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Configurations of saddle connections of quadratic differentials on
CP! and on hyperelliptic Riemann surfaces

Corentin Boissy

Abstract. Configurations of rigid collections of saddle connections are connected component
invariants for strata of the moduli space of quadratic differentials. They have been classified for
strata of Abelian differentials by Eskin, Masur and Zorich. Similar work for strata of quadratic
differentials has been done by Masur and Zorich, although in that case the connected components
were not distinguished.

We classify the configurations for quadratic differentials on CP' and on hyperelliptic con-
nected components of the moduli space of quadratic differentials. We show that, in genera
greater than five, any configuration that appears in the hyperelliptic connected component of a
stratum also appears in the non-hyperelliptic one. For such genera, this enables to classify the
configurations that appear for each connected component of each stratum.

Mathematics Subject Classification (2000). Primary 32G135; Secondary 30F30, 57R30.

Keywords. Quadratic differentials, configuration, homologous saddle connections.

1. Introduction

We study flat surfaces having isolated conical singularities of angle integer multiple
of w and Z /27 linear holonomy. The moduli space of such surfaces is isomorphic
to the moduli space of quadratic differentials on Riemann surfaces and 1s naturally
stratified. Flat surfaces corresponding to squares of Abelian differentials are often
called translation surfaces. Flat surfaces appear in the study of billiards in rational
polygons since these can be “unfolded” to give a translation surface (see [KaZe]).
A sequence of quadratic differentials or Abelian differentials leaves any compact
set of a stratum when the length of a saddle connection tends to zero. This might
force some other saddle connections to shrink. In the case of an Abelian differential
they correspond to homologous saddle connections. In the general case of quadratic
differentials, the corresponding collections of saddle connections on a flat surface are
said to be homologous' (pronounced “hat-homologous”). According to Masur and

IThe corresponding cycles are in fact homologous on the canonical double cover of S, usually denoted as S ,
see Section 1.2.
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Smillie [MS] (see also [EMZ], [MZ]), a “typical degeneration” corresponds to the
case when all the “short” saddle connections are pairwise homologous. Therefore
the study of configurations of homologous saddle connections (or homologous sad-
dle connection in the case of Abelian differential) 1s a first step for the study of the
compactification of a given stratum. A configuration of homologous saddle connec-
tions on a generic surface 1s also a natural invariant of a connected component of the
ambient stratum.

In a recent article, Eskin, Masur and Zorich [EMZ)] study collections of homol-
ogous saddle connections for Abelian differentials. They describe configurations
for each connected component of the strata of Abelian differentials. Collections of
homologous saddle connections are studied for quadratic differentials by Masur and
Zorich [MZ]: they describe all the configurations that can arise in any given stratum
of quadratic differentials, but they do not distinguish connected components of such
strata.

According to Lanneau [L.2], the non-connected strata of quadratic differentials
admit exactly two connected components. They are of one of the following two

types:

* “hyperelliptic” stratum: the stratum admits a connected component that con-
sists of hyperelliptic quadratic differentials (note that some of these strata are
connected);

» exceptional stratum: there exist four non-connected strata that do not belong to
the previous case.

In this article, we give the classification of the configurations that appear in the
hyperelliptic connected components (Theorem 3.1). This gives therefore a necessary
condition for a surface to be in a hyperelliptic connected component. Then we
show that any configuration that appears in a hyperelliptic connected component also
appears in the other component of the stratum when the genus is greater than five
(Theorem4.2). Hence the list of configurations corresponding to this other component
1s precisely the list of configuration corresponding to the ambient stratum.

For such genera, any non-connected stratum contains a hyperelliptic connected
component. Hence the configurations for each connected component of each stratum,
when the genus is greater than or equal to five, are given by Theorem 3.1, Theorem 4.2
and Main Theorem of [MZ]. We address the description of configurations for low
dimension strata to a next article.

We deduce configurations for hyperelliptic components from configurations for
strata of quadratic differentials on CP! (Theorem 2.2). Configurations for CP! are
deduced from general results on configurations that appear in [MZ]. Note that these
configurations are needed 1n the study of asymptotics in billiards in polygons with
“right” angles [AEZ]. For such a polygon, there is a simple unfolding procedure that
consists in gluing along their boundaries two copies of the polygon. This gives a flat
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surface of genus zero with conical singularities, whose angles are multiples of 7 (i.e.
a quadratic differential on CPP'). Then a generalized diagonal or a periodic trajectory
in the polygon gives a saddle connection on the corresponding flat surface.

We also give in appendix an explicit formula that gives a relation between the
genus of a surface and the ribbon graph of connected components associated to a
collection of homologous saddle connections.

Some particular splittings are sometimes used to compute the closure of SL.(2, R)-
orbits of surfaces (see [Mc], [HLM]). These splittings of surfaces can be reformulated
as configurations of homologous or homologous saddle connections on these surfaces.
It would be interesting to find some configurations that appear in any surface of a
connected component of a stratum, as was done in [Mc].

Acknowledgements. [ would like to thank Anton Zorich for encouraging me to write
this paper, and for many discussions. I also thank Erwan Lanneau and the Referee
for their comments on the paper.

1.1. Basic definitions. Here we first review standard facts about moduli spaces of
quadratic differentials. We refer to [HM], [M], [V1] for proofs and details, and to
[MT], [Z] for general surveys.

Let S be a compact Riemann surface of genus g. A quadratic differential ¢ on .S
is locally given by ¢(z) = ¢(z)dz?, for (U, z) a local chart with ¢» a meromorphic
function with at most simple poles. We define the poles and zeroes of g in a local chart
to be the poles and zeroes of the corresponding meromorphic function ¢. It is easy
to check that they do not depend on the choice of the local chart. Slightly abusing
vocabulary, a pole will be referred to as a zero of order —1, and a marked point will
be referred to as a zero of order 0. An Abelian differential on S is a holomorphic
1-form.

Outside its poles and zeroes, g is locally the square of an Abelian differential.
Integrating this 1-form gives a natural atlas such that the transition functions are of
the kind z = £z 4 ¢. Thus S inherits a flat metric with singularities, where a zero
of order & > —1 becomes a conical singularity of angle (k 4+ 2)z. The flat metric
has trivial holonomy if and only if g is globally the square of an Abelian differential.
If not, then the holonomy is Z /27 and (S, g) is sometimes called a half-translation
surface since the transition functions are either translations, or half-turns. In order to
simplify the notation, we will usually denote by S a surface with such flat structure.

We associate to a quadratic differential the set {kq, ..., k,} of orders of its poles
and zeroes. The Gauss—Bonnet formula asserts that ), k; = 4g — 4. Conversely,
if we fix a collection {ky,...,k,} of integers greater than or equal to —1 satisfying
the previous equality, we denote by Q(k, . .., k) the (possibly empty) moduli space
of quadratic differentials which are not globally the square of any Abelian ditferen-
tial, and having {kq,...,k,} as orders of poles and zeroes . It is well known that
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Q(kq, ..., k,)is acomplex analytic orbifold, which is usually called a strarum of the
moduli space of quadratic differentials. We mostly restrict ourselves to the subspace
@Qi(ky,..., k) of area one surfaces, where the area is given by the flat metric. In a
similar way, we denote by #1(n1,. .., ng) the moduli space of Abelian differentials
of area 1 having zeroes of degree {ny, ..., ns}, wheren; > Oand >/, n; = 2g—2.

A saddle connection 1s a geodesic segment (or geodesic loop) joining two sin-
gularities (or a singularity to itself) with no singularities in its interior. Even if g 1s
not globally a square of an Abelian differential we can find a square root of it along
the saddle connection. Integrating it along the saddle connection we get a complex
number (defined up to multiplication by —1). Considered as a planar vector, this
complex number represents the affine holonomy vector along the saddle connection.
In particular, its Euclidean length is the modulus of its holonomy vector. Note that a
saddle connection persists under small deformation of the surface.

