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Some topological properties of quotients modulo semisimple
algebraic groups

R. V. Gurjar

Abstract. We will prove a general result in Invariant Theory, viz. for a quotient C”? // G, where G
is a connected complex semisimple algebraic group, the local first homology group at any point
in the quotient C” // G is trivial and the local second homology group is finite. Using this we
will prove that the completion of the local ring of any point in €7 // G is a unique factorization
domain (UFD).

Mathematics Subject Classification (2000). 13A50, 141.24, 141.30.
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Introduction
The aim of this paper is to prove the following general result in Invariant Theory.

Theorem. Let G be a complex linear algebraic group such that its connected compo-
nent of identity G° is semisimple. Suppose G acts on C" regularlyand W = C"// G
is the quotient corresponding to the ring of invariants C[ X1, X3, ..., X n]G such that
dim W > 1. Then we have the following assertions:

(a) For any point p € W the local first homology group H{ (W) is finite. If G is
connected then Hf (W) = (0).

(b) If W has isolated singularities then the fundamental group at infinity, m7°(W),
is trivial.

(¢) The local second homology group HY (W) is finite. Further, Hy(W \ Sing W)
is finite.

Remark. The proof of the second part of (¢) above plays an important role in many
arguments.

For the necessary topological definitions and notations, see Section 1.
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Remarks. (a) It is proved in [8] that the local fundamental group 7r{ (W) is always
finite whenever G is (not necessarily connected) reductive. Butevenif G is connected
semisimple ¥ (W'} can be non-trivial. The author is thankful to T. N. Venkataramana
for showing a construction of examples of this. See remark at the end of the proof of
the theorem.

(b) If G is not semisimple then Hf (W) can be of rank > 0. An example of this
is given after the proof of theorem.

We have the following useful consequence of the theorem.

Corollary. Let G be a connected semisimple group and let W, p be as in the statement
of the theorem. Then the analytic local ring Ow,p,_ is a UFD.

The example given after the proof of the theorem shows that for G connected
reductive this is not always true. In the corollary, presumably even the completion
of Ow,p w.r.l. its maximal ideal is factorial. The example mentioned above can be
modified to show that the local ring of a rational singular point on an algebraic variety
can be a UFD but its completion may not be so.

V. B. Mehta has informed the author that there exists an example of a quotient
€™ // G which has a factorial local ring but whose completion is not factorial. In this
example G 1s a torus.

Acknowledgements. The author is thankful to T. N. Venkataramana for showing
some interesting representations of semisimple groups which illustrate that we cannot
expect triviality of the local fundamental group of quotients in the theorem. He would
also like to thank V. L.. Popov for showing an example where the complement of the
principal stratum in the Luna stratification can have divisors even for connected
semisimple groups. The author is thankful to the referee for carefully reading the
manuscript, pointing out many inaccuracies in the earlier version and making useful
suggestions for improving the readability of the paper.

1. Preliminaries

All the varieties considered in this paper are complex algebraic or analytic varieties.

For any topological space T we will denote by H; (T) (resp. H(T)) the singular
homology (resp. cohomology) with integer coefficients.

For any normal algebraic variety or a normal complex space Z and p € Z the
local m™ homology group Hf (Z) is defined as the group H,, (U — Sing U), where
U 1s a suitable small neighborhood of p in Z. This notion 1s well-defined. There are
arbitrarily small such neighborhoods of p. One way to see this is to use a triangulation
of Z such that Sing Z is a closed subcomplex and use local properties of simplicial
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complexes (see [6]) or [17], Chapter 11, §6). If p is a simple point of Z then we
consider H,,(U — p) for the definition of H%(Z). If dim Z = d and p is a simple
point then U — p has the homotopy type of the sphere $2¢ L. Similarly we can define
the local fundamental group, =¥ (Z), for any normal complex space and p € Z.

If Z 1s affine of dimension > 2 and has only isolated singularities then the fun-
damental group at infinity, 7{°(Z), 1s defined as the fundamental group of the com-
plement of a sufficiently large compact subset K with C'* boundary in Z. It can be
calculated using a suitable compactification of Z as in the proof of assertion (b) of
the theorem below.

Recall that if a reductive algebraic group H acts regularly on a normal affine
variety X then the ring of invariants I'(X, ©)¥ is finitely generated and normal. The
corresponding normal affine variety is denoted by X //H. The morphism n: X —
X // H is called the quotient map. For many standard properties of the map 7, see [16].

