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Intersection de sous-groupes et de sous-variétés I11

Gaél Rémond

Abstract. We elucidate the structure of various exceptional subsets appearing in parts I and 11
in order to prove new results on the Zilber—Pink conjecture for abelian varieties. In particular,
we obtain boundedness of height on the intersection of interest for all non-degenerate varieties
(in a precise sense). The main idea to prove that our exceptional subsets are closed comes from
a result of Bombieri, Masser and Zannier on tori and we follow the same approach through
so-called anomalous subvarieties but we have to allow extra generality in the definition. We also
use in a crucial way a theorem of Ax on analytic subgroups of algebraic groups.

Mathematics Subject Classification (2000). 11G10, 11G50, 14K12.

Mots-Clefs. Variétés abéliennes, conjecture de Zilber—Pink.

1. Introduction

En avril 2005, R. Pink a formulé une conjecture sur les variét€s de Shimura mixtes
qui se spécialise en I’énoncé suivant sur les variétés abéliennes (voir [P]).

Conjecture 1.1. Soient A une variété abélienne sur un corps K de caractéristique zéro
et X un sous-schéma fermé integre de A qui n’est contenu dans aucun sous-schéma
en groupes de A différent de A. Alors ’ensemble

X(K) N 9 G(K),

dim X +dim G <dim A

ou 'union porte sur les sous-schémas en groupes G de A vérifiant la condition de
dimension, n’est pas dense dans X .

Ceci constitue une version de la conjecture de Zilber—Pink sur les variétés semi-
abéliennes. Pour la version due antérieurement a Zilber (2002), on consultera [Z.] ainsi
que [BMZ] ou les auteurs examinent les liens entre ces conjectures et de nouvelles
variantes qui leur sont dues (2006). En particulier, les formulations de Zilber et de
Pink sont équivalentes dans le cas des tores. 1l convient de préciser que cette famille de
problemes trouve son origine dans un travail de E. Bombieri, D. Masser et U. Zannier
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de 1999 sur les tores qui prédate donc toutes les conjectures (voir les références de
[BMZ]).

Dans les parties [ et 1 de cette série d’articles, nous avons donné des résultats
partiels en direction de la conjecture 1.1 faisant intervenir divers ensembles excep-
tionnels a enlever a X (voir [R1] et [R2]). Nous précisons 1ci ces résultats en élucidant
les liens entre ces ensembles et en montrant qu’un certain nombre d’entre eux sont
fermés. Pour les autres faits connus sur ce probléme, on se reportera a [BMZ] et [Ma]
pour les tores ainsi qu’a [Rat] pour les courbes dans les variétés abéliennes.

Pour énoncer nos résultats, nous introduisons quelques notations. Nous fixons A
et K comme dans la conjecture 1.1. Pour tout entier r avec 0 < r < dim A, nous
é¢crivons comme dans [R1]

A=) 6

codim G >r

ou G parcourt tous les sous-schémas en groupes de A de codimension au moins r.
La conjecture ci-dessus concerne donc X(K) N Al™X+11 1] ge trouve qu’elle est
équivalente 2 la variante suivante avec un groupe I' (voir [P]).

Conjecture 1.2. Soient X un sous-schéma fermé intégre de A quin’est contenu dans
aucun translaté de sous-variété abélienne de A différente de A et I un sous-groupe
de rang fini de A(K). Alors X(K) N (T + Al™ X+11y n’est pas dense dans X.

Tous les résultats connus a ce jour en direction de cette conjecture imposent une
condition plus forte sur X (pour cette terminologie voir [Ran] et [D]).

Définition 1.1. On dit que X est géométriquement non dégénéré si pour toute sous-
variété abélienne B de 4 on adim(X 4+ B) = min{dim X + dim B, dim A).

Nous verrons aussi ci-dessous qu’il suffit de vérifier cette égalit€é pour un en-
semble fini de sous-variétés abéliennes B dépendant seulement du degré de X (voir
proposition 4.2).

Cecinous permet d’énoncer le résultat suivant (démontré a la fin de la partie 4), qui
découle de1’étude des ensembles exceptionnels et d un résultat récent de M. Carrizosa
en direction du probléme de Lehmer sur les variéiés abéliennes (voir [C]).

Théoréme 1.3. Soient A une variété abélienne a multiplications complexes sur K =
Q, X un sous-schéma fermé intégre de A géométriquement non dégénéré et I' un
sous-groupe de rang fini de A(K). Alors X(K) N (T 4+ AMmX+11y 05t pas dense
dans X.

Signalons que P. Habegger [Hab] obtient ce théoréme dans le cas particulier ou
[' = 0 par des méthodes ditférentes de celles que nous présentons ici (méme s’1l y a
plusieurs points de contact, comme 1’application du théoréme d’Ax, voir plus bas).
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Pour présenter les ingrédients intervenant dans le théoreme 1.3, nous revenons
sur les ensembles définis dans les parties I et I1. Tout d’abord, pour un sous-groupe I'
de A(K), nous notons gy le groupe de division de End(A) - I puis, pour un entier »

et un sous-schéma fermé integre X de A, nous introduisons la partie Z )((r )1" de X(K)
formée des points x pour lesquels il existe y € I’y et une sous-variété abélienne B
de A tels que

dim, X N (y + B) > max(0,r — 1 — codim B).

Cet ensemble intervient dans [R1] (voir page 531). Ici nous utilisons surtout I’union

Z )((r )an des Z )((r )F pour tous les sous-groupes I' qui peut &tre définie plus directement
ainsi.

Définition 1.2. Soit Z}((’: ln la partie de X(K) formée des points x pour lesquels il
existe une sous-variété abélienne B de A telle que

dim, X N (x + B) > max(0,r — 1 — codim B).

Cet ensemble coincide avec X \ X dans les notations de [BMZ] lorsque r =
dim X + 1. Nous le verrons aussi comme union de sous-variétés anormales de X (ceci
explique I'indice dans la notation Z )((r zm de méme que oa rappelle open anomalous).

Ensuite, deux ensembles Z )((r 2@ et Z )((r ) sont étudiés dans [R2] (voir p. 319). Pour

rappeler leur définition, nous notons Z Jlr (A) le cOne des diviseurs effectifs sur 4 a
coefficients réels modulo équivalence numérique. C’est une partic de NS{(A) ® R o
NS(A) est le groupe de Néron—Severi de A. Nous disons qu'un fermé irréductible ¥
de X est r-supertransverse si :

pour tous N, Ny, Ny € ZL (A) eta € N vérifiantrg N > r, N = Ny + Ny et
rg N —1<a<dimY,ona N9 NdmT=a.y >0

Deméme Y est dit r-Q-supertransverse si cette condition vaut pour tous les éléments
N.Ni, Ny € ZL (4) N (NS(4) ® Q).

Définition 1.3. On note Z )((r ) 1"union des fermés irréductibles de X qui ne sont pas

F-supertransverses et Z )((r ()@ I'union de ceux qui ne sont pas r-Q-supertransverses.

Dans [R2] le résultat principal montrait que Uintersection (X (Q) \ Z )((r )) N+

Al1y est toujours de hauteur bornée mais la question de la nature de Z )((r ) restait en
suspens. Notre théoréme principal y répond et relie les trois ensembles exceptionnels
apparus jusqu’ici.
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Théoréme 1.4. Pour tout entier r avec O < r < dim A, nous avons
(r) (r) (r)
Zyo C 2Ly Clyum
et ces trois ensembles sont fermés.

Lorsque A est isogene a un produit de courbes elliptiques, les trois fermés coin-
cident mais en général nous donnerons des exemples montrant que chacune des in-
clusions peut étre stricte. La preuve de la fermeture s’ inspire de [BMZ] ou est établi

I"analogue torique du fait que Z )((r Zm est fermé pour r = dim X + 1. La partie la plus
)

nouvelle ici conceme 1’ inclusion Z )((r ) C Z )((r n

de [R2] pour obtenir le théoréme 1.3.

Nous verrons aussi comme simple corollaire de la structure de ces ensembles
exceptionnels le critere suivant (démontré sous la forme plus précise de la proposi-
tion 4.2 a la fin de la partic 4).

. Elle permet d’exploiter le théoréme

Théoreme 1.5. Le fermé X est géométriguement non dégénéré si et seulement si
(dim X +1)
Z% i # X.

Pour aller plus loin dans la direction de la conjecture de Zilber—Pink, il faudrait
savoir répondre aux deux questions suivantes.

Question 1. ’ensemble (X(K) \ Z J((r )F) N (T + Al est-il fini ?

Question 2. L’ensemble Z )((r )1“ est-il fermé ?

Pour I' = 0, la question 1 était posée dans [R1]. Pour I' = Oetr = dim X +1, ces
deux questions correspondent aux conjectures dites respectivement forsion-finiteness
et torsion-openness dans [BMZ]. Ils montrent qu’ensemble elles entrainent (sur C)
la conjecture 1.1 pour les tores.

Nous montrons ici (voir partie 6) que la question 1 implique la question 2. On
notera que pour les tores (avec I' = 0, r = dim X + [ et K = C) la réciproque est
montrée dans [BMZ] (enlaissant varier A). Pour répondre positiverment a la question 2,
il faut montrer que X possede un nombre {ini de sous-vari€tés I'-anormales maximales
(terminologie analogue a celle de [BMZ], voir partie 6). Comme premier pas, nous
montrons inconditionnellement que ces sous-variétés sont de degré borné.

Les trois parties suivantes sont consacrées a la démonstration du théoréeme 1.4,
I 1dée consiste a écrire les trois ensembles Z)(;, 3@ Z)((r ) et Z g 2111 sous une forme
commune a savoir

Zx(n) = {x € X(K) | Jp € End(A) dim, ¢~ (p(x)) N X > pu(p)}

pour une certaine fonction . : End(A4) — N bien choisie (les définitions de fonc-
tions @ convenables seront données au début de la partie 4). Nous montrons d’abord



Vol. 84 (2009) Intersection de sous-groupes et de sous-variétés I11 839

qu’'un tel ensemble est fermé en adaptant 1a méthode de [BMZ] : ¢’est le lieu ou
certaines fibres ont une dimension anormale, nous parlons de fermé p-anormal et
nous montrons que les fermés pg-anormaux maximaux sont de degré borné. Ceci fait
I’objet de 1a partie 3 et se base sur un critere différentiel de dimension des fibres que
nous examinons en partie 2. 1l nous faut faire apparaitre non seulement les endomor-
phismes de A mais aussi ceux de son espace tangent, ce qui implique des arguments
analytiques. Pour cela nous travaillons sur C mais les résultats sont géométriques et
se transportent a Q.

