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Constraints on exact Lagrangians in cotangent bundles
of manifolds fibered over the circle

Mihai Damian

Abstract. We give topological obstructions to the existence of a closed exact Lagrangian
submanifold L T M, where M is the total space of a fibration over the circle. For instance,
we show that 1.L/ cannot be the free product of two non-trivial groups and that the difference
between the number of generators and the number of relations in a finite presentation of 1.L/
is less than two.

Mathematics Subject Classification 2000). 57R17, 57R58, 57R70, 53D12.
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1. Introduction

Let Mn be a closed connected manifold and T M its cotangent bundle endowed
with the standard symplectic structure M D d M, where M is the Liouville form

M D Pi pi dqi Let Ln T M be an exact Lagrangian submanifold, i.e. a

submanifold such that MjL is an exact 1-form.
The only known examples of exact Lagrangian submanifolds are the graphs of

functions f W M R

Lf WD f.q; dfq/ j q 2 Mg
and their images by Hamiltonian vector flows. The question of the existence of other
examples was first evoked by V. I. Arnold in his survey “First steps in symplectic
topology” [1]. It is far from being solved. A positive answer was given by R. Hind
in the case L D M D S2. The other related results which were proved up to
now are topological obstructions to the existence of exact Lagrangian embeddings

L T M. We summarize them in the statement below:

Theorem. Let M be a closed manifold and L T M an exact Lagrangian
embedding of a closed manifold L. Denote by p the projection of L on the base space

M. Then we have:
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a) If L and M are orientable, then L/ D deg2 p/ M/. If L and M are not
orientable the same equality is valid modulo 4.

b) The index OE 1.M/ W p 1.L// is finite.

c) If M is simply connected then L can not be aspherical i.e. Eilenberg–Mac
Lane).

d) If M and L are spin and L has a vanishing Maslov class, then H L; K/
H M;K/, for any field K with char.K/ ¤ 2.

e) IfM is simply connected then p W H2.M/ H2.L/ is injective and the index
OE 2.M/ W p 2.L// is finite.

The statement a) was proved by M. Audin in [2], b) was proved by F. Lalonde
and J.-C. Sikorav in [12] and c) is a result of C. Viterbo [24] see also [23]). More
recently, d) was proved independently by K. Fukaya, P. Seidel and I. Smith [9], [10]
and D. Nadler [15]. ForM D Sn and L simply connected this was proved previously
by P. Seidel [20] and by L. Buhovsky [3].

The assertion e) was proved by A. Ritter [19]. The author uses some techniques
coming from the Novikov homology theory which we will also do below.

The aim of this paper is to provide other obstructions in the case where M is a

total space of a fibration over the circle. Let us state our main results:

Theorem 1.1. LetMn 3 be a closed manifold which is the total space of a fibration
over S1 and let L T M be an exact Lagrangian embedding of a closed manifold

L. Then we have:

a) Let hg1; g2;: : : ; gp j r1; r2; : : : ;rqi be an arbitrary presentation of the funda¬

mental group 1.L/. Then p q 1.

b) The fundamental group 1.L/ is not isomorphic to the free product G1 G2 of
two non-trivial finitely presented) groups.

Here are some examples of non-embeddingstatements whichcan be inferred from
our result:

Corollary 1.2. Let P, Q, L be closed manifolds and suppose that 1.P / is finite.

a) Suppose that L/ ¤ 0. Then there is noexact LagrangianembeddingL P
T Q S1/.

In particular, let †g be a not necessary orientable) surface of genus g 2.
Then there is no exact Lagrangianembedding of†g P into T Q S1/. More
generally, for surfaces †gi as above there is no exact Lagrangian embedding

†g1 †g2 †gk P T Q S1/:
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b) Let Ln 4 be the connected sum L1#L2 of two closed manifolds. Then there is
no exact Lagrangian embedding L P T Q S1/ unless one of the Li
is a simply connected Z=2-homology sphere.

c) Suppose that there is an exact Lagrangian embedding

L T l T T m Q/;

where Tk is the k-dimensional torus andm > l. Then L satisfies the properties
a) and b) of Theorem 1.1.

1.1. Idea of the proof. Let f W M S1 be a fibration. The closed 1-form

D f d has no zeroes. Let L be an exact embedding into T M. Consider
the Lagrangian isotopy

Lt D L C t :
It follows that Lt \L D ; for t large enough. The Lagrangian manifolds Lt are not
exact but they satisfy

Mj 2.T M;Lt / D 0

just like an exact Lagrangian manifold. Under this hypothesis one can define a

Floer-type complex C L; Lt /, which is spanned by the intersection points L \Lt
Therefore, this complex vanishes for t 0.

It turns out that the homology of this complex is isomorphic to the Novikov
homology H L;p u/, where u 2 H1.M; Z/ is the cohomology class of and

pW L M is the projection. In particular it is independent of t It follows:

Theorem 1.3. H L; p u/ D 0.

In order to prove Theorem 1.1 one has to argue in the following way: suppose that

Theorem 1.1 a) is false. Then one can show that the Novikov homology H L; v/
does not vanish for any v 2 H1.L; R/, contradicting thus Theorem 1.3. A similar
argument works for the proof of Theorem 1.1 b).

The paper is organized as follows. In Section 2 we recall the definition and the
main properties of Novikov homology. We prove the non-vanishing results needed

in the above argument. In Section 3 we define the Floer complex C L;Lt/. Finally,
in Section 4 we establish Theorem 1.3 and prove Theorem 1.1 and Corollary 1.2.

2. Novikov theory

2.1. Definition of Novikov homology. Let u 2 H1.LIR/. Denote by ƒ the ring
Z=2 OE 1.L/ and by ƒO the ring of formal series Z=2 OEOE 1.L/ Consider a CW-
decomposition of L which we lift to the universal cover LQ We get a ƒ-free complex
C LQ/ spanned by fixed lifts of) the cells of the triangulation of L.
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We define now the completed ring ƒu:

ƒu WD ° D P nigi 2 ƒO j gi 2 1.L/; ni 2 Z=2; u.gi/!C1 :

The convergence toC1means here that for all A > 0, u.gi/ < A only for a finite
number of gi which appear with a non-zero coefficient in the sum

Remark 2.1. Let D 1 C P nigi 2 ƒu where u.gi/ > 0 for all i Then is
invertible in ƒu. Indeed, if we denote by 0 D P nigi then it is easy to check that

Pk 0. 0/k is an element of ƒu and it is obvious that it is the inverse of

Definition. Let C L;u/ be the ƒu-free complex ƒu ƒ C LQ/. The Novikov
homology H L;u/ is the homology of the complex C L; u/.

Remark 2.2. We may define in a similar way the Novikov homology with Z coefficients.

As we want to compare it to Floer homology and the latter is defined for Z=2
coefficients we used Z=2 in the definitions above.

Now we prove:

Proposition 2.3. Let L and u be as above.

a) Let hg1;g2; :: : ;gp j r1; r2; : : : ; rqi be a presentation of the fundamental group

1.L/ which satisfies p q 2. Then, if u ¤ 0 we have H1.L; u/ ¤ 0.

b) Suppose that 1.L/ D G1 G2, none of the Gi being trivial. Then, if u ¤ 0
we have H1.L; u/ ¤ 0.

Proof. The presentation of 1.L/ yields a CW decomposition of L with one single
zero-cell, p one-cells and q two-cells. Lifting it to the universal cover we see that the
complex C LQ / ends like follows:

ƒq i2
ƒp i1 ƒ 0:

If feigiD1;:::;p is the basis of C1 D ƒp given by the 1-cells and feg is the basis of
C0 D ƒ given by the single 0-cell, it is easy to see that the differential i1 satisfies

i1.ei/ D .1 gi /e.

a) Since u ¤ 0, u.gi/ ¤ 0 for some i we have that 1 gi is invertible in ƒu
i C if u.gi/ > 0, resp. gi.1 C g 1its inverse is 1 C gi C g2 i C g 2

i C / if
u.gi/ < 0). In particular in the tensored complex

ƒq
u

i2 ƒp
u

i1
ƒu 0: 1)

the dimension of Ker.i1/ is p 1. Since p 1 > q, it follows that Im.i2/ ¤ Ker.i1/,
so H1.L;u/ ¤ 0 as claimed.
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b) Let ffj gjD1:::;q be the basis of ƒq defined by the two-cells corresponding to
the relations r1;r2; : : : ; rq. The matrix of i2 with respect to ffj g and fei g is given
by the Fox derivatives @rj=@gi [8]. These derivatives are defined by the following
formulas:

@gi
@gi D 1;

@g 1
i

@gi D g 1
i ;

@.rr0/
@gi D

@r
@gi C r

@r0

@gi
;

for all i D 1;: : : ; p,

where r and r0 are words in the letters g 1
i

Now suppose that 1.L/ D G1 G2 and consider for k D 1; 2) finite presentations

of Gk with pk generators and qk relators. Denote by ik1 and ik2 the differentials

of the complex 1) corresponding to these finite presentations. Then, for some

uW 1.L/ R, using the definition of the maps i1 and i2, we find that the complex
1) can be written as follows:

ƒq1
u °ƒq2

u

0@

i12 0

0 i22
1A

ƒp1
u

i1
u °ƒp2 1 i21

ƒu 0:

Suppose now that u ¤ 0 and, without restricting the generality, that ujG1 ¤ 0.

1 is then surjective. This implies that for any a 2 ƒp2As above the map i1 u there is an

u such that b; a/ belongs to the kernel of i1element b 2 ƒp1
1 i21

If H1.L; u/ D 0, it follows that i22 is an epimorphism. Now the sequence

ƒq2
u

i22 ƒp2
u

i21
ƒu 0

is exact and therefore i21 D 0. But this is impossible unless G2 D 0 and the proof is
finished.

2.2. Morse–Novikov theory. We recall in this subsection the relation between
Novikov homology and closed 1-forms. Let be a closed generic 1-form in the
class u 2 H1.L; R/. “Generic” means here that the zeroes of are of Morse type.
Let be the gradient of with respect to some generic metric on L. For every zero

c of we fix a lift cQ
of c in the universal cover LQ We can define then a complex

C ; / spanned by the zeroes of and graded by the Morse index: the “incidence
number” OEd; c for two zeroes of consecutive Morse indices is the possibly infinite)
sum Pnigi where ni is the algebraic number of flow lines which join c and d and
which are covered by a path in LQ joining gi cQ

and dQ. It turns out that this incidence
number belongs to ƒu, so C ; / is actually a ƒu-free complex.

The fundamentalproperty of the Morse–Novikov theorywasproved by S. P. Novikov

in [16] and generalized by J.-C. Sikorav in [21]. The statement is:
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Theorem 2.4. For any generic couple ; / as above, the homology of the complex

C ; / is isomorphic to H L; u/.

Remark 2.5. We may define in a similar way the Novikov homology H L; u/
associated to a covering

W
LN L which satisfies u/ D 0 and we also may

define C ; / using the covering LN instead of LQ The statement of Theorem 2.4
holds in this more general setting.