We will abbreviate by RDP a rational double point singularity of a complex ana-
Iytic surface. It is well known that if (V, p) is a germ of an RDP then the homology
group H(V — {p}) is finite and H>(V — {p}) = (0). A small open neighborhood
V of p behaves like a topological manifold, at least when we use rational homology.

We will use the following results about rational and canonical singularities ([19]).

(1) A general hyperplane section of a variety with only rational singularities again
has only rational singularities ([19], §1).

(2) The singularities of a Gorenstein variety 1V with at most rational singularities
are canonical singularities. This follows from the definition of a canonical
singularity in [19], §1, and the fact that on a d -dimensional variety V' with only
rational singularities any rational d -form which is regular on V' \ Sing V remains
regular on a resolution of singularities of 1 (Kempf’s criterion).

If further dim V > 3 then outside a codimension 3 subvariety, V' is locally ana-
lytically a product of a germ of an RDP and a smooth germ. This uses repeated
applications of Theorem 1.13 and the proof of Corollary 1.14 from [19].

We will use the following [efschetz hyperplane section theorems.

Lemma 1. Let (V, p) be a germ of an n-dimensional normal singular point of a
complex analytic variety with n > 2. Then we have the following assertions.

(1) For a general hyperplane section L passing through p it holds that the pair
(V' \ Sing V, L \ Sing V') is (n — 2)-connected.

(i1) Forc € Cwith|c| # Osufficiently small, the pair (V\Sing V,{L = ¢}\Sing V")
is (n — 1)-connected ([11], Remark 11.1.5).

Lemma 2. Let V be a smooth quasi-projective variety of dimension n embedded in
CN. Then for a general hyperplane L in CN | the pair (V, V NL) is (n—1)-connected.
([10], Theorem 1.1.1).
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The next result was conjectured by P. Deligne and proved first in [7]), Part II,
Theorem 1.1, and also later in [12], Theorem 3.1.1.

Lemma 3. Let Z Dbe a smooth quasi-projective irreducible variety of dimension n
with a dominant morphism [ : Z — V, where V is an affine variety embedded as a
closed subvariety in an affine space CN. Let L be a general linear subspace of CV
of codimension c. Then the pair (Z, (f ~1(L)) is ni-connected, where

ny:=2n—sup2k + o(k) 4+ inf(c(k),c — 1)] — 1.

Here o (k) is the dimension of the set of points p € CN — L such that dim f~'(p)
is equal to k. (The dimension of an empty set is defined to be —oc).
A similar statement is true for homology instead of homotopy groups.

Remark. With the notation of Lemma 3, if the set where dim £~ (p) = k is empty
then o (k) = —oo and we need not consider such terms while calculating the supre-
mum.

The theory of tubular neighborhoods is a well-developed theory in Stratified Morse
Theory ([7], Part 11, Chapter 2). In our proof we need to take tubular neighborhoods
of singular subvarieties of singular algebraic varieties. Because of the singularities
of the subvariety (or because of “non-equisingular” points of the subvariety) the
arguments are somewhat technical but the underlying idea is not difficult. The proof
of the theorem is less technical if the singular locus of W is finite.

2. Proof of the theorem

We use the notation from the statement of the theorem from the introduction.

If C*//GY is a surface then it is proved in [9] that C"//GY =~ C2. From this,
using the argument given at the beginning of the proof of (a) below we deduce easily
that the theorem 1s true if dim W = 2. Hence theorem is proved if dim W = 2. From
now onwards we will assume that dim W > 3.

If G 1s connected and semisimple then it is well known that the coordinate ring
R of W is a UFD and for any subvariety S of codimension > 2 in W its inverse
image 7' (S) has codimension > 2 in C” ([13]). Since we want to use this result in
a more general situation later on we will indicate the argument briefly. Let D be an
irreducible divisor in W, Then #*(D) = (r) for some regular function on C”. Then
r 18 a semi-invariant. Hence for the action of G we have pg(r) = ug - r, where ug is
a unit in the coordinate ring of C”. This implies that u, 1s a non-zero constant. Now
ug gives a character on G. Since G is connected and semisimple u, is a constant
which is independent of g. Hence ug, = 1. Thus r is an invariant regular function
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and (D) = (r). By the same argument we show that if S C W is an irreducible
subvariety of codimension > 2 then 7~1S has codimension > 2 in C”.
W has rational singular points ([2]) and it is contractible (for this latter property
it suffices for G to be reductive, see [14]). We will use these results in what follows.
It will be clear from the proof of the theorem that we will only use 71(C") =
(1), H; (C") = (0)for 1 < < 3. This remark will be implicitly used later in more
general situations.

