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Zariski k-plets via dessins d’enfants

Alex Degtyarev

Abstract. We construct exponentially large collections of pairwise distinct equisingular defor-
mation families of irreducible plane curves sharing the same sets of singularities. The funda-
mental groups of all curves constructed are abelian.

Mathematics Subject Classification (2000). Primary 14H50; Secondary 14H30.

Keywords. Zariski pair, trigonal curve, dessin d’enfants, braid monodromy.

1. Introduction

1.1. Motivation and principal results. Throughout this paper, the rype of a sin-
gular point is its embedded piecewise linear type, and equisingular deformations of
curves in surfaces are understood in the piecewise linear sense, i.e., the PL-type of
each singular point should be preserved during the deformation. This convention is
essential as some of the curves considered have non-simple singularities.

Recall that a Zariski k-plet is a collection C1, ..., Cy of plane curves, all of the
same degree m, such that

(1) all curves have the same combinatorial data (see [5] for the definition; for
irreducible curves, this means the set of types of singular points), and

(2) the curves are pairwise not equisingular deformation equivalent.

Note that Condition (2) in the definition differs from paper to paper, the most common
being the requirement that the pairs (P2, C;) (or complements P2 ~ C; ) should not be
homeomorphic. In this paper, we choose equisingular deformation equivalence, i.e.,
being in the same component of the moduli space, as it is the strongest topologically
meaningful ‘global’ equivalence relation. In any case, the construction of topologi-
cally distinguishable Zariski k-plets usually starts with finding curves satisfying (2)
above.

Historically, the first example of Zariski pairs was found by O. Zariski [33],
[34], who constructed a pair of irreducible sextics C;, (3, with six cusps each,
which differ by the fundamental groups 71 (P2 ~ C;). Since then, a great number
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of other examples has been found. Citing recent results only, one can mention a
large series of papers by E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustin,
and H. Tokunaga (see [5], [6] and more recent papers [2]-[4] for further references),
A. Degtyarev [11], [13], [14] (paper [11] deals with a direct generalization of Zariski’s
example: pairs of sextics distinguished by their Alexander polynomial), C. Eyral and
M. Oka [16], [17], [25], G.-M. Greuel, C. Lossen, and E. Shustin [19] (Zariski pairs
with abelian fundamental groups), Vik. S. Kulikov [23], A. Ozgl’iner [28] (a complete
list of Zariski pairs of irreducible sextics that are distinguished by their Alexander
polynomial), I. Shimada [29]-[31] (a complete list of Zariski pairs of sextics with the
maximal total Milnor number ;& = 19, as well as a list of arithmetic Zariski pairs of
sextics), and A. M. Uludag [32]. The amount of literature on the subject definitely
calls for a comprehensive survey!

With very few exceptions, the examples found in the literature are those of Zariski
pairs or triples. To my knowledge, the largest known Zariski k-plets are those con-
structed in Artal Bartolo, Tokunaga [6]: for each integer 1 = 6, there is a collection
of ([m/2] — 1) reducible curves of degree m sharing the same combinatorial data.
The principal result of this paper 1s the following Theorem 1.1.1, which states that
the size of Zariski k-plets can grow exponentially with the degree. (Theorem 1.1.3
below gives a slightly better count for reducible curves.)

1.1.1 Theorem. For each integer m = 8, there is a set of singularities shared by

Cf2k=2\{ & \([k/2]
Z(m)k(k—l)([k/Z])( z )

pairwise distinct equisingular deformation families of irreducible plane curves C; of
degree m, where k = [(m —2)/2] and ¢ = m — 2k —2 € {0, 1}. The fundamental
groups of all curves C; are abelian: one has w1 (P2 ~ C;) = Z.

Recall that a real structure on a complex surface X is an anti-holomorphic in-
volution conj: X — X. A curve C C X is called real (with respect to conj) if
conj(C) = C, and a deformation C;, |7| < 1, is called real if C; = conjC,. Up to
projective equivalence, there is a unique real structure on IP2; in appropriate coordi-
nates it is given by (zo : z1 : z2) > (Zo @ 21 : Z2).

For completeness, we enumerate the families containing real curves.

1.1.2 Theorem. If m = 8t + 2 for some t € Z, then Z(4t + 2) of the families given
by Theorem 1.1.1 contain real curves (with respect to some real structure in P?). All
other curves (and all curves for other values of m) split info pairs of disjoint complex
conjugate equisingular deformation families.



Vol. 84 (2009) Zariski k-plets via dessins d’enfants 641

1.1.3 Theorem. For each integer m = 8, there is a set of combinatorial data shared

by
| 2m — 12
Rom) = ——| "
m—5\ m—6

pairwise distinct equisingular deformation families of plane curves C; of degree m
(each curve splitting into an irreducible component of degree (m — 1) and a line).
The fundamental groups of all curves C; are abelian: one has m1(P? ~ C;) = Z.

Ifm = 2t + 1is odd, then R(t 4 3) of the families above contain real curves (with

respect 1o some real structure in P?). All other curves (and all curves for m even)
split into pairs of disjoint complex conjugate equisingular deformation families.

Theorems 1.1.1-1.1.3 are proved in Sections 7.3-7.5, respectively.

Itis easy to sce that the counts Z (m) and R () given by the theorems grow faster
than 3™/ and a®", respectively, for any ¢ < 2. A few values of Z and R are listed
in the table below.

m 8§ 9 10 11 12 13 14 ... 20 40 80
Z(m) 6 6 30 60 140 280 840 ... 2.-10° 4-.1013 1.10%!
R(m) 2 5 14 42 132 429 1430 ... 3.10% 8.10Y7 3.10%

Note that we are not trying to set a record here; probably, there are much larger
collections of curves constituting Zariski k-plets. The principal emphasis of this
paper is the fact that Zariski k-plets can be exponentially large.

1.2. Other results and tools. The curves given by Theorems 1.1.1 and 1.1.3 are
plane curves of degree m with a singular point of multiplicity (m — 3). (In a sense,
this is the first nontrivial case, as curves with a singular point of multiplicity (m —2) or
(m — 1) do not produce Zariski pairs, see [10].) When the singular point is blown up,
the proper transform of the curve becomes a (generalized) trigonal curve in a rational
ruled surface. We explain this relation in Section 2, and the bulk of the paper deals
with trigonal curves, whose theory is rather parallel to Kodaira’s theory of Jacobian
elliptic fibrations.

A trigonal curve can be characterized by its functional j-invariant, which is a
rational function j: P! — P!, so that the singular fibers of the curve are encoded
in terms of the pull-back j =40, 1, oo} (see Table 1). To study the j-invariants, we
follow S. Orevkov’s approach [26], [27] (see also [15]) and use a modified version of
Grothendieck’s dessins d’enfants, see Section 4, reducing the classification of trigonal
curves with prescribed combinatorial type of singular fibers to a graph theoretical
problem. The resulting problem is rather difficult, as the graphs are allowed to undergo
a number of modifications (see 4.4) caused by the fact that j may have critical values
other than 0, 1, or oco. To avoid this difficulty, we concentrate on a special case
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of the so called maximal curves, see 4.4.4, which can be characterized as trigonal
curves not admitting any further degeneration (Proposition 4.4.8); the classification
of maximal curves reduces to the enumeration of connected planar maps with vertices
of valency < 3, see Theorem 4.5.1. We exploit this relation and use oriented rooted
binary trees to produce large Zariski k-plets of trigonal curves, see Proposition 7.1.1
and a slight modification in Proposition 8.1.1.

It is worth mentioning that the curves given by Propositions 7.1.1 and §.1.1 are
defined over algebraic number fields (like all maximal curves), and in Theorem §.1.2
we use this fact to construct a slightly smaller, but still exponentially large, Zariski
k-plet of plain curves with discrete moduli space. All these examples seem to be
good candidates for exponentially large arithmetic Zariski k-plets (in rational ruled
surfaces and in the plane) in the sense of Shimada [29], [30].

Animportant question that remains open is whether the curves constituting various
Zariski k -plets constructed in the paper can be distinguished topologically. As a first
step in this direction, we calculate the braid monodromy of the trigonal curves, see 7.2.
(For the relation between the braid monodromy and the topology of the curve, see
Orevkov [27], Vik. S. Kulikov and M. Teicher [24], or Carmona Ruber [9].) In 6.5,
we give a general description of the braid monodromy of a trigonal curve in terms of
its dessin; it covers all maximal curves with the exception of four explicitly described
series. As a simple application, we obtain a criterion of reducibility of a maximal
trigonal curve in terms of its skeleton, see Corollary 6.6.1.

As another direct application of the construction, we produce exponentially large
Zariski k-plets of Jacobian elliptic surfaces, see 8.2. (Here, by a Zariski k-plet we
mean a collection of not fiberwise deformation equivalent surfaces sharing the same
combinatorial type of singular fibers.) The series given by Theorem 8.2.2 are related
to positive definite lattices of large rank; this gives one hope to distinguish the surfaces,
and hence their branch loci, topologically.