Ensuite, dans la partie 4, nous identifions les ensembles de départ avec des Zx ().
C’est immédiat pour Z )((r Zm, tacile pour Z )((r 3@ mais demande du travail pour Z )((r ) 1a
encore des arguments analytiques entrent en jeu et nous utilisons un théoreme d’Ax
(voir [Ax]). Enfin la partie 5 présente des exemples ou nos différents ensembles sont
effectivement distincts et nous concluons en partie 6 avec les résultats concernant les
questions 1 et 2 ci-dessus.

Expliquons I’'idée de la strat€gie suivie dans les parties 2 et 3 ci-dessous. Pour
simplifier, imaginons dans un premier temps qu’une fibre ¥ = X N ¢~ (p(x)) soit
irréductible. Nous pouvons dans cette situation contrdler facilement le degré de ¥V
en fonction de celui du noyau de ¢ (par le théoréme de Bézout) et réciproquement,
étant donné Y, il est possible de trouver un endomorphisme ¢ dont le noyau est de
degré contrdlé en fonction de deg Y (¢’est un peu moins direct : il faut considérer 1a
plus petite sous-variété abélienne dont un translaté contient Y, voir lemme 2.6). Cette
réciproque montre que, si le degré des fibres de dimension anormale était borné par
une constante, nous pourrions nous contenter d’un nombre fini de ¢ et don¢ Zx (1)
serait fermé. C’est essentiellement ce que nous ferons ; toutefois cect ne s applique
pas a toutes les telles fibres mais seulement a celles qui ne sont pas contenues dans
une autre fibre anormale (pour un autre morphisme ). ['1dée principale consiste a
estimer le degré de ¥ non pas directement par le théoréme de Bézoult, ce qui revient
a couper X par des équations définissant ¢, mais plutdt a utiliser des équations
définissant 1a différentielle de ¢ (pour une notion formelle, voir définition 2.2). Ceci
présente I'intérét que, tandis que le degré d’équations de ¢ croit avec le degré du
noyau de ¢, pour la différentielle on peut utiliser un degré constant (ceci apparait
dans le lemme 2.5). Le revers de la médaille est qu’en général les équations obtenues
définissent un fermé plus grand que Y, méme lorsque Y est maximal parmi les
fibres anormales, et ceci oblige a travailler par récurrence sur la dimension de X. De
plus, le critere différentiel esquissé ici n’est vraiment efficace que lorsque le point
p(x) = (Y) estlisse dans ¢{ X ). Pour contourner cet obstacle plusicurs contorsions
sontnécessaires (voir lemme 2.4, lemme 3.3 etla fin de I’argument) et 1l faut aussi tenir
compte du fait que ¥ n’est pas irréductible mais peut contenir plusieurs composantes
de dimensions différentes.

Je tiens a remercier ici E. Bombieri, D. Masser et U. Zannier de m’ avoir commu-
niqué leur texte [BMZ] avant publication.
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2. Critére jacobien

Nous considérons une variét¢ abélienne complexe A de dimension g que nous
écrivons A = V/A ou V est’espace tangent a I’origine de A (un C-espace vectoriel
de dimension g) et A un réseau de V. Nous notons 7: V — V/A la projection et
End(V) les endomorphismes de I’espace vectoriel V.

Nous rappelons que I’anneau End(A) des endomorphismes de A s’identifie au
sous-anneau {¢ € End(V) | ¢(A) C A} de End(V'). Ceci crée une ambiguité pour
parler du noyau de ¢ € End(A); afin de la lever, nous désignerons toujours par
Kerg C V son noyau comme endomorphisme de 1V tandis que nous utiliserons la
notation Ker” ¢ pour nous référer 4 la composante neutre du noyau de ¢ comme
endomorphisme de A. La formule Ker” ¢ = Ker ¢/A N Ker ¢ fait le lien entre les
deux conventions.

Définition 2.1. Soient X une sous-variété algébrique de 4 et X = 7~ (X). Pour
@ € End(V') nous notons dim ¢(X) I’entier

sup(dim X — dim, X N (y + Kerg)).
yeX

Notons que X estun sous-ensemble analytique de V et qu’il en va donc de méme
de X N (v + Ker ¢) ce qui donne un sens a la définition. Intuitivement, ce nombre
devrait étre la dimension de (X ) mais cet ensemble n’est pas en général analytique
(ni méme fermé). Toutefois il existe un ouvert dense X’ de X tel que tout point y de X’
admette un voisinage U dans X’ de sorte que ¢(U) soit une sous-variété analytique
d’un ouvertde V de dimension égale a I’entier dim ¢( X ) de notre définition. En outre,
lorsque ¢ € End(A) C End(V'), la notation ¢{X ) a un sens et nous retrouvons bien
la dimension de cette variété algébrique. Notre convention €tend donc cette notation
usuelle a un cas plus général.

Notre premicre tiche consiste a calculer cet entier dim (X ) en termes différen-
tiels. Pour cela, nous considérons d’une part la suite exacte

&
Ix/ Iy — Quu0)lx — Qe — 0

ou Ix est le faisceau d’idéaux de X dans 4. D autre part, comme V s’identifie au
dualde I'(4, Q /¢ ) unélément € End(V') induit un morphisme ‘p: I'(4. oy o)~
[(A4.Q) ) et @ /¢ €tant libre, un morphisme de faisceaux af c = &) s que
nous notons encore ‘g,

Définition 2.2. Soient ¢ € End(V') et Y un sous-schéma fermé intégre de X de point
générique 7. Nous notons r(X, ¥, ¢) = dim, ) Im(8, ® «(n)) + (Im*p), & «(n).
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Ici k(1) désigne le corps résiduel au point 7 autrement dit le corps des fonctions
de Y tandis que 3, est le morphisme de Oyx,,-modules déduit de &. On notera que
Im(8, ® k(n)) differe en général de (Im d), & (1), 1a surjection naturelle du premier
vers le second n’étant pas nécessairement injective. Nous obtenons un entier au plus
égal a g puisque Im(J, ® k(1)) et (Im‘p), ® « (1) sont deux sous-espaces vectoriels
de (R} )n ® k(1) = k(7)S.

Voici le lien entre nos définitions.

Lemme 2.1. Pour tous X et ¢ € End(V') nous avons
dime(X) =r(X, X, @)+ dim X — g.

Démonstration. Au point générique £ de X, nous avons Oy ¢ = « (&) donc Im(d ®
k(§)) s’identifie & (Imd)e. Ceci entraine que, si nous choisissons un ouvert pour la
topologie de Zariski Uy de X, non vide, lisse et tel que les faisceaux (Imd)|y, et
(Im 8)| v, + (Im’p)|y, soient libres, alors le rang du second est 7 (X, X, ¢). Ensuite
nous considérons un ouvert analytique non vide U; de Uy suffisamment petit pour
pouvoir le relever en un ouvert isomorphe U de X tel que ¢(U) soit une variété
analytique non singuli¢re de dimension dim ¢(X ). Nous avons donc un diagramme

Ge—sv
o)
o) ——V

qui donne naissance en termes de faisceaux analytiques a un autre diagramme a lignes
exactes

& 1 * 1
((,0 QV/(C)'ﬁ — ¢ Q(p(ﬁ)/c —0

la |

b 1
Iﬁ/l% - - (Q%//CNI? - Q[j

jc—0.
Quitte 4 restreindre encore U, nous pouvons supposer que la différentielle de ¢;

z : 3 : s z P | 1 w2 i
est surjective, autrement dit que 1’application ¢4 Q(,, (/C — Qﬁ s est 1njective.

L image de cette application a donc pour rang dim ¢(U) = dim ¢(X) par lissité. Le

diagramme monire que cette image est aussi celle de (™ Q2 /(C)|(7 — Q gc Ui

s’écrit (Ima + Im S)/ Im §. 11 vient
dim ¢(X) = rang(Ima + Im §) — rang(ImS).

Par lissité de Uy (donc de U) nous avons rang{Im 5) = g—dim X . Par ailleurs Ima +
Im & est la restriction 2 Uy >~ U de I"analytifié du faisceau (Im d)|y, + (Im )|y,
donc il est de rang # (X, X, ¢). Ceci conclut. n
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On rapprochera cet énoncé du lemme 1 de [BMZ]. L’entier r(X, Y, ¢} est I’ana-
logue de la quantité rangy £(z1, . . ., z; X)) utilisée dans cet article et notre résultat
montre en particulier que si 7(X, X, ¢) < g—dim X +/h—1alorsdim(X) < h—1.

La preuve que nous donnons dans la partie suivante joue notamment entre les
propriétés vraies pour ¢ € End(1) et celles uniquement valables pour ¢ € End(A).
I1 est toutefois un cas ou la différence n’a pas lieu d’€étre.

Lemme 2.2. Si ¢ € End(V) vérifie dim (X ) = 0 alors il existe une factorisation
@ = yoyravec y € End(V) et v € End(A) telle que dim y(X) = 0.

Démonstration. L’hypothése montre que toute composante de X est contenue dans
un translaté de Ker ¢. Par connexité de X on en déduit qu il existe 2y € Xtelque X C
v+A+Ker . Comme A+Ker ¢ estungroupe11v1entX—|— +X C gy+A+Kerg
ol I’on fait la somme de g copies de X . Par ailleurs X + -4+ X = 7~ (X 4+ X)
et X +---+ X estun translaté de sous-variété abélienne de A, disons x + W/(W N A)
ou W estun sous-espace vectoriel de V' tel que W N A est un réseau de W. Par suite
X + .-+ X est de la forme ¥ + W ce qui donne W C A + Ker ¢ puis, A étant
dlscret, W C Ker ¢. Nous choisissons ¥ € End(A) avec Ker” ¢ = W/ W N A cequi
force Ker v = W. Ainsinous avons X C y + W = y + Ker ¢ donc dim ¢ (X) = 0
et I'inclusion Keryr = W C Ker¢ montre I’existence d’une factorisation ¢ =

xo. O

Nous étudions maintenant I’entier # (X, Y, ¢) pour ¥ # X. La premicre relation
est évidente.

Lemme 2.3. Pour Y sous-schéma fermé intégre de X onar(X,Y,p) <r(Y,Y, ).