Local coordinates on a stratum of Abelian differentials are obtained by integrat-
ing the holomorphic 1-form along a basis of the relative homology H, (S, sing, Z),
where “sing” is the set of conical singularities. Equivalently, this means that local
coordinates are defined by the relative cohomology H (S, sing, C).

Local coordinates in a stratum of quadratic differentials are obtained by the
following way (see |[HM]): one can naturally associate to a quadratic differential
(S.q) € Q(ky.... k) adouble cover p : § — S such that p*q is the square
of an Abelian differential . The surface S admits a natural involution 7, that in-
duces on the relative cohomology H (S, sing, C) an involution *. It decomposes
H'(S,sing, C) into an invariant subspace H}r (S, sing, C) and an anti-invariant sub-
space H1(S, sing, C). One can show that the anti-invariant subspace H1(S, sing, C)
gives local coordinates for the stratum € (kq, . . . , k). The Lebesgue measure on these
coordinates defines a measure u on the stratum @4 (kq, ..., k,). This measure is finite
(see [V3], Theorem 0.2).

A hyperelliptic quadratic differential 1s a quadratic differential such that there
exists an orientation preserving involution 7 with ¥¢ = ¢ and such that S/t is
a sphere. We can construct families of hyperelliptic quadratic differentials by the
following way: to all quadratic differentials on CIP!, we associate a double covering
ramified over some singularities satisfying some fixed combinatorial conditions. The
resulting Riemann surfaces naturally carry hyperelliptic quadratic differentials.

Some strata admit an entire connected component that is made of hyperelliptic
quadratic differentials. These components arise from the previous construction and
have been classified by Kontsevich and Zorich in case of Abelian differentials [KZ]
and by Lanneau in case of quadratic differentials [1.1].

Theorem (M. Kontsevich, A. Zorich). The strata of Abelian differentials having a
hyperelliptic connected component are the following ones.

(1) H(2g —2), where g > 1. It arises from Q(2g — 3, —12¢ 1), The ramifications
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points are located over all the singularities.

(2) H(g —1,g — 1), where g > 1. It arises from QQ2g — 2,—1?812), The
ramifications points are located over all the poles.

In the above presented list, the strata ¥ (0), #(0,0), H (1, 1) and H (2) are the ones
that are connected.

Theorem (E. Lanncau). The strata of quadratic differentials that have a hyperelliptic
connected component are the following ones.

(1) QQR(g —ky—3,2(g —k)—3,2k+ 1,2k + 1) where k = —1, g = | and
g —k > 2. It arises from QQ2(g — k) — 3,2k + 1, —1287%2), The ramifications
points are located over 2g + 2 poles.

(2) Q2(g —k)—3,2(g—k)—3,4k + 2y wherek >0, g > landg —k > 1. It
arises from Q(2(g — k) — 3,2k, —128"1). The ramifications points are located
over 2g + 1 poles and over the zero of order 2k.

(3) Q4{(g —k)— 6,4k +2)wherek >0, g = 2 and g — k > 2. It arises from
Q(2(g — k) — 4,2k, —1%8). The ramifications points are located over all the
singularities

In the above presented list, the strata @(—1,-1,1,1), @(—1,-1,2), @(1,1,1,1),
Q(1,1,2) and Q(2,2) are the ones that are connected.

1.2. ﬁomologous saddle connections. Let S € Q(kq,..., k) bea flat surface and
let us denote by p : S — S its canonical double cover and by 7 the corresponding
involution. Let X denote the set of singularities of S and let S =p (D).

To an oriented saddle connection y on .S, one can associate y1 and 5 1ts preimages
by p. If the relative cycle [y] satisfies [y1] = —[y2] € Hy (§, 3, 7.}, then we define
[7] = [y1]. Otherwise, we define [y] = [v1] — [¥2]. Note that in all cases, the cycle
[7] is anti-invariant with respect to the involution .

Definition 1.1. Two saddle connections y and y’ are homologous if [§] = £[y].

Example 1.2. Consider the flat surface S € @(—1,—1,—1,—1) givenin Figure 1 (a
“pillowcase”), it is easy to check from the definition that y; and y» are homologous
since the corresponding cycles for the double cover S are homologous.

Example 1.3. Consider the flat surface given in Figure 4 (at the end of Section 1.2),
the reader can check that the saddle connections yy, y» and y3 are pairwise homo-
logous.

Theorem (H. Masur, A. Zorich). Consider two distinct saddle connections v, y’ on
a half-translation surface. The following assertions are equivalent:



762 C. Boissy CMH
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Figure 1. An unfolded flat surface S with two homologous saddle connections y; and y5.

» The two saddle connections y and y' are homologous.

e The ratio of their lengths is constant under any small deformation of the surface
inside the ambient stratum.

» They have no interior intersection and one of the connected components of
S\{y U y'} has trivial linear holonomy.

Furthermore, if y and y' are homologous, then the ratio of their lengths belongs to
3. 1,2}

Consider a set of homologous saddle connections y = {y1,...,ys} on a flat
surface S. Slightly abusing notation, we will denote by S\y the subset S\ {{_i_; ).
This subset is a finite union of connected half-translation surfaces with boundaries.

Definition 1.4. Let S be a flat surface and y = {y1,.... ¥s} a collection of homo-
logous saddle connections. The graph of connected components, denoted by I'(S, y),
is the graph defined by the following way:

» The vertices are the connected components of S\y, labelled by “o” if the cor-
responding surface is a cylinder, by “+” if it has trivial holonomy (but is not a
cylinder), and otherwise by “—"" if it has non-trivial holonomy.

* The edges are given by the saddle connections in y. Each y; is located on
the boundary of one or two connected components of S\y. In the first case it
becomes an edge joining the corresponding vertex to itself. In the second case,
it becomes an edge joining the two corresponding vertices.
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In [MZ], Masur and Zorich describe the set of all possible graphs of connected
components for a quadratic differential. This set is roughly given by Figure 2, where
dot lines are chains of “4” and “o” vertices of valence two. The next theorem gives
a more precise statement of this description. It can be skipped in a first reading.

Theorem (H. Masur, A. Zorich). Let (S, q) be quadratic differential; let y be a

collection of homologous saddle connections {y1., ..., yn}, and let T(S,y) be the

graph of connected components encoding the decomposition S\ (y1 U -+ U vy ).
The graph T'(S, y) either has one of the basic types listed below or can be obtained

(13 2”2

[from one of these graphs by placing additional “o”-vertices of valence two at any

(3 2

subcollection of edges subject to the following restrictions. At most one “o”-vertex

(3 2”2

may be placed at the same edge; a “o”-vertex cannot be placed at an edge adjacent

to a “o”-vertex of valence 3 if this is the edge separating the graph.
The graphs of basic types, presented in Figure 2, are given by the following list:

a) An arbitrary (possibly empty) chain of “+ "-vertices of valence two bounded by
a pair of “—"-vertices of valence one;

“

b) A single loop of vertices of valence two having exactly one “—7-vertex and
arbitrary number of “4 "-vertices (possibly no “4"-vertices at all);

¢) A single chain and a single loop joined ar a vertex of valence three. The graph
has exactly one “—"-vertex of valence one; it is located at the end of the chain.
The vertex of valence three is either a “+ ”-vertex, or a “o”-vertex (vertex of the
cylinder type). Both the chain, and the cycle may have in addition an arbitrary

number of “+ ”-vertices of valence two (possibly no “4”-vertices at all);

13

d) Two nonintersecting cycles joined by a chain. The graph has no “—"-vertices.
Fach of the two cycles has a single vertex of valence three (the one where the

& *y

chain is attached to the cycle); this vertex is either a “+ "-vertex ora “o”-vertex.
If both vertices of valence three are “o”-vertices, the chain joining two cycles
is nonempty: it has at least one “+"-vertex. Otherwise, each of the cycles and
the chain may have arbitrary number of “+ "-vertices of valence two (possibly

no “+4”-vertices of valence two at all);

e) “Figure-eight” graph: two cycles joined at a vertex of valence four, which is
either a “+ "-vertex or a “o”-vertex. All the other vertices (if any) are the “+ -
vertices of valence two. Each of the two cycles may have arbitrary number of

such “+ 7 -vertices of valence two (possibly no “+ "-vertices of valence two at
all).

