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The structure of homotopy Lie algebras

Yves Félix, Steve Halperin and Jean-Claude Thomas

1o J.-M. Lemaire for his 60th birthday

Abstract. In this paper we consider a graded Lie algebra, 1., of finite depth m, and study the
interplay between the depth of L and the growth of the integers dim L;. A subspace W in a

graded vector space V is called full if for some integers d, N, g, dim Vi < d Zf:;? dim W;,
i > N. Wedefine an equivalence relation on the subspaces of V by U ~ W if U and W are full
in U + W. Two subspaces V', W in L are then called L-equivalent (V' ~; W) if for all ideals
K cC L, VNK ~WnK. Then our main result asserts that the set &£ of L-equivalence classes
of ideals in L is a distributive lattice with at most 2’ elements. To establish this we show that
for each ideal [ there is a Lie subalgebra £ C L suchthat EN /7 =0, E @ [ isfullin L, and
depth £ + depth 7 < depth L..

Mathematics Subject Classification (2000). 55P35, 55P62, 17B70.

Keywords. Homotopy Lie algebra, graded Lie algebra, ideal, radical of a Lie algebra, log index,
growth.

1. Introduction

We work over a ground field k of characteristic # 2. A graded Lie algebra, L, is a
graded vector space equipped with a Lie bracket [, |: L ® L. — L, satisfying

[x, y] 4+ (—1)*E¥* [y x] =0
and
[x, [y, 2]l = [[x, y]. 2] + (—1)%E¥* [y, [x, 2]],

and [x, [x,x]] = 0, x € Lygq if char k = 3. (This condition is automatic if char k is
not 3.)
As in the classical case, L has a universal enveloping algebra UL, and we define

depth L = least m (or oo) such that Exty; (k, UL) # 0.
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Similarly, if M is an L-module, then
grade; M = least g (or oo) such that Ext{,; (M, UL) # 0.

The graded Lie algebra, L, is connected if L = {L;};- and of finite type if each
dim L; < oc; graded Lie algebras satisfying both condition are called cft graded Lie
algebras.

Suppose now X is a simply connected CW complex of finite type. Then the
rational homotopy Lie algebra, Ly = 7.(Q2X) ® Q (with Lie bracket given by the
Samelson product) is a cft graded Lie algebra. The motivation for the study of cft
graded Lie algebras of finite depth is the following result.

Theorem ([1]). If X is a simply connected CW complex of finite type, then
depth Ly < caiy X,

where Catg X denotes the rational Lusternik—Schnirelmann category of X. In partic-
ular, if X is a finite CW complex, then depth Ly is finite.

For more details for all of the above, the reader is referred to [5].
An important question connected with the Lie algebra Ly is the behavior of the
integers dim(Ly );, since

dim(Ly); = rank 77; 4 1{X).
In this regard, we have the following growth result.

Theorem ([9]). Let X be a simply connected CW complex of finite type such that the
sequence dim Hy (X ; Q) grows at most exponentially. If cato X < oo, then either
dim Ly < o, or else there is a positive integer d and a number « > O such that

given € > (,
k+d

(@K < Y (dimLy); < T k= K(e).
i=k

Note that e~ is just the radius of convergence of the power series > dim(Ly); z*.

In this paper we focus on the structure of cft graded Lie algebras of finite depth,
with particular attention to the interplay between depth and growth of the integers
dim L;, and to the structure of the ideals in L. Our aim is a classification theory
for the ideals in a cft graded Lie algebra of finite depth, and in particular for the
homotopy Lie algebras Ly of a space of finite Lusternik—Schnirelmann category. A
crucial notion is that of full subspace.
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Definition. A subspace W of a graded vector space V' = {V;};5 is full in V if for
some fixed A, ¢ and N (all positive)

k+g
dim V; SAZdimWi, k> N.
i=k

An easy argument (Proposition 2.5) then shows that an equivalence relation on
the subspaces of V is defined by

U~W <« Uand WaretullinU + W.

Two subspaces V, W in a graded Lie algebra L are called L-equivalent (V ~j, W)
if forallideals K € L,V N K ~ W N K. As we show in Section 5, the set £ of
L-equivalence classes [/ ] of ideals I C L is adistributive lattice under the operations
< [J]ifINnJT ~p I,[I]v[J]=[I+J]and [I]A[J] =[] N J]. Insucha
lattice each maximal chain of strict inequalities 0 < [[(1)] < --- < [I(r)] = [I] has
the same length r; the number r is the height ht[/] of [7].

Now our main result (Theorem 5.7) reads as follows:

Theorem. let L be a cft graded Lie algebra of finite depth m and suppose ht[L] = r.
Thenr < m. Moreover, the number vy, of L-equivalence classes of idealsin L satisfies
vy, < 2" and equality holds if and only if L ~7, I(1) @ --- @ I(r) where the I(i) are
ideals of height 1.

The main step in the proof of this theorem is the following (Theorem 4.3).

Theorem. Ler [ be an ideal in a cft graded Lie algebra L of finite depth. Then there
is a Lie subalgebra I' C L such that,

(1) ENI =0and E & 1 is fullin L, and,
(i) depth £ + depth I = depth(E & I) < depth L.

Call an inclusion W C V of graded vector spaces strongly proper if W is not
full in V. Then the theorem above has the following consequence (Corollary to
Theorem 4.3).

Proposition. If ] is a strongly proper ideal in a graded Lie algebra L, then depth I <
depth L. Thus the length of a sequence I{(1} C --- C I(r) C L of strongly proper
inclusions of ideals has length at most depth L (r < depth L).

The proof of the theorem requires certain technology for the study of the relative
size of graded vector spaces, which we setup in Section 2. Then in Section 3 we carry
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out a careful analysis of the relationship between depth L and grade; M, showing
thatunder certain hypotheses depth L = grade; M (Theorem 3.6). These hypotheses
hold for the modules appearing in the Hochschild—Serre spectral sequence, which then
constitute the main ingredient in the proof of the theorem.

The results in Sections 3 and 4 have a number of applications. First we note that
upper and lower bounds on the rate of exponential growth of a graded vector space
V are given by

logdim V,
logindex V' = lim sup %
k

and

k+q 4.
lower logindex V' = lim liminf log 2.i— dim Vi .
g—00  k k
In Section 5 we note that if W is full in V', then W and V' have the same log index
and the same lower log index. Thus the Lie subalgebra £ & [ in the theorem above
has the same growth properties as L.

We then show that the sum, R, of theideals I C L withlog index I < logindex L
also satisfies log index R < logindex L; thus R (called the hyperradical of L) has
strictly lower depth. Define a sequence R, € R,—1 C - C Ry = R C L by
defining R; to be the hyperradical of R;_;. Since each inclusion is strongly proper,
it follows that ¥ < depth L; moreover, clearly for any ideal I C L,

logindex / = logindex R; for some i.

