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Zariski k-plets via dessins d’enfants

Alex Degtyarev

Abstract. We construct exponentially large collections of pairwise distinct equisingular
deformation families of irreducible plane curves sharing the same sets of singularities. The
fundamental groups of all curves constructed are abelian.
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1. Introduction

1.1. Motivation and principal results. Throughout this paper, the type of a
singular point is its embedded piecewise linear type, and equisingular deformations of
curves in surfaces are understood in the piecewise linear sense, i.e., the PL-type of
each singular point should be preserved during the deformation. This convention is
essential as some of the curves considered have non-simple singularities.

Recall that a Zariski k-plet is a collection C1; : : :; Ck of plane curves, all of the
same degree m, such that

1) all curves have the same combinatorial data see [5] for the definition; for
irreducible curves, this means the set of types of singular points), and

2) the curves are pairwise not equisingular deformation equivalent.

Note that Condition 2) in the definitiondiffers from paper to paper, the most common
being the requirement that the pairs P2; Ci/ or complements P2XCi should not be
homeomorphic. In this paper, we choose equisingular deformation equivalence, i.e.,

being in the same component of the moduli space, as it is the strongest topologically
meaningful ‘global’ equivalence relation. In any case, the construction of topologically

distinguishable Zariski k-plets usually starts with finding curves satisfying .2/
above.

Historically, the first example of Zariski pairs was found by O. Zariski [33],
[34], who constructed a pair of irreducible sextics C1, C2, with six cusps each,

which differ by the fundamental groups 1.P2 X Ci /. Since then, a great number
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of other examples has been found. Citing recent results only, one can mention a

large series of papers by E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustín,
and H. Tokunaga see [5], [6] and more recent papers [2]–[4] for further references),
A. Degtyarev [11], [13], [14] paper [11] deals with a direct generalization of Zariski’s
example: pairs of sextics distinguished by their Alexander polynomial), C. Eyral and

M. Oka [16], [17], [25], G.-M. Greuel, C. Lossen, and E. Shustin [19] Zariski pairs

with abelian fundamental groups), Vik. S. Kulikov [23], A. Özgüner [28] a complete
list of Zariski pairs of irreducible sextics that are distinguished by their Alexander
polynomial), I. Shimada [29]–[31] a complete list of Zariski pairs of sextics with the
maximal total Milnor number D 19, as well as a list of arithmetic Zariski pairs of
sextics), and A. M. Uludag [32]. The amount of literature on the subject definitely
calls for a comprehensive survey!

With very few exceptions, the examples found in the literature are those of Zariski
pairs or triples. To my knowledge, the largest known Zariski k-plets are those
constructed in Artal Bartolo, Tokunaga [6]: for each integer m > 6, there is a collection
of OEm=2 1/ reducible curves of degree m sharing the same combinatorial data.

The principal result of this paper is the following Theorem 1.1.1, which states that
the size of Zariski k-plets can grow exponentially with the degree. Theorem 1.1.3
below gives a slightly better count for reducible curves.)

1.1.1 Theorem. For each integer m > 8, there is a set of singularities shared by

Z.m/ D
1

k
2k 2

k 1

k
OEk=2

OEk= 2

pairwise distinct equisingular deformation families of irreducible plane curves Ci of
degree m, where k D OE.m 2/=2 and D m 2k 2 2 f0; 1g. The fundamental
groups of all curves Ci are abelian: one has 1.P2 X Ci/ D Zm.

Recall that a real structure on a complex surface X is an anti-holomorphic
involution conj W X X. A curve C X is called real with respect to conj) if
conj.C / D C, and a deformation Ct jt j 6 1, is called real if CNt D conjCt. Up to
projective equivalence, there is a unique real structure on P2; in appropriate coordinates

it is given by z0 W z1 W z2/ 7! Nz0 W Nz1 W Nz2/.

For completeness, we enumerate the families containing real curves.

1.1.2 Theorem. If m D 8t C2 for some t 2 Z, then Z.4t C2/ of the families given
by Theorem 1.1.1 contain real curves with respect to some real structure in P2). All
other curves and all curves for other values of m) split into pairs of disjoint complex
conjugate equisingular deformation families.
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1.1.3 Theorem. For each integer m > 8, there is a set of combinatorial data shared
by

R.m/ D
1 2m 12

m 5 m 6

pairwise distinct equisingular deformation families of plane curves Ci of degree m
each curve splitting into an irreducible component of degree m 1/ and a line).

