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Periodic orbits of twisted geodesic flows and the Weinstein—-Moser
theorem

Viktor L. Ginzburg and Bagsak Z. Giirel*

Abstract. In this paper, we establish the existence of periodic orbits of a twisted geodesic flow
on all low energy levels and in all dimensions whenever the magnetic field form is symplectic
and spherically rational. This is a consequence of a more general theorem concerning periodic
orbits of autonomous Hamiltonian flows near Morse—Bott non-degenerate, symplectic extrema.
Namely, we show that all energy levels near such extrema carry periodic orbits, provided that the
ambient manifold meets certain topological requirements. This result is a partial generalization
of the Weinstein—Moser theorem. The proof of the generalized Weinstein—Moser theorem is a
combination of a Sturm-theoretic argument and a Floer homology calculation.

Mathematics Subject Classification (2000). 53D40, 37110, 37145.
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1. Introduction and main results

In the early 1980s, V.I. Arnold proved, as a consequence of the Conley—Zehnder
theorem, [CZ1], the existence of periodic orbits of a twisted geodesic flow on T2
with symplectic magnetic field for all energy levels when the metric 1s flat and low
energy levels for an arbitrary metric, [Ar2]. Arnold’s result initiated an extensive
study of the existence problem for periodic orbits of general twisted geodesic flows via
Hamiltonian dynamical systems methods and in the context of symplectic topology,
mainly focusing on low energy levels. (A brief and admittedly incomplete survey of
some related work is provided in Section 1.3.)

In the present paper, we establish the existence of periodic orbits of a twisted
geodesic flow on all low energy levels and in all dimensions whenever the magnetic
field form 1s symplectic and spherically rational. An essential point 1s that, in con-
trast with other results of this type, we do not require any compatibility conditions
on the Hamiltonian and the magnetic field. In fact, we prove a more general theorem

*The work is partially supported by the NSF and by the faculty research funds of the University of California,
Santa Cruz.
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concerning periodic orbits of autonomous Hamiltonian flows near Morse-Bott non-
degenerate, symplectic extrema. Namely, we show that all energy levels near such
extrema carry periodic orbits, provided that the ambient manifold meets certain topo-
logical requirements. This result is a (partial) generalization of the Weinstein—Moser
theorem, [Mo], [Wel], asserting that a certain number of distinct periodic orbits exist
on every energy level near a non-degenerate extremum. The proof of the generalized
Weinstein—Moser theorem is a combination of a Sturm-theoretic argument utilizing
convexity of the Hamiltonian in the direction normal to the critical submanifold and
of a Floer-homological calculation that guarantees “dense existence” of periodic or-
bits with certain index. The existence of periodic orbits for a twisted geodesic flow
with symplectic magnetic field is then an immediate consequence of the generalized
Weinstein—Moser theorem. The results proved in this paper are announced in [GG3].

1.1. The generalized Weinstein—-Moser theorem. Throughout the paper, M will
stand for a closed symplectic submanifold of a symplectic manifold (P, ). We
denote by [w] the cohomology class of w and by ¢ (T'P) the first Chern class of P
equipped with an almost complex structure compatible with «. The integrals of these
classes over a 2-cycle u will be denoted by {w, u) and, respectively, (c1(T P}, u).
Recall also that P is said to be spherically rational if the integrals (@, u) over all
u € mwa(P) are commensurate, i.e., Ap = inf{|{w,u)| | ¥ € m(P)} > 0 or,
equivalently, {w, m2(P)) is a discrete subgroup of R.
The key result of the paper is

Theorem 1.1 (Generalized Weinstein—Moser theorem). Let K: P — R be a smooth
function on a symplectic manifold (P, w), which attains its minimum K = 0 along a
closed symplectic submanifold M C P. Assume in addition that the critical set M
is Morse—Bott non-degenerate and one of the following cohomological conditions is
satisfied:

(1) M is spherically rational and ¢ (TP) = 0, or
(i) c1(TP) = Alw] for some A # 0.
Then for every sufficiently small r*> > 0 the level K = r? carries a contractible in

P periodic orbit of the Hamiltonian flow of K with period bounded from above by a
constant independent of r.

When M 1is a point, Theorem 1.1 turns into the Weinstein—-Moser theorem (see
[Wel] and [Mo]) on the existence of periodic orbits near a non-degenerate extremum,
albeit without the lower bound dim P /2 on the number of periodic orbits.

Remark 1.2. The assertion of the theorem is local and concerns only a neighbor-
hood of M in P. Hence, in (i) and (ii), we can replace ¢1(TP) by c1(TP|py) =
ci(TM) + ci(TM™) and [w] by [w|p]. Also note that in (ii) we do not require A
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to be positive, i.e., M need not be monotone. (However, this condition does im-
ply that M is spherically rational.) We also emphasize that we do need condi-
tions (i) and (ii) in their entirety — the weaker requirements c1(7P)|z,py = 0 or
c1(TP) |z, Py = Al®]|z,(p), common in symplectic topology, are not sufficient for
the proof.

Although conditions (1) and (i1) enter our argument in an essential way, their role 18
probably technical (see Section 7.2), and one may expect the assertion of the theorem
to hold without any cohomological restrictions on P.! For instance, this is the case
whenever codim M = 2; see [Gi2]. Furthermore, when codim M > 2 the theorem
holds without (i) and (ii}, provided that the normal direction Hessian d Ale and w
meet a certain geometrical compatibility requirement; [GK1], [GK2], [Kel]. On
the other hand, the condition that the extremum M 1s Morse—Bott non-degenerate 18
essential; see [GG2].

1.2. Periodic orbits of twisted geodesic flows. Let M be a closed Riemannian
manifold and let o be a closed 2-formon M . Equip T M with the twisted symplectic
structure w = wqy + 770, where wy is the standard symplectic form on 7*M and
m: T*M — M is the natural projection. Denote by K the standard kinetic energy
Hamiltonian on 7* M corresponding to a Riemannian metric on M . The Hamiltonian
flow of K on T*M describes the motion of a charge on M in the magnetic field o and
is referred to as a magnetic or twisted geodesic flow; see, e.g., [Gi3] and references
therein for more details. Clearly, ¢, (T(T*M)) = 0, for T* M admits a Lagrangian
distribution (e.g., formed by spaces tangent to the fibers of 7), and M is a Morse—
Bott non-degenerate minimum of K. Furthermore, M is a symplectic submanifold
of T*M when the form o symplectic. Hence, as an immediate application of case (i)
of Theorem 1.1, we obtain

Theorem 1.3. Assume that o is symplectic and spherically rational. Then for every
sufficiently small ¥> > O the level K = r? carries a contractible in T* M periodic
orbit of the twisted geodesic flow with period bounded from above by a constant
independent of r.

Remark 1.4. The proof of Theorem 1.1 is particularly transparent when P is geomet-
rically bounded and symplectically aspherical (i.e., w|z,(py = 0 = c1(TP)|r,(P)).
This particular case is treated in Section 4, preceding the proof of the general case.
The twisted cotangent bundle (7* M, w) is gecometrically bounded; see [AL], [CGK],
[Lul]. Furthermore, (T* M, w) is symplectically aspherical if and only if (M, o) is
weakly exact (i.e., |z, p) = 0).

Note also that, as the example of the horocycle flow shows, a twisted geodesic
flow with symplectic magnetic field need not have periodic orbits on all energy levels;

1Added in the proofs: The rationality requirement in (i) was recently eliminated by Usher, [Us].
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see, e.2., [CMP], [Gi13] for a detailed discussion of this example and of the resulting
transition in the dynamics from low to high energy levels. Similar examples also
exist for twisted geodesic flows in dimensions greater than two, [Gid, Section 4.

1.3. Related results. To the best of the authors’ knowledge, the existence problem
for periodic orbits of a charge in a magnetic field was first addressed by V.I. Amold
in the early 1980s; [Ar2], [Ko]. Namely, V. 1. Arnold established the existence of at
least three periodic orbits of a twisted geodesic flow on M = T2 with symplectic
magnetic field for all energy levels when the meitric is flat and low energy levels for an
arbitrary metric. (It is still unknown if the second of these results can be extended (o
all energy levels.) Since then the question has been extensively investigated. It was
interpreted (for a symplectic magnetic field) as a particular case of the generalized
Weinstein—Moser theorem in [Kel]. Referring the reader to [Gi13], [Gi6], [Gi7] for
a detailed review and further references, we mention here only some of the results
most relevant to Theorems 1.1 and 1.3.

The problems of almost existence and dense existence of periodic orbits concern
the existence of periodic orbits on almost all energy levels and, respectively, on a
dense set of levels. In the setting of the generalized Weinstein—Moser theorem or
of twisted geodesic flows, these problems are studied for low energy levels in, e.g.,
[CGK], [Co], [CIPP], [FS], [GG2], [Gii], [Ke3], [Ma], [Lul], [Lu2], [Sc], following
the original work of Hofer and Zehnder and of Struwe, [FHW], [HZ1], [HZ2], [HZ3],
[St]. In particular, almost existence for periodic orbits near a symplectic extremum
18 established in [Lu2] under no restrictions on the ambient manifold 2. When P i1s
geometrically bounded and (stably) strongly semi-positive, almost existence is proved
for almost all low energy levels in [Gii] under the assumption that @ |3 does not vanish
at any point, and in [Sc] when M has middle-dimension and w|ps # 0. These results
do notrequire the extremum M to be Morse—Bott non-degenerate. Very strong almost
existence results (not restricted to low energy levels) for twisted geodesic flows with
exact magnetic fields and also for more general Lagrangian systems are obtained in
[Co], [CIPP]. The dense or almost existence results established in [CGK], [GG2],
[Ke3] follow from Theorem 1.1. However, the proof of Theorem 1.1 relies on the
almost existence theorem from [GG2] or, more precisely, on the underlying Floer
homological calculation.

As 1s pointed out in Section 1.1, in the setting of the generalized Weinstein—Moser
theorem without requirements (i) and (i1), every low energy level carries a periodic
orbit whenever codim M = 2 or provided that the normal direction Hessian 1\24K
and @ meet certain geometrical compatibility conditions, which are automatically
satisfied when codim M = 2 or M 1s a point; see [Gil], [Gi2], [GK1], [GK2], [Kel],
[Mo], [Wel] and references therein. Moreover, under these conditions, non-trivial
lower bounds on the number of distinct periodic orbits have also been obtained. The
question of existence of periodic orbits of twisted geodesic flows on (low) energy



Vol. 84 (2009) Weinstein—Moser theorem 869

levels for magnetic fields on surfaces is studied in, e.g., [No], [NT], [Tal], [Ta2] in
the context of Morse—Novikov theory; see also [Co], [CIPP], [CMP], [Gi6] for further
references. (In general, this approach requires no non-degeneracy condition on the
magnetic field.) For twisted geodesic flows on surfaces with exact magnetic fields,
existence of periodic orbits on all energy levels is proved in [CMP].

1.4. Infinitely many periodic orbits. The multiplicity results from [Ar2], [Gil],
[Gi2], [GK1], [GK2], [Kel] rely (implicitly in some instances) on the count of “short”
periodic orbits of the Hamiltonian flow on K = r?. The resulting lower bounds on the
number of periodic orbits can be viewed as a “crossing-over” between the Weinstein—
Moser type lower bounds in the normal direction to M and the Arnold conjecture
type lower bounds along M. This approach encounters serious technical difficulties
unless w and d ]‘24 K meet some geometrical compatibility requirements, for otherwise
even identifying the class of short orbits is problematic.

