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Totally umbilic surfaces in homogeneous 3-manifolds

Rabah Souam and Eric Toubiana

Abstract. We discuss existence and classification of totally umbilic surfaces in the model
geometries of Thurston and the Berger spheres. We classify such surfaces in H2 R, S2 R
and the Sol group. We prove nonexistence in the Berger spheres and in the remaining model
geometries other than the space forms.

Mathematics Subject Classification 2000). 53C30, 53B25.

Keywords. Totally umbilic, totally geodesic, homogeneous 3-manifolds.

1. Introduction

During the recent years, there has been a rapidly growing interest in the geometry of
surfaces in S2 R and H2 R focusing on minimal and constant mean curvature
surfaces. This was initiated by H. Rosenberg, [16]. More generally many works are
devoted to studying the geometry of surfaces in homogeneous 3-manifolds. See for
example [14], [6], [7], [17], [15], [12], [13], [11], [9], [4], [2], [10], [5] and [8].

In the space forms the classification of totally umbilic surfaces is well known and

very useful, see [21]. InR3 they are planes and roundspheres and in S3 they are round
spheres. In H3 they are totally geodesic planes and their equidistants, horospheres
and round spheres. In particular they all have constant mean curvature.

A natural question is to understand the totally umbilic surfaces in the remaining
homogeneous 3-manifolds. Until now the only known result in this direction was the
non-existence of totally umbilic surfaces in the Heisenberg space due to A. Sanini,
see [17]. In this paper we study totally umbilic surfaces in simply connected and
homogeneous 3-manifolds. More precisely we first consider the manifolds having a

4-dimensional isometry group, denoted by M3. ; / see Section 2). Namely these

manifolds are S2. / R > 0; D 0), H2. / R < 0; D 0), the Berger
spheres > 0; 6D 0) and the manifolds having the isometry group of either the

Heisenberg space D 0; 6D 0) orCPSL2.R/ < 0; 6D 0), see [3], [19] or [22].
Except for the Berger spheres, these manifolds are four of the eight model geometries

of Thurston [22]. The remaining model geometries are the three space forms and the
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Sol geometry which has a 3-dimensional isometry group. As a matter of fact we also
consider the Sol geometry.

InSection 2we prove Theorem1) the non-existence oftotally umbilic surfaces, in
particular the non-existence of totally geodesic ones, in the homogeneous manifolds
M3. ; / for 6D 0, that is those which are not Riemannian products. This extends
the result of Sanini, [17].

In Section 3 we construct and classify all rotational and totally umbilic surfaces

in S2. / R. In Section 4 we construct and classify all totally umbilic surfaces in
H2. / R which are invariant under a one-parameter group of ambient isometries.
Except for the totally geodesic ones, these surfaces do not have constant mean
curvature. In Section 5, we prove that the surfaces obtained in Sections 3 and 4 are the
only totally umbilic surfaces in respectively S2. / R and H2. / R.

In Section 6 we show that there exist, up to ambient isometries, only two totally
umbilic surfaces in Sol, one of them being totally geodesic.

Finally, in Section 7 we apply our results to prove that any conformal diffeomorphism

of H2 R; S2 R and Sol is an isometry.
Throughout this paper all the surfaces are assumed of class C3, see however the

remark 18.
We are grateful to H. Rosenberg for valuable comments and to the referee for his

observations which improved the paper.

2. Non-existence of totally umbilic surfaces in some homogeneous 3-manifolds

In this section we consider the connected and simply connected homogeneous
Riemannian 3-manifolds, whose isometry group has dimension 4 and which are not
Riemannian products. We recall that such a manifold is a fibration over some complete
and simply connected surface, M2. / of constant curvature 2 R, with geodesic
fibers. Actually, for each there is a one-parameter family M3. ; / of such
fibrations, parametrized by the bundle curvature 2 R The unit vector field tangent
to the fibers is a Killing field and satisfies

rX D X ^ /; 1)

for any tangent vector X in TM3. ; / where r is the connection on M3. ; /
The field defines the vertical direction of the Riemannian submersionM3. ; /
M2. / As a matter of fact, the bundle curvature can be zero, but in this case

M3. ; 0/ is just a Riemannian productM2. / R. These product manifolds will be
considered in the following sections. Moreover we assume 4 2

6D 0, otherwise
the manifold isa space form and its isometry group has dimension 6. These manifolds
are of three types: when > 0 they are the Berger spheres, for D 0 they have the
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isometry group of the Heisenberg space, Nil3, and for < 0 they have the isometry

group of CPSL2.R/.
For more details we refer to [3], [19] and [22].
We can now state our result.

Theorem 1. There exist no totally umbilic surfaces even non complete) in the 3-
manifoldsM3. ; / with 6D 0 and 4 2

6D 0. In particular, there are no totally
geodesic surfaces.

For the special case of the Heisenberg space D 0; D 1=2), we recover the
result proved by A. Sanini, see [17].

Proof. Let S be an immersed totally umbilic surface in M3. ; / Locally S is the
image of an embedding X W M3. ; / where is an open disk in R2. Call
u; v/ the coordinates on and consider a unit normal field N on X. / As X is

totally umbilic, there exists a function
W R such that

rXuN D Xu;

rXvN D Xv:

Therefore

rXv rXuN/ D vXu C rXvXu;

rXu rXvN/ D uXv C rXuXv:

Subtracting the second equation from the first one we get

rXv rXuN/ rXu rXvN/ D vXu uXv;

that is,

R.Xu; Xv/N D vXu uXv; 2)

where R denotes the curvature tensor ofM3. ; /
We define the function on setting WD hN; i. We denote by T the projection

of on S, that is T D N.
As the projection M3. ; / M2. / is a Riemannian submersion, we have the

following formula derived by Daniel, see [7]:

R.Xu;Xv/N D 4 2/ hXv;T iXu hXu; T iXv/ :

Taking into account the relation 2) we get

r D 4 2/ T; 3)

wherer denotes the gradient on S.
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Observe that if T D 0 on a nonempty open set, then we can take N D on this
set and we deduce from 1) that this surface cannot be umbilic. We can thus assume

that T does not vanish on
Set JT D N ^ T thus JT is tangent to S and horizontal.

Claim. We have OET; JT 0.
We need to show that rT JT D rJT T Since JT D N ^ T D N ^. N/ D

N ^ we have using 1)

rT JT D rT N ^ / D rTN ^ C N ^ rT D T ^ / C N ^ T ^ //:
As T ^ D T ^ T C N/ D T ^ N/ D JT we deduce that

rTJT D JT C T:

On the other hand,

rJT T D rJT N/ D JT ^ / JT:. /N JT: 4)

We have

JT ^ D JT ^ T C N/ D JT ^ T C JT ^ N D jT j
2N C T; 5)

and
JT:. / D JT:hN; i D hrJT N; i C hN; rJT i

D hJT; i C hN;JT ^ i D hN;JT ^ i:
Using 5) we obtain

JT:. / D jT j
2: 6)

Inserting 5) and 6) in 4) we end with

rJT T D T JT D rT JT;

which proves the claim.
Now 3) implies

JT:. / D 0;

T:. / D 4 2/ jT j
2

D 4 2/ .1 2/
Since OET; JT D 0, we get 4 2/JT:. 3/ D 0. As 4 2

6D 0 we infer that

.1 3 2/J T:. / D 0. This implies easily

JT:. / D 0:

As JT:. / D jT j2, see 6), and 6D 0, we deduce that T 0, which is a

contradiction. This concludes the proof.
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3. Symmetric totally umbilic surfaces in S2. / R

In this section we classify totally umbilic surfaces which are rotationally invariant in
S2 R. The classification inM2. / R, for any > 0is completely analogous. We
will see that besides the obvious totally geodesic ones, up to isometries of S2 R,
there are two one-parameter families of complete totally umbilic rotationally invariant
surfaces homeomorphic to the two-sphere and a unique complete surface which has

the topology of R2. The surfaces of the first family are homologous to zero and those

of the second family are not. Moreover these surfaces are embedded, analytic and
any totally umbilic rotationally invariant surface is a part of one of these complete
surfaces.