It follows that at most depth L + 1 numbers appear as the log index of anideal / in L.
In Section 7 we show that in any cft graded Lie algebra of finite depth, either
dim Lyq is finite or ¢lse for some d the integers Zfi ,‘f 41 dim(Lggq); grow faster
than any polynomial.
Finally, the authors would like to thank the referee for the many helpful suggestions
and comments.

2. Large and full subspaces

2.1. Definitions and characterization. Suppose V' = {V;};>¢ is a graded vector
space of finite type, and let o = (o; ) be a sequence of non-negative numbers.

Definition 2.1. A subspace W C V is o-large in V if for some fixed ¢, A, K > 0,

k+q
dim(V/ Wy <A > 0, k=K. (1)
i=k
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If Z is a graded vector space and W is (dim Z;)-large in V', we shall say simply
that W is Z-large in V',

For instance W C 1V has polynomial codimension if W 1s o-large in V' with
o; = ™ for some m.

Lemma 2.2. () I[fU C Wiso-largein W and if W C V iso-largein V, then U is
o-large in V.
(i1) The finite intersection of o-large subspaces of V' is also o-large in V.

() If W C Viso-large in V, then for each r > 0,

k+r k+r+q
Yo dim(V/ Wy i@+ Y o k=K,
i=k i=k

where q, A, K are as in Definition 2.1.

Proof. (i) Choose A, g, K so that Definition 2.1 is satisfied for both U C W and
W C V. Then

k+q k+qg k+q
dim(V/ U = dim(W/U)y +dim(V/ W), < A Z Gi+A Y o =21 oi
i=k i=k

(i1} Suppose W(l),..., W(r) are o-large subspaces of V, and choose ¢, A, K so
that Definition 1 holds for each of the W(;). The linearmap V — V/W(l)®--- &
V/ W(r) factors to give an injection

V/WN - AW — VW) & & VW),

and so

k+g

. V
i () Zdlm( w5, =rh ) o

(iii)

k+r k+r i+q k+r+gq

Y dim(V/W) <> AY oy <Ag+ D Y o O
i=k i=k Jj=i i=k

Definition 2.3. A subspace W < V is full in V if for some ¢, A, K > 0,

k+q
dim V, < A Z dimW;, k > K.
i=k
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Lemma 2.4. Suppose U C W C V.
(1) The following conditions are equivalent :
— Wisfullin V.
- Wis W-large in V.
— The zero subspace is W-large in V.
(1) IfU isfullin W and W is full in V, then U is full in V.
(1) If Wis S-large in 'V forsome S CV,then W + S isfullin V.
(iv) If Wisfullin V and A, q, K satisfy dim V;, < A Zf:g dim W;, k > K (cf. (1)),

then for any r > 0,

k+r k+r+g
> dimV; <A@+ 1) Y dimW;, k=K.
j=k Jj=k

Proof. (1) The third condition simply states the definition of fullness, and trivially
implies the second. If the second holds, then (for some A, g, K)

k+q
dim Vi = dim Wi + dim(V/ W) < (A + 1) Y dim W.
i=k
(ii) For suitable «, 8, r, s, K,
k+r k+r i+s
dmVi <o) dimW <oy (ﬁZdimUj)
i=k i=k j=i
k+r+s
<ef(r+1) Y dimU;, k=K
j=k
(iii) For suitable A, g, K and for k > K,
dim V; = dim(V/ W), + dim W,
k+q
<A dimS; + dim Wy
i=k
k+q
<24 ) dim(S;+W,). k=K.
i=k

because dim(Sy + Wi} > 3 (dim Sk + dim Wy).



Vol. 84 (2009) The structure of homotopy Lie algebras 813

(iv)
k+r k+rit+q k+r+q
Y dimV <A > dmW; =(g+ DA Y dimW;, k=K O
i=k i=k j=i j=k

Proposition 2.5. An equivalence relation on the subspaces of V isdefined by U ~ W
ifand only if U and W are fullin U + W.

Proof. 'We have only to check transitivity. Suppose that U, W, Y are subspaces of V'
andU ~ W and W ~ Y. The injection W +Y — U + W 4 Y induces a surjection

(WL Y)/W > U +WLY) U+ W)

Since Wis full in W 4 Y this implies that U + Wisfullin U + W + Y. But U 1s
full in ' + W and hence (Lemma 2.4 (i1)) U 1s fullin U + W + Y. Therefore U 1s
certainly fullin U 4+ Y. Similarly ¥ isfullinU + Y andsoU ~ Y. [

Definition 2.6. The equivalence relation above will be called full equivalence and
will be denoted by U ~ W,

Proposition 2.7. If U; ~ W; are pairwise fully equivalent subspaces of V, then
Ui+ + U~ W1+ -+ W

Proof. 1t 1s clearly sufficient to prove the proposition when r = 2; in this case we
need show that Uy + Us ~ W) 4+ U, ~ Wy + W,. Thus we are reduced to show
that Uy + W ~ U, + W it Uy ~ U,. By hypothesis, Uy is full in Uy + U,. Tt
follows from the obvious surjection (U + U,)/ Uy — (U + U, + W)/ (U + W)
that Uy + W is Uy -large in Uy + U, + W. Thus it is certainly (U + W)-large in
Uy 4+ Uz 4+ W, and hence full in this space. Similarly Us +- W isfullin Uy 4 U + W
andsoUy + W ~ U + W, ]

2.2. Logindex and lowerlogindex. Againsuppose V = {V;};-¢1sa graded vector
space of finite type. The log index of V' is the number given by

logindex V' = lim sup M;
& k
itis the least number « such that forall ¢ > 0, thereisa K such thatdim Vj < glatedk
k > K. Thus it provides a sharp upper bound for exponential growth.

Note that if A = logindex V < oo, then e~ is the radius of convergence of the
Hilbert series » _ dim szk. One should also observe that if A > 0, then the sum
Zle dim V; grows exponentially with &.

In the applications we shall use the following, seemingly more refined, measures.
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Definition 2.8. The upper and lower log indexes of V are given, respectively, by

k+q .
lo T dim V;
upper logindex V = lim lim sup £ (lek l)
q—0o0 k k
and .
lo T dim V;
lower logindex V = lim lim inf S (Zz=k l)'
g—oo  k i

Remark. The limits above exist because the sequences increase with ¢.

Lemma 2.9. (i) For any q,

k+q 4.
lo ST dim V;
logindex V' = lim sup £ (Zl :kk 1)
k

(i1} If L is a cft graded Lie algebra of finite depth then for some d,
log (Zk:,f dim L;)

1

k

Proof. (1) This is straightforward.

(i1} By [9], Lemma 7, there is an integer d sothat Z = {u|[u,L<4] = 0} is
finite dimensional. Choose D so that Z-p = 0.