However, looking at the question from the perspective of the Conley conjecture
(see [FrHal, [G19], [Hi], [SZ]) rather than of the Arnold conjecture, one can expect
every low level of K to carry infinitely many periodic orbits (not necessarily short),
provided thatdim M > 2 and M is symplectically aspherical. An indication that this
may indeed be the case is given by

Proposition 1.5. Assume that M is symplectically aspherical and not a point, and
codim M = 2 and the normal bundle to M in P is trivial. Then every level K = r?,
where r > 0 is sufficiently small, carries infinitely many distinct, contractible in P
periodic orbits of K.

This proposition does not rely on Theorem 1.1 and is an immediate consequence
of the results of [Ar2], [Gil] and the Conley conjecture; see [Gi9] and also [FH],
[Hi], [SZ]. For the sake of completeness, a detailed argument is given in Section 4.4,
In a similar vein, in the setting of Theorem 1.3 with M = T2 and K arising from
a flat metric, the level K = r? carries infinitely many periodic orbits for every (not
necessarily small) » > 0.

1.5. Outline of the proof of Theorem 1.1 and the organization of the paper. The
proof of Theorem 1.1 hinges on an interplay of two counterparts: a version of the
Sturm comparison theorem and a Floer homological calculation. Namely, on the
one hand, a Floer homological calculation along the lines of [GG2] guarantees that
almost all low energy levels of K carry periodic orbits with Conley—Z¢hnder index
depending only on the dimensions of P and M. On the other hand, since the levels of
K are fiber-wise convex in a tubular neighborhood of M, a Sturm theoretic argument
ensures that periodic orbits with large period must also have large index. (Strictly
speaking, the orbits in question are degenerate and the Conley—Z¢chnder index 1s not
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defined. Hence, we work with the mean index, referred to in what follows as the
Salamon—Zehnder invariant A, [SZ], but the Robin—Salamon index, [RS], could be
utilized as well.) Thus, the orbits detected by Floer homology have period a priori
bounded from above and the existence of periodic orbits on all levels follows from
the Arzela—Ascoli theorem.

The paper 1s organized as follows. In Section 2, we recall the definition and
basic properties of the Salamon—Zehnder invariant A and also prove a version of
the Sturm comparison theorem giving a lower bound for the growth of A in linear
systems with positive definite Hamiltonians. This lower bound is extended to periodic
orbits of K near M in Propositions 3.1 and 3.2 of Section 3, providing the Sturm-
theoretic counterpart of the proof of Theorem 1.1, In Section 4, we prove Theorem 1.1
under the additional assumptions that P 1s geometrically bounded and symplectically
aspherical. In this case, clearly illustrating the interplay between Sturm theory and
Floer homology, we can directly make use of a Floer homological calculation from
[GG2]. Tuming to the general case, we define in Section 5 a version of filtered Floer
(or rather Floer—Novikov) homology of compactly supported Hamiltonians on open
manifolds. The relevant part of the calculation from [G(G2] 1s extended to the general
setting in Section 6. The proof of Theorem 1.1 is completed in Section 7 where
we also discuss some other approaches to the problem. Proposition 1.5 1s proved in
Section 4.4,

Acknowledgements. The authors are deeply grateful to Michael Entov, Fly Kerman,
Leonid Polterovich, and Felix Schlenk for valuable discussions and suggestions.

2. The Salamon-Zehnder invariant A

In this section we briefly review the properties of the invariant A, a continuous version
of the Conley—Zehnder index introduced in [SZ], used in the proof of Theorem 1.1.

2.1. Linear algebra. let (V,w) be a symplectic vector space. Throughout this
paper we denote the group of lincar symplectic transformations of V' by Sp(V, w)
or simply Sp(V') when the form  is clear from the context. Moreover, if V' is also
equipped with a complex structure J we will use the notation U(V, @, J) or just U(V)
for the group of unitary transformations, i.e., transformations preserving J and w.
For A € U(V) we denote by detc A € S the complex determinant of A.

Salamon and Zehnder, [SZ], proved that there exists a unique collection of con-
tinuous maps p: Sp(V,w) — S! C C, where (V,w) ranges through all finite-
dimensional symplectic vector spaces, with the following properties:

* For any A € Sp(V,®) and any linear isomorphism B: W — V, we have
p(B7YAB) = p(A). (Note that B~'AB € Sp(W, B*w).) In particular, p is
conjugation invariant on Sp(V, w).
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» Whenever A; € Sp(V1,w;) and A € Sp(V, w3), we have p(A; x Ay) =
p(A1)p(A2), where A1 x A, is viewed as a symplectic transformation of (V] x
15, w1 X w3).

 For A € U(V,w, J), we have p(A) = detc A.
» For A without eigenvalues on the unit circle, p(A4) = £1.

Note that p(A) is completely determined by the eigenvalues of A together with
a certain “ordering” of eigenvalues, and in fact only the eigenvalues of A on the
unit circle matter. It is also worth emphasizing that p is not smooth on Sp(V').
Furthermore, although in general p(AB) # p(A)p(B), we have

p(A%) = p(A)
for all k € Z. In particular, p(A™1) = p(A).

2.2. The Salamon—-Zehnder quasi-morphism A

2.2.1. Definition and basic properties. In this section we recall the definition and
basic properties of the Salamon—Zehnder invariant A following closely [SZ]. Let
®: [a, b] — Sp(V') be a continuous path. Pick a continuous function A: [a, b] — R
such that p(®(1)) = ¢*®) and set

A(P) = Ab) —4@) e R.

i
It is clear that A(®) is independent of the choice of A and that geometrically A(®P)
measures the total angle swept by p(®(r)) as r varies from a to b. Note also that we
do not require ®(a) to be the identity transformation.

As an immediate consequence of the definition, A(®}) is an invariant of homotopy
of ® with fixed end-points. In particular, A gives rise to a continuous map §f)(V) —
R, where §13(V) is the universal covering of Sp(1). Furthermore, A(®) is an invariant
of (orientation preserving) reparametrizations of ®. On the other hand, let ®™ be the
path @ traversed in the opposite direction. Then

A(D™) = A1) = —A(P).

Finally, A is additive with respect to concatenation of paths. More explicitly, assume
that @ < ¢ < b. Then, in obvious notation,

A(D|(4,5]) = A(P[4,c]) + A(D|¢, 57)-

From conjugation invariance of p, we see that A(W~1dW) = A(D) for any two
continuous paths ® and ¥ in Sp(V'). Moreover, when B: W — V is a symplectic
transformation,

A(B™1®B) = A(®D). (2.1)
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Finally, assume that ®(0) = [ and ®(7")—1 is non-degenerate. (Here ®: [0, 7] —
Sp(V').) Then the Conley—Zehnder index j1cz{®) is defined (see [CZ2] and also, e.g.,
[Sa], [SZ]) and, as is shown in [SZ],

1z (®) — A(P)] < dim V/2. 2.2)

We refer the reader to [SZ] for proofs of these facts and for a more detailed
discussion of the invariant A.

2.2.2. The quasi-morphism property. One additional property of A important for
the proof of Theorem 1.1 is that A: Sp(V) — R is a quasi-morphism, i.c., for any
two elements ® and W in Sp(V'), we have

AP D) — A(W) — A(D)| = C, (23)

where the constant C' > 0 1s independent of ¥ and ®.

To simplify the notation, throughout the rest of this section we will denote by C
a positive constant depending only on dim V' — as is the case in (2.3). However, C
may assume different values in different formulas.

With this convention in mind, (2.3) is easily seen to be equivalent (o that

IA(ADP) — A(DP)| < C (2.4)

for any continuous path ® in Sp(V'), not necessarily originating at the identity, and
for any A € Sp(V').

The quasi-morphism property (2.3) is well known to hold for several other maps
§f)(V) — R which are similar to A (see [BG]) and can be established for A in a
number of ways as a consequence of the quasi-morphism property for one of these
maps.

For instance, recall that every A € Sp(V) can be uniquely represented as a
product A = QU, where U is unitary (with respect to a fixed complex structure
compatible with w) and @ is symmetric and positive definite. (This is the so-called
polar decomposition.) Set p(A) = detc U and define A in the same way as A, but
with g in place of p. (In contrast with p and A, the maps p and A depend on the
choice of complex structure.) It is known that the map A: Sp(V) — R is a quasi-
morphism; see [Du] and also [BG] for further references. Furthermore, as is shown
in [BG, Section C-2], A(®) = limg_,oc A(PF)/k for ® € Sp(V). Now it is easy to
see that (2.3) holds for A since it holds for A.

Remark 2.1. Alternatively, to prove (2.3), one can first show that IA—A|l < C
on Sp(V) and then use again the fact that Ais a quasi-morphism. (This argument
was communicated to us by M. Entov and L. Polterovich, [EP1].) In fact, once
the inequality |A — A| < C is established, it is not hard to prove directly that
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both maps A and A are quasi-morphisms by using the polar decomposition and
“alternating” between these two maps. The only step which is, perhaps, not immediate
is that (2.4) holds for A when 4 and ® are both symmetric and positive definite.
This, however, follows from the elementary fact that in this case the eigenvalues of
A®(t) are real for all ¢ (even though AP(r) is not necessarily symmetric), and hence
A(A®) = A(®) = 0.

Remark 2.2. It is worth mentioning that any Maslov type quasi-morphism on Sp(V)
(see, e.g., [BG], [EP2], [RS], [SZ]) can be used in the proof of Theorem 1.1. The
only features of a quasi-morphism essential for the argument are the normalization
(behavior on U(1)) and the Sturm comparison theorem (Proposition 2.3 below). The
latter obviously holds for any of these quasi-morphisms, once it is established for one,
for the difference between any two such quasi-morphisms 1s bounded. The properties
that set A apart from other quasi-morphisms are that A is continuous and conjugation
invariant and homogeneous (i.e., A(®*) = kA(P); see [SZ]). These facts, although
used in the proof for the sake of simplicity, are not really crucial for the argument.

2.3. Sturm comparison theorem. A time-dependent, quadratic Hamiltonian H(r)
on (V, @) generates a linear time-dependent flow @z () € Sp(V) via the Hamilton
equation. (By definition, a quadratic Hamiltonian on V' is a time-dependent quadratic
form.) Once V is identified with R?" = C" and quadratic forms are identified with
symmetric matrices, this equation takes the form

Sy = JH()®n (1),

where J 1s the standard complex structure. We say that Hy > Hy when Hy — Hy 1s
positive semi-definite, 1.e., H; — Hy 18 a non-negative function on V. Likewise, we
write Hy — Hy > 01f H{ — Hj 1s positive definite.

Proposition 2.3 (Sturm Comparison Theorem). Assume that Hy > Hy for all t.
Then
A(®q) = A(®ga,) - C

as functions of t.

This result is yet another version of the comparison theorem in (symplectic) Sturm
theory, similar to those established in, ¢.g., [Arl], [Bo], [Ed]. The proposition can
be easily verified by combining the construction of the generalized Maslov index,
[RS], with the Amold comparison theorem, [Arl], and utilizing (2.2). For the sake
of completeness, we give a detailed proof.

Proof. Due to continuity of A, by perturbing H; and Hy if necessary, we may assume
without loss of generality that H1; — Hy > 0O for all z. Furthermore, by the quasi-
morphism property (2.4), we may also assume that ® g4, (0) = $ g, (0).
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Set Hy = (1 —s)Hy + sH; and let ©,(r) stand for the flow of H with the initial
condition ®4(0) independent of s. Thus

b, = JH,D,. (2.5)

Fix T > 0. The path ®;(¢) with ¢ € [0, T] is homotopic to the concatenation of
®y(1) and the path W(s) = O4(T'), s € [0, 1]. Hence, it suffices to show that

A(L) > —C. (2.6)

Denote by K (r) the quadratic Hamiltonian generating the family s — ®;(r) for
a fixed time ¢ € [0, T']. To establish (2.6}, let us first show that K (T) > O for all
s € [0, 1]. Using continuity of A as above, we may assume without loss of generality
that K(r) degenerates only for a finite collection of points 0 = 15 < t; < -+ <
t < T. It is well known that the positive inertia index of K (¢) increases as ¢ goes
through #; provided that the restriction of K, (t;) to ker K, (1;) is positive definite; see
e.2., [Arl]. Linearizing the Hamilton equation (2.5) with respect to s, we obtain by
a simple calculation that . .