1.3. Contents of the paper. In Section 2, we introduce trigonal curves in rational
ruled surfaces and discuss their relation to plane curves with a singular point of
multiplicity degree — 3. Section 3 reminds the basic properties of the j-invariant
of a trigonal curve, and Section 4 introduces the dessin of a trigonal curve and the
skeleton of a maximal curve. In Section 5, we prove a few technical statements on
the fundamental group of a generalized trigonal curve. Section 6 deals with the braid
monodromy. The principal results of the paper, Theorems 1.1.1-1.1.3, are proved in
Section 7. Finally, in Section 8, we discuss a few modifications of the construction
and state a few open problems.
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2. Trigonal models

2.1. Hirzebruch surfaces. Recall that the Hirzebruch surface Zg, k = 0, is a
rational geometrically ruled surface with a section E of self-intersection —k. If k > 0,
the ruling is unique and there is a unique section E of self-intersection —k; it is called
the exceptional section. In the exceptional case k = 0, the surface Ly = P! x P!
admits two rulings, and we choose and fix one of them; any fiber of the other ruling
can be chosen for the exceptional section. The fibers of the ruling are referred to as
the fibers of X;. The semigroup of classes of effective divisors on X 1s generated
by the classes of the exceptional section E and a fiber F'; one has E? = —k, F? = 0,
and £ - F = 1.

An elementary transformation of a Hirzebruch surface X 1s the birational trans-
formation consisting in blowing up a point O € Xy and blowing down the proper
transform of the fiber through O. If the blow-up center O does (respectively, does not)
belong to the exceptional section ' C g, the result of the elementary transformation
is the Hirzebruch surface g 4 (respectively, 2ig_1).

2.2. Trigonal curves. A generalized trigonal curve on a Hirzebruch surface X is a
reduced curve not containing the exceptional section £ and intersecting cach generic
fiber at three points. Note that a generalized trigonal curve B C Xz may contain
fibers of 2 as components; we will call them the linear components of B.

A singular fiber of a generalized trigonal curve B C X 1s a fiber F of X that
is not transversal to the union B U E. Thus, F is either a linear component of B, or
the fiber through a point of intersection of B and £, or the fiber over a critical value
of the restriction to B of the projection Xy — P!,

A frigonal curve 18 a generalized trigonal curve disjoint from the exceptional
section. (In particular, trigonal curves have no lincar components.) For a trigonal
curve B C X, one has |B| = |3E + 3kF|; conversely, any curve B € |3E + 3k F|
not containing £ as a component is a trigonal curve.

Let F be a singular fiber of a trigonal curve B. If B has at most simple singular
points on 7 and £ is not a component of B, then locally B U E is the branch locus
of a Jacobian elliptic surface X, and the pull-back of F 18 a singular fiber of X. In
this case, we use the standard notation for singular elliptic fibers (referring to the
extended Dynkin diagrams) to describe the type of F7. Otherwise, B has a singular
point of type Jz,, or Egi 1, see [1] for the notation, and we use the notation J k,p

and EGHE, respectively, o describe the type of F.

2.2.1 Remark. We will not attempt to give a formal definition of the type of a singular
fiber F° of a trigonal curve B. One can understand it as the topological type of the
boundary singularity (B, F'), see [1] for details. As a result of the classification, one
can conclude that this type is determined by whether F is a component of B and
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(the conjugacy class of) the braid monodromy about F, see Section 6 below for the
definition. Alternatively, if F is not a component of B and B has at worst simple
singularities on F (which 1s always the case in this paper), then the type of F 1s
determined by Kodaira’s type of the singular fiber of the Jacobian elliptic surface
ramified at B U F, see above.

Any generalized trigonal curve B without linear components can be converted to
a trigonal curve by a sequence of elementary transformations, at each step blowing
up a point of intersection of B and the exceptional section and blowing down the
corresponding fiber.

2.3. Simplified models. Let X’ be a Hirzebruch surface, and let £” be obtained
from X’ by an elementary transformation. Denote by O’ € ¥/ and 0”7 € X" the
blow-up centers of the transformation and its inverse, respectively, and let F’ C
¥ and F” C X" be the fibers through O" and O”, respectively. The transform
B” < X of a generalized trigonal curve B’ C X' is defined as follows: if B’
does not (respectively, does) contain F’ as a linear component, then B” is the proper
transform of B’ (respectively, the union of the proper transform and fiber ). In the
above notation, there is an obvious diffeomorphism

Y~ (BUE UF)=Y'~(B"UE"UF"), (2.1)

where E' C ¥ and E” C T are the exceptional sections.

A trigonal curve B C Xy 1s called simplified 1if all its singular points are double,
i.e., those of type A,. Clearly, each trigonal curve has a unique simplified model
B C X, which is obtained from B by a series of elementary transformations: one
blows up a triple point of the curve and blows down the corresponding fiber, repeating
this process until there are no triple points left.

2.4. Deformations. Let B C X be a generalized trigonal curve and £ C X
the exceptional section. We define a fiberwise deformation of B as an equisingular
deformation (path in the space of curves) preserving the topological types of all sin-
gular fibers. Alternatively, a fiberwise deformation can be defined as an equisingular
deformation of the curve B U E U (all singular fibers of B).

A degeneration of a generalized trigonal curve B is a family By, |[t| < 1, of
generalized trigonal curves such that B = B; and the restriction of B; to the annulus
0 < |t] < 1 1is a fiberwise deformation. A degeneration is called nontrivial if By is
not fiberwise deformation equivalent to B.

Let By € Xf and Br41 C Xg4q be two generalized trigonal curves related
by an elementary transformation, and let £; C %;,7 = k,k + 1, be the respective
exceptional sections. In general, itis nof true that an equisingular deformation of By or
B U Ey isnecessarily followed by an equisingular deformation of By 4 (respectively,
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By U Epqq)or vice versa: it may happen that a singular fiber splits into two and
this operation affects the topology of one of the curves without affecting the topology
of the other. However, 1t obviously is true that the fiberwise deformations of By are
in a natural one-to-one correspondence with the fiberwise deformations of Br41. A
precise statement relating deformations of By and Bi4; would require simple but
tedious analysis of a number of types of singular fibers. Instead of attempting to
study this problem in full generality (which becomes even more involved if the two
curves are related by a series of elementary transformations), we just make sure that,
in the examples considered in this paper (see 7.3, 7.5, and 8.1.2), generic equisingular
deformations of each curve B U E are fiberwise. (In 7.5, a linear component is added
to the curve for this purpose.) In more details this issue is addressed in 7.6.

2.5. The trigonal model of a plane curve. Let C C P? be a reduced curve,
deg C = m, and let O be a distinguished singular point of C of multiplicity (m — 3).
(Such a point 1s unique whenever m > 7 orm > 6 and C 1s irreducible.) By a linear
component of C we mean a component of degree 1 passing through O.

Blow O up and denote the result by Y7y; it is a Hirzebruch surface %, and the
proper transform C = B C Y; of C 15 a generalized trigonal curve. Clearly,
the combinatorial type of C determines and is determined by that of By U Eq, the
type of O itself being recovered from the singularities of By U £ located in the
exceptional section £;. Furthermore, equisingular deformations of the pair (C, O)
are in a one-to-one correspondence with equisingular deformations of By U E7.

Let B} be the curve obtained from B; by removing its linear components. As
in 2.2, one can apply a sequence of elementary transformations to get a sequence of
curves B;,B] C Y; = X;,i = 1,...,k, so that B is a true trigonal curve. (Here,
B; 1+ is the transform of B;, and Blf 41 18 obtained from B, by removing its linear
components. In other words, we pass to the trigonal model of B while keeping track
of the linear components of C.) The curve By is called the trigonal model of C.
Finally, passing from B, to its simplified model B’ C Y = X, one obtains the
simplified trigonal model B' of C.

3. The j -invariant

The contents of this section is a translation to the language of trigonal curves of
certain well known notions and facts about elliptic surfaces; for more details we refer
to the excellent founding paper by K. Kodaira [22] or to more recent monographs [18]
and [7]. In the theory of elliptic surfaces, trigonal curves (in the sense of this paper)
arise as the branch loci of the Weierstral models of Jacobian elliptic surfaces over
a rational base. These curves have at most simple singularities and belong to even
Hirzebruch surfaces 2 »;. However, most notions and statements extend, more or less
directly, to trigonal curves in odd Hirzebruch surfaces X4y .
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3.1. WeierstraB} equation. Let ¥; — P! be a Hirzebruch surface. Any trigonal
curve B C X can be given by a Weierstrafp equation; in appropriate affine charts it
has the form

x4 gox + g3 =0,

where g and g3 are certain sections of Op1(2k) and Op1(3k), respectively, and x
is a coordinate such that x = 0 is the zero section and x = oo is the exceptional
section F£ C Xg. The sections gz, gz are determined by the curve uniquely up to the
transformation

(g2.83) > (17g2.17g3), 1 €C* (3.1)

The following statement is straightforward.

3.1.1 Proposition. A frigonal curve B as in 3.1 is simplified if and only if there
is no point z € P which is a root of ga of multiplicity = 2 and a root of g3 of
multiplicity = 3. O

3.2. The (functional) j-invariant of a trigonal curve B C 3 is the meromorphic
function j = jp: P! — P! given by

. 4g3
J:—Z’

A = 4g3 + 2742,
A g +2/g3

where g, and g3 are the coefficients of the Weierstrall equation of B, see 3.1. Here,
the domain of j is the base of the ruling ¥; — P!, whereas its range is the standard
projective line P! = C! U {oc}. If the fiber F, over z € P! is nonsingular, then the
value j(z) is the usual j-invariant (divided by the magic number 1728 = 123) of the
quadruple of points cut on F; by the union B U E (or, in more conventional terms,
the j-invariant of the elliptic curve that is the double of F, = P! ramified at the four
points above). The values of j at the finitely many remaining points corresponding
to the singular fibers of B are obtained by analytic continuation.

Since jp is defined via affine charts and analytic continuation, it is obviously
invariant under ¢lementary transformations. In particular, the notion of j -invariant
can be extended to generalized trigonal curves (by ignoring the lincar components
and passing to a trigonal model), and the j -invariant of a trigonal curve B is the same
as that of the simplified model of B.