Proof of (a). Asremarkedin the introduction, itis proved in [8] that the group 7{ (W)
is finite if G is reductive. Hence H¥ (W) is also finite.

For the proof of part (b) below we need only reductivity of G. Suppose that
G is semisimple. Then we have a factorization C* — C"//G° — C"//G. If
HI(C"// GO is finite for any point p € C"//G" then this is also true for C"// G,
For this we use the fact that if Z — Y is a proper morphism with finite fibers
from a normal complex space Z onto a normal complex space Y then the induced
homomorphism H;(Z) — H;(Y) has image of finite index for / > 0. This can be
proved using triangulations of ¥, Z (or using the transfer map, [6]).

In view of these observations for the rest of the proof of the theorem, except in
(b), we will assume that G is connected and semisimple.,

First we will prove that for any point p € W the local first homology group
HY (W) = (0).

This is obvious if p is a smooth point of W since dim W > 1 so we will assume
that p € Sing W. Let S := Sing W,

We can find a suitable contractible open neighborhood N of p in W, a slightly
bigger contractible open neighborhood N’ of p such that the closure N C N’ and we
use the covering W\ (S N N), N’ of W by open subsets of W and the corresponding
Mayer—Vietoris sequence for homology

Hy(W)y — Hi(N'\(SNN)) - Hi(W\N(SNN) D H (N)—> HI(W) —> ---.

Since W, N, N’ are contractible we have H (W) = (0) = Hy(W) = H{(N').
Hence we get H1(N'\(SNN)) = Hi(W\(SNN)). Since 7~(S) has codimension
> 2 we also have 71 (C" \ #~1(S)) = (1) and using the fact that 7 has connected
fibers we get 71 (W \ S) = (1). Now S is a proper simplicial subcomplex of W
of real codimension > 4 and since W is normal S does not disconnect W at any
point. Hence any 1-cycle in W \ (S N N) can be deformed to a 1-cycle lying in
W \ S. Therefore the map H;(W \ S) — H{(W \ (S N N)) is onto. Hence
Hi(W\ (SN N)) = (0). Thus, H;(N'\ (S N N)) = (0). Finally, using the
same argument as above we see that the map H{ (N’ \ (S N N)) — H{(N'\ S) is
surjective. Hence H(N'\ S) = Hf (W) = (0). O

Proof of (b). For this part we only need reductivity of G.
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Now assume that W has isolated singularities. Let W C X be an embedding
into a normal projective variety X such that X is smooth outside W and X \ W is a
simple normal crossing divisor D). Let N be a suitable tubular neighborhood of D
in X. Then 1 (N \ D) is the fundamental group at infinity of W. A Lefschetz-type
result of Hamm- L& Ding Trang says that X \ (S U D) = W \ S has the homotopy
of a space obtained from N \ D by attaching cells of dimension > 3 ([10]). Since
a1 (W\ S) = (1), we conclude that 7, (N \ D) = (1). O

Proof of (¢). The proof of this main part of the theorem is rather involved.

First we will prove that H, (W \ S) is finite. This result and its proof plays a
crucial role in the proof of finiteness of H7 (W) at any point.

Since Ho(C™\ w~18) = (0) it suffices to show that the map H,(C"\ 7~ 1S) —
H>(W \ S) has image of finite index. Let U C W \ S be the principal Luna stratum
for 7 ([16], Chapter IIL, §3). U is a non-empty Zariski-open subset of W \ S such
that 7: #~1(U) — U is a locally analytically trivial fiber bundle.

Case 1. W \ U does not contain any divisor.