Next, forany s > d and k > s + D, write

= upper log index V.

= lower logindex L, ¢q > d.

lim inf
k

k+s
> dimL; = e?®K,
i=k
Then for some j € [k —s, k], dim L; > —Loe¥®=s9&=9) Letuy, .. u, beabasis

for L <4 and note that, since j > D, for some A we have dim[u;, L;] > %dim L;.
Proceeding in this way yields an infinite sequence (u_, ) such that

1 q
dimfuy,, [ua, o, [---[un, Lyl .1 = (—) dim L; forall g.
P

But for some ¢ < s, we have Y 7_ degu;, + j € [k, k + d]. Tt follows that

vk, d) > (1—s/k)y(k —s,5) — QISS),

for some Q(s) independent of k. Letting & — oo, we see that liminfy, y(k,d) =
liminfy y(k,s). Thus fors > d
log (Y522 dimLy) . log (Y527 dim L;)
= lim inf ,
k k k
and this is then obviously the lower log index of L. H

lim inf
k
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Remark. Lemma 2.9 shows that log index L and lower log index L give precise
upper and lower bounds on the exponential growth of Zf:,f dim L;.

Proposition 2.10. Suppose U and W are fully equivalent subspaces of V. Then U
and W have the same log index and the same lower log index.

Proof. We need to show thatif W is full in V then W and V' have the same log index
and lower log index. But then

log dim V; log dim W;
sup 0g 1.mj pog im W,
=k J J>k J
log (q—|—1 Z‘Hq dim W)
= sup
ik J
1 1 4
> sup
izk )
Take limits as k — oo to see that logindex V' = logindex W.
On the other hand,
k+r k+r+gq
Y dimV; <A(g+1) Y dimW (Lemma 24(iv))
i=k i=k
k+r+q
<Mg+1 ) dimV.
i=k
Thus
k+r k+r+q
lo dim V; log A 1 lo dim W;
fimin 8 ) < liminf (8ME+D | 2 (Xizk )
k k k k k
k+r+gq
log A 1 lo dim V;
< liming (222G D g (20 )\
k k k
o Jq+r im W;
Leta; = lg(Zle : ). Then
log A 1 log A 1
inf a; < inf (M—Féﬁ) SM-F inf a;.
jzk izk J k jzk
Taking limits as k — oo gives
k+q+r k+q+r
log A 1) lo dim W; lo dim W;
lin}cinf(()g (Z+ ) loe (0 < l))zlirr}(inf 2 (2 C )
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Hence

log K17 dim V; log YK dim W

lim inf < liminf
k k Tk k
k+r+q ;.
lo . dim V;
< liminf 82—k <)
k k
Taking limits as r — oo gives
lower logindex V' = lower log index W. ]

3. Growth and depth in a graded Lie algebra

Let L be a cft graded Lie algebra, let ¢ = (o;) be a sequence of non-negative integers
and let M = {M;};cz be a Z-graded L-module.

3.1. Thin modules

Definition 3.1. Given subspaces V, W C M, the isotropy Lie subalgebra Ly and
the co-isotropy Lie subalgebra LY are defined by

Ly={xelL|x-V=0 and LY ={xeL|x-McC W}

The L-module M is o-thin if Ly and LY are o-large Lie subalgebras of L
whenever dim V' < oo and codim W < oc.

Remark. If V and W are subspaces of a o-thin L-module such that dim V' < oc and
codim W < oo, then E = Ly N LY is a o-large Lie subalgebra satisfying

E-V=0 and EF-MCW.

Lemma 3.2. Ler L be a cft graded Lie algebra and let ¢ = (0;); >0 be a sequence
of non-negative numbers. Then:

(1) The direct sum and the finite tensor product of o-thin L-modules are o-thin.
(1) Any subquotient of a o-thin L-module is o-thin.
(i) If M is a o-thin L-module, then each A4 M is also o-thin.
(iv) If M is a o-thin L-module, then M* = Hom(M, k) is also o-thin.

Proof. Elementary linear algebra suffices to prove the lemma, since a finite intersec-
tion of o-large Lie subalgebra is o-large. [
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Lemma 3.3. Suppose L is a cft graded Lie algebra, o = (0); >0 is a sequence of non-
negative numbers, and M = {M, }i>o is an L-module concentrated in non-negative
degrees. Then
(1) M iso-thinifandonlyif Ly iso-large in L, whenever V is a finite dimensional
subspace of M.

(i1) The sum, N, of all the o-thin submodules N(«) C M is itself o-thin.
(iii) M is o-thin if for some A, q, K, dim My < A Zf:g o, k> K.

(iv) M iso-thinifandonly if for some set {v; } of generators for M (as an L-module)
each L., is o-large in L.

Proof. (i) is immediate from the fact that M = {M, }; >o.

(i1} Any finite dimensional subspace V' C N satisties V C N(ay)+- -+ N(e;) for
some finite subset «q, ..., . Thus there are finite dimensional subspaces V{(w;) C
N(a;)suchthat V C V() + -+ V(a,). Hence Ly D N; Ly ;). Since the finite
intersection of o-large Lie subalgebras is o-large, it follows that Ly is o -large.

(iii} Let V' be a finite dimensional subspace of M and (x;);<;j<n be a basis of V.
Then the action of L on the x; induces a linear injection

(L/Ly)g — @f\;l Mk+degx1"

This implies that Ly 1s large in L.

(iv) We first show that if, for some v € V, L, is o-large then L., is o-large for
all « € UL. In fact, because of (ii), it is sufficient to show this when a = x1 - x;
(x; € L)and we proceed by induction on r.

Setw = x3---x, v and let S C L be the graded subspace of L defined by
S =14y e L|[y,x1] € Ly} Since Ly, is o-large, by the induction hypothesis, we
have for some A, g, K that

k+q
dim(L/Lw)k <A ) oi, k=K,
i=k
and also
k+degxi+q
dll’l’l(L/S)k = dim(L/Lw)k—I—degxl <A Z Oj.
i=k+degx)

On the other hand, for z € L we have
ZeX1XpV=2z-X1-w=[z,x1] - wtx;-z-w
and so Ly, D 5 N Ly. Now the inequalities above yield

k+degxq+q
dim(L/Lyyw)e <24 Y o, k=K
i=k
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Thus L., 18 o-large and the induction is closed.
Finally we have shown that if L, is o-large then UL - v is o-thin, and so we may
apply (ii) to complete the proof of (iv). |

Lemma 3.4. Let L be a cft graded Lie algebra, and let 0 = {0, };>o be a sequence
of non negative numbers.

(i) If E is a o-large Lie subalgebra of L, then the L-module UL QuEg k is o-thin.

(11) If L acts by derivations in a Lie algebra F, and if L., is o-large for a set {wy}
of generators for the Lie algebra F, then F is a o-thin L-module.