Ky = Hs + {Ksa HS}:

where {K;, Hy} = H,JK; — Ky JH; (the Poisson bracket). The quadratic form
{ K, Hg}(1;) vanishes on ker Kg(t;) since ({ K, Hgtx, x) = =2 (Ksx, JHx). Fur-
thermore, Hs = H{— Hy > 0onV and, as a consequence, KS (1;) is positive definite
on ker K;(#;). Finally, K;(0) = 0, for ®;(0) is independent of s, and we conclude
that K4(¢) > Oforall s € [0, 1] and all ¢t € (0, T] and, in particular, forr = T,

Returning to the proof of (2.6), set U(s) = W(s)W(0)~!. This family is again
generated by K(7'), but now the initial condition is W(0) = I. Due to the quasi-
morphism property (2.4), it suffices to prove that A(¥) > —C. We will show that
A(¥) > 0. As above, by continuity, we may assume that / — U (s) degenerates only
for a finite collection of points 0 = sy < sq < -+ < 57 < 1. (In particular, I — ¥(1)
1s non-degenerate.) Then ez (W) is defined and, as is proved in [RS],

ez (U = % sign(Ko(T)) + Y _sign (K, (T)|w;).

where V; = ker(l — ‘T’s,- (T'}) and sign denotes the signature of a quadratic form.
Since, K, (T) > 0 for all s, we see that jicz(¥) > n and, by (2.2), A(¥) > 0. This
completes the proof of (2.6) and the proot of the proposition. [

Example 2.4. Let H(¢) be a quadratic Hamiltonian on R?” such that H(¢)(X) >
|| X ||? for all £, where || X || stands for the standard Euclidean norm of X € R?" and
o 18 a constant. Then, for all ¢,

A(Py) = 2na-t —C.
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More generally, let H(¢) be a quadratic Hamiltonian on R?"1 x R2"2 guch that
HO (X, Y)) = of| X||*> = B||Y]||? for all ¢, where X € R?"! and ¥ € R?*"2 and «
and f are constants. Then

A(®g) = 2(n1a—naf)t —C.
These inequalities readily follow from Proposition 2.3 by a direct calculation.

2.4. The Salamon-Zehnder invariant for integral curves.

2.4.1. Definitions. Lety: [0, T] — P be anintegral curve of the Hamiltonian flow
¢y of a time-dependent Hamiltonian H = H, on a symplectic manifold P. Let
also & be a symplectic trivialization of 7P along y, i.e., £(¢) is a symplectic basis
in 7)(»n P depending smoothly or continuously on ¢. The trivialization £ gives rise
to a symplectic identification of the tangent spaces T P with 7)) P, and hence
the linearization of ¢4, along y can be viewed as a family ®(r) € Sp(T, ) P). We
set Ag(y) := A(®P). This is the Salamon—Zehnder invariant of y with respect to &.
Clearly, Ag(y) depends on §.

Assume now that y is a contractible 7 -periodic orbit of /. Recall that a capping
of v is an extension of y to amap v: D? — P. A capping gives rise to a symplectic
trivialization of 7P along v and hence along y, unique up to homotopy, and we
denote by A, (y) the Salamon—Zehnder invariant of y evaluated with respect to this
trivialization. Note that A, (y) is determined entirely by the homotopy class of v and
itis well known that adding a sphere w € m,(P) to v results in the Salamon—Zehnder
invariant changing by —2 [ ¢(TP). In particular, A(y) := A, (y) is independent
of v whenever ¢ (T P)|z,p) = 0.

When y is non-degenerate, 1.¢., d@}; : Ty P — T,y P does not have one as
an eigenvalue, the Conley—Zehnder index pcz(y) is defined as pucz(®) in the same
way as A(y) by using a trivialization along y; see [CZ2], [Sa], [SZ]. Then inequality
(2.2) relating A and pcz turns into

litcz(y) — A(y)| < dim P/2. 2.7)

Note that in general ticy () depends on the choice of trivialization along y. Thus, in
(2.7) we assumed that both invariants are taken with respect to the same trivialization,
e.g., with respect to the same capping, unless ¢1(7'F)|z,(p) = 0 and the choice of
capping is immaterial for either invariant; see, e.2., [Sa]. When the choice of capping
v 18 essential, we will use the notation A, (y) and pcz(y, v).

Example 2.5. Let K: R?” — R be a convex autonomous Hamiltonian such that
d?K > « -1 at all points, where « is a constant. Then, as is easy to see from
Example 2.4, A(y) > 2na - T — C for any integral curve y: [0, T] — R2". Note
that here A(y) is evaluated with respect to the standard Euclidean trivialization and
we are not assuming that the curve y is closed.
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2.4.2. Change of the Hamiltonian. Consider two autonomous Hamiltonians H
and K on a symplectic manifold P such that # is an increasing function of K, i.e.,
H = foK,where f: R — R is anincreasing function. Let y be a periodic orbit of
K lying on an energy level, which is regular for both K and H. Then y can also be
viewed, up (o a change of time, as a periodic orbit of /7. Fixing a trivialization of 7P
along v, we have the Salamon—Zchnder invariants, A(y, K) and A(y, H) of y defined
for the flows of K and H . The following result, used in the proof of Theorem 1.1, is
nearly obvious:

Lemma 2.6. Under the above assumptions, A(y, K) = A(y, H).

Proof. Set Hy = (1—s5)K+sH ,wheres € [0, 1]. These Hamiltonians are functions
of Hy = K and the level containing y is regular for each H,. Furthermore, after
multiplying K and H by positive constants, we may assume that y has period equal
to one for all H;. Denote by ®4(¢) the linearization of the flow (pqu of Hy along y
interpreted, using the trivialization, as a path in Sp(T; P), where z = y(0). Clearly,

Ay, K) = A(®o) and Ay, H) = A(Dy).

The path &4 (¢) is homotopic to the concatenation of ®y(r) and the path ¥(s) =
®,(1). Hence,
A1) = A(Do) + A(Y),

and it is sufficient to show that A(¥) = 0. To this end, we will prove that all maps
W(s) = (d go}j,s)z: T. P — T P have the same eigenvalues.

Note that for all s the maps W (s) are symplectic and preserve the hyperplane £
tangent to the energy level through z. The eigenvalues of W(s) are those of W (s)|g
and the eigenvalue one corresponding to the normal direction to £. Furthermore, all
maps W also preserve the one-dimensional space E® spanned by »’(0) and are equal
to the identity on this space. The quotient £/E® can be identified with the space
normal to y’(0) in E and the map ¥(s): E/E® — E/E® induced by V(s)|g is
the linearized return map along y in the energy level containing y. Thus, this map
is independent of s. As a consequence, the maps W(s)| g, and hence W(s), have the
same eigenvalues for all s € [0, 1]. O

3. Sturm comparison theorems for periodic orbits near Morse-Bott
non-degenerate symplectic extrema

3.1. Growth of A. Let, as in Theorem 1.1, K: P — R be an autonomous Hamil-
tonian attaining its Morse—Bott non-degenerate minimum K = 0 along a closed
symplectic submanifold M C P. The key to the proof of Theorem 1.1 1s the fol-
lowing result, generalizing Example 2.5, which is essentially a version of the Sturm
comparison theorem for K:
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Proposition 3.1. Assume that ¢((TP) = 0. Then there exist constants a > 0 and ¢
and ro > 0 such that, whenever O < r < ry,

Aly) =a-T—c (3.1)
for every contractible T-periodic orbit y of K on the level K = r2.

Along with this proposition, we also establish a lower bound on A(y) that holds
without the assumption that ¢1 (T P) = 0. Fix a closed 2-form ¢ with [6] = ¢1(TP).
For instance, we can take as o the Chern—Weil form representing ¢ with respect to
a Hermitian connection on 7' P. In the notation of Section 2.4.1, we have

Proposition 3.2. There exist constants a > 0 and ¢ and ro > 0 such that, whenever
0<r <ry,
Av(y)za-T—c—2fa (3.2)

v

for every contractible T-periodic orbit v of K on the level K = r? with capping v.

3.2. Proof of Propositions 3.1 and 3.2. The idea of the proof is that the fiber
contribution to A(y) is of order T and positive, while the base contribution is of
order r - T'. 1t will be convenient to prove a superficially more general form of (3.1)
and (3.2). Namely, we will show that

Aly)=(a—b-r)T —c (3.3)

and
Av()/)z(a—b-r)T—c—2fo (3.4)

v

for some constants @ > 0 and » and ¢, when r > 0 is small. This implies (3.1) and
(3.2) with perhaps a slightly smaller value of «.

Throughout the rest of this section we adopt the following notational convention:
in all expressions ‘const’ stands for a constant which is independent of r and y and
T, once r 1s sufficiently small. The value of this constant (immaterial for the proof)
is allowed to vary from one formula to another. A similar convention 1s also applied
to the constants @ > 0 and b and c.

3.2.1. Particular case: an integral curve in a Darboux chart. Before turning to
the general case, let us prove (3.3) for an integral curve y of K contained in a Darboux
chart. Let U C M be a contractible Darboux chart. The inclusion /' < M can be
extended to a symplectic embedding of an open set U x V' < P, where V 1s a ball
(centered at the origin) in a symplectic vector space and U x V carries the product
symplectic structure. In what follows, we identify U x V' with its image in P and U
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with U x 0. Note that then T, oy(x x V'), where x € U, is the symplectic orthogonal
complement (Tx M )* to Ty M .

Let y: [0, T] — U x V be an integral curve of the flow of K on an energy
level K = r2. We emphasize that at this stage we do not require ¥ (o be closed,
but we do require it to be entirely contained in U x V. The coordinate system in
U x V gives rise to a symplectic trivialization of 7P along y and we denote by A(y)
the Salamon—Zehnder invariant of the linearized flow along y with respect to this
trivialization; see Section 2.4.1.

Next we claim that (3.3) holds for such an integral curve vy with all constants
independent of y.

Indeed, the linearized flow of K along y is given by the quadratic Hamiltonian
equal (o the Hessian d 2 K () evaluated with respect to the coordinate system. On the
other hand, since M is a critical manifold of K and d?K is positive definite in the
direction normal to M, we have

A*K )X, Y)Y = a|| V|2 =b-r| X2 (3.5)

Here (x,y) e U x Vand X € T, U and Y € T,V and r? = K(x, y). Note that the
constants @ > 0 and » depend on K and the coordinate chart U x V', but not on y
and . The lower bound (3.3) (with values of a and & different from those in (3.5))
tollows now from the comparison theorem (Proposition 2.3) and Example 2.4; cf.
Example 2.5.

3.2.2. Length estimate. Fix an almost complex structure J on P compatible with
@ and such that M is an almost complex submanifold of P,ie., J(TM) = TM.
The pair J and w gives rise to a Hermitian metric on the complex vector bundle
TP — P. We denote by /(y) the length of a smooth curve y in P with respect to
this metric. Furthermore, there exists a unique Hermitian connection on 7P, 1.e., a
unique connection such that parallel transport preserves the metric and J, and hence,
. (Note that, unless J is integrable, this connection is different from the Levi—Civita
connection. )

Lety: [0, T] — P be an integral curve of K (not necessarily closed) on the level
K = r2. Then, since M is a critical manifold of K, we have

[{y) <const-r-T. (3.6)

As the first application of (3.6), observe that Proposition 3.1 is a consequence
of Proposition 3.2, i.e., (3.4) implies (3.3). Indeed, assume that ¢1(7TP) = 0, i.e.,
o = do for some 1-form « on P. Then, by Stokes’ formula and (3.6),

e

= ‘[a‘ < const - ||| co-r- T,
¥
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which, combined with (3.4), implies (3.3).