Each graph listed above corresponds to some flat surface S and to some collection
of saddle connections y.
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Figure 2. Classification of admissible graphs.
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Remark 1.5. Two homologous saddle connections are not necessary of the same
length. The additional parameters 1 or 2 written along the vertices in Figure 2 rep-
resent the lengths of the saddle connections in the collection y = {y1,..., ys} after
suitably rescaling the surface.

Each connected component of S\y is a non-compact surface which can be nat-
urally compactified (for example considering the distance induced by the flat metric
on a connected component of S\ y, and the corresponding completion). We denote
this compactification by S;. We warn the reader that S; might differ from the closure
of the component in the surface S: for example, if y; is on the boundary of just one
connected component S; of S\ y, then the compactification of S; carries two copies
of y; in its boundary, while in the closure of the corresponding connected compo-
nent of S\y, these two copies are identified. The boundary of each S; is a union
of saddle connections; it has one or several connected components. Each of them
is homeomorphic to S and therefore defines a cyclic order in the set of boundary
saddle connections. Fach consecutive pair of saddle connections for that cyclic order
defines a boundary singulariry with an associated angle which is a integer multiple of
7 (since the boundary saddle connections are parallel). The surface with boundary
S; might have singularities in its interior. We call them interior singularities.

Definition 1.6. Let y = {y,...., ¥, } be a maximal collection of homologous saddle
connections. Then a configuration 1s the following combinatorial data:

» The graph ['(S, y).

» For each vertex of this graph, a permutation of the edges adjacent to the vertex
(encoding the cyclic order of the saddle connections on each connected compo-
nent of the boundary of S; ).

» For each pair of consecutive elements in that cyclic order, an integer & > 0 such
that the angle between the two corresponding saddle connections is (kK + 1)x.
This integer will be referred as the order of the boundary singularity.

» For each 5;, a collection of integers corresponding to the orders of the interior
singularities of .S;.

Following [MZ], we will encode the permutation of the edges adjacent to each
vertex by a ribbon graph.

Example 1.7. Figure 3 represents a configuration on a flat surface. The correspond-
ing collection {y1, y2, y3} of homologous saddle connections decomposes the surface
into three connected components. The first connected component ©=€ has fourinte-
rior singularities of order —1, and its boundary consists of a single saddle connection
with the corresponding boundary singularity of angle (2 + 1)m = 3mx. The second
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Y2
Y1

Y3

(S, y)

Figure 3. An example of configuration.

connected component =&C has no interior singularities. It has two boundary com-
ponents, one consisting of a single saddle connection with corresponding singularity
of angle (2 + 1), and the other consists of a union of two saddle connections with
corresponding boundary singularities of angle (0 4+ 1)z and (2 + 1)x. The last

connected component =@~ has no interior singularities, and admits two bound-
ary components that consists each of a single saddle connection with corresponding
boundary singularities of angles (2 4 1),

Figure 4 represents a flat surface with a collection of three homologous saddle
connections realizing this configuration.

Figure 4. Unfolded flat surface realizing configuration of Figure 3.

Remark 1.8. When describing the configuration of a collection of homologous saddle
connections ¥ = {y1,..., ¥r}, we will always assume that each saddle connection
parallel to an element y; is actually homologous to ¥;. This condition is satisfied for
a subset of full measure in the ambient stratum (see [MZ)]).

Remark 1.9. A maximal collection of homologous saddle connections and the as-
sociated configuration persist under any small deformation of the flat surface inside
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the ambient stratum. They also persist under the well know SZL(2, R) action on the
stratum which is ergodic with respect to the Lebesgue measure p (see [M], [V1],
[V2]). Hence, every admissible configuration that exists in a connected component is
realized in almost all surfaces of that component. Furthermore, the number of collec-
tions realizing a given configuration in a generic surface has quadratic asympltotics
(see [EM]).

2. Configurations for the Riemann sphere

In this section we describe all admissible configurations of homologous saddle con-
nections that arise on CP'. To avoid confusion of notation, we specify the following
convention: we denote by {k‘l’!1 ..., k2" the set with multiplicities {k1, k1, ..., k),
where ¢; 18 the multiplicity of k;. We assume that k; # k; for i # j. For example
the notation @(12, —1%) means @(1,1,—1,—-1,—-1,—-1,—1,—-1).

Let (fl(k‘lxl s, kyT,—1%) be a stratum of quadratic differentials on CPP 1 different
from @ (—1*). We give in the next example four families of admissible configurations
for this stratum. In the next example, y is always assumed to be a maximal collection
of homologous saddle connections. We give in Table 1 the corresponding graphs
and “topological pictures”. The existence of each of these configurations is a direct
consequence of Main Theorem of [MZ].

Example 2.1. a) Let {k, k") C {k7*, ..., k7", —1°} be an unordered pair of integers
with (k, k") # (—1,—1). The set y consists of a single saddle connection joining a
singularity of order k to a distinct singularity of order k’.

b) Let {a1, a»} be an unordered pair of positive integers such that a; +a, = k €
{ky,....k;} (with k& # 1), and let A; U A, be a partition of {k7", ... k. W\ {k}.
The set y consists of a simple saddle connection that decomposes the sphere into two
one-holed spheres S1 and S5, such that each S; has interior singularities of positive
order given by A; and s; = (Zae A a) + a; + 2 poles, and has a single boundary
singularity of order a;.

c) Let{ai,az} C {k‘f‘1 ..., k7 be an unordered pair of integers. Let A; U A»
be a partition of {k7*,..., kf"W\{a1,as}. The set y consists of two closed saddle
connections that decompose the sphere into two one-holed spheres 57 and S5 and a
cylinder, and such that each S; has interior singularities of positive orders given by
Aj and s; = (X 44, @) + @i + 2 poles and has a boundary singularity of order a;.

d) Letk € {ky,...,k;}. The set v is a pair of saddle connections of different
lengths, and such that the largest one starts and ends from a singularity of order k&
and decompose the surface into a one-holed sphere and a “half-pillowcase”, while
the shortest one joins a pair of poles and lies on the other end of the half-pillowcase.
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Table 1. Configurations in genus zero.

Topological picture Configurations
b) o+——0
A U{—151} Ap U {—1°2}
a 0 0 as
0) ) ') —o——0
A U{—151} Ax U{-1%2}
) O-k-'
& ®
) ). o
. 0
0
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Theorem 2.2. Let Q(k{',... k;",—1%) be a stratum of quadratic differentials on
CP! different from Q(—1*) and such that k; # O for all i, and let y be a maximal
collection of homologous saddle connections on a flat surface in this stratum. Then
all possible configurations for y are the ones described in Example 2.1.

Remark 2.3. The hypothesis k; # O appears here for simplicity. The possible
configurations for a collection of saddle connections in a flat surface of genus zero
that contains marked point are easily deduced from Theorem 2.2.