Proof. (i) The vector space UL ®uEg k is generated as an L-module by the single
element v = 1 ® 1. Since L, = F, which is o-large, (i) follows from Lemma 3.3
(iv).

(1) Let W be the linear span of the wy. Then UL - W 1s a o-thin L-module by
Lemma 3.3 (iv). The natural linear map UL - W — F extends to an L-linear algebra
surjection T(UL-W) — UF. But T(UL - W) is o -thin by LLemma 3.2 (i}, and hence
F, as a subquotient of T(UL - W) is o-thin by Lemma 3.2 (ii). O

3.2. The Hochschild-Serre spectral sequences. The invariants Exty;; (M, N) and
TorY (M, N) will play an important role in this paper, when L is a cft graded Lie
algebra and M and N are L-modules.

Let V = {V;};>0 be a graded vector space of finite type. We denote by V* the
dual vector space, V,f = Hom(V_g,k), and by AV® the free graded commutative
algebra on V¥, Then A?V* is the linear span of the products f; -+ fy, fi € V¥, and
its dual TV = (AV™)* is the free divided powers algebra on V.

The graded vector spaces TorYZ (M, N) and Exty;; (M, N) may be computed
as the homology of complexes respectively of the form I'*(sL) ®x M ®k N and
Homy (I'* (s L)®k M, N') with twisted differentials ([11]). (Here s L is the suspension
of L; (sL)r = Lx_1.) Now suppose £ C L is a Lie subalgebra and write L. =
E & S. Thenthere is a first quadrant spectral sequence (the Hochschild—Serre spectral
sequence), that converges from

1 _ . UE UL
E,,=Tor, " (C?s(L/E)® M,N) to Tor,\ (M,N).

When F is an ideal then
2 _ o UL/E UE
E, . = Tor; (k, Tor, ™ (M, N)).
There 1s also a Hochschild—Serre spectral sequence for Ext,

Extl,, (T?s(L/E) ® M,N) = Ext}; (M, N).
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For more details on the Hochschild—Serre spectral sequences, see [5] and [9].
Now we recall two results obtained in [9] and related to cft graded Lie algebras
of finite depth, that we will use several times in the text.

Lemma 3.5 (|9], Lemma 4). Suppose M and N are L-modules where L is a cft
graded Lie algebra and each N; is finite dimensional. If Ext{;; (M, N) # O then
for some finitely generated Lie subalgebra E C L and for some finitely gener-
ated L-submodule P C M the restrictions Ext{;; (M,N) — Ext{;p(M,N) and
Exty;; (M, N) — Exiy;; (P, N) are nonzero.

Lemma 3.6 ([9], Lemma 6). Let E C L be a Lie subalgebra of a cft graded
Lie algebra L. Suppose for some m, that the restriction map Exij;; (k,UL) —
Extyi(k, UL) is non-zero. Let Z be the centralizer of E in L. Then Z is finite
dimensional.

3.3. Minimal subalgebras

Definition 3.7. Let 0 = (0;);>0 be a sequence of non-negative numbers.

o A cft graded Lie algebra L is o-minimal with respect to an ideal I if every
o-large Lie subalgebra E with [ C E C L satisfies depth £ > depth L.

e A cft graded Lie algebra L is o-minimal if L 1s o-minimal with respect to 0,
i.e., if depth £ = depth L for all o-large subalgebras £ of L.

e If Z is any graded vector space and L is (dim Z; )-minimal (resp. (dim Z;)-
minimal with respect to [ ), we shall say that L is Z-minimal (resp. Z-minimal
with respectto I) .

Theorem 3.8. Let 0 = (0;);>0 be a sequence of non-negative numbers and let 1
be an ideal in a cft graded Lie algebra L. If M = {M,;}iez is a o-thin L-module
satisfying M # Qand I - M = 0, and if L is o-minimal with respect to I, then

depth L = grade; M.
We begin with two preliminary lemmas.

Lemma 3.9. Let I be an ideal in a cft graded Lie algebra L, and let o = (0});>0 be
a sequence of non-negative numbers. If M = {M, }icz is any o-thin L-module for
which I - M = 0 and M # O, then I extends to a o-large Lie subalgebra E C L
such that

depth E < grade; M.
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Proof. Letm = grade; M. Then for some finitely generated submodule N C M, the
restriction Exty;; (M, UL) — Extjy; (N, UL)isnon-zero. Denote by vy, ..., v, aset
of generators of N. Then the short exact sequence 0 — UL - vy — N — N/(UL -
v1) — O induces an exact sequence Exty;; (UL - vy, UL) — Ext;; (N,UL) —
Ext{;; (N/(UL -vy), UL). It follows that there exists a subquotient module of N, of
the form UL - v, for which Ext{;; (UL - v, UL) # 0. Moreover, as a subquotient of
M, UL - v is o-thin (Lemma 3.2 (ii)).
Consider the short exact sequence of L-modules

0= K—->UL®Qur, k—>UL-v—0.

Since UL - v is o-thin, L, is o-large in L. Hence UL ® 1, k and K are also o-thin
(Lemma 3.2 (i) and Lemma 3.2 (ii) respectively). Note also that since UL - v is a
subquotient of M, I - UL - v = 0. In particular, I C L, and since I is an ideal, it
follows that I - (UL ®ypy, k) =0andhence I - K = 0.

On the other hand from the short exact sequence above, we deduce that either
Exti YK, UL) # 0 or else Ext}}, (UL ®ur, k., UL) # 0. In the first case the
lemma follows by induction on m2. In the second one we use the standard isomorphism

Exty; (UL ®ur, k,UL) = ExtﬂLv (k,UL)
to conclude that depth L, < m. Set £ = L, in this case. H

Lemma 3.10. Suppose I C E with I and E respectively an ideal and a Lie subal-
gebra in a cft graded Lie algebra L. If L is o-minimal with respect to I, and if E
is o-large in L, then depth L = depth E. In particular, E is o-minimal with respect
to 1.

Proof. 1t follows from the Hochschild—Serre spectral sequence that

Tor)” (TsL/E.(ULY) = Tory{, (k. (UL)")

that there exist p, g with p + g = depth L, and such that
gradep I'sL/E < p.

Since L/ E isac-thin E-moduleand 7 - L/ E = 0, Lemma 3.9 gives a Lie subalgebra
F,o-largein E, with I C F C E, and satisfying

depth F < grade T'9sL/E.

Since L is o-minimal with respect to [, depth L < depth F';ie., p + g < p. Thus
g = 0 and depth /' < depth E. But L was o-minimal with respect to 1, so that
depth L < depth E. This gives depth L = depth . [
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Proof of Theorem 3.8. By Lemma 3.9, L contains a o-large Lie subalgebra F con-
taining [/, and such that depth /¥ < grade; M. Now take a Lie subalgebra £
of F that is o-minimal with respect to /. Then, depth E < depth F', and so
depth £ < grade; M. Since depth £ = depth L (Lemma 3.8), it follows that
depth L < grade; M.

