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Intersection de sous-groupes et de sous-variétés III
Gaël Rémond

Abstract. We elucidate the structure of various exceptional subsets appearing in parts I and II
in order to prove new results on the Zilber–Pink conjecture for abelian varieties. In particular,
we obtain boundedness of height on the intersection of interest for all non-degenerate varieties
in a precise sense). The main idea to prove that our exceptional subsets are closed comes from

a result of Bombieri, Masser and Zannier on tori and we follow the same approach through
so-called anomalous subvarietiesbut we have to allow extra generality in the definition. We also
use in a crucial way a theorem of Ax on analytic subgroups of algebraic groups.

Mathematics Subject Classification 2000). 11G10, 11G50, 14K12.

Mots-Clefs. Variétés abéliennes, conjecture de Zilber–Pink.

1. Introduction

En avril 2005, R. Pink a formulé une conjecture sur les variétés deShimura mixtes
qui se spécialise en l’énoncé suivant sur les variétés abéliennes voir [P]).

Conjecture 1.1. SoientAune variété abélienne sur un corpsK de caractéristiquezéro
et X un sous-schéma fermé intègre de A qui n’est contenu dans aucun sous-schéma

en groupes de A différent de A. Alors l’ensemble

X.K/\ [dimXCdimG<dimA
G.K/;

où l’union porte sur les sous-schémas en groupes G de A vérifiant la condition de
dimension, n’est pas dense dans X.

Ceci constitue une version de la conjecture de Zilber–Pink sur les variétés
semiabéliennes. Pour la version due antérieurement àZilber 2002), on consultera [Z]ainsi
que [BMZ] où les auteurs examinent les liens entre ces conjectures et de nouvelles
variantes qui leur sont dues 2006). En particulier, les formulations de Zilber et de
Pink sont équivalentes dans le casdes tores. Ilconvient de préciser que cette famillede
problèmes trouve son origine dans un travail de E. Bombieri, D. Masser et U. Zannier
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de 1999 sur les tores qui prédate donc toutes les conjectures voir les références de

[BMZ]).
Dans les parties I et II de cette série d’articles, nous avons donné des résultats

partiels en direction de la conjecture 1.1 faisant intervenir divers ensembles
exceptionnels à enleveràX voir [R1] et [R2]). Nous précisons ici ces résultats en élucidant
les liens entre ces ensembles et en montrant qu’un certain nombre d’entre eux sont
fermés. Pour les autres faits connus sur ce problème, on se reportera à [BMZ] et [Ma]
pour les tores ainsi qu’à [Rat] pour les courbes dans les variétés abéliennes.

Pour énoncer nos résultats, nous introduisons quelques notations. Nous fixons A
et K comme dans la conjecture 1.1. Pour tout entier r avec 0 r dim A, nous
écrivons comme dans [R1]

AOEr

D [codimG r
G.K/

où G parcourt tous les sous-schémas en groupes de A de codimension au moins r.
La conjecture ci-dessus concerne donc X.K/ \ AOEdimXC1 Il se trouve qu’elle est

équivalente à la variante suivante avec un groupe voir [P]).

Conjecture 1.2. Soient X un sous-schéma fermé intègre de A qui n’est contenu dans

aucun translaté de sous-variété abélienne de A différente de A et un sous-groupe
de rang fini de A.K/. Alors X.K/\ C AOEdimXC1 / n’est pas dense dans X.

Tous les résultats connus à ce jour en direction de cette conjecture imposent une

condition plus forte sur X pour cette terminologie voir [Ran] et [D]).

Définition 1.1. On dit que X est géométriquement non dégénéré si pour toute
sousvariété abélienne B de A on a dim.X C B/ D min.dim X C dim B; dim A/.

Nous verrons aussi ci-dessous qu’il suffit de vérifier cette égalité pour un
ensemble fini de sous-variétés abéliennes B dépendant seulement du degré de X voir
proposition 4.2).

Ceci nous permet d’énoncer le résultat suivant démontré à la fin de la partie 4), qui
découle de l’étude des ensembles exceptionnels etd’unrésultat récent deM. Carrizosa
en direction du problème de Lehmer sur les variétés abéliennes voir [C]).

Théorème 1.3. Soient A une variété abélienne à multiplications complexes sur K D
xQ, X un sous-schéma fermé intègre de A géométriquement non dégénéré et un
sous-groupe de rang fini de A.K/. Alors X.K/ \ C AOEdimXC1 / n’est pas dense

dans X.

Signalons que P. Habegger [Hab] obtient ce théorème dans le cas particulier où

D 0 par des méthodes différentes de celles que nous présentons ici même s’il y a

plusieurs points de contact, comme l’application du théorème d’Ax, voir plus bas).
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Pour présenter les ingrédients intervenant dans le théorème 1.3, nous revenons
sur les ensembles définis dans les parties I et II. Tout d’abord, pour un sous-groupe
de A.K/, nous notons sat le groupe de division de End.A/ puis, pour un entier r
et un sous-schéma fermé intègre X de A, nous introduisons la partie Z r/

X; de X.K/
formée des points x pour lesquels il existe 2 sat et une sous-variété abélienne B
de A tels que

dimx X \ C B/ > max.0; r 1 codim B/:

Cet ensemble intervient dans [R1] voir page 531). Ici nous utilisons surtout l’union

Z r/
X;an

des Z r/
X;

pour tous les sous-groupes qui peut être définie plus directement
ainsi.

Définition 1.2. Soit Z r/
X;an la partie de X.K/ formée des points x pour lesquels il

existe une sous-variété abélienne B de A telle que

dimx X \ x C B/ > max.0;r 1 codim B/:

Cet ensemble coïncide avec X n Xoa dans les notations de [BMZ] lorsque r D
dim XC1. Nous le verrons aussi comme union de sous-variétés anormales deX ceci

explique l’indice dans la notation Z r/
X;an de même que oa rappelle open anomalous).

Ensuite, deux ensembles Z r/
X;Q

et Z r/
X sont étudiés dans [R2] voir p. 319). Pour

rappeler leur définition, nous notons
Z1C A/ le cône des diviseurs effectifs sur A à

coefficients réels modulo équivalence numérique. C’est une partie de NS.A/ R où
NS.A/ est le groupe de Néron–Severi de A. Nous disons qu’un fermé irréductible Y
de X est r-supertransverse si :

pour tous N; N1; N2 2 Z1C A/ et a 2 N vérifiant rgN r, N D N1 CN2 et

rgN1 1 a dim Y on a N a N dim Y a
2 Y > 0.

De même Y est dit r-Q-supertransverse si cette condition vaut pour tous les éléments

N;N1;N2 2 Z1C A/\ NS.A/ Q/.

Définition 1.3. On note Z r/
X l’union des fermés irréductibles de X qui ne sont pas

r-supertransverses et Z r/
X;Q l’union de ceux qui ne sont pas r-Q-supertransverses.

Dans [R2] le résultat principal montrait que l’intersection X. xQ/ nZ
r/

X /\ C
AOEr / est toujours de hauteur bornée mais la question de la nature de Z r/

X restait en
suspens. Notre théorème principal y répond et relie les trois ensembles exceptionnels
apparus jusqu’ici.
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Théorème 1.4. Pour tout entier r avec 0 r dim A, nous avons

Z r/
X;Q Z r/

X Z r/
X;an

et ces trois ensembles sont fermés.

Lorsque A est isogène à un produit de courbes elliptiques, les trois fermés
coïncident mais en général nous donnerons des exemples montrant que chacune des

inclusions peut être stricte. La preuve de la fermeture s’inspire de [BMZ] où est établi
l’analogue torique du fait que Z r/

X;an
est fermé pour r D dim X C1. La partie la plus

X Z r/nouvelle ici concerne l’inclusion Z r/
X;an Elle permet d’exploiter le théorème

de [R2] pour obtenir le théorème 1.3.
Nous verrons aussi comme simple corollaire de la structure de ces ensembles

exceptionnels le critère suivant démontré sous la forme plus précise de la proposition

4.2 à la fin de la partie 4).

Théorème 1.5. Le fermé X est géométriquement non dégénéré si et seulement si

Z dimXC1/ X.X;an ¤
Pour aller plus loin dans la direction de la conjecture de Zilber–Pink, il faudrait

savoir répondre aux deux questions suivantes.

Question 1. L’ensemble X.K/ n Z r/ /\ C AOEr / est-il finiX;

Question 2. L’ensemble Z r/
X;

est-il fermé

Pour D 0, la question 1 était poséedans [R1].Pour D 0et r D dim XC1, ces

deux questions correspondent aux conjectures dites respectivement torsion-finiteness
et torsion-openness dans [BMZ]. Ils montrent qu’ensemble elles entraînent sur C)
la conjecture 1.1 pour les tores.

Nous montrons ici voir partie 6) que la question 1 implique la question 2. On
notera que pour les tores avec D 0, r D dim X C 1 et K D C) la réciproque est

montréedans [BMZ] en laissant varierA). Pour répondrepositivement à laquestion2,
il fautmontrerqueX possède un nombre fini desous-variétés -anormales maximales
terminologie analogue à celle de [BMZ], voir partie 6). Comme premier pas, nous

montrons inconditionnellement que ces sous-variétés sont de degré borné.
Les trois parties suivantes sont consacrées à la démonstration du théorème 1.4.

L’idée consiste à écrire les trois ensembles Z r/
X;Q Z r/

X
et Z r/

X;an
sous une forme

commune à savoir

ZX. / D fx 2 X.K/ j 9' 2 End.A/ dimx ' 1.'.x//\X > '/g

pour une certaine fonction W End.A/ N bien choisie les définitions de fonctions

convenables seront données au début de la partie 4). Nous montrons d’abord
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qu’un tel ensemble est fermé en adaptant la méthode de [BMZ] : c’est le lieu où
certaines fibres ont une dimension anormale, nous parlons de fermé -anormal et

nous montrons que les fermés -anormaux maximaux sont de degré borné. Ceci fait
l’objet de la partie 3 et se base sur un critère différentiel de dimension des fibres que
nous examinons en partie 2. Il nous faut faire apparaître non seulement les endomorphismes

de A mais aussi ceux de son espace tangent, ce qui implique des arguments
analytiques. Pour cela nous travaillons sur C mais les résultats sont géométriques et

se transportent à xQ.

