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Totally umbilic surfaces in homogeneous 3-manifolds

Rabah Souam and Eric Toubiana

Abstract. We discuss existence and classification of totally umbilic surfaces in the model
geometries of Thurston and the Berger spheres. We classify such surfaces in H? x R, S? x R
and the Sol group. We prove nonexistence in the Berger spheres and in the remaining model
geometries other than the space forms.

Mathematics Subject Classification (2000). 53C30, 53B25.

Keywords. Totally umbilic, totally geodesic, homogeneous 3-manifolds.

1. Introduction

During the recent years, there has been a rapidly growing interest in the geometry of
surfaces in $? x R and H* x R focusing on minimal and constant mean curvature
surfaces. This was initiated by H. Rosenberg, [16]. More generally many works are
devoted to studying the geometry of surfaces in homogenecous 3-manifolds. See for
example [14], [6], [7]. [17], [15], [12], [13], [11], [9], [4], [2], [10], [5] and [8].

In the space forms the classification of totally umbilic surfaces 1s well known and
very useful, see [21]. InRR3 they are planes and round spheres and in S? they are round
spheres. In H? they are totally geodesic planes and their equidistants, horospheres
and round spheres. In particular they all have constant mean curvature.

A natural question 18 to understand the totally umbilic surfaces in the remaining
homogeneous 3-manifolds. Until now the only known result in this direction was the
non-existence of totally umbilic surfaces in the Heisenberg space due to A. Sanini,
see [17]. In this paper we study totally umbilic surfaces in simply connected and
homogeneous 3-manifolds. More precisely we first consider the manifolds having a
4-dimensional isometry group, denoted by M3 (k, 7) (see Section 2). Namely these
manifolds are S2(k) xR (k > 0, = = 0), H?(«) x R (k < 0, = = 0), the Berger
spheres (¢ > 0, 7 # 0) and the manifolds having the isometry group of either the
Heisenberg space («k = 0, t # 0) or m (k <0, T #0),see[3], [19] or [22].
Except for the Berger spheres, these manifolds are four of the eight model geometries
of Thurston [22]. The remaining model geometries are the three space forms and the
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Sol geometry which has a 3-dimensional isometry group. As a matter of fact we also
consider the Sol geometry.

In Section 2 we prove (Theorem 1) the non-existence of totally umbilic surfaces, in
particular the non-existence of totally geodesic ones, in the homogeneous manifolds
M3 (k, ) for T # 0, that is those which are not Riemannian products. This extends
the result of Sanini, [17].

In Section 3 we construct and classify all rotational and totally umbilic surfaces
in S?(x) x R. In Section 4 we construct and classify all totally umbilic surfaces in
H? (k) x R which are invariant under a one-parameter group of ambient isometries.
Except for the totally geodesic ones, these surfaces do not have constant mean cur-
vature. In Section 5, we prove that the surfaces obtained in Sections 3 and 4 are the
only totally umbilic surfaces in respectively S (k) x R and H? () x R.

In Section 6 we show that there exist, up to ambient isometries, only two totally
umbilic surfaces in Sol, one of them being totally geodesic.

Finally, in Section 7 we apply our results to prove that any conformal diffeomor-
phism of H? x R, S? x R and Sol is an isomelry.

Throughout this paper all the surfaces are assumed of class C 3, see however the
remark 18.

We are grateful to H. Rosenberg for valuable comments and to the referee for his
observations which improved the paper.

2. Non-existence of totally umbilic surfaces in some homogeneous 3-manifolds

In this section we consider the connected and simply connected homogeneous Rie-
mannian 3-manifolds, whose isometry group has dimension 4 and which are not Rie-
mannian products. We recall that such a manifold 1s a fibration over some complete
and simply connected surface, M2 (x), of constant curvature ¥ € R, with geodesic
fibers. Actually, for each «, there is a one-parameter family M?(k, t) of such fibra-
tions, parametrized by the bundle curvature ¢ € R*. The unit vector field £ tangent
to the fibers is a Killing field and satisfies

Vxé =t(X £ ), (1)

for any tangent vector X in TM3(k, r), where V is the connection on M3 (k, 7).
The field & defines the vertical direction of the Riemannian submersion M3 (k, ) —
M2 (k). As a matter of fact, the bundle curvature T can be zero, but in this case
M3 (k, 0) is just a Riemannian product M? (k) x R. These product manifolds will be
considered in the following sections. Moreover we assume k — 42 # 0, otherwise
the manifold is a space form and its isometry group has dimension 6. These manifolds
are of three types: when « > 0O they are the Berger spheres, for « = 0 they have the
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isometry group of the Heisenberg space, Nilz, and for « < 0 they have the isometry
group of m

For more details we refer to [3], [19] and [22].

We can now state our result.

Theorem 1. There exist no totally umbilic surfaces (even non complete) in the 3-
manifolds M?>(k, ), with t # 0 and k — 4t% # 0. In particular, there are no totally
geodesic surfaces.

For the special case of the Heisenberg space ( k = 0,7 = 1/2), we recover the
result proved by A. Sanini, see [17].

Proof. Let S be an immersed totally umbilic surface in M3 (x, 7). Locally S is the
image of an embedding X : Q — M?(x, 7), where Q is an open disk in R2. Call
(u, v) the coordinates on €2 and consider a unit normal field N on X(2). As X is
totally umbilic, there exists a function A: 2 — R such that

VXMN = AX,,

Vx, N = AX,.

Therefore o .
VXU (VXMN) = Ao Xy + AVXU . .

VXM (VXUN) = Au Xy + AVXM Koz
Subtracting the second equation from the first one we get

VXU (VXMN) _vXu (VXUN) = /leu - AuAXva

that 1s,
R(Xy, Xu)N = A, Xy — Ay Xy, (2)

where R denotes the curvature tensor of M3 (k, ).

We define the function v on 2 setting v := (N, &). We denote by T the projection
of Eon S, thatis 7T =& —vN.

As the projection M3 (k, r) — M? (k) is a Riemannian submersion, we have the
following formula derived by Daniel, see [7]:

R(Xy, XN = (k — 4120 ((X,. T Xy — (Xu. T)X,) .
Taking into account the relation (2) we get
Vi = (k —420T, (3)

where V denotes the gradient on 5.
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Observe that if 7 = 0 on a nonempty open set, then we can take N = & on this
set and we deduce from (1) that this surface cannot be umbilic. We can thus assume
that 7' does not vanish on §2.

Set JT = N AT, thus JT is tangent to .S and horizontal.

Claim. We have [T, JT] = 0. B
We need to show that Vo JT = VyrT. Since JT = NAT =NA(E—vN) =
N A &, we have using (1)

VypdT =Vye(NAE) =Ny NAEFNAVE=MT ANE)+ (N A (T AE)).
ASTAE=TA(T +vN)=v(T A N)=—vJT, we deduce that
VydT = —AwJT + T,
On the other hand,
VirT =V —vN)=t(JT AE)— JT.(\)N — WJT. 4)
We have
JTAE=JT AT +vN)=JT AT +vJT AN =—|T>’N +vT, (5)

and _ _
JT.(v) = JT.(N,&) = (V;rN,E) 4+ (N, VrE)

= MIT.E)+ t(N.JT AE)Y = T(N.JT AE).

Using (5) we obtain
JT.(v) = —1|T|> (6)

Inserting (5) and (6) in (4) we end with
VirT =T —WJT =V7JT,

which proves the claim.
Now (3) implies

JT.(A) =0,
T.(A) = (k —472)w|T]? = (k —4rHv(1 —v?)