Before proceeding with a detailed proof of (3.4), letus briefly outline the argument.
We will cover a closed T -periodic orbit y of K on the level K = r? by a finite
collection of Darboux charts. The required number N of charts is of order [(y) ~
r - T. Within every chart, as was proved in Section 3.2.1, we have a lower bound
on A with respect to the Euclidean trivialization. Combined, these trivializations
can be viewed as an approximation to a Hermitian-parallel trivialization £ along
y: [0, T] — P. (We do not assume that £(0) = £(T').) Furthermore, within every
chart the discrepancy between Salamon—Z¢hnder invariants for the two trivializations
(Euclidean and Hermitian-parallel) is bounded by a constant independent of y and 7.
As a consequence, the difference between Ag(y) and the total Salamon—Zehnder
invariant for Euclidean chart-wise (rivializations is of order N ~ r - T, and we
conclude that (3.3) holds for Ag(y). Finally, by the Gauss—Bonnet theorem, the
effect of replacing & by a trivialization associated with a capping is captured by the
integral term in (3.4).

3.2.3. Auxiliary structure: a Darboux family. To introduce a Darboux family in
P along M, let us first set some notation. Denote by By (8) C TxM and B (6+) C
(T M) the balls of radii § > 0 and 5+ > 0, respectively, centered at the origin and
equipped with the symplectic structures inherited from 7, M and (7. M)©.

The first component of the Darboux family is a symplectic tubular neighborhood
m: W — M. This is an ordinary tubular neighborhood of M, 1.¢., anidentification of
anecighborhood W of M in P with a neighborhood of the zero section in (7M)® =
T M+ formed by the fiber-wise balls B (5-), such that the diffeomorphisms between
the fibers Vy = 7~ !(x) and the balls B (81) preserve the symplectic structure. In
particular, we obtain a family of symplectic embeddings B (81) — P sending the
origin to x and depending smoothly on x. The linearization of the map B (§1) — V,
at x is the inclusion (T, M)® — T, P.

The second component is a Darboux family in M. This is a family of symplectic
embeddings 7, P O B, (8) — M depending smoothly on x € M, sending the origin
0 € T, M 1o x, and having the identity linearization at O € 7 M. Itis easy to see that
such a Darboux family exists provided that § > 0 is sufficiently small; sec [We2].
We denote the images of this embedding by Uy, C M.

Now we exlend each pair of symplectic embeddings B (61) — P and B.(§) —
M (o asymplectic embedding Ty P O By (§)xBL(8+) — P,whichis againrequired
to depend smoothly on x € M. The resulting maps will be called a Darboux family
(in P along M).

Let W, stand for the image of the embedding B, (§) x B (61) — P. Note that
Wy 1s naturally symplectomorphic to Uy x V. with the split symplectic structure
and the tangent space to y x Vy is (T, M)® for every y € Uy. We also denote by
7y Wy — U, the projection o the first factor. (At this point it is worth emphasizing
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that in general 7 and 7, do not agree on W, although 7(V,) = x = m(Vy).)
Whenever the values of radii § and 5= are essential, we will use the notation U (8)
and Vy (1) and Wy (8, 8+) and W(81). Henceforth, we fix a Darboux family with
some §p > 0 and 83 > 0 and consider only Darboux families obtained by restricting
the fixed one to smaller balls.

Let us now state a few simple properties of Darboux families, which are used in
the rest of the proof. These properties require § > 0 and §+ > 0 to be sufficiently
small. However, once this is the case, all constants involved are independent of &
and 5+,

(DF1) The Euclidean metric on W,., arising from the Darboux diffeomorphism
of W, with an open subset of T, P, is equivalent to the restriction of the
Hermitian metric to W,. Moreover, the constants involved can be taken
independent of x.

As a consequence of this obvious observation we need not distinguish between
the Hermitian and Euclidean metric on W, in (DF2) and (DF3) below.

(DF2) The inequality (3.5) holds in each chart W, with some constants ¢ > 0 and
b independent of x.

(DI3) The difference between Euclidean and Hermitian parallel transports along
any short curve contained in W, 1s small for all x € M. More specifically,
denote by Hf and HnH the Euclidean and Hermitian parallel transports
Tooy P — TyyP along a curve n: [0, 1] — W,. For any € > 0 there
exists [y, depending on ¢ but not on § and 8-, such that for any x € M and
any curve nin Wy with () < Iy, the symplectic transformation (I2)~' 12
lies in the e-neighborhood of the identity in Sp(T5,(0) P).

The property (DIF2) is a consequence of the fact that the linearization of a Darboux
map B, x BL — W, at the origin is the identity map on Ty P. Assertion (DF3) is
established by the standard argument.

Now we fix a small € > 0 and § > 0 and 6+ > 0 such that (DF1) and (DF2) hold
and the distance from V, (§1/2) to the boundary of W, = W, (8, 1) is smaller than
Io(€). This is possible since I is independent of § and 8.

Remark 3.3. In fact, € > 0 need not be particularly small. It suffices to ensure that
the value of the Salamon—Zehnder invariant A on any path in the ¢-neighborhood of
the 1dentity is bounded by a constant independent of the path. This 1s always the case
when the neighborhood is simply connected (and has compact closure).

3.2.4. Proof of (3.4). Let r > 0 be so small that the level K = r? is entirely
contained in the tubular neighborhood W(5+/2). Then this level is also contained
in the union of the charts Wy (8, §+/2) and hence in the union of the charts Wy. Let
y: [0, T] = P be a T-periodic orbit of K on the level.
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Fix a unitary frame & (0) in T, () P and extend this frame to a Hermitian trivializa-
tion £ of TP along the path y by applying Hermitian parallel transport to £ (0). Note
that the resulting trivialization need not be a genuine trivialization along y viewed as
a closed curve: £(0) # £(T'). Nonetheless, the Salamon—Zehnder invariant Ag(y)
of y with respect to & is obviously defined. Namely, recall from Section 2.4.1 that
using £ we can view the linearized flow along y as a family ®(r) € Sp(T, ) P).
Then Ag(y) = A(P). Our first objective is to show that (3.3) holds for Ag(y), i.e.,

Ag(y)y=(a—b-r)T —c, (3.7)

where the constants ¢ > 0 and » and ¢ are independent of » and 7" and y.
To this end, consider the partition of I = [0, T] into intervals I; = [t;_1, ;]
with j = 1,..., N by points

O=n<h <<ty <ty=T

such that the length of y; = y|z; is exactly ly. (The last segment yy may have length
smaller than /y.) It is essential for what follows that, by (3.6),

N <1+const-r-T. (3.8)

(Note that, in contrast with the curves y;, the intervals /; are not necessarily short:
the average length of [; is T/N ~ 1/r.) Let 7; be the middle point of /;, i.e.,
7; = (tj—1 +t;)/2,and z; = y(rj) and x; = 7(z;). Due to our choice of r, we
have z; € V,,(8§1/2), and, by the choice of § and 6+, the path y; lies entirely in W .
We denote by ®[;; the restriction of the family ®(¢) to ;. Thus,

Ae(y) =Y A(®|r). (3.9)

We bound A(P|;;) from below in a few steps. First, consider the family ®;(r) €
Sp(T;, P) parametrized by # € I; and obtained from the linearized flow of K along
y; by identifying T,y P with T, P via Hermitian parallel transport. It is easy (o see
that

@;(1) = I; o() () I,

where I1;: T;, P — T, P is the Hermitian parallel transport along y. By conjuga-
tion invariance of A (see (2.1)) and the quasi-morphism property (2.4),

A(D|7;) = A(D;) — const, (3.10)

where the constant depends only on dim P. Furthermore, let W; (1) be defined sim-
ilarly to ®;(z), but this time making use of Euclidean parallel transport in W ..
Clearly,

W) = A4;(0); (),



882 V. Ginzburg and B. Z. Giirel CMH

where A;(r) € Sp(T7; P) measures the difference between the Hermitian and Eu-
clidean parallel transports along y;. Since /(y;) < [y, we infer from (DF3) that A, (7)
lies in the e-neighborhood of the identity and thus A(A4;) < const, where the con-
stant is independent of j and y and r; see Remark 3.3. Due to the quasi-morphism
property (2.3) of A, we have

A(®;) = A(W;) — A(A;) — const > A(W;) — const. (3.11)
By (DF2), the argument from Section 3.2.1 applies to W, and hence
A;) > (a—b-r)(t; —tj—1) — const (3.12)
Combining (3.10)—(3.12), we see that
A(®@[1;) = (a—b-r)(tj — tj—1) — const, (3.13)

where all constants are independent of y and r and the chart, and a > 0.
Finally, adding up inequalities (3.13) for all j = 1,..., N and using (3.9), we
obtain
A(®)>(a—b-r)T —const- N,

which in conjunction with (3.8) implies (3.7).

To finish the proof of (3.4), fix a capping v of y and let { be a Hermitian trivi-
alization of TP along y associated with v. Identifying the spaces T, P via {, we
can view the linearized flow of K along y as a family ®(r) € Sp(T;, P),t € I. By

definition, A, (y) = A(®). Furthermore, without loss of generality we may assume
that £(0) = £(0) and then

®(r) = B(t)D(1).

Here the transformations B(¢) € U(T%, P) send the frame £(0) to the frame £(r),
where the latter is regarded as a frame in 7., P by means of . Due to again the
quasi-morphism property,

A(D) > A(D) + A(B) — const.

Since the transformations B(¢) are unitary, p(B(r)) = detc B(t), and A(B) is the
“total rotation” of deté B. Hence, by the Gauss—Bonnet theorem,

A(B) = —2fva,

where o is the Chern—Weil form representing ¢ (7T P). Combined with (3.7), this
concludes the proof of (3.4) and the proof of Propositions 3.1 and 3.2.
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4. Particular case: P is geometrically bounded and symplectically aspherical

To set the stage for the proof of the general case, in this section we establish Theo-
rem 1.1 under the additional assumptions that P is geometrically bounded and sym-
plectically aspherical (i.e., @|r,(p) = 0 = ¢1(T'P)|z,(p)). We refer the reader (o,
e.g., [AL], [CGK], [GG2] for the definition and a detailed discussion of geometrically
bounded manifolds. Here we only mention that among such manifolds are all closed
symplectic manifolds as well as their covering spaces, manifolds that are convex
at infinity (e.g., R?", cotangent bundles, and symplectic Stein manifolds) and also
twisted cotangent bundles.

4.1. Conventions. Throughout the rest of the paper we adopt the following conven-
tions and notation. Let y: S; — P, where S; = R/TZ, be a contractible loop
with capping v. The action of a T-periodic Hamiltonian H on (y, v) is defined by

antr) == [o+ [ mow)a

where H; = H(t,-). When @|4,(p) = 0, the action Ay (y, v) is independent of the
choice of v and we will use the notation Ag(y).

All Hamiltonians considered below are assumed to be one-periodic in time or
autonomous. In the former case, we always require 7' to be an integer; in the latter
case, T can be an arbitrary real number.

The least action principle asserts that the critical points of Ay on the space of all
(capped) contractible loops y : S} — P are exactly (capped) contractible 7 -periodic
orbits of the time-dependent Hamiltonian flow g%, of H. The Hamiltonian vector field
Xy of H, generating this flow, is given by iy, = —dH. The Salamon—Zehnder
invariant A, (y) of a T-periodic orbit y with capping v and the Conley—Z¢hnder
index ez (y, v), when y is non-degenerate, are defined as in Section 2.4.1 using the
linearized flow dy}, and a (rivialization associated with v.