A rotational surface in S2 R is by definition a surface obtained by rotating a

curve in a totally geodesic cylinder C WD R, where S2 is a geodesic, around
an axis R D fpg R where p is a fixed point of

In the coordinates x; y; t/ given by the stereographic projection with respect to
the north pole, the metric on S2 R reads as follows:

d
Qs

2
D

2
1 C x2 C y2

2

dx2
C dy2/ C dt 2;

where x;y; t 2 R.
Upto anambient isometrywecanassume that S2 corresponds to thecomplete

geodesic defined by y D 0 and that p D .0;0;0/ 2 is the south pole of S2.
Therefore the axis is R D f.0; 0; t/; t 2 Rg.

Remark 2. Let us remark that for any given curve in the cylinder C, the surface
generated by rotating around the axis through the south pole, that is R, is the same
as the one generated by rotating around the axis through the north pole.

We consider the vertical noncomplete) geodesic plane P D fy D 0g C, that
is C D P [ fNg R/, where N 2 S2 is the north pole.

Let 2 ; OE denote the signed distance to the origin .0; 0/ on \ P. Thus
we have x D tan. 2/. In the coordinates ; t/ the metric on the plane P writes

ds2
D d 2

C dt2 :

Consider now a smooth curve s/ D s/; t s// parametrized by arclength in
P. Let s/ be the oriented angle between the -axis and 0.s/. Therefore, we have

0.s/ D cos s/;

t0.s/ D sin s/:
7)

In the plane P we consider the unit normal N to the curve so that the basis
0.s/; N.s// is positively oriented for each s. We orient by N the symmetric surface
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generated by The principal curvatures computed with respect to this orientation
are as follows:

1.s/ D 0.s/;

2.s/ D
sin s/
tan s/

:

Thus, the umbilicity condition is

0.s/ D
sin s/
tan s/

: 8)

A priori the equation 8) makes sense only for 6D 0, but as we will see later the
surfaces we obtain are regular even at such points.

Differentiating the first equation in 7) and using equation 8) we get

00

D
02 1/
tan : 9)

Assume that 0.s0/ D 1 for some s0 where s0/ 6D 0. Note that the function

f s/ D s0/ Cs s0 is a solution of 9) with the same initial conditions at s0 than
Therefore f and t 0 0 and the surface is part of a slice S2 ft0g. The same

happens in case where 0.s0/ D 1. Henceforth we will assume that 02.s/ 6D 1 for
all s and 9) is equivalent to

00

02 1/ D
cos

sin
:

Multiplying both sides by 2 0 and integrating we get

02 1 D sin2 ;

for some nonzero real constant Since the curve is parametrized by arclength we
must have 02 < 1. Thus D a2 for some a > 0.

Conversely, any solution of 9) satisfying 02 1 defines a function s/ setting
cos s/ D 0.s/. Consider the function t defined by setting t0.s/ D a sin s/ and

t.s0/ D t0 for some s0 in the domain of and some real number t0. Then t satisfies
the second equation of 7) and therefore the curve s/ D s/; t s// 2 C generates
a rotational totally umbilic surface in S2 R.

Let be a solution of 9) satisfying 02 < 1. Observe that equations 7) and
8) show that 0 cannot be identically zero on an open interval unless the generated

surface is part of the totally geodesic cylinder 2. Henceforth we assume that
is not this trivial solution and so, up to restricting the domain of we can suppose

that takes its values in 0; 2OE or 2; OE.
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So, we can consider an interval on which 0 never vanishes. Changing s into s
if needed we can suppose that 0 > 0. Therefore we get

0 D q1 a2 sin2 : 10)

It is interesting to note that, when a 6D 1, the function is the Jacobi amplitude
function s/ D am.s;a2/ and, up to the sign, we have t0.s/ D a sn.s;a2/ and

0.s/ D a cn.s; a2/, where sn.s; a2/ D sin am.s; a2/ and cn.s; a2/ D cos am.s; a2/
are respectively the sinus and cosinus amplitudinis elliptic Jacobi functions, see for
instance [1, Chapter16] and [18, pp. 286–307]. However, for the reader’s convenience
and to be self-contained, we will treat in a direct and elementary way this ODE.

Now observe that the transformation ; t/ 7! ; t/ is an isometry which
changes rotations around the axis through the south pole into rotations around the
axis through the north pole. Therefore, taking into account Remark 2, we can assume

that, up to an ambient isometry, takes its values in 0; 2OE.

Let us call a the maximal solution of 10) extending without restrictions on its
values, that is for the moment we do not require that a takes its values in ; OE.

Lemma 3. Up to a reparametrization of the form s s C c for some real
constant c, the maximal solution a is defined on an interval i; iOE, where i 2 0; C1
Furthermore a is odd and so satisfies a.0/ D 0 and 0a.0/ D 1.

Proof. Let us call u; vOE the domain of a where 1 u < v C1.
We first show that a vanishes at some point. Since 0a 1 such a point clearly

exists if u D 1. In case u is finite, a has a limit l 2 OE 1; C1OE at u as it is
nondecreasing.

If l < 0 then a vanishes at some point since is positive.
Consider now the case where l 0 and call I u; vOE the domain of Suppose

that, as s decreases starting from I a never vanishes. Then the function 0a increases
since I / 0; 2OE) and thus has a positive limit at u. But then we could extend

the solution a of equation 10) beyond u, which contradicts the maximality of a.

Therefore a.s0/ D 0 for some point s0. Changing s into s s0 we can assume

that a.0/ D 0. The function f s/ WD a. s/ is then also a solution of 10)
satisfying f .0/ D 0. We conclude that f a, which means a is odd.

Lemma4. Suppose a 2 0; 1OE. Then a isdefined on thewholeofRand it gives rise to
a unique, up to an ambient isometry, curve a generating a rotational totally umbilic
surface. This curve is an analyticJordan curve in the cylinderC, it is nonhomologous
to zero and symmetric with respect to the axis of rotation R. The rotational totally
umbilic surface, S1.a/, generated by a is analytic, embedded and homeomorphic
to the sphere. Moreover S1.a/ is nonhomologous to zero in S2 R.
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The generating curve for a D 0:9

2.5

2

1.5

1

0.5

0

t

–3 –2 –1 1 2 3

The generating curve for a D 0:5

0.8
0.4

0

t

–3 –2 –1 1 2 3

Proof. With the notations of Lemma 3, if i < C1 then, since 0a takes its values in
0; 1 a would have a finite limit l at i. Since a 2 0; 1OE, we have 1 a2 sin2 l > 0

which allows to extend a beyond i, contradicting the maximality of a. This shows
that i DC1.