Démonstration. Au vu des définitions, cela résulte de Iy C Iy. O

Le second fait utile s’avere plus technique et s’inspire du lemme 5 de [BMZ].

Lemme 2.4. Si ¢ € End(A) et si Y est un sous-schéma fermé integre de X tel que
w(Y') est un point lisse de ¢(X) alors il existe y € End(V) tel que v = yo @
satisfasse

X, Y, ) <g—dimX et rgy >rge—dime(X).

Démonstration. Nous notons 7 le point géne’rique de Y puis &/ = J§, ® k(n) et
p = dim,(;) Im§’. Nous avons p = g — dim(§1 /cc)n Ru(n) < g-— dlmX Nous
allons choisir ¥ avec Im%y C Im‘p et (Im“), ® «(n) C Imé’. La premidre
inclusion, équivalente a Ker ¢ C Ker 3y, montrera 1’existence d’une factorisation
¥ = x o ¢ alors que la seconde donnera r(X,Y,¢¥) = p < g — dim X. Pour
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construire ¥ nous considérons le diagramme suivant a lignes exactes (voisin de celui
utilisé dans la démonstration du lemme 2.1 mais en termes purement algébriques ici)
o ¢1: X — @(X) est le morphisme induit par ¢ :

o7 (Tpx)/ 12 x) —= (0% Q) 0)lx —= 01 QL 3y /e —0

| l“ |

/% ——— QL ——= Qe —0

ot Ima = (Im%)|x. En passant aux fibres résiduelles en 7, nous trouvons un second
diagramme 2 lignes exactes

5/
E, —>E, El —0
Lo
- E Y —0

(o E' = (Ix/I3)y ® x(n) et ainsi de suite). Du fait que @(n) est un point
fermé, la premic¢re ligne provient d’une suite exacte sur x(p(n)) = C. En par-
ticulier, dans E; = F(A,@*le/(c) ®c «(n), 'image de 8] s’écrit Fi Q¢ «(n)
pour un sous-C-espace de F(A,go*le/C). Par suite, Im(a’ ¢ 8]) = F ®c «(n)
pour FF C T'(A, le /cc)' Il est loisible de choisir ¥ tel que Im“ = F et nous

avons alors visiblement Im“y C Im‘p et (Im%)), ® «(n) C Imé" comme prévu.
Il reste seulement 2 montrer la derniére négalité de 1'énoncé. D apres les défini-
tions, rge —rgy = dimIm% — dimIm“ = dimIma’ — dimIm(a’ o §]) <
dim £; —dim Imé| = dim £{. Maintenant cette dimension coincide avec le rang du
faisceau qug( xy/c @u point p(n) done, par hypothése de lissité, dim £ { = dim ¢(X)
et ceci donne la conclusion. H

Finalement des considérations sur les nombres (X, Y, ¢) nous permettront de
borner le degré de Y. Pour parler de degrés, nous fixons un faisceau inversible (rés
ample £ sur A. Le résultat que nous emploierons est le suivant.

Lemme 2.5. Soient ¢ € End(V) et Y un sous-schéma fermé intégre de X. Si
r(X,Y,p) < r(X, X, @) alors il existe un fermé irréductible strict X' de X contenant
Y tel que deg X' < (deg X)” otr v = 25,

Démonstration. Tl existe un entier N tel que Iy ® £2V estengendré par ses sections
globales : par exemple, il suffit que N majore la régularité de Castelnuovo—Mumftord
de X relativement 3 £ et d’aprés le théoréme 0.2 de [Hoa] la valeur N = (deg X }*
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avec A = 29mX conyvient. Maintenant, grice  la surjection Iy — Ix /I, nous
constatons que Im(d, ® «(n)) est engendré par les images des sections globales de
(Ix/ 13)® £ pour tout point 7 de X . En rajoutant les sections de Im ‘o ® £ il
existe une famille de sections (s;);er de T(X, (2} o)X ® L8V elle que (X, 7, ¢)
est le rang de la famille des (s;), ® «(7) sur k() pour tout 7. Quitte & permuter ces
sections, nous pouvons supposer que les p = (X, X, ¢) premicres sont libres sur
le corps des fonctions de X. ["hypothése r (X, Y, 9) < p impose alors qu’elles ne
le sont pas sur x(n) ou 7 = Y. En d’autres termes, la section s = 51 A -+ A S,
de A\P((22} olx ® £3NY est non nulle mais s’annule sur Y. Ce dernier faisceau

s’identifie (par liberté de le /C ) Aune somme directe de copies de £V donc il existe

une section de I'(A, £®*N) s’annulant sur ¥ mais non sur X. Par conséquent nous
pouvons choisir pour X’ une composante irréductible contenant ¥ de I’intersection de
X avec le lieu des zéros de cette section. Le dit lieu est de degré p N donc le théoreme
de Bézout montre deg X’ < pN(deg X) < g(deg X)**!. Pour avoir la borne de
1I’énoncé, il faut remarquer que (X, Y, p) < r(X, X, @) entraine 0 < dimX < g
(car r(A, Y, p) = rge pour tout ¥) et donc également deg X > 2 (sur une variété
abélienne, les seuls fermés de degré 1 sont les points). Nous concluons alors par
log, g +1+2871 <28, ]

Faisons ici une derni¢re remarque sur les degrés. Nous avons déja observé dans
la démonstration du lemme 2.2 que la somme X + .- + X de g copies de X est
toujours un translaté d’une sous-variété abélienne de A. Nous lui donnons un nom.

Définition 2.3. Nous notons (X) la plus petite sous-variété abélienne de A dont un
translaté contient X.

Nous estimons ensuite son degré.

Lemme 2.6. Pour tout sous-schéma fermé intégre X de A, nous avons deg{X) <
(deg X)? ot p = g°.

Démonstration. 1.estimation est évidente sidim X = 0. Sidim X = 1 nous vérifions
tout d’abord que deg(X’ + X) < 4%mX(deg X')(deg X) pour tout sous-schéma
fermé integre X’ de A. Cette formule ne faisant pas de doute si X' + X = X’ nous
pouvons supposer que X' x X — X' + X est génériquement fini et ceci permet
de majorer deg(X’ + X) par le nombre d’intersection (add*£) dmX'+1. x/ « x
(nous notons add, diff : 4 x A — A les morphismes d’addition et de différence). De
plus le fait que —X soit numériquement équivalent 3 X entraine (add* ) dmX'+1.
X' x X = (diff*£)y9mX'+1 . ¥’ » X et nous en déduisons 2deg(X’ + X) <
(add* £ @ diff* £y dmX'+1 . X’ » X, Enfin par le théoréme du cube le faisceau
(pTE® p53L£)%®? ® (add* £ ® diff*£)®~! est numériquement effectif sur 4 x A
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et donc nous avons deg(X’ + X) < 29X (p*f @ preydm X+l y X =
24im X7 (dim X+ 1)(deg X ") (deg X ) ce qui donne la formule annoncée. En raisonnant
alors par récurrence, nous obtenons que le degré de la somme de » copies de X est
au plus pn’=n (deg X)* < (deg X )”2, d’ou I’énoncé pour les courbes. Nous pouvons
ramener le cas général a celui-ci de la maniére suivante : si dim X > 2 et deg(X) >
(deg X)? nous désignons par F I'union (finie) des sous-variétés abéliennes B de (X))
avec deg B < (deg X )” et nous choisissons un point x € X. Bien slir nous avons
X C x4+ (X)mais X ¢ x + F. En coupant X par le lieu des z€ros de sections
suffisamment générales de £, nous pouvons trouver une courbe integre C C X avec
degC <deg X,x e CetC ¢ x+ F.Pourtant C C x + {C) et, par ce qui précede,
deg(C) < (degC)? < (deg X)? donc (C) C F. Cette contradiction conclut la
démonstration. O

Dans la suite, nous ne remplacerons pas p et v par leurs valeurs explicites pour
ne pas alourdir les formules.

3. Dimension des fibres

Dans cette partie, nous montrons que le lieu des points de X ou la dimension des
fibres d’un endomorphisme variable de A est anormalement grande est un fermé. Pour
pouvoir appliquer ce résultat a divers ensembles exceptionnels, nous le présentons de
maniere assez générale.

Si e est une application End(V') — N, nous posons

Zx(u) = {x € X | 3p € End(A) dim, X N~ (p(x)) > u(p)}.

Un théoréme classique nous dit qu’a ¢ fixé I’ensemble des x vérifiant ceci est fermé
(voir par exemple [BMZ]). Pour espérer conserver cette propriété lorsque tous les ¢
entrent en jeu, il nous faut assez naturellement imposer des conditions sur f. Nous
considérons 1’inégalité fondamentale suivante pour ¢, y € End(V') :

(¥) 0= pu(yop)—pulp) <189 —18 1 0°Q.

Elle suffit a assurer la fermeture.

Théoréeme 3.1. Si (x) est vérifiée pour tout couple (¢, y) € End(A) x End(V') alors
Zx (1) est fermé.

La démarche de démonstration de ce théoreme, basée sur les lemmes de la partie
précédente, ressemble beaucoup a celle du théoreme 1 de [BMZ]. Comme dans cet
article, nous montrons un résultat plus précis : dans la définition de Zx () il suffit
de faire intervenir un nombre fini de @.
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Pour quantifier ceci, remarquons que ¢ n’intervient qu’a travers la composante
neutre de son noyau car la composante de ¢! (p(x)) passant par x est x + Ker? ¢.
En outre, si Ker® ¢ = Ker” ¢/, I’existence de deux factorisations ¢’ = y o ¢ et
@ = y' o' dans End(V) montre que p{@) = u(p’) sous I’hypothése du théoréme.
Ceci était également le cas pour les notions dim (X ) et r(X, Y, ¢) introduites dans
la partie précédente : nous pourrions ne parler que de la variété abélienne Ker ¢.
En particulier, si nous bornons deg(Ker” ¢) alors nous pouvons nous contenter d’un
nombre fini de @.

De fagon cohérente avec celle de [BMZ] nous posons la terminologie suivante.

Définition 3.1. Un fermé irréductible ¥ de A estdit p-anormal s’il existe ¢ € End(A)
tel que dimp(Y) = OectdimY > u(p).

11 se trouve que Zy (j¢) est la réunion des fermés p-anormaux inclus dans X : si
Y C X est p-anormal alorspourx € Y onaY C X N~ Hp(x)) (car (YY) = p(x))
donc x € Zy () ; réciproquement si x € Zy (1) on choisit pour ¥ une composante
de dimension maximale passant par x de X N ¢~ {p(x)) et Y est clairement fi-
anormal.