We first start with several preliminary lemmas which are applicable to flat surfaces
of arbitrary genus. Let S be a generic flat surface of genus g > 0 in some stratum
of quadratic differentials, and let y be a maximal collection of homologous saddle
connections on it. Taking the natural compactification of each connected component
of S\y, we get a collection {S;};er of compact surfaces with boundarics. The
boundary of each S; is topologically a union of disjoint circles. We can glue a disc
to each connected component of the boundary of S; and get a closed surface S;; we
denote by g; the genus of S;.

Lemma 2.4. Let g be the genus of S, theng > > . .; gi.

Proof. For each S;, we consider a collection of paths (¢ 1....,¢i2e,) Of S; that
represent a symplectic basis of H;(S;,R) and that avoid the boundary of S;. When
we glue the {S;} together, the ¢; ; provides a collection of cycles of H(S,R). It
forms a symplectic family because two paths arising from two different surfaces do
not intersect each other. Therefore we get a free family of H1(S, R), thus:

2g = dim(Hy(S,R)) = Y "dim(H(5;.R)) = ¥ "2g;. 0

iel iel

Remark. In the appendix, we will improve Lemma 2.4 and give an exact formula in
terms of the graph I'(.S, y) and the ribbon graph.

Lemma 2.5. If S;, is not a cylinder and has trivial holonomy, then g;, > 0.

Proof. Recall that the initial collection of homologous saddle connections is assumed
to be maximal, therefore there are no interior saddle connections homologous to any
boundary saddle connection. Let {kq,...,ks} be the orders of the interior conical
singularities of S;, and {1, ..., [y} be the orders of the boundary singularities. Let X
be the closed flat surface obtained by gluing \S;, and a copy of itself taken with opposite
orientation along their boundaries. If 7 denotes the number of connected components
of the boundary of S;, and gx denotes the genus of X, one can see that gx = 2g;, +
m — 1. The singularitics of X are of orders {kq,... ks, ky,..., ks, 201,...,2[5}.
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Furthermore, &;, [; are nonnegative integers since X has trivial holonomy. Applying
the Gauss—Bonnet formula for quadratic differentials, one gets:

s s
k; 2
ngl‘l'jE_l?‘FE 5:23i0+m_1

i=1

which obviously gives

!

s
/.
2gi, 22—m—|—2§l.

i=1

To conclude, we need few elementary remarks (which are already written in [MZ])
about the order of the conical singularities of the boundary:

a)

b)

If a connected component of the boundary is just a single saddle connection, then
the corresponding angle cannot be i otherwise the saddle connection would then
be a boundary component of a cylinder. Then the other boundary component
of that cylinder would be a saddle connection homologous to the previous one
(see remark 1.8). So S; would be that cylinder contradicting the hypothesis.
Furthermore, the holonomy of a path homotopic to the saddle connection 1s
trivial if and only if the conical angle of the boundary singularity is an odd
multiple of 7.

Therefore that angle is greater than or equal to 37, and hence, the corresponding
order [; of the boundary singularity has order at least 2.

If a connected component of the boundary is given by two saddle connections,
then as before, the two corresponding conical angles cannot be both equal to
7 (otherwise S; would be a cylinder) and are of the same parity (otherwise S;
would have nontrivial holonomy).

Now we complete the proof of the lemma. We recall that the vertex corresponding
to Si, in I'(S, ) is of valence at most four, and hence m < 4. The case m = 1 is
trivial. If m = 2 then there is a connected component of the boundary of S;, with
one or two saddle connections. In both cases, the remarks a) and b) imply that S;,
admits a boundary singularity of order /; > 0, and therefore 2g;, > /1,2 > 0.

If m € {3, 4}, then there are at least two boundary components that consist of a
single saddle connection. From remark a), this implies that S;, admits two boundary
singularities /; and /> of order greater than or equal to two. Applying remarks a)
and b) on the other boundary components, we show that S;, admits at least an other
boundary singularity of order /3 > 0. Therefore

28ip >2—m+0L/24+1/2=4—m=0.

Finally, g;, > 0 and the lemma is proven. [



Vol. 84 (2009) Configurations of saddle connections 771

Now, we describe all the possible configurations when the genus g of the surface
18 Zero.

Proof of Theorem 2.2. 1t follows from Lemmas 2.4 and 2.5 that T'(SS, y) has no “+”
components. Furthermore, a loop of the graph I'(S, y) cannot have any cylinder
since this would add a handle to the surface. Now using the description from [MZ]
of admuissible graphs (see Figure 2), we can list all possible graphs. For each graph
we now describe the corresponding admissible configurations.

a) A single “—" vertex of valence two and an edge joining it to itself. This
can represent two possible cases: either the boundary of the closure of S\ y has two
connected components, or it has only one. In the first case each connected component
of the boundary is a single saddle connection. Gluing these two boundary components
together adds a handle to the surface. So this case does not appear for genus zero.
In the other case, the single boundary component consists of two saddle connections.
The surface S is obtained after gluing these two saddle connections, so y consists of a
single saddle connection y; joining a singularity of order k to a distinct singularity of
order /. If k and k” were both equal to —1, then y; would bound a cylinder. Then the
other end of that cylinder would consist of one or several saddle connections parallel
to y1. Because of remark 1.8, these saddle connections would be in the collection y,
which is a contradiction.

b) Two “—7 vertices of valence one joined by a single edge. That means that y
consists of a single closed saddle connection y; which separates the surface in two
parts. We get an unordered pair {S1, S2} of one-holed spheres with boundary singu-
larities of angles (@1 + 1) and (a2 + 1)& correspondingly. The saddle connection
of the initial surface is adjacent to a singularity of order @; + @» = k. None of the a;
is null otherwise the saddle connection would bound a cylinder, and there would
exist a saddle connection homologous to y; on the other boundary component of this
cylinder.

Now considering the interior singularities of positive order of 1 and S» respec-
tively, this defines a partition A3 LI A of {k7, ..., k7" \{k}. Each S; also have s;
poles, with s; + 55 = 5. If we decompose the boundary saddle connection of S;
in two segments starting from the boundary singularity, and glue together these two
segments, we then get a closed flat surface with A; U {a; — 1, —1} U {—1%} for the
order of the singularities. The Gauss—Bonnet theorem implies:

(Z a)—l—al—Z—Si = —4.

acA;

11 e ”

¢) Two “—" vertices of valence one and a “o” vertex of valence 2. This case is
analogous to the previous one.
d) A “—" vertex of valence one, joined by an edge to a valence three “o” vertex

(13 2

and an edge joining the “o” vertex to itself. The “—” vertex represents a one-holed
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sphere. It has a single boundary component which is a closed saddle connection.
The cylinder has two boundary components of equal lengths. One has two saddle
connections of length 1 (after normalization) the other component has a single saddle
connection of length 2. So, the only possible configuration is obtained by gluing the
two saddle connections of length 1 together (creating a “half-pillowcase”) and gluing
the other one with the boundary of the “—"" component. The boundary singularity of
the “—"" component has an angle of (k 4+ 2 — 1) (equivalently, has order k) for some
kelky,....,k}.

e) A valence four “o” vertex with two edges joining the vertex to itself. The cylinder
has two boundary components, each of them is composed of two saddle connections.
All the saddle connections have the same length. If we glue a saddle connection with
one of the other connected component of the boundary, we get a flat torus, which
has trivial holonomy and genus greater than zero. So, we have to glue each saddle
connection with the other saddle connection of its boundary component. That means
that we get a (twisted) “pillowcase” and the surface belongs to (-1, —1,—1, —1).