Since 0a p1 a2 > 0 and a.0/ D 0, there is a smallest s1 > 0 such that

a.s1/ D
Nowlet us consider the functionf s/ WD 2 a.2s1 s/, s 2 R. We observe that

f is alsoa solutionof equation 10) and satisfies f s1/ D 2 a.s1/ D D a.s1/.
Consequently f a, that is,

a.2s1 s/ D 2 a.s/ for all s 2 R. 11)

As we are interested in curves generating rotational totally umbilic surfaces, we look
for a function t satisfying t 02 D 1 02a D a2 sin2 a. Let ta be the function defined
on R by setting t0a s/ D a sin a.s/ and ta.0/ D 0.

Since a is an odd function and ta.0/ D 0 we deduce that ta is an even function.
Observe that the function g.s/ WD ta.2s1 s/ satisfies g0.s/ D t0a s/ using equation
11)) and g.s1/ D ta.s1/. Thus g ta, that is ta.2s1 s/ D ta.s/ for any s 2 R.

Using the evenness of ta we get

ta.s C 2s1/ D ta.s/ for all s 2 R. 12)

Using equation 11) and the oddness of a we obtain for any s 2 R

a.s/ D a. s/ D .2 a.2s1 C s//;

and so

a.s C 2s1/ D 2 C a.s/ for all s 2 R. 13)

Now the curve
Qa.s/ D a.s/; ta.s//, s 2 R, is a curve in the Riemannian

universal cover zC of C. Observe that the equations 12) and 13) show that restricting
s to OE s1;s1 Qa gives rise to an analytic closed curve a in C. Since a is increasing
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on OE s1;s1 and a. s1/ D a.s1/ D we deduce that a is embedded and

nonhomologous to zero.
As a is odd and ta is even, the curve a has the desired symmetry.
It is clear that the other choice t0a s/ D a sin a.s/ leads to the curve deduced

from a by the isometry ; t/ 7! ; t/.

Remark 5. We observe that the curve a is globally invariant under the isometry
; t/ 7! mod.2 /; ta.2s0/ t/.

Lemma 6. Assume a D 1. Then 1.s/ D 2 2 arctan e s, s 2 R. This gives rise
to a unique, up to an ambient isometry, curve 1 in P C generating a rotational
totallyumbilic surface. The curve 1 is complete,open, embedded and symmetric with
respect to the axis of rotation R. The rotational totally umbilic surface, S1, generated
by 1 in S2 R is complete, properly embedded, analytic and homeomorphic to R2.

Proof. Since 1 is the maximal solution of 0 D p1 sin2 satisfying .0/ D 0,
we deduce that 1 is solution of 0 D cos A straightforward computation shows
that the maximal solution of this last equation with the initial condition .0/ D 0 is

1.s/ D 2
2 arctan e s for all s 2 R.

Note that 1 takes its values in 2; 2OE.

As in the proof of Lemma 4, we can assume that t satisfies t0.s/ D sin 1.s/, up to
an ambient isometry. We consider the function t1 defined by setting t01 s/ D sin 1.s/
and t1.0/ D 0. It is straightforward to check that sin 1.s/ D tanh.s/ and then

t1.s/ D logcosh.s/.
As 1 is odd and t1 is even, the curve 1 has the desired symmetry. As a matter

of fact, 1 is the graph of the function t. / D log cos ; 2 2; 2OE. This
concludes the proof.

Lemma 7. Assume a > 1. Then the maximal solution a is defined on a bounded

interval ia; iaOE where ia is a positive number. It gives rise to a unique, up to an

ambient isometry, Jordan curve a in P C generating a rotational totally umbilic
surface. The curve a is analytic and symmetric with respect to the axis of rotation R.
The rotational totally umbilic surface, S2.a/, generated by a is analytic, embedded

and homeomorphic to the sphere. Furthermore, S2.a/ is homologous to zero in
S2 R.

Proof. Since a > 1 we deduce that a.s/ 2 arcsin 1=a; arcsin 1=aOE. Recall that

a is defined on an open interval ia; iaOE, see Lemma 3. We first show that ia is
finite. Assume by contradiction ia D C1. Since a is nondecreasing it admits a
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The generating curve for a D 1

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t

–1 –0.5 0.5 1

limit l 2 0; arcsin 1=a as s C1. Necessarily l D arcsin 1=a since otherwise

it would follow from the equation 10) that 0a > p1 a2 sin2 l > 0 for all s > 0.
Therefore a would not be bounded.

Using the equation 9) we see that for s big enough, 00a.s/ 1=.2 tan l/ < 0.
Consequently 0a would be negative for s big enough which is a contradiction. This
proves that ia is finite.

Letus callagain l the limit of a as s ia. Ifl < arcsin 1=a then we couldextend
the solution a, which is maximal, beyond ia, which is absurd. So l D arcsin 1=a
and 0a 0 as s ia.

Observe that, since the function a satisfies equations 9) and 10), it satisfies also
the following equation

00

D a2 sin cos : 14)

As the second member of 14) is bounded, its maximal solutions are defined on

the whole of R. Call Qa the maximal solution of 14) extending a. Set f s/ WD

Qa.2ia s/. It is clear that f and Qa satisfy equation 14) with the same initial
conditions at ia. Thus we have

Qa.2ia s/ D Qa.s/ for all s 2 R. 15)

As we are interested in curves generating rotational totally umbilic surfaces, we
look for a function t satisfying t 02 D 1 Q

02
a D a2 sin2 Qa. Let ta be the function

defined by t0a D a sin Qa
and ta.0/ D 0. As Qa is an odd function we deduce that ta is

even. Observe that the function g.s/ WD 2ta.ia/ ta.2ia s/ satisfies g0.s/ D t0a s/
using equation 15)) and g.ia/ D ta.ia/. Thus g ta, that is

ta.2ia s/ D 2ta.ia/ ta.s/ for all s 2 R. 16)
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It follows from 15) and the oddness of Qa that

Qa.s C 4ia/ D Qa.s/ for all s 2 R.

In the same way, using 16) and the evenness of ta, we get

ta.s C 4ia/ D ta.s/ for all s 2 R.

Now the curve a.s/ D Qa.s/; ta.s//, s 2 R, parametrizes a closed analytic
curve in P C. Taking into account 15), the oddness of Qa, 16) and the evenness

of ta, we deduce that the curve a is symmetric with respect to the axis R.
Considering the fact that ta is increasing on OE0; 2ia and the symmetry of a, we

infer that a defines a Jordan curve in P.
To conclude the proof observe that the other choice for ta, that is t0a D a sin Qa,

leads to the curve deduced from a by the isometry ; t/ 7! ; t/.

The generating curve for a D 1:1

3

2.5

2

1.5

1

0.5

0

t

–1 –0.5 0.5 1

The generating curve for a D 5

0.4

0.3

0.2

0.1

0

t

–0.2 –0.1 0.1 0.2

Remark 8. The relations 15) and 16) show that the curve a in Lemma 7 is
symmetric with respect to the horizontal reflection ; t/ 7! ; 2ta.ia/ t/ in P.
Consequently, the surface S3.a/ is symmetric with respect to the slice S2 fta.ia/g.