An easy consequence of the above theorem is the following statement:

Proposition 2.6. LetL1, L2 be closed manifolds and let u 2 H1.L1; R/ H1.L1
L2; R/. Consider the Novikov homology H L1 L2;u/ associated to u and to a
covering ; Id/W LN 1 L2 L1 L2. Then

H L1 L2; u/ H L1; u/ Z=2 H L2IZ=2/:

In particular,
H L1 L2; u/ D 0 H) H L1; u/ D 0:

Proof. Note first that thehomologiesH L1 L2; u/ andH L1; u/are definedusing
the same Novikov ring ƒu. Take a generic pair 1; 1/ associated to u on L1 and a

generic pair df2; 2/onL2. Onecan easily see that the complexC 1Cdf2; 1C 2/
is isomorphic as a ƒu-complex to the tensor product C 1; 1/ Z=2 C df2; 2/.
By comparing their homologies using the Künneth formula we get

H L1 L2; u/ H L1; u/ Z=2 H L2IZ=2/

as claimed

We end this section by the following trivial remark:

Remark 2.7. Let L be a manifold with L/ ¤ 0. Then the Novikov homology,
defined for any covering

W
LN L, as above, does not vanish.

Indeed, the complex C L;u/ has the same Euler characteristic as L and if the
Novikov homology H L;u/ vanishes, this Euler characteristic must be zero.

3. The Floer complex

In [14] Hong Van Le and Kaoru Ono defined a Floer complex spanned by the 1-periodic

orbits of a symplectic non Hamiltonian vector field Xt on a symplectic manifold
W They showed that, if W is monotone, then this homology equals the Novikov
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homology associated to the cohomology class Cal. t/; by Cal. t/ we denote the
Calabi invariant associated to the symplectic flow t/ of Xt defined by the formula

Cal. t/ D Z
1

0
tdt ;

where t is the symplectic dual of Xt for t 2 OE0; 1 This is actually the image of the
isotopy t/ by the Flux morphism. By definition, the integral of F lux. t/ over a

loop c W
S1 W is the integral of the symplectic form over the cylinder t c/.

Later, M. Pozniak [18] computed the Lagrangian) Floer homology HF.L1; L2/
in the case where L1 is the zero-section of T M and L2 D L1/, being the time
one map of a symplectic non-Hamiltonian) isotopy.

Consider a closed exact Lagrangian manifold L T M and denote by Lt the
image of L through a symplectic isotopy t/ on T M. Denote by u 2 H1.MIR/
the class

OE

1 M M 2 H1 T MIR/ H 1
MIR/:

0t

It is not difficult to prove that this is actually the Calabi invariant Cal. t / for W D
T M. The goal of this section is the following

Theorem 3.1. Suppose that L and 1.L/ are transverse and that u is rational this
means that the image of the morphism uW 1.M/ R is cyclic). Denote by p u the
composition u B pW 1.L/ Z. There is a free ƒp u-complex C L; t/ spanned
by the intersection points L \ 1.L/ and whose homology only depends on L and
on u.

Remark 3.2. The restriction Im.u/ Z is not strong. Indeed, the isotopy t/ is the
flow of a vector field Xt whose symplectic dual is a family of closed one forms t
If belongs to the class u D Cal. t /, a well-known result of D. Tischler [22] asserts

that there exists a closed 1-form 0, arbitrarily closed to and whose cohomology
class OE 0 is rational. This implies that given a symplectic isotopy t/, there is an

symplectic isotopy / arbitrarily closed to it and with rational Calabi invariant: one

can take 0t / defined by the family of closed one forms t C
0

Plan of the proof of Theorem 3.1. The complex C L; t/ will be the result of
a version of Novikov homology theory on the infinite dimensional) space of paths

joining L and 1.L/. After some preliminary results proved in the next subsection
we define in Section 3.2 an action 1-form whose zeroes are in one-to-one
correspondence with the intersection points of L and 1.L/. In the following subsection
we consider the gradient of with respect to a metric defined by a family of almost
complex structures on T M. The “flow lines” of this gradient vector field will be
actually holomorphic strips with boundary on L[ 1.L/. The results of Section 3.4
enable us to use this Floer–Novikov setting to define a free complex over the Novikov
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ring ƒu which is spanned by the points of L \ 1.L/ Section 3.5). In Section 3.6
we prove that the homology of this complex only depends on L and u. Finally, we
show in Section 3.7 how the whole construction can be adapted in order to get a free
complex over the Novikov ring ƒp u, spanned by L\ 1.L/ and whose homology
again only depends on L and on u.

Let us now explain in detail how one defines the Floer complex C L; t /.

3.1. Preliminary results. Let t/ be a symplectic isotopy as above and denote by

u 2 H1.MIR/ the class Cal. t/ We prove the following lemma:

Lemma 3.3. There is a symplectic isotopy t / on T M such that 1jL D 1jL
which is defined by the symplectic dual of) D C dHt where 2 u is a closed
1-form on M and H W T M OE0; 1 R has compact support.

Proof. The 1-form t M M is closed on T M. So, we may write

t M M D t C dGt ;

where GW T M OE0;1 R and the closed 1-form t is defined on M.
Define a symplectic isotopy t W T M T M by

t.p; q/ D p t q/; q/:

Then, obviously, t M M D t ; Therefore, for t D t B t

t M D t M t / D M C t C dGt t t D M C dKt

for a smooth KW T M OE0;1 R, since t t and t are cohomologous.
Using the Lie derivative, one obtains easily that t/ is a Hamiltonian isotopy. We

want the isotopy t/ and in particular the function K) to be compactly supported.
Since L is compact, we may suppose that it is true and keep the relation t D t B t

valid on L. In other words, we have

t D t B Qt ;

where Qt jL D t jL and t is compactly supported.
On the other hand 1

1 p; q/ D p C 1.q/; q/ is the time one of the symplectic

isotopy zt.p; q/ D p C t 1.q/;q/, so Q1 is the time one of

t D zt t :

Outside a compact set t.p; q/ D z t.p; q/ D p C t 1.q/; q/ is defined by 1.

It follows that t/ is defined by 1 C dHt for some smooth, compactly supported

HamiltonianH W T M OE0; 1 R, and 1 coincides with 1, when restricted to L,
as claimed. Moreover, OE 1 is obviously the class Cal. t/ in H1.MIR/. The proof
is finished.
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From now on, all the symplectic isotopies we consider have the property of
Lemma 3.3 and rational Calabi invariant. In the following we consider the lift of
such an isotopy to the universal cover of T M.

Remark 3.4. Let j W L T M be a closed exact Lagrangian submanifold and let

pW L M be the projection on the base space. Without restricting the generality, we
may add the hypothesis 1.T M; L/ D 0 in the statement of Theorem 1.1. Indeed,
by b) of Theorem, we know that the index OE 1.M/ W p. 1.L// is finite. Consider
the finite cover SM M which corresponds to the subgroup p. 1.L//. Then, it is
easy to show that there is an exact Lagrangian embedding L T SM which is a

lifting of L T M the definition of this lifting is similar to the one in 2.2 of [12]).
This embedding induces an epimorphism 1.L/ 1. SM/. Since SM is still a total
space of a fibration over the circle, we may prove Theorem 1.1 for SM instead of M
in order to get the desired obstructions on L.

Consider now the universal cover
W Mz M and the induced projection

Q W T Mz T M. Denote by y 7! gy the diffeomorphism of T Mz defined
by the action of g on 1.T M/ 1.M/. Since this is a right action, one should
keep in mind that g0.g00y/ D g00g0/y. Let K be the kernel of the epimorphism

pW 1.L/ 1.M/ and let N W LN L be the cover of L associated to K. According

to Remark 3.4 this is a 1.M/-covering, so LN is not compact. We prove

Lemma 3.5. There exists an exact Lagrangian embedding ‰ W
LN T Mz which

is a lifting of L T M. Moreover, we have ‰.LN/ D Q 1.j.L// and for any

g 2 1.M/, xN 2 LN

‰.g Nx/ D g ‰ Nx/:

Proof. Consider the pullback of Q W T Mz T M by the embedding j W L
T M i.e. the restriction to L of the covering T Mz T M. Since pW 1.L/

1.M/ is an epimorphism, this space is connected. It follows that this covering of L
is isomorphic to LN L. We keep the same notation LN and consider the canonical
maps ‰ W

LN T Mz and N W
LN L. Note that, for g 2 1.M/ we have

‰.g Nx/ D g ‰ Nx/;

as claimed. Using the commutative diagram

LN

‰

N

T Mz

Q

L j T M
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one easily checks that ‰ is an exact Lagrangian embedding. The equality ‰.LN / D
Q 1.j.L// is an obvious consequence of the definition of the pullback.

Notations. We use the same notation LN T Mz for the Lagrangian submanifold
which is the image ‰.LN / of the embedding constructed above. To keep the notations
uniform, we will denote by aN a lift to T Mz of an object a 2 T M.

Consider now a symplectic isotopy t/ on T M which is defined by C dHt
as in Lemma 3.3. The following result is straightforward:

Lemma 3.6. The symplectic isotopy t/ liftstoaHamiltonian isotopy Nt/ on T Mz

Moreover, if we denote Lt D t.L/ and LN t D Nt LN /, then

LN \ LN 1 D [x2L\L1
Q

1 x/:

Proof. Let CdHt be the closed 1-form on T M whose symplectic dual Xt defines

t/. Take its pullback Q Cd.Ht B Q / on T Mz The flow of its symplectic dualXxt
defines a symplectic isotopy Qt which is actually Hamiltonian since T Mz is simply
connected. It is obvious that Q Xxt/ D Xt which immediately implies that Nt/ is
a lift of t/. We have thus a commutative diagram

T Mz
Nt

Q

T Mz

Q

T M
t

T M.

Now, following the proof of Lemma 3.5, we have LN D Q 1.L/, and using the
above diagram

LN t D Nt LN / D Nt Q

1 L// D Q
1

t L// D Q

1 Lt/:

It follows that
LN \ LN 1 D Q

1 L\ L1/;
as claimed.

3.2. The action 1-form. Let L T M be closed exact Lagrangian and let t/
be a symplectic isotopy as above. Denote by u 2 H1.MIR/ the class Cal. t /. We

suppose that 1.T M; L/ D 0, using Remark 3.4.
For Lt D t.L/, denote

L0; L1/ D fz 2 C1.OE0; 1 ; T M/ j z.i/ 2 Li; i D 0; 1g :
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Define a 1-form on L0; L1/ by

z.V / D Z
1

0
M.z0.t /; V.t//dt:

The zeroesof are theconstant paths corresponding to the intersectionpointsL0\L1.
Let

W
S1 L0; L1/ be a loop. We see this loop as a map

W
S1 OE0; 1

T M. We prove

Lemma 3.7. We have

Z D u. S1
f0g//:

In particular is closed.