3.3. The j-invariant jp: P! — P! has three ‘special’ values: 0, 1, and oc. The
correspondence between the type of a fiber [, see remark in Section 2.2, and the
value j(z) (and the ramification index ind; j of j at z) is shown in Table 1. (We
confine ourselves to the curves with at worst simple singular points. In fact, in
view of the invariance of the j -invariant under elementary transformations, it would
suffice to consider type A singular fibers only. For the reader’s convenience, we
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also cite Kodaira’s notation for the types of singular elliptic fibers, ¢f. Section 2.2.)
If B is a curve in Xy, the maximal degree of jp is 6k. However, deg jp drops if
B has triple singular points or type A5*, AT, or A% singular fibers, see A deg j in
Table 1. It is worth mentioning that the j-invariant of a generic trigonal curve is
highly non-generic, as it takes values 0 and 1 with multiplicities 3 and 2 respectively
(see Comments to Table 1); conversely, a generic function j : P! — P! would arise
as the j -invariant of a trigonal curve with a large number of type A;’)‘* and A’f singular
fibers.

Table 1. The values j(z) at singular fibers F.

Type of F; j(z) | ind; j Adeg j mult F,
Ay Dpis).pz1|lp G )| oo | p+1 0(—6) |p+1(p+7)
A} (Ds) LD | o 1 0 (=6) 1(7)
Ar* (Ee) 11 (IT*) 0 | Ilmod3 | —2(—8) 2 (8)
A% (Ey) 111 (III*) 1 | 1mod2 | —3(=9) 3 (9)
A% (Eg) IV (IV*) 0 | 2mod3 | —4(—10) 4 (10)

Comments. Fibers of type Ao (Kodaira’s Io) are not singular. For a nonsingular fiber F, with
complex multiplication of order 2 (respectively, 3) one has j(z) = 1 and ind; j = Omod 2
(respectively, j(z) = O and ind; j = 0 mod 3). Singular fibers of type D4 (Kodaira’s I7)) are
not detected by the j-invariant, except that each such fiber decreases the degree of j by 6. The
multiplicity mult F. is the number of simplest (i.e., type A o) singular fibers resulting from a
generic perturbation of F-.

3.4. Isotrivial curves. A trigonal curve B C X is called isorrivial if jp = const.
All simplified isotrivial curves can easily be classified.

(1) If jp = 0,then g = Oand g; is a section of Op.1 (3k) whose all roots are simple
or double, see Proposition 3.1.1. The singular fibers of B are of type A§™ (over
the simple roots of g3) or A (over the double roots of g3).

(2) It jp = 1, then g3 = 0 and g, is a section of Op1(2k) with simple roots only,
see Proposition 3.1.1. All singular fibers of B are of type f&’f (over the roots
of gz).

(3) If jg = const # 0, 1, then g5 = Ag3 for some A € C*; in view of Propo-
sition 3.1.1, this implies that k = 0 and g5, g3 = const, i.e., B is a union of
disjoint sections of 2. (In particular, B has no singular fibers.)

Note that an 1sotrivial trigonal curve cannot be fiberwise deformation equivalent to a
non-isotrivial one, as a non-constant j-invariant jp would take value oo and hence
the curve would have a singular fiber of type A or Ap, p > 0, see Table 1.
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3.4.1 Proposition. Any non-constant meromorphic function j: P! — Pl s the j-
invariant of a certain simplified trigonal curve B C Xy the latter is unique up to the
change of coordinates given by (3.1).

Proof. Tor simplicity, restrict all functions/sections (o an affine portion C! c P!,
which we assume to contain all pull-backs j ~1(0) and j ~*(1). Represent the function
[ = j/(1— j) by anirreducible fraction p/q. Since [(o0) # 0, 0o, one has deg p =
deg g. For each root a of p of multiplicity 1 mod 3 (respectively, 2 mod 3), multiply
both p and ¢ by (z—a)? (respectively, (z—a)*), and for each root b of ¢ of multiplicity
1 mod 2, multiply both p and ¢ by (z — b)?. In the resulting representation/ = p/g,
the multiplicity of each root of p (respectively, g) is divisible by 3 (respectively, 2),
and p and g have no common roots of multiplicity = 6. Hence, one has p = 4g3 and
g = 27g3 for some polynomials g5, g3 satisfying the condition in Proposition 3.1.1,
and the function j = [/(I + 1) = p/{(p + g) is the j-invariant of the simplified
trigonal curve B C X given by the Weierstrall equation with coefficients g», g3,
where k = %deg p= édeg q. Clearly, the polynomials g;, g3 as above are defined
by [ uniquely up to the transformation given by (3.1). O

3.4.2 Proposition. A fiberwise deformation of a non-isotrivial trigonal curve B re-
sults in a deformation of its j-invariant j = jp: P! — P with the following
properties:.

(1) the degree of the map j: P! — P! remains constant;

(2) distinct poles of j remain distinct, and their multiplicities remain constant;
(3) the multiplicity of each root of j remains constant mod 3;

(4) the multiplicity of each root of j — 1 remains consfant mod 2.

Conversely, any deformation of nonconstant meromorphic functions j: P! — P!
satisfying conditions (1)-(4) above results in a fiberwise deformation of the corre-
sponding (via Proposition 3.4.1) simplified trigonal curves.

3.4.3 Remark. Condition 3.4.2 (3) means that a root of j of multiplicity divisible
by 3 may join another root and, conversely, a root of large multiplicity may break
nto several roots, all but one having multiplicities divisible by 3. Condition 3.4.2 (4)
should be interpreted similarly.

3.4.4 Remark. Note that just an equisingular (not necessarily fiberwise) deformation
of trigonal curves does not always result in a deformation of their j -invariants. In the
case of simplified curves, the degree of jp drops whenever a type A* singular fiber
of B joins another singular fiber, of type AO, Ay, or Ay, to forma ﬁber of type Aé*,
A’f, or A%, respectively, see Table 1.
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Proof. The direct statement follows essentially from Table 1. Indeed, the multiplici-
ties of the poles of jp, (mod 3)-multiplicities of its roots, and (mod 2)-multiplicities
of the roots of jp — 1 are encoded 1n the singular fibers of B, and the degree deg jp
can be found as the sum of the multiplicities of all poles of jgp. Since the expression
for jp depends ‘continuously’ on the coefficients of the Weierstrass equation and
deg jp remains constant, there 1s no extra cancellation during the deformation and
the map jp: P! — P! changes continuously.

The converse statement follows from the construction of the simplified trigonal
curve B from a given j-invariant j, see the proof of Proposition 3.4.1. Since the
degree deg/ = deg j remains constant, the polynomials p and ¢ in the irreducible
representation / = p/q change continuously during the deformation. Crucial is the
fact that the passage from p/g to p/q depends only on the roots of p and ¢ whose
multiplicity is notdivisible by 3 and 2, respectively. Hence, due to Conditions 3.4.2 (3)
and (4), the degree deg p = deg g will remain constant, the polynomials p and g will
change continuously, and so will the coefficients g,, g3 of the Weierstrass equation.
The fact that the resulting deformation of the trigonal curves is fiberwise follows
again from Table 1. O

4. Dessins d’enfants and skeletons

According to Propositions 3.4.1 and 3.4.2, the study of simplified trigonal curves in
Hirzebruch surfaces is reduced to the study of meromorphic functions j : P! — P!
with three ‘essential’ critical values O, 1, and oo and, possibly, a few other crit-
ical values. TFollowing S. Orevkov [26], [27], we employ a modified version of
Grothendieck’s dessins d’enfants. Below, we outline briefly the basic concepts and
principal results; for more details and proofs we refer to [15], Sections 5.1 and 5.2.
Note that [15] deals with a real version of the theory, where functions (graphs) are
supplied with an anti-holomorphic (respectively, orientation reversing) involution;
however, all proofs apply to the settings of this paper literally, with the real structure
ignored.

Since, in this paper, we deal with rational ruled surfaces only, we restrict the
further exhibition to the case of graphs in the sphere S? >~ P!,

4.1. Trichotomic graphs. Given a graph I' C S2, we denote by S2 the closed
cut of S? along T'. The connected components of SI% are called the regions of T
(Unless specified otherwise, in the topological part of this section we are working in
the PL-category.)

A trichotomic graph is an embedded oriented graph T' C S? decorated with the
following additional structures (referred to as colorings of the edges and vertices of I,
respectively):
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— each edge of I' is of one of the three kinds: solid, bold, or dotted;

— ecach vertex of I' 1s of one of the four kinds: e, o, x, or monochrome (the vertices
of the first three kinds being called essential)

and satisfying the following conditions:

(1) the valency of each essential vertex of I' is at least 2, and the valency of each
monochrome vertex of I" 1s at least 3;

(2) the orientations of the edges of I' form an orientation of the boundary 8512; this
orientation extends to an orientation of SI%;

(3) all edges incident to a monochrome vertex are of the same kind;

(4) x-vertices are incident to incoming dotted edges and outgoing solid edges;
(5) e-vertices are incident to incoming solid edges and outgoing bold edges;
(6) o-vertices are incident to incoming bold edges and outgoing dotted edges.

In (4)—(6) the lists are complete, i.e., vertices cannot be incident to edges of other
kinds or with different orientation.

Condition (2) implies that the orientations of the edges incident to a vertex alter-
nate. In particular, all vertices of I' have even valencies.