In this case codimension W \ U > 2. It is shown in the proof of part (a) that
H{(W \ §) = (0). From these two it follows that m(U) = m(z~U) =
(1), ma(mx~'U) = (0). By Hurewicz’s theorem H,(z~'U) = (0). Let F be a
general fiber of 7. It is known that F has the homotopy type of a closed fiber G/H ,
where H is a closed reductive subgroup of G ([16], 111, §3]). Consider the long exact
homotopy sequence

72(F) = ma(x ' U) > m2(U) = 11 (F) — -+ .
For 1 (F) we have the exact sequence
71(H)Y — 71(G) = m(G/H) — mo(H).

Since G is semisimple, 1 (G) is finite and 7o (H ) has the cardinality of the set of
connected components of H. Thus w1 (G/H) is finite. This implies that 7 (F) is
finite. It follows that m2(U) is finite. Since 71(U) = (1) = m1(z~1U), by the
Generalized Whitehead Theorem on the relation between homotopy and homology
([20], [Chapter 9, §6 1) the map H,(w~1U) — H,(U) has image of finite index. So
we get that H,(U) is finite. Since W\ S is smooth and (W \ S)\ U has no divisors,
Hy(U) = Hy(W \ S), proving that Hy (W \ S) is finite.
Case 2. W \ U has divisors.

We will let U be an affine open subset of W such that U is contained in the
principal stratum for 7. Let D := W \ U. Let D = UD; be the decomposition of

D into irreducible components D;. Since the coordinate ring of W is a UFD each
D; is a principal divisor, say D; = ( f;).
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Now let L be a general hyperplane in the affine space in which W is embedded as
a closed subvariety and let Y := W N L. By Lemma 2, 7; (W \ S, Y \ S) = (0) for
i <d—1,where d = dim W. In particular, 72(Y \ S} — 7 (W \ S) is onto and
7 (Y \S) = o (W\S) = (1). This implies that the map Ho(Y \ S) — H(W\ S)
is onto, again by Whitehead’s theorem. For general L, X := 7~ !(Y') is smooth and
irreducible by Bertini theorems. X is G-stableand ¥ = X//G.

Since 71 S has codimension > 2 in C”, we have H,(C" \ #~1S) = (0). Since
the compositions of the morphisms X — C" — W and X — Y — W are same
the compositions of the induced maps on homology groups are the same. Therefore
it suffices to show that the map H2(X \ #71S)) — H>(Y \ S) has image of finite
index.

In order to illustrate the crucial idea we will assume that dim W = 3. The
general case is proved exactly similarly by taking general hyperplane sections of W
till we get a 3-dimensional variety. Since X is smooth, by Boutot’s result ¥ also has
rational singularities. Since W is Cohen—Macaulay and I'(W, @) is a UFD, W is
also Gorenstein. It follows that Y is a Gorenstein surface with rational singularities.

We claim that ¥ has at most Eg-singularities.

By part (a), the group HY (W) = (0). If W has only isolated singularities then
Y is smooth. So we can assume that Sing W contains a curve. It is well known that
RDPs have no moduli ([1], §1). Hence at a point in Sing ¥, W is locally analytically
a product of the germ (Y, p) and a disc in C. It follows from H{ (W) = (0) that
HY(Y) = (0). The only RDP which has trivial local Hy is Es.

Thus ¥ has only Fg singularities. Hence Y is a topological manifold at each of
its points. For general L, the divisor D; N L is irreducible and defined by f;|y.

Claim. The homomorphism Hy(U N L)Y — H2(Y) has image of finite index.

This will follow by induction on the number of irreducible components of D from
the following result. Using the observation that Y is a topological manifold, for the
purpose of illustrating the crucial idea we can assume that ¥ is smooth.

Lemma 4. Let Z be a smooth affine surface and let C C Z an irreducible curve
which is a principal divisor (). Then the homomorphism H:(Z \ C) — Hy(Z) is
a surjection.

Proof. First we will give the proof when C is smooth. Let N be a suitable tubular
neighborhood of C in Z. Since Z, C are affine N is a topologically trivial 2-disc
bundle over C and hence its boundary is a trivial $*-bundle over C. We use the open
cover Z \ C, N of Z and consider the corresponding Mayer—Vietoris sequence

We will prove that the map H1(dN) — H1(Z \ C) & H(N) is injective. Now
IN = C x St and C is a strong deformation retract of N. The function f gives a
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morphism Z \ C — C* such that the image of a small loop y around C in Z maps
onto the generator of H{C*). Hence y has infinite order in H;(Z \ C). From this
injectivity of the map H1(IN) — H(Z \ C) & H(N) is easy to deduce.