Since [T, JT] = 0, we get (k — 4t2)JT.(v —v3) = 0. As k — 4% # 0 we infer that
(1 —3v%)JT.(v) = 0. This implies easily

JT.(v)=0.

As JT.(v) = —1|T|?, see (6), and T # 0, we deduce that T = 0, which is a
contradiction. This concludes the proof. 0
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3. Symmetric totally umbilic surfaces in S2(x) x R

In this section we classify totally umbilic surfaces which are rotationally invariant in
S? x R. The classification in M?(x) x R, for any ¥ > 0 is completely analogous. We
will see that besides the obvious totally geodesic ones, up to isometries of S? x R,
there are two one-parameter families of complete totally umbilic rotationally invariant
surfaces homeomorphic to the two-sphere and a unique complete surface which has
the topology of R2. The surfaces of the first family are homologous to zero and those
of the second family are not. Moreover these surfaces are embedded, analytic and
any totally umbilic rotationally invariant surface is a part of one of these complete
surfaces.

A rotational surface in S% x R is by definition a surface obtained by rotating a
curve in a totally geodesic cylinder € := I' x R, where T' € S? is a geodesic, around
an axis R = {p} x R where p is a fixed point of I".

In the coordinates (x, v, ) given by the stereographic projection with respect to
the north pole, the metric on S? x R reads as follows:

) 2
d5? = ———— | @x*+dy?) +dr?,
§ (1+x2—i—y2)(x+ y) +
where x, v, t € R.

Up to an ambient isometry we can assume thatI' C S? corresponds to the complete
geodesic defined by ¥y = 0 and that p = (0,0,0) € T is the south pole of S2.
Therefore the axis is R = {(0,0,7), t € R}.

Remark 2. Let us remark that for any given curve « in the cylinder €, the surface
generated by rotating o around the axis through the south pole, that is R, is the same
as the one generated by rotating « around the axis through the north pole.

We consider the vertical (noncomplete) geodesic plane P = {y = 0} C €, that
is € = P U({N} xR), where N € S? is the north pole.

Let p € |—m, [ denote the signed distance to the origin (0,0) on I' N P. Thus
we have x = tan(p/2). In the coordinates (p, r) the metric on the plane P writes

ds? = dp? + dr>.

Consider now a smooth curve a(s) = (p(s), t(s)) parametrized by arclength in
P. Let 8(s) be the oriented angle between the p-axis and «'(s). Therefore, we have

p'(s) = cosO(s),

t'(s) = sin B(s). 2

In the plane P we consider the unit normal N to the curve « so that the basis
(¢’ (s), N(s)) is positively oriented for each s. We orient by N the symmetric surface
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generated by «. The principal curvatures computed with respect to this orientation

are as follows:
Ai(s) = 0'(s),

sin B(s)
A{ —
* = ann o)
Thus, the umbilicity condition 1s
in &
o'(s) = SO )
tan p(s)

A priori the equation (8) makes sense only for p # 0, but as we will see later the
surfaces we obtain are regular even at such points.
Differentiating the first equation in (7) and using equation (8) we get

2
tan p

Assume that p’(sg) = 1 for some sy where p(sg} # 0. Note that the function
f(s) = p(sg) +5— 50 is a solution of (9) with the same initial conditions at sy than p.
Therefore p = f and ¢’ = 0 and the surface is part of a slice S? x {#}. The same
happens in case where p'(s9) = —1. Henceforth we will assume that p”(s) # 1 for
all s and (9) 1s equivalent to

124

0 _cosp
(p2—1) sinp’

Multiplying both sides by 2p" and integrating we get
o2 —1 = Asin® p,

for some nonzero real constant A. Since the curve « is parametrized by arclength we
must have p”? < 1. Thus A = —a? for some a > 0.

Conversely, any solution p of (9) satisfying p"? < 1 defines a function 8(s) setting
cos B(s) = p'(s). Consider the function 7 defined by setting ¢'(s} = a sin p(s) and
t{s0) = to for some 5o in the domain of p and some real number #y. Then ¢ satisfics
the second equation of (7) and therefore the curve c(s) = (p(s), t{s)) € € generates
a rotational totally umbilic surface in S x R.

Let p be a solution of (9) satisfying p”> < 1. Observe that equations (7) and
(8) show that p" cannot be identically zero on an open interval unless the generated
surface is part of the totally geodesic cylinder p = /2. Henceforth we assume that
p 1s not this trivial solution and so, up to restricting the domain of p, we can suppose
that p takes its values in |0, 7 /2[ or |7 /2, x[.
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So, we can consider an interval on which p’ never vanishes. Changing s into —s
if needed we can suppose that p’ > 0. Therefore we get

o = /1 —a2sin?p. (10)

It is interesting to note that, when a # 1, the function p is the Jacobi amplitude
function p(s) = am(s,a?) and, up to the sign, we have 1'(s) = a sn(s,a?) and
8'(s) = a cn(s, a?), where sn(s, a®) = sinam(s, a?) and cn(s, a?) = cos am(s, a?)
are respectively the sinus and cosinus amplitudinis elliptic Jacobi functions, see for
instance [1, Chapter 16] and [18, pp. 286-307]. However, for the reader’s convenience
and to be self-contained, we will (reat in a direct and elementary way this ODE.

Now observe that the transformation (p,t) — (7 — p,t) is an isometry which
changes rotations around the axis through the south pole into rotations around the
axis through the north pole. Therefore, taking into account Remark 2, we can assume
that, up to an ambient isometry, p takes its values in |0, 77/2].

Let us call p, the maximal solution of (10) extending p without restrictions on its
values, that is for the moment we do not require that p, takes its values in |—m, 7 |.

Lemma 3. Up to a reparametrization of the form s — s + ¢ for some real con-
stant c, the maximal solution pq is defined on an interval |46, 8], where § € 0, +oc].
Furthermore p, is odd and so satisfies pa(0) = 0 and p,,(0) = 1.

Proof. letus call Ju, v[ the domain of p, where —o0 < u < v < 400.

We first show that p, vanishes at some point. Since p/, < 1 such a point clearly
exists if ¥ = —oo. In case u is finite, p, has a limit [ € [—o0, +o0[ at u as it is
nondecreasing.

If / < 0 then p, vanishes at some point since p is positive.

Consider now the case where [ > 0 and call I C Ju, v[ the domain of p. Suppose
that, as s decreases starting from /, p, never vanishes. Then the function p/, increases
(since p(I) C 10, 7/2[) and thus has a positive limit at ». But then we could extend
the solution p, of equation (10) beyond u, which contradicts the maximality of p,.

Therefore p,(sy) = 0 for some point sy. Changing s into s — sp we can assume
that p,(0) = 0. The function f(s) := —p,(—s) is then also a solution of (10)
satisfying f(0) = 0. We conclude that f = p,, which means p, is odd. O

Lemmad. Supposea €10, 1. Then p, is defined onthe whole of R and it gives rise to
a unique, up to an ambient isometry, curve o, generating a rotational fotally umbilic
surface. This curve is an analytic Jordan curve inthe cylinder €, it is nonhomologous
to zero and symmetric with respect to the axis of rotation R. The rofational totally
umbilic surface, S1(a), generated by v, is analytic, embedded and homeomorphic
1o the sphere. Moreover S1(a) is nonhomologous to zero in S* x R.
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The generating curve for a = 0.9

— 2
e 251 /”
S .
% 27 / The generating curve for ¢ = 0.5
\ 15 /

\ 1 / B -

T 0.8 L

/ oty P
05 »
S ‘_,/ g \ 0.4 //
-3 -2 0 1 2 3 -3 -2 a0 T 2 3
P P

Proof. With the notations of Lemma 3, if § < 4oc then, since p/, takes its values in
10, 1], pa would have a finite limit / at §. Since a € ]0, 1[, we have 1 — a?sin? [ > 0
which allows to extend p, beyond &, contradicting the maximality of p,. This shows
that 6 = +4o0.