Proof. Let us evaluate
R

We denote by s; t/ the coordinates on S1 OE0; 1

Z D Z
1

0
@ @s/ds D Z

1

Z
1

0 0
!.@ @t;@ @s/dt ds D Z

S1 OE0;1 /
M:

Using Stokes’ theorem we find that

Z D Z
S1 f1g/

M C Z
S1 f0g/

M:

Since L D L0 is exact, the second integral in the right term above vanishes. The first
one can be written as follows:

Z M D Z
S1 f1g/

1
1 S1 f1g//

1 M

D Z
1

1 S1 f1g//
M C Z

1
1 S1 f1g//

1 M M/:

As above, the first integral in the right term is zero. Since 1 M M is a closed
1-form belonging to the cohomology class u D Cal. t / the second integral equals

u. 1
1 S1 f1g// D u. S1 f0g//. Finally

Z D u. S1
f0g//

and the proof of the lemma is finished.

Now let LN t / be the lifting of Lt/ to T Mz like in the preceding section and

define LN0; LN1/ as above. Also define the 1-form N on LN 0; LN1/ in a similar way.
The zeroes of

N
are therefore in bijection with the intersection points LN 0 \ LN 1.
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For the canonical projection W
LN 0; LN 1/ L0; L1/ we obviously have

/ D N :

Also remark that N is exact by Lemma 3.7. Denote by A a primitive of N

There is an action of 1.M/ on LN 0; LN 1/, coming from the action of 1.M/ on

T Mz We show:

Lemma 3.8. Let z 2 LN 0; LN 1/ and g 2 1.M/. Then

A.g z/ D A.z/ u.g/:

Proof. Let
N

be a path between z and g z in LN 0; LN 1/ which does exist since

T Mz is simply connected). Denote D N/. We have

A.g z/ A.z/ D Z
N

N D Z :

Now is a loop in L0; L1/ which has the property that S1 ftg/ represents

g 2 1.M/ for every t 2 OE0; 1 By applying Lemma 3.7, we get the desired relation.

Alternatively, one may consider another action 1-form. If the isotopy t/ is
defined by thesymplecticdualXt of CdHt defined by!M. ; Xt/ D CdHt/. /
we define a 1-form on L; L/ by:

1

Oz.V / D Z
0

M.z0.t/;V.t// C C dHt/.V t//dt:

The zeroes of
O

are the flow trajectories starting from L and ending in L at time

t D 1, which means that there are in bijection with L0 \ L1.
As in Lemma 3.7, for a loop in L; L/ we have

Z Z Z Z
1

O D M C
S1 OE0;1 S1 0

C dHt /.@ @s/dtds

The first integral in the right term is zero, as in the proof of Lemma 3.7. The
second one equals

Z
1

0
Z

S1
@ @s/dsdt D Z

1

0
Z

;t/
dt D Z

;0/
D u. ; 0//;

since
R ;t/ does not depend on t
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This relation implies that O is closed. Then, as above, one defines a 1-form on
NL; NL/ in the similar way and obtains that O D dAO. As in Lemma 3.8 we infer

that any primitive AO satisfies the equality

AO.g z/ D AO.z/ C u.g/:

These two approaches are strongly related, as it can be seen from the following
remark.

Remark 3.9. Let be the 1-form defined in the same way as on L0; 1
1 L0//.

t z is obviously a bijectionbetween L; L/and L0; 1Themap z/ D
1

1 L0//.
We have the relation

D O:
The fact that this relation is given by a bijection which is defined using the form
and the isotopy 1

t / whose Calabi invariant is u) explains the change of sign in
the analogue of Lemma 3.8 above. The proof is straightforward.

3.3. The gradient. Let Jt/t2OE0;1
be a family of almost complex structures on

T M which are compatible with M. This means that gt.X; Y / D M.X; JtY / are
Riemannian metrics on T M. Define then a metric g on L0; L1/ by

g V;W / D Z
1

0
gt.V t /; W.t//dt:

The gradient of with respect to this metric is given by

z D Jt z/ z0:gradg

The trajectories of the time dependent vector field Xt D grad g
z on L0; L1/

canbe seenas maps v of twovariables s; t/ satisfying the Cauchy–Riemannequation.
More precisely v is a solution of

8
<̂

:̂

@v
@s C Jt v/@v

@t D 0;

v.s;0/ 2 L0;
v.s;1/ 2 L1:

/

For v W R OE0; 1 T M, solution of / one defines the energy E.v/ by the
formula

E.v/ D Z
R OE0;1

@v
@s

2

gt
dsdt:

One can easily see that

E.v/ D Z
R OE0;1

@v
@t

2

gt
dsdt D Z

R OE0;1
v M:
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Denote byM the space of solutions of finite energy:

M.L0; L1/ D fv 2 C1.R OE0; 1 ;T M/ j v satisfies /I E.v/ < C1g
For x; y 2 L0 \ L1 define

M.x; y/ D ²v 2 C1.R OE0; 1 ;T M/ v satisfies /I lims! 1 v.s; / D x
lims!C1 v.s; / D y ³:

As in [4] Proposition 1.b), [17] Proposition 3.2), we have

Theorem 3.10.

M.L0; L1/ D [x;y2L0\L1
M.x; y/:

Note that thesolutionsofM.L0; L1/with vanishingenergy areexactly the critical
pointsofAH i.e. theconstant paths givenby the intersection pointsL0\L1. However,
for x 2 Crit.AH/ the spaceM.x; x/ may also contain solutions of non zero energy.

It is useful to consider the spaces of solutions with non vanishing energy:

M x; y/ D ´M.x; y/ for x ¤ y,
M.x; x/ n ¹xº for x D y.

The family Jt/ t2OE0;1
can be lifted to a family of compatible almost complex

structures JNt/ t2OE0;1 on T Mz We define then the spaces of solutions M.LN 0; LN 1/
and M xN; yN/

as above. Note that M.xN; xN/ D fxNg
see the formula for the energy

below). The analogue of Theorem 3.10 remains valid.
Obviously, the projection Q maps M.LN 0; LN1/ to M.L0; L1/ and if Q vN/ D v

then E. Nv/ D E.v/. Moreover, one can easily see that any solution v 2 M.L0; L1/
lifts to a solution

vN 2 M.LN 0; LN 1/. Also remark that, if vN 2 M.xN;yN/, then we have

E.v/ D Z
C1

1
@

@s
A.vN.s; //ds D A.xN/ A.yN/:

Alternatively, we canconsider the gradientof the 1-form
O with respect to a family

of metrics
gO

defined by a family of compatible almost complex structures JOt/, as

above. This approach leads to the perturbed Cauchy–Riemann equation:

8
<̂

:̂

@
Ov

@s C Jt Ov/.
@

Ov

@t Xt Ov// D 0;

Ov.s;0/ 2 L;
Ov.s;1/ 2 L:

/

We define the energy of the solution
Ov of / by the same formula and then

analogously the spaces of solutionsMy.L; L/ andMy.x; y/. The statement of Theorem 3.10
remains true in this setting.
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Again, for a solution vN of / joining xN; yN 2 LN ; LN / upstairs, we have

E.vN/ D AO.xN/ AO.yN/

and these solutions are liftings of the solutions of / on T M.

Remark 3.11. Let vO 2 My.L;L/. Define v.s; t/ D
1

t Ov.s; t//. Consider two

families of compatible almost complex structures Jt/ and JOt/ on T M which are

related by
JOt / D t/ Jt. 1

t / /:

Then one easily checks the equality

@v
@s C Jt t /

@
Ov

@v
@t D

1
@ t

Xt Ov/ ;
@s C JOt

@
Ov

and, furthermore, the equality

E.Ov/ D E.v/:

We infer that the mapping vO 7! v is a one-to-one correspondence betweenMy.L; L/
andM.L0; 1

1 L0// for the given choices of the almost complex families.
One can see this bijection as a direct consequence of the relation D O

from
Remark 3.9 for appropriate choices of metrics on the paths spaces ; /

3.4. Transversality and compactness. Suppose that the manifolds L0 and L1 are

transverse. Then we can prove the following theorem in the same manner as in [6]
see also [17]).

Theorem 3.12. Under the transversality assumption above, and for a generic choice
of Jt the spacesM x; y/are finitedimensional manifolds of local dimension v/ D
the Maslov–Viterbo index of v see [25] for the definition). The same is true for
M.xN; yN/ note thatM.xN; xN/ D fxNg). The map Q induces an embedding

Q W M.xN;yN/ M.x; y/;

for Q xN/ D x and Q yN/ D y.

Remark 3.13. Using Remark 3.11 we infer from the preceding theorem that the

spacesMy x;y/ are manifolds for a generic choice of JOt

The map 7! v. C ; / defines an action of R onM.x; y/. Denote by L.x; y/
the quotientM x; y/=R. Analogously, let Lx.xN;yN/ be the quotient ofM xN; yN/. As
the action of R is free on M x;y/, we infer from Theorem 3.12 that L.x; y/ and

Lx.xN; yN/ are finite dimensional manifolds.
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In order to define the differential of C L0; L1/, we need to study thecompactness

of the trajectory spaces L.x; y/. Remark that, since T M is an exact symplectic
manifold, there is no nonconstant holomorphic sphere c W S2 T M. Then, the
relation Mj 2.T M;Li / D 0 for i D 1; 2 implies that there is no holomorphic disk

w W D; @D/ T M;Li/. So bubbling does not occur ina sequence inM.L0;L1/.
In this framework, Gromov’s classical compactness result about holomorphic curves
can be formulated as follows:

Theorem3.14. ForA > 0denoteMA.L0; L1/ thespace of solutionsv 2 M.L0; L1/
with bounded energy E.v/ A. The space MA.L0; L1/ is compact in the topology

C1loc

As a consequence, we have the corresponding Floer-type compactness result
which we will use in the sequel:

Theorem 3.15. For x; y 2 L0 \ L1 and A > 0 let

MA x; y/ D fv 2 M x; y/ j E.v/ Ag

Let vn/ MA x; y/ be a sequence of solutions with constant index vn/ D 0.

Then there exist a finite collection zi/iD0;:::;k
of points in L0 \ L1 with z0 D x

and zk D y, some solutions vi 2 MA zi 1; zi/ for i D 1; : : : k and some sequences

of real numbers in/n for i D 1; :: : ;k such that for all i D 1; : : : ; k the sequence

vn.s C in ;t/ converges towards vi s; t/ in C1loc

Moreover, we have the relations

kX
iD1

E.vi/ A and kX
iD1

v i/ D 0:

We say in this case that modulo a choice of a subsequence) vn/ converges
towards the broken orbit v1;: : : ; vk/. This theorem is proved in [4], [17] for the
Hamiltonian case and stated in [18] for the non-exact one. Since there are some

differences between these two situations for instance, the points zi need not to be

different here), we give a complete proof below.

Proof of Theorem 3.15. To simplify the notations, we will denote by vn.s/ the path

vn.s; / 2 L0;L1/.
Denote by d the distance C0 on L0; L1/, i.e. d. ; / D sup t i. t /; t//,

where i is a distance associated to a fixed complete metric on T M. Let > 0 be
such that the balls B.x; / centered in x 2 L0 \ L1 are mutually disjoint.