In each of the first four cases, the surface necessary has a singularity of order at
least one. So, they cannot appear in @(—1,—1, —1, —1), which means that the fifth
case is the only possibility in that stratum. [

3. Configurations for hyperelliptic connected components

In this section, we describe the configurations of homologous saddle connections in
a hyperelliptic connected component. We first reformulate Lanneau’s description of
such components, see [LL1].

Theorem (E. Lanneau). The hyperelliptic connected components are given by the
following list:

(1) The subset of surfaces in Q(ky,k1,kz,k2), that are a double covering of a
surface in Q(ky,ko,—1%) ramified over s poles. Here ki and ko are odd,
ki>—-1landk, > 1, andk; + ky — 5 = —4.

(2) The subset of surfaces in Q(k,ky,2k, + 2), that are a double covering of a
surface in Q(k1, ka2, —1°) ramified over s poles and over the singularity of order
ks. Here ky isoddand ks iseven, k1 > —1land k>, > 0, andk, +ky —s = —4.
(3) The subset of surfaces in @2k, + 2,2k, + 2), that are a double covering of

a surface in Q(ky, ko, —1%) ramified over all the singularities. Here k1 and k,
areeven, ki > Oandk, > 0, and k{ + ky, — s = —4.

Taking a double covering of the configurations arising on CPP*, one can deduce
configurations for hyperelliptic components. This leads to the following theorem:
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Theorem 3.1. In the notations of the classification theorem above, the admissible
configurations of homologous saddle connections for hyperelliptic connected com-
ponents are given by Tables 2, 3, 4 and 5. No other configuration can appear.

Remark 3.2. Integer parameters k1, k, > —1 in Tables 2, 3, 4 are allowed to take
values —1 and O as soon as this does not contradict explicit restrictions. In Table 5, we
list several additional configurations which appear only when at least one of k1, k> is
equal to zero.

Remark 3.3. In the description of configurations for the hyperelliptic connected
component QP (ky, kq, ky, ko) with ky = ky, the notation k; , k; (resp. k;, k) still
represents the orders of a pair of singularities that are interchanged by the hyperel-
liptic involution. For example in a generic surface in the hyperelliptic component
Q@"P(k, k. k. k), for k > 1, the second line of Table 3 means that, between any pair
of singularities that are interchanged by the hyperelliptic involution on S, there exists
a saddle connection with no other saddle connections homologous to it. Butif y is a
saddle connection between two singularities that are not interchanged by the involu-
tion 7, then (y) is a saddle connection homologous to ¥ (see below), and which is
different from y.

Proof. Let @™P be a hyperelliptic connected component as in the list of the previous
theorem and @ = @(ky, k2, —17) the corresponding stratum on CIP°, !, The projection
p: 8 > §/t =S, where § € @™ and 7 is the corresponding hyperelliptic
involution, induces a covering from @"P to @. This is not necessarily a one-to-one
map because there might be a choice of the ramification points on CP'. But if we
fix the ramification points, there is a locally one-to-one correspondence.

Recall that theorem of Masur and Zorich cited after Definition 1.1 says that two
saddle connections are homologous if and only if the ratio of their length is constant
under any small perturbation of the surface inside the ambient stratum. Therefore,
two saddle connections in S € @"P are homologous if and only if the corresponding
saddle connections in S are homologous. Hence the image under p of a maximal
collection 7 of homologous saddle connections on S is a collection y of homologous
saddle connections on S. Note that y 1s not necessary maximal since the preimage
of a pole by p is a marked point on S and we do not consider saddle connections
starting from a marked point. However, we can deduce all configurations for @"YP
from the list of configurations for @.

We give details for a few configurations, the other ones are similar and the proofs
are left to the reader.

First line of Table 2: the configuration for @ = Q(ky, k2, —1%) corresponds to
a single saddle connection y on a surface S that joins a singularity P; of degree
k1 to the distinct singularity P of degree k5. The double covering is ramified over
P, but not over Py. Therefore, the preimage of y in S is a pair {71, >} of saddle
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Table 2. Configurations for QMr (k1,k1,2k2 4+ 2).

@k, ka2, —1%) (CPY

QP (ky, k1, 2ka + 2)

k1 odd
k~ even

ki+1 O@

ko +1

kr+1
k1, k)
ks +1
e, =174}
ki=a1 +an a) a1 odd, ar even b) aq even, o odd
aj,az =1
a {2 a1 an
p +2 “UA
{k2,—1 z+a1+2} {—14212} @ (D) a»
B2 o |eka+2d 2
a]
ky=a1+ax |a) a1, as odd b) ai,az even
ap,az =1
9 g2 “ ﬁ ai a2
) _1k1+a1+2} {_1a2+2} {kl,kl} az Gk QOG 1]
3 i \J @ 1:%1 4%}
k1,ka =21
bk
1%, w—2
{_1k1+2} {_1k2+2}
k2 0 ko 0
© —.
{ky, =157} 0 0
{he, kv
k1 0 ky 0
)
{2k +2}

CMH
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Table 3. Configurations for @™P(ky, ky, ko, ko).
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Ak, kp, —1%) (CPY)

Q@™ (ky, ki, k2, k2)

ki1,k> odd
(k1,k2) #(=1,-1)

5o

{—1°}
k; £ -1
A
_1s—1 .
-k ey ks
ki =ai +a2|a) a1 odd, az even b) a1 even, az odd
ap,ar > 1
o+—"o p
A k. k;
{k;,—1% ta1+2} f—122t2y MY ;1
ki,kr > 1
k1 0 0 k
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Table 4. Configurations for @WP(2ky + 2, 2k, + 2).
k
Q(ky, ky, —15) (CPY) @P(2ky +2,2k2 +2) 1 even
ki1+1 e@
{—=17}
ki +1
ki +1 eo (2k; +
ki +1
{kj:_lsil}
ki =a; +az| a) al.,dan odd b) aj,dapeven
ay,az =1
. - “ an al =
@'@—@ ® () a 0
ey, 1% TRy §17EERY oy -2
a ] {2k; + 2} a
1
kl,k2 >1
k) 0 0 ko
Ot KO
{_1k1+2} {_1k2+2}
ki =1
k; 0 ki 0
o= @ {2k; + 2} 0
{kj: _15—2} ¢ J
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connections of the same lengths that join each preimage of P to the preimage of
P>. The boundary of compactification of S\{J1,y>} admits only one connected
component that consists of four saddle connections. The angles of the boundary
singularities corresponding to the preimages of P are both (k1 +2)m, and the angles
of the other boundary singularities are (k; + 2)m since {y1, y»} are interchanged by
the hyperelliptic involution.

Fourth line of Table 2: the configuration for @ = @(k1, k2, —1%) corresponds to
a single closed saddle connection y on a flat surface .S that separates the surface into
two parts Sy and S>. Each §; contains some ramification points, so the preimage
of y separates S into two parts S; and S, that are double covers of S; and S,.
One of the S; has an interior singularity of order 2k, + 2, while the other one does
not have interior singularities. The description from Masur and Zorich of possible
eraphs of connected components (see Figure 2) implies that S and S> cannot have
the same holonomy. Let S5 be the component with trivial holonomy, and choose
@ a square root of the quadratic differential that defines its flat structure. If S> has
two boundary components, each consisting of a single saddle connection, then the
corresponding boundary singularities must be of even order a;. If S, has a single
boundary component, then integrating « along that boundary must give zero (o 1s
closed), which is only possible if the order a, of the boundary singularities are odd.
Applying Lemma 3.4 below, we see that S, does not have interior singularity. Hence,
S has an interior singularity of order 2k +2. The order of the boundary singularities
of Sy are both ay = ki — az, which is of parity opposite (o the one of a. Applying
again Lemma 3.4, we get the number of boundary components of Sy.