At this point it is important o emphasize that our present conventions differ from
the conventions from, e.g., [Sa], utilized implicitly in Sections 2.4 and 3. For instance,
the Hamiltonian vector field Xg defined as above 1s the negative of the Hamiltonian
vector field in [Sa]. As a consequence of this sign change, the values of A, (y) and
ez (y, v) also change sign. (In other words, from now on the Salamon—Z¢chnder
invariant of a linear flow with positive definite Hamiltonian is negative; equivalently,
ftez is normalized so that pez(y) = n when y is a non-degenerate maximum of
an autonomous Hamiltonian with small Hessian.) In particular, the value of A in
Propositions 3.1 and 3.2 must in what follows be replaced by —A. This change of
normalization should not lead to confusion, for the correct sign 1s always clear from
the context, and it will enable us to conveniently eliminate a number of negative signs
in the statements of intermediate results.
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4.2. Floer homological counterpart. The proof of the theorem uses two major
ingredients. One is the Sturm comparison theorem for K proved in Section 3. The
other 1s a calculation of the filtered Floer homology for a suitable reparametrization
of the flow of K.

Let, as in Section 3, K: P — R be an autonomous Hamiltonian attaining its
Morse—Bott non-degenerate minimum K = 0 along a closed symplectic submanifold
M C P. Pick sufficiently small » > 0 and € > 0 with, say, ¢ < ¢; = r2/10. Let
H: [r? —€, r? + €] = [0, o0) be a smooth decreasing function such that

e H =max H nearr2 — cand H = Onear r2 + ¢ and H’' < 0 otherwise.

Consider now the Hamiltonian equal to H o K within the shell bounded by the levels
K = r?—cand K = r? + € and extended to the entire manifold P as a locally
constant function. Abusing notation, we denote the resulting Hamiltonian by H
again. Clearly, min H = 0 on P and the maximum, max f, is attained on the entire
domain K < r? —e¢.

Proposition 4.1 ([GG2]). Assume that P is geometrically bounded and symplecti-
cally aspherical and that r > 0 is sufficiently small. Then, once max H > C(r)
where C(r) > 0and C(r) — O as r — 0, we have

HESD () £ 0

forng =1+ (codim M —dim M }/2 and some interval (a, b) with a > max H and
b <max H + C(r).

Here HF,(,f”b)(H } stands for the filtered Floer homology of H for the interval
(a,b). We refer the reader to Floer’s papers [F11], [F12], [F13], [F14], [FI5], to,
¢.g., [BPS], [HS], [SZ], [Schw], or to [HZ3], [McSa], [Sa] for further references
and introductory accounts of the construction of (Hamiltonian) Floer and Floer—
Novikov homology. Filtered Floer homology for geometrically bounded manifolds is
discussed in detail in, e.g., [CGK], [GG2], [Gii] and [Gi8] with the above conventions.
Finally, the construction of filtered Floer—Novikov homology for open manifolds,
utilized in Section 6, is briefly reviewed in Section 5.

4.3. Proof of Theorem 1.1: a particular case. Now we are in a position to prove
Theorem 1.1 in the particular case where P is geometrically bounded and symplec-
tically aspherical. First observe that // has a non-trivial contractible one-periodic
orbit y with

l—dimM =ng—dimP/2 < A(y) <ng+dimP/2 =1+ codimM. 4.1)

Indeed, let H: S x P — R be a compactly supported, Cl-close to H, non-
degenerate perturbation of . By Proposition 4.1, H has a non-degenerate con-
tractible orbit ¥ with action in the interval (a, ») and Conley—Zchnder index ny.
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By (2.7),
no—dim P/2 < A(J) < ng + dim P/2.

For a suitable sequence of perturbations H — H the orbits v of H converge o an
orbit y of H and (4.1) holds by continuity of A. The orbit y is non-trivial since the
trivial orbits of H have action either zero or max H while Ag(y) > a > max H. As
a consequence, ¥ lieson a level of H with7? — € < K < r? + €.

Since H is a function of K, we may also view y, keeping the same notation for
the orbit, as a T-periodic orbit of K. Note that H is a decreasing function of K,
but otherwise the requirements of Lemma 2.6 are met. Hence, A(y, K) = —A(y),
where A(y) = A(y, H). Thus (4.1) turns into

l—dimM < —A(y,K) <1+ codim M.

On the other hand, up to a sign, inequality (3.1) of Proposition 3.1 stll holds for y
with constants ¢ > 0 and ¢ independent of /7 and r and € > 0:

—A(y,K)=a-T —c.

(‘The negative sign s a result of the convention change.) Hence, we have an a priori
bound on 7';
T <To=({0+c+codimM)/a.

Passing to the limit as ¢ — 0, we see that the 7 -periodic orbits y of K converge,
by the Arzela—Ascoli theorem, to a periodic orbit of K on the level K = r? with
period bounded from above by Ty. This completes the proof of Theorem 1.1 in the
particular case.

Remark 4.2. In the proof above, the arguments from [CGK], [Gii], [Ke3] could
also be used in place of the result from [GG2]. The only reason for utilizing that
particular result is that its proof affords an easy, essentially word-for-word, extension
to the general case.

4.4. Proof of Proposition 1.5. In the setting of the proposition, fix a trivialization
of the normal bundle (TM)®. Then, every energy level K = r? also inherits a
trivialization via its identification with the unit sphere bundle in (7M)®. When
r > 0 is small, the field of directions ker(w|g—,2) is transverse to the horizontal
distribution. Hence, fixing a horizontal section I" of the S!-bundle {K = r?} — M,
we obtain the Poincaré return map ¢: [’ — I'. Clearly, periodic points of ¢ are in
one-to-one correspondence with periodic orbits of the Hamiltonian flow on K = r2,
The restriction | is a symplectic form preserved by ¢. Furthermore, as is easy to
see, I' 1s symplectomorphic to M. Thus, we can view ¢ as a symplectomorphism
M — M. It 1s not hard to show that ¢ 1s in fact a Hamiltonian diffeomorphism;
see [Gil] and also [Ar2]. The proposition now follows from the Conley conjecture
proved in [G19].
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5. Filtered Floer—Novikov homology for open manifolds

In this section, we describe a version of Floer (or Floer—Novikov) homology which is
suitable for extending Proposition 4.1 beyond the class of symplectically aspherical,
geometrically bounded manifolds. We will focus on the case where P is open, but not
necessarily geometrically bounded, for this is the setting most relevant to the proof
of Theorem 1.1. Furthermore, we also assume throughout the construction that P is
spherically rational, i.e., {w, 72 (P)) = AoZ for some Ag > Qor w|q,p) = 0. Inthe
latter case, it is convenient to set Ag = oo and AgZ = {0}.

5.1. Definitions. Fix anopenset W C P with compact closure. Let H: S!x P —
R be a one-periodic Hamiltonian on P, supported in W (or rather in St x W). Two
cappings vo and vy of the same one-periodic orbit y of A are said to be equivalent if
{w,w) =0 = {c1(TP),w), where w € m>(P)is the sphere obtained by attaching v;
to vy along y. (For instance, when P is symplectically aspherical any two cappings
are equivalent.) The value of the action functional Ag (y, v) and the Conley—Z¢chnder
index pcz(y, v) and the Salamon—Z¢hnder invariant A, (y) are entirely determined
by the equivalence class of v. Fromnow on we do not distinguish equivalent cappings.

Assume that all one-periodic orbits of H with actionin (0, A¢) are non-degenerate
and that there are only finitely many such orbits. This is a C°°-generic condition in H ,
cf. [FHS], [HS]. (However, since P is open and H is compactly supported, the flow
necessarily has trivial periodic orbits. Such orbits are degenerate and have action in
AoZ.) For 0 < a < b < Ay denote by CFI(Ca’b)(H ) the vector space freely generated
over Z, by (capped) orbits x = (y,v) with pucz(x} = k anda < Ag(x) < b. Note
that each vector space CF](C“’ b) ( H ) has finite dimension, for changing the equivalence
class of a capping by attaching a sphere w to it shifts the action and the index by
{w, w) € ApZ and, respectively, 2 (c1(T P), w).

Fix an almost complex structure J (compatible with ) on P, which we allow
to be time-dependent within W. We define the Floer differential o: CF,(ca’ b)(H ) —

CF{ ) (H) by the standard formula:

k—1
dx = Y #[M(x,»)] -y, (5.1)

where x is a capped orbit (y~, v7), the sum is taken over all y = (y™,v™) with
index k — 1 and action in (a, b), and #[M(x, y)] 1s the number (mod 2) of points in
the moduli space M(x, y) of Floer anti-gradient connecting trajectories from x to y.
Let us recall the definition of this moduli space.
Let (s, 1) be the coordinates on R x S!. Denote by M(x, ) the space formed by
solutions #: R x S — P of Floer’s equation
Ju

J
-, (u)a—’f = _VH,(u) (5.2)
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which are asymptotic to y= at o0, i.e., u(s,t) — y=(¢) point-wise as s — oo,
and such that the capping v~ is equivalent to the one obtained by attaching u to

* along y*. The space M(x, y) carries an R-action given by shifts of s. We set
M (x,y) = M{x,y)/R. For a generic Hamiltonian H supported in W, the space
M(x, y), equipped with the topology of uniform C°°-convergence on compact sets,
is a smooth manifold of dimension pcy(x) — pcz(v); [FHS], [HS]. Furthermore,
the R-action on M(x, y) is non-trivial unless M(x, y) is comprised entirely of one
solution u(s, 1) independent of s, and thus y* = u = y~ and dim M(x, y) = 0. Tt
follows that M(x, y) is a discreet set when pcz(x) = pez(y) + 1.

As 1s well known, one cannot expect to have d? = 0 unless P salisfies some
additional topological and geomelrical requirements. Moreover, the moduli spaces
M(x, y) in (5.1) need not in general be finite and once one of these sets is infinite
d is not even defined. The next lemma shows, however, that these problems do not
arise if the action interval {(a, ») is sufficiently short.

Lemma 5.1. There exists a constant h = h(W, J)) > 0, depending only on W _and J
but not on H, such that once b —a < h, the zero dimensional moduli spaces M{(x, y)
in (5.1) are finite and 9% = 0.

Remark 5.2. As will be clear from the proof of Lemma 5.1, the constant # > 0
can be chosen to be the same for all almost complex structures that are sufficiently
Clclose to J. This is essential to ensure generic regularity for Floer continuation
maps.

The lemma is neatly obvious. Two phenomena can interfere with compaciness
of M(x y) or cause 9% not (o be zero: bubbling-off and the existence of bounded
energy sequences of Floer connecting trajectories going to infinity in P. However,
since H 1s supported in W, every Floer connecting trajectory is a holomorphic curve
outside W . Leaving a compact neighborhood V of W requires such a curve to have
energy exceeding some i1 (V, J) > 0. Furthermore, since P is spherically rational,
bubbling-off requires energy A or greater. (Alternatively, since Floer trajectories with
energy smaller that 4 are confined to a compact set ¥, one can invoke Gromov’s
compaciness theorem rather than rationality of P.) Summarizing, we conclude that
neither of these phenomena can occur when b —a < h = min{h1, Ao}, For the sake
of completeness, we provide a more detailed argument.

Proof of Lemma 5.1. Fix an open set V O W with compact closure. Without loss
of generality we may assume that VV and W are smooth connected manifolds with
boundary. Then ¥ = ¥V ~ W is a smooth compact domain whose boundary has two
components: W and 9V . There exists a constant 7; = hi(W,V,J) > 0 such that
for every holomorphic curve v in ¥ whose boundary is contained in dY and meets
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both components of dY we have

E(w):= [va) > hy.