We may also suppose that every nonconstant holomorphic strip v 2 M x; x/
leaves B.x; / This is true for small enough. Indeed, the contrary would imply
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that the image of v belongs to a contractible neighbourhood of x 2 T M, which
means that it lifts to Nv 2 M. Nx; Nx/ and therefore E.v/ D 0 which is contradictory.

Now denote by vn. 1
n/ the point in L0; L1/) where the orbit vn.s/ first leaves

B.x; / It is given by

1
n D inf fs 2 R j d.x; vn.s// > g :

According to Theorem 3.14, there is a subsequence of vn.s C
1
n/ which converges

in C1loc to an orbit v1 2 M.L0; L1/. Since vn. 1
n/ 2 @B.x; / and for any s < 0

n/ 2 B.x; / the limit satisfies v1.s/ 2 xB.x; / for s < 0 andwe have vn.s C
1

v1.0/ 2 @B.x; / This implies that v1 is a nonconstant solution in M.x; z1/ i.e.

v1 2 M x;z1/) for some z1 2 L0 \ L1.
Let s 2 R such that for all s > s we have v1.s/ 2 B.z1; / It follows that for

n sufficiently large vn.s C
1
n/ is in B.z1; / If the orbit vn does not leave the ball

n we infer that z1 D y and that v1.s/ 2 xB.y; / for s sB.z1; / for s > s C
1

We claim that the proof is finished in this case: we will establish the relations on the
energy and on the Maslov index at the end of this proof.

Now if vn.s C s C
1
n/ gets out the ball B.z1; / for some s > 0 consider the

first exit point v. 2
n/ defined by

2
n D sup

° > s C
1

n
OE :n j vn.s/ 2 B.z1; /; for all s 2 s C

1

Using again Theorem 3.14 we find a convergent subsequence of vn.s C 2
n /, whose

limit is denoted by v2.
We want to show that the starting point of v2 is z1. Remark that 2

n
1
n C1.

Indeed, if this sequence was bounded, then on the bounded interval OEs ; 2
n

1
n the

sequence vn.s C
1
n / would converge uniformly towards v1. In particular vn. 2

n/
would be contained in the open ball B.z1; / On the other hand, the definition of 2

n
implies that vn. 2

n/ 2 @B.z1; / which yields a contradiction.
Fix a number s < 0. For n sufficiently large we have

1
n C s < 2

n Cs < 2
n :

According to the definition of 2
n this means that vn.s C

2
n/ 2 B.z1; / for all

s < 0, therefore, v2.s/ 2 xB.z1; / for all s < 0. On the other hand, obviously
v2.0/ 2 @B.z1; / We infer that v2 is a non-constant solution in M z1; z2/ for
some z2 2 L0 \ L1.

Then we argue in the same way to find limit solutions v3; v4; : : :. Still we have to
prove that this iteration is valid only a finite number of times which means, as above,

that zk D y for some k and that vn.s C
k
n/ 2 B.y; / for s s Suppose the

contrary: there exists a sequence of sequences in/ such that vn.s C in/ converges
towards vi s/ and moreover iC1n in are positive and unbounded. Fix a point
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zNi 2 T Mz above each zi and lift vi to T Mz with zNi
as ending point. The starting

point of the lift Nvi will be gi Nzi 1 for some gi 2 1.M/. It follows that

E.vi/ D E. Nvi/ D A.gi Nzi 1/ A.Nzi/ D A. Nzi 1/ A. Nzi/ u.g/:

This energy is not zero, since vi is non constant, and as u is rational it takes values
in a discrete set. Therefore, there is a constant c > 0 such that

E.vi/ > c for all i 2 N.

Let us show that
Pi E.vi/ A to get a contradiction. Fix an arbitrary positive

ii < E.vi/ and real numbers si < sCi such that

E.v i/ ii D Z
1

Z

sCi

0 si
k@vi=@sk

2dsdt:

Due to the C1loc-convergence we have for n sufficiently large i.e. n n0, where n0
depends on ii ):

E.vi/ 2ii < Z
1

Z
sCi

0 si
n/=@sk

2dsdt D Z
1

k@vn.sC
i

0
Z

sCi C in

si C in
k@vn.s/=@sk

2dsdt:

Now, for n large enough we have that si C in > sC
i 1 C i 1

n and sCi C in <
s
iC1 C iC1n Summing up the preceding equality for all i we obtain therefore

Xi
E.vi/ 2ii < E.vn/ A:

Put ii D i=2i to get Pi E.vi/ i A, so, since i is arbitrary, Pi E.vi/ A,
which contradicts E.vi/ > c for all i

The required inequality on the energies is obtained as above. It remains to show
the relation between the Maslov–Viterbo indices. It is a consequence of the following

Lemma 3.16. Let n W
OE 1;C1 L0 the path defined by n.s/ D vn.s; 0/

extended with x in s D 1 and with y in s D C1. For i D 1; : : : ; k let
i

W
OE 1;C1 L0 the analogous paths defined by the holomorphic strips vi

Then for n large enough n and D
1 2 k are homotopic in L0.

The same is true for the paths defined on L1 by vn, v1; : :: ; vk.

Proof. For i D 1; :: : ;k consider the sequences in/ defined in the proof of Theorem

3.15 above. They satisfy the following properties for some s > 0:

vn.s/ 2 B.x; / for s 1
n
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vn.s/ 2 B.zi; / for s 2 OEs C ; iC1n

vn.s/ 2 B.y; / for s s C
k
n

vi s/ 2 B.zi 1; / for s 0, for all i D 1; :: : ; k.
vi s/ 2 B.zi; / for s s for all i D 1; : : : ; k.

vn.s C in/ converges towards vi s/ uniformly on OE0; s and more generally
on every compact interval).

The -balls above are defined by the C0-distance d on L0; L1/ corresponding
to a complete metric on T M. Consider complete metrics on L0 and L1, with
associated distances d0 and d1. Define the distance d0 on L0;L1/ by the formula

d0. ; / D maxf d. ; /; d0. .0/; .0//; d1. .1/; .1// g:

It is easy to see that we can write the first part of the proof of Theorem 3.15 for this
new distance, so we may suppose that the properties of vn and vi above are valid for
the -balls defined by d0. In particular, we can replace vn by n, vi by i and the
distance by d0.

Now let
W L0 L0 be a continuous map which is homotopic to the identity and

0n

satisfies B.zi; // D zi for all i D 1;: : : ; k. Obviously D n/ is homotopic
to n and 0 D / is homotopic to Let us show that is homotopic to 0 for

0n

n large enough. We know that n.s C
1
n / converges towards 1.s/ uniformly on

OE0; s Therefore, for n sufficiently large, n. C
1
n / and 1 are homotopic in L0.

To see this, one has to write

n.s C
1
n/ D exp 1.s/ Yn.s/

for some Yn W OE0; s 1/ TL0, and then to consider the homotopy

7! exp 1.s/ Yn.s/:

It follows that n. C
1
n//and 1/ arehomotopicaspathsdefined on OE0; s In the

same way n. C in// and i/ are homotopic for all i D 1; : : : ;k. Summarizing,
we have for n sufficiently large:

0n s/ D zi for s 2 OEs C in; iC1n for i D 1; : : : ; k 1; 0n s/ D x for s 1
n;

0n s/ D y for s s C
k
n

i s// D zi 1 for s 2 OE 1;0 for i D 1; : : : ; k; i s// D zi for s 2
OEs ; C1OE for i D 1; : : : ; k.

0n s C
in/ and i s// are homotopic on s 2 OE0; s for i D 1;: : : ; k.

One easily infers that for an appropriate parametrisation 0n and 0

D
1 2

k/ are homotopic. The lemma is proved the argument for the paths on L1 is
completely analogous).
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Now we are able to finish the proof of Theorem 3.15. In [25], C. Viterbo proved
the following

Theorem 3.17. Let v;w 2 M.x; y/. Consider the paths v
i W

OE 1;C1 Li and
w
i W

OE 1;C1 Li defined by the restrictions of v and w to R fig, for i D 0;1.
Then

w/ v/ D L1
w

1 / 1/ L0
w

1
v

0 / 1/;0
v

where Li is the Maslov class of the Lagrangian manifold Li for i D 0; 1.

We apply the previous statement to the strips vn and v1# #vk. The Maslov–
Viterbo index of the latter is obviously

Pi vi /. Then, by Lemma 3.16, the loops
in the right term of the relation above are null homotopic for n sufficiently large, so

this term actually vanishes for large n. Therefore

0 D kX
iD1

vi /;

and the proof of the theorem is finished.

3.5. The differential of the Floer complex. Let x; y 2 L0 \ L1. We define
an “incidence number” OEx; y like in Novikov theory Section 2.2). We proceed
as follows. Denote by L0.x; y/ the zero-dimensional component of L.x; y/ D
M x; y/=R. For any z 2 L0 \ L1 fix a lift zN 2 T Mz. For g 2 1.M/, consider
the subset L0g.x; y/ L0.x; y/ of trajectories which lift to L.gxN; yN/. We need the
following

Lemma 3.18. Under the assumptions of Theorem 3.12, for any x;y 2 L0 \ L1 and

g 2 1.M/ the set L0g.x;y/ is finite.
If ng 2 Z=2Z denotes its parity, then the sum P ngg belongs to the Novikov

ring ƒ u.

Proof. The elements of L0g.x; y/ are classes of solutions v which belong to the
1-dimensional component of M x; y/. Moreover these solutions have the same

energy:

E.v/ D A.xN/ A.yN/ u.g/:

Wecan therefore applyTheorem 3.15. Since all the manifoldsM x;y/ have dimensions

greater than one because of the free action of R), a sequence of solutions vn
of Maslov index D 1 cannot converge towards a broken orbit. Therefore, it admits
a subsequence which converges in the sense of Theorem 3.15 towards a solution in
M x; y/. This means that L0g.x; y/ is compact, therefore it has a finite number of
elements.
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Let us now prove that
Pngg 2 ƒ u. Let C < 0. Our claim is proved if we

show that the set
Su.g/ C L0g.x;y/ has finite cardinality. It suffices to show that it is

compact. A sequence wn/ in this space lifts to a sequence vn/ in an 1-dimensional
component of M gxN; yN/. If u.g/ C, then the energy of the solutions v above
satisfy

E.vn/ A.xN/ A.yN/ C:

The sequence wn/ is therefore contained in MA x; y/ where A > 0 is given by the

A

right term above. As above, none of its subsequences converges towards a splitting
orbit. Therefore, by Theorem 3.15, vn/ admits a subsequence which is convergent in
the considered 1-dimensionalcomponent ofM x; y/ in the sense of Theorem 3.15),
which means that a subsequence of wn/ converges in L0.x; y/. Moreover, the relation

between energies in Theorem 3.15 shows that the limit lies in
Su.g/ C L0g.x;y/.