Again, since C is a strong deformation retract of N and C 1is an affine curve we
see that Hy(N) = (0). Hence H>(Z \ C) — H,(Z) is surjective.

This proves the result when C is smooth. If C has (finitely many) singular points
then we work with C \ Sing C and Z \ Sing C. Now Z \ Sing C is not affine but
C \ Sing C is affine. Also, H>(Z \ Sing C') = H,(Z) since Sing C is a finite set.
Since C \ Sing C is affine H,(C \ Sing C') = (0). This is enough for the above
proof. O

Remark. The assumption that C is a set-theoretically principal divisor 1s necessary.
As an example we consider the affine quadric @ := {x* + 2 +z2 =1} Cc C3. It
contains C? as an affine open subset such that O \ C? =~ A!. But H2(Q) = Z and
H>(C?) = (0). Itis easy to see that Q \ C? generates the infinite cyclic divisor class

group of Q.

Now U N L C Y is contained in the principal stratum for |x. Hence all the
fibers of X — Y for points in U N L are mutually isomorphic. We can now use the
following result which follows from a general result due to Kraft—Russell ([15], §3,
Proposition).

Lemma 5. There is an étale dominant morphism h: V. — U such that the induced
map V xy n~YW(U) — V isa trivial bundle V x F, where F is a general fiber of 7.

Using the fact that T'(W, @) is a UFD we can now find an affine open subset
Uy C U N L such that the complement (U N L)\ Uy is a union of irreducible curves
A; each of which is a principal divisor in Y. Further, we can assume that the map
h: Vy = h Y (Uy) — U, is a finite morphism. By Lemma 4 we know that the map
Hy(Uy) — H,(Y) is onto. Clearly the map H,(Vy x F) — H,(Vy) is onto. Since
the map Vy — Uy is finite the induced map H>(Vp) — H2(Up) has image of finite
index. This follows from the observation that Vy, Uy can be triangulated so that the
map Vo — Up is simplicial ([6]). Alternatively, we can use the Transfer map in the
theory of finite group actions on simplicial complexes. It follows now that the map
H>(X \ n71S8) — H,(Y \ S) has image of finite index.

We use this to prove (¢) first in the case when W has isolated singularities.

Let py1, pa...., pr be all the singular points of W and let N; be a small con-
tractible neighborhood of p; in W. We use the covering W\ S, U N; of W and the
corresponding Mayer—Vietoris sequence

H3(W) — Hy(UN; \ pi)) = Hy(W\ S) @ Hy(UN;) — Hy(W) — -+
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Since W, N; are contractible and H,(W \ §) is finite as proved above we deduce
that H>(N; \ p;)isfinite fori = 1,2,..., r. This means the local second homology
groups H3 ' (W) are all finite. This proves (¢) when W has isolated singular points.

For the general case, again first we give the argument when dim W = 3,

Now the singular locus of W can be assumed to be a disjoint union of a curve C
and a finite set of points, say {g1.92,-..,gs}. We have shown earlier that a general
hyperplane section W M L 1s Gorenstein and has only FEg singularities. Clearly, a
general hyperplane does not pass through any of the g;. Similarly, there is a finite
set{p1, p2,--., prt C C such that a general hyperplane section W N L not passing
through any p; has at worst Eg as singularities (here, we are using Lemma 1 (ii)
and part (a) of the theorem which is already proved). It is well known that a flat
deformation of an RDP 1s locally trivial outside the special fiber. Hence by removing
finitely many more points in C, if necessary, we deduce that the variety W is locally
analytically a product of a 1-dimensional disc in C and the germ of the g singularity
forany p € C \ {p1,..., Pr}.

Let P :={p1,---. Pr.q1,...,4s}. Atcach pointin W \ P, W is a topological
manifold. The previous proof works without any change to show that H>(W \ P)
is finite. Using the open cover W \ P, UN;, where N; are suitable contractible
neighborhoods of the points in P, and the Mayer—Vietoris sequence we deduce that
HY (W) is finite for any ¢;.

Remark. The proof also shows that Hy(N; — p;) is finite. But we have HI' (W) =
H,(N; \ C) so we cannot conclude immediately that Hi (W) = (0).