Ensuite, dans la partie 4,nous identifions les ensembles de départ avec desZX. /
C’est immédiat pour Z r/

X;an
facile pour Z r/

X;Q
mais demande du travail pour Z r/

X Là
encore des arguments analytiques entrent en jeu et nous utilisons un théorème d’Ax
voir [Ax]). Enfin la partie 5 présente des exemples où nos différents ensembles sont

effectivement distincts et nous concluons en partie 6 avec les résultats concernant les

questions 1 et 2 ci-dessus.

Expliquons l’idée de la stratégie suivie dans les parties 2 et 3 ci-dessous. Pour
simplifier, imaginons dans un premier temps qu’une fibre Y D X \ ' 1.'.x// soit
irréductible. Nous pouvons dans cette situation contrôler facilement le degré de Y
en fonction de celui du noyau de ' par le théorème de Bézout) et réciproquement,
étant donné Y il est possible de trouver un endomorphisme ' dont le noyau est de
degré contrôlé en fonction de degY c’est un peu moins direct : il faut considérer la
plus petite sous-variété abélienne dont un translaté contient Y voir lemme 2.6). Cette
réciproque montre que, si le degré des fibres de dimension anormale était borné par
une constante, nous pourrions nous contenter d’un nombre fini de ' et donc ZX. /
serait fermé. C’est essentiellement ce que nous ferons ; toutefois ceci ne s’applique
pas à toutes les telles fibres mais seulement à celles qui ne sont pas contenues dans

une autre fibre anormale pour un autre morphisme L’idée principale consiste à

estimer le degré de Y non pas directement par le théorème de Bézout, ce qui revient
à couper X par des équations définissant ', mais plutôt à utiliser des équations
définissant la différentielle de ' pour une notion formelle, voir définition 2.2). Ceci
présente l’intérêt que, tandis que le degré d’équations de ' croît avec le degré du
noyau de ', pour la différentielle on peut utiliser un degré constant ceci apparaît
dans le lemme 2.5). Le revers de la médaille est qu’en général les équations obtenues
définissent un fermé plus grand que Y même lorsque Y est maximal parmi les

fibres anormales, et ceci oblige à travailler par récurrence sur la dimension de X. De
plus, le critère différentiel esquissé ici n’est vraiment efficace que lorsque le point

'.x/ D '.Y / est lisse dans '.X/. Pour contourner cet obstacle plusieurs contorsions
sontnécessaires voir lemme 2.4, lemme 3.3et la fin de l’argument) et il fautaussi tenir
compte du fait que Y n’est pas irréductible mais peut contenir plusieurs composantes
de dimensions différentes.

Je tiens à remercier ici E. Bombieri, D. Masser et U. Zannier de m’avoir communiqué

leur texte [BMZ] avant publication.
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2. Critère jacobien

Nous considérons une variété abélienne complexe A de dimension g que nous
écrivons A D V=ƒoù V est l’espace tangent à l’origine de A un C-espace vectoriel
de dimension g) et ƒ un réseau de V Nous notons

W V V=ƒ la projection et

End.V / les endomorphismes de l’espace vectoriel V
Nous rappelons que l’anneau End.A/ des endomorphismes de A s’identifie au

sous-anneau f' 2 End.V / j '.ƒ/ ƒg de End.V /. Ceci crée une ambiguïté pour
parler du noyau de ' 2 End.A/ ; afin de la lever, nous désignerons toujours par

Ker ' V son noyau comme endomorphisme de V tandis que nous utiliserons la

notation Ker0 ' pour nous référer à la composante neutre du noyau de ' comme
endomorphisme de A. La formule Ker0 ' D Ker '=ƒ\Ker ' fait le lien entre les
deux conventions.

Définition 2.1. Soient X une sous-variété algébrique de A et Xz D 1.X/. Pour

' 2 End.V / nous notons dim '.X/ l’entier

sup

y2Xz

dim X dimy Xz\ y C Ker'//:

Notons que Xz est un sous-ensemble analytique de V et qu’il en va donc de même
de Xz \ y C Ker '/ ce qui donne un sens à la définition. Intuitivement, ce nombre
devrait être la dimension de '.Xz/ mais cet ensemble n’est pas en général analytique
ni même fermé).Toutefois il existe un ouvert denseXz0 deXz tel que tout point y deXz0

admette un voisinage U dans Xz0 de sorte que '.U/ soit une sous-variété analytique
d’un ouvert de V de dimension égale à l’entier dim '.X/ de notredéfinition.En outre,
lorsque ' 2 End.A/ End.V /, la notation '.X/ a un sens et nous retrouvons bien
la dimension de cette variété algébrique. Notre convention étend donc cette notation
usuelle à un cas plus général.

Notre première tâche consiste à calculer cet entier dim '.X/ en termes différentiels.

Pour cela, nous considérons d’une part la suite exacte

X= 2
X

i 1
A=C/jX

1
X=C 0

où X est le faisceau d’idéaux de X dans OA. D’autre part, comme V s’identifie au
dual de A; 1

A=C
/, un élément'2End.V / induitunmorphisme t' W A; 1

A=C/!A; 1
A=C / et, 1

A=C
étant libre, un morphisme de faisceaux 1

A=C
1
A=C

que

nous notons encore t'.

Définition 2.2. Soient ' 2 End.V / et Y un sous-schéma fermé intègre de X de point
générique Nous notons r.X; Y; '/ D dim / Im.i // C Im t'/ /:
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Ici / désigne le corps résiduel au point autrement dit le corps des fonctions
de Y tandis que i est le morphisme de OX; -modules déduit de i. On notera que

Im.i // diffère en général de Im i/ / la surjection naturelle du premier
vers le second n’étant pas nécessairement injective. Nous obtenons un entier au plus
égal à g puisque Im.i // et Im t'/ / sont deux sous-espaces vectoriels
de 1

A=C/ / ' /g.
Voici le lien entre nos définitions.

Lemme 2.1. Pour tous X et ' 2 End.V / nous avons

dim '.X/ D r.X; X;'/C dim X g:

Démonstration. Au point générique de X, nous avons OX; D / donc Im.i
// s’identifie à Im i/ Ceci entraîne que, si nous choisissons un ouvert pour la

topologie de Zariski U0 de X, non vide, lisse et tel que les faisceaux Im i/jU0 et

Im i/jU0 C Im t'/jU0 soient libres, alors le rang du second est r.X; X; '/. Ensuite
nous considérons un ouvert analytique non vide U1 de U0 suffisamment petit pour

pouvoir le relever en un ouvert isomorphe Uz de Xz tel que '.Uz/ soit une variété
analytique non singulière de dimension dim '.X/. Nous avons donc un diagramme

zU V

'1 '
' zU/ V

quidonne naissance en termesde faisceaux analytiques à un autre diagramme à lignes
exactes

.' 1
V=C/j zU

a

'1
1

'. zU/=C 0

zU
2

zU
Qi 1

V=C/j zU
1
zU=C 0.

Quitte à restreindre encore zU, nous pouvons supposer que la différentielle de '1

est surjective, autrement dit que l’application '1
1
'. zU/=C

1

zU=C
est injective.

L’image de cette application a donc pour rang dim '. zU/ D dim '.X/ par lissité. Le
diagramme montre que cette image est aussi celle de .' 1

U=C/j zU
1
zU=C

qui

s’écrit Im a C Im Qi/= Im Qi. Il vient

dim '.X/ D rang.Im a C Im Qi/ rang.Im Qi/:

Par lissité de U0 donc de zU) nous avons rang.Im Qi/ D g dim X. Par ailleurs Im aC
Im Qi est la restriction à U1 ' zU de l’analytifié du faisceau Im i/jU0 C Im t'/jU0
donc il est de rang r.X; X; '/. Ceci conclut.



842 G. Rémond CMH

On rapprochera cet énoncé du lemme 1 de [BMZ]. L’entier r.X; Y; '/ est l’analogue

de la quantité rangYJ.z1; : : : ;zhIX/ utilisée dans cet article et notre résultat
montre en particulier que si r.X; X; '/ g dim XCh 1 alors dim '.X/ h 1.

La preuve que nous donnons dans la partie suivante joue notamment entre les

propriétés vraies pour ' 2 End.V / et celles uniquement valables pour ' 2 End.A/.
Il est toutefois un cas où la différence n’a pas lieu d’être.

Lemme 2.2. Si ' 2 End.V / vérifie dim '.X/ D 0 alors il existe une factorisation

' D B avec 2 End.V / et 2 End.A/ telle que dim X/ D 0.

Démonstration. L’hypothèse montre que toute composante de Xz est contenue dans

un translaté de Ker '. Par connexité de X on en déduit qu’il existe y 2 Xz tel que Xz

yCƒCKer '.CommeƒCKer ' est un groupe ilvientXzC CXz gyCƒCKer 'où l’onfait la somme de g copiesdeXz. Par ailleursXzC CXz D 1.XC CX/
etXC CX est un translaté desous-variété abélienne deA, disons xCW=.W \ƒ/
où W est un sous-espace vectoriel de V tel que W \ƒ est un réseau de W Par suite

Xz C CXz est de la forme y0 C W ce qui donne W ƒC Ker ' puis, ƒ étant

discret, W Ker '.Nous choisissons 2 End.A/avec Ker0 D W=W \ƒce qui
force Ker D W Ainsi nous avons Xz yCW D yCKer donc dim X/ D 0
et l’inclusion Ker D W Ker ' montre l’existence d’une factorisation ' D

B

Nous étudions maintenant l’entier r.X; Y; '/ pour Y ¤ X. La première relation
est évidente.

Lemme 2.3. Pour Y sous-schéma fermé intègre de X on a r.X; Y; '/ r.Y;Y;'/.
Démonstration. Au vu des définitions, cela résulte de X Y

Le second fait utile s’avère plus technique et s’inspire du lemme 5 de [BMZ].