The fundamental groups of all curves Ci are abelian: one has 1.P2 X Ci / D Z.
Ifm D 2tC1 is odd, then R.tC3/ of the families above contain real curves with

respect to some real structure in P2). All other curves and all curves for m even)

split into pairs of disjoint complex conjugate equisingular deformation families.

Theorems 1.1.1–1.1.3 are proved in Sections 7.3–7.5, respectively.
It is easy to see that the counts Z.m/ and R.m/ given by the theorems grow faster

than a3m=2 and a2m, respectively, for any a < 2. A few values of Z and R are listed
in the table below.

m 8 9 10 11 12 13 14 : : : 20 40 80
Z.m/ 6 6 30 60 140 280 840 : : : 2 105 4 1013 1 1031

R.m/ 2 5 14 42 132 429 1430 : : : 3 106 8 1017 3 1041

Note that we are not trying to set a record here; probably, there are much larger
collections of curves constituting Zariski k-plets. The principal emphasis of this
paper is the fact that Zariski k-plets can be exponentially large.

1.2. Other results and tools. The curves given by Theorems 1.1.1 and 1.1.3 are
plane curves of degree m with a singular point of multiplicity m 3/. In a sense,

this is the first nontrivial case, as curves with asingular point of multiplicity m 2/ or
m 1/ do not produce Zariski pairs, see [10].) When the singular point is blown up,

the proper transform of the curve becomes a generalized) trigonal curve in a rational
ruled surface. We explain this relation in Section 2, and the bulk of the paper deals
with trigonal curves, whose theory is rather parallel to Kodaira’s theory of Jacobian

elliptic fibrations.
A trigonal curve can be characterized by its functional j-invariant, which is a

rational function j W P1 P1, so that the singular fibers of the curve are encoded
in terms of the pull-back j 1

f0;1;1g see Table 1). To study the j -invariants, we

follow S. Orevkov’s approach [26], [27] see also [15]) and use a modified version of
Grothendieck’s dessinsd’enfants, seeSection 4, reducing the classification of trigonal
curves with prescribed combinatorial type of singular fibers to a graph theoretical
problem. The resultingproblem is rather difficult,as thegraphs areallowed to undergo
a number of modifications see 4.4) caused by the fact that j may have critical values
other than 0, 1, or 1. To avoid this difficulty, we concentrate on a special case
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of the so called maximal curves, see 4.4.4, which can be characterized as trigonal
curves not admitting any further degeneration Proposition 4.4.8); the classification
of maximalcurves reduces to the enumeration ofconnected planar maps withvertices
of valency 6 3, see Theorem 4.5.1. We exploit this relation and use oriented rooted
binary trees to produce large Zariski k-plets of trigonal curves, see Proposition 7.1.1
and a slight modification in Proposition 8.1.1.

It is worth mentioning that the curves given by Propositions 7.1.1 and 8.1.1 are
defined over algebraic number fields like all maximal curves), and in Theorem 8.1.2
we use this fact to construct a slightly smaller, but still exponentially large, Zariski
k-plet of plain curves with discrete moduli space. All these examples seem to be

good candidates for exponentially large arithmetic Zariski k-plets in rational ruled
surfaces and in the plane) in the sense of Shimada [29], [30].

An importantquestion that remains open iswhether the curves constitutingvarious
Zariski k-plets constructed in the paper can be distinguished topologically. As a first
step inthisdirection, wecalculate the braidmonodromy of the trigonalcurves, see7.2.
For the relation between the braid monodromy and the topology of the curve, see

Orevkov [27], Vik. S. Kulikov and M. Teicher [24], or Carmona Ruber [9].) In 6.5,
we give a general description of the braid monodromy of a trigonal curve in terms of
its dessin; it covers all maximal curves with the exception of four explicitly described
series. As a simple application, we obtain a criterion of reducibility of a maximal
trigonal curve in terms of its skeleton, see Corollary 6.6.1.