Next, let My = {M;};>0 and set N = M/M,; both M, and N are o-thin
L-modules. If M # 0, we can find a short exact sequence of L-modules of the
form

0> K-> M; - kx — 0.

As observed at the start of the proof of the theorem (applied to K instead of M),
depth L < grade; K. Thus if m = depth L we have the exact sequence

0 — Extyy; (kx,UL) — Exty;; (M4, UL),

which implies that grade; M < depth L. Itfollows that grade; M4 = depth L and
so, if N = 0, the theorem is proved.

Next, suppose N # 0. Since N is concentrated in negative degrees, and since
(UL)" is also concentrated in negative degrees, it follows that (N ® (UL)*)* =
N* ® UL as L-modules with diagonal action.

On the other hand TorYZ(N, (ULY*) = TorVL(k, N ® (UL)*), and dualizing
gives Ext};; (N, UL) = Extj;; (k, N* ® UL)). Since N* ® UL is a free UL-module
(diagonal action) this shows that grade; N = depth L. Thusif M = 0, the theorem
is proved.

Finally, suppose that M+ # 0 and N # 0. Since depth L = grade; My =
grade; N = m, the short exact sequence

O M, —>M-—>N—->0
and the consequent exact sequences
Exth,, (M,UL) < Extl;; (M, UL) < Ext,; (N,UL) < 0, i <m,
imply that grade; M = m = depth L. [

4. Weak complements

Theorem 4.1. Let E and I be respectively a Lie subalgebra and an ideal in a cft
graded Lie algebra L, such that E NI = 0, and let 6 = (0;)i>0 be a sequence of
non-negative numbers.

(1) If E is o-minimal and 1 is a o-thin E-module (adjoint representation), then
E & I is o-minimal with respect to I, and

depth(F£ & /) = depth £ 4 depth 1.
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(ii) If, moreover, L/(E @ 1) is a o-thin E-module, then
depth(E @ ) < depth L.

Proof. (i) Use the inclusions £, — (£ & I) and multiplication in U(E & [) to
writt UUE® 1) =Ul QUE. Thenforx € E,a € Ul,b € UE, we have

x-(@a®b)=(dx)a® b+ (—1)*e9%e 3  x . b.
1t follows that TorY! (k, U(E & I)*) = TorV! (k, (UI*) ® (UE)* as E-modules.
Thus the Hochschild—Serre spectral sequence converges from

UEal
E2, = TotYE (Torl! (k. (UDH). (UEY) 10 Tory 22" (k. (UE @ D)),

Now since / is a o-thin E-module so is each ['Ys/ ® (UI)*, and hence so are the
subquotients Torgl (k, (UI)*). By Theorem 3.6, either Torgl (k, (UI)*) = 0, or
else depth E = grade Tor, ’ (k, (UI)*). Hence E2,, = 0 for ¢ < depth / or for
p < depth £, and EI%’ g 7 Owheng = depth 7 and p = depth E. A standard corner
argument now shows that depth(% 6 ) = depth £ + depth 1.

Finally, we show that /£ & [ is o-minimal with respect to /. In factlet ¥ C E
be any o-large Lie subalgebra. Form the Hochschild—Serre spectral sequence

E} = TorF (Tord ' (k, (U, (UF)) = Tor;ff;@ﬂ(k, (UF & D).

We deduce that for some ¢ > depth I, grade Tor;” (k, (U™ < depth(F&1)—gq.
But according to Lemma 3.9 there is a o-large Lie subalgebra £/ C F such that
depth E < gradep Torg[ (k, (UI*). Thus

depth £’ < depth(F @ I) — g < depth(F @ I') — depth /
< depth(E & I)—depth I = depth E.

Since F is o-minimal these inequalities are equalities; in particular depth(F & 1) =
depth(E @ ) and E & [ is o-minimal with respect to 1.
(11) Consider the Hochschild-Serre spectral sequence converging from

BP9 = Exth po(DPsL/(E @ 1).UL) to Ext}}?(k,UL).

Since L/(FE & 1) is a ¢-thin E-module annihilated by 7, it is also a o-thin £ & -
module. Thus each T'?sL/(FE & I) is a o-thin (£ & I)-module annihilated by 7.
Thus, since £ @ I 1s o-minimal with respect to I, Theorem 3.8 asserts that either
I'?sL/(E @& I)=0,orelse

depth(E @ I') = gradep g, (I'?sL/(E & 1)).

Since EXt(lIJ(EGBI) (T'PsL/(E@ 1), UL) # 0forsome p+ g = depth L, the theorem
follows. L
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Definition 4.2. Let / be an ideal in a cft graded Lie algebra of finite depth. A weak
complement for I in L is a Lie subalgebra £ C Lsuchthat ENJ =0, L & I 1s
full in L, and for some sequence ¢ = (0;);>1 satisfying 0 < o; <dim /;,i > 1: E
is o-minimal, and I and L/(E & I) are o-thin E-modules.

Theorem 4.3. Let I be an ideal in a cft graded Lie algebra of finite depth.

(1) There is an I-large Lie subalgebra F C L suchthat F NI = 0. If E is any
I -minimal, I-large Lie subalgebra of F then E is a weak complement for 1
in L.

(i1) If I is any weak complement for I in L, then

depth £ + depth I = depth(E & I) < depth L.

Proof. (1). Since depth I < oo, there are elements xi,...,x, € I such that the
Lie subalgebra , G, generated by the x; satisfies Exty;; (k, UL) — Exty,;(k, UL) is
non-zero (Lemma 3.5). This impliesthat A ={y e I |[y,x;] =0,1 <i <r}isa

finite dimensional Lie subalgebra (LLemma 3.6). Choose n so that A is concentrated
in degrees < n and set

F={yels|ly.x]=0,1<i <r}

Evidently F N1 = 0.
On the other hand, F is the kernel of the linear map L, — [ & --- @& I given
by x > ([x, x1],...,[x, x;]). Thus

r
dim Ly /Fx < ) dim I yeq;

fi=1
It follows that /7 1s [-large in L, and so F is also I-large in L. Thus for some
X.q. N wehave dim(L/E); < A Y522 dim I;, k > N. It follows that dim Ly <

(A+1) Zf:if dim(E; @ I;),k = N and so £ @ [ is full in L. Finally, since F is
[ -large in L, Lemma 3.3 (iii) asserts that L /(£ & [) is I -thin, o

Proposition 4.4. Let J and K be ideals in a cft graded Lie algebra L of finite depth.
Then there is a weak complement, I, for J N K in K that is also a weak complement
for J inJ 4+ K.