Let N be a suitable tubular neighborhood of C in W. Let S; be a general hy-
perplane section of W at p; for 1 < i < r. Since W 1s 3-dimensional, normal
and Cohen—Macaulay, S; 1s analytically irreducible at p; by Flenner’s local Bertini
theorem ([3]). Now N \ U;S; is a tubular neighborhood of C \ {p1,..., pr} In
W\ USs;.

Claim. Hy(N \ C) is finite.

For proving this we consider the cover W\ C, N of W. Using the Mayer—Vietoris
sequence for this cover and the result that H,(W \ S) = (0) proved above proves
the claim.

Now we can write N = Uy U U, where U 1s a disjoint union of neighborhoods
of p1,..., prin N and U, is abundle over C'\ A, where A is a disjoint union of small
neighborhoods of py, ..., p, in C, whose fiber is a germ of an Eg singularity. Then
Ui\ C, U\ C isanopencover of N\ C. The intersection (U; \ C)N (U, \ C ) has the
homotopy type of a bundle over dA (which is a disjoint union of finitely many circles)
whose fiber has the homotopy type of the link of Eg singularity. Now the link of the
Eg singularity is a quotient of the 3-sphere S3 by the binary icosahedral group P of
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order 120. We have an exact sequence (1) — P — 7(E) — 71(S!) — (1), where
S is one of the connected components of dA and E is the total space of the bundle
over this S''. This sequence splits since 71 (S1) = Z. Write 71 (E) = P -(y), where
P is normal in 771 (£} and () maps isomorphically onto Z in the above short exact
sequence. Since () has finite index (equal to 120} in 7r1 (£), we can find a subgroup
of finite index, say (y’) C (y) such that (y’) is normal in 7 (E). This implies that
there is a finite normal covering £’ — E whose fundamental group is the normal
subgroup P - (y') of m1(E). There is a fiber bundle £/ — S' with fiber the link
of the Eg singular point, Further, since P - (y’) is normal in 71 (E) by taking the
universal covers of the fibers of the bundle £’ — S we get an S3-bundle over S1. It
follows that there is an orientable S 3-bundle over dA such that (U \ C) N (U3 \ C)
has the homotopy type of the quotient of this S 3-bundle over dA. Since an orientable
sphere bundle over S! is trivial we see that the total space of this S>-bundle has trivial
second homology and hence H,((Uy \ C) N (U, \ C)) is also finite. Using the fact
that 71 (C \ A) is a free group we observe similarly that the space U, \ C is a quotient
of an orientable S3-bundle £’ — C’, where C’ is a finite-sheeted covering space
C’ — C \ A. Using the Gysin sequence of an S>-bundle over C’ we first see that
H>(E") is finite and hence H»(Us \ C) is also finite. Now we use the Mayer—Vietoris
sequence for the covering U; \ C, Uz \ C of N \ C and the result that H>2(N \ C)
is finite as proved above to conclude that H,(U; \ C) is finite. This proves that the
local second homology group of each p; is finite.
This completes the proof of part (¢) of the theorem when dim W = 3.
Next we indicate the modification of the above proof when dim W = 4,

Case 1. Assume that W has only isolated singularities.

We have already shown that H,(W \ S) is finite.
Since W has isolated singularities, as in the case dim W = 3 we prove that the
local second homology group at any point of W is finite.

Case 2. Assume that Sing W is a disjoint union of a curve C and finitely many points
{pi}.

Let N be a suitable tubular neighborhood of C and let N; be suitable contractible
neighborhoods of p;. Consider the open cover X \ Sing W, N U {U; N;) of W and the
corresponding Mayer—Vietoris sequence. Using the finiteness of Hy (W \ Sing W)
proved earlier we conclude that Hy(N \ C), Hf* (W) are all finite.

Let Y be a general hyperplane section of W and let X := 7~ '(Y). Then X is
smooth, G stableand ¥ = X //G. We will apply Lemma 3 to the map w: C* — W
with ¢ = 1.

The integer n; = 2n — 1 — supg[2k + o (k}], where the supremum is taken over
those k such that there is at least one fiber of 7 of dimension k. We claim that n; > 3.
This is equivalent to 2n —4 > sup, [2k + o (k)]. We have observed in the beginning of
the proof of the theorem that the inverse image of any subvariety of W of codimension
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> 2 has codimension > 2 in C”, Since dim W > 4, any fiber of & has codimension
> 2. This implies that &k + o (k) < n — 2, sothat 2k 4+ 20(k) < 2n — 4.