4.2. Dessins. In view of 4.1 (3), the monochrome vertices of a trichotomic graph
I' can further be subdivided into solid, bold, and dotted, according to their incident
edges. A path in I' is called monochrome if all its vertices are monochrome. (Then,
all vertices of the path are of the same kind, and all its edges are of the same kind as
its vertices.) Given two monochrome vertices u, v € I', we say that u < v if there 1s
an oriented monochrome path from u to v. (Clearly, only vertices of the same kind
can be compatible.) The graph is called admissible it < is a partial order. Since <
is obviously transitive, this condition is equivalent to the requirement that I' should
have no oriented monochrome cycles.
In this paper, an admissible trichotomic graph is called a dessin.

4.2.1 Remark. Note that the orientation of T" is almost superfluous. Indeed, I' may
have at most two orientations satisfying 4.1 (2), and if T" has at least one essential
vertex, its orientation is uniquely determined by 4.1 (4)-(6). Note also that each
connected component of an admissible graph does have essential vertices (of all
three kinds), as otherwise any component of 3SZ would be an oriented monochrome
cycle.

4.2.2 Remark. In fact, all three decorations of a dessin I' (orientation and the two
colorings) can be recovered from any of the colorings. However, for clarity we retain
both colorings in the diagrams.
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4.3. The dessin of a trigonal curve. Any orientation preserving ramified covering
j: 8% — P! defines a trichotomic graph T'(j) C S2. As aset, I'(j) is the pull-
back j~!(Pg). (Here, Py C P! is the fixed point set of the standard real structure
z > Z.) The trichotomic graph structure on I'(j ) is introduced as follows: the e-, o-,
and x-vertices are the pull-backs of 0, 1, and oo, respectively (monochrome vertices
being the ramification points with other real critical values), the edges are solid, bold,
or dotted provided that their images belong to [00, 0], [0, 1], or [1, oc], respectively,
and the orientation of I"(j) is that induced from the positive orientation of ]P’]é (Le.,
order of R).

As shown in [15], a trichotomic graph I' C S? is a dessin if and only if it has
the form I'(j ) for some orientation preserving ramified covering j: S? — P!; the
latter 1s determined by I' uniquely up to homotopy in the class of ramified coverings
having a fixed trichotomic graph.

We define the dessin I'(B) of a trigonal curve B as the dessin ['(j) of its j-
invariant j : P! — P!, The correspondence between the singular fibers of a simpli-
fied trigonal curve B and the vertices of its dessin ' (B) is given by Table 1 (see j(z) ),
the valency of a vertex z being twice the ramification index ind, j. The e- (respec-
tively, o-) vertices of I'(B) of valency 0 mod 6 (respectively, O mod 4) correspond to
the nonsingular fibers of B with complex multiplication of order 3 (respectively, 2);
such vertices are called nonsingular, whereas all other essential vertices of I" are
called singular.

4.4. Equivalence of dessins. Let I' C S2 be a trichotomic graph, and let v be a
vertex of I'. Pick a regular neighborhood U  S2 of v and replace the intersection
I' N U with another decorated graph, so that the result I'" is again a trichotomic
graph. If I'" N U contains essential vertices of at most one kind, then I'” is called a
perturbation of I (at v), and the original graph I' is called a degeneration of T,

A perturbation T of a dessin is also a dessin if and only if the intersection T/ N U
contains no oriented monochrome cycles. There are no simple local criteria for the
admissibility of a degeneration.

4.4.1 Remark. Assume that the perturbation I'/ is a dessin. Since the intersection
I NaU is fixed, the assumption on I'" N U implies that I'" N U either is monochrome
(if v 1s monochrome) or consists of monochrome vertices, essential vertices of the
same kind as v, and edges of the two kinds incident to v.

A perturbation I'” of a dessin I at a vertex v (and the inverse degeneration of '
to ') is called equisingular if v is not a x-vertex and the intersection [ N U contains
at most one singular - or o-vertex. Two dessins I/, T'” C S? are said to be equivalent
if they can be connected by a chain TV = Ty, I'y,..., T, = T'” of dessins, where
each I';, 1 <7 < n, either is isotopic to I';_; or is an equisingular perturbation or
degeneration of I';_;. Clearly, equivalence of dessins is an equivalence relation.
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4.4.2 Remark. By an isotopy between two dessins I'" and '’ we mean a PL-family
¢, of PL-autohomeomorphisms of S? such that ¢y = id and ¢; (I'’) = ['”, the latter
map taking vertices to vertices and edges to edges and preserving both colorings of
the dessins. Note that, since the mapping class group of S? is trivial, one can just
require that I'’ is taken to I by an orientation preserving PL-autohomeomorphism
of §? respecting the graph structure and the colorings.

The following statement, essentially based on the Riemann existence theorem,
is an immediate consequence of Propositions 3.4.1 and 3.4.2 and the results of [15]
(particularly, Corollaries 5.1.8 and 5.2.3, with the real structure ignored).

4.4.3 Theorem. The map B +— U (B) sending a trigonal curve B to its dessin
establishes a one-1o-one correspondence between the set of fiberwise deformation
classes of simplified trigonal curves in Hirzebruch surfaces and the set of equivalence
classes of dessins. O

4.4.4 Definition (Maximal curves and dessins). A dessin T' C S? is called maximal
if it satisfies the following conditions:

(1) all vertices of I" are essential;
(2) all e~ (respectively, o-) vertices of I have valency < 6 (respectively, < 4);
(3) all regions of I' are triangles.

A simplified trigonal curve B is called maximal if its dessin ' (B) is maximal.

4.4.5 Remark. Conditions 4.4.4 (1) and (3) in the definition of a maximal dessin can
be restated as the requirement that the function j : $2 — P! constructed from T,
see 4.3, should have no critical values other than O, 1, and oc.

4.4.6 Remark. Any maximal trigonal curve is defined over an algebraic number field.
Indeed, as any function with three critical values, the rational function j : P! — P!
has finitely many Galois conjugates and hence is defined over an algebraic number
field. Then, the construction in the proof of Proposition 3.4.1 shows that the coeffi-
cients g2, g3 of the Weierstrall equation are defined over the splitting field of j. (One
may need to add to the field some roots and poles of j.)

4.4.7 Proposition. A trigonal curve B’ is fiberwise deformation equivalent to a maxi-
mal trigonal curve B if and only if the dessins T'(B") and I' (B) are isotopic. Further-
more, a permutation of the singular fibers of a maximal trigonal curve B is realized
by a fiberwise self-deformation if and only if the corresponding permutation of the
vertices of T'(B) is induced by an isotopy of T'(B).
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Proof. A maximal dessin does not admit nontrivial equisingular perturbations (due
to Conditions (1) and (2), as an equisingular perturbation requires a vertex of high
valency) or degenerations (due to Condition (3), as a perturbation produces more than
triangle regions). Hence, any equivalence to a maximal dessin is an isotopy. O

4.4.8 Proposition. A trigonal curve B is maximal if and only if it does not admit a
nontrivial degeneration, see 2.4, to a non-isotrivial curve.

Proof. Let ' = T'(B). After a small deformation, we can assume that T" satisfies
the general position assumptions 4.4.4 (1) and (2). Then, if B is not maximal, I has
a region R whose boundary contains at least two x-vertices, and these two vertices
can be brought together within R. This degeneration of I results in a nontrivial
degeneration of the curve.,

Conversely, assume that B has a nontrivial degeneration to a curve By, which is
necessarily trigonal. Then, up to isotopy, I' is obtained from I'(By) by removing
disjoint regular neighborhoods of some of its vertices and replacing them with new
decorated graphs. (Since deg j may change, it is no longer required that each of
the new graphs should contain essential vertices of at most one kind. Note that we
do not discuss the realizability of any such modification by an actual degeneration
of curves.) If this procedure is nontrivial, it results in a graph I' with at least one
non-triangular region. O

4.5. Skeletons. An abstract skeleton is a connected planar map Sk C S? whose
vertices have valencies at most three; we allow the possibility of hanging edges, i.e.,
edges with only one end attached to a vertex. An isomorphism between two abstract
skeletons Sk’ and Sk” is an orientation preserving PL-autohomeomorphism of S?2
taking Sk’ to Sk”.

The skeleton of a maximal trigonal curve B is the skeleton Sk(B) C S? obtained
from the dessin I'(B) by removing all x-vertices and incident edges (i.e., all solid
and dotted edges) and disregarding the o-vertices. (Note that the resulting graph is
indeed connected due to Condition4.4.4 (3).) Clearly, a maximal dessin [” is uniquely
(up to homotopy) recovered from its skeleton Sk: one should place a o-vertex at the
middle of each edge (at the free end of each hanging edge), place a x-vertex vg at
the center of each region R of Sk, and connect this vertex v g to the e- and o-vertices
in the boundary dR by appropriate (respectively, solid and dotted) edges. The last
operation 1s unambiguous as, due to the connectedness of Sk, each open region R 18
a topological disk.

4.5.1 Theorem. The map B +— Sk(B) sending a maximal trigonal curve B fo
its skeleton establishes a one-to-one correspondence between the set of fiberwise
deformation classes of maximal trigonal curves in Hirzebruch surfaces and the set
of isomorphism classes of abstract skeletons in S2.
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Proof. The statement follows from the correspondence between maximal dessins and
skeletons described above, Theorem 4.4.3, and Proposition 4.4.7. O

4.5.2 Remark. Removing from a dessin I'(j) all x-vertices and incident edges re-
sults in a classical dessin d’enfants in the sense of Grothendieck, i.e., the bipartite
graph obtained as the pull-back j~1([0, 1]). The passage to the skeletons is a further
simplification due to the fact that, under the assumptions on maximal dessins, all
o-vertices have valency at most two.