Lemme 2.4. Si ' 2 End.A/ et si Y est un sous-schéma fermé intègre de X tel que

'.Y / est un point lisse de '.X/ alors il existe 2 End.V / tel que D B 'satisfasse

r.X; Y; / g dim X et rg rg ' dim '.X/:

Démonstration. Nous notons le point générique de Y puis i0 D i / et

D dim 1
/ Im i0. Nous avons D g dim. / / g dim X. NousX=C

allons choisir avec Im t Im t' et Im t / / Im i0. La première
inclusion, équivalente à Ker ' Ker montrera l’existence d’une factorisation

D B ' alors que la seconde donnera r.X;Y; / D g dim X. Pour
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construire nous considérons le diagramme suivant à lignes exactes voisin de celui
utilisé dans la démonstration du lemme 2.1 mais en termes purement algébriques ici)
où '1 W X '.X/ est le morphisme induit par ' :

'1 ' X/= 2

'.X// ' 1
A=C/jX

a

'1
1
'.X/=C 0

X= 2
X

i 1
A=C/jX 1

X=C 0

où Im a D Im t'/jX. En passant aux fibres résiduelles en nous trouvons un second
diagramme à lignes exactes

E01
i01

E1

a0

E00
1 0

E0
i0

E E00 0

où E0 D X= 2
X / / et ainsi de suite). Du fait que '. / est un point

fermé, la première ligne provient d’une suite exacte sur '. // D C. En
particulier, dans E1 D A; ' 1

A=C/ C / l’image de i01 s’écrit F1 C /
pour un sous-C-espace de A; ' 1

A=C/. Par suite, Im.a0
B i01/ D F C /

pour F A; 1
A=C /. Il est loisible de choisir tel que Im t

D F et nous

avons alors visiblement Im t Im t' et Im t / / Im i0 comme prévu.
Il reste seulement à montrer la dernière inégalité de l’énoncé. D’après les définitions,

rg ' rg D dim Im t' dim Im t
D dim Im a0 dim Im.a0

B i01/
dim E1 dim Imi01 D dim E00

1 Maintenant cette dimension coïncide avec le rang du
faisceau 1

'.X/=C
au point '. / donc, par hypothèse de lissité, dim E00

1 D dim '.X/
et ceci donne la conclusion.

Finalement des considérations sur les nombres r.X; Y; '/ nous permettront de
borner le degré de Y Pour parler de degrés, nous fixons un faisceau inversible très
ample L sur A. Le résultat que nous emploierons est le suivant.

Lemme 2.5. Soient ' 2 End.V / et Y un sous-schéma fermé intègre de X. Si

r.X; Y;'/ < r.X; X;'/ alors il existe un fermé irréductible strictX0 de X contenant
Y tel que degX0 deg X/ où D 2g.

Démonstration. Il existe un entierN tel que X L N est engendré par ses sections
globales : par exemple, il suffit que N majore la régularité de Castelnuovo–Mumford
de X relativement à L et d’après le théorème 0.2 de [Hoa] la valeur N D deg X/
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avec D 2dimX convient. Maintenant, grâce à la surjection X X= 2
X nous

constatons que Im.i // est engendré par les images des sections globales de

X= 2
X/ L N pour tout point deX. En rajoutant les sections de Im t' L N il

A=C/jX L N/ telle que r.X; N; '/existe une famille de sections si /i2I de X; 1

est le rang de la famille des si/ / sur / pour tout Quitte à permuter ces

sections, nous pouvons supposer que les D r.X; X; '/ premières sont libres sur
le corps des fonctions de X. L’hypothèse r.X; Y; '/ < impose alors qu’elles ne
le sont pas sur / où

N D Y En d’autres termes, la section

V

s D s1 ^ ^ s

de 1 /jX L N/ est non nulle mais s’annule sur Y Ce dernier faisceau
A=C

A=C
àunesommedirecte de copiesdeL N donc il existes’identifie par libertéde 1

une section de A; L N / s’annulant sur Y mais non sur X. Par conséquent nous
pouvonschoisir pourX0 une composante irréductiblecontenant Y de l’intersectionde

X avec le lieu des zéros de cette section. Le dit lieu est de degré N donc le théorème
de Bézout montre degX0 N.deg X/ g.degX/ C1. Pour avoir la borne de
l’énoncé, il faut remarquer que r.X; Y;'/ < r.X; X; '/ entraîne 0 < dimX < g
car r.A; Y;'/ D rg ' pour tout Y et donc également degX 2 sur une variété

abélienne, les seuls fermés de degré 1 sont les points). Nous concluons alors par

log2 g C 1 C 2g 1 2g.

Faisons ici une dernière remarque sur les degrés. Nous avons déjà observé dans

la démonstration du lemme 2.2 que la somme X C C X de g copies de X est

toujours un translaté d’une sous-variété abélienne de A. Nous lui donnons un nom.

Définition 2.3. Nous notons hXi la plus petite sous-variété abélienne de A dont un
translaté contient X.

Nous estimons ensuite son degré.

Lemme 2.6. Pour tout sous-schéma fermé intègre X de A, nous avons deghXi
deg X/p où p D g2.

Démonstration. L’estimation estévidentesi dim X D 0. Si dim X D 1 nous vérifions
tout d’abord que deg.X0 C X/ 4dimX.degX0/.deg X/ pour tout sous-schéma

fermé intègre X0 de A. Cette formule ne faisant pas de doute si X0 C X D X0 nous
pouvons supposer que X0 X X0 C X est génériquement fini et ceci permet
de majorer deg.X0 C X/ par le nombre d’intersection add L/ dimX0C1 X0 X
nous notons add; diff W A A A les morphismes d’addition et de différence). De

plus le fait que X soit numériquement équivalent à X entraîne add L/ dimX0C1

X0 X D diff L/ dimX0C1 X0 X et nous en déduisons 2deg.X0 C X/
add L diff L/ dimX0C1 X0 X. Enfin par le théorème du cube le faisceau

p1L p2L/ 2 add L diff L/ 1 est numériquement effectif sur A A
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et donc nous avons deg.X0 C X/ 2dimX0.p1 L p2L/ dimX0C1 X0 X D
2dimX0 dim X0C1/.degX0/.deg X/ ce qui donne la formule annoncée. Enraisonnant
alors par récurrence, nous obtenons que le degré de la somme de n copies de X est

au plus 2n2 n.deg X/n deg X/n2 d’où l’énoncé pour les courbes. Nous pouvons
ramener le cas général à celui-ci de la manière suivante : si dim X 2 et deghXi >
deg X/p nous désignons par F l’union finie) des sous-variétés abéliennes B de hXi

avec degB deg X/p et nous choisissons un point x 2 X. Bien sûr nous avons

X x C hXi mais X 6 x C F En coupant X par le lieu des zéros de sections
suffisamment générales de L, nous pouvons trouver une courbe intègre C X avec

degC degX, x 2 C et C
6 xCF Pourtant C x ChCi et, par ce qui précède,

deghCi degC/p degX/p donc hCi F Cette contradiction conclut la
démonstration.

Dans la suite, nous ne remplacerons pas p et par leurs valeurs explicites pour
ne pas alourdir les formules.

3. Dimension des fibres

Dans cette partie, nous montrons que le lieu des points de X où la dimension des

fibres d’unendomorphismevariable deAest anormalement grandeest un fermé.Pour
pouvoir appliquer ce résultat à divers ensembles exceptionnels, nous le présentons de
manière assez générale.

Si est une application End.V / N, nous posons

ZX. / D fx 2 X j 9' 2 End.A/ dimx X \ ' 1.'.x// > '/g:

Un théorème classique nous dit qu’à ' fixé l’ensemble des x vérifiant ceci est fermé
voir par exemple [BMZ]). Pour espérer conserver cette propriété lorsque tous les 'entrent en jeu, il nous faut assez naturellement imposer des conditions sur Nous

considérons l’inégalité fondamentale suivante pour '; 2 End.V / :

/ 0 B '/ '/ rg ' rg B ':
Elle suffit à assurer la fermeture.

Théorème 3.1. Si / est vérifiée pour tout couple .'; / 2 End.A/ End.V / alors

ZX. / est fermé.

La démarche de démonstration de ce théorème, basée sur les lemmes de la partie
précédente, ressemble beaucoup à celle du théorème 1 de [BMZ]. Comme dans cet
article, nous montrons un résultat plus précis : dans la définition de ZX. / il suffit
de faire intervenir un nombre fini de '.
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Pour quantifier ceci, remarquons que ' n’intervient qu’à travers la composante
neutre de son noyau car la composante de ' 1.'.x// passant par x est x C Ker0 '.
En outre, si Ker0 ' D Ker0 '0, l’existence de deux factorisations ' 0

D B ' et

' D
0

B ' 0 dans End.V / montre que '/ D '0/ sous l’hypothèse du théorème.
Ceci était également le cas pour les notions dim '.X/ et r.X; Y; '/ introduites dans

la partie précédente : nous pourrions ne parler que de la variété abélienne Ker0 '.
En particulier, si nous bornons deg.Ker0 '/ alors nous pouvons nous contenter d’un
nombre fini de '.

De façon cohérente avec celle de [BMZ] nous posons la terminologie suivante.

Définition3.1. Un fermé irréductibleY deAestdit -anormals’ilexiste ' 2 End.A/
tel que dim '.Y / D 0 et dimY > '/.

Il se trouve que ZX. / est la réunion des fermés -anormaux inclus dans X : si
Y X est -anormal alors pour x 2 Y on a Y X\' 1.'.x// car '.Y / D '.x/)
donc x 2 ZX. / ; réciproquement si x 2 ZX. / on choisit pour Y une composante
de dimension maximale passant par x de X \ ' 1.'.x// et Y est clairement -
anormal.

Nous montrons une borne de degré pour les fermés -anormaux de X qui sont

maximaux pour cette propriété au sens de l’inclusion).