Proof. By Theorem4.3 (1) we may choose £ tobe J N K-minimal and such that J N K
and K /(E®JNK )are (JNK)-thin £-modules. Notethat ENJ = (ENK)NJ = 0.

Seto; = dim(J N K); and note that because [E. J] C [K,J] € J NK itfollows
that J is a o-thin £-module. Morecover, K/(E@® JNK) mapsonto (K+J)/(E& J)
and so (K + J)/(E & J) is also a o-thin £-module. Finally, this surjection also
shows that £ & J isfullin K + Jsince £ @ J N K is fullin K. O
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Proposition 4.5. Ler I C L be an ideal in a cft graded Lie algebra, and suppose
that for some p, the restriction map

Ext?; (k. UL) — Extf;, (k, UL)

is non-zero. Then I is full in L.

Proof. Suppose o € Extyy; (k, UL) restricts to a non-zero element in Extf;; (k, UL).
This in turn would restrict to a non-zero element in Ext{} I (k,UL), where E is a
finitely generated Lie subalgebra of I, see Proposition 3.1 in [3]. Let xq,...,x;
generate £. Then by [9], Lemma 6, the centralizer of £ in L is finite dimensional.
Therefore for n enough large, the map

L, — ED;=1 In—l—dengu y— Z[y,xi]

is injective. This gives the result. O

5. L-equivalence

It 1s immediate from Proposition 2.5 that an equivalence relation on the ideals of a
cft graded Lie algebra, L, 1s defined by:

I~ J < forallideals K C L, INK~JNK.

Definition and notation. The relation above will be called L-equivalence and the
set of L-equivalence classes of ideals in L will be denoted by £. If I is anideal in L
its L-equivalence class will be denoted by [/]. Finally, the number (possibly o) of
L-equivalence classes of ideals will be denoted by vy, and for any subspace V' C L
the number of L-equivalence classes represented by L-ideals contained in V will be
denoted by vy, (V).

Our next aim is (o establish the following two results.

Proposition 5.1. Let L be acft graded Lie algebra. Then the structure of adistributive
lattice in £ is defined by

Ul =[] <= JInl~p 1, [I]V[I]=[I+J]

and
I A[J]=[NJ].

Proposition 5.2. Ler J C I be ideals in a cft graded Lie algebra L. Then any
maximal chain of strict inequalities in £ of the form

/] <UMD] < <[I(r)] = [1]
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has the same length. Moreover
r < depth / — depth J.

Definition. The length r in the chain above in Proposition 5.2 1s called the height of
[7] over [J]. When [J] = [0], r is called the height of [I] and denoted by ht[/].

Remark. Clearly the height of [/] over [J] is just ht[/] — ht[./].
Before proving Proposition 5.1 we establish some preliminary lemmas.

Lemma 5.3. Suppose I and J are ideals in a cft graded Lie algebra. Then,
(i) depth I < depth(J + I),

(i) if depth I = depth(J + I) then J N I is full in J.

In particular, if I C J and depth I = depth J, then [ is full in J.

Proof. By Proposition 4.4 there 1s a weak complement, £, for J N [ in J that is also
a weak complement for I in I + J. Thus

depth E + depth [ = depth(E @ ) < depth(J + I).

It follows that depth / < depth(J + [) and if equality holds then depth £ = 0. This
implies that £ is finite dimensional ([1]). Since £ @& (J N 1) is full in J it follows
that J N [ is full in J . O

Lemma 5.4. Let L be a cft graded Lie algebra of finite depth m. Then [L, L] is full
in L. In particular, if I and J are ideals in L then [I, J]is fullin I N J.

Proof. Let E be a weak complement for [L, L] in L. Since [E, E] € E N [L, L],
E is abelian. Since F has finite depth it is finite dimensional [1]. Now because
E&[L,L]isfullin L, [L, L] is full in L. Finally, note that

UnJ, InJ|C[l,J]cInJ
to derive the last assertion. ]

Lemma 5.5. If I, J, K are ideals in L, then

I+DNK~INK+JNK.
Proof I+ I)NK~[I+J.Kl=[LK+[/LKl~INK+JNK. 0

Lemma 5.6. Let I, J be ideals in a cft graded Lie algebra of finite depth. Then:
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() I ~p J =T~y (I+0)~p J.

(i) [ ~p J =1~ (UINJ)~p J.

(iii) IfI C J and depth I = depth J, then I ~p J.

(iv) If I(i) ~1 J(i) are pairs of L-equivalent ideals in L, then

) 4 I() ~p, () + -+ J().

(v) Foranyideal K, I + J)NK ~p INK+ JNK.
(vi) If I ~p, J and K is anyidealin L then I N K ~;, J N K.

Proof. (i) We need only show that I ~p J = I ~p (I + J). If K is any ideal in
L, then by Lemma 5.5 and Proposition 2.7,

INK~INK+INK~INK+JNK~U+J)NK.

Thus I ~p I + J.
(i1) We need only prove that I ~p J = I ~p I N J. Againlet K be an ideal
in L. Then
UNnHnK=InJnNKy~JnNn{(JNKy=JnNnKkK.

Thus I NJ ~p J.
(iii) Let K be anidealin L. Since I ¢ I + (J N K) C J we have

depth 7 < depth(! + (J N K)) < depth J,

and so depth I = depth({ + (J N K)). It follows from Lemma 5.3 that / N (J N K)
isfullinJNK. ButINJ =Tandso/ NKistullinJNK. Thus I NK ~JNK
forall K;ie., f ~p J.

(1iv) We need only show thatif / ~;, J and H 1s anideal in L, then I + H ~p,
J 4+ H. But for any ideal K we have by Lemma 5.5 and Proposition 2.7

KNI +H) ~KNnD+(KnNH)~EKNJ)+(KNH)~Kn(J + H).

Thus I + H ~p, J + H.
(v) For any ideal H C L we have by Lemma 5.5

I+ DNKNH~UNKNHY+(NKNH)Y~((INK)+(JNK)NH.

Thus (/ + J)NK~, INK + JNK.

(vi) For any L-ideal H, / NK)NH = IN(KNH) ~JNKNH =
(JNK)NH. 0
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Proof of Proposition 5.1. If follows from Lemma 5.6 (vi) that the condition  NJ ~p,
I depends only on [/] and [J]; thus the partial order is well defined. Clearly [0] and
[L] are initial and terminal elements. It follows from LLemma 5.6 (iv) and Lemma 5.6
(vi)that [/] v [J]and [I] A [J] only depend on [/] and [J] and LLemma 5.6 (v) shows
that the lattice is distributive. H

Proof of Proposition 5.2. The first assertion 1s a standard fact about distributive lat-
tices. The second follows from Lemma 5.6 (iii), which asserts that if [J] < [/]
thendepth J < depth 7, O

Theorem 5.7. Let L be a cft graded Lie algebra of finite depth m and height r. Then
(i) r < m.
(il) vy, < 27.
(iii) vz, = 2" ifand only if L ~p I(1) @ --- @ I(r) where the 1(7) are infinite
dimensional ideals. In this case 1(i) has height 1.