This fact is an immediate consequence of aresult of Sikorav, [AL, p. 179]. Namely,
consider a holomorphic curve through z € P with boundary on the R-sphere centered
at z. Then according to this result, there exist constants C and Ry > 0 (depending
only on z) such that the area of the holomorphic curve is greater than C R? whenever
0 < R < Ry. Moreover, it is clear that C and Ry can be taken independent of z as
long as z varies within a fixed compact set. Let now S be a closed hypersurface in Y
separating the two boundary components of dY . Then, any holomorphic curve v as
above passes through a point z € S, and thus through a ball of radius R > 0, where
R depends only on S, centered at z and contained in Y. Taking R > O sufficiently
small and applying Sikorav’s result, we conclude that E(v) > CR? =: hy.

Assume now thath—a < h ;= min{h, Ao}. Then a Floer trajectory u connecting
xtoywithO < a < Ag(y) < Ag(x) < b < Ap is necessarily contained in V.
Indeed, denote by v a part of u lying in ¥ = V ~ W. Clearly, v is a holomorphic
curve (with boundary on dY') since H is supported in W, and

ou ||?

E(v)fE(u):zﬁ ‘g

ds = Ag(x) — Ag(y) < h;. (5.3)
L2(S1)

Furthermore, the boundary of v meets aW , for both x and yarein W, and 1s entirely
contained in W since E(v) < h,. Hence, u takes values in V. Thus we have shown
that all connecting trajectories u belong to a compact set V.

Since we also have b — a < A, bubbling-off is precluded by an energy estimate
similar to (5.3). (Just a slightly more elaborate argument utilizing Gromov’s com-
pactness theorem shows that bubbling-off cannot occur whenever » — a < hy for
some hp > 0, evenif P is not spherically rational.) As a consequence, we infer by
what have now become standard arguments (see, e.g., [HS], [Sa]) that M(x, y) is
compact when pcz(x) = pcz(y) + 1, and hence finite, and 9% = 0. O

Fromnow on, when working with the Floer homology HF?) (H ), we will always
assume that 0 < a < b < Agand b — a < h and that a and b are outside the action
spectrum & ( H ) of H. (Note that, since P is spherically rational and H is compactly
supported, 8 (H ) is closed and has zero measure; see, e.g., [HZ3], [Schw].)

5.2. Properties. The Floer homology spaces defined above have the standard prop-
erties of filtered Floer homology of compactly supported Hamiltonians on geometri-
cally bounded manifolds; see [CGK], |GG2], [G18], [Gii]. Here we recall only three
of these properties that are explicitly used in the proof of the main theorem:
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» For any three real numbers a < b < ¢, where 0 <a <c¢ < Agandc —a < h,
we have the long exact sequence

.o — HF@2 gy - HEF®)(H) - HE® O (H) — ...

» A monotone decreasing homotopy from a Hamiltonian H* to a Hamiltonian
H™ gives rise to homomorphisms

Wyt g—: HES P (HT) > HFY D (H),

which are independent of the homotopy and commute with the long exact se-
quence homomorphisms.

» Let H° be a family of Hamiltonians continuously parametrized by s € [0, 1]
and let a(s) < b(s) be two continuous functions of s such that a(s) < b(s) and
all intervals (a(s), b(s)) satisfy the above requirements. Assume also that a(s)

and b(s) are outside 8 (H*). Then the groups HF 2 (f7s) are isomorphic
for all s. As a consequence, by continuity, we have HF,(,f”b)(H } defined even
when the orbits of A are degenerate.

The proofs of these properties and the constructions involved are identical to those
tor geometrically bounded symplectically aspherical manifolds (see [CGK], [Gi§],
[GG2], [Ke3]) which in turn follow closely the proofs for closed or convex manifolds
(see,e.g., [BPS], [FH], [EFS], [G19], [McSal, [Sa], [Schw], [ V1] and references therein).

Remark 5.3. It is worth pointing that, in contrast with the total Floer—Novikov

homology on a closed manifold, the filtered homology spaces HF,(ka’b)(H ) are not
modules over the Novikov ring A of P. (See, e.g., [FHS], [Sa], [McSa] for the
definition of A.) However, a part of the A-module structure 1s retained by the filtered
homology. Namely, note first that the requirement that 0 < ¢ < b < Ay can
be replaced by a less restrictive condition that (a, ) contains no points of AyZ.
Then attaching a sphere w € 7, ( P) simultaneously to all cappings gives rise to an

isomorphism CF " (H) — CF,(,fﬂ::f’ b+ (H) of Floer complexes, and hence of
Floer homology, where « = {w, w) and jt = 2 {¢1(TP), w). This is an analogue of

the action of the generators of A 1in the total Floer complex (or homology) of H.

Remark 5.4. If P is closed or gecometrically bounded, some of the restrictions made
in the construction of the filtered Floer homology can be relaxed. Namely, when P
is closed and W = P, no homological conditions on P or restrictions on the action
interval (a, b) are needed, provided that (a, ») is sufficiently short. (This readily
tollows from Gromov’s compactness theorem, which guarantees that no bubbling-off
can occur on Floer connecting trajectories with small energy.) When P is open and
geometrically bounded, there 1s no need to fix an open set W with compact closure
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and the constant £ is independent of the support of H. (This is a consequence of
Sikorav’s version of the Gromov compactness theorem; see [AL].) However, the
assumptions that P is spherically rational and that 0 < a < b < Ao, or at least that
(a, b) contains no points of A¢Z, appear to be essential. In fact, it is not clear how
to define the filtered Floer homology of a compactly supported Hamiltonian on a
geomeltrically bounded open manifold without requiring P to be spherically rational.

6. Floer homological counterpart in the general case

Throughout this section, we assume that P satisfies the following two conditions:

(a) P is spherically rational and

(b) for any Hamiltonian on P, changing (the equivalence class of) a capping of a
periodic orbit necessarily alters its action value, i.e.,

ker[a)]|,,2(p) C ker ¢q (TP)|T[2(p).

Note that in the setting of Theorem 1.1 one can ensure that these requirements are
met, as a consequence of either (1) or (i), by replacing P by a small neighborhood
of M.

6.1. Generalization of Proposition 4.1. Fix a symplectic tubular neighborhood W
of M and an almost complex structure J on P. Let K: P — R be an autonomous
Hamiltonian attaining its Morse—Bott non-degenerate minimum K = 0 along aclosed
symplectic submanifold M C P and let H be defined exactly as in Section 4.2 with
{K <r2+¢€} C W. By (a),inthe notation of Section 5, the filtered Floer homology
HF,(:f"b)(H) is defined whenever 0 < a < b < Agand b —a < h = (W, J). Then,
the following analogue of Proposition 4.1 holds:

Proposition 6.1. There exists a function C(r) > 0 of r > 0 such that C(r) — 0 as
r — 0 and, once r > 0 is sufficiently small, we have

(a.b)
HF P (H) # 0

for any H as above with max H = C(r) and for some interval (a, b) with C(r) <
a < b < 2C(r). (Here, as in Proposition4.1, ng = 1 + (codim M — dim M) /2.)

Remark 6.2. Since the proposition concerns only a small neighborhood of M, re-
quirement (a) can be replaced by the condition that M is spherically rational and,
in (b), [@]|x,(p) can be replaced [@]|x, (ar).
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6.2. Proof of Proposition 6.1. To prove the proposition we will, as in [GG2], con-
struct functions F* such that

F-<H<F?
and HF,(,L% P)(F*) =~ Z, and the monotone homotopy map

W: Zy = HE P (F1) — HFSP(F7) = Z,

no

is an isomorphism if » > 0 is sufficiently small. Then HF,(% PY(HY +£ 0, for W factors

through HF,(% P)(H). The argument closely follows, with some simplifications, the
proof of Proposition 4.1 given in [GG2] and we only briefly outline its key elements.

6.2.1. Functions F* and the parameters a, » and C(r). The almost complex
structure J and the symplectic form w give rise to a Hermitian metric on the normal
bundle (TM )* to M. Without loss of generality we may assume that W is a tubular
neighborhood of M in P; see Section 3.2.3. In particular, W is equipped with
projection W — M whose fibers are identified with fiber-wise balls in the normal
bundle (TM)® and this identification preserves the symplectic structure. Denote
by p: W — R the square of the Hermitian norm on (7M)® divided by 4, i.e.,
p(X) = || X||?/(4m) when X is viewed as a point in (TM)®. Itis easy to see that all
levels of p are comprised of one-periodic orbits of its Hamiltonian flow. These orbits
are the Hopf circles lying in the fibers and bounding symplectic area 472 p; see, e.g.,
[CGK], [GG2].

The normal-direction Hessian d 1\24K along M can also be viewed as a fiber-wise
quadratic function d3; K: W — R. (Since K is Morse-Bott non-degenerate, d 3, K
is a fiber-wise metric on (TM)®. In general, this metric is not Hermitian.) Recall
also that 0 < € < €y = r2/10; see Section 4.2. Thus, when r > 0 is small, the shell
r2 —e < K < r? + ¢ is contained in the shell

Z = {r2 —2¢g < dflK o g% 2¢p}.
Set
p3 =minp, py =2p3/3 and py =p3/3,

so that the points p; and p; divide the interval [0, p3] into three equal parts. Fur-
thermore, let, as in Figure 1,

pi =maxp, py =pi +pr and p3 = pl + 20,

and
C(r)= 8712,9;“.
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C(r)

Figure 1. The functions £ + and the homotopy.

In other words, C(r)/2 is the symplectic arca bounded by one-periodic orbits of p
on the level p = ng . Itis clear that C(r) — 0 as r — 0. From now on, we assume
that max H = C(r).

The function F~: [0, p3] — R is defined as follows (see Figure 1):
« F=(p) = C(r)forpe0,p7];
« 7 (p)=0forpelp;.p3];

« [I""(p) is a linear function on [p] . p5] ranging from C(r) to O with irrational
slope, except for p close to p; and p; where I~ 1s concave (with decreasing
(F~) < 0) and, respectively, convex (with increasing (F7) < 0).

We extend the function F~ o p from the domain {p < p3} to P by setling it to
be identically zero outside the domain and, abusing notation, refer to the resulting
Hamiltonian on P as F~.

It is essential that the ratio C(r)/p] is independent of r (since dflK and p are
both fiber-wise quadratic), and hence the slope of /'~ can also be taken independent
of r.

Letalso F*: [0, p7] — R be defined by

» Ft(p) = C(r)forp € [0, p]];
« FY(p)=F (p—p] +pp)forpe[pf.p3l;
» FT(p)=0forpelp3.p7l.

In other words, FT is obtained from F~ by shifting the graph of F~ to the left
by pf“ — p7 and extending it to the remaining interval [0, pf — p1 | as a function
identically equal to C(r). In particular, F* has the same slope as F~ and this slope
is independent of r. Finally, we extend F* o p to P in the same fashion as F~ o p
and again keep the notation F for the resulting Hamiltonian.

By the construction, F~ < H < F+. Set

a = C(r) —|—23r2p1_ and b =C(r)+ 6372,0;
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Then a > C(r) and, since C(r) = 8x2pF, we have b < 2C(r). In what follows,
we will assume that » > 0 is sufficiently small. Thus, in particular, 2C(r} < Ay and
b —a < C(ry < h(W, J), and the Floer homology groups in question are defined.

6.2.2. One-periodic orbitsof FT. Trivial periodic orbits of F* are either the points
where F+ = C(r) or the points where F* = 0. Non-trivial one-periodic orbits of
the functions F* fill in entire energy levels of F=. We divide the corresponding
energy values into two groups p = xi= and p = yji* for each of the functions F*;
see Figure 2.