4.5.3 Remark. Theorem 4.5.1 suggests that, in general, the classification of maxi-
mal trigonal curves with a prescribed combinatorial type of singular fibers is a wild
problem: one would have to enumerate all planar maps with prescribed valencies of
vertices and numbers of edges of regions. The only general result in this direction
that I am aware of is the Hurwitz formula [20] (see also [8]), which establishes a
relation between a certain weighed count of planar maps (more precisely, ramified
coverings of P!, not necessarily connected) and characters of symmetric groups.

4.6. Vertex count. We conclude this section with a few simple counts. For a
dessin I', denote by #, = #.(I") the total number of x-vertices (where * is ¢cither e,
or o, or x), and by #. (7 ),/ € N, the number of =-vertices of valency 2i. (Recall that
valencies of all vertices of a dessin are even.) Consider a trigonal curve B C g, its
j-invariant j: P! — P!, and its dessin ' = I'(B). Counting the number of points
in one of the three special fibers of j, one obtains

degj =) i#a(i) =Y ith(i) =) i#(i). (4.1)
i=0 i>0 i>0

Since B can be perturbed to a generic trigonal curve in the same surface 2, and a
generic curve has deg A = 6k simplest singular fibers, Table 1 yields

6k = it (i) +2 Y #(i)+3 DY () +4 Y #a(0). (4.2)

i=0 i=1(3) i=1(2) i=2(3)

(Alternatively, one can notice that the first term in (4.2) equals deg j, see (4.1), and
the remaining part of the sum is 6k — deg j, see Adeg j in Table 1.) Finally, the
Riemann—Hurwitz formula applied to j results in the inequality

He + #, + #x = deg j + 2. 4.3)

which turns into an equality if and only if j has no critical values other than O, 1,
and oo, i.e., Conditions 4.4.4 (1) and (3) are satisfied.



Vol. 84 (2009) Zariski k-plets via dessins d’enfants 655
5. The fundamental group

5.1. The braid group. Recall that the braid group B3 can be defined as the group
of automorphisms of the free group G = (o, oy, a3) sending each generator to a
conjugate of another generator and leaving the product o ar o3 fixed. We assume that
the action of B3 on G is from the left. One has B3 = (01,03 | 010201 = 020103),
where

o1: (o, 0, 03) > (eponey ' op,03), o2t (a1, 0, 03) = (a, 0a0s0; ', @),

We will also consider the elements 03 = o7 o207 and T = 6201 = 0302 = 0103,
The center of B5 is the infinite cyclic group generated by 7.

Note that the maps (o1, 02) — (02, 03) > (03, 01) define automorphisms of B
in particular, the pairs {05, 03) and (o3, 07 ) are subject to all relations that hold for
(o1, 02). In what follows, we use the convention o34, = 0;,1 = 1,2,3,1 € Z.

The degree deg  of abraid 8 € B3 is defined as its image under the abelianization
homomorphism B3 — Z, 0,0, + 1. A braid is uniquely recovered from its degree
and its image in the quotient B3 /73,

5.2. Van Kampen’s method. Let B C X = X, be a generalized trigonal curve,
and let £ C X be the exceptional section. The fundamental group 71(X~ (B U E))
can be found using an analogue of van Kampen’s method [21] applied to the ruling
of X. Pick a fiber F, (singular or not) over a point oo € P! and trivialize the ruling
over Pl < 0o, Tet Fy,..., F. be the singular fibers of B other than Fs. Pick a
nonsingular fiber F distinct from /o and a generic section S disjoint from £ and
intersecting all fibers F, Fq,. .., Iy, Fs outside of B.

Clearly, F ~ (B U E) is the plane C! = F ~ E with three punctures. Consider
the group G = 7(F ~ (B U E),F N YS), and let ¢, @z, o3 be a standard set
of generators of G. Let, further, yy,...y, be a standard set of generators of the
fundamental group 71 (S ~ (Fx U U;=1 Fy), SN F),sothat y; is aloop around £,
J =1,....r. Foreach j = 1,...,r, dragging the fiber F along y,; and keeping
the base point in S results in a certain automorphism m; : G — G, called the braid
monodromy along y;. Strictly speaking, m; 1s not necessarily a braid (unless B 1s
disjoint from FE); however, it still has the property that the image m; («;) of each
standard generator «;, i = 1,2, 3, 1s a conjugate of another generator ;.

According to van Kampen, the group 7 (E~(BU EU Fo Ui F;). SN F)
1s given by the representation

(o1, 0, 003, Y1, .o vy | yj_laiyj = @ (@ d = LL3J = Licasfh

and patching back a fiber F;, j = 1,...,r, results in an additional relation y; = 1.
Thus, if B has no linear components, the resulting representation for the group
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T (E~(BUEUFL),SNF)is
(oal,ozz,oz3 | &y =il )t =1,2.8. 7 = 1,...,r).

Patching back the remaining fiber Fo, gives one more relation y = 1, where y is the
class of a small loop in S around S N F; an expression of y in terms of oy, a2, o3
in the special case of trigonal curves 1s found below, see Remark 6.2.1.

5.2.1 Remark. Van Kampen’s approach applies as well in the case when the curve
has lincar components: for each such component, one should keep the corresponding
generator y; and keep the relation yj_loai v; = m;{(o;) instead of oy = mj (¢r;).

5.2.2 Proposition. Let By C Xy and Brpi1 C Zjg41 be two generalized trigonal
curves, so that By is obtained from By 1 by an elementary transformation whose
blow-up center O does not belong to By 1. Then there is a natural isomorphism

T (B ~ (B U E)) = m1(Zg41 >~ (Br+1 U Egy1)),

where E; C X;, i = k,k + 1, are the exceptional sections.

Proof. let Fryq C g1 be the fiber through O, and let Fr C X be the fiber con-
tracted by the inverse elementary transformation. The diffeomorphism (2.1) induces
an isomorphism

T (e ~ (B U Ex U F)) = m1(ZBkerr > (Br+1 U Eg1 U Frey)).

The group 71 (Zg ~ (B U Eg)) is obtained from 771 (g ~ ( Bx U Ex U F)) by adding
the relation [0Tg] = 1, where 'y C X is a small analytic disk transversal to F
and disjoint from all other curves involved. Similarly, patching the fiber Fy 1 results
in an additional relation [0 4¢] = 1, where 'y, C X4 is a small analytic
disk transversal to Fiy; and disjoint from the other curves in Xz ;. Under the
assumptions, one can choose 'y 1 passing through the blow-up center O; then its
proper transform can be taken for I'y. Hence, one has [0 ] = [0['x1{], and the two
quotient groups are isomorphic. O

5.2.3 Proposition. Let C C P? be an algebraic curve of degree m with a distin-
guished singular point O of multiplicity (m — 3) and without linear components.
Assume that C has a branch b at O of type E12. Then C is irreducible and the
fundamental group w1 (P2 ~ C) = Zyy, is abelian.

Proof. Blow O up and consider the proper transform By C X, of C, see 2.5. The
transform of 4 is a type E¢ singular point of B;, and the elementary transformation
centered at this point converts B, to a generalized trigonal curve B, C X, with a
type A;‘;* singular fiber. In particular, the curve is irreducible.
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The inverse transformation is as in Proposition 5.2.2, i.e., its blow-up center does
not belong to the curve B; or the exceptional section F,. Hence, one has

T (P2~ C) =m(E1~(B1 U E1)) = 71(Za~ (B2 U E»)).

('The first isomorphism is obvious; the second one is given by Proposition 5.2.2.) The
last group can be found using van Kampen’s method, see 5.2. Under an appropriate
choice of the generators o, ¢, o3, the braid monodromy m about a type A5 * singular
fiber is v € B3, and the relations m(c;) = o, i = 1,2,3, yield 1 = a3 = «3.
Hence, the group 1s abelian. O

5.2.4 Proposition. Let C be the union of an irreducible curve as in Proposition 5.2.3
and r = 1 linear components none of which is tangent to the branch b of type Eq».
Then one has w1 (P2~ C) = Z x {y1, ... yr—1). In particular, if v < 2, the group is
still abelian.

Proof. As in the proof of Proposition 5.2.3, there 1s a relation o = oy = o3, and
due to the properties of the braid monodromy (each generator is taken to a conjugate
of a generator) the relations yj_lai v, = m;(o;) tuminto [y;, ;] = 1. O

6. The braid monodromy

In this section, we describe the braid monodromy of a simplified trigonal curve. We
fix suchacurve B C X = X; andlet I' = ['(B). Further, we denote by F the fiber
overapointz € P!, andlet B, = BN F, and E, = E N F,, where E C T is the
exceptional section. Note that F, ~ E is an affine space over C!; in particular, one
can speak about its orientation, lines, circles, angles, and length ratios. We use the
notation [ for the punctured plane F; ~ (B, U ;).

6.1. Geometry of the fibers. The definition of the j -invariant gives an easy way to
recover the topology of B from its dessin I'. The set B, consists of a single triple
point if z is a singular e- or o-vertex. If z is a x-vertex, B, consists of two points, one
simple and one double. In all other cases, B, consists of three simple points, whose
position in /', ~ FE, can be characterized as follows.

(1) If z is an inner point of a region of I', the three points of B form a triangle with
all three edges distinct. Hence, the restriction of the projection B — P! to the
interior of each region of I" is a trivial covering.

(2) If z belongs to a dotted edge of T', the three points of B, are collinear. The ratio
(smallest distance)/(largest distance) is in (0, %); it tends to O (respectively, %)
when z approaches a x- (respectively, o-) vertex.
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(3) If z belongs to a solid (bold) edge of I', the three points of B, form an isosceles
triangle with the angle at the vertex less than (respectively, greater than) 5/3.
The angle tends to 0, /3, or 7 when z approaches, respectively, a x-, e-, or
o-vertex.