Now by Lemma 3, H;(X) = (0) fori = 1,2. Similarly, 71(X) = (1) so that
a smooth compactification of X is also simply-connected and X does not have non-
constant regular invertible functions. Now for any smooth compactification X of
X we have H;(X) = (0), so that Pico(X) = 0. From H{(X) = (0) = H»(X)
we observe that H2(X) = (0). The group H2(X) defined in [5], §1, is a subgroup
of H2(X), which in our situation is trivial. Now it follows that the coordinate ring
of X is a UFD ([5], Corollary 1.20). Since G is connected and semisimple, as
seen in the beginning, the coordinate ring of ¥ is also a UFD. Now Y has 1solated
singularities. Let p € Sing Y. By Lemma 1 the homomorphism HY (Y) — HT (W)
is an isomorphism. It suffices to show that H7 (Y) is finite. The inverse image in
X of any subvariety of codimension > 2 of ¥ has codimension > 2 in X. From
this we see that there are only finitely many points in ¥ whose inverse image has
codimension 2 in X.

Let Z be a general linear space section of X of dimension 3. By Bertini’s theorem
Z 1s smooth and irreducible. By abuse of notation we denote w: Z — Y to be
the restriction morphism. Now s is a generically finite morphism and there are
only finitely many points, say pi, pa2,..., Pr, i1 ¥ whose inverse image in Z 1s
codimension 2 (the intersection of Z with some codimension 2 subvarieties of X),
i.e. it is 1-dimensional. Let p = p;. If #7!(p) is finite then ¥ has a quotient
singularity at p and hence HZ (Y) is finite. So let D := =~ !(p). Then D is a
(possibly reducible) curve. Since 7 1s generically finite we infer that there are finitely
many irreducible divisors Ay, ..., Ay in Y such that r restricts to a proper morphism
with finite fibers Z \ 771 (UA;) — ¥ \ (UA;). Since we are only interested in the
topology of a small neighborhood of p we will assume, for simplicity, that p is the
only singular point of Y and p € A; foreach i.

Let U be a suitable Stein contractible neighborhood of p in ¥. Each A; is a
principal divisor in ¥ since the coordinate ring of ¥ is a UFD.

We use Lemma 1. If H is a general hyperplane section of U, not passing through
p, then the natural map H>(H) — Ho(U \{p})isasurjection. H isa2-dimensional
Stein manifold. Since each A; 1s a principal divisor, by the proof of Lemma 4 we
see that the map Ho(H \ UA;) — H>(H) is a surjection. Hence the composite
map H>(H \ UA;) — H,(U \ {p}) is also a surjection. Let T be a suitable tubular
neighborhood of D in Z such that D is a strong deformation retract of T and 7 (7)) C
U. It follows that H,(T') = (0). Let U; C U be a slightly smaller neighborhood of
p which is a strong deformation retract of U, so that H,(Uy \ {p}) = Ho(U \ {p}).
By shrinking U/; we can assume that the inverse image =~ (U1) is contained in T
The map Ha(mw~1((H N Uy) \ UA;)) — Ha((H N Up) \ UA;) has image of finite
index since the morphism 7~ ((H N U;) \ UA;) — (H NU;) \ UA; is proper with
finite fibers. Hence the composite map Ho(z L ((H N U )\ UA;)) — Hy(U\ {p})
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also has image of finite index. Now H, (T \ D) = (0) since D is an affine curve and
has codimension > 2 in T. The map Ho (7w~ ((H N Uy) \ UA})) — Ha(U \ {p})
factors through H,(7 \ D), which is trivial. Hence we conclude that Ho(U \ {p})
is finite.

This completes the proof of Case 2.

Case 3. Assume finally that Sing W contains a surface S.

A general hyperplane section W N L is Gorenstein of dimension 3 and has
rational singularities. Its singular locus 1s Sing W N Ly. In the terminology of [19],
W N L is a Gorenstein canonical singularity. Another general hyperplane section
gives W N L1 N Ly, which is also Gorenstein and has rational singularities. As seen
before, the singularities of W N L1 N L, are Eg-singularities. At any such point
W N L N Lj 1s topologically a manifold. Using the observation that RDPs have no
moduli, it is shown in [19], Corollary 1.14, that outside a codimension 3 subvariety,
say F, W is locally analytically a product of an RDP and the unit disc in C?. Now
F is a disjoint union of a curve C C W and a finite set of points such that any
point p & F is ¢ither a smooth point of W or W is locally analytically a product
(disc in C?) x germ of Eg. Hence Hj (W) is trivial for any such point p. Clearly
W is a topological manifold at any point in W \ F. We prove that H5 (W) is finite
for any p € C exactly by the same argument as in Case 2.