(iv) If vy, = 2™ then ht[L] = depth L and the 1(i) are infinite dimensional ideals
of depth 1.

For the proof of Theorem 5.7 we require one more lemma.

Lemma 5.8. Let L be a cft graded Lie algebra.
(i) If I C J are L-ideals then vy (I} < vp(J).

(i) If I and J are L-ideals and I ~j, J then vy (1) = vy (J). In particular, v;[I |
is well defined.

(iii) if [ is the direct sum of L-ideals J and K (I = J & K), then vi,(I) =
v (J)vr (K).

Proof. (1) The set of L-equivalence classes of L-ideals in 7 is clearly a subset of the
L-equivalence classes of L-ideals in J. Thus vz (1) < v (J).

(i1} Since I ~7 (I N J) (Lemma 5.6) any L-ideal H contained in / satisfies
H=HNI)~p (HNINJ)(Lemma 5.6 (vi)). Thus the set of L-equivalence
classes of L-ideals in I coincides with the set of L-equivalence classes of L-ideals
infNJ,andsov,(I)=vp (I NJ)=vp(J).

(iii) Any L-ideal H in [ satisfies H ~; (H N J) @& (H N K), and if G is
another L-ideal in / suchthat G N J ~; HNJand G N K ~; H N K then
G~ (GNJ)Y®(GNK) ~, (HNJ)d (HNK) ~;, H. It follows that
v.(1) = v (J)vp(K). O
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Proof of Theorem 5.7. Proposition 5.2 asserts that ht[L] < depth L = m < oc. This
18 statement (1).

Nextlet O < [J(1)] < --- < [J(r)] = [L] be a maximal chain of strict inclusions
in £, and let £ (k) denote the subset of &£ of elements [J] < [J(k)]. Then, for any
k,1 <k < r, let [K] € &£ be an element of minimum height satisfying the two
conditions:

[K]=[J(k)] and [K] £ [J(k—1)].

We shall show that the map ¢(k): £(k — 1) X Z», — L(k) given by
(V].0) = [J] and ([J], 1)~ [J]V [K]

18 a surjection.

In fact, our conditions above imply that [J(k — 1}] v [K] = [J(k)]. Thus for any
[/] € £(k) wehave [/] = ([JIA[J(k—=DD V(I IALK]D. K [JIA[K] £ [J(k—1)]
then it too satisfies the conditions above and has height < ht[K]. But ht[K] was a
minimum; thus [J] A [K] = [K] in this case and it follows that ¢ (k) is indeed a
surjection. In particular, vy, [J(k)] < 2vp[J(k — )] and so vz (L) < 2"vp (0) = 27,
This proves (i1).

For (ii1), suppose first that v = 2. Reversing the argument above we see that
v [J(k)] = 2vy[J(k — 1)], each k, and so each ¢(k) is a bijection. But clearly

e(k)([0]. 1) = [K] = ([J(k = DI A [K]) v [K] = (k) ([J(k = D] A [K]. 1).

Thus J(k — 1) N K ~ 0; i.e., it is finite dimensional and concentrated in degrees
< n, some n. Now set (k) = J(k) N K5,. Then I(k) ~; K5, ~p K and so
[/(k)] = [/(k — 1) & I(k)]. This also implies that /(k) is not L-equivalent to zero;
i.e., dim /(k) is infinite. Finally, by construction [L] = [I(1) @& --- & I(r)].

Conversely, suppose L ~p I(l) & --- & I(r), where each I(i) is an infinite
dimensional ideal. Then [0] < [I(7}], each 7, and so vz [I({)] > 2. By Lemma 5.8
(iii), and part (ii), 2" > vy, = [];_; vo[I(i)] > 27. Thus these inequalities are
equalitiesand 2" = vy, and 2 = vy [I(7)], 1 < i < r. This implies that cach 7(i) has
height 1.

(iv) If v, = 2™ we must have m = r. Since the (i) are infinite dimensional,
depth /(i) > 1 and because m = depth L = > 7L, depth /(i) (by Lemma 5.8) we
have depth /(i) = 1, eachi. O

Corollary. Let L be a cft graded Lie algebra and assume L ~p, I{1) & --- & I(r),
where the 1(i)} are infinite dimensional ideals of height 1. Then ht[L] = r and every
element [I] € £ of height s > 1 is uniquely of the form [I] = [I;|| v ... [I;,].

Proof. It 1s a trivial consequence of the distributive law that

UiV eV il = U v e ]
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if and only if s = g and {i1,...,%s} = {j1.--.. jg}. Thus the elements of the form
L] v v []],1 <s <rare2” — 1 distinct elements of £, and so vy, > 2".

On the other hand, because each 7(7) has height 1, it is also an immediate conse-
quence of the distributive law that O < [I(1}] < -+ < [I(1)]v---Vv[I(k)] < --- < [L]
is a chain of maximum length, so that ht[L] = r and v;, < 27. Thus v;, = 27 and
£ = {[0).[T] v -+ v L1, m

Remark. Theorem 5.7 and its corollary show that the cft graded Lie algebras L
satisfying ht[L] = r and v, = 27 are the analogues in this setting of the classical
semi-simple Lie algebras. Note that this includes as a special case the cft graded Lie
algebras L with depth L = m and vy, = 2™,

Proposition 5.9. Let L be a cft graded Lie algebra. If
2ht[L] < depth L — 1

then L contains a free Lie algebra on two generators.

Lemma 5.10. Suppose J C I are ideals in a cft graded Lie algebra satisfying
[J] < [I] and depth J 4+ 1 = depth I. Then I contains an infinite dimensional Lie
subalgebra of depth 1.

Proof. Since [J] < [I]thereisanideal H C L suchthat J N Hisnotfullin 7 N H.
Set K = I N H;then J N K isnot full in K. Thus a weak complement, £, for / N K
in K is infinite dimensional.

Next note that since J < J + K < [, either depth J = depth(J + K) or
depth(J + K) = depth I. The first equality would imply J ~;, (J+ K) (Lemma 5.7)
and thus (intersection with K) J N K ~; K, which is impossible because J N K is
not full in K. Thus

depth(J + K) = depth J + 1.