Proposition 3.2. Sous l’hypothèse du théorème, tout fermé -anormal maximal Y
de X vérifie

degY deg X/.p C1/
dimX 1

:

Vérifions que ceci entraîne le théorème. Pour Y comme dans la proposition, nous
choisissons d’une part ' 2 End.A/ avec dim '.Y / D 0 et dimY > '/ et d’autre
part 2 End.A/ avec Ker0 D hY i. Comme dim '.Y / D 0 entraîne que Y est

contenu dans un translaté de Ker0 ', nous avons Ker0 Ker0 '. Ceci force ' D
B pour un certain 2 End.V / donc '/ D B / / d’après / On

en déduit dim Y / D 0 et dimY > /. Enfin à l’aide de degKer0 degY /p
voir lemme 2.6) il vient

ZX. / D °x 2 X j 9 2 End.A/ degKer0 deg X/p.p C1/
dimX 1

et dimx X \ 1 x// > /

qui est un fermé.
Le reste de cette partie est consacré à la démonstration de la proposition. Nous

supposons donc l’hypothèse du théorème vérifiée et nousprocédonsparrécurrencesur
dim X. Les cas où dim X 1 sont triviaux car Y coïncide alors avec X dim Y D 0
est exclu par dimY > '/ 2 N) et la borne de degré vaut.
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Nous supposons désormais dim X 2 et que la proposition vaut pour tout X0
avec dim X0 < dim X. Pour clarifier, nous découpons le début de l’argument en trois

lemmes. Nous écrivons D deg X/ p C1/dimX 2

Lemme 3.1. Soit Y un sous-schéma fermé intègre de X pour lequel il existe ' 2
End.A/ vérifiant dimY > '/, dim '.Y / D 0 et dim '.X/ > dim X dim Y
Alors il existe un sous-schéma fermé intègre Y 0 de X contenant Y et -anormal tel
que deg Y 0

Démonstration. D’après le lemme 2.1 appliqué à Y nous avons r.Y; Y; '/ D g
dim Y Grâce au lemme 2.3, il vient r.X;Y;'/ g dim Y D’un autre côté, en
combinant l’hypothèse sur dim '.X/ et le lemme 2.1 appliqué maintenant à X, nous
trouvons r.X; X; '/ g C dimX > dim X dim Y Nous en déduisons aisément

r.X; Y;'/ < r.X; X;'/ de sorte que le lemme 2.5 fournit X0 avec dim X0 < dim X,
Y X0 X et degX0 deg X/ Ensuite, le fermé Y étant -anormal, est

contenu dans un fermé -anormal maximal Y 0 de X0. Par hypothèse de récurrence

deg Y 0 degX0/.p C1/dimX0 1

Nous remplaçons maintenant la condition dim '.X/ > dim X dim Y par une
hypothèse de lissité.

Lemme 3.2. Soit Y un sous-schéma fermé intègre de X pour lequel il existe ' 2
End.A/ tel que dimY > '/ et '.Y / est un point lisse de '.X/. Alors il existe un
sous-schéma fermé intègre Y 0 de X contenant Y et -anormal tel que deg Y 0

Démonstration. Nous pouvons supposer dim '.X/ dim X dim Y car sinon
le lemme précédent suffit. Nous appliquons alors le lemme 2.4 qui nous donne

D B ' 2 End.V / avec r.X;Y; / g dim X et rg rg ' dim '.X/.
Si jamais r.X; Y; / < r.X; X; / alors nous concluons exactement comme dans

la démonstration précédente avec le lemme 2.5. Dans le cas contraire, nous avons

r.X; X; / g dim X d’où lemme 2.1) dim X/ D 0. Ici le lemme 2.2
entre en jeu et montre que nous pouvons écrire D 0

B ' 0 avec ' 0

2 End.A/
et dim '0.X/ D 0. Nous tirons de /

rg ' C '/ rg C / et / '0/:

En combinant ceci et les inégalités

dimY > '/; rg rg ' dim '.X/ et dim '.X/ dim X dim Y;

nous voyons apparaître dimX > '0/. Ainsi X est -anormal donc Y 0 D X
convient.
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Notre troisième étape est, elle, indépendante de la partie précédente.

Lemme 3.3. Soient '; 2 End.A/ et Y;Z deux sous-schémas fermés intègres de

X de sorte que dim Y D dim Z et dim '.Y / D dim '.Z/ D dim Z/ D 0.
On suppose en outre dim '.X/ D dim X dim Y et que Y est une composante

irréductible de X \ ' 1.'.Y //. Alors dim Y / D 0.

Démonstration. Nous considérons .'; /W A A A et sa restriction f à X.
Comme f Z/ est un point, la dimension relative de f est au moins dim Z D dim Y
Autrement dit nous avons dim f X/ dim X dim Y D dim '.X/. Comme il
y a un morphisme surjectif évident f X/ '.X/, ces deux schémas ont en fait
même dimension et donc la dimension relative de f est dim Y Écrivons maintenant

X \ ' 1.'.Y // D Y [ S où S est un fermé ne contenant pas Y l’union des

autres composantes irréductibles par exemple) et choisissons y 2 Y avec y 62 S.
Considéronsenfin une composante irréductible zY def 1.f y// contenanty. Puisque

f zY / D f y/ nous avons a fortiori '. zY / D '.y/ D '.Y / donc zY Y [ S.
L’inclusion zY S est interdite par y 2 zY donc zY Y Par ailleurs, en tant que

composante irréductible d’une fibre de f le fermé zY est de dimension au moins
égale à la dimension relative de ce morphisme. Ceci signifie dim zY dim Y et donc

zY D Y Nous en déduisons f Y / D f y/ puis Y / D y/ par projection.

Nous terminons maintenant la démonstration de la proposition. Soit donc Y un
fermé -anormal maximal de X et fixons ' 2 End.A/ avec dimY > '/ et

dim '.Y / D 0. Si nous avons dim '.X/ > dim X dim Y alors le lemme 3.1 nous
permet de conclure immédiatement : il vient en effet Y D Y 0 par maximalité et donc
deg Y ce qui est inférieur à la borne de la proposition.

Supposons donc dim '.X/ dim X dim Y Ceci signifie que la dimension
relative de ' jX est au moins dim Y mais nous avons nécessairement égalité car Y est

composante d’une fibre de ' jX par maximalité : toute composante de X\' 1.'.Y //
de dimension au moins dimY > '/ est automatiquement -anormale. Nous
pouvons donc trouver un ouvert U non vide de '.X/ tel que toutes les fibres des points
de U soient équidimensionnelles de dimension dim Y Quitte à restreindre cet ouvert,
nous le supposons contenu dans le lieu lisse de '.X/. De cette façon, si u 2 U et si

Z est une composante irréductible de X \ ' 1.u/, le lemme 3.2 s’applique à Z car
dim Z D dimY > '/ et '.Z/ D u est lisse). Tout tel Z est donc contenu dans

un Z0 -anormal avec degZ0 En vertu de la majoration deghZ0i p, la
variété abélienne hZ0i appartient à un ensemble fini indépendant de Z). Nous pouvons
donc choisir 1; : : : ; n 2 End.A/ de sorte que hZ0i soit l’un des Ker0 i et nous
imposons que tout Ker0 i apparaisse effectivement de cette façon). Par l’argument
donné immédiatement après l’énoncé de la propostion, nous avons dim Z0 > i/
comme conséquence de /
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Appliquons enfin notre lemme 3.3 à Y; Z; '; i Nous avons bien dim i.Z/ D 0
carZ Z0 est contenu dans un translaté de hZ0i D Ker0 i et Y est une composante
de X \ ' 1.'.Y //. De cette façon, il vient dim i.Y / D 0.

Notre dernière tâche consiste à montrerqueY est composante deX\
1

i i.Y //
pour au moins un indice i Si ce n’était pas le cas, nous aurions Y Yi X \1
i i.Y // pour une certaine composante Yi avec dim Yi > dim Y pour tout i

Pour que ce fermé ne contredise pas la maximalité de Y il doit nécessairement
vérifier dim Yi i /. Par suite le lieu

Fi D fx 2 X j dimx X \ 1
i i x// > i/g

est un fermé strict de X. Il en va de même de l’union finie F D F1 [ [ Fn.
Par ailleurs, nous avons vu dim Z0 > i/ qui donne Z Z0 F Comme

Z peut être n’importe quelle composante d’une fibre au-dessus de U, nous aurions

X \ ' 1.U / F ce qui contredit clairement la densité de U.
Notre Y est donc finalement composante d’une intersection de la forme X \y C Ker0 i donc le théorème de Bézout montre deg Y deg X/.degKer0 i/

deg X/ p et ceci conclut la démonstration de la propostion en vertu de l’inégalité
1 C p p C 1/dimX 2 p C 1/dimX 1.

Comme nous l’avons dit, cette preuve se rapproche beaucoup des arguments de

[BMZ] la démonstration du lemme 3.3 en particulier est presque identique à un
passage de ce texte). Toutefois, à la différence de cet article, nous procédons en un
seul temps en raisonnant sur le degré de Y plutôt que sur le degré d’un ' tel que
dim '.Y / D 0.

4. Ensembles exceptionnels

Dans cette partie, nous établissons le théorème 1.4 en montrant que chacun des

ensembles qui nous intéressent s’écrit sous la forme ZX. / étudiée dans la partie
précédente et donc est fermé. Nous obtiendrons aussi de cette façon les différentes
inclusions de l’énoncé en utilisant le fait évident sur la définition que si 0 alors

ZX. / ZX. 0/.