Nous montrons une borne de degré pour les fermés p-anormaux de X qui sont
maximaux pour cette propriété (au sens de I’inclusion).

Proposition 3.2. Sous ’hypothese du théoréme, tout fermé p-anormal maximal ¥
de X vérifie

deg Y < (deg X))t * 1

Vérifions que ceci entraine le théoréme. Pour ¥ comme dans la proposition, nous
choisissons d’une part ¢ € End(A) avec dimg(Y ) = Oet dimY > u(p) et d’autre
part ¥ € End(A) avec Ker® v = (Y). Comme dim ¢(Y) = 0 entraine que ¥ est
contenu dans un translaté de Ker® ¢, nous avons Ker® ¢ ¢ Ker® ¢. Ceci force ¢ =
x © ¥ pour un certain y € End(V') donc pu{p) = u(y o) > u(y) d’aprés (x). On
endéduitdim ¥ (¥Y) = OetdimY > u(y). Enfin a ’aide de deg Ker® v < (deg Y)?
(voir lemme 2.6) 1l vient

)dimel

Zx(p) = {x € X | 3 € End(A) deg Ker W < (deg X)P(pv+1
et dimy X Ny~ (Y (x)) > n(y)}

qui est un fermé.

Le reste de cette partie est consacré a la démonstration de la proposition. Nous
supposons donc I’hypothese du théoreme vérifiée et nous procédons par récurrence sur
dim X . Lescasoudim X < 1 sont triviaux car ¥ coincide alors avec X (dimY = 0
estexclu par dimY > p(g) € N) et la borne de degré vaut.
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Nous supposons désormais dim X > 2 et que la proposition vaut pour tout X’
avec dim X’ < dim X . Pour clarifier, nous découpons le début de 1I’argument en trois
o . im X —2
lemmes. Nous écrivons A = (deg X )*(#v+1* .

Lemme 3.1. Soit Y un sous-schéma fermé intégre de X pour lequel il existe ¢ €
End(A) vérifiant dimY > u(p), dime(¥Y) = 0 er dimg(X) > dimX — dimY.
Alors il existe un sous-schéma fermé integre Y' de X contenant Y et jr-anormal tel
que degY’ < A.

Démonstration. D’apres le lemme 2.1 appliqué a Y nous avons #(Y,Y,¢) = g —
dim Y. Grice au lemme 2.3, il vient (X, Y, ¢) < g — dim Y. D’un autre c5té, en
combinant I"hypothése sur dim ¢(X) et le lemme 2.1 appliqué maintenant & X, nous
trouvons r(X, X,¢) — g +dim X > dim X — dim Y. Nous en déduisons aisément
r(X,Y,p) < r(X, X, @) desorte que le lemme 2.5 fournit X’ avec dim X’ < dim X,
Y € X' € X etdegX’ < (degX)'. Ensuite, le fermé Y, étant j-anormal, est
contenu dans un fermé p-anormal maximal Y’ de X’. Par hypothése de récurrence

deg Y’ < (deg X")(Pr+ D™ X1 < A 0

Nous remplagons maintenant la condition dim ¢(X) > dim X — dim Y par une
hypothese de lissité.

Lemme 3.2. Soit Y un sous-schéma fermé intégre de X pour lequel il existe ¢ €
End(A) tel qgue dimY > p(p) et (Y') est un point lisse de p(X ). Alors il existe un
sous-schéma fermé integre Y' de X contenant Y et pi-anormal tel que deg Y’ < A.

Démonstration. Nous pouvons supposer dim ¢(X) < dimX — dimY car sinon
le lemme précédent suffit. Nous appliquons alors le lemme 2.4 qui nous donne
Vv = yop € End(V)avec r(X,Y,¥) < g —dimX etrgy > rgp — dim g(X).
Si jamais (X, Y,¥) < r(X, X, ) alors nous concluons exactement comme dans
la démonstration précédente avec le lemme 2.5. Dans le cas contraire, nous avons
r(X,X,¢¥) < g —dimX dou (lemme 2.1) dimy(X) = 0. Ici le lemme 2.2
entre en jeu et montre que nous pouvons écrire v = x' o ¢’ avec ¢’ € End(A)
et dim ¢’ (X') = 0. Nous tirons de ()

rgg +pulp) ey +p@) et u(y) > ple).
En combinant ceci et les inégalités
dimY > u{p), rgy >rge —dimep(X) et dime(X) <dimX —dimY,

nous voyons apparaitre dim X > u(e’). Ainsi X est p-anormal donc V' = X
convient. O



848 G. Rémond CMH

Notre troisieme €tape est, elle, indépendante de la partie précédente.

Lemme 3.3. Soient ¢, € End(A) et Y, Z deux sous-schémas fermés intégres de
X de sorte que dimY = dimZ et dimg(Y) = dimp(Z) = dimy(Z) = 0.
On suppose en outre dimp(X) = dim X — dimY et que Y est une composante
irréductible de X N ¢~ (p(Y)). Alors dim v (Y) = 0.

Démonstration. Nous considérons (¢,¥): A — A x A et sa restriction f a X.
Comme f(Z) estun point, la dimension relative de f estau moins dim Z = dim Y.
Autrement dit nous avons dim f(X) < dimX — dimY = dimg(X). Comme il
y a un morphisme surjectif évident f(X) — @(X), ces deux schémas ont en fait
méme dimension et donc la dimension relative de f est dim Y. Ecrivons maintenant
X N YY) = Y US ou S est un fermé ne contenant pas ¥ (I’union des
autres composantes irréductibles par exemple) et choisissons y € ¥ avecy ¢ S.
Considérons enfin une composante irréductible Y de £ ~1( (y)) contenant y. Puisque
f(¥) = f(y) nous avons «a fortiori p(Y) = ¢(y) = ¢(¥Y)donc Y C Y U S.
L’inclusion ¥ C S est interdite par y € Y donc Y C Y. Par ailleurs, en tant que
composante irréductible d’une fibre de f, le fermé Y est de dimension au moins
égale a la dimension relative de ce morphisme. Cect signifie dim Y > dim Y et donc
Y = Y. Nous en déduisons f(Y) = f(v) puis ¥ (¥) = ¥ (y) par projection. [

Nous terminons maintenant la démonstration de la proposition. Soit donc ¥ un
fermé p-anormal maximal de X et fixons ¢ € End(A) avec dimY > u(p) et
dim (Y ) = 0. Si nous avons dim @(X) > dim X — dim Y alors le lemme 3.1 nous
permet de conclure immédiatement : il vient en effet Y = Y/ par maximalité et donc
degY < A ce qui est inférieur a la borne de la proposition.

Supposons donc dimg(X) < dim X — dim Y. Ceci signifie que la dimension
relative de @|x est au moins dim Y mais nous avons nécessairement égalité car ¥ est
composante d’une fibre de ¢|x par maximalité : toute composante de X N~ (p(Y))
de dimension au moins dim Y > u(g) est automatiquement g-anormale. Nous pou-
vons donc trouver un ouvert U non vide de ¢(X) tel que toutes les fibres des points
de U soient équidimensionnelles de dimension dim ¥ . Quitte a restreindre cet ouvert,
nous le supposons contenu dans le licu lisse de ¢ (X ). De cette fagon, si u € U et si
Z est une composante irréductible de X N ¢~ (), le lemme 3.2 s’applique & Z (car
dmZ = dimY > u(e) et o(Z) = u est lisse). Tout tel Z est donc contenu dans
un Z’ p-anormal avec deg Z” < A. En vertu de la majoration deg(Z’) < A?, la va-
riété abélienne (Z') appartient a un ensemble fini (indépendant de Z). Nous pouvons
donc choisir V1, ..., ¥, € End(A) de sorte que {(Z’) soit I’'un des Ker” Yy (et nous
imposons que tout Ker? y; apparaisse effectivement de cette facon). Par I’argqument
donné immédiatement aprés 1’énoncé de la propostion, nous avons dim Z’ > . (yr;)
comme conséquence de ().
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Appliquons enfin notre lemme 3.3 Y, Z, ¢, ;. Nous avons bien dim 4, (Z) = 0
car Z C Z' est contenu dans un translaté de (Z') = Ker® y; et Y est une composante
de X N o~ (e(Y)). De cette facon, il vient dim v, (Y) = 0.

Notre derniere tiche consiste & montrer que ¥ estcomposante de X Ny~ (y; (V)
pour au moins un indice 7. Si ce n’était pas le cas, nous aurions ¥ C ¥; C X N
%—1(%‘ (Y)) pour une certaine composante Y; avec dim¥; > dimY pour tout 7.
Pour que ce fermé ne contredise pas la maximalité de Y, il doit nécessairement
vérifier dim ¥; < (). Par suite le licu

Fi={xeX |dime X Ny (Yi(x) > (i)}

est un fermé strict de X. Il en va de méme de I'union finie ¥ = F; U --- U F.
Par ailleurs, nous avons vu dim Z’ > u(y;) qui donne Z < Z’ < F. Comme
Z peut &tre n’importe quelle composante d’une fibre au-dessus de U, nous aurions
X N Y (U) C F, ce qui contredit clairement la densité de U.

Notre Y est donc finalement composante d’une intersection de la forme X N
v 4+ Ker® v; donc le théoréme de Bézout montre deg ¥ < (deg X )(deg Ker® ;) <
(deg X )A? et ceci conclut la démonstration de la propostion en vertu de 1’inégalité
T e pv(pv |- l)dimX—z < (pv o 1)dimX—1.

Comme nous ’avons dit, cette preuve se rapproche beaucoup des arguments de
[BMZ] (la démonstration du lemme 3.3 en particulier est presque identique a un
passage de ce texte). Toutefois, a la différence de cet article, nous procédons en un
seul temps en raisonnant sur le degré de Y plutdt que sur le degré d’un ¢ tel que
dimg(Y) = 0.

4. Ensembles exceptionnels

Dans cette partie, nous établissons le théoréme 1.4 en montrant que chacun des
ensembles qui nous intéressent s’écrit sous la forme Zyx (1) étudiée dans la partie
précédente et donc est fermé. Nous obtiendrons aussi de cette fagon les différentes
inclusions de I’énoncé en utilisant le fait évident sur la définition que si x > p” alors
Zx(n) C Zx ().