This space is therefore compact and zero dimensional, i.e. of finite cardinality.

We define
OEx; y D X

g2 1.M/
ng.x; y/g;

where ng.x; y/ D #L0g.x; y/ as above. Then, we consider the complex

C L0; L1; Jt/ D ƒ u hL0 \ L1i;

with differential

@x D X
y2L0\L1

OEx; y y D Xg 2 1.M/
y2L0\L1

ng.x; y/gy:

To show the relation @2
D 0 we have to prove that for each g 2 1.M/ and

x; z 2 L0 \ L1 we have

Xy2L0\L1;
g0;g002 1.M/

g00g0Dg

ng0.x; y/ng00.y; z/ D 0:

This is a straightforward consequence of

Lemma 3.19. Let L1g.x; z/ be the 1-dimensional component of Lg.x;z/. Denote

by Lx1g.x; z/ the union

L1g.x; z/[ [y2L0\L1
g00g0Dg

L0
g0.x;y/ L0

g00.y; z/;
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endowed with the topology given by the convergence towards broken orbits which
was defined in Theorem 3.15.

Then L1g.x; z/ is a compact 1-dimensional manifold whose boundary is

[y2L0\L1
g00g0Dg

L0
g0.x; y/ L0

g00.y;z/:

Sketch of the proof. To prove the compactness, let wn/ be a sequence in L1g.x;z/.
It admits a lift vn/ 2 M x; z/ such that vn/ D 2. By applying Theorem 3.15
we find that modulo the choice of a subsequence vn/ converges either towards a

limit v0 2 M x; z/ or towards a broken orbit v1; v2/ 2 M x;y/ M y; z/ for
some y 2 L0 \ L1. For i D 0; 1; 2 we denote by wi the projections of vi on the
correspondent trajectory spaces L. In the first case, we infer using also Lemma 3.16
that modulo the choice of a subsequence) wn/ converges towards w0 2 L1g.x;z/.
In the last case we obtain using again Lemma 3.16 that wn/ converges towards
w1; w2/ 2 L0g0.x; y/ L0g00.y;z/ where g0; g00 2 1.M/ satisfy g00g0 D g.

Conversely, starting with w1; w2/ 2 L0g0.x;y/ L0g00.y; z/ one may use the

usual gluing argument [5] to get a parametrisation ‰
W

OE0;
1OE! L1.x; z/ which

satisfies lim 1 ‰. / D w1;w2/. Using Lemma 3.16 we obtain that the image of
‰ is contained in the component L1 g.x; z/.g00g0.x; z/ D L1

Remark 3.20. In a similar manner one can define a complex C L; L/ which is
spanned by the zeroes of the 1-form O i.e. the trajectories of the flow of Xt starting
in L for t D 0 and ending in L for t D 1. To define the differential one has to use the
solution spacesMy.x;y/ defined by / in Section 3.3. Recall that in the relation in
Lemma 3.8 written for AO one has to change u in u. This means that the complex
C L;L/ is defined over the Novikov ring ƒu. We will denote it by C L; t;Jt/
to emphasize its dependence on the symplectic isotopy and on the almost complex
structure. Using the correspondence from Remark 3.11 one easily infers that the

ƒu-complexes C L; t; JOt/ and C L0; 1
1 L0/; Jt/ are actually isomorphic.

In the next section we will only consider the complex C L; L/ D C L; t; Jt/.

3.6. Hamiltonian invariance. We denote by H L; t; Jt/ the homology of
C L; t;Jt /. Recall that the symplectic isotopy t/ is supposed to be defined by

CdHt with closed 1-form onM and H compactly supported on T M OE0; 1
We want to show that this homology does not depend on a generic choice of the
couple Jt; Ht/ which means that it only depends on L and on the cohomology class
OE see the analogous result for periodic orbits in [14], Theorem 4.3):
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Theorem 3.21. For generic pairs Ht; Jt/, H0t; J 0

t/ there is an isomorphism

‰ W H L; CdHt
t ;Jt/ H L; CdH0t

t ; J 0
t/:

Proof. The proof is similar to the one in [14], following the standard arguments in
[4] and [11]. We consider a family of functions Hs;t W T M R and a family of
compatible complex structures Js;t which depend smoothly on s; t/ 2 R2 and which
satisfy Hs;t; Js;t / D Ht; Jt/ for s < R and Hs;t; Js;t / D H0t; J 0/ for s > R,t
where R > 0 is fixed. In order to define ‰ we consider the space MHs; ;Js; L/t t
defined by

´
@v Jt

@v

v W R OE0; 1 T M j
@s C @t X CdHs;t

s;t / D 0;
E.v/ < C1µ:

v.s; i/ 2 L for i D 1; 2; s 2 R;

The restrictions of an element v of MHs;t ;Js;t L/ to s < R resp. to s > R are

solutions of / corresponding to the couples Ht; Jt/ resp. H0t; J 0

t /. One can

then infer the analogue of Theorem 3.10, namely the fact that any such v converges
towards a zero x of the action 1-form

O
when s tends to 1 and towards a zero y

of the action 1-form
O

0 corresponding to the Hamiltonian H0t when s tends toC1.
ThereforeMHs;t ;Js;t L/ is the union of the spacesMHs;t ;Js;t x; y/ given by

8
<̂

:̂
vW R OE0; 1 T M

@t X CdHs;t/ D 0;
@v
@s C Jt

@v

v.s; i/ 2 L for i D 1; 2; s 2 R;

lims! 1 v.s; t/ D x.t/; lims!C1 v.s; t/ D y.t/

9>

=>

;
:

Here x; y are zeroes of the action 1-forms O
resp.

O
0. The analogue of Theorem 3.12

is valid: For a generic choice of the couple Hs;t; Js;t/ the spaces MHs;t;Js;t x; y/
are manifolds of local dimension at v equal to the Maslov–Viterbo index v/. We

will define a morphism of ƒu- complexes

‰
W C L; CdHt

t ;Jt/ C L; CdH0t
t ; J 0

t /:

On the prescribed generators of C L; CdHt
t ; Jt/ it is given by the formula

‰ x/ D X
g2 1.M/;y

mg.x;y/gy;

wheremg.x; y/ 2 Z=2Z will be defined below. For this purpose we have to consider
the zero-dimensional components M0Hs;t ;Js;t x; y/. To count the elements of M0
we need a compactness result analogous to Theorem 3.15. We obtain indeed as in
Theorem 3.15 that any sequence vn/ in

MHs;t ;Js;t x; yI A/ D fv 2 MHs;t;Js;t x; y/ j E.v/ Ag
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has a subsequencewhich converges towardsa broken orbit v1; v2; :: : ;vk/. Actually,
if the homotopy Hs;t; Js;t/s is not trivial, only precisely one vi in the limit belongs to
MHs;t ;Js;t L/; the preceding orbits v1; : :: ; vi 1 are inMHt ;Jt L/ and the last ones

viC1; : : : ; vk are in MH0t;J 0t L/. More precisely, for j D 1; : : : ;k, vj is the limit of

vn. C jn ; / where in D 0 and the sequences j
n / tend to 1 forj < i, resp. to

C1 for j > i. Too see this one has just to pass to the limit in the Floer equation
which defines MHs;t ;Js;t L/.) The energy and the Maslov index of the limit satisfy
the same relations as in Theorem 3.15.

As a consequence, we have

Lemma 3.22. For any A > 0 the setM0Hs;t ;Js;t x;yI A/ is finite.

Proof. Any sequence vn/ 2 M0Hs;t;Js;t x; yI A/ has a subsequence which converges

towards a broken orbit v1; :: : ;vk/ as above. It follows that k D 0, since
nonconstant orbits in MHt ;Jt L/ and in MH0t ;J 0t L/ have non zero Maslov–Viterbo
indices. Therefore the space M0Hs;t ;Js;t x; yI A/ is compact and zero-dimensional, so

it is finite.

As in the preceding subsection, fix a lift xN in T Mz of every zero x of the action
1-form O and a lift yN in T Mz for every zero y of O0. Consider for g 2 1.M/ and
any two zeroes x; y of O resp. O

0 the space

Mg;s.x; y/ MHs;t ;Js;t x; y/;

consisting of the orbits which lift to T Mz starting from gxN and ending at yN. The
following proposition is crucial for the proof of Theorem 3.21

Proposition 3.23. The spaceMg;s.x; y/ is contained inMHs;t ;Js;t x; yI A/ for some

A > 0.

Proof. We adapt the standard argument of [5] as in [14] see also [4], [11]). Let
v 2 Mg;s.x; y/. We find an upperbound for E.v/. Note that in the inequalities below
and actually in the definition of the energy) the norm is defined by the compatible

metric M. ; Js;t // it therefore depends on s; t /):

E.v/ D Z
R OE0;1

@v
@s

dsdt D Z
R OE0;1

M
@v
@s

; Js;t
@v
@s

dsdt

D Z
R OE0;1

M
@v
@s

;
@v
@t

X XdHs;t dsdt

D Z
v

M Z
R OE0;1

C dHs;t/
@v
@s

dsdt

2)
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We see v W
OE 1;C1 OE0;1 as a path in L;L/ between x and y. Fix z0 2

L; L/ and let w be a fixed path in L;L/ which joins y and z0. Denote by v#w
the concatenation of v and w. The path w lifts to a path in T Mz joining yN and zN0.

Denote by AO and AO0 the primitives of / resp. of / 0 which vanish in zN0.

We have

Z
v#w

O Z
w

O0 D AO.zN0/ AO.gxN// AO0.zN0/ AO0.yN// D AO.gxN/CAO0.yN/: 3)

On the other hand, as in the computation in the proof of Lemma 3.8 at the end of
Section 3.2, we have

Z
v#w

O Z
w

O
0

D Z
v#w

M C Z
R OE0;1

C dHt/
@w
@s

dsdt

C Z
R OE0;1 @s

dsdt CZ
w

C dHt /
@v

M Z
R OE0;1

C dH0
t /

@w
@s

dsdt

D Z
v

M CZ
R OE0;1

@

@s
Ht.w/ C Ht v/ H0t.w//dsdt CZ

R OE0;1

@v
@s

dsdt

D Z
v

M CZ
OE0;1

Ht z0/ Ht x/ H0
t z0/ C H0t y/dt CZ

R OE0;1

@v
@s

dsdt:

Denote by C the term
ROE0;1 Ht z0/ H0t z0/dt which does not depend on v. Using

3) we get

AO.gxN/ AO0.yN/

D C C Z
v

M Z
R OE0;1 @s

dsdt Z
OE0;1

Ht x/ C H0t y/dt
@v

D C C Z
v

M Z
R OE0;1 @s

dsdt Z
R OE0;1

@v @

@s
Hs;t v/dsdt 4)

D C C Z
v

M Z
R OE0;1 @s

dsdt Z
R OE0;1

C dHs;t/
@v @H

@s
s; t;v/dsdt

D C C E.v/ Z
R OE0;1

@H
@s

s; t;v/dsdt

by the equality 2).
The equality 4) implies that

E.v/ D C C AO.gxN/ AO0.yN/ C Z
R OE0;1

@H
@s

s; t; v/dsdt:
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Since @H=@s W R OE0; 1 T M R has compact support, we infer that

E.v/ AO.gxN/ AO0.yN/ C K D AO.xN/ AO0.yN/ C u.g/ C K; 5)

for some K which does not depend on v. It follows that Mg;s.x; y/ is contained in
MHs;t ;Js;t x; yIA/ for some A > 0, as required.