Notre tâche consiste donc à définir trois fonctions Ici encore, elles s’inscrivent
dans un cadre commun. Nous considérons un entier r avec 0 r g et un
sousanneau O End.V / auxquels nous associons la fonction O;r W

End.V / N
définie par

O;r.'/ D

8ˆ̂̂
<

ˆ̂̂:

0 si rg ' r;

inf
;' 0/2End.V / O

'D B'0 et rg' 0 r

rg '0 rg ' 1 sinon:
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On notera que la définition a bien un sens car dans le second cas on a rg ' 0 r >
rg' donc rg ' 0 rg ' 1 0 : on prend bien l’infimum d’une partie de N et elle
n’est pas vide car le couple ; '0/ D .'; idV / convient toujours en vertu de g r.
Pour deux sous-anneaux O et O0 nous avons immédiatement

O O0 H) O;r O0;r H) ZX. O;r / ZX. O0;r /:

Il nous reste à examiner la condition / apparaissant dans la partie précédente. Nous
l’obtenons moyennant une hypothèse supplémentaire sur O.

Lemme 4.1. Si tout idéal à gauche deO est monogène alors la fonction O;r satisfait

/ pour tous ' 2 O et 2 End.V /.

Démonstration. Nous notons ici simplement D O;r Nous vérifions d’abord

B '/ '/ rg' rg B '.Si B'/ D 0, ceci est clair car rg B' rg '.
Si B '/ > 0 et rg.'/ r, nous choisissons simplement D et ' 0

D ' 2 O
dans l’infimum définissant B'/ et trouvons B'/ rg ' rg B' 1qui donne

le résultat. Si maintenant rg B ' rg' < r, nous choisissons un couple ; '0/

réalisant l’infimum dans la définition de '/ de sorte que '/ D rg '0 rg ' 1;
le simple fait d’écrire B ' D B / B ' 0 montre B '/ rg' 0 rg B ' 1 D
rg' rg B ' '/ : c’est notre résultat.

Dans un deuxième temps, nousmontrons '/ B'/. Là encore, iln’ya rien
à fairesi '/ D 0doncnous pouvonssupposer rg B' rg' < r.Nouschoisissons
cette fois-ci un couple ;'0/ réalisant l’infimum pour B'/ : nous avons B' D

B ' 0, '0 2 O, rg' 0 r et B '/ D rg ' 0 rg B ' 1. Par hypothèse, l’idéal

O'CO' 0 deO estmonogène ; nous l’écrivonsO' 00 avec ' 00

2 O. En particulier,nous
pouvons écrire '0 D 00B' 00 qui montre rg '00 rg ' 0 r et ' D 0B' 00 qui montre

'/ rg ' 00 rg ' 1pardéfinitionde '/. Encomparantavec la valeurde B'/,
il nous suffira de montrer rg' 00 rg ' C rg '0 rg B ' pour conclure. Or l’égalité

O'CO'0

D O' 00 nous donne encore une relation ' 00

D 1 B'C 2B' 0 qui entraîne
Ker ' \ Ker '0 Ker '00. Comme par ailleurs B ' D B ' 0 implique facilement
Ker ' C Ker '0 Ker B ', nous trouvons rg '00 C rg B ' D 2g dim Ker '00

dim Ker B ' 2g dim.Ker ' \Ker '0/ dim.Ker ' C Ker '0/ D rg' C rg ' 0

et le lemme est démontré.

Disons tout de suite à quels anneaux nous appliquerons ceci.

Lemme 4.2. Danschacun des trois anneaux End.A/ Q End.A/ R End.V /,
tout idéal à gauche est monogène.

Démonstration. Chacun est produit d’anneaux de matrices sur des corps non
nécessairement commutatifs pour les deux premiers) : voir par exemple [Mu, p. 174].
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Comme End.A/ est contenu dans chacun des trois anneaux ci-dessus, nous avons

bien, par le théorème 3.1 et ces deux lemmes, trois fermés emboîtés

ZX. End.A/ Q;r / ZX. End.A/ R;r/ ZX. End.V /;r /
et il ne reste plus qu’à les identifier aux ensembles exceptionnels du théorème 1.4.

C’est immédiat pour ledernier, facilepour le premier maisplus délicat pour lesecond.
Nous procédons par ordre croissant de difficulté.

Lemme 4.3. Nous avons ZX. End.V /;r/ D Z r/
X;an

Démonstration. Si l’on se reporte à la définition rappelée dans l’introduction, l’on
constate que Z r/

X;an est déjà écrit sous la forme ZX. / où est la fonction donnée

par '/ D max.0;r 1 rg '/. Vérifions simplement End.V /;r D Si
rg' r, l’égalité est claire. Sinon il suffit de voir que l’on peut choisir dans l’infimum
rg' 0

D r : on se contente de fixer un sous-espace E de Ker ' de dimension g r
et l’on impose Ker ' 0

D E de façon à ce que l’inclusion Ker ' 0 Ker ' donne la

factorisation ' D B '0.

Nous en venons à Z r/
X;Q

Par définition ([R2, p. 319]) il s’agit de l’union de tous

les fermés irréductibles de X qui ne sont pas r-Q-supertransverses. En outre un
fermé irréductible Y est r-Q-supertransverse si et seulement si ([R2, lemme 7.2] et

la remarque qui le suit) pour toute sous-variété abélienne B de A de codimension
au moins r et toute sous-variété abélienne B0 de A contenant strictement B on a

dim Y C B0 > dim Y C B D dim Y C dim B.

Lemme 4.4. Nous avons End.A/;r D End.A/ Q;r et ZX. End.A/;r / D Z r/
X;Q

Démonstration. L’égalité des fonctions résulte du fait que si l’on peut écrire ' D
B '0 avec '0 2 End.A/ Q alors ' D

1 / B N'0/ pour un certain entier
N

N 2 N n f0g tel que N' 0

2 End.A/.
Si ' 2 End.A/ et B D Ker0 ' alors pour tout fermé Y irréductible nous avons

dim Y CB D dim '.Y / Cdim B et dim B D g rg '. Par conséquent la condition
que Y est r-Q-supertransverse peut se traduire par les deux conditions suivantes faire

B D Ker0 ' et B0 D Ker0

a) Pour tout ' 2 End.A/ avec rg ' r on a dim '.Y / D dim Y

b) Pour tout 2 End.A/ tel qu’il existe ' 2 End.A/, 2 End.V / avec D B',
rg ' r et rg' > rg on a dim Y / > dim Y C rg rg'.

Nous remarquons que, si a) est vérifiée, alors b) est automatiquement vraie
pour les tels que rg r. Nous pouvons donc limiter b) aux avec rg <
r, ce qui permet de supprimer la condition rg' > rg En outre puisque l’on a

toujours dim '.Y / dim Y nous pouvons écrire deux conditions équivalentes à la
conjonction de a) et b) sous la forme suivante.
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a0) Pour tout ' 2 End.A/ avec rg ' r on a dim '.Y / dim Y

b0) Pour tout 2 End.A/ avec rg < r on a

dim Y / > dim Y C sup

;'/2End.V / End.A/

D B' et rg' r

rg rg':

Nous voyons ainsi apparaître la fonction D End.A/;r En effet ces deux conditions

se réduisent purement et simplement à : 8' 2 End.A/, dim '.Y / dim Y

'/. Par suite un point x appartient à Z r/
X;Q si et seulement s’il existe ' 2 End.A/

et un fermé irréductible Y de X contenant x tel que dim '.Y / < dim Y '/.
Nous en déduisons l’inclusion ZX. / Z r/

X;Q
car un fermé -anormal vérifie

clairement cette condition. En sens contraire, l’inégalité dim '.Y / < dim Y '/
signifie que la dimension relative d du morphisme restreint Y '.Y / vérifie d >

'/. Comme toutes les composantes des fibres de ce morphisme sont de dimension
au moins d, elles sont -anormales donc Y ZX. / puis par union Z r/

X;Q
ZX. /

Il nous reste à traiterdeZ r/
X Nouscommençonspar revenir sur ladéfinition rappelée

dans l’introduction voir aussi [R2, p. 319]). Celle-ci fait intervenir le côneZ1C A/
des diviseurs effectifs à coefficients réels sur A modulo équivalence numérique. Ici
nous préférons mettre l’accent sur les endomorphismes aussi utiliserons-nous le fait
([R2, lemme 7.1]) que, pour un faisceau inversible ample L sur A désormais fixé,

Z1C A/ D f' L j ' 2 End.A/ Rg

l’application quadratique End.A/ NS.A/, L 7! ' L s’étend en End.A/ R
NS.A/ R). Avec cette reformulation, la définition s’exprime comme suit :

1) Z r/
X est l’union de tous les fermés irréductibles de X qui ne sont pas r-

supertransverses ;

2) un fermé irréductible Y deX est dit r-supertransverse si pour tous '; '1;'2 dans

End.A/ R et a 2 N vérifiant rg ' r, ' L D '1L C '2L et rg '1 1

a dim Y on a .' L/a '2 L/ dim Y a Y > 0.

Notre première tâche consiste à reformuler la condition sur le nombre d’intersections

en termes des entiers dim '.Y / et dim '2.Y / définis dans la partie 2 en vue de
se rapprocher des assertions a) et b) apparues dans la démonstration précédente).
Nous transitons par une intégrale.

Nous notons H W V V C la forme de Riemann de L et écrivons H' pour la

forme hermitienne v; v0/ 7! H.'.v/;'.v0// lorsque ' 2 End.V /. Nous désignons
par D ImH l’opposé de la partie imaginaire de H que nous voyons comme une

.1; 1/-forme de Kähler sur V ou sur A. De même nous écrivons !' D ImH'.
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Dans les trois lemmes suivants un sous-schéma fermé intègre Y de A est
temporairement fixé. Nous rappelons que désigne la projection V V=ƒ D A.
Nous désignons par F un domaine fondamental dans V pour ce quotient et écrivons
YO D 1.Y /\F

Lemme 4.5. Pour tous '; 2 End.A/ R et tout a 2 N on a

.' L/ a L/ dim Y a Y D Z
YO

!^a' ^ !^dim Y a:

Démonstration. Pour tout faisceau N 2 NS.A/ de forme de Riemann HN nous
avons N dim Y Y D RY !^ dim Y

D RYO
!^dim Y car la forme N D ImHNN N

correspond à la première classe de Chern de N voir [Mu, p. 18]). En écrivant N D
a1N1C CadimYNdim Y dansNS.A/où ai 2 Zeten développant les deux membres,
polynômes homogènes de degré dim Y en les ai puis en identifiant les coefficients
du produit a1 adimY il vient

N1 : :: Ndim Y Y D Z
YO

N1 ^ ^ NdimY :

En choisissant Ni D ' L si i a et Ni D L sinon nous obtenons la formule
de l’énoncé si '; 2 End.A/ car la forme de Riemann de ' L coïncide avec H'.
Ensuite cette identité polynomiale sur End.A/ s’étend à nouveau à End.A/ R.