Since p}, = v/ 1 —a? > 0 and p,(0) = 0O, there is a smallest 5; > 0 such that
pals1) = 7.

Now let us consider the function f(s) := 27 —p.(2s1—s5),s € R. We observe that
/ 1s also a solution of equation (10) and satisfies f(s1) = 2m—p,(51) = 7 = pa(sy).
Consequently f = p,, that is,

pPa(2s1 — ) =2m — pa(s) foralls € R. (11)

As we are interested in curves generating rotational totally umbilic surfaces, we look
for a function ¢ satisfying t'? = 1 — p/? = a? sin? p,. Lel #, be the function defined
on R by setting ¢/ (s) = a sin p,(s) and 7,(0) = 0.

Since p, is an odd function and ¢,{0) = 0 we deduce that 7, is an even function.
Observe that the function g(s) := t,(2s; — s) satisfies g'(s) = ¢/ (s) (using equation
(11)) and g(s1) = ta(s1). Thus g = ¢, thatis 1, (257 — 5) = t4(s) for any s € R.
Using the evenness of 7, we get

ta(s 4+ 251) = ta(s) foralls € R. (12)

Using equation (11) and the oddness of p, we obtain for any s € R

pals) = —pa(—=s) = =27 — pa(251 + 5)),

and so
Pals + 2851) =27 + pu(s) foralls € R. (13)

Now the curve @,(s) = (pa(s).%(s)), s € R, is a curve in the Riemannian
universal cover € of €. Observe that the equations (12) and (13) show that restricting
5 1o [—s1,81], @4 gives rise to an analytic closed curve ¢, in €. Since p, is increasing
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on [—sy,s1] and p,(—s1) = —p,a(s1) = —7 we deduce that ¢, is embedded and
nonhomologous to zero.

As p, 1s odd and ¢, 1s even, the curve o, has the desired symmetry.

It is clear that the other choice 1/ (s) = —a sin p,(s) leads to the curve deduced
from o, by the isometry (p, 1) — (p,—1). O

Remark 5. We observe that the curve o, i1s globally invariant under the isometry
(p,1) = (7 — p mod(27), 14 (250) — 1).

Lemma 6. Assume a = 1. Then pi(s) = 7/2 —2arctane™", s € R, This gives rise
to a unigue, up to an ambient isometry, curve oy in P C € generating a rotational
totallyumbilic surface. The curve ay is complete, open, embedded and symmetric with
respect to the axis of rotation R. The rotational forally umbilic surface, Sy, generated
by ay in S* x R is complete, properly embedded, analytic and homeomorphic to R2.

Proof. Since p; is the maximal solution of o’ = /1 — sin® p satisfying p(0) = 0,
we deduce that p; is solution of p" = cos p. A straightforward computation shows
that the maximal solution of this last equation with the initial condition p(0) = O is

p1(s) = %— 2arctane °  foralls € R.

Note that p; takes its values in |—mx/2, 7/2].

As in the proof of Lemma 4, we can assume that ¢ satisfies ¢/ (s) = sin p1 (s}, up to
an ambient isometry. We consider the function ¢ defined by setting ¢ (s) = sin p;(s)
and ¢;(0) = 0. It is straightforward to check that sin p,(s) = tanh(s) and then
f1(s} = logcosh(s).

As pjp 1s odd and 7 is even, the curve o has the desired symmetry. As a matter
of fact, &y is the graph of the function 7(p) = —logcosp, p € |—7/2,7/2[. This
concludes the proof. 0

Lemma 7. Assume a > 1. Then the maximal solution p, is defined on a bounded
interval |—d,, 84 where &, is a positive number. It gives rise to a unique, up fo an
ambient isometry, Jordan curve a, in P C € generating a rotational totally umbilic
surface. The curve ag is analytic and symmefric with respect to the axis of rotation R.
The rotational totally umbilic surface, S>(a), generated by o, is analytic, embedded
and homeomorphic to the sphere. Furthermore, S>(a) is homologous fo zero in
S? x R.

Proof. Since a > 1 we deduce that p,(s) € |—arcsin 1/a, arcsin 1/a[. Recall that
P is defined on an open interval |—d,, 6,[, see Lemma 3. We first show that &, is
finite. Assume by contradiction §, = +o0. Since p, is nondecreasing it admits a
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The generating curve for a = 1

1.8 :

\ 167 /
\ 1.4- /
\\ 1 2 //
\ ; i /

0.2 .
\\\ -
p

limit / € ]0, arcsin 1 /a] as s — 4o¢. Necessarily / = arcsin 1/a since otherwise
it would follow from the equation (10) that p}, > v'1 —a?sin*/ > 0 for all s > 0.
Therefore p, would not be bounded.

Using the equation (9) we see that for s big enough, p//(s) < —1/(2tanl) < 0.
Consequently p/, would be negative for s big enough which is a contradiction. This
proves that d, is finite.

Letus call again/ the limitof p, as s — &,. If{ < arcsin 1/a then we could extend
the solution p,, which is maximal, beyond &,, which is absurd. So! = arcsin1/a
and p, —» 0as s — dq.

Observe that, since the function p, satisfies equations (9) and (10), it satisfies also

the following equation
"

p" = —a? sin p cos p. (14)

As the second member of (14) is bounded, its maximal solutions are defined on
the whole of R. Call p, the maximal solution of (14) extending p,. Set f(s) :=
Pa(28, — s). Tt is clear that f and p, satisfy equation (14) with the same initial
conditions at é,. Thus we have

0a(28, —s) = pa(s) foralls € R. (15)

As we are interested in curves generating rotational totally umbilic surfaces, we
look for a function ¢ satisfying 12 = 1 — p/? = a?sin® p,. Let t, be the function
defined by ¢, = asin p, and ,(0) = 0. As p, is an odd function we deduce that 7, is
even. Observe that the function g(s) := 2¢,(84) — 12(28, — ) satisfies g’ (s} = ¢ (s)
(using equation (15)) and g(d4) = 14(d4). Thus g = 1,, that is

ta(28, —5) = 2t4(84) — tu(s) foralls € R. (16)
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It follows from (15) and the oddness of p, that
Pa(s +48,) = pa(s) foralls € R.
In the same way, using (16) and the evenness of 7,, we get
ta(s +48,) = t,(s) foralls € R,

Now the curve o, (s) = (pa(s),1,(5)), s € R, parametrizes a closed analytic
curve in P C €. Taking into account (15), the oddness of p,, (16) and the evenness
of 14, we deduce that the curve o, 1s symmetric with respect to the axis R.

Considering the fact that 7, is increasing on [0, 24,] and the symmetry of «,, we
infer that «,; defines a Jordan curve in P.