But since £ may be chosen to also be a weak complement for J in J 4+ K
(Proposition 4.4), Theorem 4.3 yields

depth £ + depth J < depth(J + K) = depth J + 1.
This gives depth &£ < 1. But E is infinite dimensional and thus depth £ = 1. ]

Proof of Proposition 59. Let 0 < [I(1) < --- < [I(r}] = [L] be a chain of strict
inclusions in £, with r = ht[L]. We may assume /(1) C --- C I(r), and then it
follows from Lemma 5.7 that 0 < depth I(1} < --- < depth I(r). In view of our
hypothesis either depth /(1) = 1 or for some 7, depth /(7 + 1) = depth /(i) + 1.
Lemma 5.8 then implies that /(i + 1) contains an infinite dimensional Lie subalgebra
of depth 1. Finally according to [7] each infinite dimensional Lie subalgebra of depth
1 contains a free Lie algebra on two generators. [
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6. The hyperradical

Recall that the radical of a cft graded Lie algebra L is the sum of its solvable ideals.
In [1], Theorem C, it is shown that if depth L < oo, then the radical of L is finite
dimensional.

Definition 6.1. The hyperradical R of cft graded Lie algebra, L, is the sum of the
ideals I C L satisfying
logindex I < logindex L.

By convention, R = {0} if there is no infinite dimensional ideal /I of L with
logindex I < logindex L. Clearly R is an ideal.

Theorem 6.2. Let R be the hyperradical of an infinite dimensional cft graded Lie
algebra L of finite depth, and let (x) denote the ideal in L generated by x € L. Then

(i) x € Rifand only if logindex(x) < logindex L,
(11) logindex R < logindex L, and depth R < depth L.

Proof. (1) Suppose x is a finite sum x = f’ _1 X; where x; belongs to an ideal /;

with logindex [; < logindex L. There 1s then an integer N and a non negative real
number ¢ such that forn > N and i < p, we have

log dim({; ),

n

< logindex L —&.

If I = Iy + -+ Ip, this implies that logindex / < logindex L. In particular,
log index{x) < logindex L.

(i1) By [9], Lemma 4, R contains a finitely generated Lie subalgebra I for which
Extyp(k, UR) — Extj;(k, UR) is non-zero. Let xq,...,x, € R generate E. If
I = (x1) + -+ (x,), it follows a fortiori that Ext};z(k, UR) — Exty;;(k,UR)
is non-zero. Thus by Proposition 4.4, I is full in R. Now Proposition 2.10 and the
argument in (i) above give logindex R = logindex I < logindex L. Thus R is not
full in L, and so Lemma 4.6 shows that depth R < depth L. ]

Corollary 6.3. Let L be an infinite dimensional cft graded Lie algebra of finite depth.
Forany A > 0, let J C L be the sum of all the ideals I satisfying logindex I < A.
Then logindex J < A.

Proof. If logindex J > A, then J is its own hyperradical, which is impossible by
Theorem 6.2 (ii) . O

Proposition 6.4. Ler L be a cft graded Lie algebra of finite depth. Then L contains
a full Lie subalgebra whose hyperradical is zero.
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Proof. 1et E C L beafull Lie subalgebra of minimal depth, let R be the hyperradical
of £, and let F be a weak complement for R in I£. Since R & F is full in £ and since
logindex R < logindex F, it follows that [’ is full in . Moreover, Theorem 4.2
asserts that depth F' 4- depth R < depth .

But our hypothesis on £ yields that depth F' > depth F£, and it follows that
depth R = 0; 1.e., R is finite dimensional and concentrated in odd degrees. Choose
n so that R>, = 0. Then E-, is a full Lie subalgebra of E and, since it is an
ideal, depth £, < depth E; thus £, also has minimal depth among its full Lie
subalgebra s. Thus if S C E-, is its hyperradical, S is also finite dimensional and
concentrated in odd degrees.

The ideal 1 in E generated by S is the image of the linear map UE QuEg..,, S —
UL, and hence has polynomial growth. Since depth I < oo this implies ([6]) that
dim/ < oco;1e., I C R. Thus S C R>, = 0 and so the hyperradical of £, is
Zero. H

Proposition 6.5. Ler L be an infinite dimensional cft graded Lie algebra of finite
depth m. Then at most m pairs («, f) can satisfy

a =logindex I and p = logindex/
for some ideal I.
Proof. Suppose 11, ..., I, areideals with respective log indices and lower log indices
ordered by lexicographic order (1, 51) < --- < (¢, B;). Then we can replace the
sequence of i1deals by the following sequence with the same sequence of log indices

hch+I,c---Cli+---+ I, Since the (¢;, ;) are distinct, no 11 + -+ [; is
fullin Iy + --- 4 I;41. Therefore, by Lemma 4.6, r < m. U]

Example 6.6. Let X be the space
Sa VSp VS Uz e Unfazn e Uplace -

Then Ly has depth 2 and the lattice £ has exactly three elements.

The Sullivan minimal model of X is quasi-isomorphic to the differential graded
algebra (A,d) = (A(x, y,z,t)/(xy,rz),d) where degx = degy = 3,degz = 5,
degz =7, dx = dy = dz = 0, d(t) = yz. The algebra (A, d) is a semifree
(A(x, ¥)/(xy),0)-module ([5]). This gives a rational fibration

F=8SvS "> X > B=SvSs>
The ideal L F has not the same log index as Ly, and so is neither L-equivalent to Ly
or to 0. The exact sequence 0 — Lr — Ly — Lp — 0 implies at once that
[0] <[Lr] < [Lx]

are the only elements of £. In particular L i is the hyperradical of Ly.
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7. The odd and even part of a graded Lie algebra

Theorem 7.1. Let L be a cft graded Lie algebra of finite depth.

(i) FEither Loy is contained in a finite dimensional ideal of L, or else for some d

the integers Zfi}f 41 dim(Logq); grow faster than any polynomial in k.

(11) The Lie subalgebra L.y, is full in L.

Proof. Let I be the Lie subalgebra generated by Loqq; I 15 clearly an ideal in L and
hence has finite depth. Choose x1, ..., x, of odd degrees ¢; < --- < ¢, that generate
a Lie subalgebra F for which ExtY!(k,UI) — ExtYF (k,UI) is non-zero. The
centralizer of the x; in [ is therefore finite dimensional, which implies that for some
N thelinear map x — ([x, x1]....,[x. xz])isaninjection [y — Irye, B Bl te,,
k > N. Since the ¢; are odd, it follows that, for k > N,

k+en k+tep
dim(lodd)k = Z dim(]even)j and dim(leven)k % Z dim(]odd)jv
j=k+€1 j=k+€l

which implies that both /49 and [eyen are full in 7.
Now suppose [ is infinite dimensional. Then according to [6] for some d the

integers Zf:,f dim /; grow faster than any polynomial in k. Since dim [5; <

lei;f’jre L dim(Zogq);, it follows that (d + 2) Zj‘:g ten Qim(Zoqq) 7 grow faster than
any polynomial in k. And, of course, foqq = Loda.

Finally, let £ be a weak complement for / in L. Then £ C Ly, and E @ [ 15
full in L. Since laoyveq 18 full in 7 it follows that E @ feven 18 full in L and s0 Leyey 18

full in L. O
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