F:t )C:t +
Cr) L3

M of o i p

Figure 2. The energy levels xl:': and ylj:.

The first group of levels is located in the region where F¥ is concave. We label
these levels by the corresponding values of p in increasing order:

+ + s
.Xl <x2 <"'<.Xk,

where all x3* are close to and slightly greater than py.

The levels from the second group are located in the region where F* is convex.
Again, we label these levels by the corresponding values of p, but now in decreasing
order:

Ve < <yi <ot

where all y= are close to and slightly smaller than p3.

Note that the number k of levels in every group is completely determined by the
slope of the Hamiltonian. In particular, & is the same for all groups and is independent
of r.

One-periodic orbits of F* on the levels p = x;* and p = & are the fiber-wise
Hopf circles traversed /-times. We equip these orbits with cappings by discs contained
in the fibers and refer to this capping as fiber-wise. Denote by A(xli) and A( yli) the
resulting action values. (The action 1s independent of the choice of an orbit on the
level.) It is easy to see that

Axiy = C(ry + 4n?lxiF 4+ = C(r) + 4x2lpF 4 -+
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and

where the dots denote an error that can be made arbitrarily small by making '+ close
to a piece-wise linear function; see [GG2]. Note that A(xE)isin (e, b) while A(yT)
and A(y) are outside this interval.

We require r > 0O to be so small that all A(xfc) and A( yli) are in the range from 0
to A(W, J). This condition is indeed met for small » > 0, as & is independent of r
and the largest of these actions does not exceed max{A(xl,;|r ), A(y‘,;F o= C(r) +
4Jr2kp2j: 4+

6.2.3. Floer homology of F* and the monotone homotopy map ¥. Let (o, f)
be an interval in (a, b) containing only one point of & (F*). Denote by X the unit
sphere bundle in (7'M )®. (Thus, the levels p = xL,jE and p = yljE are diffeomorphic
to 2.)

Lemma 6.3. HE®# )(F Yy = H, (X;Z»), where the shift of degrees k depends
on the level.

We defer the proof of the lemma to Section 6.3 and continue the proof of the
proposition.

To determine the exact value of the shift x, consider a non-degenerate time-
dependent perturbation F* of F* that differs from F* only in small neighborhoods
of the levels x7F and y£. The perturbation F* can be explicitly constructed (see [GG2,
Section 5.2.5]) so that every level xljE and y L,i splits into a number of non-degenerate
orbits contained in the fibers of W and these orbits, equipped with fiber-wise cappings,
have Conley—Z¢chnder indices in the intervals

[ —1)g —m + 1, (2] + 1)g +m] forthe level p = xli and
(2l —1)g —m, 2l + 1)g +m —1] for the level p = yF,

where 2m = dim M and 2g = codim M. Note that the length of each of these
intervals is 2(m + g) — 1 = dim X. Hence, « is the left end-point of the index
interval, 1.e.,

fc:(2l—1)q—m—|—lfor,o:xljE and K:(2l—l)q—mf0r,o:yli.

In particular, k = ng for xfc and, by Lemma 6.3, HF,(,l"él’Bl)(Fi) = Z- when
(aq, B1) is a small interval containing no other points of 8(F*) than A(x5).
Arguing as in [G(G2], we establish the equality HFn‘(‘)’b Y(FE) = Z, by utilizing
the Floer homology long exact sequence; see Section 5.
First note that the only action values of F* and F* in (a, b) are those of the

orbits from some of the levels xllL and yli, equipped with fiber-wise cappings. In
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other words, only the fiber-wise cappings are relevant. This is a consequence of (b)
and the requirement that » > 0 is so small that all A(xl } and A(yli) are in (0, Ag).
Consider now a family of intervals with the left end-point sliding down from o
to @ and the right end-point increasing from g, to &. The filtered Floer homology
of F* can change only when an end-point of the interval moves through an action
value. More specifically, the homology in degree ny can be effected only when
an end-point moves through an action value A(xli) or A(yli) with index interval
containing ng — 1 or ng or ng + 1. In the second group, the only action values with
index intervals containing nig — 1 or no are A(y1 ) and A(y3), which are however,
outside the interval (a, b) since A(yi) < A(yy) < a. The levels xl with [ > 2
and yl with / > 3 have index intervals starting above ny + 1 since ¢ > 0. Finally,
A(xE) € (a1, B1) C (a, b). Hence, as readily follows from the long exact sequence,
F(a b)(F:I:) ~ F(alaﬁl)(}?i) 7o,

The fact that the monotone homotopy map W is an isomorphism is established
in a similar fashion. Consider a monotone homotopy F* from F* to F~ indicated
by the arrow in Figure 1 and obtained by sliding the graph of F* to the left until
it matches the graph of F~. By the long exact sequence, HF,%’b)(F %) can change
only when action values of F* with index interval containing ng — 1 or ng or ng + 1
enter or leave the interval (a, »). This, however, never happens, as is clear from the
calculation of actions and index intervals for F*; see [G(2] for more details.

To complete the argument, it remains to prove Lemma 6.3.

6.3. Local Floer homology and the proof of Lemma 6.3. When P is geometrically
bounded and symplectically aspherical, the lemma is an immediate consequence of
the results of Pozniak, [Poz], and, in particular, of [Poz, Corollary 3.5.4]; see also
[GG2] and [BPS]. Moreover, Corollary 3.5.4 from [Poz] can be extended to a broader
class of manifolds to apply in the setting of Lemma 6.3. However, such an extension
s not entirely straightforward even though 1t 1s essentially a consequence of Pozniak’s
calculation of local Lagrangian Floer homology for clean intersections, and we prefer
to give a simpler ad hoc proof.

6.3.1. Local Floer homology. In this section we briefly recall the construction of
local Floer homology for autonomous Hamiltonians, following [F15]; see also, e.g.,
[BPS], [Gi9], [Poz].

Consider an autonomous Hamiltonian F on a spherically rational symplectic
manifold P2" or, more generally, on an open subset of P invariant under the flow
of F. Let X be a compact, connected set of fixed points of ¢ = go}?. Then X is
automatically invariant under the flow of F and hence comprised entirely of one-
periodic orbits of I, In what follows, we will also assume that X 1s 1solated, i.e.,
every fixed point of ¢ in some neighborhood of % (an isolating neighborhood) is
necessarily a point of 2.
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Fix an isolating neighborhood U of X and let F be a one-periodic in time pertur-
bation of F such that F — F is C2-small and supported in U, and all one-periodic
orbits of F in U are non-degenerate. Let CF (F,U) be the vector space over Z,
generated by capped one-periodic orbits of F in U of index k. (Note that we do
not require the cappings to be contained in U.) Furthermore, fix ¢ > 0 and a
one-periodic almost complex structure J on P, and define the Floer differential
de: CFr(F,U) — CFx_1(F,U) by the standard formula (5.1), where now all
Floer connecting trajectories are required to have energy smaller than €.

The standard argument shows that 32 = 0 whenever € > O and || F — F |2 are
small enough, and, moreover, the resulting local Floer homology spaces HF . (F, X)
are independent of € > 0, F and J ; see [F15] and also, e.g., [BPS], [G19], [HS],
[McSal, [Poz], [Sa], [SZ]. (To be more precise, here we need to require that € <
eo(U, J)and |F — Fl|¢c2 < 80(U, J,€). Then the Floer anti-gradient trajectories
connecting periodic orbits in U are confined to U due to the energy estimates from,
e.g., [SZ], [Sa]. Bubbling-off cannot occur, for ¢ < Agy. As a consequence, the
standard compactness and continuation arguments apply.)

Moreover, the complex CF. (f ,U) carries a natural action filtration (see Sec-
tion 5) and we denote the resulting filtered local Floer homology by HF %) (F,X%).
This homology spaces are well-defined only when the points @ and b are outside the
action spectrum §(F, X) of F|x. (By definition, 8(F, X) is comprised of action
values of one-periodic orbits of F' in ¥ with all possible cappings. It is easy to see
that 8 (F, X) has zero measure and is closed and nowhere dense since P is spheri-
cally rational.) The filtered Floer homology is essentially “localized” at the points
of §(F, X) and hence here, in contrast with the global case, the filtration plays a
rather superficial role. We will use it only to distinguish contributions from different
cappings of the same orbit.

Filtered local Floer homology inherits, in an obvious way, most of the properties
of ordinary filtered Floer homology. We will need the following standard invariance
result (cf. [BPS], [Poz], [Gi9], [Vi]):

» Let F*¥ be a family of Hamiltonians continuously parametrized by s € [0, 1]
and such that X is an isolated set of periodic orbits for all F°. Leta(s) < b(s)
be two continuous functions of s such that a(s) and »(s) arc outside §( F*, X).
Then the groups HFYS 26D (Fs 37) are isomorphic for all s.

Let us now turn to some examples which are relevant to the proof.

Example 6.4. Assume that P is symplectically aspherical and hence & (F, X) is
comprised of one point ¢ € R. Then HF,(ka’b)(F , X} = 0 when c is outside [a, b]

and HF ' (F.X) = HF.(F, ) if a < ¢ < b. Assume furthermore that ¥ is a
Morse—Bott non-degenerate manifold of fixed points of ¢, i.e.,ker(dg, — I) = T, X
forall p € X. Then HF . (F, X)) = Hy._(X;Z>) as is proved in [Poz].
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Example 6.5. In this example, we assume that P2" gatisfies condition (b) in addition
to being spherically rational (condition (a)). Let X be a Morse—Bott non-degenerate
critical manifold of a smooth function F with, say, F|x = 0. Then X is an isolated
set of fixed points of ¢, and

HES P (F,5) = Ho_o(p)(3: o). (6.1)

whenever > 1s a hypersurface (or, more generally, a coisotropic submanifold) and
(a, b) is a short interval containing 0. Here «(F) = n — index(X), where index (X)
is the index of F at X. Note that X is also a Morse—Bott non-degenerate manifold
of fixed points of ¢ since X 1s coisotropic. Thus, if P 1s symplectically aspherical,
the identification (6.1) becomes a particular case of PoZzniak’s result mentioned in the
previous example.

To establish the general case of (6.1), we argue as follows. First note that
HF,(,f"b)(sF, 31) does not change as s ranges from 1 to some small value sp > 0
such that so F7 is C2-small, (Here, again we use the assumption that X is coisotropic
which guarantees that X is an isolated fixed point set for all s € (0, 1]. Furthermore,
itis clear from (a) and (b) that the end points @ and b are notin § (s F), provided that a
and b are sufficiently close to zero.) Then, HF,(,f” b) (soF, X) can be identified, up to a
shift of degree by n, with the local Morse homology of F at X2 by arguing as in [FHS],
[HS], [SZ] and using again conditions (a) and (b); cf. [G19]. (Alternatively, one can
utilize the PSS isomorphism, [PSS], not relying on (b).) Finally, it is a standard fact
that the local Morse homology in question is equal to H.(X;Z;), up to a shift of
degree by index(X).

Under suitable additional hypotheses, the filtered local Floer homology of F is
equal to the filtered global Floer homology. Namely, let F and P and (a, b) be as
in Section 5. Assume that (@, b) contains only one point of §(F') and that this point
also belongs to 8 (F, X). Then, as is casy to see,

HF“?) (F, x) = HF@ Y (F). (6.2)

Remark 6.6. The construction of local Floer homology outlined above goes through
with obvious modifications even when F 18 not autonomous; see [FI5] and, e.g.,
[BPS], [Poz]. The only reason that F is assumed here to be independent of time
1s that this assumption makes the construction much more explicit, simplifies the
wording, and 1s sufficient for the proof of Lemma 6.3.