Furthermore, we observe that each surface S3.a/ is contained in S2 R where
S2 is the south hemispshere.
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Summarizing we can state the following result.

Theorem 9. Besides the totally geodesic slices S2 ft0g and the vertical cylinder

R where S2 is a geodesic, the surfaces introduced in Lemmas 4, 6 and 7

are, up to ambient isometries, the only complete totally umbilic rotational surfaces
in S2 R. In particular they are all embedded and homeomorphic either to R2 or
to S2. Among the surfaces homeomorphic to S2 some are homologous to zero and
some are not.

Remark 10. It is interesting to observe that unlike in the case of space forms, the
totally umbilic surfaces we obtained do not have constant mean curvature, except for
the totally geodesic ones.

4. Symmetric totally umbilic surfaces in H2. / R

In this section, we classify the totally umbilic surfaces in H2 R which are invariant
under a one-parameter group of isometries. The case of M2. / R, < 0, is
completely similar.

We recall that in H2 there are three kinds of one-parameter families of positive
isometries: the rotations around a fixed point elliptic isometries), the translations
along a fixed geodesic hyperbolic isometries) and the “translations” along the
horocycles sharing the same point at infinity parabolic isometries). An isometry of H2
obviously induces an isometry of H2 R fixing the factor R pointwise. Such an
isometry of H2 R obtained from an elliptic resp. parabolic, hyperbolic) isometry
of H2 will thus be called elliptic resp. parabolic, hyperbolic).

We will see that for each of the associated families of isometries of H2 R there
exist complete and globally invariant totally umbilic surfaces. In fact, we are going
to classify all of them. More precisely, we prove they are all embedded, those which
are invariant under elliptic isometries are either totally geodesic slices H2 ft0g or
homeomorphic to the sphere and the remaining ones are all homeomorphic to the
plane. In particular the only totally geodesic ones are the slices and the products

R where H2 is a geodesic.

We will work with the disk model for H2, so that

H2
D f.x; y/ 2 R2; x2

C y2 < 1g;

and the metric is

ds2H D
2

1 x2 C y2/

2

dx2
C dy2/:
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Therefore the product metric on H2 R reads as follows:

1 x2 C y2/

2

d
Qs

2
D

2 dx2
C dy2/ C dt2;

where x; y/ 2 H2 and t 2 R. We consider the following particular geodesics of
H2:

D f.x; 0/; x 2 1; 1OEg H2;

L D f.0; y/; y 2 1; 1OEg H2
:

Upto ambientisometries, wecanassume that the symmetric surfaces aregenerated

by curves in the geodesic plane P WD R H2 R.
On the geodesic we denote by 2 R the signed distance to the origin .0;0/,

thus x D tanh 2. Therefore the metric on P is

ds2
D

2

1 x2

2

dx2
C dt2

D d 2
C dt2:

Given a curve s/ D s/; t s// parametrized by arclength in P, we let s/ be

the oriented angle between the -axis and 0.s/. Therefore, we have

0.s/ D cos s/;
t0.s/ D sin s/:

17)

In the elliptic case, the isometries ofH2 R under consideration are the rotations
around the vertical axis R WD f.0; 0/g R. In the parabolic case, the isometries
are the ones corresponding to the point at infinity 1; 0/ 2 @1H2. Finally, the
hyperbolic isometries correspond to translations along L in H2.

In the plane P we consider the unit normal N to the curve so that the basis
0.s/; N.s// is positively oriented for each s. In the three cases we orient by N the

symmetric surface generated by The principal curvatures computed with respect
to this orientation are as follows:

1.s/ D 0.s/

and

2.s/ D
8ˆ̂<
ˆ̂:

sin s/
tanh s/

elliptic case),

sin s/ parabolic case),

sin s/ tanh s/ hyperbolic case).
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4.1. Elliptic case. The umbilicity condition is

0.s/ D
sin s/

tanh s/
:

This case is similar to the case a > 1 in S2 R, so we will omit the details.
Differentiating the first equation in 17) and using the umbilicity condition we get

00

D
02 1/

tanh
: 18)

Discarding the trivial totally geodesic surfaces H2 ft0g, we can show as in the
case of S2 R that 02.s/ 6D 1 for any s such that s/ 6D 0. Therefore we may
assume that 02 < 1.

We can state the following.

Proposition 11. Any local solution of 18) satisfying 02 < 1 gives rise to a unique,
up to ambient isometries, complete rotational totally umbilic and nongeodesic surface
in H2 R. Moreover, there exists a one-parameter family of such surfaces and all
of them are analytic, embedded and homeomorphic to the sphere.

Besides the totally geodesic slices H2 ftg, these surfaces are the only complete
rotational and totally umbilic surfaces in H2 R.

Furthermore, any rotational umbilic including geodesic) surface in H2 R is,
up to an ambient isometry, part of one of the above surfaces.

Proof. Let be a local solution of 18). Proceeding as in the case of S2 R, we can
suppose that 0 > 0 and so

0

D q1 b2 sinh2 ; 19)

for some real numberb > 0. As in the case of S2 R, the functions s/ and t.s/ are

related to the Jacobi elliptic functions as follows: s/ D iam.is; b2/ and, up to
the sign, t0.s/ D ib sn.is; b2/, see [1, Chapter 16]. Again, we prefer to give direct
and elementary arguments.

Let b be the maximal solution of 19) extending As in the proof of Lemma 3,
we can prove that b vanishes at some point. Thus, up to a reparametrization we
can assume that b.0/ D 0, consequently we prove as in Lemma 3 that b is an odd
function. Therefore b is defined on an interval ib; ibOE. As in Lemma 7, it can be

shown that ib is a finite positive number, that b has a finite limit l D argsinh 1=b at

ib and that 0b s/ 0 as s ib.
From equations 18) and 19) we deduce that b satisfies

00

D b2 cosh sinh 20)
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The generating curve in the elliptic case

for b D 0:1
3

2.5

2

1.5

1

0.5

0

t

–3 –2 –1 1 2 3

The generating curve in the elliptic case

for b D 10

0.2

0.15

0.1

0.05

0

t

–0.1 –0.05 0.05 0.1

with the initial conditions .0/ D 0 and 0.0/ D 1. Therefore we can extend the
solution b of 20) beyond ib. Let

Qb
be the maximal solution of 20) extending b.

Observe that forany s0 where Q
0b s0/ D 0 we have the symmetry Qb.2s0 s/ D Qb.s/.

As Q
0b ib/ D 0 and Qb is odd, we deduce that Qb is defined on all of R and that it is

4ib-periodic.
As we are interested in curves generating rotational totally umbilic surfaces, we

look for a function t satisfying t02 D 1 Q
02
b D b2 sinh2 Qb. Let tb be the function

defined by t0b D b sinh Qb and tb.0/ D 0, thus tb is an even function. As in the proof
of Lemma 7, we can show that tb satisfies tb.2ib s/ D 2tb.ib/ tb.s/ for any
s 2 R and that it is also 4ib-periodic.