Notre tache consiste donc a définir trois fonctions w. Ici encore, elles s’inscrivent
dans un cadre commun. Nous considérons un entier r avec 0 < r < g et un sous-
anneau (0 C End(V') auxquels nous associons la fonction pe : End(V) — N
définie par

0 sirge > r,

po.r{p) = 3 inf rgg’ —1g@ — 1 sinon.
(¢r,¢")EENd(V)x O

e=vrop’ et rgp’>r
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On notera que la définition a bien un sens car dans le second casonarg ¢’ > r >
rg @ doncrg’ —rge — 1 > 0 : on prend bien I’infimum d’une partie de N et elle
n’est pas vide car le couple (, ¢') = (¢,idy) convient toujours en vertu de g > r.
Pour deux sous-anneaux O et ¥’ nous avons immédiatement

O CO = po,=po, = Zx(po.r) CZx(no ).

Il nous reste a examiner la condition () apparaissant dans la partic précédente. Nous
I’obtenons moyennant une hypothese supplémentaire sur ©.

Lemme 4.1. Si tout idéal a gauche de O est monogeéne alors la fonction pig » satisfait
(*) pour tous ¢ € O et y € End(V).

Démonstration. Nous notons ici simplement 4 = e .. Nous vérifions d’abord
wixop)—plp) <rge—t1g yop.Siu(yop) =0,ceciestclaircarrg yop < rge.
Sip(yee)> 0etrg(p) > r, nous choisissons simplement ¢ = yetg' = ¢ € O
dans I’infimum définissant p( y o) et trouvons u{yop) < rgp—rg yop— 1 qui donne
le résultat. Si maintenant rg y o ¢ < rg@ < r, nous choisissons un couple (1, ¢’)
réalisant I’infimum dans la définition de () de sorte que pu(p) =rg¢’ —1g9 —1;
le simple fait d’écrire y o = (yo )o@’ montre u(yoc) <rge’ —1g yop—1=
g — 12 y o @ — p(w) : c’est notre résultat.

Dans un deuxiéme temps, nous montrons u{g) < p{yee).Laencore,iln’y arien
a faire si u (@) = O donc nous pouvons supposerrg yop < rg ¢ < r.Nous choisissons
celte fois-ci un couple (1, ¢’y réalisant I’ infimum pour u(y o ¢) : nous avons y op =
Vo, € @,rge = retu(yop) =rge —rgyoqp— 1. Par hypothése, I'idéal
O+ O de @ estmonogene ; nous I’ écrivons Q" avec ¢” € O. En particulier, nous
pouvons écrire ¢ = " o p” qui montre rg ¢ > rg ¢’ > r et = Y’ o’ qui montre
i) < rgp”—rg p—1pardéfinitionde 11 (). Encomparant avec la valeur de p{ yop),
il nous suffira de montrer rg ¢” < rg@ + rg ¢’ — rg x c ¢ pour conclure. Or I’égalité
Op+ Q¢ = Op” nous donne encore une relation ¢ = y1op + y2 0@’ qui entraing
Ker ¢ N Ker ¢’ C Ker ¢”. Comme par ailleurs y c ¢ = ¥ o ¢’ implique facilement
Ker ¢ + Ker ¢’ C Ker y @ ¢, nous trouvons rg ¢” +rg y o ¢ = 2g — dimKer ¢ —
dimKer y o ¢ < 2g — dim(Ker ¢ N Ker ¢’) — dim(Ker ¢ + Ker¢') = 1g¢ +1rg¢’
et le lemme est démontré. [

Disons tout de suite a quels anneaux nous appliquerons ceci.

Lemme 4.2. Dans chacun des trois anneaux End(A)® Q C End(A)®R C End(V),
tout idéal a gauche est monogéne.

Démonstration. Chacun est produit d’anneaux de matrices sur des corps (non néces-
sairement commutatifs pour les deux premiers) : voir par exemple [Mu, p. 174]. O
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Comme End(A4) est contenu dans chacun des trois anneaux ci-dessus, nous avons
bien, par le théoreme 3.1 et ces deux lemmes, trois fermés emboités

Zx (Uend()20.r) C Zx (enda(eR.r) C Zx (UEna(v).r)

et 1l ne reste plus qu’a les identifier aux ensembles exceptionnels du théoréme 1.4.
C’est immédiat pour le dernier, facile pour le premier mais plus délicat pour le second.
Nous procédons par ordre croissant de difficulté.

Lemme 4.3. Nous avons Zy (flpna(v).r) = Z)(frzm

Démonstration. Si1’on se reporte a la définition rappelée dans I'introduction, 1’on
constate que Z)((i Zm est déja écrit sous la forme Zy () ou p est la fonction don-
née par u(p) = max(0,r — 1 — rgp). Vérifions simplement jipna(vy,, = M. Si
rg ¢ > r,I’égalité est claire. Sinon il suffit de voir que 1’on peut choisir dans I’ infimum
rge’ = r . on se contente de fixer un sous-espace £ de Ker ¢ de dimension g — r
et I’on impose Ker ' = E de fagon a ce que 'inclusion Ker ¢" € Ker ¢ donne la
factorisation ¢ = i o ¢’. O

Nous en venons i Z 3@ Par définition ([R2, p. 319]) il s agit de 1’union de tous
les fermés 1rreduct1bles de X qui ne sont pas r-Q-supertransverses. En outre un
fermé irréductible ¥ est r-Q-supertransverse si et seulement si ([R2, lemme 7.2] et
la remarque qui le suit) pour toute sous-variélé abélienne B de A de codimension
au moins 7 et toute sous-variété abélienne B’ de A contenant strictement B on a
dimY + B' >dimY + B =dimY + dim B.

Lemme 4.4. Nous avons flgnad).r = HEnd()2Q.r € ZX (UEnda).r) = Z)((r?@

Démonstration. 1. égalité des fonctions pu résulte du fait que si I’on peut écrire ¢ =
Voo @ avec ¢ € End(4) ® Q alors ¢ = (%W) o (N¢') pour un certain entier
N € N\ {0} tel que N¢' € End(A).

Si ¢ € End(A) et B = Ker” ¢ alors pour tout fermé Y irréductible nous avons
dimY + B = dim¢(Y )} + dim B etdim B = g — rg ¢. Par conséquent la condition
que Y est r-Q-supertransverse peut se traduire par les deux conditions suivantes (faire
B = Ker’ p et B’ = Ker" yr).

(a) Pourtout ¢ € End(A) avecrge > ronadime(Y) =dimY.
(b) Pour toutyr € End(A)tel qu’il existe ¢ € End(A), y € End(V) avecyy = yop,
rgp >retrgg >rgy,onadimy(Y) >dimY 4+ rgyy —rge.

Nous remarquons que, si (a) est vérifiée, alors (b) est automatiquement vraie
pour les ¥ tels que rgyr > r. Nous pouvons donc limiter (b) aux ¥ avec rgy <
r, ce qui permet de supprimer la condition rg ¢ > rgr. En outre puisque I'on a
toujours dim ¢(Y'} < dim Y, nous pouvons écrire deux conditions équivalentes a la
conjonction de (a) et (b) sous la forme suivante.
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(a’) Pourtout ¢ € End(A) avecrge > ronadime(Y) > dimY.
(b") Pour tout ¥ € End(A4) avecrg < rona

dimy(Y) > dimY + sup rg v —rg .
(x,9)EEnd(V)xEnd(A4)
Y=xo@ ct rge=r

Nous voyons ainsi apparaitre la fonction ;t = fignaca).r. En effet ces deux condi-
tions se réduisent purement et simplement a : Yo € End(A4), dime(Y) > dimY —
(). Par suite un point x appartient a Z 2@ si et seulement s’il existe ¢ € End(A)

et un fermé irréductible ¥ de X contenant x tel que dim(Y) < dimY — u(p).

Nous en déduisons I'inclusion Zx (i) C Z )((2@ car un fermé p-anormal vérifie

clairement cette condition. En sens contraire, I’'inégalité dim ¢(Y )} < dim Y — u(p)
signifie que la dimension relative d du morphisme restreint ¥ — ¢(Y') vérifie d >
(). Comme toutes les composantes des fibres de ce morphisme sont de dimension

au moins d, elles sont p-anormales donc ¥ C Zy(p) puis par union Z)((r 2@ C

Zx (). ]

I nous reste a traiter de Z )((r ) Nous commengons par revenir sur la définition rappe-
1ée dans I’ introduction (voir aussi [R2, p. 319]). Celle-ci fait intervenir le ¢cone Z i (A)
des diviseurs effectifs a coefficients réels sur A modulo équivalence numérique. Ici
nous préférons mettre 1’accent sur les endomorphismes aussi utiliserons-nous le fait
(IR2, lemme 7.1]) que, pour un faisceau inversible ample £ sur A désormais fixé,

ZL(A) ={p*L | p € End(4) ® R}

(I’application quadratique End(A4) — NS(A), £ > p*L s’étend en End(4) R —
NS(A) ® R). Avec cette reformulation, la définition §’exprime comme suit :

(1) Z )((r ) est 1"union de tous les fermés irréductibles de X qui ne sont pas r-super-
transverses ;

(2) unfermé irréductible Y de X est dit r-supertransverse si pour tous ¢, ¢1, ¢, dans
End(4) ® Reta € N vérifiantrge > r, £ = o7 L + 5L etrgg; — 1 <
a <dimY ona (p*E)? - (piL)ydm¥—a.y > 0

Notre premiere tiche consiste a reformuler la condition sur le nombre d’intersec-
tions en termes des entiers dim (Y) et dim ¢, (Y') définis dans la partie 2 (en vue de
se rapprocher des assertions (a) et (b) apparues dans la démonstration précédente).
Nous transitons par une intégrale.

Nous notons H: V x V — C la forme de Riemann de £ et écrivons H, pour la
forme hermitienne (v, v’) > H(p(v), p(v')) lorsque ¢ € End(V'). Nous désignons
par w = —Im H I'opposé de la partie imaginaire de H que nous voyons comme une
(1, 1)-forme de Kihler sur V ou sur A. De méme nous écrivons w, = —Im H,,.
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Dans les trois lemmes suivants un sous-schéma fermé integre ¥ de A est tem-
porairement fixé. Nous rappelons que m désigne la projection V — V/A = A.
Nous désignons par F' un domaine fondamental dans V' pour ce quotient et écrivons
Y == Y(Y)NF.