As another direct application of the construction, we produce exponentially large
Zariski k-plets of Jacobian elliptic surfaces, see 8.2. Here, by a Zariski k-plet we
mean a collection of not fiberwise deformation equivalent surfaces sharing the same
combinatorial type of singular fibers.) The series given by Theorem 8.2.2 are related
to positivedefinite lattices of large rank; thisgives one hope to distinguish the surfaces,
and hence their branch loci, topologically.

1.3. Contents of the paper. In Section 2, we introduce trigonal curves in rational
ruled surfaces and discuss their relation to plane curves with a singular point of
multiplicity degree 3. Section 3 reminds the basic properties of the j -invariant
of a trigonal curve, and Section 4 introduces the dessin of a trigonal curve and the
skeleton of a maximal curve. In Section 5, we prove a few technical statements on
the fundamental group of a generalized trigonal curve. Section 6 deals with the braid
monodromy. The principal results of the paper, Theorems 1.1.1–1.1.3, are proved in
Section 7. Finally, in Section 8, we discuss a few modifications of the construction
and state a few open problems.
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2. Trigonal models

2.1. Hirzebruch surfaces. Recall that the Hirzebruch surface †k, k > 0, is a

rational geometricallyruled surface witha sectionE of self-intersection k. Ifk > 0,
the ruling is unique and there is a unique section E of self-intersection k; it is called
the exceptional section. In the exceptional case k D 0, the surface †0 D P1 P1
admits two rulings, and we choose and fix one of them; any fiber of the other ruling
can be chosen for the exceptional section. The fibers of the ruling are referred to as

the fibers of †k. The semigroup of classes of effective divisors on †k is generated

by the classes of the exceptional section E and a fiber F ; one has E2 D k, F 2
D 0,

and E F D 1.
An elementary transformation of a Hirzebruch surface †k is the birational

transformation consisting in blowing up a point O 2 †k and blowing down the proper
transform of the fiber throughO. If the blow-up centerO does respectively, does not)
belongto the exceptionalsectionE †k, the result of the elementary transformation
is the Hirzebruch surface †kC1

respectively, †k 1).

2.2. Trigonal curves. A generalized trigonal curve on a Hirzebruch surface †k is a
reduced curve not containing the exceptional section E and intersecting each generic
fiber at three points. Note that a generalized trigonal curve B †k may contain
fibers of †k as components; we will call them the linear components of B.

A singular fiber of a generalized trigonal curve B †k is a fiber F of †k that
is not transversal to the union B [ E. Thus, F is either a linear component of B, or
the fiber through a point of intersection of B and E, or the fiber over a critical value
of the restriction to B of the projection †k P1.

A trigonal curve is a generalized trigonal curve disjoint from the exceptional
section. In particular, trigonal curves have no linear components.) For a trigonal
curve B †k, one has jBj D j3E C3kF j; conversely, any curve B 2 j3E C3kF j
not containing E as a component is a trigonal curve.

Let F be a singular fiber of a trigonal curve B. If B has at most simple singular
points on F and F is not a component of B, then locally B [ E is the branch locus
of a Jacobian elliptic surface X, and the pull-back of F is a singular fiber of X. In
this case, we use the standard notation for singular elliptic fibers referring to the
extended Dynkin diagrams) to describe the type of F Otherwise, B has a singular
point of type Jk;p or E6kC see [1] for the notation, and we use the notation QJk;p
and zE6kC respectively, to describe the type of F

2.2.1 Remark. We will not attempt to give a formal definition of the type of a singular
fiber F of a trigonal curve B. One can understand it as the topological type of the
boundary singularity B; F/, see [1] for details. As a result of the classification, one
can conclude that this type is determined by whether F is a component of B and
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the conjugacy class of) the braid monodromy about F see Section 6 below for the
definition. Alternatively, if F is not a component of B and B has at worst simple
singularities on F which is always the case in this paper), then the type of F is
determined by Kodaira’s type of the singular fiber of the Jacobian elliptic surface
ramified at B [ F see above.

Any generalized trigonal curve B without linear components can be converted to
a trigonal curve by a sequence of elementary transformations, at each step blowing
up a point of intersection of B and the exceptional section and blowing down the
corresponding fiber.