Last line of Table 2: the configuration for @ = Q(kq,k,,—1%) corresponds to a
pair of saddle connections on a surface S € @ that separate the surface into a cylinder
C and a one-holed sphere S;. The double cover S 1 of S 1s connected, and applying
Lemma 3.4 we see that it has two boundary components. The double cover C of the
cylinder €' admits no ramification points. So a priori, there are two possibilities: C
is either a cylinder of the same length and a width twice bigger than the width of C,
or it is a pair of copies of C. Here, the first possibility is not realizable otherwise the
double covering § — S would be necessary ramified over k;. Finally we get § by
gluing a boundary component of each cylinder to each boundary component of S1,
and gluing together the remaining boundary components of the cylinders.

Note that the preimage of the saddle connection joining a pair of poles on S is a
regular closed geodesic in S, and hence in our convention, we do not consider such
a saddle connection in the collection of homologous saddle connections on S,

When at least one of k1 or k» equals zero, there is a marked point on CP! thatis a
ramification point of the double covering. Hence we have to start froma configuration
of saddle connections on CP! that might have marked points as end points:

« If a maximal collection of homologous saddle connection on CP! does not in-
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tersect a marked point, then the collection has already been described in Theo-
rem 2.2, and hence, the corresponding configuration in @™P is already presented
in Tables 2 and 4.

» If a non-closed saddle connection in a collection admits a marked point as
end point, then this saddle connection is simple since we can move freely that
marked point. Hence the corresponding configuration in @™P is already written
in Tables 2 and 4.

* If a closed saddle connection admits a marked point as end point, then it is a
closed geodesic. This corresponds to a new configuration on CP! and the cor-
responding configuration in @"P is described in Table 5. The proof is analogous
to the other cases.

Table 5. Additional configurations which appears when at least one of k; or k» equals 0.

Q(k;, 0, —1%) Qe
ki > 1, k; odd QW = @(k; ki, 2)

ki 00 0
S¥amn =@
{_1.5'—2} 0

k; = 1, k; even

This concludes the proof of Theorem 3.1. [

Lemma3.4. Ler S; be aflat surface whose boundary consists of a single closed saddle
connection and let a > 0 be the order of the corresponding boundary singularity.
Let §l be a connected ramified double cover of the interior of S; and let (El, e lgl)
be the orders of the interior singularities. The sum Y _; k; is even and:

e If % + a is even, then the compactification of Si has two boundary compo-
nents, each of them consists of a single saddle connection, with corresponding
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boundary singularity of order a.

o If % + a is odd, then the compactification of S; has a single boundary
component which consists of a pair of saddle connections of equal lengths, with
corresponding boundary singularities of order a.

Proof. By construction, the boundary of the compactification of S; necessary consists
of two saddle connections of equal lengths. It has one or two connected components.
Now we claim that _
Zki +2a =2r mod4
1

where r is the number of connected components of the boundary of S;. This equality
(that already appears in [MZ]) clearly implies the lemma. To prove the claim, we
consider as in Lemma 2.5 the surface X of genus gy obtained by gluing S; and a
copy of itself with opposite orientation along their boundaries. The orders of the
singularities of X are tky,.. . ki ki, ... k;,2a,2a}, so we get

4gy —4=2Y ki+4a=4Qg +r—1)—4

1

and therefore ~
Y ki+2a=4g —4+2r =2r mod 4. O
i

Given a concrete flat surface, we do not necessary see at once whether it belongs
or not to a hyperelliptic connected component. Indeed, there exists hyperelliptic flat
surfaces that are not in a hyperelliptic connected component. As a direct corollary of
Theorem 3.1, we have the following quick test.

Corollary 3.5. Let S be a flat surface with non-trivial holonomy and let y be a
collection of homologous saddle connections on S. If one of the following property
holds, then the surface S does not belong to a hyperelliptic connected component.

* S\y admits three connected components and neither of them is a cylinder.

» S\y admits four connected components or more.

4. Configurations for non-hyperelliptic connected components

Following [MZ], given a fixed stratum, one can get a list of all realizable configu-
rations of homologous saddle connections. Nevertheless it is not clear which con-
figuration realizes in which component. In the previous section we have described
configurations for hyperelliptic components.
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In the section we show that any configuration realizable for a stratum is realizable
in its non-hyperelliptic connected component, provided the genus g is sufficiently
large.

We will use the following theorem which is a reformulation of the theorem of
Kontsevich—Zorich and the theorem of Lanneau cited in Section 1.1.

Theorem (M. Kontsevich, A. Zorich; E. Lanneau). The following strata consists
entirely of hyperelliptic surfaces and are connected.

o H(0), H(0,0), H(1, 1) and H(2) in the moduli spaces of Abelian differentials.
e Q(—1,-1,1,1),Q(-—1,-1,2), Q(1,1,1,1), Q(1,1,2) and @Q(2, 2) in the mod-

uli spaces of quadratic differentials.

Any other stratum that contains a hyperelliptic connected component admits at least
one other connected component. Each of these other components contains a subset
of full measure of flat surfaces that do not admit any isometric involution.

Lemma 4.1. Let Q be a non-connected stratum that contains a hyperelliptic con-
nected component. If the set of order of singularities defining @ contains {k, k}, for
some k > 1, then there exists a non-hyperelliptic flat surface in @ having a simple
saddle connection joining two different singularities of the same order k.

Here we call a saddle connection “simple” when there are no other saddle con-
nections homologous to it.

Proof. According to Masur and Smillie [MS], any stratum is nonempty except the
following four exceptions: & (@), @(1,—1), @(3,1) and &(4).

By Masur and Zorich [MZ] (see also [EMZ]), if S € Q(ky + k3, k3,...,k;), then
there is a continuous path (S¢);e[o,1] in the moduli space of quadratic differentials,
such that So = S and S; is in Q(ky, k2, k3,...,k,) for t > 0, and such that the
smallest saddle connection on S, for 1 > 0 is simple and joins a singularity of order
k1 to a singularity of order k,. We say that we “break up” the singularity of order
k1 + k5 into two singularities of order k, and k.

We first consider the stratum @ = Q(ky, k1, k2, k2). By assumption, @ is non-
connected, so, either the genus is greater than 3, or k1 = 3 and k, = —1. Hence the
stratum @ (2k 1 +k», k,) is nonempty. Now, we start from a surface Sy in that stratum,
and break up the singularity P of order 2k, 4 k; into two singularities P, and P;
of orders 2k, and k, respectively (see Figure 5). We get a surface S; with a short
vertical saddle connection y; between Py and P>. Since the “singularity breaking
up” procedure 1s continuous, there are no other short saddle connections on S1. Then,
we break up the singularity P; of order 2k into a pair of singularities P; ; and P>
of orders k1. We get by construction a surface S, in the stratum @ with a simple
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Figure 5. Construction of a simple saddle connection in a non-hyperelliptic surface.

saddle connection y» between Pq 7 and P », and of length very small compared to
the length of y;.

The fact that the “singularity breaking up” procedure is continuous implies that
there persists a saddle connection y; between P> and one of the Py ; (see Figure 5). By
construction, we can assume there are no other saddle connections of length «/(y1),
where /(y{) denotes the length of y{ and « € {%, 1,2}. Hence, y{ is simple by
theorem of Masur and Zorich cited after Definition 1.1. According to Theorem 3.1,
this cannot exist in the hyperelliptic connected component since the corresponding
configuration 1s not present in Table 3. Thus S belongs to the non-hyperelliptic
connected component and we can assume, after a slight perturbation, than S; is
not hyperelliptic.  Since by construction, the saddle connection y, is simple and
joins two singularities of order & = k; > 1, the lemma is proven for the stratum
Qky, ki, ka, k).