Voici la traduction en termes de dimension.

Lemme 4.6. Soient '; 2 End.A/ R. L’inégalité .' L/ dim Y Y > 0est équivalente

à dim '.Y / D dim Y et, si elle est vérifiée et a 2 N avec a dim Y est donné,
l’inégalité .' L/ a L/ dim Y a Y > 0 équivaut à dim Y / dim Y a.

Démonstration. Nous recouvrons un ouvert dense de YO par des ouverts lisses U tels
que '.U/ est une variété lisse de dimension dim '.Y /. Le nombre .' L/ dim Y Y
est somme des

RU !^ dim Y et, si 0' ' W U '.U/ est induit par ', alors dimY' D
.'0/ !^dim Y /. Si dim '.U/ D dim '.Y / < dim Y alors cette forme est nulle;
sinon c’est une forme volume sur U et donc

RU !^ dim Y' > 0. Cecimontre la première
équivalence.

Pour la seconde, nous pouvons supposer que U / est également lisse de dimension

dim Y / et montrer seulement
RU !^a' ^ !^dim Y a > 0 dim Y /

dim Y a. Là encore, si dim Y / < dim Y a, la forme !^dim Y a provient
d’une variété de dimension strictement inférieure à son degré donc est nulle sur U. Si
dim Y / dim Y a, elle est au contraire non nulle : dim Y a/jU ¤ 0. Comme
de son côté .!'/jU est non dégénérée car sa puissance extérieure maximale est une
forme volume), nous en déduisons .!^a' ^

dim Y a/jU ¤ 0 d’où le résultat.
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Nous pouvons maintenant transformer lacondition dans 2)à l’aidede dimensions.
Pour lui donner une forme aussi proche que possible de notre objectif, nous posons
pour '2 2 End.A/ R

E.'2/ D f.';'1/ 2 End.A/ R/2
j ' L D '1L C '2L; rg' r et '1 ¤ 0g

et

'2/ D
8
<̂

:̂

0 si rg '2 r;

inf
.';'1/2E.'2/

rg '1 1 sinon:

Avec ces notations, nous avons la caractérisation suivante.

Lemme 4.7. Le fermé Y est r-supertransverse si et seulement si pour tout 2
End.A/ R on a dim Y / dim Y /.

Démonstration. Notons d’abord que dans 2) si rg' r nous pouvons toujours
choisir '2 D ', '1 D 0 et a D dim Y de sorte que la condition contient en particulier

.' L/ dim Y Y > 0 c’est-à-dire dim '.Y / D dim Y par le lemme précédent. Nous
pouvons donc utiliser la seconde équivalence de ce même lemme pour dire que Y est

r-supertransverse si et seulement si

3) pour tous '; '1; '2 2 End.A/ R et a 2 N avec rg' r, ' L D '1LC'2 L
et rg'1 1 a dim Y nous avons dim '2.Y / dim Y a.

Par ailleurs affirmer dim '2.Y / dim Y a pour tout a 2 N avec rg '1 1 a
dim Y revient simplement à dim '2.Y / dim Y max.0; rg'1 1/. Ensuite comme

'1 D 0 ne peut survenir que lorsque rg '2 r, la condition 3) est équivalente à

4) pour tout '2 2 End.A/ R avec rg'2 r on a dim '2.Y / D dim Y et

pour tout '2 2 End.A/ R avec rg'2 < r et tout .'; '1/ 2 E.'2/ on a

dim '2.Y / dim Y rg'1 1/.

Vu la définition de ceci est exactement l’énoncé.

L’étape suivante consiste à reconnaître en la fonction End.A/ R;r annoncée
plus haut. Pour cela, nous avons besoin de faire intervenir la structure d’anneau de
End.A/ R et ceci nous amène à utiliser le lemme matriciel élémentaire suivant.

Lemme 4.8. Soient n un entier, K l’un des trois corps R, C ou H et M; P 2 Mn.K/
deux matrices telles que KerM Ker P. Il existe M0;U; N 2 Mn.K/ avec N2 D
N, PN D 0, M0 D UM, U inversible et t SM0M0 D t xNN C

t xPP.

Démonstration. Nous notons G le supplémentaire orthogonal de KerM dans Ker P
et choisissons pour N la matrice de la projection Kn Kn orthogonale sur G.Ainsi
N2 D N et t xN D N sont clairs tout comme PN D 0 car Im N D G Ker P.
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Choisissons ensuite Q telle que tQx D Q et Q2 D
t xPP et posons M0 D N CQ. Il

vient

t
Mx0M0 D

t xNN C
tQxQ C

t xNQC
t
QxN D

t xNN C
t xPP C NQ C QN:

Or tQNQN D N t xPPN D 0 donc QN D 0 et tNQNQ D QNQ D 0 donc

NQ D 0. Enfin pour X 2 Kn la formule obtenue montre

M0X D 0 tM0XM0X D 0 tNXNX C
tPXPX D 0

NX D PX D 0 X 2 Ker P \ Ker N X 2 Ker M:

Ainsi KerM0 D KerM et ceci montre l’existence de U.

Cet énoncé technique permet en fait de construire .';'1/ 2 E.'2/ avec rg' D
rg'1 C rg '2 et donc de simplifier la fonction

Lemme 4.9. Nous avons D End.A/ R;r

Démonstration. Pour abréger nous écrivons pour '2 2 End.A/ R

F .'2/ D f.'; / 2 End.A/ R/ End.V // j '2 D B ' et rg ' rg:

L’examen des définitions de nos deux fonctions montre qu’il suffit d’établir, pour
rg'2 < r,

inf
.';'1/2E.'2/

rg '1 D inf
.'; /2F.'2/

rg ' rg '2:

Nous procédons par double inégalité. Considérons d’abord .';'1/ 2 E.'2/ tel que

rg'1 soit minimal. Puisque ' L D '1 LC'2L entraîne rg ' rg '1 Crg '2 nous
avons rg'1 rg ' rg '2 et il suffit de vérifier qu’il existe avec '2 D B '. Or
l’égalité dans NS.A/ R se traduit par H' D H'1 C H'2 donc pour v 2 V

v 2 Ker ' H'.v; v/ D 0 H'1 v; v/ D H'2 v; v/ D 0 v 2 Ker '2

et Ker ' Ker '2 nous donne bien l’existence de
Pour l’autre inégalité, nous considérons maintenant .'; / 2 F .'2/ avec rg 'minimal. La forme positive H est dominée par un multiple de la forme définie

positive H donc il existe un réel c > 0 tel que cH' H'2 soit une forme positive.
Comme remplacer ' par un multiple non nul ne change rien ici, nous supposons
c D 1. La positivité de H' H'2 signifie ' L '2L 2 Z1C A/ donc il existe

'1 2 End.A/ R avec ' L D '1L C '2 L. Ceci ne suffit pas pour conclure car
nous n’avons pas de contrôle sur le rang de '1. Mais End.A/ R est isomorphe à

un produit d’anneaux de matrices sur R, C ou H donc ', '1 et '2 correspondent à

des familles de matrices disons Mi/, Ni/ et Pi /. La relation ' L D '1LC '2 L



856 G. Rémond CMH

s’écrit tMxiMi D
tNxiNi C

t xPiPi lorsque l’on choisit l’isomorphisme pour que

l’involution de Rosati corresponde à la transconjugaison sur chaque facteur ; voir
[Mu, p. 208] et [R2, p. 343]) et implique KerMi Ker Pi Le lemme précédent
fournit donc des matrices M0i Ui et N0i avec N0

i /2
D N0i PiN0i D 0, M0i D UiMi

Ui inversible et tMx0i Mi D tNx0i Ni C t xPiPi En voyant les familles M0i /, Ui/ et

N 0

i/ comme '0;u; '01 2 End.A/ R nous avons '01
B '01 D '01 '2 B '01 D 0,

' 0

D u B ', u inversible et .'0/ L D .'01/ L C '2 L. Voyons que .' 0; '01/ 2 E.'2/
et rg '01 D rg' rg '2, ce qui donnera la conclusion.

Comme u 2 End.V / est un automorphisme nous avons rg' 0 D rg' r. De
plus '01 est non nul car sinon .'0/ L D '2 L donne rg '2 D rg ' 0 D rg ' r
contrairement à notre hypothèse rg'2 < r. Ceci montre .'0; '01/ 2 E.'2/. Comme
plus haut, H' 0 D H'01 C H'2 donne Ker '0 D Ker '01 \ Ker '2. Enfin si x 2 V
nous écrivons x D '01 x/ C x '01 x// avec '01 x/ 2 Ker '2 car '2 B '01 D 0 et

x '01 x/ 2 Ker '01 car '01 B '01 D '01 Ainsi V D Ker '01 C Ker '2 de sorte que

Ker '0 D Ker '01\Ker '2 donne bien rg ' 0 D rg'01 C rg '2.

Si nous rassemblons les résultats obtenus jusqu’ici, nous voyons que Z r/
X est

l’uniondes fermés irréductibles Y deX pour lesquels ilexiste ' 2 End.A/ Rtel que
dim '.Y / < dim Y End.A/ R;r.'/. Pour conclure, il nous reste essentiellement à

voirque l’on peut remplacer ' 2 End.A/ Rpar' 2 End.A/ et c’est ici qu’intervient
le théorème d’Ax, sous la forme suivante.

Lemme 4.10. Soient W un sous-espace vectoriel de V U un ouvert de A pour la
topologiecomplexe,Z unesous-variété analytique irréductible deU etY l’adhérence
de Zariski de Z dans A. Si 1.Z/ W Cƒ il existe un sous-espace vectoriel W 0

de V tel que W W 0, 1.Y / W 0 C ƒ et dimW 0 dimW C dim Y dim Z.