A straightforward consequence of Proposition 3.23 is that the set

M0
g;s.x; y/ D Mg;s.x; y/\M0

Hs;t ;Js;t x;y/

has finite cardinality. This enables us to define the morphism

‰ W C L; CdHtt ; Jt/ C L; CdH0t
t ; J 0

t/

by the formula

‰ x/ D X
g2 1.M/;y

mg.x;y/gy;

where mg.x;y/ is the parity ofM0g;s.x; y/. Note that by Proposition 3.23 the coefficients

Pg2 1.M/ mg.x; y/g belong toƒu. Indeed, for any B 2 R, the inequality 5)

above shows that
Su.g/<B M0g;s.x; y/ is contained in M0Hs;t;Js;t x; yI A/ for some

positive constant A, so it is finite, according to Lemma 3.18.

The fact that ‰ commutes with the differentials can be proved in the usual way,
by studying the compactness of the 1-dimensional components of MHs;t;Js;t x; y/
like in the proof of Theorem 3.15. a sequence in this space either admits a convergent
subsequence, or converges towards a broken orbit v1; v2/). The proof is similar to
Lemma 3.19.

Finally, to show that ‰ induces an isomorphism in homology, one again uses

the standard method of Floer theory from Theorem 3.15 construct a morphism

W C L; CdH0t
t ; J 0

t/ C L; CdHtt ; Jt/ and than prove that ‰ and ‰

are homotopic to the identity, using a two-parameter homotopy Hr;s;t
The proof of Theorem 3.21 is now finished.

Remark 3.24. The complex C L; t;Jt/ defined in the previous subsection is free
over the Novikov ringƒ u. Aswe noted in Remark 3.20 one can infer the existence of
a similar complex over ƒu. We showed above that the homology of these complexes
onlydependsonLand onu. But thegoal ofour theorem 3.1was more general,namely
the existence of a complex which is freeoverƒp u spannedby the intersection points

L\ t.L/). In the next subsection we show how to adapt the previous construction
in order to get this conclusion.
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3.7. The Floer–Novikov complex over ƒp u. The idea is the following. Consider
the intersection points L \ 1.L/, viewed as points in L. For two such points x; y,
any holomorphic strip v 2 M.x; y/ defines a path

W 1; C1OE! L which joins

x and y:
s/ D v.s;0/:

Look at the collection of intersection points and take the paths as above, defined
by the strips v which belong to the one-dimensional component of M.x; y/ which
corresponds to the zero dimensional component ofL.x; y/). Thiscollection of points
and paths joining them is sufficient to re-construct the complex C L; t;Jt/: one

just has to fix lifts xN 2 LN for any point and then lift the lines from gxN to yN. We get
thus the same “incidence number” OEx; y 2 ƒ u as above. Therefore we obtain the
same complex.

Now, instead of lifting these lines to the covering space LN we lift them to the
universal cover LQ If we start with fixed lifts xQ 2 LQ of the intersection points, we
get thus a new incidence number OEx;y which belongs to the Novikov ring ƒ p u.
This enables us to define the desired complex.

This idea can be formalized as follows: Let L be a closed manifold and let C
be a finite set of points on L. Consider a possibly infinite) collection G of paths

W
OE 1;C1 L such that 1/ 2 C. Let pW 1.L/ G be an epimorphism

onto a group G and let uW G Z be a group morphism. Consider the covering
space LN L associated to Ker.p/ 1.L/. For any x 2 C fix a lift xN 2 LN. For

x; y 2 C, and g 2 G, denote L0g.x; y/ the set of the paths 2 G which have a lift in
LN which joins gxN and yN. Denote by ƒu the Novikov ring Z=2 OEG u. Now we prove:

Proposition 3.25. Suppose that:

a) For any x; y 2 C and g 2 G the space L0g.x; y/ is finite and

OEx; y D X
g2G

#2L0
g.x;y/g 2 ƒ u:

b) The formula
@x DX

y2C

OEx; y y

defines the differential of a ƒ u-free complex C spanned by C. Note that this
is equivalent to the fact that for any x; z 2 C and g 2 G the space

[y2C;g00g0Dg

L0
g0.x; y/ L0

g00.y; z/

has an even number of elements.
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c) The space above is a disjoint union of sets with two elements f. 1; 2/; 01; 02

0201

/g
with the property that the paths 1 2 and are homotopic in L.

Then there exists a free ƒ p u-complex zC spanned by C such that pW 1.L/
G induces a morphism from zC to C via the natural ring morphism pW ƒ p u
ƒ u.

Proof. Fix lifts xQ 2 LQ of the points x 2 C. For any h 2 1.L/, denote by Lz0h x; y/
the set of paths 2 G which lift in LQ to paths joining hxQ and yQ. Then define

OEx; y D X
h2 1.L/

#2Lz
0
h x; y/h:

Remark that OEx; y belongs to ƒ p u. Indeed it is obvious that for any g 2 G we
have

L0g.x; y/ D [h2 1.L/;p.h/Dg

Lz0h x;y/:

Now define
@x DX

y2C

OEx; y y:

Like in the case of the statement b), the relation @
B

@ D 0 is equivalent to the fact
that for any x; z 2 C and h 2 1.L/ the number of elements of the set

[y2C;h00h0Dh

Lz0h0.x; y/ Lz0
h00.y; z/

is even. Let 1; 2/ be an element of this set. Then the set equality above implies
that

1; 2/ 2 [y2C; g00g0Dg

L0
g0.x; y/ L0

g00.y;z/;

where g D p.h/, g0 D p.h0/ and g00 D p.h00/. Let 01 ; 02/ as in the hypothesis c).
Since 1 2 and 01 02 are homotopic, it follows that

01 02 2 [y2C; h00h0Dh

L0
h0.x; y/ L0

h00.y; z/:

Therefore, using c), the latter has an even number of elements. This implies that
@

B
@ D 0 and proves the proposition.

We apply Proposition 3.25 to C D L \ 1.L/ and G defined by the paths

s/ D v.s;0/, where v are the holomorphic strips belonging to the zero-dimensional
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components of the trajectory spaces L.x; y/. In order to check the hypothesis c) of
Proposition 3.25 recall that the space

[y2C; g00g0Dg

L0
g0.x;y/ L0

g00.y; z/;

02

is the

01

boundary of a one-dimensional closed manifold aswas shown in Lemma 3.19),
so its elements can be viewed as the disjoined union of the boundaries consisting
of two elements) of the connected components of this manifold. Such a couple

1; 2/; ; / has the property that 1 2 and 01 02 are homotopic in L. This
is an immediate consequence of Lemma 3.16. We get thus a free ƒ p u-complex,
as in Proposition 3.25.

Using the equivalent approach see Remark 3.20), we obtaina freeƒp u-complex

zC L; t;Jt/ spanned by the intersection points L \ 1.L/, as claimed in Theorem

3.1. In order to show that its homology only depends on L and on u one has to
prove that the morphism of ƒu-complexes

‰ W C L; CdHtt ; Jt/ C L; CdH0t
t ; J 0

t/
defined in the previous subsection lifts to a morphism between the corresponding

ƒp u-complexes. This is obtained using the same argument as above. We also prove
that the lifted morphism yields an isomorphism in homology in an analogous way.

The goal of this section, Theorem 3.1, is now achieved.

4. Floer homology and Novikov homology

Denote by FH.L; u/ the homology of the Floer complex zC L; t; Jt/ defined in
Section 3.7. Denote by H.L; p u/ the Novikov homology of L and of the class

p u, where pW L M is the projection on the base space of T M. The aim of this
section is to show that

Theorem 4.1. FH.L;u/ is isomorphic to the Novikov homology H.L; p u/.

Theorem 1.1 and Corollary 1.2 will be inferred from this theorem.

4.1. Proof of Theorem 4.1. Again, we follow the ideas of [14]. We prove

Proposition 4.2. Let u 2 H1.M/ There exists an > 0 depending on u) such that:

a) For all j j <
FH.L; .1 C /u/ FH.L; u/:
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b) FH.L; u/ H.L; p u/.

Proposition 4.2 immediately implies Theorem 4.1 since the set

E D f 2 0; C1OEj FH.L; u/ H L; p u/g

is non empty, open and with open complementary, so it equals 0;C1OE.

Proof of Proposition 4.2. Consider the ƒu-complex C L; t;Jt/ defined in Section

3.5 using Remark 3.20). We showed in Section 3.6 that its homology only
depends on L and on u. Denote this homology by FH.L; u/. Also consider the
Novikov homology associated to p u and to the covering LN L this covering was

defined in Section 3.1 as the pull-back to L of the covering T Mz T M; it
corresponds to Ker.p/ 1.L/). This homology, defined as explained in Remark 2.5,

will be denoted by H.LN L; p u/. In order to show Proposition 4.2 we prove first
the analogous result for the Floer homology FH.L; u/, namely:

Proposition 4.3. Let u 2 H1.M/ There exists an > 0 depending on u) such that:

a) For all j j <
FH.L; .1 C /u/ FH.L; u/:

b) FH.L; u/ H.LN L;p u/

Then, using the same method as in Section 3.7, we show that the isomorphisms
in Proposition 4.3 a) and b) can be lifted to the isomorphisms in Proposition 4.2 a)
and b), respectively, proving thus Proposition 4.2.

Proof of Proposition 4.3. Let 2 u a closed 1-form. In order to compute FH.L; u/
we choose a symplectic isotopy CdHt

t as follows. Let t W T L T L the
symplectic isotopy defined by t x/ D x C tp Now we use the following
wellknown result

Lemma 4.4. IfL T M is exact Lagrangian there exists a non-proper) symplectic
embedding ˆ W T L T M, extending the given embedding of L. In particular,

ˆ M L is an exact one form dG.

Proof. ByWeinstein’s theorem there is a symplectic embeddingˆ of a tubular
neighbourhood U of 0L whose restriction to 0L is the given embedding of L. Since L
is exact the difference M ˆ 1/ L is an exact 1-form on ˆ U /. This enables

one to extend ˆ 1/ L to a primitive of M on T M. The symplectic dual of this
primitive is a vector field whose restriction on ˆ U / is the image of the canonical
Liouville vector field on U T L. Denote by t the flow of this vector field and by
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t the flow of the canonical Liouville vector field on T L. Then the embedding ˆ is
defined by the formula

ˆ x/ D t B ˆjU B t x/;

where t > 0 is sufficiently large to ensure t x/ 2 U. It is easy to see that this
definition does not depend on t and that ˆ is an exact symplectic embedding as

claimed.