Furthermore, a simple model example proves the following statement.

(4) Forapoint z as in (1), arrange the vertices of B in ascending order based on the
length of the opposite edge. The resulting orientation of B, is counterclockwise
if and only if Jjp(z) > O.

6.2. Proper sections. To define the braid monodromy, we need to fix a ‘fiber at
infinity” F, see 5.2, and a generic section .S that would provide the base points
S; = SNF, € F,. We take for I the fiber over a fixed point co ¢ I', and
construct S as a small perturbation of £ + kF’, where F' is the fiber over a point z’
in the same open region of I' as oo. If the perturbation 1s sufficiently small, the
section S has the following property: there is a closed neighborhood K > oo disjoint
from T and such that, for each point z € P ~ K, the base point S, € F; is outside
a disk U, C F; containing B, and centered ar its barycenter (cf. Figure 1, right,
below). In what follows, a section S satisfying this property is called proper and,
when speaking about the fundamental group 71 (F,, S;), we always assume that the
point z 1s outside the above closed neighborhood K.

Note that, together with the exceptional section £ and the zero section given by
z > (the barycenter of B;), a proper section .S gives a trivialization of the ruling
over P! ~ K, which is necessary to define the braid monodromy.

6.2.1 Remark. From the construction of a proper section S it follows that the class y
of a small loop in S surrounding Foo N S (see 5.2) is, up to conjugation, given by
y = (Oll(Xz(Xg)k v1...Yr. Hence, in this case, the final relation in van Kampen’s
method is (C¥1(X2(X3)k = I,

6.3. Markings and canonical bases. Let z € [ be a nonsingular e-vertex. Ac-
cording to 6.1 (3), the three points of the set B, form an equilateral triangle. There
is a natural one-to-one correspondence between the bold edges incident to z and the
points of B.: an edge e corresponds to the point p € B, that turns into the vertex
of the 1sosceles triangle when z slides from its original position along e. In fact, the
same point p turns into the vertex of the 1sosceles triangle when z slides along the
solid edge e’ opposite to e, so that the two other points are brought together over the
x-vertex ending e’.

In what follows, we always assume that the three bold edges ¢4, ¢3, ¢3 incident to z
are oriented in the counterclockwise direction, as in Figure 1, left. Such an ordering
is called a marking at z, and an edge ¢; incident to z is said to have index i at z. A
marking at z is uniquely determined by assigning an index to one of the three bold
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edges incident to z. Alternatively, a marking is determined by assigning an index to
one of the three points constituting B .

A marking of a dessin I'" 1s defined as a collection of markings at each nonsingular
e-vertex of I'. The notion of marking and index of edges extends to skeletons in the
obvious way.

Using 6.1 (1)—(3), from 6.1 (4) it follows that if ey, e2, e3 is a marking ar a non-
singular e-vertex z, the corresponding points pi1, p2, p3 € B, form the clockwise
orientation of the triangle B, (Figure 1, right).

Sz

€1

Figure 1. A canonical basis for G ..

Pick a proper section S, see 6.2, and consider the group G, = m;(F,;, S;). A
canonical basis for G, is a basis oy, oz, 3 shown in Figure 1, right, where the
space F is regarded as the affine line F; ~ E; punctured at p;, p2, p3 € B;. More
precisely, each element ¢; is the class of the loop formed by a small counterclockwise
circle about p;, i = 1,2, 3, which 1s connected to S; by a radial segment, an arc of
a circle dU; separating S, from B; (cf. 6.2), and another radial segment, common
for all three loops. It is required that each consecutive arc is 25r/3 longer than the
previous one; however, we do not make any assumption about the length of the first
arc: it is defined up to a multiple of 2. As a result, a canonical basis a1, ¢z, 03 is
determined by a marking at z uniquely up ro conjugation by aycs03, 1.€., up to the
central element ©3 € Bs.

A canonical basis defines an isomorphism p,: G, — G to the ‘standard’ free
group G = (a1, a2, a3). This isomorphism is determined by a marking at z up
to 3. Below, all braids involving p, are considered up to a power of t3. The
isomorphism p/, defined by the cyclic permutation e,, e3,e; of the bold edges is
given by p, = 70 p,.

6.3.1 Remark. In a similar way, one can define a canonical basis and isomorphism
pz: G, — G for a nonsingular o-vertex z. The basis and the isomorphism are
determined up to a power of 3 by an ordering of the two bold edges incident (o z.
Our choice of e-vertices is motivated by the fact that we will apply the results to
skeletons.
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6.4. Assumptions and settings. For the rest of this section, we make the following
assumptions about I':

(1) I' has no monochrome vertices, all its e-vertices have valency < 6, and all its
o-vertices have valency < 4;

(2) the union of all e- and o-vertices of I' and its bold edges 1s connected;
(3) T has at least one nonsingular e-vertex.

Note that Condition (1) means that the curve is generic within its fiberwise defor-
mation class, and (2) can be satisfied after a sequence of equisingular perturbations
and degenerations, ¢f. [15]. Thus, the only true restriction is (3). In particular, any
maximal dessin satisfies (1) and (2), and the remaining Condition (3) rules out four
series of maximal curves: those whose skeleton is a simple cycle (one curve in X
for each k& = 1) or a linear tree (two curves in X and three curves in Xy fork = 2;
a curve is determined by the number of hanging edges in the skeleton). All these
curves are irreducible,

Chose and fix the “fiber at infinity’ F over a point oo ¢ I" and a proper section S,
see 6.2. Denote by S° C P! =2 S? the affine plane P! ~ oo punctured at the singular
fibers of B. (Since S is a section, S° can as well be regarded as a subset of S.)

As above, let G = (o, @2, a3) be the free group on three generators. Fix a
marking of I' and consider the corresponding isomorphisms p,: G, — G, see 6.3.
Given a path y in S° connecting two nonsingular e-vertices z’ and z”, consider the
monodromy i, : G+ — G~ and define the automorphism m, = p.» o m, o pz—,l
of G. Itis a braid (due to the fact that S is proper). We consider i, as an element of
the reduced group B3 /73, thus removing the ambiguity in the definition of p. In the
special case z’ = z”, i.e., when y is a loop, m,, is a well defined element of Bs. It
can be recovered from its image in B3 /73 using the following obvious statement.

6.4.1 Proposition. The degree of the monodromy m,, . G, — G defined by a simple
loop y in S° is equal to the total multiplicity > mult F; (see Table 1) of the singular
Jibers of B encompassed by vy, 1.e., separated by y from oo. O

6.5. The monodromy. To uniformize the formulas below, we use the convention
es+i =ei,t = 1,2,3,1 € Z, for the ordered edges incident to a given nonsingular
e-vertex (¢f. similar convention for the braid group in 5.1).

Let z/, z” be two nonsingular e-vertices, connected by the path y in I formed by
two bold edges incident to the same o-vertex. Denote m, = m; ; € B3/ 3, where
i, j are the indices of the edges constituting y at z’ and z”, respectively. Then

_ i _
Mijy1 = 0;, Mmip1,; =0; , and m;; = 0;0,_10;. (6.1)

More generally, let s = 0 be an integer, and let y be a simple path from z’ to z”
composed of 25 bold edges, (s+ 1) o-vertices, and s s-vertices of valency 4. Perturb y
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so that each singular e-vertex is circumvented in the counterclockwise direction, and
denote by m; ; (s) € Bs/ 73 the resulting monodromy. Then, for all integers s, ¢ > 0,
there is a reciprocity relation

mjy1i(t) -mipy;(s) ol T2 =1, (6.2)

which can be used to find 74 « (s) in terms of #i4 +(0) = my «. One has

— —s—1 —s—2 _—1
mii+1(8) = 0;7010i, mip1(s) =0, ", and my;(s) =0, To 4.
Now, let y be the loop composed of a small counterclockwise circle around a

x-vertex of valency 2d connected along a solid edge e; (see Figure 1, left) to a

nonsingular e-vertex z. The resulting monodromy c; (d) = m, € Bs is given by

¢i(d) =al, . (6.3)

Finally, consider a chain of distinct bold edges starting from an edge e; at a non-
singular e-vertex z and ending at a singular vertex. Let y be a simple loop at z encom-
passing all vertices of the chain (except z itself) and oriented in the counterclockwise
direction, and let /;(d) = m, € B3 be the monodromy, where d = deg/;(d). (If
the chain contains s e-vertices of valency 4, then d can take the values 4s, 4s 4+ 2, or
4s + 3, depending on whether the chain ends at a e-vertex of valency 4, o-vertex, or
e-vertex of valency 2.) One has

li(4s) = 07505 v and [;(4s +€) = o] ¥} T, (6.4)
where € = 2 or 3.

6.6. Proofs. But for the choice of the trivialization of the ruling, which is also
accountable for the r3-ambiguity, the monodromy m, is local with respect to y,
and it can be found using the description of the geometry of the fibers given in 6.1.
We do use this straightforward approach to establish relations (6.1) and (6.3). The
expression for /; (4s) in (6.4) follows from Proposition 6.4.1 and the obvious relation

ll' (4S) =m;,; (S) "My, (S), ] € Z,

in B3/ 73, which is due to our convention that the paths are perturbed so as to circum-
vent all singular vertices in the counterclockwise direction.,

For the rest, we observe that the monodromy related to a fragment of ' can be
found in any other dessin containing this fragment. The reciprocity relation (6.2) is
obtained assuming that the two paths resulting in the two i, » monodromies form
the boundary (oriented in the clockwise direction) of a single region R of the skeleton
of the dessin, so that R contains a single x-vertex. (The factor o} 2 in the relation
is, in fact, ¢;—1 (s + ¢ 4+ 2).) The expressions for [/; are obtained in a similar way: we
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close the unused bold edges e; 1, ¢; 11 at z ‘around’ the chain of edges in question
and place a single x-vertex at the center of the resulting region R. Computing the
monodromy around dR gives the relations

ci—12s+5—€)-li{ds+e)=1li(ds+€)-ci+12s+5—€) =m;_1,41

in B3/ 73 (where € = 2 or 3), which can be used to find /;.