2.3. Simplified models. Let †0 be a Hirzebruch surface, and let †00 be obtained
from †0 by an elementary transformation. Denote by O0 2 †0 and O00 2 †00 the
blow-up centers of the transformation and its inverse, respectively, and let F 0

†0 and F 00 †00 be the fibers through O0 and O00, respectively. The transform
B00 †00 of a generalized trigonal curve B0 †0 is defined as follows: if B0

does not respectively, does) contain F 0 as a linear component, then B00 is the proper
transform of B0 respectively, the union of the proper transform and fiber F 00). In the
above notation, there is an obvious diffeomorphism

†0

X B0 [ E0[ F 0/ Š†00

X B00 [ E00 [F 00/; 2.1)

where E0 †0 and E00 †00 are the exceptional sections.

A trigonal curve B †k is called simplified if all its singular points are double,
i.e., those of type Ap. Clearly, each trigonal curve has a unique simplified model

xB †l which is obtained from B by a series of elementary transformations: one
blows up a triple point of the curve and blows down the corresponding fiber, repeating
this process until there are no triple points left.

2.4. Deformations. Let B †k be a generalized trigonal curve and E †k
the exceptional section. We define a fiberwise deformation of B as an equisingular
deformation path in the space of curves) preserving the topological types of all
singular fibers. Alternatively, a fiberwise deformation can be defined as an equisingular
deformation of the curve B [ E [ all singular fibers of B).

A degeneration of a generalized trigonal curve B is a family Bt jtj 6 1, of
generalized trigonal curves such that B D B1 and the restriction of Bt to the annulus

0 < jt j 6 1 is a fiberwise deformation. A degeneration is called nontrivial if B0 is
not fiberwise deformation equivalent to B.

Let Bk †k and BkC1 †kC1
be two generalized trigonal curves related

by an elementary transformation, and let Ei †i i D k; k C 1, be the respective
exceptional sections. Ingeneral, it is not true thatan equisingular deformation ofBk or

Bk[Ek isnecessarily followed by anequisingular deformationofBkC1 respectively,
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BkC1 [EkC1) or vice versa: it may happen that a singular fiber splits into two and

this operation affects the topology of one of the curves without affecting the topology
of the other. However, it obviously is true that the fiberwise deformations of Bk are
in a natural one-to-one correspondence with the fiberwise deformations of BkC1. A
precise statement relating deformations of Bk and BkC1 would require simple but
tedious analysis of a number of types of singular fibers. Instead of attempting to
study this problem in full generality which becomes even more involved if the two
curves are related by a series of elementary transformations), we just make sure that,
in the examples considered in this paper see 7.3, 7.5, and 8.1.2), generic equisingular
deformations of each curve B[E are fiberwise. In 7.5, a linear component is added

to the curve for this purpose.) In more details this issue is addressed in 7.6.

2.5. The trigonal model of a plane curve. Let C P2 be a reduced curve,
degC D m, and let O be a distinguished singular point of C of multiplicity m 3/.
Such a point is unique wheneverm > 7orm > 6and C is irreducible.) By a linear

component of C we mean a component of degree 1 passing through O.
Blow O up and denote the result by Y1; it is a Hirzebruch surface †1, and the

proper transform zC D B1 Y1 of C is a generalized trigonal curve. Clearly,
the combinatorial type of C determines and is determined by that of B1 [ E1, the
type of O itself being recovered from the singularities of B1 [ E1 located in the
exceptional section E1. Furthermore, equisingular deformations of the pair C; O/
are in a one-to-one correspondence with equisingular deformations of B1 [ E1.

Let B01 be the curve obtained from B1 by removing its linear components. As
in 2.2, one can apply a sequence of elementary transformations to get a sequence of
curves Bi; B0i Yi Š †i i D 1;: : : ; k, so that B0k is a true trigonal curve. Here,

BiC1 is the transform of Bi and B0
iC1

is obtained from BiC1 by removing its linear
components. In other words, we pass to the trigonal model of B01 while keeping track
of the linear components of C.) The curve B0k is called the trigonal model of C.
Finally, passing from B0k to its simplified model B0 Y Š †l one obtains the
simplified trigonal model B0 of C.