To conclude the proof observe that the other choice for 7,, that is ¢}, = —a sin pg,
leads to the curve deduced from ¢, by the isometry (p, 1) — (p, —1). O

The generating curve fora = 1.1

/ Y
/ \\
& e, The generating curve fora = 5
// 2.5 \
// \\ b
/ k! —o4| T
/ Y el - T,
/ gl \ g .
/ / i
! i J 0.3 \\

0.5 y

\\ / \\ /
0.1 /
\ N 7

Remark 8. The relations (15) and (16) show that the curve «, in Lemma 7 is sym-
metric with respect to the horizontal reflection (p, t) > (p, 214(6,) — f) in P. Con-
sequently, the surface S3(a) is symmetric with respect to the slice S% x {z,(54)}.

Furthermore, we observe that each surface S3(«) is contained in S x R where
S2 is the south hemispshere.
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Summarizing we can state the following result.

Theorem 9. Besides the totally geodesic slices S? x {to} and the vertical cylinder
I' x R where T C S? is a geodesic, the surfaces introduced in Lemmas 4, 6 and 7
are, up to ambient isometries, the only complete totally umbilic rotational surfaces
in S? x R. In particular they are all embedded and homeomorphic either to R? or
0 S%. Among the surfaces homeomorphic to S* some are homologous to zero and
some are not.

Remark 10. It is interesting to observe that unlike in the case of space forms, the
totally umbilic surfaces we obtained do not have constant mean curvature, except for
the totally geodesic ones.

4. Symmetric totally umbilic surfaces in H2(x) x R

In this section, we classify the totally umbilic surfaces in H? x R which are invariant
under a one-parameter group of isometries. The case of M?(x) x R, ¥ < 0, is
completely similar.

We recall that in H? there are three kinds of one-parameter families of positive
isometries: the rotations around a fixed point (elliptic isometries), the translations
along a fixed geodesic (hyperbolic isometries) and the “translations” along the horo-
cycles sharing the same point at infinity (parabolic isometries). An isometry of H?
obviously induces an isometry of H? x R fixing the factor R pointwise. Such an
isometry of H? x R obtained from an elliptic (resp. parabolic, hyperbolic) isometry
of H?2 will thus be called elliptic (resp. parabolic, hyperbolic).

We will see that for each of the associated families of isometries of H? x R there
exist complete and globally invariant totally umbilic surfaces. In fact, we are going
to classify all of them. More precisely, we prove they are all embedded, those which
are invariant under elliptic isometries are either totally geodesic slices H? x {to} or
homeomorphic to the sphere and the remaining ones are all homeomorphic to the
plane. In particular the only totally geodesic ones are the slices and the products
I' x R where I'  H? is a geodesic.

We will work with the disk model for H?, so that

H? = {(x,y) € R%, x? + y% < 1},

and the metric 1s

2 2
dsZ = dx? + dv?).
H (1—(x2+y2)) " +dy7)
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Therefore the product metric on H? x R reads as follows:

3 2 2

where (x,y) € H? and r € R. We consider the following particular geodesics of
H?2:

I'={(x,0), x e]-1,1[} C H?,

L={0,y), ye]-1,1[} c H2

Up to ambientisometries, we can assume that the symmeltric surfaces are generated
by curves in the geodesic plane P := ' x R ¢ H? x R.

On the geodesic I' we denote by p € R the signed distance to the origin (0, 0),
thus x = tanh p/2. Therefore the metric on P is

9 2
ds? = (1 2) dx* +dr* = dp® +dr*.
— X

Given a curve a(s) = (p(s), t{s)) parametrized by arclength in P, we let 8(s) be
the oriented angle between the p-axis and «'(s). Therefore, we have

!
p,(s) = C.()S B(s), a7
t'(s) = sin 6(s).

In the elliptic case, the isometries of H? x R under consideration are the rotations
around the vertical axis R := {(0,0)} x R. In the parabolic case, the isometrics
are the ones corresponding to the point at infinity (—1,0) € 9, H?. Finally, the
hyperbolic isometries correspond to translations along L in HZ.

In the plane P we consider the unit normal N to the curve « so that the basis
(¢’ (s), N(s)) is positively oriented for each s. In the three cases we orient by N the
symmetric surface generated by «. The principal curvatures computed with respect
to this orientation are as follows:

Ai(s) = 6'(s)

and
in 0
M (elliptic case),
1 (g) — | tanD p(s)
Z(S) - sin Q(S) (parabolic Case),

sin B(s) tanh p(s) (hyperbolic case).
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4.1. Elliptic case. The umbilicity condition is

sin 6(s)

OO = n oGy

This case is similar to the case @ > 1 in S? x R, so we will omit the details.
Diftferentiating the first equation in (17) and using the umbilicity condition we get

12 1
= (18)
tanh p
Discarding the trivial totally geodesic surfaces H? x {to}, we can show as in the
case of S2 x R that p”?(s) # 1 for any s such that p(s) # 0. Therefore we may
assume that p'> < 1.

We can state the following.

Proposition 11. Any local solution of (18) satisfying p'* < 1 gives rise to a unique,
up to ambient isometries, complete rotational totally umbilic and nongeodesic surface
in H? x R. Moreover, there exists a one-parameter family of such surfaces and all
of them are analytic, embedded and homeomorphic to the sphere.

Besides the totally geodesic slices H? x {t}, these surfaces are the only complete
rotational and totally umbilic surfaces in H? x R,

Furthermore, any rotational umbilic (including geodesic) surfuce in H? x R is,
up to an ambient isometry, part of one of the above surfaces.

Proof. Let p be a local solution of (18). Proceeding as in the case of S% x R, we can
suppose that p’ > 0 and so

o = \/ 1 — b2 sinh? p, (19)

for some real number b > 0. As in the case of S? x R, the functions p(s) and 7 (s) are
related to the Jacobi elliptic functions as follows: p(s) = —iam(is, —h?) and, up to
the sign, t'(s) = ib sn(is, —b?), see |1, Chapter 16]. Again, we prefer to give direct
and elementary arguments.

Let pp be the maximal solution of (19) extending p. As in the proof of Lemma 3,
we can prove that pp vanishes at some point. Thus, up to a reparametrization we
can assume that p; (0) = 0, consequently we prove as in Lemma 3 that pp, is an odd
function. Therefore pp, is defined on an interval |—4&p, 85 [. As in Lemma 7, it can be
shown that & is a finite positive number, that pp has a finite limit / = argsinh 1/5 at
8p and that p; (s) — O as s — 6.

From equations (18) and (19) we deduce that pp satisfies

p”" = —b? cosh psinh p (20)
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The generating curve in the elliptic case

forb =10
e
/ - \
N
/ 0.15 \\
The generating curve in the elliptic case / \\
forbh = 0.1 i ‘\
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/ 2.5 e |
, \ /
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[ ¥ 18y | \ 0.05- /
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\\ 0.5 S \\\ -
““““““ 0 — - o
73 - ah i p 5 0.1 0.05 P

with the initial conditions p(0) = 0 and p’(0) = 1. Therefore we can extend the
solution pp of (20) beyond 6. Let pp be the maximal solution of (20} extending pp.
Observe that for any so where g (so) = 0 we have the symmetry 5 (250 —5) = pp(5).
As p,(8p) = 0 and pp is odd, we deduce that pp is defined on all of R and that it is
44 -periodic.

As we are interested in curves generating rotational totally umbilic surfaces, we
look for a function 7 satisfying 1'? = 1 — 52 = b?sinh? §,. Let 1, be the function
defined by #, = b sinh p;, and #,(0) = 0, thus 7, is an even function. As in the proof
of Lemma 7, we can show that 75 satisfies 1, (28, — 5) = 2t5(Sp) — tp(s) for any
s € R and that it is also 43p -periodic.