Démonstration. C’est le théorème 1 de [Ax] appliqué au groupe algébrique A noté
G), au sous-groupe analytique connexe W/ noté A) et à la sous-variété Z notée

K). Il fournit un sous-groupe analytique noté B) que nous écrivons ici W0/.

Finalement nous en déduisons le résultat cherché.

Théorème 4.1. Nous avons Z r/
X D ZX. End.A/ R;r /.

Démonstration. Notons à nouveau D End.A/ R;r L’inclusion ZX. / Z r/
X est

claire : un fermé Y -anormal vérifie la condition du lemme 4.7. Soit maintenant

x 2 V tel que x/ 2 Z r/
X

Par définition de dim '. / il existe ' 2 End.A/ R tel
que dimx. 1.X/\ x C Ker'// > '/. Nous considérons un voisinage ouvert

U de x tel que U U/ est un isomorphisme puis une composante irréductible Z
de 1.X/\ x CKer '/\U contenant x avec dimZ > '/. Soit Y l’adhérence
de Z/ dans X pour la topologie de Zariski. Nous appliquons le lemme précédent à
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W D Ker ', U x/, Z x/ et Y x/. Il montre qu’il existeW 0 D Ker où

2 End.V /) tel que W W 0, dim Y / D 0 et rg rg ' C dim Z dimY >
rg' C '/ dim Y Par / nous majorons rg' C '/ rg C / car
Ker Ker ' donne ' D B et le lemme 4.1 autorise ' 2 End.A/ R) donc il
vient dimY > /. Le lemme 2.2 permet alors de remplacer par un élément de

End.A/ et donc Y est -anormal. Nous concluons Y ZX. / puis x/ 2 ZX. /
qui donne bien la seconde inclusion.

Le théorème 1.4 estmaintenant entièrement démontré. Terminons endéduisant les

théorèmes 1.5 et 1.3. Pour le premier, nous avons plus précisément l’énoncé suivant.

Proposition 4.2. Les assertions suivantes sont équivalentes.

.1/ Z dimXC1/
X;an ¤ X ;

.2/ X est géométriquement non dégénérée;

.3/ pour toute sous-variété abélienne B de A avec degB deg X/4g dimX
on a :

dim X C B D min.dim X C dim B; dim A/:

Démonstration. Écrivons D End.V/;dimXC1 puis pour 2 End.A/ nous
notons ZX. ; / le fermé fx 2 X j dimx X \ 1. x// > /g. Une égalité

ZX. ; / D X dit que la dimension de toutes les fibres de X X/ est au
moins / C 1 ; elle signifie donc que la dimension relative de ce morphisme
est au moins / C 1 c’est-à-dire dim X/ dim X / 1. Maintenant

/ D max.0; dim X rg / d’où dim X / D min.dim X; rg /.
Enfin nous écrivons B D Ker0 pour avoir rg D g dim B et dim X/ D
dim.X C B/=B D dim.X C B/ dim B. Par suite ZX. ; / D X est équivalent
à : dim X C B min.dim X C dim B; g/ 1.

CommeZ dimXC1/
X;an D ZX. / est l’union de tous lesZX. ; / on constate facilement

1) H) 2). Ensuite 2) H) 3) est tautologique et 3) H) 1) est conséquence

du fait voir partie 3) que ZX. / est une union finie de ZX. ; / pour 2 End.A/
vérifiant degKer0 deg X/q où q D p.p C 1/dimX 1 4g dimX.

Le résultat de [R1] combiné avec celui de [C] qui démontre la conjecture 1.1 de

[R1] dans le cas avec multiplications complexes) nous donne le fait suivant.

Proposition 4.3. Si A est à mutliplications complexes, pour tout choix de hauteur
sur A.xQ/ et tout réel H l’ensemble

fP 2 X. xQ/ n Z r/
X; / \ C AOEr / j H.P/ Hg

est fini.
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Comme, de son côté, le théorème principal de [R2] montre que X.xQ/ n Z r/
X /\

C AOEr / est de hauteur bornée, on en déduit avec le théorème 1.4 que si A est à

multiplications complexes alors X. xQ/ n Z r/
X;an/\ C AOEr / est fini et donc si X

est géométriquement non dégénéré il vient avec la proposition 4.2 que X. xQ/\. C
AOEdimXC1 / n’est pas dense dans X : c’est le théorème 1.3.

5. Exemples

Nous illustrons brièvement dans cette partie le fait qu’aucune des inclusions

Z r/
X;Q Z r/

X Z r/
X;an n’est en général une égalité. Cela nous permet aussi de

présenter quelques calculs de fonctions
Nous nous plaçons dans le cas où A D A20 avec A0 une variété abélienne simple

de dimension n 2 donc g D 2n). Nous considérons un fermé irréductible Y1 de

A de la forme Y1 D Y0 f0g où 0 2 Y0 A0 avec la condition 0 < dim Y0 < n.
Nous choisissons ensuite un sous-schéma fermé X de A de dimension n contenant
Y1 mais différent de A0 f0g.

Nous remarquons que cette construction entraîne que X n’est contenu dans
aucun translaté de sous-variété abélienne stricte de A. En effet, pour une telle B, une
inclusion X x C B impliquerait X B car 0 2 X et donc Y1 B. Mais il est

clair que seul B D A0 f0g contient Y1 donc nous aurions X A0 f0g puis par

dimension X D A0 f0g, ce que nous avons exclu.
Évaluons maintenant les différentes fonctions pour r D n C 1. Nous notons

1 D End.A/ Q;r et 2 D End.V /;r Par la formule générale, nous avons 2.'/ D
max.0; n rg '/. Maintenant End.A/ Q est de la forme M2.D/ pour un certain
corps D et donc les éléments de End.A/ Q ont pour rang 0, n ou 2n. Par suite
dans la définition de 1 on ne peut donc choisir que rg '0 D 2n et ceci conduit à la
formule 1.'/ D max.0; 2n 1 rg '/. Autrement dit, pour ' 2 End.A/,

si rg ' D 2n 1.'/ D0 2.'/ D 0;
si rg ' Dn 1.'/ D n 1 2.'/ D 0;
si rg ' D0 1.'/ D 2n 1 2.'/ D n:

Quels sont les fermés 1-anormaux de X La condition dimY > 1.'/ ne peut bien
sûr avoir lieu pour 1.'/ D 2n 1 ; lorsque 1.'/ D n 1 elle entraîne Y D X mais

X ne peut pas vérifier dim '.X/ D 0 avec rg ' D n car X n’est pas contenu dans un
translaté de Ker0 ' par construction ; enfin si rg' D 2n et dimY > 1.'/ D 0 on a

dim '.Y / D dimY > 0. Finalement Z r/
X;Q D ZX. 1/ D ;.

Par ailleurs Y1 est clairement 2-anormal : en choisissant pour ' W A20 A20

la projection sur le deuxième facteur, nous trouvons dim '.Y1/ D 0 et dim Y1 >
2.'/ D 0. Ainsi Z r/

X;an D ZX. 2/ ¤ ;.
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Reste à déterminer Z r/
X Ici la réponse dépend de la nature de EndA0. Nous

envisageons seulement deux cas extrêmes. Supposons tout d’abord EndA0 D Z de
sorte que End.A/ R ' M2.R/. Dans ce cas, les éléments de End.A/ R n’ont
eux aussi que trois rangs possibles : 0, n ou 2n. Par suite rg '0

D 2n est également
forcé dans la définition de End.A/ R;r donc cette fonction coïncide avec 1. Ici

Z r/
X;Q D Z r/

X ¤ Z r/
X;an

Si au contraire A0 est à multiplications complexes, End.A0/ R ' Cn donc
End.A/ R ' M2.C/n. On vérifie immédiatementquedanscetanneau comme dans

End.V / ' M2n.C/) pour tout élément ' de rang au plus r 1 il existe un élément

' 0 de rang r et une factorisation ' D B ' 0. Par conséquent End.A/ R;r D 2 et

nous avons cette fois-ci Z r/
X;Q ¤ Z r/

X D Z r/
X;an

Ceci montre que les inclusions peuvent être strictes. Dans le sens opposé, nous
avons égalité pour certaines classes de variétés abéliennes.

Lemme 5.1. Soient A une variété abélienne, X un sous-schéma fermé intègre de A
et r un entier avec 0 r g D dim A.

.1/ SiAest isogèneàun produit de courbes elliptiquesalorsZ r/
X;Q D Z r/

X D Z r/
X;an

.2/ Si A est à multiplications complexes alors Z r/
X D Z r/

X;an

Démonstration. Sous l’hypothèse de 1) l’égalité Z r/
X;Q D Z r/

X;an
apparaît dans [R2,

lemme 1.4]. Pour 2) la preuve est identique à celle faite ci-dessus dans la fin de

l’exemple : End.A/ R est de la forme
Q

k
iD1 Mni C/ avec

P
k
iD1 ni D g donc on

peut toujours choisir rg '0 D r.

6. Finitude et fermeture

Danscette partie, nousnous intéressonsauxensemblesZ r/
X;

et aux questions1 et2
de l’introduction. Comme plus haut, nous nous plaçons dans un cadre plus général.
Pour une fonction W End.V / N et S une partie quelconque de A.C/, nous
disons qu’un fermé irréductible Y est S- -anormal s’il existe ' 2 End.A/ vérifiant
dim '.Y / D 0, dimY > '/ et '.Y / 2 '.S/.