Consider nowthe Lagrangian isotopyˆB t jL W L T M. There isa symplectic
isotopy t / on T M which extends ˆ B t To see this, one has to consider the
isotopy t W T M T M defined by t x/ D x C t It is easy to see that

t t / M is an exact 1-form on L, so t t is an exact Lagrangian isotopy.
Consider a Hamiltonian extension t/ of t t Then t t is an extension of t
Therefore we can consider a symplectic extension of ˆ B t which we denote by

t/. The Calabi invariant of the extension is clearly u D OE D Cal. t / since t/
is Hamiltonian and ˆ is an extension of an exact Lagrangian embedding.

Using Lemma 3.3, we may suppose that t / is defined by C dHt where

H W
OE0; 1 T M R is compactly supported. We will use this isotopy for the

definition of the Floer complex. Note that the intersection points L\ t.L/ are the
zeroes of p in L and therefore they are fixed with respect to t In other words, the
zeroes of the action 1-form O are constant paths in L; L/. Note also that when
is Morse which we will always suppose) the intersections L\ t.L/ are transverse,
so the isotopy t/ is generic in this sense.

We will also need the following Palais–Smale-type lemma see [14], Lemma 5.1)

Lemma 4.5. Let Lt D t.L/, as above and denote by fx1; : : :; xkg the intersection
points L\ Lt for t > 0. Fix a ball Bi T M around each xi and denote by B the
union

Si Bi Then there exist c > 0 such that for any smooth z 2 L; L/, whose

image is not contained in B we have

kz0.t/ X CdHt z.t//kL2 c:

Proof. ThenormL2 in the statement above is defined using a fixed completemetric on

T M. Suppose the contrary of the assertion: there exist a sequence zn/ 2 L; L/
of paths whose images are not contained in B, such that

lim
n!

C1kz0n t/ X CdHt zn.t//kL2 D 0:

AsHt is compactlysupported and is defined onM the norm kX z/CXdHt z/kL2
is bounded uniformly withrespect to z, so there is aconstantK > 0suchkz0n kL2 K
for all n 2 N. Let d be the distance defined on T M by the metric we considered.
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For arbitrary t0 < t1 in OE0; 1 we have

d.zn.t0/;zn.t1// Z
t1

t0
kz0n t/kdt D Z

1

0
1OEt0;t1 kz0n t/kdt

kz0nkL2k1OEt0;t1 kL2 Kpt1 t0:

The family zn/ is therefore equicontinuous. Since zn.0// 2 L admits a convergent
subsequence, we may apply Arzela–Ascoli to get a subsequence of zn/ which
converges towards some z1 2 L; L/ in the topology C0.OE0; 1 ; T M/. It follows that

X CdHt zn/ converges towards X CdHt z1/ in the topology C0 and in particular
in the norm L2.

But kz0n t/ X CdHt zn.t//kL2 converges to zero, so we have

lim
n!

C1kz0n t/kL2 D kX CdHt z1.t//k:

Embed T M is some Euclidean space RN and see the vectors fields in the equality
above as elements of C0.OE0; 1 ;RN/ depending on the variable t Obviously the
last convergence is valid in L2.OE0; 1 ; RN /. Then one can write for t 2 OE0; 1

zn.t/ zn.0/ D Z
t

0
z0n /d

D Z
t

0
z0n / X CdHt z1. //d C Z

t

0
X CdHt z1. //d :

Using the Cauchy–Schwarz inequality, we find as above

Z
t

0
z0n / X CdHt z1. //d kz0n X CdHt z1/kL2

pt ;

in particular this integral converges to zero. We infer that when n goes to C1 the
preceding equality can be written as

z1.t/ z1.0/ D Z
t

0
X CdHt z1. //d :

In particular, z1 is C1 and hence C1, by an obvious bootstrapping argument) and
satisfies

z01 D X CdHt z1/:
This means that z1 is a zero of the action 1-form O

hence it is a constant path
which belongs to fx1;: : : ; xkg. But this is contradictory, since the image of zn
is not contained in B, so the sequence zn/ cannot converge towards an element

z1 2 fx1; :: : ;xkg.
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Now we are able to give the

Proof of Proposition 4.3 a). Recall that we have a generic isotopy t/ which is
defined by X CdHt The intersection points L\ t.L/ are fixed with respect to t;
we denoted them fx1;: : : ; xkg. As in Lemma 4.5 we fix a collection of balls around
these intersection points and we denote its union by B. We also consider the constant

c given by this lemma. Recall also that u 2 H1.M/ is the cohomology class of
Choose 2 u such that jB D 0 and fix > 0 such that

k k < c=3:

Then pick < and consider the symplectic isotopy t/ defined by X C CdHt
The constant > 0is chosen small enough to ensure that 1.L/ isstill transverse toL
actually we may even suppose that the intersection points are fx1; : : : ; xkg but this is

not needed in the proof). Now fix a compatible almost complex structure J on T M
which yields a complete metric. Then choose compatible complex structures Jt and

J 0 such that the couplest CdHt; Jt /and CdHtC ;J0 satisfy the transversalityt /
assumption of Theorem 3.12. By genericity, we may suppose that kJt J k < i and

kJ
0 J k < i where i > 0 is a small) constant which will be specified later. Thet

norm here is defined by the metric gJ induced by J Like in the previous section,

define the ƒu-complexes C L; CdHtt ; Jt/ and C L; C CdHtt ; J 0

t / we use
here that ƒu D ƒ u for any > 0).

To finish the proof of Proposition 4.3 a) we have to prove that the homologies of
these two complexes are isomorphic. We proceed as in Section 3.6 by constructing
a homotopy between the pairs C dHt; Jt/ and C C dHt; J 0

t /. Denote by

C s/ C dHt; Jt;s/ this homotopy. Here is a monotone increasing smooth
function on R which vanishes for s R and equals 1 for s R. We chose

the homotopy of almost complex structures such that: Js;t D Jt for s R and

Js;t D J 0

t for s R. We may also suppose that for all s 2 R kJs;t J k < i. In
order to define a morphism between the two complexes above we need to consider
the solutions vW R OE0; 1 T M of the system

8
<̂

:̂

@v
@s C Js;t

@v
@t X CdHtC s/ v/ D 0;

v.s; i/ 2 L for i D 0; 1,

E.v/ < C1;
where E.v/ is the energy of v with respect to the norm defined by J or equivalently,
to the norm defined by Js;t As in the previous section, each solution v of this
system satisfies lims! 1 v.s; t/ D x.t/ and lims!C1 v.s;t/ D y.t/, where x.t/ 2

L; L/ is an orbit of X CdHt and y.t/ 2 L;L/ is an orbit of X C CdHt

equivalently, they are zeroes of the corresponding action 1-forms). The genericity
assumptions ensure that the spacesM ;Js;t x; y/ of solutions with the indicated limit
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conditions are manifolds of local dimension v/. As in Theorem 3.15, the zero
dimensional subspacesM0;Js;t x; yI A/ of solutions with energy uniformly bounded

by A are compact and those of dimension 1 are compact up to breaking into v1; v2/
whereonly one of the vi’s is a solution of the equation above, the other being asolution
of the Floer equation corresponding either to CdHt; Jt/ or to C CdHt; J 0

t /.
We want to define a morphism

t ; Jt/ C L; C CdHt
W C L; CdHt

t ;J 0

t /

by the formula

x/ D X
g2 1.M/;y

mg.x; y/gy;

where mg.x;y/ is the number modulo 2) of elements of the space M0g;s.x;y/
M0 ;Js;t x;y/ of solutions which lift to T Mz starting form gxN and ending at

yN
as

previously, we fixed lifts xN
and

yN for all the zeroes of the two action 1-forms).
The crucial point is the following statement, analogous to Proposition 3.23. It

g;s.x;y/ is finite and that for any y the sum
Pg2 1.M/ mg.x; y/gimplies that M0

belongs to ƒu:

Proposition 4.6. The space Mg;s.x;y/ is contained in M ;Js;t x;yI A/ for some

A > 0.

Proof. Let v 2 Mg;s.x; y/. As in the previous section AO and AO0 are the primitives
of the pull-backs to T Mz of the two action 1-forms O and O0. Denote by vN the lift of
v to T Mz The proof of the proposition is implied by the estimate

E.v/ 3OEAO.xN/ AO.yN/ C u.g/ : 6)

Let us prove this inequality. In the estimations below the scalar product h; i is

gJ ; / D M. ;J / for the fixed structure J and the norm k k is defined by
this metric. We have

AO.gxN/ AO.yN/ D Z
C1

1

@

@s
AO.vN.s; //ds

D Z
C1

@s
ds D Z

C1

1
O

@v @v

1 @s v O ds; gradgJ

1
Z

1

D Z
C1 @v

0 @s @t
X CdHt v/ dtds:;J

@v

7)

In order to prove 6) we have to find a lower bound for the right term of the
previous equality. Let us fix s 2 R. Recall that B is a fixed union of balls around
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the intersection points L \ t.L/ such that Lemma 4.5 is valid. We consider the
following cases:

Case 1. Im.v.s; // B. Using that v is a solution of the parametrized Floer
equation, we get

Z
1 @v @v

;J
0 @s @ t

X CdHt v/ dt

D Z
1 @v

0 @s
;J.Jt;s

@v
@s C X C s/ CdHt v/ X CdHt v/ dt

D Z
1 @v

0 @s
;JJt;s

@v
@s

dt;

since jB D 0 so X s/ v/ D 0). It follows that

Z
1 @v @v

;J
0 @s @t

X CdHt v/ dt

D Z
1

0
J

@v
@s

;Js;t
@v
@s

dt D Z
1

0

2

dt C Z
1@v

@s 0
J

@v
@s

; Js;t J/
@v
@s

dt

Z
1

0

2
dt C i Z

1@v
@s 0

@v
@s

2
dt D .1 i/

@v
@s

2

L2
:

Choosing i < 2=3 we get

Z
1 @v

0 @s @t
X CdHt v/ dt 1=3; J

@v @v
@s

2

L2
: 8)

Case 2. Im.v.s; // 6 B. Proceeding as above we obtain

Z
1 @v @v

; J
0 @s @t

X CdHt v/ dt

D Z
1 @v

0 @s
; J Jt;s

@v
@s C X C s/ CdHt v/ X CdHt v/ dt

D Z
1 @v

0 @s
; JJt;s

@v
@s

dt C Z
1 @v

0 @s
; JX s/ v/ dt

D Z
1

0
J

@v
@s

; Js;t
@v 1

dt Z
@s 0

M
@v
@s

;X s/ v/ dt

D Z
1

0

2

dt C Z
1@v

@s 0
J

@v
@s

; Js;t J/
@v 1

dt Z
@s 0

s/
@v
@s

dt

.1 i/ L2 C k kZ
1

@v
@s

2

0

@v
@s

dt:
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We apply the Cauchy–Schwarz inequality to the last integral and the fact that was
chosen to satisfy k k < c=3. We have therefore