This completes the proof of assertion (¢) of the theorem when dim W = 4,

Consider the case when dim W > 4, We will indicate the proof whendim W = 5
and leave the general case to the reader.

Arguing as in the case dim W = 4 above, we see that there is a codimension 3
subvariety, say F', of W such that W is at any point p € W \ F locally analytically
a product (disc in C3) x germ of Eg singularity. In particular, W is a topological
manifold at any point in W \ F. Now F is a union of a surface S, a curve C and
finitely many points not contained in S U C'. We prove that H,(W \ F) is finite as
before. We ignore the finitely many isolated points in F. Next, if N is a suitable
tubular neighborhood of F in W then using a Mayer—Vietoris sequence for the cover
(W\ F), N we deduce that the natural map H>(N \ F') — H>(N)isanisomorphism,

LetY := W N L, where L is a general linear subspace of CV of codimension 2.
Let X := 7~ }(Y). NowdimY = 3and Y N F is a finite set of points. If we apply
Lemma 3 with ¢ = 2 then we see as in the proof of Case 2 (when dim W = 4) that
the pair (C", X) is 3-connected. Then H; (X) = (0) fori = 1, 2, the coordinate ring
of X 1s a UFD and has no regular invertible functions. This implies as in the proof
of Case 2 (dim W = 4) that the coordinate ring of ¥ is a UFD, the inverse image
of any codimension > 2 subvariety of Y has codimension > 2 in X, etc. We prove
that H7 (Y) is finite exactly as in the proof of Case 2 (dim W = 4). Finally, using
Lemma 1 we deduce that HZ (W) is finite.

This completes the proof of the theorem. [
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Remark. T. N. Venkataramana has shown us an interesting construction of the fol-
lowing phenomenon.

Let I" be a non-trivial finite perfect group. Then there is a suitable linear action
of G = SL(N,C) (for N >> 0) on C¥ such that for a suitable point p in CV // G
the local fundamental group of C¥ //G at p is T'. On the other hand, it is easy to see
from our proof that in assertion (a) of the theorem the local fundamental group at the
vertex in CV // G is trivial.

3. Proof of the corollary

Let G, W = C"//G, p € W be as in the statement of the corollary of the theorem
as stated in the Introduction. As remarked in the beginning W has rational singular-
ities. For rational singularities (in arbitrary dimension) Flenner has shown ([4], §6,
Satz 6.1) that the analytic local ring Ow,,_ 18 a UFD if and only if there exists
a fundamental system of Stein contractible neighborhoods U of p in W such that
H?(U \ Sing W) = (0). This is equivalent to the two conditions H1 (U \ Sing W)
is torsion-free and H, (U \ Sing W) is finite. By the parts (a) and (¢) of the theorem
these are both true for W.

Anexample. Let C* acton C* by p, (X1, Xa. X3. X4) = (¢ X 1.t X5, t 71 X5, 71 X,).

The ring of invariants is C[ X1 X3, X1 X4, X2X3, X2 X4]. The corresponding affine

variety W := C*//C* is the hypersurface {Y,Y2 — Y3¥, = 0} € C*. Clearly W is

homogeneous and has an isolated singular point at the vertex w. The inverse image of

w in C* has codimension 2. Hence }” (W) = (1). Itis easy to see that H3’ (W) has

rank > 0. Further, C[X1 X3, X1 X4, X2 X3, X3 X4] has infinite cyclic divisor group.
It is proved in [18] that the affine 3-fold W’ given by

(1Yo = Y3Ysa + F(Y1,Y2,Y3,Ys) =0}

in C*is a UFDf F is a sufficiently general homogeneous polynomial of large degree.
The analytic type of the singularity of W’ at the origin is the same is that of W, hence
a rational singularity. The local ring of W' at the origin is a UFD but its completion
has infinite divisor class group.

This example illustrates that the hypothesis on G in the theorem is necessary.
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