dense existence theorem for periodic orbits of K:

Proposition 7.2. Assume that P satisfies conditions a) and b) of Section 6.1. Then,
for a dense set of small r > 0, the level K D r2 carries a contractible in P periodic
orbit with capping v such that

1 codimM v. / dimM 1 and 0 < Z
v

< const r2;

where const depends only on K.

Referring the reader back to Section 1.3 for a discussion of other dense or almost
existence results, here we only point out that almost existence of contractible periodic
orbits of K without upper and lower bounds on v. / is proved in [Lu2] under no

topological assumptions on P. Proposition 7.2 is sufficient for the proof of Theorem

1.1 and can be easily established as a consequence of Proposition 6.1 by passing
from periodic orbits of H to those of K as in Sections 4 and 7.1.

7.2.2. The role of hypotheses i) and ii). As is mentioned in Section 1, hypotheses

i) and ii) in Theorem 1.1 can possibly be relaxed. Indeed, the Sturm theoretic
counterpart of the proof Proposition 3.2) requires no topological assumptions on P
or M. The Floer homological part of the argument Proposition 6.1) holds under
hypotheses a) and b), less restrictive than i) or ii), and can probably be extended
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to, at least, all spherically rational manifolds by using, for instance, the machinery
of central Floer homology from [Ke4]; see also [Al]. Furthermore, in the form of
Proposition 7.2, it can perhaps be generalized to arbitrary symplectic manifolds by
utilizing the holomorphic curve techniques as in, e.g., [Lu2]. However, it is not clear
to the authors how to combine these two counterparts to obtain an upper bound on
the period without using conditions i) or ii) or some other condition relating OE! and

c1.TP/.

7.2.3. Action control and “contact homology” approach. We conclude this paper

by discussing two approaches to proving Theorem 1.1, which are more natural than
the one used here but encounter a serious difficulty.

The key to the first approach lies in establishing an upper bound on the period of
an orbit of H via its action. Then, the theorem would follow directly from a version
of Proposition 6.1. This method has been used, for instance, to prove the Weinstein
conjecture for hypersurfaces of contact type) as a consequence of a calculation of
Floer or symplectic homology; see, e.g., [FHW], [HZ3] and [Gi7] for further
references. Here the condition that the level in question has contact type is crucial for
controlling the period of an orbit via its action. Thiscan be seen, for instance, from the
counterexamples to the Hamiltonian Seifert conjecture, [Gi4], [Gi5], [GG1], [GG2],
[Ke2]. In the setting of Theorem 1.1, the energy levels S D fK D r2g do not in
general have contact type with very few exceptions), and the authors are not aware

of any way to relate the period and the action in this case by merely using the fact
that S is fiber-wise convex.

The idea of the second approach is to make use of a version of the contact
homology group HC S/ defined for the level S and detecting closed characteristics
on S. Strictly speaking, no construction of HC applicable to the levels in question

is available at the moment.) Then, one would consider the continuation map
HC †C/ HC S/ HC † / where †C is a level of enclosing S and †
is a level of enclosed by S. As in the proof of Proposition 6.1, one can expect
this map to be non-zero, which would then yield HC S/ ¤ 0. This argument relies
on the assumption that the groups HC are sufficiently invariant under deformations
of the level. However, to the best of the authors’ understanding, to guarantee such
invariance, sufficient control of period via action is necessary as is indicated again
by the counterexamples to the Hamiltonian Seifert conjecture. Hence, this approach
encounters essentially the same problem as the first one.
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