Z
1 @v

0 @s @ t
X CdHt v/ dt .1 i/;J

@v @v
@s

2

L2 C
c

3

@v
@s L2

: 9)

We have not used the condition Im.v.s; // 6 B yet. Note that it implies using
Lemma 4.5 that

@v
@ t

X CdHt v/ c:

We infer:

@v
@s L2 D @t

X C s/ CdHt
L2

Js;t
@v

@t
X C s/ CdHt

L2
J

@v
@t

X C s/ CdHt
L2

J Js;t/
@v

.1 i/
@v
@ t

X C s/ CdHt
L2

.1 i/
@v
@t

X CdHt
L2

X s/
L2

10)

.1 i/
@v
@t

X CdHt
L2 k k

.1 i/.c c=3/ D
2

3
.1 i/c;

using Lemma 4.5. Let us come back to the inequality 9). Using 10) we find that for

i small enough we have

.1 i/
@v
@s

2

L2 C
c

3

@v
@s L2

1=3
@v
@s

2

L2
:

Indeed, this is equivalent to

3 i2 @v
@s L2

c=3;

which, using 10), is implied by

2.1 i/ 2

3 i 1;

and this is true if we take for instance i < 1=10.
This means that in the case 2 we also have

Z
1 @v

0 @s @t
X CdHt v/ dt 1=3; J

@v @v
@s

2

L2
; 11)
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and 8) and 11) imply that the above inequality is valid for any s 2 R. Nowwe
integrate this inequality with respect to s and we get using 7) that

AO.gxN/ AO.yN/ 1=3Z
C1

1

@v
@s

2

L2OE0;1
ds D

1

3
E.v/:

This implies the inequality 6) and finishes the proof.

Therefore the space M0g;s.x; y/ is finite. Moreover, if mg.x; y/ is its parity, the
inequality 6) in the proof of Proposition 4.6 shows that the sum

X
g2 1.M/

mg.x; y/g

belongs to ƒu. This enables us to define the morphism

t ;Jt / C L; C CdHt
W C L; CdHt t ; J 0

t /:

The fact that commutes with the differentials is provedbystudying thecompactness

of the 1-dimensional components M1g;s.x; y/. The proof is analogous to that of
Lemma 3.19. To show that induces an isomorphism at the level of homology,
one should proceed as usual: Take a homotopy between C C dHt; J 0

t / and

C dHt; Jt /. This yields a morphism

0
W C L; C CdHtt ; J 0

t/ C L; CdHt
t ; Jt /:

Then, usingtwo-parameterhomotopiesas in[11]one can showthat 0 ishomotopic
to the identity and also that 0 is homotopic to the identity. This shows that the
homologies of the complexes are isomorphic, and the proof of Proposition 4.3 a) is
finished.

Proof of Proposition 4.3 b). Replace overall in the proof of Proposition 4.3 a) the
1-form 2 u with an exact 1-form df where f W M R. We get then in a similar
manner a ƒu-morphism

0
W C L; dfCdHt

t ; Jt/ C L; df C CdHtt ; J 0
t/;

which is an isomorphism in homology. The first complex above is actually a ƒ-complex

with coefficients extended to ƒu. Replace it by ƒu ƒ C L; dfCdHt
t ; Jt/.

Now the Hamiltonian invariance implies that the homotopy class of the ƒ-complex

C L; df CdHt
t ; Jt / does not depend on the choice of a regular pair df CdHt; Jt/.

On the other hand, the classical Floer argument [7] provides a regular pair H0t ; J 0
t /

such that the complex C L; dH0t 0
t ; Jt / coincides with the Morse complex defined
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by a pair g; / – where g W L R is a Morse function and is a generic

pseudogradient on L – in the following sense: the complex C
dH0t 0
t ; Jt / is spanned by the

intersection points L\ L C dg/ in T L T M and the map

v.s; t/ 7! v.s; 0/

is a one-to-one correspondence between the holomorphic stripswhich define the Floer
differential and the trajectories of which define the Morse differential.

It is then easy to see that the aboveMorse complex is identical toC LN L; /
where LN L is the pull-back of T Mz T M: this is the Morse complex defined
using g; / by lifting the trajectories of to LN as in Section 2.2 see Remark 2.5).
Moreover, the Novikov ring which defines the Novikov homology associated to the
class p u and to the covering LN L is the same as ƒu. Finally, if we denote by
the relation of homotopy equivalence between ƒu-complexes we get

ƒu ƒC L; dfCdHt
t ; Jt/ ƒu ƒC L;

dH0t 0
t ; Jt / ƒu ƒC LN L;g; /:

The latter complex defines the Novikov homology H.LN L; p u/ corresponding
to the covering LN L. We therefore have the isomorphism

FH.L; u/ H.LN L; p u/;

and the proof of Proposition 4.3 b) is complete.

End of the proof of Proposition 4.2. We argue as in Section 3.7. The holomorphic
strips of the moduli spaceM0g;s.x; y/ define paths on L from x to y by the formula:

v 7! v.s; 0/:

For fixed lifts xQ; yQ 2 LQ such a path lifts to LQ to a path joining hxQ and
yQ for some

h 2 1.L/. We define thus the spacesMz0 x;y/. Obviously, we have
h;s

g;s.x; y/ D [h2 1.L/
M0

p.h/Dg

Mz
0
h;s x; y/:

In particular, any setMz0h;s x; y/ has a finite number of elements by Proposition 4.6)
and the formula

z x/ D X
h2 1.L/;y

mh.x; y/hy

– where mh.x; y/ is the number modulo 2 of elements in Mz0h;s x; y/ – defines a

morphism of ƒp u-complexes

t ; Jt/ zC L; C CdHtz W zC L; CdHt
t ;J 0

t /
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which is a lift of the morphism defined in the proof of Proposition 4.3. Using the
sameargument we showthat it inducesan isomorphism in homology,proving thus a).

Then, weproceed analogously in order to define a lift of the morphism 0 of theproof
of Proposition 4.3 b). For the particular choice H0t ;J 0

t / in Proposition 4.3 b), the

lifted complex Cz is the Morse complex defined on the universal cover LQ Therefore,
the same argument as in the proof of Proposition 4.3 b) yields an isomorphism

HF.L; u/ H.L;p u/;

completing the proof of Proposition 4.2.

As we explained, this immediately implies Theorem 4.1.

4.2. Proof of the main results

Proof of Theorem 1.3. If M is the total space of a fibration over the circle and L
T M is exact, we consider a non-vanishing closed 1-form on M and we define
the symplectic isotopy ‰t.p; q/ D p C t q; q/. Obviously ‰T L/ \ L D ; for
T sufficiently large. Without restricting the generality we may suppose that T D 1.
The Floer complex defined in the previous subsection is empty so FH.L; u/ D 0,
where u is the cohomology class of Using Theorem 4.1 this implies Theorem 1.3,

i.e.,

H L; p u/ D 0: 12)

Note that since pW 1.L/ 1.M/ is an epimorphism the class p u is not zero.

Proof of Theorem 1.1. a) Let < g1;g2; : : : ;gpjr1; : : : ; rq > be a presentation of
1.L/. If p q 2 then by Proposition 2.3 a) we have that H1.L; p u/ ¤ 0,

contradicting 12). We infer that p q 1, as claimed.
b) If 1.L/ D G1 G2 for some non trivial groups Gi then we have again

H1.L;p u/ ¤ 0, by Proposition 2.3 b), and the proof is finished.

Proof of Corollary 1.2. a) Suppose that there exists an exact Lagrangian embedding

L P T Q S1/;

where L/ ¤ 0 and 1.P / is finite. As above, we obtain H L P;p u/ D 0,
where u is the class of the nonvanishing closed 1-form d on Q S1. Since 1.P/
is finite, we obtain p u 2 H1.L; R/ H1.L P;R/. We apply Proposition 2.6
and we obtain H L; p u/ D 0. But this contradicts Remark 2.7.

b) Suppose that there exists a Lagrangian embedding

L1#L2/ P T Q S1/:
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Weshowthat eitherL1 orL2 is a simply connectedZ=2-homology sphere. As n 4,
the fundamental group of L D L1#L2 is the free product 1.L1/ 1.L2/. We get
from Theorem 1.1 that one of the Li’s is simply connected. Suppose 1.L1/ D 1.

By Theorem 1.3 we know that H L; p u/ D 0, where u is the class d on

M D Q S1 and p is the projection. We show that this Novikov homology cannot
vanish unless L1 is a simply connected Z=2-homology sphere.

Denote Di Li two embedded open n-disks and write L as

L1 n D1/ [Sn 1

Sn 1 OE0; 1 / [Sn 1

L2 n D2/:

ChooseaCW-structure onLwhich fits to this decompositionandwhich is the standard
product structure on Sn 1 OE0; 1 we take the decomposition with one 0-cell and
one n 1/-cell on Sn 1). Denote by D the Z=2-free subcomplex spanned by the
cells of L1 nD1. Consider the Novikov complex C L; p u/ which is by definition
the tensor product ƒp u Z=2OE 1.L/ C LQ /. Since L1 is simply connected, LQ is the
connected sum of LQ2 with 1.L/ copies of L1. Using this fact and our choice of the
CW-structure, we get that the complex

ƒp u Z=2 D1 n 1

is a direct summand in C L; p u/. In particular, since the Novikov complex is acyclic

byTheorem1.3), the homologyofD which is thehomologyHi L1nD1 IZ=2/,
vanishes indegrees2 i n 2. Then,L1nD1 issimply connectedso the homology

H1.L1 n D1/ vanishes, too. Using Poincaré duality, we find that

Hn 1.L1 n D1/ H1 L1 n D1; @D1/

and the latter vanishes since L1 n D1 is simply connected. We also have

Hn.L1 n D1/ H0 L1 n D1;@D1/ D 0:

Therefore, the groups Hn 1 and Hn are also zero, so L1 nD1 has the Z=2 homology
of the n-disk.

Using Mayer–Vietoris we find that L1 is a Z=2-homology sphere.

c) Denote byH H1.T m
QIZ/ the subgroupH1.Tm

fptgIZ/. The group

H is isomorphic to Zm and any cohomology class u 2 H n f0g obviously contains
a closed non-vanishing 1-form on T m Q. It follows by Theorem 1.3 that

H L T l ; p u/ D 0

for every u 2 H n f0g.
Recall that we may suppose using Remark 3.4) that p is an epimorphism, which

implies that p is a monomorphism. ConsiderH1.L/ H1.L T l /. We show that

H1 L/ \ p H/ ¤ f0g:
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If not, then the composition

Zm p H H 1 L T l/
pr

H 1 T l/ Zl

is a monomorphism, which is impossible, since l < m. We infer that there exists a

nonvanishing class p u D v 2 H1.L/ H1.L T l/ such that

H L T l; v/ D 0:

By applying Proposition 2.6 we obtain then H L; v/ D 0. Finally, we apply Proposition

2.3 to get the desired conclusions on 1.L/ and finish the proof.
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