Taking into account that tb is increasing on OE0; 2ib we deduce that the curve

b.s/ D Qb.s/; t s//, s 2 R, parametrizes an analytic Jordan curve in P, symmetric
with respect to the axis R.

To conclude the proof we just observe that the other choice for tb, that is t0b D
b sinh Qb, leads to the curve deduced from b by the isometry ;t/ 7! ; t/.

4.2. Parabolic case. The umbilicity condition is

0.s/ D sin s/

Integrating this equation we get

s/ D 2 arctan es for all s 2 R,

for some real constant
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First observe that D 0 leads to the curve which generates a slice H2 ft0g.
Now if < 0 then is a negative function. Note that the symmetry ; t/ 7!

; t/ changes into Therefore, up to an ambient isometry, we can assume
that is positive and then > 0. Finally observe that up to the reparametrization
s 7! s log we can assume D 1 and then

s/ D 2 arctan es for all s 2 R. 21)

Taking into account the first equation in 17) and 21) we obtain

0.s/ D cos 2 arctan e
s

D tanh s for all s 2 R.

Thus

s/ D log cosh s C for all s 2 R,

for some real constant Note that the isometries of H2 R obtained from the
hyperbolic translations along the geodesic in H2 send any surface invariant under
the parabolic isometries fixing the point at infinity 1; 0/ 2 @1H2 to a surface of
the same type. Consequently, up to an ambient isometry, we can assume D 0.
Thus

s/ D logcosh s for all s 2 R.

As for the function t taking into account the second equation in 17) and 21) we
obtain

t0.s/ D sin 2 arctanes

D
2es

1 C e2s
for all s 2 R.

Integrating we get

t.s/ D 2 arctan es

C for all s 2 R,

for some real constant Up to a vertical translation we can take D 2 so that

t.0/ D 0 and

t.s/ D 2 arctan es
2

for all s 2 R.

Note that t. s/ D t.s/ and s/ D s/ for any s 2 R so that the curve Lpar
parametrized by s/; t s//; s 2 R, is symmetric with respect to

Summarizing we state the following proposition.

Proposition 12. Besides the slices H2 ftg, up to ambient isometries, there exists

a unique complete totally umbilic surface SP in H2 R invariant under parabolic
isometries. This surface is analytic, properly embedded, homeomorphic to a plane
and is invariant under reflection with respect to a horizontal slice.

Moreover, any totally umbilic surface invariant under parabolic isometries is
either part of a slice or, up to an ambient isometry, part of this surface.
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The generating curve in the parabolic case

1.5

1

0.5

0

–0.5

–1

–1.5

–2 –1.5 –1 –0.5

t

Remark13. Consider the surfaceM inH2 Rgenerated by thesamecurveLpar P
under parabolic isometries fixing, now, the point at infinity .1; 0/ 2 @1H2 and not

1;0/ as before). Observe that at each point of M the principal curvatures Q 1, Q 2
of M are given by Q 1 D 1 and Q 2 D 2. Therefore we get

Q1 C Q 2 D 1 2 0:

We deduce thatM is a complete minimal surface ofH2 R, embedded and invariant
under parabolic isometries. Consequently, M is foliatedby horocycles. This minimal
surface was considered by B. Daniel [6], R. Sa Earp [8] and L. Hauswirth [12].

4.3. Hyperbolic case. The umbilicity condition is

0.s/ D sin s/ tanh s/:

Proceeding as in the elliptic case, we discard the totally geodesicsurfacesH2 ftg
and therefore we can assume that satisfies 02 < 1 and

00

D 02 1/ tanh ; 02 1 D c2 cosh2 ; 22)

for some real constant c 2 0; 1OE. Again, invoking the Jacobi elliptic functions, it can

be shown that, up to the sign, we have s/

R

D iam.is C K; c2/ i 2 and t0.s/ D
sn. CK; c2/ where 2c is K D p dt see [1, Chapter 16]. Nevertheless, as

0 1 c2 sin2 t
in the previous cases, we prefer to give direct and elementary arguments.
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We deduce from 22) that

00

D c2 cosh sinh : 23)

If 0, then the generated surface is the vertical totally geodesic plane, that is,

f.0; y; t /; 1 < y < 1; t 2 Rg. Discarding this case, we consider only the nontrivial
solutions of 23).

Again, as in the elliptic case, it can be shown that any maximal solution of the
last equation is defined on the whole of R, is periodic, vanishes at some point and,
up to a reparametrization, is odd. We can therefore assume that there exists a unique
maximal solution c satisfying .0/ D 0 and 0.0/ D

p1 c2.
As we are interested in curves generating totally umbilic surfaces, we look for a

function t satisfying t 02 D 1 02c D c2 cosh2 c. Let tc be the function defined
by t0c D c cosh c and tc.0/ D 0. The function tc is odd. Moreover consider any
s0 2 R such that 0c s0/ D 0, then it can be shown that c.2s0 s/ D c.s/. Set

T.s/ WD tc.2s0 s/ C 2tc.s0/, s 2 R. We have T 0 t0c and T.s0/ D tc.s0/,
therefore T D tc. As the function tc is odd, we have tc.s C 4s0/ D 4tc.s0/ C tc.s/
for every s 2 R. We can deduce that tc is an increasing and nonbounded function on

R. This shows that the curve c D c;tc/ is properly embedded.
Observe that the other choice t 0 D c cosh c changes the curve c D c; tc/

into the symmetric curve c; tc/ with respect to

The generating curve in the hyperbolic case
for c D 0:7

4

2

–0.4 0.4

–2

–4

t

The generating curve in the hyperbolic case

for c D 0:1

3

2

1

–3 –2 –1 1 2 3

–1

–2

–3

t
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We summarize stating the following.

Proposition 14. Any non identically zero local solution of 23) satisfying 02 < 1
gives rise to a unique, up to ambient isometries, complete totally umbilic and
nongeodesic surface Sc; c > 0, inH2 R invariant under hyperbolic isometries. Moreover,

there exists a one-parameter family ofsuch surfaces and all of them areanalytic,
properly embedded and homeomorphic to the plane. These surfaces are periodic in
the vertical direction and symmetric with respect to a discrete set of horizontal slices.

Furthermore, anyumbilic surface inH2 Rinvariant under hyperbolic isometries
is either part of a vertical totally geodesic plane, a sliceH2 ftg or, up to an ambient
isometry, part of one of the surfaces Sc.

5. Unicity of totally umbilic surfaces in H2. / R and S2. / R

In this sectionM2 stands forH2 or S2. The casesM2 D M2. / for < 0and > 0
are completely analogous.

We will need the following result which is of independent interest.

Proposition 15. Let S M2 R be an orientable surface transversal to each slice
M2 ftg. We suppose the following:

1) The geodesic curvature of each horizontal curve St WD S \ M2 ftg/ inM2
is constant depending on t

2) The angle between S andM2 ftg is constant along St for each t

Then:
In caseM2 D S2 the surface S is part of rotational surface.
In caseM2 D H2 the surface S is part of either

a) a rotational surface,

b) or a surface invariant by a family of parabolic isometries having the same fixed
point at infinity,

c) or a surface invariant by a family of hyperbolic isometries along the same fixed
geodesic of H2.