6.6.1 Corollary. A maximal trigonal curve B is reducible if and only if all vertices of
its skeleton Sk are nonsingular (i.e., have valency 3) and Sk admits a marking with
the following properties:

(1) each hanging edge has index 1 at the (only) vertex incident fo it;

(2) any other edge has indices (1, 1), (2,3), or (3, 2) at its two endpoints.

6.6.2 Remark. Clearly, a marking at any vertex of Sk extends to at most one marking
satisfying Condition 6.6.1 (2). If Sk has a hanging edge, it admits at most one marking
satisfying 6.6.1 (1) and (2).

6.6.3 Remark. Corollary 6.6.1 still makes sense for a trigonal curve B, not neces-
sarily maximal, whose dessin I' satisfies Conditions 6.4 (1) and (2). In this case, the
existence of a marking as in Corollary 6.6.1 1s necessary for B to be reducible; in
general, it is not sufficient.

Proof. Let B be the portion of the curve over S°, and let pr: B — S be the restric-
tion of the projection X — IP1. Itis a triple covering whose monodromy is obtained
by downgrading the braid monodromy to the symmetric group Sz. From (6.4) it
follows that the monodromy about a singular e-vertex acts transitively on the decks
of pr, and hence any curve with such a vertex is irreducible. (As this argument is
local, it applies as well to the four exceptional series mentioned in 6.4, proving that
they are all irreducible.)

Assume that B is reducible. Then it contains as a component a section of the
ruling. Any such section B; C B defines a marking of Sk: one assigns index 1
to the point B; N F, € B,, see 6.3, and Conditions 6.6.1 (1) and (2) merely list
all monodromies /; (3) and m;_; preserving p;. Conversely, for any marking as in
the statement, the points p; € B, over all e-vertices z € I'(B) belong to a deck
of pr which is preserved by the monodromy. (One needs to take into account the
obvious fact that, for a maximal curve without singular e-vertices, the inclusion
homomorphism 71 (Sk) — 71(S°) is an isomorphism.) Hence, the curve contains a
section of the ruling as a component. 0
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7. The construction

7.1. Proofs of Theorems 1.1.1 and 1.1.3 are based on the existence of large Zariski
k-plets of maximal trigonal curves in Hirzebruch surfaces.

7.1.1 Proposition. For each integer k = 2, there exists a collection of

1 {2k—2
Ck—1)=—
w-0=¢(3 )
pairwise distinct fiberwise deformation families of irreducible maximal trigonal
curves B C Xy with the following properties:

(1) each curve has one fiber of type AX* one fiber of type Asg_s, and k fibers of
type Af (and no other singular fibers);

(2) none of the curves admits a fiberwise self-deformation inducing a non-trivial
permutation of the singular fibers of the curve.

Proof. Denote by 75, s = 1, the set of all binary rooted trees on s vertices. Recall
that the cardinality of 7§ is given by the Catalan number C(s),

. 1 [2s
#JSZC(S):S+1 At

Fach tree T € 75 admits a standard ‘monotonous’ geometric realization |7'| C R2,
see Figure 2, left. For example, one can map the level [,/ = 0, vertices of T to the
points v; ; = (—1 4+ (27 + 1)/25.0),i =0,...,2" — 1, so that the left (respectively,
right) edge originating at vy ; connects vy ; to vy »; (respectively, vyyq.2i41).

AN

Figure 2. Extending a binary tree T to a skeleton Sk(7).

Pick a tree T € T;_; and extend its geometric realization |T| ¢ R? C P! 1o
a skeleton Sk(7T') as follows: mark the root of 7" by adding a monovalent vertex at
(0, —1) and connecting it to vy, by an edge, and complete the valency of each vertex
of |T| to three by replacing the missing branches with ‘leaves’, each leaf consisting
of a vertex (at an appropriate point v;;, [ > 0), a loop at this vertex, and a stem
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connecting the vertex to the point v;_y [;/2]. (See Figure 2, right, where the trunk and
the k& leaves added to | T'| are shown in grey.)

The resulting skeleton Sk(77) has one monovalent and (2k — 1) trivalent vertices;
its faces are £ monogons (the interiors of the leaves) and one {5k — 2)-gon (the outer
region). Furthermore, one can easily observe that none of Sk(7') has a nontrivial
automorphism and that two skeletons Sk(77), Sk(7») are isomorphic if and only if
71 = T, in T;_1. Here, the key observation is the fact that the root of the original
tree T is ‘marked’ by the only monovalent vertex of the skeleton Sk(7). Hence, any
isomorphism of the skeletons would induce an isomorphism of oriented roofed trees
(as it also preserves the orientation of S2). In particular, essentially by its very defi-
nition, an oriented rooted tree never admits an orientation preserving automorphism.

Applying Theorem 4.5.1, one obtains #7; 1 = C(k — 1) deformation families of
maximal trigonal curves with the desired propertics. (Each curve is irreducible since
it has a type Ajj™ singular fiber.) O

7.1.2 Proposition. If k = 2s is even, then C(s — 1) of the trigonal curves given
by Proposition 7.1.1 are real (with respect to some real structure on X ). All other
curves (and all curves for k odd) split into pairs of complex conjugate curves.

Proof. A maximal trigonal curve is real if and only if its skeleton is symmetric with
respect to some orientation reversing involution of the base S2 (cf [15], §5 and
especially Corollary 5.1.8, where real dessins of real curves are considered: clearly,
a symmetric skeleton can be completed to a symmetric dessin, due to the results
of [15] cited above, a symmetric dessin gives rise to a real j-invariant, and the
further passage from the j-invariant to a trigonal curve is equivariant, ¢f. the proof
of Proposition 3.4.1). A binary rooted tree can be symmetric only if its number of
vertices 15 odd, and all symmetric trees in J5; can be parametrized by their ‘left
halves’, i.e., by T5—1. O

7.2. The braid monodromy. In this section, we apply the results of 6.5 to describe
the braid monodromy of the curves given by Proposition 7.1.1.

Fix a curve B corresponding toatree T € T andletI' = I'(B), Sk = Sk(B).
Let vg,o be the root of the original tree 7. Denote by I'x the set of x-vertices of I' of
valency 2 (equivalently, the set of type A;‘)‘ singular fibers of B). Each vertex u € I'y
can be encoded by a word w,, in the alphabet {r, /} as follows: let i be the s-vertex in
the leaf encompassing u, and let &, be the simple path in Sk from v o to #; starting
from vy o and the empty word, walk along &, and, at each vertex, add to the word r
or [ if the right (respectively, left) branch is chosen at this vertex. (For example, in
Figure 2, the x-vertices encompassed by the five leaves are encoded, from right to
left, by the words rr, v/, Ir, [lr, and [[].) Order I'x lexicographically, with » < /.
('This is the right to left order in the standard geometric realization of the graph, ¢f.
Figure 2.)
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Asin 6.4, pick a point co € P!~ T and denote by S° the plane P! ~ oo punctured
at the singular vertices of I". Take vg o for the base point, and consider the basis y,,,
u € T, &, 8o for m1(S?, vg,0) defined as follows:

(1) v, u € Ik, is the loop in Sk formed by the circumference of the leaf surround-
ing u connected to vy, by the simple path &,;

(2) &« isasmall circle surrounding the x-vertex of valency 10k —4, connected to vo,o
by the left solid edge at vg o:

(3) e is a small circle surrounding the singular e-vertex, connected to vo,p by the
bold edge.

(All loops are oriented in the counterclockwise direction.) Then, the braid mon-
odromy 71(S°, vp,0) — B3 is given by the following relations:

Vi > W03, Y, S > 07K 2 Se > 0102,
where w,, is the braid obtained from w,, by replacing each instance of r and [ with
oy and oy !, respectively.

Proof. We choose a marking at each nonsingular e-vertex of Sk so that e; is the
edge pointing downwards (and hence ¢; and ez are, respectively, the left and right
branches of the tree). Then & +— c3(5k — 2}, see (6.3), de > [2(2), see (6.4), and
the image of each element y,, is found by composing appropriate monodromies »i;_;,
see (6.1). O

7.3. Proof of Theorem 1.1.1. Let & and ¢ be as in the statement. Note that k& >

and € < [k/2]. Pick one of the trigonal curves B C ¥ given by Proposition 7.1. 1

In order to convert B to a plane curve, we need to perform (k — 1) elementary
transformations. We choose the transformations so as to contract the type A** fiber
of B, [k/2] of its k type A* fibers, and [(k — 3)/2] nonsingular fibers. In the type A**
fiber and € type A* fibers the blow-up centers are chosen outside of the curve and the
exceptional section; in each other fiber the blow-up center is taken on a branch of B
transversal to the fiber. The total number of deformation families thus obtained is

k k
Z(m) = Clk — 1) - ([k/z]) , ([ £2]),

the three factors standing, respectively, for the choice of B, the choice of [k/2] of
its k type AE’; fibers to be contracted, and the choice of € of the [k/2] fibers where
the blow-up center is not on B. In each case, the transform is an irreducible curve
C = B C X, with the set of singularities

k k-3
Asp_3+ Eg + €Ds + ([5] — E)Az —+ |:T:|A1, (7.1)
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so that all points except the first As;_5 are in the exceptional section £; C X, and
the local intersection index of C and E; at each singular point is minimal possible
(i.e., 2 at a double point and 3 at a triple point). Blowing £, down, one obtains an
irreducible plane curve C of degree 2k 4+ 2 + ¢ = m. Since the combinatorial data
of C are determined by the those of C+E 1, all curves thus obtained share the same
set of singularities.