Lemme 4.5. Pour tous ¢, € End(A) ® R et touta € N ona
((p*x)a ’ (w*ct)-dlm Y—a 5 Y — [ a)(;\a A a)’l/;d]ﬂl Y—a'
Y

Démonstration. Pour tout faisceau N € NS(A) de forme de Riemann H y nous
avons N UMY Ly = [ opdmY = [ Adm Y car Ja forme wy = —Im Hy
correspond a la premiere classe de Chern de N (voir [Mu, p. 18]). En écrivant N =
a1 N1+ +adim y Namy dans NS(A) oua; € Z etendéveloppant les deux membres,
polyndomes homogenes de degré dim Y en les a;, puis en identifiant les coefficients
du produit ag - - - agim y 1l vient

eNll"'eNdimY-Y:‘/’\weNlA-‘-AweNdimY'
Y

En choisissant N; = ¢*£L sii < a et N; = Y* L sinon nous obtenons la formule
de I'énoncé si ¢, ¥ € End(A4) car la forme de Riemann de ¢* £ coincide avec H,,.
Ensuite cette identité polynomiale sur End(A4) s’étend a nouveau a End(4A) @R, O

Voici la traduction en termes de dimension.

Lemme 4.6. Soient ¢, € End(A) @ R. L'inégalité (p* ) ™Y .Y > 0est équiva-
lente adim (Y ) = dimY et, si elle est vérifice eta € N avec a < dim Y est donné,
Uinégalité (p* £y - (W* L)y ImY—a.y > 0 équivaur a dim(Y) > dimY — a.

Démonstration. Nous recouvrons un ouvert dense de ¥ par des ouverts lisses U tels
que ¢(U) est une variété lisse de dimension dim ¢(Y). Le nombre (p*£) 4mY .y
est somme des f;; w9 Y et, si ¢': U — @(U) est induit par ¢, alors od™¥ =
(@)Y (™YY Si dime(U) = dime(Y) < dimY alors cette forme est nulle ;
sinon ¢’est une forme volume sur U etdone [, w) 4™ ¥ > 0. Ceci montre la premicre
équivalence.

Pour 1a seconde, nous pouvons supposer que v (U) est également lisse de dimen-
sion dim v (Y¥') et montrer seulement [, w/* A a){p\‘“m}’_“ > (0 < dimy(Y) >
dimY — a. La encore, si dimy(Y) < dimY — a, la forme o’ 4%™Y =% provient
d’une variété de dimension strictement inférieure a son degré donc est nulle sur U, Si
dimy(Y) > dim ¥ — a, elle est au contraire non nulle : (w§™* )|y # 0. Comme
de son c6té (wy,)|r est non dégénérée (car sa puissance extérieure maximale est une

forme volume), nous en déduisons (wy A w§™ Y=ay|; # 0 d’ou le résultat. O
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Nous pouvons maintenant transformer la condition dans (2) a1’aide de dimensions.
Pour lui donner une forme aussi proche que possible de notre objectif, nous posons
pour ¢2 € End(A) ® R

E(p2) = {(p, 1) € End(A) ® R)* | p* L = T L + o3 L, 120 > r et g1 # 0}

et '
0 S1 1892 > 1,

flpa) = . .
inf rge; — 1 sinon.
(@.91)€E (p2)

Avec ces notations, nous avons la caractérisation suivante.

Lemme 4.7. Le fermé Y est r-supertransverse si et seulement si pour tout W €

End(A) @ Ronadimy(Y) = dimY — u(y).

Démonstration. Notons d’abord que dans (2) si rg ¢ > r nous pouvons toujours
choisir g3 = ¢, 91 = Oeta = dim Y de sorte que la condition contient en particulier
(p*£)dmY .y > 0 c’est-a-dire dim ¢(¥) = dim Y par le lemme précédent. Nous
pouvons donc utiliser la seconde équivalence de ce méme lemme pour dire que Y est
r-supertransverse si et seulement si

(3) pourtous ¢, ¢1.¢2 € End(A)®Reta € Navecrge > r, "L = o7 L+ ¢, L
etrge; — 1 <a < dimY nous avons dim¢3(Y) > dimY —a.

Par ailleurs affirmer dim (Y ) > dimY —a pour touta € N avecrge; — 1 <a <
dim Y revient simplement a dim ¢ (Y) > dim ¥ —max(0, rg ¢1 — 1). Ensuite comme
1 = O ne peut survenir que lorsque rg ¢> > r, la condition (3) est équivalente a

(4) pour tout g2 € End(4) ® R avec rgps > 7 on a dimga(Y) = dimY et
pour tout ¢» € End(A) ® R avec rges < r et tout (p,¢1) € E(p2) on a
dim g, (Y) > dimY — (rge; — 1).

Vu la définition de u, ceci est exactement 1’énoncé. O

[’étape suivante consiste a reconnaitre en g la fonction fipyq()gr,, annoncée
plus haut. Pour cela, nous avons besoin de faire intervenir la structure d’anneau de
End{A) ® R et ceci nous améne a utiliser le lemme matriciel élémentaire suivant.

Lemme 4.8. Soient n un entier, K ’un des trois corps R, CouH et M, P € M, (K)
deux matrices telles que Ker M C Ker P. ll existe M', U, N € M, (K) avec N2 =
N, PN =0, M' = UM, U inversible et 'M'M' = ‘NN + 'PP.

Démonstration. Nous notons G le supplémentaire orthogonal de Ker M dans Ker P
et choisissons pour N la matrice de la projection K™ — K" orthogonale sur G. Ainsi
N? = N et ‘N = N sont clairs tout comme PN = OcarImN = G C Ker P.
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Choisissons ensuite Q telle que 'Q = Q et 02 = ‘PP etposons M’ = N + Q.11
vient

‘MM ='NN+'00+'NO+'ON='NN+'PP+NQ + ON.

Or '‘ONQON = N'PPN = 0donc ON = Oet ‘NONQ = QONQ = 0 donc
NQ = 0. Enfin pour X € K" la formule obtenue montre

M'X =0 & 'MXMX =0 < 'NXNX + '‘PXPX =0

<S> NX=PX =0« XeKerPNKerN < X € Ker M.

Ainsi Ker M’ = Ker M et ceci montre I’existence de U. ]

Cet énoncé technique permet en fait de construire (¢, ¢1) € &(g2) avecrgy =
rg @1 + 12 @5 et donc de simplifier la fonction .

Lemme 4.9. Nous avons jt = [pna(4)QR, -

Démonstration. Pour abréger nous écrivons pour ¢, € End(4) ® R

Flp2) = {(g,¥) € (End(A) ® R) x (End(V)) | 92 =Y opetrge > r}.

L’examen des définitions de nos deux fonctions montre qu’il suffit d’établir, pour
gys <r,
inf T = inf g @ — 1 ¥3.

et o eweren oF 2P
Nous procédons par double inégalité. Considérons d’abord (¢, ¢1) € €(p2) tel que
1g @1 soit minimal. Puisque ¢* &£ = ¢ £ + ¢5 £ entraine rg ¢ < rg ¢ + rg @2 nous
avons rg ¢ > rg ¢ — rg @, et il suffit de vérifier qu’il existe ¥ avec ¢, = ¥ o @. Or
I’égalité dans NS(A) ® R se traduit par H, = H, + H,, doncpourv € V

veKergp < Hy(v,v) =0 Hy (v,v) = Hp,(v,v) =0=v € Kergs

et Ker ¢ C Ker ¢ nous donne bien I’existence de .

Pour 1’autre inégalité, nous considérons maintenant (¢, v¥) € F (p2) avec rg ¢
minimal. La forme positive Hy est dominée par un multiple de la forme définie
positive H donc il existe un réel ¢ > 0 tel que cHy, — H,, soit une forme positive.
Comme remplacer ¢ par un multiple non nul ne change rien ici, nous supposons
¢ = 1. La positivité de H, — H,, signifie p*£ — p5£ € Z! (A) donc il existe
¢1 € End(4) ® R avec ¢* £ = ¢T £ + ¢35 L. Ceci ne suffit pas pour conclure car
nous n’avons pas de contrdle sur le rang de ¢;. Mais End(4) ® R est isomorphe a
un produit d’anneaux de matrices sur R, C ou H donc ¢, ¢; et g2 correspondent a
des familles de matrices disons (M;), (N;) et (P;). Larelation ¢* £ = o7 £ + 5 &£
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s'écrit ‘M; M; = 'N;N; + 'P; P; (lorsque ’on choisit 1’isomorphisme pour que
I’involution de Rosati corresponde a la transconjugaison sur chaque facteur ; voir
[Mu, p. 208] et [R2, p. 343]) et implique Ker M; C Ker P;. Le lemme précédent
fournit donc des matrices M/, U; et N/ avec (Ni’)2 =N/, PN =0, M = U M;,
U; inversible et ‘M/M; = 'N/N; + "P; P;. En voyant les familles (M), (U) et
(N/) comme ¢, u,¢; € End(A) ® R nous avons ¢} c 9] = ¢}, g2 0 91 = 0,
@' = u o, uinversible et (¢")* £ = ()" L + 5 L. Voyons que (¢’, ¢]) € E(p2)
etrg @] = 18 ¢ — 18 @2, ce qui donnera la conclusion.

Comme u € End(1V') est un automorphisme nous avons rg ¢’ = rgp > r. De
plus @] est non nul car sinon (¢')*&£ = 3 £ donne rgp; = 189’ = 12¢ > r
contrairement a notre hypothese rg ¢, < r. Ceci montre (¢’, ) € &(g2). Comme
plus haut, Hy = H, + Hy, donne Ker ¢’ = Kerg] N Kery,. Enfinsix € V
nous écrivons x = ¢} (x) + (x — ¢7(x)) avec ¢](x) € Ker gy car gy 0 ¢ = Oet
x — pi{x) € Kerg] car 9] o 9] = ¢]. Ainsi V = Ker ¢] + Ker g2 de sorte que
Ker ¢’ = Ker ¢ N Ker ¢, donne bien rg ¢" = rg ¢ + 1g ¢. O

Si nous rassemblons les résultats obtenus jusqu’ici, nous voyons que Z g ) est

1I’union des fermés irréductibles ¥ de X pour lesquels il existe ¢ € End(A)® R tel que
dime(Y) <dimY — 4R, (@). Pour conclure, il nous reste essentiellement 2
voir que I’on peut remplacer ¢ € End(A)QR par ¢ € End(A) etc’estici qu’intervient
le théoreme d’Ax, sous la forme suivante.