Proof. Let N be a unit normal field along S. We define the function on S setting

WD hN;
@

@ t i. We denote by T the projection of @

@t on S, that is T D
@

@t N.
As the angle between S andM2 ftg is constant along St we deduce that St is a

line of curvature. Indeed let
W s 2 I R s/ 2 St be a regular parametrization

of St then taking into account that @

@t is a parallel field and the definition of T

0 D
d

ds
N;

@

@ t D r 0.s/N;
@

@t D hr 0.s/N;T i;
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wherer is the connection onM2 R. It follows that T is a principal direction on S.
Let c W u 2 I R c.u/ 2 S be a line of curvature associated to the field T

We are going to show that c.I / is contained in a vertical totally geodesic plane. This
is equivalent to showing that the horizontal projection ch W I R M2 of c is a

geodesic.
Assume first that c is never vertical, that is 6D 0 along c. Thus c0h does not

vanish.
Let r be the connection on M2. It is sufficient to show that rc0h c0h is always

parallel to c0h As c0 D c0h C .1 2/ @

@t we have

rT T D rc0c0 D rc0h c0h C
d

du
.1 2/

@

@ t

Drc0h c0h 2 0
@

@t
:

As T is aprincipaldirection thereexists a function such thatrTN D T Therefore

0

D
d

du N;
@

@t D rT N;
@

@ t D 1
2/:

Thus we obtain

rT T D rc0h c0h 2 .1 2/
@

@t
:

Moreover we have

rTT D rT
@

@t
N D rT N

D 0N T

D
0

c0h C
0 .1 2//

@

@t

D
0

c0h 2 .1 2/
@

@t
:

Thus we get

rc0h c0h D
0

c0h;

which shows that ch.I / is a geodesic inM2.
We denote by w a unit horizontal field along c tangent to S and for each u 2 I

we let P.u/ be the vertical totally geodesic plane containing c.u/ and orthogonal at

c.u/ to w.u/.
Suppose now that vanishes on an open interval J I Let u0 2 J Observe

that along the horizontal curve of S through c.u0/ the vector field N is horizontal.
This means that an open set of S, including c.J /, is part of a cylinder R where
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M2 is some horizontal curve. Clearly this implies that w is constant along J
and thus so is P.

Combining those two arguments we see that P is locally constant on an open and
dense subset of I. As P.u/ depends in a differentiable way on u, we conclude that

P is constant.
Let us now consider a horizontal curve

W I St parametrized by arclength.
Let s1; s2 2 I and call cW "; "OE! S the integral curve of T such that c.0/ D s1/
and

Qc W ";"OE! S the integral curve of T such that
Qc.0/ D s2/.

Let us call c3 resp. Qc3) the vertical coordinate of c resp. Qc). Calling again u the
parameter in ";"OE, we have

c03 u/ D c0.u/;
@

@t D T c.u//;
@

@t D 1 2 c.u// D 1 2 c3.u//:

Thus c3 and
Qc3

verify the same first order differential equation with the same initial
condition at u D 0. We conclude that c3 Qc3.

Recall that c and
cQ

are contained in vertical totally geodesic planes P and Pz.
Let us call M2 the complete constant geodesic curvature line defined by

that is
Observe that there is a unique positive isometry ' of M2 such that '. / D

'.c.0// D Qc.0/and preserving the orientation of Therefore the isometryˆ z; t/ D
.'.z/; t/ ofM2 Rsends P to Pz. Note that thecurves cQ andˆBc in the vertical plane

Pz have the same vertical component and make the same angle with the horizontal for
each u 2 "; "OE. We deduce that these curves coincide: ˆ B c D Qc. This concludes
the proof.

We now state the main result of this section.

Theorem 16. Let S M2 R be an immersed totally umbilic surface. Then S
is part of a complete and embedded totally umbilic surface zS which is invariant by
a one-parameter group of isometries of M2 R. More precisely, up to an ambient
isometry, in case M2 D S2, then zS is one of the examples described in Section 3,
and in caseM2 D H2 then zS is one of the examples described in Section 4.

In particular, any totally geodesic surface is part of a slice M2 R or part of a

product R where M2 is a geodesic.

Proof. Locally S is the image of an embedding X W M2 R, where is an

open disk in R2. As X is totally umbilic, there exists a function W R such that

rwN D w;

for any vector w tangent to S.
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Proceeding as in the proof of Theorem 1, as D 0 we obtain

r D T; 24)

where is the Gaussian curvature of M2, that is D 1 if M2 D S2 and D 1 if
M2 D H2.

Assume for the moment that has no critical point. In particular each level curve
of is orthogonal to T and is therefore horizontal, that is belongs to someM2 ft0g.
Let

W I M2 ft0g be such a curve parametrized by arclength. We have

d
ds D r 0.s/N;

@

@t C N;r 0.s/
@

@ t D s// 0.s/;
@

@t D 0;

therefore is constant along
We now call n the unit normal field in T.M2 ft0g/ along with the orientation

induced by N. Let be the oriented angle between n and N, hence N. s// D
cos s/n. s// C sin s/ @ s//, we deduce that is constant along

@t
On the other hand,

s// D hr 0.s/N; 0.s/i
D hr 0.s/ cos n C sin

@

@t
; 0.s/i

D cos hr 0.s/n; 0.s/i C sin r 0.s/
@

@t
; 0.s/

D cos hr 0.s/n; 0.s/i:
Now observe that hr 0.s/n; 0.s/i is the geodesic curvature of in M2 ft0g.

Since and are constant along we deduce that has constant geodesic curvature.
We conclude using Proposition 15 and results in Sections 3 and 4 that S is as stated.

Suppose now that has some critical points.
Let U S be a connected component, if any, of the interior of the set of critical

points of The formula 24) shows that N is either always vertical or always
horizontal in U. In the former case U is part of a slice M2 ft0g and in the latter
case U is part of a cylinder, that is part of a product R where is some curve in
M2. As S is totally umbilic, has to be a geodesic and so U is totally geodesic.

Let now V S be a connected component, if any, of the set of regular points of
From the first part of the proof, we know that V is part of one of the symmetric

examples given in Sections 3 and 4.
Therefore S is obtained by gluing pieces of totally geodesic surfaces and pieces

of the symmetric examples constructed in Sections 3 and 4. A closer look at these

different types of surfaces shows that the whole of S is either totally geodesic or part
of one of the complete symmetric examples, which concludes the proof.
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Remark 17. The local existence of totally umbilic surfaces in S2 R and H2 R
can be seen in an alternate way. Indeed, it is known that umbilicity is preserved
by conformal diffeomorphisms, see [21], Volume 4. It can be shown that S2 R
is conformally diffeomorphic to R3 n f.0; 0; 0/g, see Section 7. This implies the
umbilic surfaces in S2 R correspond through this conformal diffeomorphism to
those of R3 n f.0; 0; 0/g. However to classify them in S2 R up to congruences,
and to understand their geometry requires a nontrivial work. Regarding H2 R, it
can be shown that H2 0; OE is conformally diffeomorphic to H3, see Section 7.
Nonetheless this is not enough to understand the global geometry and topology of
the umbilic surfaces in H2 R.

Remark 18. It can be proved that any twice differentiable totally umbilic surface in
a space form, in S2. / R or in H2. / R, is in fact C3 and then analytic by the
previous discussions, see [20].