The proofs for @(kq, k1, 2k, + 2) and for @2k + 2,2k, 4 2) are analogous:
note that these case do not occur for the genera 1 or 2, because all corresponding
strata are connected. Therefore the genus is greater than or equal to 3 and the stratum
@2k, + 2k, + 2) is nonempty. O

Theorem 4.2. Let @ be a stratum of meromorphic quadratic differentials with at
most simple poles on a Riemann surface of genus g > 5. If Q admits a hyperellip-
tic connected component, then @ is non-connected and any configuration for @ is
realized for a surface in the non-hyperelliptic connected component of Q.

Proof. The fact that @ is non-connected follows directly from the Theorem of Lan-
neau. Let S be a flat surface in the hyperelliptic component of @ and let y =
{y1...., ¥} be a maximal collection of homologous saddle connections. The hy-
perelliptic involution  maps y to itself and hence, induces an involution on the set
of connected components of S\y. Recall that the map S — S/t corresponds to a
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covering from the hyperelliptic connected component to a stratum of quadratic dif-
ferentials on CP!. Let us denote by p the double cover that maps x € S to (x
mod ) € S/t. The collection p(y) = p(y1 U--- U y;) is a collection of homo-
logous saddle connections on p(S) = S/7. Let Sy be a connected component of
S\y. By definition, Sy and S := 7(Sp) are isometric and are projected to the same
component of p(S)\ p(y). This is still true in a neighborhood of S in the ambient
stratum. Hence Sy and S must keep being isometric if we continuously deform S.
If they were two different components of S\ v, then one could deform Sy outside a
neighborhood of its boundary and reconstruct a new flat surface S’ close to S, contra-
dicting the previous assertion. Therefore, if S is in a hyperelliptic component, then
7 must induce an isometric and orientation preserving involution on each connected
component of S\y.

Using the formula for the genus of a compound surface proved in the appendix and
the list of configurations for hyperelliptic connected components given in the previous
section, we derive the following fact: if S has genus g > 5 and if y is a maximal
collection of ﬁomologous saddle connections, then at least one of the following three
propositions is true. We first specify two conventions. In the next statements, we
indicate each case by the number of the table and the line. For instance, case 3.2
corresponds to the second line of Table 3. When a case appears in two different
statements, we mean that there is always at least one of the two statements which is
true for this case.

a) S\y admits a connected component Sy of genus gy > 3, that has a single
boundary component and whose corresponding vertex in the graph T'(S, y) is
of valence 2. This corresponds to the cases 2.2, 2.4b, 2.7, 3.2, 3.3b, 3.4, 4.5,
5.1,and 2.5, 2.6, 4.3.

b) S'\y admits a connected component Sy of genus gy > 2, that has exactly two
boundary components and whose corresponding vertex in the graph I'(S, y) is
of valence 2. This corresponds to the cases 2.3, 2.4a, 2.8, 3.3a,3.5,4.2,44,5.2,
and 2.5, 2.6, 4.3,

¢) S\y is connected and the corresponding vertex in the graph I'(.S, y) is of va-
lence 4. This corresponds to the cases 2.1, 3.1, and 4.1.

Remark that the only case that is not listed previously is case 5.3, but it corresponds
to the genus 2. The proof now follows from Lemmas 4.3, 4.4, 4.5 to situations a), b),
¢) correspondingly. O

Lemma 4.3. Let S be a flat surface in a hyperelliptic connected component and let
vy be a maximal collection of homologous saddle connections. We assume that S\y
admits a connected component Sy of genus go > 3, whose corresponding vertex in
the graph T'(S, y) is of valence 2, and such that Sy has a single boundary component.

Then there exists (S', y') that has the same configuration as (S, y), with S’ in the
complementary component of the same stratum.
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Proof. The boundary components of Sy consists of two saddle connections of the
same length and the corresponding boundary singularities have the same orders & > 1.
Identifying together these two boundary saddle connections, we get a hyperelliptic
surface So. If we continuously deform this surface, it keeps being hyperelliptic since
we can perform the reverse surgery and get a continuous deformation of S. Hence,
S belongs to a hyperelliptic component, and the hyperelliptic involution interchange
two singularities of order k& — 1.

The genus of Sy is greater than 3, so the corresponding stratum admits an other
connected component.  Now we start from a closed flat surface X in this other
connected component. According to Lemma 4.1, we can choose X such that it admits
a simple saddle connection between the two singularities of order £ — 1. Now we
cut X along that saddle connection and we get a surface .5 that have, after rescaling,
the same boundary as Sy. By construction, S; admits no interior saddle connections
homologous to one of its boundary saddle connections. So, we can reconstruct a pair
(S’,y’) such that ¥’ has the same configuration as y in S

The surface S; admits a nontrivial isometric involution if and only if X shares
this property. So, we can choose X in such a way it admits no nontrivial isometric
involutions, and therefore the surface S’ is non-hyperelliptic.

This argument also works when So is in the stratum Q(3,3,—1,—1) (heregp =2
and k& = 4). In any other case for go < 2, it is not possible to replace Sy by a surface
S1 with no involutions. ]

Lemma 4.4. Let S be a flat surface in a hyperelliptic connected component and
let y be a maximal collection of homologous saddle connections. We assume that
S\y admits a connected component Sy of genus go > 2, that has two boundary
components, and whose corresponding vertex in the graph I' (S, v) is of valence 2.

Then there exists (S', y') that has the same configuration as (S, y), with S in the
complementary component of the same stratum.

Proof. Each boundary component of Sy consists of one saddle connection and the
corresponding boundary singularities have the same orders & > 1. Now we start
from a closed flat surface X with the same holonomy as Sp and whose singularities
consists of the interior singularities of Sy and two singularities Py and P> of order
k — 2. We can always choose X such that it admits a saddle connection 7 between
Py and Ps.

Now we construct a pair of holes by removing a parallelogram as in Figure 6
and gluing together the two long sides. Note that the holes can be chosen arbitrarily
small, and therefore, the resulting surface with boundary does not have any interior
saddle connection homologous to one of its boundary components. We denote by
51 this surface, and up to rescaling, we can assume that So and S have 1sometric
boundaries. Hence replacing So by S in the decomposition of S, we get a new pair
(S’,y’) that have the same configuration as (S, ).
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Figure 6. Construction of a pair of holes.

We denote by [ the saddle connection joining the two boundary singularities
and corresponding to the two sides of the parallelogram in the previous surgery (see
Figure 6). For each hole, the separatrices parallel to / are naturally ordered by turning
counterclockwise around the boundary singularity (starting from the hole). For this
order, the separatrix corresponding to [ is the second one.

We now assume that S; admits a nontrivial 1sometric (orientation preserving)
involution 7. Then this involution interchanges the two boundary components of
the surface. This involution preserves the previous order, hence it fixes globally the
saddle connection /. Then we can perform the reverse surgery as the one described
previously and we get a closed surface that admits a nontrivial involution. Hence if X
belongs to a stratum that does not consist entirely of hyperelliptic flat surfaces, then
we can choose X such that S’ is not in a hyperelliptic connected component.

The hypothesis on the genus, the theorem of Kontsevich-Zorich and the theorem
of Lanneau imply that this argument works except when X belongs to A (1, 1),
Q(2,1,1),Q(1,1,1,1),0r Q(2, 2).

We remark that if X € @(2,2), then So must have nontrivial linear holonomy
and no miterior singularities. According to the list of configurations for hyperelliptic
connected components given in section 3, this cannot happen.