The fundamental groups 71 (P2~ C) are all abelian due to Proposition 5.2.3. O

7.4. Proof of Theorem 1.1.2. A real curve C is obtained from a real trigonal curve
B C Xj; hence, k = 2s is even and the number of real trigonal curves is given by
Proposition 7.1.2. Next, one should choose a real (i.e., invariant under the complex
conjugation) collection of blow-up centers for the elementary transformations con-
verting B to C, see 7.3. Since the k type A* singular fibers of B splitinto k/2 = s
conjugate pairs and k/2 = s blow-up centers should be chosen in these fibers, s
must also be even, s = 2¢, and the number of choices is (j) one chooses ¢ of the
s conjugate pairs. Finally, e = 0 as one cannot choose only one special fiber with
the blow-up center not on the curve: for the transformation to be real, the conjugate
fiber would have to have the same property. O

7.4.1 Remark. It is worth mentioning that, in the settings of Theorem 1.1.2, each
deformation class containing a real curve splits into at least 2 equisingular real
deformation classes. Indeed, let ]P’]llg C P! be the real part of the base of the ruling. It
contains the singular e-vertex of I', the root of the original tree, and the x-vertex of '
of valency 10k — 4. Thus, the singular fibers of B divide ]P’]é into two distinguishable
intervals, and each of the 2¢ — 2 nonsingular fibers containing blow-up centers can
be chosen either in a conjugate pair or over one of the two intervals. The number of
choices is the number of ordered pairs (a,b) € Z x Z suchthata, b = 0,a + b <
2t — 2, and a + b is even. Itis 12,

7.5. Proof of Theorem 1.1.3. The proof is similar to that of Theorem 1.1.1. Let
k = m — 5, and pick one of the trigonal curves B C X given by Proposition 7.1.1.
Blow up the only singular point of B and blow down the corresponding fiber. Repeat
this procedure (kK — 2) times. The result is an irreducible curve B, C X, which
intersects the exceptional section at a nonsingular point P with multiplicity (k—2) and
has a type Azg+1 singular point Q in the fiber Fp through P. Now, add the fiber Fp
as a component, perform an elementary transformation to contract the type A§™ fiber
of B2 to a type Eg singular point in the exceptional section, and blow down the
exceptional section. (The fiber Fp is added to the curve to make sure that, during
the deformations, the intersection point P and the singular point  remain in the
same fiber.) The result is a plane curve C of degree m. Clearly, all C(k — 1) curves
obtained in this way share the same combinatorial data. The fundamental groups
71 (P2 ~ C) are all abelian due to Proposition 5.2.4.
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The count for the number of real curves is based on Proposition 7.1.2: from the
construction it follows that a family contains a real curve if and only if the original
trigonal curve B 1s real. O

7.6. A remark on deformations. From the construction (creating a branch of
type Ei» and, in 7.5, adding a linear component) it follows that any equisingular
deformation of the plane curve C' must preserve the type A** and type Asz_ singu-
lar fibers of the original trigonal curve B. Since all other smgular fibers of B are of
type Aj and B is maximal, the resulting deformation of B is fiberwise, see Proposi-
tion4.4.8. The blow-up centers chosen in the branches of B transversal to its type A;’)‘
singular fibers (see 7.3) should stay fixed, as otherwise the type of singularity of C
at O would change. (This observation is also crucial in the proof of Theorem 8.1.2
below.) In 7.3, a blow-up center in a nonsingular fiber of B may move (o a type Aé
singular fiber (not containing another blow-up center), to the branch of B rangent to
the fiber. This degeneration corresponds to one of the branches of one of the type A
points of C, see (7.1), becoming tangent to the fiber; it is equisingular for C. Clearly,
these modifications do not affect the number of deformation families.

8. Further applications

8.1. In this section, we present a slight modification of the construction used in
Proposition 7.1.1 and discuss a few further applications.

8.1.1 Proposition. For each integer k = 2, there exists a collection of C(k — 1)
pairwise distinct fiberwise deformation families of pairs (B, F), where B C Xy is
an irreducible maximal trigonal curve with one fiber of type Asg_, and (k + 1)
Jibers of type A* (and no other singular fibers) and F is a distinguished type Ax o Jiber
of B. None of the curves admits a fiberwise self-deformation inducing a non-trivial
permutation of its singular fibers preserving F.

Proof. Modity the construction of Proposition 7.1.1 by replacing the monovalent
vertex with an extra leaf attached to the root of the original tree 7" and selecting
the corresponding type Ag‘ fiber for F. All curves obtained are irreducible due to
Corollary 6.6.1: to show that a marking as in the corollary does not exist, it suffices
to consider the two leaves attached to any maximal (in the partial order defined by
level) vertex of T'. 1

8.1.2 Theorem (Rigid planc curves). For each odd integer m = 2k + 1 = 5, there
is a set of singularities shared by

Z(m)>12k_2
T T oV k=1
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pairwise distinct equisingular deformation families of irreducible plane curves C; of
degree m. Within each family, all curves are projectively equivalent and defined over
an algebraic number field.

8.1.3 Remark. The set of singularities constructed in the proof has a point of
type Asx—» and a point of transversal intersection of (k — 1) branches of type As.
One has Z,(5) = 1, and the only curve of degree 5 given by the theorem is the well
known quintic with the set of singularities Ag + A4, see [10]; it is defined over Q.
(Note that in this case the fundamental group 71 (P2 ~ C) is abelian, see [12].) For
large values of m, the count Z . (m) grows faster than @’ for any a < 2.

8.1.4 Remark. The curves given by Theorem 8.1.2 seem to be good candidates for
examples of exponentially large arithmetic Zariski k-plets in the sense of Shimada,
see [29], [30]. At present, I do not know whether all/some of the curves C; are indeed
Galois conjugate over an algebraic number field (except the trivial case of pairs of
complex conjugate curves). Whether the pairs (P2, C;) or complements P2 ~ C; are
homeomorphic is also an open question.

Proof. Similar to 7.3, we start with a trigonal curve B C X as in Proposition 8.1.1,
perform (k — 1) elementary transformations to convert ¥ to X1, and blow down the
exceptional section of 31 to get a plane curve. The (k — 1) blow-up centers are taken
intype Ag‘ singular fibers of B, on the branch of B transversal to the fiber. (This choice
makes the construction rigid, so that the resulting plane curves have 0-dimensional
moduli spaces and are defined over algebraic number fields. Indeed, since B itself 1s
defined over a certain algebraic number field k, see remark after 4.4.4, all its singular
fibers F; are defined over a finite extension of k, and so are the intersection points
B N F;. Hence, each curve C; is also defined over a finite extension of k.) The total
number of choices is C(k — 1) (for the pair (B, F) ) times k(k 4+ 1)/2 (for the choice
of (k — 1) singular fibers containing the blow-up centers). Since, in each skeleton,
the distinguished leaf can be chosen in (k + 1) ways, we divide the resulting count
by (k + 1). ]

8.2. Elliptic surfaces. Below, an elliptic surface is a compact complex surface X
with a distinguished rational pencil of elliptic curves, i.e., elliptic fibration over a
rational base. We assume that the pencil has no multiple fibers; then it 1s unique unless
the topological Euler characteristic of X is 24, i.e., X 1s a K3-surface. By afiberwise
deformation of elliptic surfaces we mean a deformation preserving the elliptic pencil
and the types of its singular fibers. All surfaces mentioned in Theorems 8.2.1 and 8.2.2
are defined over algebraic number fields.

8.2.1 Theorem. For each integer s = 1, there are C(2s — 1) distinct fiberwise
deformation families of Jacobian relatively minimal elliptic surfaces of topological
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Euler characteristic y = 12s and having one fiber of type f&ﬁ*, one fiber of type
Aos—3, and 2s fibers of type A} (and no other singular fibers).

8.2.2 Theorem. For each infeger s = 1, there are at least C(2s — 1}/(2s + 1)
distinct fiberwise deformation families of Jacobian relatively minimal elliptic surfaces
of topological Euler characteristic y = 12s and having one fiber of type Avos—z and
(2s + 1) fibers of type Aj (and no other singular fibers).

Proof of Theorems 8.2.1 and 8.2.2. The statements follow from Propositions 7.1.1
and 8.1.1 applied to k = 2s5. Each surface is obtained as the minimal resolution of
singularities of the double covering of X branched over the exceptional section £
and a trigonal curve B given by the appropriate proposition. O

8.2.3 Remark. Let X be one of the surfaces given by Theorem 8.2.1 or 8.2.2, and
let L = H,(X) be its intersection lattice. Consider the sublattice S C L spanned
by the components of the pull-back of B U E. Over Q, it is spanned by the section
of X, its generic fiber, and the exceptional divisors over the only singular point of B.
Hence, S 1s nondegenerate. The advantage of Theorem 8.2.2 1s the fact that, in this
case, the orthogonal complement S is an even positive definite lattice of rank 2.s — 2.
Given that positive definite lattices tend to have many isomorphism classes within the
same genus, one can hope to use Shimada’s invariant [29] to distinguish the surfaces
topologically.
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