6. Totally umbilic surfaces in Sol

The Sol geometry is the eighth model geometry of Thurston, see [22]. It is a Lie
group endowed with a left-invariant metric, it is a homogeneous simply connected 3-
manifold with a 3-dimensional isometry group, see [3]. It is isometric toR3 equipped
with the metric

ds2
D e2z dx2

C e 2z dy2
C dz2:

The group structure of Sol is given by

x0; y0; z0/ x; y; z/ D e z0x C x0; ez0y C y0; z C z0/:

The isometries are

x;y;z/ 7! e cx C a; e cy C b; z C c/
and

x;y;z/ 7! e cy C a; e cx C b; z C c/;

where a; b and c are any real numbers. We set E1 D e z @

@x E2 D ez @

@y
and

E3 D
@

@z
Thus E1; E2; E3/ is a global orthonormal frame. A straightforward

computation gives

rE1E1 D E3; rE2E1 D 0; rE3E1 D 0;

rE1E2 D 0; rE2E2 D E3; rE3E2 D 0; 25)

rE1E3 D E1; rE2E3 D E2; rE3E3 D 0:
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We deduce from 25) that the vertical planes fx D x0g and fy D y0g are totally
geodesic complete surfaces and that the horizontal planes fz D z0g are not totally
umbilic surfaces in fact they are minimal surfaces).

We now look for totally umbilic surfaces which are invariant under the one
parameter group of isometries x; y; z/ 7! x C c; y; z/. Clearly, such a surface is
generated by a curve in the totally geodesic plane fx D 0g. Discarding the trivial
case of a vertical plane fy D y0g, we can assume that locally is a graph over the
y-axis. Thus is given by y/ D .0; y; z.y//. Therefore the generated surface is
parametrized by

X.t; y/ WD t; y; z.y//:
We have Xt D .1; 0; 0/ D ezE1 and Xy D .0;1;z0/ D e zE2 C z0E3. As a unit
normal field we can take

N D
ezz0

p1 C e2zz02
E2

1

p1 C e2zz02
E3:

We have

rXt N D
1

p1 C e2zz0 2
Xt;

rXy N D
e z

.1 C e2zz02/3=2
.1 C 2e2zz0 2

C e2z z00/E2

C
z0

.1 C e2zz02/3=2.1 C 2e2z z02
C e2zz00/E3:

So that X is a totally umbilic immersion if and only if

rXyN D
1

p1 C e2zz02
Xy;

that is, if and only if
z00 C 3z0 2

C 2e 2z
D 0: 26)

A first integral of 26) is
z02

D ae 6z e 2z ;

where a is any positive real number.
Assume z0.y0/ D 0 for some y0. Considering the functionf y/ D z.2y0 y/, we

can see that the curve is symmetric with respect to the vertical geodesic fy D y0g.
Therefore, up to the isometry x; y; z/ 7! x; y; z/ and restricting the domain of z
if needed, we can assume z0 > 0. Therefore z satisfies

z0 D e
zp

ae 4z 1: 27)
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We consider the maximal solution of 27) defined by z and we call it again z, it
is defined on an open interval y1; y2OE; 1 y1 < y2 C1. By 27) the
function z is bounded above and is increasing we deduce using 26) that z00 has a

negative limit at y2. Taking into account the fact that z0 is positive, we deduce that

y2 is finite, y2 < C1. Moreover, since z0 is a positive and decreasing function,
it has a nonnegative limit at y2. If this limit were positive, we could extend the
solution z of 27) beyond y2 which contradicts the maximality of z. Thus we have

limy! z0.y/ D 0 and consequently limy!
1

y2 y2 z.y/ D log a.4
Consider now the maximal solution of 26) defined by z and call it za. Since

z0a y2/ D 0 we have za.2y2 y/ D za.y/. Up to the horizontal translation

x; y; z/ 7! x; y y2; z/, which is an ambient isometry, we can assume that y2 D 0
and therefore za is an even function and is defined on an interval ya; yaOE where0 <
ya C1. Observe that there exist A > 0 and y3 > 0 such that z00a.y/ < A < 0
for anyy > y3. Therefore, if ya DC1we have limy!C1 za.y/ D 1. Suppose

now that ya is finite. If za had a finite limit at ya then z0a would have also a finite limit
but then we could extend the solution za beyond ya, which is absurd. We deduce that
in both cases, that is ya < C1 and ya DC1, we have limy!ya za.y/ D 1.

Now we show that ya < C1. Indeed, as za is a solution of 26) satisfying

za.0/ D 0 we have

z0.y/ D
pae 3zr1 e4z

a
;

for any y > 0. Since limy!ya za.y/ D 1, we deduce that for some y4 > 0 we
have

1
paz0e3z <

1

2

for any y > y4. Therefore we have

1
3pa e

3z <
y
2 C c

for some real constant c and for any y > y4. This implies that ya < C1.
Call a the graph of the function za, a WD f.0; y; za.y//; ya < y < yag and

call Fa the totally umbilic complete surface generated by a:

Fa WD f.x;y;za.y//; x 2 R; ya < y < yag:

Letza and zb be twomaximal solutions of 26)where a and b are any realnumbers.

4 log b
a and consider the ambient isometry x; y; z/ 7! e cx;ecy; z C c/.Set c D

1

Observe that this isometry maps the planar curve a onto the planar curve b and
maps any Euclidean line parallel to the x-axis onto a line of the same type. Therefore
this isometry maps the totally umbilic surface Fa onto the totally umbilic surface Fb.

Summarizing, we state the following result.
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Proposition 19. Up to ambient isometries, there exist only two complete totally
umbilic surfaces in the Sol group invariant under the horizontal translations x; y; z/ 7!
x Ct; y; z/; t 2 R. The first one is the totally geodesic plane fy D 0g. The second

one is nongeodesic, is contained in a slab delimited by two totally geodesic planes

fy D y0g; y0 > 0, and is asymptotic to these planes. Moreover it is symmetric
with respect to the totally geodesic plane fy D 0g.

The generating curve in Sol for a D exp 8

2

1.9

1.8

1.7

1.6

1.5

z

–4 –2 0 2 4

y

As a matter of fact we have the following.

Theorem 20. Up to ambient isometries, any totally umbilic surface in the Sol group
is part of one of the two complete totally umbilic surfaces given in Proposition 19. In
particular, up to ambient isometries, there exists a unique complete totally geodesic
surface in the Sol group.