Ceci permet de reformuler la définition de Z r/
X; : c’est l’union des fermés sat-

End.V /;r-anormaux de X voir introduction et [R1, page 531]). Pour D 0 nous
avons sat D A.C/tors et nous retrouvons pour r D dim X C 1 la notion de fermé
torsion-anormal décrite dans [BMZ] pour les tores. En outre la terminologie précédente

de -anormal se retrouve en prenant S D A.C/.
C’est un problème ouvert de montrer que l’union des fermés S- -anormaux de

X est un fermé mais nous pouvons tout de même montrer qu’un fermé S- -anormal
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maximal est de degré borné. Ceci fait l’objet du théorème ci-dessous que nous
énoncerons après quelques compléments sur les fonctions

Dans la suite, nous supposerons comme dans la partie 3 que
W End.V / N

vérifie / pour .'; / 2 End.A/ End.V /. Par conséquent nous pouvons associer
à toute sous-variété abélienne B de A l’entier B/ tel que B/ D '/ pour tout

' 2 End.A/ avec B D Ker0 '. Avec cette notation / entraîne que si B B0 sont
deux sous-variétés abéliennes de A alors

0 B0/ B/ dim B0 dim B:

Par ailleurs, en reformulant la définition ci-dessus, nous voyons que Y est S- -
anormal si et seulement s’il existe s 2 S et une sous-variété abélienne B de A avec

Y s C B et dimY > B/.
Voyons maintenant comment restreindre une fonction à une sous-variété

abélienne.

Lemme6.1. SoientA0 D V 0=V 0\ƒetA00 D V 00= V 00\ƒdeux sous-variétés abéliennes

de A D V=ƒ telles que V 0\ V 00 D 0 et
W

End.V / N une fonction vérifiant

/ pour .'; / 2 End.A/ End.V /. Il existe une fonction 0
W End.V 0/ N

vérifiant / pour .'; / 2 End.A0/ End.V 0/ de sorte que pour toute sous-variété
abélienne B de A0 on ait 0.B/ D B C A00/.

Démonstration. Notons W un supplémentaire de V 0 ° V 00 dans V de sorte que

W=W \ƒ soit une sous-variété abélienne de A. Nous choisissons N 2 N n f0g tel
queNƒ V 0\ƒ°V 00\ ƒ°W \ƒ. Nous associons à ' 2 End.V 0/ le morphisme

N.' 0 idW / W V 0 V 00 W V 0 V 00 W vucommeélémentde End.V / et posons

0.'/ D N.' 0 idW //. Si ' 2 End.A0/ nous avons N.' 0 idW / 2 End.A/
grâce à l’hypothèse sur N. De plus Ker.N.' 0 id// D Ker 'CV

00 ce qui donne la
formule 0.B/ D BCA00/. Enfin si 2 End.V 0/ nous avons 0 id 2 End.V /
et 0 idW / B N.' 0 idW / D N. B ' 0 idW /. De cette façon, / pour

0 suit de / pour avec la remarque rg.N.' 0 idW // D rg ' C dimW

Nous rappelons que des entiers et p ont été associés à une variété abélienne A
voir fin de la partie 2). Nous utiliserons ci-dessous B A et pB pA pour toute

sous-variété abélienne B de A.
Après cette remarque, notre résultat est le suivant.

Théorème 6.1. Pour toutevariété abéliennepolarisée A;L/, toute partieS de A.C/,
tout sous-schéma fermé intègre X de A, toute fonction

W
End.A/ N satisfaisant

/ pour .'; / 2 End.A/ End.V / et tout fermé S- -anormal maximal Y de X
on a

deg Y deg X/.p C1/
dim X.dimX 1/=2

:
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Démonstration. Nous montrons l’énoncé par récurrence sur dim X. Si dim X 1,
nous avons Y D X et le résultat est clair. Supposons donc dim X 2. Le fermé Y est

en particulier -anormal donc contenu dans un ferméY1 -anormal maximaldansX.
Par la proposition 3.2, nous avons deg Y1 deg X/ dimX où n désigne p C1/

n 1.

Si jamais Y1 ¤ X alors Y est S- -anormal maximal dans Y1 donc par hypothèse de
récurrence degY deg Y1/ dimY1 où n est ici p C1/n.n 1/=2. Nous en déduisons
deg Y deg X/ dimX dimY1 Comme dim Y1 dimX 1 et dimX dimX 1 D dimX
ceci donne deg Y deg X/ dimX qui est la formule cherchée.

Sinon nous avons Y1 D X ce qui signifie qu’il existe une sous-variété abélienne

B de A et x 2 A.C/ avec X x C B et dimX > B/. Il ne coûte rien de choisir
x 2 Y En outre X x C B donne hXi B donc par / B/ hXi/ :
ceci montre que nous pouvons supposer B D hXi sans rien changer. Maintenant
l’hypothèse sur Y donne l’existence d’une sous-variété abélienne G de A et de s 2 S
avec Y s CG et dimY > G/. Puisque x 2 s CG nous avons s CG D x CG
donc Y X \ x C G/ x C B/ \ x C G/ D x C B \ G/. D’un autre côté

X xCB Y CB sCGCB.Nousexaminons deux cas: si dimX > GCB/
alors X est S- -anormale donc Y D X par maximalité et l’énoncé vaut ; sinon nous
avons dim X G C B/.

Nous appliquons alors le lemme avec A0 D B. Pour A00 nous choisissons une

sous-variété abélienne de G telle que G D G \B/ CA00 et A00\B fini. La fonction
0 fournie par le lemme vérifie alors 0.G \B/ D G/ et 0.B/ D B CA00/ D
G C B/. Écrivons X0 D X x et Y 0 D Y x de sorte que Y 0 X0 B. Par

ce qui précède nous avons Y 0 B \ G puis dim Y 0 > 0.B \G/ d’une part et

dim X0 0.B/ d’autre part. Ainsi Y 0 est 0-anormal dans B) et X0 ne l’est pas car

hX0i D B est la seule sous-variété abélienne de B dont un translaté contient X0.
Nous en déduisons que Y 0 est contenu dans un fermé 0-anormal maximal Y02 ¤

X0 de X0. D’après la proposition 3.2 appliquée dans B et grâce à la remarque sur p
et nous trouvons deg Y02 degX0/ dimX0 En posant Y2 D Y02 C x nous avons
deg Y02 D deg Y2 et degX0 D degX. Maintenant Y est S- -anormal maximal dans

Y2 donc par récurrence deg Y deg Y2/ dimY2 et l’on conclut comme plus haut
avec Y1.

Pour alléger, nous appelons -r-anormaux plutôt que sat- End.V /;r-anormaux

les fermés intervenant dans la définition de Z r/
X; Voici comment la question 2 se

réduit à la question 1.

Théorème 6.2. Supposons que la question 1 admette une réponse positive dans tout
quotient d’une variété abélienne A. Alors, pour tous et r, tout sous-schéma fermé
intègre X de A ne contient qu’un nombre fini de fermés -r-anormaux maximaux et,

en particulier, leur union Z r/
X; est un fermé.
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Démonstration. Nous procédons par récurrence sur dim X, les cas où dim X 1
étant triviaux comme d’habitude. Comme un quotient d’un quotient de A est un
quotient de A, nous pouvons supposer que la conclusion du théorème vaut pour tout
sous-schéma fermé intègre X0 d’un quotient de A avec dim X0 dim X 1. Comme

sat est de rang fini, il ne coûte rien de supposer D sat Considérons donc un fermé
irréductible -r-anormal maximal Y de X. Il existe donc une sous-variété abélienne

G de A et 2 avec Y C G et dimY > max.0; r 1 codim G/. En outre
d’après le théorèmeprécédentB D hY iappartientà un ensemble fini desous-variétés
abéliennes de A. Vu le résultat à montrer, nous pouvons supposer B fixée. Notons

' W A A=B le morphisme quotient et y0 D '.Y /. Soit ensuite

Z D fx 2 X j dimx X \ ' 1.'.x// dim Y g

qui est un fermé vérifiant Y Z X. De plus il y a un nombre fini de choix
pour Z donc pour ses composantes irréductibles. Si Z ¤ X nous pouvons appliquer
l’hypothèse de récurrenceàune telle composanteZ1 deZ contenantY etdans laquelle
Y est évidemment encore -r-anormal maximal. Ceci montre que Y appartient à un
ensemble fini de fermés.

Examinons maintenant le cas où Z D X. Ceci signifie exactement que la dimension

relative de 'jX est au moins dim Y et implique en particulier que dim '.X/
dim X 1 car dimY > 0). D’un autre côtéB G donnecodim '.G/ D codim G
r dim Y si bien qu’en notant r0 D r dim Y nous avons '.G/ A=B/OEr0 et

donc y0 2 '. / C A=B/OEr0 Si nous écrivons

y0 2 ..'.X/ n Z r0/

'.X/;'. //\ .'. / C A=B/OEr0 // [ Z r0/
'.X/;'. /;

nous voyons qu’en vertu de la question 1 et de l’hypothèse de récurrence le membre
de droite est un fermé Z0 de '.X/. Si Z0 ¤ '.X/ nous pouvons raisonner avec

X \ ' 1.Z0/ comme avec Z ci-dessus et montrer que Y appartient à une liste finie
de fermés de X. Si Z0 D '.X/ deux choses seulement peuvent se produire : ou bien

'.X/ est ponctuel ou bien il est '. /-r0-anormal notons ici que '. /sat D '. /
Si '.X/ est ponctuel alors X Y C B Y C G D C G donc X est -

ranormal et par maximalité de Y nous avons Y D X. Ici la liste finie fXg convient. Si

'.X/ est '. /-r0-anormal il existe une sous-variété abélienne G0 de A=B et 1 2
tels que '.X/ ' 1/ C G0 et dim '.X/ > max.0; r0 1 codim G0/. Notons

G1 D ' 1.G0/ de sorte que X 1 C G1 et codim G1 D codim G0. Par dimension
relative, dim X dim '.X/ C dimY > max.0; r 1 codim G1/ donc X est

-r-anormal et à nouveau Y D X.

Remarque : dans [R1] ici proposition 4.3) on peut en fait remplacer Z r/
X; par

Z r/
X;Q voire Z r/

X;Q; union des sat- End.A/;r-anormaux donc nos arguments montrent

la finitude de X. xQ/ n Z r/
X /\ CAOEr / si A admet des multiplications complexes

ou vérifie la conjecture 1.1 de [R1]).
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