Lemme 4.10. Soient W un sous-espace vectoriel de V, U un ouvert de A pour la
topologie complexe, Z une sous-variété analytique irréductible de U et Y 'adhérence
de Zariski de Z dans A. Si n=1(Z) C W + A il existe un sous-espace vectoriel W'
deVielque W CW a Y (¥Y)YCW + AetdimW’' <dimW + dimY —dim Z.

Démonstration. C’est le théoreme 1 de [Ax] appliqué au groupe algébrique A (noté
G'), au sous-groupe analytique connexe (W) (noté A) et a la sous-variété Z (notée
K). 11 fournit un sous-groupe analytique (noté B) que nous écrivons ici z(W'). 0O

Finalement nous en déduisons le résultat cherché.

Théoréme 4.1. Nous avons Z)((r) = Zx (MEnd(HRR, 7 )-

Démonstration. Notons anouveau it = flgna4)eR.r- L'inclusion Zy () C Z )((r ) est
claire ; un fermé Y p-anormal vérifie la condition du lemme 4.7. Soit maintenant
x € Vtel que m(x) € ZJ). Par définition de dim p(-), il existe ¢ € End(4) ® R tel
que dim, (771(X) N (x + Kerg)) > u(p). Nous considérons un voisinage ouvert
U de x tel que U — 7 (U) est un isomorphisme puis une composante irréductible Z
de 771(X) N (x + Ker ¢) N U contenant x avec dim Z > (). Soit ¥ 1’adhérence
de 7(Z) dans X pour la topologie de Zariski. Nous appliquons le lemme précédent a
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W = Kerg,n(U—x),n(Z—x)et Y —m(x). [l montre qu’il existe W’ = Ker v (ol
Y € End(V))telque W € W/, dimy(Y) =0etrgy > 1ggp +dimZ —dimY >
rg e + pu(p) —dim Y. Par (%) nous majorons rg¢ + (@) > rgyr + u{yr) (car
Ker iy < Ker ¢ donne ¢ = y oy et le lemme 4.1 autorise ¢ € End(A4} ® R) donc il
vient dim Y > p(y). Le lemme 2.2 permet alors de remplacer 1 par un élément de
End(A) et donc Y est p-anormal. Nous concluons ¥ C Zy (p1) puis w(x) € Zx (i)
qui donne bien la seconde inclusion. [

Le théoréme 1.4 est maintenant enticrement démontré. Terminons en déduisant les
théoremes 1.5 et 1.3. Pour le premier, nous avons plus précisément I’énoncé suivant.

Proposition 4.2. Les assertions suivantes sont équivalentes.
(dim X +1) .
(1y Z ¥ a5 7 X
(2) X est géométriquement non dégénérée ;

3) pour toute sous-variété abélienne B de A avec deg B < (deg X)*° dim X ona:
(3) p g B < (deg X)
dim X + B = min(dim X + dim B, dim A).

Démonstration. Ecrivons I = [End(V).dim X+1 Ppuis pour ¥ € End(A) nous no-
tons Zy (i, ¥) le fermé {x € X | dim, X N ¥~ 1(¥(x)) > ()} Une égalité
Zx(u, ) = X dit que la dimension de toutes les fibres de X — ¥ (X) est au
moins u() + 1; elle signifie donc que la dimension relative de ce morphisme
est au moins u() + 1 c’est-a-dire dimy(X) < dimX — u(y) — 1. Mainte-
nant x(¥) = max(0,dim X — rgy) d’ott dimX — p(y) = min(dim X, rg ).
Enfin nous écrivons B = Ker” y pour avoir rgyy = g — dim B et dimy(X) =
dim(X 4+ B}/B = dim(X + B) — dim B. Par suite Zx{(u, ) = X est équivalent
a:dimX 4+ B <min(dim X 4+ dim B, g) — 1.

Comme Z ;1 - 0 g x (1) est’union de tous les Zx (y¢, ¥ ) on constate facile-
ment (1) — (i). Ensuite (2) = (3) est tautologique et (3) = (1) est conséquence
du fait (voir partie 3) que Zy (44) est une union finie de Zy (i, ¥ ) pour ¥ € End(A)
vérifiant deg Ker® ¢ < (deg X)? ol g = p(pv + 1)ImX—1 < 4gdm X O

Le résultat de [R1] combing avec celui de [C] (qui démontre la conjecture 1.1 de
[R1] dans le cas avec multiplications complexes) nous donne le fait suivant.

Proposition 4.3. Si A est a mutliplications complexes, pour tout choix de hauteur
sur A(Q) et tout réel H I’ensemble

(Pe(X@\Z{P) N (@ + ANy | H(P) < H)

est fin.
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Comme, de son cdté, le théoréme principal de [R2] montre que (X (Q) \ Z )(; )) N
(T + A1) est de hauteur bornée, on en déduit avec le théoréme 1.4 que si A est 2

multiplications complexes alors (X(Q) \ Z )((r zn) N (T + A1) est fini et donc si X

est géométriquement non dégénéré il vient avec la proposition 4.2 que X(Q) N (T +
Aldim X+11y nact pas dense dans X : ¢’est le théoréme 1.3.

5. Exemples

Nous illustrons brievement dans cette partie le fait qu’aucune des inclusions
Z}((’: 3@ C Z)((r ) ¢ Z)({r, zm n’est en général une égalité. Cela nous permet aussi de
présenter quelques calculs de fonctions .

Nous nous plagons dans le cas ou A = A2 avec Ag une variété abélienne simple
de dimension n > 2 (donc g = 2n). Nous considérons un fermé irréductible Y7 de
Adelaforme Yy = Yy x {0} ou 0 € ¥y C Ay avec la condition 0 < dimY, < n.
Nous choisissons ensuite un sous-schéma fermé X de A de dimension n contenant
Y1 mais différent de Ay x {O}.

Nous remarquons que cette construction entraine que X n’est contenu dans au-
cun translaté de sous-variété abélienne stricte de A. En effet, pour une telle B, une
inclusion X C x 4+ B impliquerait X C B car0 € X et donc ¥; C B. Mais il est
clair que seul B = Ay x {0} contient Y; donc nous aurions X C Ay x {0} puis par
dimension X = Ay x {0}, ce que nous avons exclu,

Fvaluons maintenant les différentes fonctions o pour ¥ = n + 1. Nous notons
1 = MEnd(4)@Q.r et 2 = [iEna(y),r. Par la formule générale, nous avons fia(¢) =
max(0,n — rg ¢). Maintenant End(A) ® Q est de la forme M, (D) pour un certain
corps D et donc les éléments de End(A4) ® Q ont pour rang 0, n ou 2n. Par suite
dans la définition de z¢; on ne peut donc choisir que rg ¢” = 2rn et ceci conduit a la
formule y¢1(¢) = max(0, 2n — 1 — rg ¢). Autrement dit, pour ¢ € End(A),

sirgy =2n pa(p) =0 p2lp) =0,

sitgp=n  pilp)=n—1 pap) =0,

sirge =0 ui(p)=2n—1 pa(p) =n.
Quels sont les fermés g q-anormaux de X ? Laconditiondim ¥ > 1 (@) ne peut bien
stir avoir licu pour 121 () = 2n—1;lorsque p1{¢) = n—1elle entraine ¥ = X mais

X ne peut pas vérifier dim ¢(X) = 0 avecrgp = n car X n’est pas contenu dans un
translaté de Ker” ¢ par construction ; enfinsitge = 2netdimY > p1(p) = Oona

dimg(Y) = dimY > 0. Finalement Z )y = Zx (111) = #.
Par ailleurs Y; est clairement gep-anormal : en choisissant pour ¢: A7 — AJ
la projection sur le deuxi¢me facteur, nous trouvons dime(Y;) = Oet dimY; >

pa(p) = 0. Ainsi Zy), = Zx (12) # 0.
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Reste a déterminer Z)((r ) Ici la réponse dépend de la nature de EndAy. Nous
envisageons sculement deux cas extrémes. Supposons tout d’abord EndAy = Z de
sorte que End(A) ® R >~ M, (R). Dans ce cas, les éléments de End(A4) ® R n’ont
cux aussi que (rois rangs possibles : 0, n ou 2x. Par suite rg ¢’ = 2n est ¢galement
forcé dans la définition de ppna()gr.r done cette fonction coincide avec pq. Ici
2 = B R B

Si au contraire Aq est a multiplications complexes, End(A4y) ® R ~ C” donc
End{A)®R ~ M,{(C)". On vérifie immédiatement que dans cet anneau (comme dans
End(V) >~ M,,(C)) pour tout élément ¢ de rang au plus r — 1 il existe un élément

¢ de rang r et une factorisation ¢ = ¥ o ¢’. Par conséquent (g eR.r = 2 et

nous avons cette fois-ci Zy r) o7 Zx (r) Z)((r Zm

Ceci montre que les mclusmns peuvent étre strictes. Dans le sens opposé, nous
avons égalité pour certaines classes de variétés abéliennes.

Lemme 5.1. Soient A une variété abélienne, X un sous-schéma fermé integre de A
et v un entier avec O < r < g = dim A.

(1) Si Aestisogene aun produitde courbes elliptiques alors Z)((rz@ = Z(r) Z)((rzm

(2) Si A est a multiplications complexes alors Z )((r )=z )((r Zm

Démonstration. Sous I’hypothése de (1) 1’¢égalité Z)((’: 2@ = Z )((r Zm apparait dans [R2,
lemme 1.4]. Pour (2) la preuve est identique a celle faite ci-dessus dans la fin de
I’exemple : End(A) ® R est de la forme ]_[f=1 M, (C) avec Zle n; = g donc on
peut toujours choisir rg ¢’ = r. O]

0. Finitude et fermeture

Dans cette partie, nous nous intéressons aux ensembles Z )(( )1“ etaux questions 1 et 2

de I'introduction. Comme plus haut, nous nous plagons dans un cadre plus général.
Pour une fonction p: End(V) — N et S une partie quelconque de A(C), nous
disons qu'un fermé irréductible Y est .S-p-anormal s’il existe ¢ € End(A) vérifiant
dime(Y) =0,dimY > u(p)et o(Y) € p(S).

Ceci permet de reformuler la définition de Z )((r )1" : c’est 'union des fermés I'gy-
MEnd(v),--anormaux de X (voir introduction et [ﬁl, page 531]). Pour I' = 0O nous
avons [y, = A(C)yos et nous retrouvons pour » = dim X + 1 la notion de fermé
torsion-anormal décrite dans [BMZ] pour les tores. En outre la terminologie précé-
dente de p-anormal se retrouve en prenant S = A(C).