Proof. Let S be an immersed totally umbilic surface in the Sol group. Locally S is
the image of an embedding X W

Sol, where is an open disk in R2. Call u;v/
the coordinates on and consider a unit normal field N on X. / As X is totally
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umbilic, there exists a function
W R such that

rXuN D Xu;

rXvN D Xv;

wherer is the Riemannian connection of the Sol group. As in the proof of Theorem 1

we find

R.Xu; Xv/N D vXu uXv; 28)

where R denotes the curvature tensor of the Sol group. Let us express the latter. Let
X; Y; Z and W be any vector fields. Proceeding as in [7], Proposition 2.1, after some

computations and using 25) we obtain the following:

hR.X; Y /Z; Wi D hX; ZihY;W i hX; W ihY; Zi/
C 2 hX;W i Y;

@

@z Z;
@

@z C hY; Zi X;
@

@z
W;

@

@z

hX; Zi Y;
@

@z
W;

@

@z hY; W i X;
@

@z
Z;

@

@z
:

We define the function on setting WD hN;
@

@z i. We denote by T the projection

of @

@z on S, that is T D
@

@z N. We then have

R.Xu;Xv/N D 2 Xv;
@

@z
Xu Xu;

@

@z
Xv

D 2 hXv; T iXu hXu; T iXv/;
wherefrom we deduce, using 28), that

r D 2 T: 29)

Assume first that and T do not vanish on Thus T is of the form

T D E1 C E2 C E3;

where and do not vanishsimultaneously. Since jT j2 D 1 2 we have 2
C

2
D

2.1 2/. We thus have

N D E1 E2 C E3:

We set

JT D E1 C E2;
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so JT is tangent to S, orthogonal to T and E3 and satisfies jJT j
2

D jTj2. Furthermore

we have

N ^ T D JT; T ^ JT D .1 2/N; JT ^ N D T:

We now compute the derivative OET; JT / in two different ways.
We first compute OET; JT D rT JT rJTT. We have

rT JT D rTN ^ T C N ^ rTT

D N ^ rTT since rTN D N/
D N ^ rT E3 N/

D N ^ rTE3 JT:

Furthermore, using 25) we obtain

rTE3 D rE1E3 C rE2E3 C .1 2/rE3E3

D E1 E2;

wherefrom we deduce after some straightforward computations that

rTE3 D
2 2

1 2
T 2

1 2/
JT 1 2/N:

Consequently

rTJT D 2
1 2/

T C
2 2

1 2 JT JT:

In the same way we obtain

rJT T D rJTE3 rJT N;

D 2
1 2/

T C JT JT:

We deduce that

OET; JT D 4
1 2/

T C
2 2

1 2 JT:

Using this last expression and 29), we find

OET;JT / D 8 : 30)
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On the other hand, using again 29) we have

OET; JT / D T JT // JT T //
D JT.hr ; T i/
D 2. 1 C 3 2/JT /

D 4 1 C 3 2/

31)

since an easy computation gives JT / D 2 From 30) and 31) we deduce

.3 2 2 1/ D 0:

Observe that if is constant on an open subset then JT / 0 which implies
0. So in all cases we have 0.

Recall that and do not vanish simultaneously since by our assumption 6D 0.
Therefore we have either 0 or 0.

Considering the isometry x; y; z/ 7! y;x; z/ we can assume that 0.
Then the surface is part of a product R where is a curve in the geodesic plane

fx D 0g. This case is considered in Proposition 19.
Let us suppose now that T 0 on an open set. Then this open set is part of a

horizontal plane fz D z0g, but this contradicts the assumption of umbilicity.
To finish the proof we consider thecasewhere 0 on an open subset. Therefore

T E3 and so this piece of the surface is part of a product L R where L is a curve
in the horizontal plane fz D 0g. If L is contained in a line parallel to the y-axis, then
the surface is contained in a totally geodesic plane fx D x0g. Discarding this trivial
case, we can assume that L is a graph over the x-axis. Consequently, the embedding

X is given by

X.x; t/ D x; y.x/; t /:
As a unit normal we take

N D
1

pe 2ty02 C e2t
e 2t y0; e2t; 0/

D
y0

py02 C e4t
E1

1

pe 4ty02 C 1
E2:

As Xt D E3, using 25) we obtain

rXt N D 2
y0e4t

y02 C e4t/3=2 E1 2
e 4ty02

e 4ty02 C 1/3=2 E2:

The conditionrXtN D Xt is therefore equivalent to 0 and y0 0. SoLis part

of a line parallel to the x-axis and the surface is part of a geodesic plane fy D y0g.
This concludes the proof.
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7. An application

As an application of the classification of totally umbilic surfaces obtained in the
previous sections, we can prove the following result:

Theorem 21. Any conformal diffeomorphism of H2 R; S2 R and Sol is an
isometry.

Proof. The result for S2 R is a consequence of the fact that the mapping

S2 R R3
f.0; 0; 0/g;

p; t/ 7! etp

is a conformal diffeomorphism -here S2 is viewed as the unit sphere of R3 centered
at the origin. Indeed the conformal diffeomorphisms of R3 f.0; 0; 0/g are the
Möbius transformations fixing .0; 0; 0/ or sending .0; 0; 0/ to the point at infinity and
these transformations correspond through the above conformal diffeomorphism to
isometries of S2 R: We leave the details to the reader.

We now prove the result for the spaceH2 R: We claim that, except for the slices

H2 ft0g; all the non-compact maximal for the inclusion) totally umbilic surfaces

in H2 R are conformal to C: This is clear for the products R; where H2
is a geodesic. As for the surfaces invariant under a one parameter group of parabolic
transformations and which are all congruent to the surface SP described in 4.2, this
is seen as follows. Consider in H3 a totally geodesic plane which we call H2 and
denote by N a unit normal along it. We let exp denote the exponential map in H3:
Then the map

H2 0; OE H3 ;

p; t/ 7! expp ln tan t
2

N.p/

is a conformal diffeomorphism cf. [20] for the details) which sends SP onto a totally
umbilic surface of H3 with one point at infinity, that is a horosphere. It remains to
consider the case of the surfaces invariant under a one parameter group of hyperbolic
transformations. Consider such a surface †: We know that † is invariant under a

set of reflections of H2 R through horizontal slices H2 ft D a C nbg; for all
n 2 Z; and a; b 2 R depending on †: Suppose by contradiction that † is conformal

toH2: The isometries of† induced by those reflections correspond then to conformal
diffeomorphisms of H2 and so to isometries of H2: In particular all the horizontal
curves †\ ft D anCbg correspond to geodesics of H2: Now observe that all these
curves are invariant by the hyperbolic isometries leaving † invariant. We thus get
isometries of H2 which leave globally) invariant more than one geodesic. This is a

contradiction as only the identity of H2 has this property.
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Take now a conformal diffeomorphism ofH2 R: Then sends any horizontal
sliceH2 ft0g to a maximal totally umbilic non-compact surface which is conformal
to H2: From what precedes it follows that sends H2 ft0g conformally to some
horizontal slice H2 ft1g and so isometrically. As is conformal this implies that
for any x 2 H2 ft0g; the tangent map Dx is an isometry. So is an isometry of
H2 R:

The case of the Sol group is treated analogously. There are two maximal totally
umbilic surfaces up to congruences. With the notations of Section 6, the first one is
the totally geodesic plane fx D x0g and is easily seen to be isometric to H2: The
second one is the surface parametrized by X.t; y/ D t; y; z.y//, where t 2 R; y 2

y1; y1OE and z is the maximal solution to the equation z0 D e zpe 4z 1 we have
chosen a D 1 with the notations of Section 6). The metric on this surface writes

ds2
D e 2z dt2

C e z dy2:

Making the change of coordinate D R
e 4z.y/ dy; the metric writes

ds2
D e2z dt2

C d 2/:

As the function z is bounded from above cf. Section 6), the flat metric dt2 Cd
2 is

complete. It follows that the surface is conformal to C:As the totally geodesic planes

fx D const:g fill the whole space Sol, we conclude as before that any conformal
diffeomorphism of Sol is an isometry.
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