Taking into account that 7 is increasing on [0, 23], we deduce that the curve
ap(s) = (pp(s),1(s)), s € R, parametrizes an analytic Jordan curve in P, symmetric
with respect to the axis R.

To conclude the proof we just observe that the other choice for 15, that is 1, =
—b sinh pp, leads to the curve deduced from ¢, by the isometry (p, 1) — (p,—t). O

4.2. Parabolic case. The umbilicity condition is
6'(s) = sin O(s)
Integrating this equation we get
f(s) = 2arctan Ae® forall s € R,

for some real constant A.
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First observe that A = 0 leads to the curve I which generates a slice H? x {z,}.

Now if A < 0 then 6 is a negative function. Note that the symmetry (p,t) >
(p, —t) changes & into —f. Therefore, up to an ambient isometry, we can assume
that @ is positive and then 4 > 0. Finally observe that up to the reparametrization
s > s —log A we can assume A = 1 and then

O(s) = 2arctane® for all s € R. (21)
Taking into account the first equation in (17) and (21) we obtain
p'(s) = cos2arctane® = —tanhs for all s € R.

Thus
p(s) = —logcoshs + p foralls € R,

for some real constant . Note that the isometries of H? x R obtained from the
hyperbolic translations along the geodesic I' in H? send any surface invariant under
the parabolic isometries fixing the point at infinity (—1,0) € d,,H? to a surface of
the same type. Consequently, up to an ambient isometry, we can assume g = 0.
Thus

p(s) = —logcoshs foralls € R.

As for the function 7, taking into account the second equation in (17) and (21) we

obtain
2e°

1 + 28

t’'(s) = sin 2 arctan ¢* = foralls € R.

Integrating we get
t(s) =2arctane’ + B foralls € R,

for some real constant 8. Up to a vertical translation we can take § = —/2 so that
1{0) = 0 and
T
t(s) = 2arctane® — 3 forall s € R.

Note that t(—s) = —t(s) and p(—s) = p(s) for any s € R so that the curve Lp,
parametrized by (p(s),1(s)), s € R, is symmetric with respect to I
Summarizing we state the following proposition.

Proposition 12. Besides the slices H? x {t}, up to ambient isometries, there exists
a unique complete totally umbilic surface Sp in H? x R invariant under parabolic
isometries. This surface is analytic, properly embedded, homeomorphic to a plane
and is invariant under reflection with respect to a horizontal slice.

Moreover, any totally umbilic surface invariant under parabolic isomeltries is
either part of a slice or, up 1o an ambient isometry, part of this surface.
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The generating curve in the parabolic case

F1.5

N los

Ak

-
T

Remark 13. Consider the surface M in H? xR generated by the same curve Ly, C P
under parabolic isometries fixing, now, the point at infinity (1,0) € 9o H? (and not
(—1,0) as before). Observe that at each point of M the principal curvatures Ay, A>
of M are givenby A; = Ay and A, = —A,. Therefore we get

ilﬂ—iZ:Al—AzEO.

We deduce that M is a complete minimal surface of H? x R, embedded and invariant
under parabolic isometries. Consequently, M is foliated by horocycles. This minimal
surface was considered by B. Daniel [6], R. Sa Earp [8] and L.. Hauswirth [12].

4.3. Hyperbolic case. The umbilicity condition is
8'(s) = sin O(s) tanh p(s).

Proceeding as in the elliptic case, we discard the totally geodesic surfaces H? x {}
and therefore we can assume that p satisfies p? < 1 and

o' = (p?*—Dtanhp, p?—1=—c?cosh?p, (22)

for some real constant ¢ € |0, 1[. Again, invoking the Jacobi elliptic functions, it can

be shown that, up to the sign, we have p(s) = iam(is + K,c?) —in/2 and t'(s) =
. 2 _ rm/2 dt

csn{is + K, c*y where K = fo T see [1, Chapter 16]. Nevertheless, as

in the previous cases, we prefer to give direct and elementary arguments.
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We deduce from (22) that
"o 2 .
p’ = —c* cosh psinh p. (23)

If p = 0, then the generated surface 1s the vertical totally geodesic plane, that 1s,
£(0,v,1), —1 <y < 1, t € R}. Discarding this case, we consider only the nontrivial
solutions of (23).

Again, as in the elliptic case, it can be shown that any maximal solution of the
last equation is defined on the whole of R, is periodic, vanishes at some point and,
up to a reparametrization, is odd. We can therefore assume that there exists a unique
maximal solution p. satisfying £(0) = 0 and 0’ (0) = ~/1 — ¢2.

As we are interested in curves generating totally umbilic surfaces, we look for a
function ¢ satisfying t> = 1 — p2 = ¢?cosh? p.. Let t. be the function defined
by t. = ccosh p. and 1.(0) = 0. The function ¢, is odd. Moreover consider any
sop € R such that p/(so) = 0, then it can be shown that p. (259 — s} = pc(s). Set
T(s) := —t.(2s0 — 8) + 2t.(s0), s € R. We have T’ = ¢/ and T(s9) = t.(s0).
therefore T = f.. As the function ¢, is odd, we have 1. (s + 4s¢) = 4t.(sg) + t.(s)
for every s € R. We can deduce that ¢, is an increasing and nonbounded function on
R. This shows that the curve o, = (p, t.) 18 properly embedded.

Observe that the other choice ¢’ = —c cosh p. changes the curve o, = (pc, )
into the symmetric curve (p., —t. ) with respect to '

The generating curve in the hyperbolic case
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We summarize stating the following.

Proposition 14. Any non identically zero local solution of (23) satisfving p* < 1
gives rise 1o a unique, up to ambient isometries, complete totally umbilic and non-
geodesic surface S., ¢ > 0, in H? x R invariant under hyperbolic isometries. More-
over, there exists a one-parameter family of such surfaces and all of them are analytic,
properly embedded and homeomorphic to the plane. These surfaces are periodic in
the vertical direction and symmetric with respect to a discrete set of horizontal slices.

Furthermore, any umbilic surface in H? xR invariant under hyperbolic isometries
is either part of a vertical totally geodesic plane, a slice H? x {t } or; up to an ambient
isometry, part of one of the surfaces S..

5. Unicity of totally umbilic surfaces in H?(«) x R and S2(k) x R

In this section M2 stands for H? or S2. The cases M? = M?(x) forx < Oand« > 0
are completely analogous.
We will need the following result which is of independent interest.

Proposition 15. Let S € M? x R be an orientable surface transversal to each slice
M? x {t}. We suppose the following:
(1) The geodesic curvature of each horizontal curve S; := S N (M? x {r}) in M?
is constant (depending on t).

(2) The angle between S and M? x {t} is constant along S; for each t.

Then:
In case M2 = S? the surface S is part of rotational surface.
In case MI? = H? the surface S is part of either

(a) a rotational surface,

(b) ora surface invariant by a family of parabolic isometries having the same fixed
point at infinity,

(¢) orasurface invariant by a family of hyperbolic isometries along the same fixed
geodesic of H.

Proof. Let N be a unit normal field along S. We define the function v on S setting
v = (N, a%)' We denote by T the projection of e% on S, thatis 7' = 3% —vN.