We exhibit in Figure 7 three explicit surfaces with boundary that corresponds to
the three cases left. We represent these three surfaces as having a one-cylinder de-
composition and by describing the identifications on the boundary of that cylinder.
The length parameters can be chosen freely under the obvious condition that the sum
of the lengths corresponding to the top of the cylinder must be equal to the sum of the
lengths corresponding to the bottom of the cylinder. Bold lines represents the bound-
ary of the flat surface. Now we remark that a nontrivial isometric involution must
preserve the interior of the cylinder, and must exchange the boundary components.
This induces some additional relations on the length parameters. Therefore, we can
choose them such that there are no nontrivial 1sometric involutions. n

Lemma 4.5. Let S be a flat surface of genus g = 3 with nontrivial linear holonomy
that belongs to a hyperelliptic connected component and let y = {y1, 2} be a
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Figure 7. Surfaces with two boundary components and no involutions in low genus.

maximal collection of homologous saddle connections on S. If S\y is connected,
then there exists (S’, ") that has the same configuration as (S, y), with S’ in the
complementary component of the same stratum.

Proof. Since S\y is connected, the graph [' (S, ¥ ) contains a single vertex, and it has
valence four. According to Theorem 3.1, two different cases appear:

a) The surface S\ y has one boundary component. In this case, k; is odd and k»
is even, we start from a surface in € (k1 + k2 + 1) and perform a local surgery in a
neighborhood of the singularity as described in Figure 8 (see also [MZ], Section 5).
We get a surface and a pair of small saddle connections of length § that have the
same configuration as y. The stratum #(k; 4+ k5 + 1) admits non-hyperelliptic
components and the same argument as in the previous lemmas works: if we start
from a generic surface in a non-hyperelliptic component, then the resulting surface
after surgery does not have any nontrivial involution.

Figure 8. Breaking up a zero in three ones.

b) The surface S\ y has two boundary components, each of them consists of a
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pair of saddle connections with boundary singularities of order k; + 1 and k5 + 1.
We construct explicit surfaces with the same configuration as y, but that have no
nontrivial involutions. Let 2n = k7 + k> + 2 and we start from a surface Sy of
genus n in #{(n — 1,n — 1), that have a one-cylinder decomposition and such as
identification on the boundary of that cylinder is given by the permutation

1 2 co. 2R
2n 2n—1 ... 1
when » i1s even, and otherwise by the permutation

1 2 ... n—1 n n+1 n4+2 ... 2n—1 2n
n—1 n—-2 ... | n 2n—1 2n—-2 ... n+1 2n

We assume that k7 and &, are odd and we perform a surgery on Sy to get a surface
S1 with boundary as pictured on Figure 9. The surface S; admits two boundary
components that consist of two saddle connections each and which are represented by
the bold segments. Each symbol o, e, 0, m represents a different boundary singularity.
Itis easy to check that the boundary angles corresponding to m and o are both (k; +2)7
and that the angles corresponding to e and o are (k, + 2). Hence after suitable
identifications of the boundary of S;, we get a surface S’ and a pair of homologous
saddle connections Y’ that have the same configuration as (S, ¥). However, S’ does
not admit any nontrivial involution if the length parameters are chosen generically.
Note that this construction does not work when » = 2, but according to section 3,
and since k; and &, are odd, we have n = g, which is greater than or equal to 3 by
assumption.

The case k; and k5 even is analogous and left to the reader (note that in this case,
g = n + 1, and the construction works also for n = 2). n

Appendix. Computation of the genus in terms of a configuration

Here we improve Lemma 2.4 and give the relation between the genus of a surface
and the genera of the connected components of S\y, where y is a collection of
homologous saddle connections.

We first remark that this relation depends not only on the graph of connected com-
ponents, but also on the permutation on each of its vertices (i.e. on the ribbon graph).
Indeed, let us consider a pair of homologous saddle connections that decompose the
surface into two connected components S; and S». Then either both .S; and S> have
only one boundary component, or at least one of them has two boundary components.
In the first case, S is the connected sum of §1 and 52, s0 g = g1 + g2, while in the
second case,onchas g = g1 + g2 + 1.
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Figure 9. Valence four component with no involutions.

Definition 1. Let (S, y) be a flat surface with a collection of homologous saddle
connections. The pure ribbon graph associated to (S, y} is the 2-dimensional topo-
logical manifold obtained from the ribbon graph by forgetting the graph I'(S, y), as
in Figure 10.

Proposition 2. Let y; be the Euler characteristic of I'(S, y), let y2 (resp. n) be the
Euler characteristic (resp. the number of connected components) of the pure ribbon
graph associated to the configuration.

» Ifthe pure ribbon graph has only one connected component and does not embed
into the plane (see Figure 11), then

g = (Zgi) + 1
i
» In any other case,

g = (Zgi) +2—n) -G —1).
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Ribbon graph Pure ribbon graph

Figure 10. Pure ribbon graph.

Figure 11. Example of a ribbon graph that does not embed into R2.

Remark 3. Simply connected components of the pure ribbon graph do not contribute
to the term (n — yx»), since the Euler characteristic of a disc is 1.
Note also that in the first case, we have y1 = —1 and y» = —1, and therefore

(Cig)+1# &)+ a—n— G- 1.

Proof. Here we do not assume that the collection y is necessary maximal. When
['(S, y) has a single vertex, then we prove the proposition using direct computation
and the description of the boundary components corresponding (o each possible ribbon
graph. We refer to [MZ] for this description. Then our goal is to reduce ourselves
to that case by removing successively from the collection y = {y1,..., yx} some y;
whose corresponding edges joins a vertex (o a distinct one.

We define a new graph G (S, v), which is a deformation retract of the pure ribbon
graph: the vertices of G(S, y) are the boundary components of each S;, while the
edges correspond to the saddle connections in y (see Figure 12). For cach vertex,
there is a cyclic order on the set of edges adjacent to the vertex consistent with the
orientation of the plane. If the initial pure ribbon graph does not embed into the
plane, then it is also the case for G(S, v). By construction, the Euler characteristic
of G(S, y) is the same as the pure ribbon graph associated to (S, y), and is easier to
compute.
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Figure 12. Removing successively some elements of a collection (y1, v2, ¥3).

g

Let us assume that I'(S, y) contains at least two vertices. Choose a saddle con-
nection representing an edge joining two distinct vertices of I'(S, ), and up to re-
enumeration, we can assume that this saddle connection is y;. Let us study the
resulting configuration of y* = p\{y;}. The saddle connection y; is on the boundary
of two surfaces S; and S». Then the connected components of S\’ are the same as
the connected component of .S\ y except that the surfaces S; and S» are now glued
along y1, and hence define a single surface S1,>. The genus of 51,2 (after gluing disks
on its boundary) is g1 + g2.
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The graph G(S, y) is obtained from G (S, v) by shrinking an edge that joins two
different vertices, so these two graphs have the same Euler characteristic ;.

Further, if y; was in a boundary component of S (resp. 52 ) defined by the ordered
collection (y1. ¥iy, ...V} (xesp. (¥1,¥j,----.¥j,)). Then the cyclic order in the
corresponding boundary component of S > is defined by (viy,. ... Vi, Vi1 o --» Ve )
Therefore G(S, y') is obtained from G(S, y) by shrinking the edge corresponding to
y1 and removing an isolated vertex that might appear (see Figure 12). It is clear that
the difference (y2 —n) between the Euler characteristic of G(S, y) and its number of
connected component 1s constant under this procedure. One can also remark that if
G (S, y) is connected and does not embed into the plane (case 1 of the proposition),
then this is also true for G(S, y').

Forgetting successively these y; will lead to the case when I'(S, v) has a single
vertex. At each steps of the removing procedure, the numbers y; and y, — n do not
change, and the sum of the genera associated to the vertices does not change either.
This concludes the proof. H
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