6.3.2. Proof of Lemma 6.3. Let F be one of the two functions F¥ and let & =
{p = z}, where z = xli or z = yli, be one of the levels in question. Consider
the Hamiltonians Fo(p) = F(z) + F'(z)(p — z) and f = F — Fy defined on a

neighborhood of 2. Then the hypersurface X is a Morse—Bott non-degenerate critical
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manifold of f and f|x = 0. By Example 6.5, HF,(k“I’B/)(ﬁ Y) = He () (E;7Z2),
when (o, B) is a short interval containing 0.
Denote by ¢ the action of F' on X with respect to the fiber-wise capping, 1.e.,
¢ =A(z),and seta = o’ + cand 8 = B’ + ¢. We will show that
HF@ A (F, x) = HF® ) (£ %) 6.3)

*—K’

for some shift of degrees «’. This will prove the lemma, since then, due to (6.1) and
(6.2),
HF® A)(F) = HF®PU(F, 2) = Ho (2 7o),

where ¥k = k" + «(f). (Note that ¢ and " can be interpreted as the action and,
respectively, the Maslov index of the loop ¥ generated by Fy, cf. [Gi9, Sections 2.3
and 3.2].) ~

To establish (6.3), consider a perturbation f of f in a small neighborhood U
of X as in the construction of local Floer homology. Without loss of generality we
may assume that f is autonomous and all one-periodic orbits of f in U are critical
points of f and that all such critical points are located on X. Then these orbits
enter CFSfxl’ ) ( f U') equipped with trivial cappings. For any other capping would
necessarily, by (b), move the action outside the range («/, ). Let J = J; bea (time-
dependent) almost complex structure. A Floer anti-gradient trajectory u connecting
two one-periodic orbits of f in U is a sphere. (We are assuming that f is so close
to f that u is contained in U.) Since, by the definition of local Floer homology, the
energy of u is small and the values of f at its critical points are close to zero, the
symplectic area of u is small. Therefore, by (a) and (b),

(@, u) =0={c1(TP),u). (6.4)
The Hamiltonian flow of Fy is a one-periodic loop ¥ = ¢f  of fiber-wise
rotations and the Hamiltonian F = Fy + f o (%)~ generating the flow v o ga}

is a small perturbation of F. Denote by HE®# ,)( £.U) and HFP)(F U) the
homology of the complexes of CF,(:” A )( /1, U) and, respectively, CF,(,?’ A) (F,U). By
the definition of local Floer homology,

HFY B (£ U) = HF® BO(£, %) and HF®A(F U) = HE@A)(F, 5),
and (6.3) is equivalent to the isomorphism

HF® A (F Uy ~ uF B (£ ). (6.5)

Kk—ixc’

This isomorphism is induced by the composition with the loop ¥*.
Indeed, the composition with ¢ gives rise to a one-to-one correspondence be-
tween one-periodic orbits of f contained in U and those of F, and the latter are close
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to fiber-wise Hopf circles (perhaps, multi-covered). Furthermore, as 1s well known,
Y (u)(s. 1) := ¥ (u(s, r)) is a Floer anti-gradient trajectory for F in U with respect
to the almost complex structure ¥ (J) := dy' o J; o (dy*)~! if and only if u is a
Floer anti-gradient trajectory for f and J contained in U see, e.g., [Gi9], [Schw].
(Moreover, the regularity requirements are satisfied for ( £, J) if and only if they are
satisfied for (F, v (J)).)

Letus equip the one-periodic orbits of ¥ contained in U with fiber-wise cappings.
Then these capped orbits are the only orbits entering CF,(,fx’ A (F , U), as again follows
from (a) and (b). Hence, to establish (6.5) and thus finish the proof of the lemma, it
is sufficient to show that the Floer connecting trajectories v (1) are compatible with
such cappings. In other words, it remains to prove that whenever i (u) is a Floer
anti-gradient trajectory from g to y; and vy and vy are cappings of yy and y; by
fiber-wise Hopf discs (perhaps, multi-covered), the capping vy 1s equivalent to the
capping vo#yr (1) obtained by attaching vq to 1 {(u). To this end, consider the sphere
w obtained by attaching the suitably oriented discs v and vq to ¥ (u). The cappings
vo#yr (1) and vy are equivalent if and only if

(o, w) =0 = {c1(TP), w).

Let w: W — M be the tubular neighborhood projection. Since vg and vy lie in the
fibers of =, the projections 7 (vy) and 7 (v1) are points. Hence, 7 (w) is homotopic
to! - w(u), wherel € Z, for ¥’ is comprised of fiber-wise rotations. Then, by (6.4),

(c1(TP). w) = {c1(TP|p). w(w)) = [ {c1(TP|y). w(u)) = [ {c1(TP), u) =0.

A similar calculation, showing that (@, w) = 0, completes the proof of (6.5) and of
the lemma.

7. Proof of the main theorem

7.1. Proof of Theorem 1.1. When (i) holds, the proof of the main theorem in the
general case is identical word-for-word to the proof for geometrically bounded, sym-
plectically aspherical manifolds (Section 4) with Proposition 6.1 used in place of
Proposition 4.1.

To establish the theorem when (i1) holds, we use, in addition to the Sturm com-
parison theorem for K, the action bounds from Proposition 6.1 to control the effect
of capping on the Salamon—Zehnder invariant.

Fix small parameters r > Qand ¢ > O withe < r2/10 and consider a Hamiltonian
H as in Section 6.1. Recall that (i1) implies that the hypotheses (a) and (b) of
Section 6.1 are satisfied. Then, as in Section 4, it readily follows from Proposition 6.1
that A has a (non-trivial) one-periodic orbit y with capping v such that

l—dimM =nyg—dimP/2 < Ay(y,H) <np+dim P/2 =1+ codim M (7.1)
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and
a<Ag(y,v) <bh.

Recall that 0 < C(r) <a < b < 2C(r)and 0 < H < C(r), where C(r) — 0 as
r — 0. Hence, the symplectic area of v 18 @ priori bounded:

‘ f a)‘ < const, (7.2)
v

where const 1s independent of r and € and the Hamiltonian . (Throughout the rest
of the proof we adopt the notational convention from Section 3: in all expressions
const will stand for a constant which is independent of r, €, H, and (y, v), provided
that r is sufficiently small. The value of this constant is allowed to vary from one
formula to another. A similar convention is also applied to the constants ¢ > 0 and
b and c.)

As in Section 4, we may view y as a T'-periodic orbit of K since H 1s a function
of K and the orbit y 1s non-trivial. Then, by (3.6),

[{(y) <const-r-T. (7.3)
Fix a 2-form ¢ representing ¢1(7TP). By (ii), 0 = Aw + da, with A # 0, for

v v s

and, from (7.2) and (7.3), we see that

Lo

By Lemma 2.6, we have A, (y, K) = —A,(y, H), where the negative sign is a
consequence of the fact that A 1s a decreasing function of K. Thus, (7.1) turns into

2k

< const; - ¥ - T + consts. (7.4)

l—dimM < —A,(y, K) <14 codim M,
and, by Proposition 3.2,
—Av(y,K)Za-T—c—2[o,

where a > 0. (The negative sign is a result of the convention change from Section 3
to Section 4.) Therefore,

T_Z

a

2[ ¢+ 1+ codim M
o < .
" a

Combining this upper bound with (7.4), we conclude that if » > 0 is sufficiently
small, T < 7 for some T} that depends only on K.
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Finally, as in the proof of the particular case, passing to the limit as € — 0, we
see that the T -periodic orbits y of K converge, by the Arzela—Ascoli theorem, to a
periodic orbit of K on the level K = r? with period bounded from above by Ty. This
completes the proof of Theorem 1.1.

Remark 7.1. As is readily seen from the proofs of Theorem 1.1 and Proposition 6.1,
one can also estimate the action and the symplectic area of the orbit y of K on the
level K = r?. Namely, let v be the capping of y as in the proof of Theorem 1.1.
Then,

2 and |AK(y,v)|fconst-r2,

—const; - r? < [ @ < —consty - r
v
where all constants are positive and depend only on K. This follows from the facts
that const; - 72 < C(r) < const, -2 with, perhaps, some other values of the constants
and that the period of y is bounded from above.

7.2. Concluding remarks

7.2.1. Dense existence of periodic orbits. Proposition 6.1 can be reformulated (with
some loss of information) as a dense existence theorem for periodic orbits of K:

Proposition 7.2. Assume that P satisfies conditions (a) and (b) of Section 6.1. Then,
for a dense set of small v > 0, the level K = r? carries a contractible in P periodic
orbit y with capping v such that

—1 —codimM < Ay(y) <dimM —1 and 0< ‘[a)‘ < const - 1,
v

where const depends only on K.

Referring the reader back to Section 1.3 for a discussion of other dense or almost
existence results, here we only point out that almost existence of contractible periodic
orbits of K without upper and lower bounds on A, (y) is proved in [Lu2] under no
topological assumptions on P. Proposition 7.2 is sufficient for the proof of Theo-
rem 1.1 and can be easily established as a consequence of Proposition 6.1 by passing
from periodic orbits of H to those of K as in Sections 4 and 7.1.

7.2.2. The role of hypotheses (i) and (ii). As is mentioned in Section 1, hypotheses
(1) and (i1) in Theorem 1.1 can possibly be relaxed. Indeed, the Sturm theoretic
counterpart of the proof (Proposition 3.2) requires no topological assumptions on P
or M. The Floer homological part of the argument (Proposition 6.1) holds under
hypotheses (a) and (b), less restrictive than (i) or (i1), and can probably be extended
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to, at least, all spherically rational manifolds by using, for instance, the machinery
of central Floer homology from [Ke4]; see also [Al]. Furthermore, in the form of
Proposition 7.2, it can perhaps be generalized to arbitrary symplectic manifolds by
utilizing the holomorphic curve techniques as in, e.g., [Lu2]. However, it 1s not clear
to the authors how (o combine these two counterparts to obtain an upper bound on
the period without using conditions (i) or (ii) or some other condition relating [«w] and
1 (TP )

7.2.3. Action control and “contact homology” approach. We conclude this paper
by discussing two approaches to proving Theorem 1.1, which are more natural than
the one used here but encounter a serious difficulty.

The key to the first approach lies in establishing an upper bound on the period of
an orbit of H via its action. Then, the theorem would follow directly from a version
of Proposition 6.1. This method has been used, for instance, to prove the Weinstein
conjecture for hypersurfaces (of contact type) as a consequence of a calculation of
Floer or symplectic homology; see, e.g., [FHW], [HZ3] and [Gi7] for further refer-
ences. Here the condition that the level in question has contact type is crucial for
controlling the period of an orbit via its action. This can be seen, for instance, from the
counterexamples (o the Hamiltonian Seifert conjecture, [Gi4], [Gi5], [GG1], [GG2],
[Ke2]. In the setting of Theorem 1.1, the energy levels S = {K = r?} do not in
general have contact type (with very few exceptions), and the authors are not aware
of any way to relate the period and the action in this case by merely using the fact
that S is fiber-wise convex.

The idea of the second approach is to make use of a version of the contact ho-
mology group HC,(S) defined for the level S and detecting closed characteristics
on S. (Strictly speaking, no construction of HC, applicable to the levels in ques-
tion 1s available at the moment.) Then, one would consider the continuation map
HC.(X7) — HC+(S) — HC«(X7), where X7 is a level of p enclosing S and X~
is a level of p enclosed by S. As in the proof of Proposition 6.1, one can expect
this map to be non-zero, which would then yield HC (S) # 0. This argument relies
on the assumption that the groups HC, are sufficiently invariant under deformations
of the level. However, to the best of the authors’ understanding, to guarantee such
invariance, sufficient control of period via action is necessary as 1s indicated again
by the counterexamples to the Hamiltonian Seifert conjecture. Hence, this approach
encounters essentially the same problem as the first one.
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