As the angle between S and M? x {¢} is constant along S,, we deduce that S, is a
line of curvature. Indeedlety: s € I C R — y(s} € S; bearegular parametrization
of ¢, then taking into account that aa_t is a parallel field and the definition of 7,

d ) - 0 =
0= d_s(N> E> N <VY’(s>N’ 5) = (Vy)N.T),
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where V is the connection on M2 x R. It follows that T is a principal direction on S.

Letc:u €l CR — c(u) € S be aline of curvature associated to the field T.
We are going to show that ¢(7) is contained in a vertical totally geodesic plane. This
is equivalent to showing that the horizontal projection c¢;: I C R — M? of c is a
geodesic.

Assume first that ¢ is never vertical, that is v # 0 along c¢. Thus ¢, does not
vanish.

Let V be the connection on M?. It is sufficient to show that Vc;z c, s always

parallel to ¢;. As ¢’ = ¢; + (1 — vz)% we have

— — d d
_ r_ 4 2
VT =V = chch + ™ (1—v )_at

As T is a principal direction there exists a function A such that Vo N = AT . Therefore

p' = d%(N, %> = (VTN, %> = A1 —v?).

Thus we obtain 5
VT = chc;l —2Av(1 — Uz)g.

Moreover we have
— — 0 —
VTT = VT (E — UN) = —VTUN
=—v'N-MT
d
= (%/ — Av) ¢, + (—v'v—2Av(l — vz))g

d
= (U—/ - Av)c;l —2Av(1 — vz)a.

1%

Thus we get

v/
;o /
Vc;lch = (? — Av)ch,

which shows that ¢, (1) is a geodesic in M2,

We denote by w a unit horizontal field along ¢ tangent to S and for each v € [
we let P(u) be the vertical totally geodesic plane containing ¢(u) and orthogonal at
c(u) to w(u).

Suppose now that v vanishes on an open interval J C I. Let uy € J. Observe
that along the horizontal curve of S through c(u) the vector field N is horizontal.
This means that an open set of S, including c(J), is part of a cylinder y x R where
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y C M? is some horizontal curve. Clearly this implies that w is constant along J,
and thus sois P.

Combining those two arguments we see that P is locally constant on an open and
dense subset of /. As P{u) depends in a differentiable way on u, we conclude that
P 1s constant.

Let us now consider a horizontal curve y: I — S; parametrized by arclength.
Letsy, sy € I and call ¢: |—e¢,¢[— S the integral curve of T such that ¢(0) = y(sy)
and ¢: |—¢, e[— S the integral curve of T such that ¢(0) = y(s2).

Let us call ¢3 (resp. ¢3) the vertical coordinate of ¢ (resp. ¢). Calling again u the
parameter in |—¢, £[, we have

J d
) = (00, o) = (T, 51} = 1 - v2(e0) = 1 - v2(es0),

Thus c3 and ¢3 verify the same first order differential equation with the same initial
condition at ¥ = 0. We conclude that c3 = ¢3.

Recall that ¢ and ¢ are contained in vertical totally geodesic planes P and P.

Letus call T ¢ M? the complete constant geodesic curvature line defined by y,
thatis y C I

Observe that there is a unique positive isometry ¢ of M? such that ¢(I') = T,
¢(c(0)) = ¢(0)and preserving the orientation of I'. Therefore the isometry ®(z, ) =
(p(z),1) of M2 xR sends P to P. Note that the curves & and ®oc in the vertical plane
P have the same vertical component and make the same angle with the horizontal for
each u € ]—e¢, e[. We deduce that these curves coincide: ® o ¢ = ¢. This concludes
the proof. O

We now state the main result of this section.

Theorem 16. Let S € M? x R be an immersed totally umbilic surface. Then S
is part of a complete and embedded totally umbilic surface S which is invariant by
a one-parameter group of isometries of M? x R. More precisely, up to an ambient
isometry, in case M? = S2, then S is one of the examples described in Section 3,
and in case M2 = H2 then S is one of the examples described in Section 4.

In particular, any totally geodesic surface is part of a slice M* x R or part of a
product T x R where I' C M? is a geodesic.

Proof. Locally S is the image of an embedding X : Q — M? x R, where Q is an
open disk in R2, As X is totally umbilic, there exists a function A:  — R such that

VN = Aw,

for any vector w tangent to S.
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Proceeding as in the proof of Theorem 1, as = 0 we obtain
VA =xvT, (24)

where « is the Gaussian curvature of M2, thatis « = 1if M? = S? and « = —1 if
M2 = H?2.

Assume for the moment that A has no critical point. In particular each level curve
of A is orthogonal to T and is therefore horizontal, that is belongs to some M? x {z}.
Lety: I C M? x {ty} be such a curve parametrized by arclength. We have

& [Ty )+ (N T ) = o)y 6. ) = 0.
therefore v is constant along y.

We now call n the unit normal field in 7(M? x {1o}) along y with the orientation
induced by N. Let & be the oriented angle between n and N, hence N(y(s)) =
cos B(s)n(y(s)) + sin 6’(s)a% (y(s)), we deduce that 6 is constant along y.

On the other hand,

Ay () = {Vy ) N.y'(5))
= (V,,f(s)(cos 6 n + sinf— 0 ) '(5))

= cos@(vy/(s)n, Y/ (s)) + sin 9( Y5 ,)/ (S))
= cos O(V,n, ¥ (s)).

Now observe that {(V,.»n,y'(s)) is the geodesic curvature of y in M? x {7}
Since A and 6 are constant along ¥ we deduce that y has constant geodesic curvature.
We conclude using Proposition 15 and results in Sections 3 and 4 that S is as stated.

Suppose now that A has some critical points.

Let U C S be a connected component, if any, of the interior of the set of critical
points of A. The formula (24) shows that N is either always vertical or always
horizontal in U. In the former case U is part of a slice M? x {#y} and in the latter
case U is part of a cylinder, that is part of a product I' x R where I is some curve in
M?. As S is totally umbilic, T has to be a geodesic and so U is totally geodesic.

Letnow V' C S be a connected component, if any, of the set of regular points of
A. From the first part of the proof, we know that V' is part of one of the symmetric
examples given in Sections 3 and 4.

Therefore S is obtained by gluing pieces of totally geodesic surfaces and pieces
of the symmetric examples constructed in Sections 3 and 4. A closer look at these
different types of surfaces shows that the whole of S 1s either totally geodesic or part
of one of the complete symmetric examples, which concludes the proof. 0
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Remark 17. The local existence of totally umbilic surfaces in S x R and H? x R
can be seen in an alternate way. Indeed, it is known that umbilicity is preserved
by conformal diffeomorphisms, see [21], Volume 4. It can be shown that S x R
is conformally diffeomorphic to R? \ {(0,0,0)}, see Section 7. This implies the
umbilic surfaces in S? x R correspond through this conformal diffeomorphism to
those of R3\ {(0,0,0)}. However (o classify them in S? x R up to congruences,
and to understand their geometry requires a nontrivial work. Regarding H? x R, it
can be shown that H? x ]0, 7| is conformally diffeomorphic to H?, see Section 7.
Nonetheless this is not enough to understand the global geometry and topology of
the umbilic surfaces in H? x R.

Remark 18. It can be proved that any twice differentiable totally umbilic surface in
a space form, in S?(k) x R or in H? (k) x R, is in fact C* and then analytic by the
previous discussions, see [20].