C’est un probleme ouvert de montrer que 1’'union des fermés S-p-anormaux de
X estun fermé mais nous pouvons tout de méme montrer qu un fermé S-p-anormal
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maximal est de degré borné. Ceci fait I’objet du théoreme ci-dessous que nous €non-
cerons apres quelques compléments sur les fonctions ji.

Dans la suite, nous supposerons comme dans la partie 3 que x: End(V) — N
vérifie () pour (g, ¥) € End(A) x End(1V'). Par conséquent nous pouvons associcr
a toute sous-variété abélienne B de A I'entier p(B) tel que u(B) = p(p) pour tout
¢ € End(A) avec B = Ker” ¢. Avec cette notation () entraine que si B C B’ sont
deux sous-variétés abéliennes de A alors

0 < u(B") — u(B) < dim B’ — dim B.

Par ailleurs, en reformulant la définition ci-dessus, nous voyons que ¥ est S-u-
anormal si et seulement §’1l existe s € S et une sous-variété abélienne B de A avec
Y Cs+ BetdimY > u(B).

Voyons maintenant comment restreindre une fonction p a une sous-variété abé-
lienne,

Lemme 6.1. Soient A" = V'/V'NAet A" = V" /V"NA deux sous-variéiés abélien-
nesde A =V/A telles que V' N V" = 0et pr: End(V) — N une fonction vérifiant
(%) pour (¢, y) € End(A) x End(V). Il existe une fonction p': End(V'y — N
vérifiant (x) pour (¢, x) € End(A") x End(V") de sorte que pour toute sous-variété
abélienne B de A" on ait ;' (B) = u(B + A”).

Démonstration. Notons W un supplémentaire de V' @& V" dans V de sorte que
W/ W N A soit une sous-variété abélienne de A. Nous choisissons N € N \ {0} tel
que NA C V' NA®V"NA®W NA.Nous associons a ¢ € End(V') le morphisme
NpxOxidw): V'xV"xW — V'xV"xW vucomme élément de End (V') et posons
(W {p) = pu(N(px0xidw)). Sip € End(A") nous avons N(p x0 xidw) € End(A)
grice a ’hypothése sur N, De plus Ker (N (¢ x0xid)) = Ker ¢ + V" ¢ce qui donne la
formule ' (B) = u(B+ A”).Enfinsi y € End(V’) nous avons y x0xid € End(V)
et (y xOxidy) e N(p x0 xidw) = N(y o x 0 xidw). De cette fagon, (*) pour
(1’ suit de (x) pour p avec la remarque rg(N(p x 0 xidy)) =rge +dim W, O

Nous rappelons que des entiers v et p ont été associés a une variété abélienne A
(voir fin de la partic 2). Nous utiliserons ci-dessous vp < vy et pp < py pour toute
sous-variété abélienne B de A.

Apres cette remarque, notre résultat est le suivant.

Théoréme 6.1. Pour toute variété abélienne polarisée (A, £), toute partie S de A(C),
tout sous-schéma fermé integre X de A, toute fonction p: End(A) — N satisfaisant
() pour (@, y) € End(A) x End(V) et tout fermé S-p-anormal maximal ¥ de X
ona

deg Y S (deg X)(pv+1)dimX(dﬁnX—l)/2'
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Démonstration. Nous montrons I’énoncé par récurrence sur dim X. Si dim X < 1,
nous avons ¥ = X etlerésultat est clair. Supposons donc dim X > 2. Lefermé ¥ est
en particulier p-anormal donc contenu dans un fermé Y; p-anormal maximal dans X .
Par la proposition 3.2, nous avons deg Y] < (deg X )%= ¥ ou a, désigne (pv+1)"" 1.
Sijamais Y; # X alors Y est .S-p-anormal maximal dans Y, donc par hypothése de
récurrence deg ¥ < (deg ¥1)Pim 1 od B, estici (pv+ 1)"@=1/2 Nous en déduisons
deg ¥ < (deg X)%im XPamyy Comme Baimy, < Baim X—1 €L %aim X Baim X—1 = Paim X
ceci donne deg ¥ < (deg X )Pan X qui est 1a formule cherchée.

Sinon nous avons Y| = X ce qui signifie qu’il existe une sous-variété abélienne
Bde Aetx € A(C)avec X C x + Betdim X > p(B). Il ne colite rien de choisir
x € Y.Enoutre X C x + B donne (X) < B donc par (%) w(B) > pu({X)) :
cecl montre que nous pouvons supposer B = {X) sans rien changer. Maintenant
I"hypothése sur ¥ donne 1’existence d une sous-variété abélienne G de Actdes € S
avecY Cs+ GetdimY > pu(G). Puisque x € s+ Gnousavons s + G = x4+ G
doncY CXNx+G)C(x+B)N(x+ G)=x+(BNG). D’un autre ¢cdté
X Cx+B CY+B Cs+G+ B.Nousexaminons deux cas :sidim X > u(G+ B)
alors X est S-p-anormale donc ¥ = X par maximalit€ et I’énoncé vaut ; sinon nous
avons dim X < u(G + B).

Nous appliquons alors le lemme avec A = B. Pour A” nous choisissons une
sous-variété abélienne de G telle que G = (GN B)+ A” et A” N B fini. La fonction
p’ fournie par le lemme vérifie alors (G N B) = w(G) et W' (B) = p(B+ A”) =
(G + B). Ecrivons X' = X —xetY' =Y —x desorteque Y’ C X’ C B. Par
ce qui précede nous avons Y’ C BN G puis dimY’ > p'(B N G) d’une part et
dim X’ < u/(B) d’autre part. Ainsi Y’ est ¢«"-anormal (dans B) et X’ ne ’est pas car
(X'} = B est la seule sous-variété abélienne de B dont un translaté contient X",

Nous en déduisons que Y’ est contenu dans un fermé p’-anormal maximal Y, #
X' de X’. D’apres la proposition 3.2 appliquée dans B et grice a la remarque sur p
et v, nous trouvons deg ¥, < (deg X')%imx’, En posant Y2 = ¥, + x nous avons
degY; = degY> et deg X' = deg X. Maintenant ¥ est S-p-anormal maximal dans
Y, donc par récurrence deg Y < (deg Yg)Bdim 2 ¢t 'on conclut comme plus haut
avec Y. O

Pour alléger, nous appelons I'-r-anormaux plutdt que [gai-ftEna(v),--anormaux

les fermés intervenant dans la définition de Z )((r )F Voici comment la question 2 se
réduit a la question 1.

Théoréeme 6.2. Supposons que la question 1 admette une réponse positive dans tout
quotient d’une variété abélienne A. Alors, pour tous I et r, tout sous-schéma fermé
integre X de A ne contient qu’un nombre fini de fermés I -r -anormaux maximaux et,

en particulier, leur union Z )((r )F est un fermé.
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Démonstration. Nous procédons par récurrence sur dim X, les cas oo dim X < 1
étant triviaux comme d’habitude. Comme un quotient d’un quotient de A est un
quotient de A, nous pouvons supposer que la conclusion du théoreme vaut pour tout
sous-schéma fermé intégre X’ d’un quotient de A avec dim X’ < dim X — 1. Comme
[s4 est de rang fini, il ne colite rien de supposer I' = T',. Considérons donc un fermé
irréductible I'-r-anormal maximal ¥ de X . 1l existe donc une sous-variété abélienne
Gde AetyelNavecY C y+ G etdimY > max(0,r — 1 — codim G). En outre
d’apres le théoréme précédent B = (V') appartient 2 un ensemble fini de sous-variétés
abéliennes de A. Vu le résultat 2 montrer, nous pouvons supposer B fixée. Notons
¢: A — A/B le morphisme quotient et y" = ¢(Y'). Soit ensuite

Z ={xeX|dimy X Ng Yp(x)) >dimY}

qui est un fermé vérifiant ¥ C Z C X. De plus il y a un nombre fini de choix
pour Z donc pour ses composantes irréductibles. Si Z # X nous pouvons appliquer
I’hypothese derécurrence a une telle composante Z; de Z contenant ¥ etdans laquelle
Y est évidemment encore I"-r-anormal maximal. Cect montre que Y appartient a un
ensemble fini de fermés.

Examinons maintenant le cas ou Z = X. Ceci signifie exactement que la dimen-
sion relative de ¢|x est au moins dim ¥ et implique en particulier que dim ¢(X) <
dim X —1(cardim Y > 0). D’unautre c6té B C G donne codim ¢(G) = codim G >
r —dimY si bien qu'en notant #’ = r — dim ¥ nous avons ¢(G) C (4/B)FT et
done v € o(I') + (4/B)"]. Si nous écrivons

VY e (pCONZ8) ) N @)+ (4/B )y uzs)

nous voyons qu’en vertu de 1a question 1 et de I’hypothese de récurrence le membre
de droite est un fermé Z’ de p(X). Si Z' # @(X) nous pouvons raisonner avec
X Ne~Y(Z') comme avec Z ci-dessus et montrer que Y appartient a une liste finie
de fermés de X . Si Z’ = ¢(X) deux choses seulement peuvent se produire : ou bien
@(X) est ponctuel ou bien il est ¢(I")-r'-anormal (notons ici que @(I" s = @(I')).
Si p(X) estponctuel alors X C Y + B CY +G =y + G donc X est ['-7-
anormal et par maximalité de ¥ nous avons ¥ = X. Ici la liste finie { X } convient. Si
(X)) est (I )-r"-anormal il existe une sous-variété¢ abélienne G’ de A/B ety € '
tels que (X)) C @(y1) + G' et dimp(X) > max(0,r" — 1 — codim G'). Notons
G1 = ¢~ 1(G") de sorte que X C y; + G et codim G; = codim G'. Par dimension
relative, dim X > dimg(X) + dimY > max(0,r — 1 — codim G1) donc X est
['-r-anormal et a nouveau ¥ = X. O

Remarque : dans [R1] (ici proposition 4.3) on peut en fait remplacer Z )((r )F par
7 )((r 2@ voire Z )((r 2@,1“ union des Igyi-flrna(4),--anormaux done nos arguments montrent

la finitude de (X(Q) \ Z )((r )) N (T + AUy si A admet des multiplications complexes
(ou vérifie la conjecture 1.1 de [R1]).
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