6. Totally umbilic surfaces in Sol!

The Sol geometry is the eighth model geometry of Thurston, see [22]. It is a Lie
group endowed with a left-invariant metric, it is a homogeneous simply connected 3-
manifold with a 3-dimensional isometry group, see [3]. Itis isometric to R ? equipped
with the metric

ds? = e** dx? 4+ e 27 dy? +dz>.

The group structure of Sol 1s given by
(x',y, 2y x(x,y,2) = (e %' x + x', ez/y + v,z + 2.
The isometries are

(x,v,2) > (e “x+a, ey + b,z +¢)
and
(x,v,z2) > (e vy +a,xex + b, —z + ¢),
¥ y

—z 0

where a, b and ¢ are any real numbers. We set E; = e 5 B, = e?

dy
E; = %. Thus (E1, E,, E3) is a global orthonormal frame. A straightforward

computation gives

and

Vi, E1 =—Es, Vg,E1 =0, Vi E1 =0,
Vg, FEs =0, Vi, Ea=E;, Vp,Ey=0, (25)
Vg, Es=FE1, Vg Ez=—Ey, VgFE3;=0.
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We deduce from (25) that the vertical planes {x = x¢} and {y = vy} are totally
geodesic complete surfaces and that the horizontal planes {z = zg} are not totally
umbilic surfaces (in fact they are minimal surfaces).

We now look for totally umbilic surfaces which are invariant under the one pa-
rameter group of isometries (x, y,z) +— (x + ¢, y,z). Clearly, such a surface is
generated by a curve y in the totally geodesic plane {x = 0}. Discarding the trivial
case of a vertical plane {y = vy}, we can assume that y locally is a graph over the
y-axis. Thus y is given by y(y) = (0, y, z(y)). Therefore the generated surface is
parametrized by

X, y) = y,2(3)

We have X; = (1,0,0) = ¢"Ejand X, = (0.1,2') = e 7Ey + z'E3. As a unit
normal field we can take

-_ e’z B, — 1 5
We have
Vx,N = —;Xﬁ

V14 2272

—Z

- (1 + 227/2)3/2

!

Vx,N (14 2a%5% L 225"y,
¥y

(1 +2e%2% + 272" E,.

z
T (1 + 8222/2)3/2
So that X is a totally umbili¢c immersion if and only if

_ 1
Vg, N=———X,,

g V14 e22z2

that 1s, 1f and only 1f
2+ 327 277 =0 (26)

A first integral of (26) is

Z/Z — a8 _ 6_22,
where a 1s any posttive real number.

Assume z’(yg)} = Oforsome yy. Considering the function f(y) = z(2yp—y), we
can see that the curve y is symmetric with respect to the vertical geodesic {y = yo}.
Therefore, up to the isometry (x, v, z) — (x, —y, z) and restricting the domain of z
if needed, we can assume z” > 0. Therefore z satisfies

' = e " ae47 — 1. (27)
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We consider the maximal solution of (27) defined by z and we call it again z, it
is defined on an open interval |yq, y2[, —00 < y1 < y2 < +oo. By (27) the
function z is bounded above and is increasing we deduce using (26) that z” has a
negative limit at y,. Taking into account the fact that z’ is positive, we deduce that
ya is finite, y2 < 4+o00. Moreover, since z’ is a positive and decreasing function,
it has a nonnegative limit at y,. If this limit were positive, we could extend the
solution z of (27) beyond y, which contradicts the maximality of z. Thus we have
limy_,, z’(y) = 0 and consequently lim,_, , z(y) = %log a.

Consider now the maximal solution of (26) defined by z and call it z,. Since
z/(y2) = 0 we have z,(2y2 — ¥) = z,(¥). Up to the horizontal translation
(x,y,2) > (x, y— ya, z), which is an ambient isometry, we can assume that y, = 0
and therefore z,, is an even function and is defined on an interval |—y,, v, [ where 0 <
Ya < 4o00. Observe that there exist A > 0 and y3 > Osuch that z//(y) < —4A < 0
for any y > ys3. Therefore, if y; = 400 we have limy o z4(y) = —o0. Suppose
now that y, is finite. If z, had a finite limit at y, then z/, would have also a finite limit
but then we could extend the solution z, beyond y,, which is absurd. We deduce that
in both cases, that is y, < 400 and y, = +00, we have lim,_,,, z,(y) = —¢.

Now we show that y, < +4o00. Indeed, as z, is a solution of (26) satisfying

z,(0) = 0 we have
4z
Z'(y) = —ae 71— 67,

for any y > 0. Since lim,_, z4(y) = —oo, we deduce that for some y4 > 0 we
have i i

_Zle3z <

Ja 2
for any y > y4. Therefore we have

1
e3z<—X—|—c

3Ja 2
for some real constant ¢ and for any y > y4. This implies that y, < 4oc.
Call y, the graph of the function z,, y, 1= {(0, y,z4(¥)), —va < ¥ < ¥4} and
call F, the totally umbilic complete surface generated by y,:

Fa = {(x’yvza(y))v X €R7 _ya <y < ya}

Let z, and zp be two maximal solutions of (26) where a and b arc any real numbers.
Sete = %log g and consider the ambient isometry (x, y,z) > (e “x,e“y,z + ¢).
Observe that this isometry maps the planar curve y, onto the planar curve y, and
maps any Euclidean line parallel to the x-axis onto a line of the same type. Therefore
this isometry maps the totally umbilic surface F, onto the totally umbilic surface £}.

Summarizing, we state the following result.
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Proposition 19. Up to ambient isometries, there exist only two complete totally um-
bilic surfaces in the Sol group invariant under the horizontal translations (x, y,z) >
(x +1,v,2), t € R, The first one is the totally geodesic plane {y = 0}. The second
one is nongeodesic, is contained in a slab delimited by two totally geodesic planes
{y = xvo}, yo > 0, and is asymptotic to these planes. Moreover it is symmelric

with respect to the totally geodesic plane {y = 0}.

The generating curve in Sol for a = exp 8

AT
e g
. N
// h
/ 1.9 \
/ \
/ \
/ \
/ 1.8 \\
/ y
/ \
/ 7 \\\
/ 1.7 \
/ \
/ \
f 1.6 \
, \
| \
/ \
f 1.5] \
| |
| |
3 ) o > 3
y

As a matter of fact we have the following.

Theorem 20. Up fo ambient isometries, any totally umbilic surface in the Sol group
is part of one of the two complete totally umbilic surfaces given in Proposition 19. In
particular, up to ambient isometries, there exists a unique complete totally geodesic

surface in the Sol group.

Proof. Let S be an immersed totally umbilic surface in the Sol group. Locally S is
the image of an embedding X : Q2 — Sol, where € is an open disk in R2. Call (u, v)
the coordinates on 2 and consider a unit normal field N on X(£2). As X is totally
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umbilic, there exists a function A: €2 — R such that
Vx, N = AX,,
Vx,N = AX,,

where V is the Riemannian connection of the So! group. As in the proof of Theorem 1
we find

R(Xua XU)N = Ap Xy — Au Xy, (28)

where R denotes the curvature tensor of the Sol group. Let us express the latter. Let
X, Y, Z and W be any vector fields. Proceeding as in [7], Proposition 2.1, after some
computations and using (25) we obtain the following:

(RIX.YYZ.W) = (X.Z)(Y. W) —{(X. W)Y, Z))

(il 2o 2 nf 2

-l (2] ol e )

We define the function v on €2 setting v := (N, %). We denote by T the projection
of% onS,thatis 7 = % — vN. We then have

R(Xy, Xy)N =2v (<XU, i>Xu — (Xu, i)XU)
Jdz dz

= 20({Xy, T) Xu — (Xo, T) X)),
wherefrom we deduce, using (28), that
VA =2T. (29)
Assume first that v and 7 do not vanish on 2. Thus 7 1s of the form
T = aE| + BE> + yE3,

where o and B do not vanish simultaneously. Since |T|? = 1—v? wehave a2 4 p2 =
v2(1 — v?). We thus have

a p
N = ——El — —E2 + UE3.
Vv 1%

We set

B

T =—E
v

o
El + _EZ:
vV
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so J T is tangent to S, orthogonal to T and E3 and satisfies |J T'|> = |T'|?. Further-
more we have

NAT =JT, TAJT =(1—-v)N, JTAN=T.

We now compute the derivative [I JT] ()L)_in two different ways.
We first compute [T, JT] = V¢ JT — V;rT. We have

VrJT =VyNAT +NAVyT
=N AVyT (since VN = AN)
= NAVr(E; —vN)
=NAVypE;—MJT.

Furthermore, using (25) we obtain

V5rEs =aVEg Es+ BVE,Es+ (1 —v3)VE, E3
=l — BE,,

wherefrom we deduce after some straightforward computations that

= o - p? ap
V7iE;=—1T-2—"_—JT —v(l —v?)N.
res 1 —v2 v(l —v?) v =v)
Consequently
. (Xﬂ C[2_'82
VpdT =2—————T JT — AvJT.
T v({l —v?) T 1 —v2 v

In the same way we obtain

VirT =VyrEs—VrvN,

ap
2v(l — v2)

T +vJT —AvJT.

We deduce that

_ (Xﬂ a2_ﬁ2
[T,JT]—4mT—|—( [ — g2 —U)JT.

Using this last expression and (29), we find

[T, JTI(A) = 8ap. (30)
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On the other hand, using again (29) we have

[T.JTI(A) = T(IT(A) = JT(T(A))
= —JT({VA,T))
=2(—143v)JIT(v) D

= 4?(—1 + 3v2)

since an easy computation gives J T(v) = 2ef/v. From (30) and (31) we deduce
af(3v? —2v—1)=0.

Observe that if v is constant on an open subset then JT(v) = 0 which implies
aff = 0. So in all cases we have ¢ff = 0.

Recall that & and f do not vanish simultaneously since by our assumption v # 0.
Therefore we have either ¢ = O or f = 0.

Considering the isometry (x, y,z) + (v,x,—z) we can assume that ¢ = 0.
Then the surface is part of a product R x I where I' is a curve in the geodesic plane
{x = 0}. This case is considered in Proposition 19.

Let us suppose now that 77 = 0 on an open set. Then this open set is part of a
horizontal plane {z = z¢}, but this contradicts the assumption of umbilicity.

To finish the proof we consider the case where v = 0 on an open subset. Therefore
T = E3 and so this piece of the surface is part of a product L x R where L is a curve
in the horizontal plane {z = 0}. If L is contained in a line parallel to the y-axis, then
the surface is contained in a totally geodesic plane {x = x}. Discarding this trivial
case, we can assume that L is a graph over the x-axis. Consequently, the embedding
X is given by

X(x,1) = (x, y(x),1).
As a unit normal we take

N = 1 (e—Zty/ _621‘ O)
Ve 20y 4 e ’ ’
!

1
Y g - B

- /y/2_|_ e4t 1 /e—4tyl2 + 1

As X, = E3, using (25) we obtain

y/e4r e—4ty/2

Vx, N = -2 (32 + e4r)3/2E1 - 2(e_4fy’2 1 1)3/2 Ea.

The condition Vx, N = A X, is therefore equivalent to A = Oand y" = 0. So L is part
of a line parallel to the x-axis and the surface is part of a geodesic plane {y = yp}.
This concludes the proof. 0
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7. An application

As an application of the classification of totally umbilic surfaces obtained in the
previous sections, we can prove the following result:

Theorem 21. Any conformal diffeomorphism of H? x R, S? x R and Sol is an
isometry.

Proof. The result for S? x R is a consequence of the fact that the mapping

S2 xR — R*—{(0,0,0)},
(p.t)y>e'p

is a conformal diffeomorphism -here S$2 is viewed as the unit sphere of R? centered
at the origin. Indeed the conformal diffeomorphisms of R* — {(0,0,0)} are the
Mobius transformations fixing (0, 0, 0} or sending (0, 0, 0) to the point at infinity and
these transformations correspond through the above conformal diffecomorphism to
isometries of S? x R. We leave the details to the reader.

We now prove the result for the space H? x R. We claim that, except for the slices
H? x {tp}, all the non-compact maximal (for the inclusion) totally umbilic surfaces
in H? x R are conformal to C. This is clear for the products y x R, where y C H?
1s a geodesic. As for the surfaces invariant under a one parameter group of parabolic
transformations and which are all congruent to the surface Sp described in 4.2, this
is seen as follows. Consider in H? a totally geodesic plane which we call H? and
denote by N a unit normal along it. We let exp denote the exponential map in H?.
Then the map

H? x |0, n[ — H?,

(p,t) — expp(ln (tan (%))N(p))

is a conformal diffeomorphism (cf. [20] for the details) which sends Sp onto a totally
umbilic surface of H* with one point at infinity, that is a horosphere. It remains to
consider the case of the surfaces invariant under a one parameter group of hyperbolic
transformations. Consider such a surface 2. We know that X is invariant under a
set of reflections of H? x R through horizontal slices H? x {t = a + nb}, for all
neZ,anda,b € R depending on . Suppose by contradiction that % is conformal
to H2. The isometries of ¥ induced by those reflections correspond then to conformal
diffeomorphisms of H? and so to isometries of HZ2. In particular all the horizontal
curves ¥ N {t = an + b} correspond to geodesics of HZ. Now observe that all these
curves are invariant by the hyperbolic isometries leaving X mvariant. We thus get
isometries of H? which leave (globally) invariant more than one geodesic. This is a
contradiction as only the identity of H? has this property.
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Take now a conformal diffeomorphism ¢ of H? x R. Then ¢ sends any horizontal
slice H? x {fo} to a maximal totally umbilic non-compact surface which is conformal
to H2. From what precedes it follows that ¢ sends H? x {¢,} conformally to some
horizontal slice H? x {r;} and so isometrically. As ¢ is conformal this implies that
for any x € H? x {ty}, the tangent map D¢ is an isometry. So ¢ is an isometry of
H? x R.

The case of the Sol group is treated analogously. There are two maximal totally
umbilic surfaces up to congruences. With the notations of Section 6, the first one is
the totally geodesic plane {x = x4} and is easily seen to be isometric to H?. The
second one is the surface parametrized by X(r, y) = (¢, y,z(y)), wheret € R, y €
]—v1, v1[ and z is the maximal solution to the equation z’ = e ?+/¢=4% — | (we have
chosen a = 1 with the notations of Section 6). The metric on this surface wriles

ds? = ¥ dr* + e 7 dy?,
Making the change of coordinate £ = [ e=#7) dy, the metric writes
ds? = e??(dr? 4 d&?).

As the function z is bounded from above (cf. Section 6), the flat metric d¢* + d£2 is
complete. Tt follows that the surface is conformal to C. As the totally geodesic planes
{x = const.} fill the whole space Sol, we conclude as before that any conformal
diffeomorphism of Sol is an isometry. O
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