3. The j-invariant

The contents of this section is a translation to the language of trigonal curves of
certain well known notions and facts about elliptic surfaces; for more details we refer
to the excellent founding paper by K. Kodaira [22] or to more recent monographs [18]
and [7]. In the theory of elliptic surfaces, trigonal curves in the sense of this paper)
arise as the branch loci of the Weierstraß models of Jacobian elliptic surfaces over
a rational base. These curves have at most simple singularities and belong to even

Hirzebruch surfaces†2s. However, most notions and statements extend, more or less

directly, to trigonal curves in odd Hirzebruch surfaces †2sC1.
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3.1. Weierstraß equation. Let †k P1 be a Hirzebruch surface. Any trigonal
curve B †k can be given by a Weierstraß equation; in appropriate affine charts it
has the form

x3
C g2x C g3 D 0;

where g2 and g3 are certain sections of OP1.2k/ and OP1.3k/, respectively, and x
is a coordinate such that x D 0 is the zero section and x D 1is the exceptional
section E †k. The sections g2, g3 are determined by the curve uniquely up to the
transformation

g2; g3/ 7! t2g2; t3g3/; t 2 C : 3.1)

The following statement is straightforward.

3.1.1 Proposition. A trigonal curve B as in 3.1 is simplified if and only if there
is no point z 2 P1 which is a root of g2 of multiplicity > 2 and a root of g3 of
multiplicity > 3.

3.2. The functional) j-invariant of a trigonal curve B †k is the meromorphic
function j D jB W P1 P1 given by

j D
4g32 ; D 4g3

2 C 27g23;

where g2 and g3 are the coefficients of theWeierstraß equation of B, see 3.1. Here,
the domain of j is the base of the ruling †k P1, whereas its range is the standard
projective line P1 D C1[ f1g. If the fiber Fz over z 2 P1 is nonsingular, then the
value j.z/ is the usual j -invariant divided by the magic number 1728 D 123) of the
quadruple of points cut on Fz by the union B [ E or, in more conventional terms,
the j -invariant of the elliptic curve that is the double of Fz Š P1 ramified at the four
points above). The values of j at the finitely many remaining points corresponding
to the singular fibers of B are obtained by analytic continuation.

Since jB is defined via affine charts and analytic continuation, it is obviously
invariant under elementary transformations. In particular, the notion of j -invariant
can be extended to generalized trigonal curves by ignoring the linear components
and passing to a trigonal model), and the j -invariant of a trigonal curve B is the same
as that of the simplified model of B.

3.3. The j-invariant jB W P1 P1 has three ‘special’ values: 0, 1, and 1. The
correspondence between the type of a fiber Fz, see remark in Section 2.2, and the
value j.z/ and the ramification index indz j of j at z) is shown in Table 1. We
confine ourselves to the curves with at worst simple singular points. In fact, in
view of the invariance of the j -invariant under elementary transformations, it would
suffice to consider type AQ singular fibers only. For the reader’s convenience, we
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also cite Kodaira’s notation for the types of singular elliptic fibers, cf. Section 2.2.)

If B is a curve in †k, the maximal degree of jB is 6k. However, deg jB drops if
B has triple singular points or type AQ AQ or A0 Q singular fibers, see deg j in

1

Table 1. It is worth mentioning that the j-invariant of a generic trigonal curve is
highly non-generic, as it takes values 0 and 1 with multiplicities 3 and 2 respectively
see Comments to Table 1); conversely, a generic function j W

P1 P1 would arise
as the j-invariant of a trigonal curve with a large number of type AQ and A0 Q singular
fibers.

Table 1. The values j.z/ at singular fibers Fz.

Type of Fz j.z/ indz j deg j mult Fz

AQp DzpC5), p > 1 IpC1 I
pC1/ 1 p C 1 0 6/ p C 1 p C 7/

QA0 zD5) I1 I1/ 1 1 0 6/ 1 .7/
AQ 0 zE6) II II / 0 1 mod 3 2 8/ 2 .8/

QA1 zE7) III III / 1 1 mod 2 3 9/ 3 .9/
QA2 zE8) IV IV / 0 2 mod 3 4 10/ 4 .10/

0

Comments. Fibers of type AQ 0 Kodaira’s I0) are not singular. For a nonsingular fiber Fz with
complex multiplication of order 2 respectively, 3) one has j.z/ D 1 and indz j D 0 mod 2
respectively, j.z/ D 0 and indz j D 0 mod 3). Singular fibers of type zD4 Kodaira’s I are

0
not detected by the j -invariant, except that each such fiber decreases the degree of j by 6. The
multiplicity multFz is the number of simplest i.e., type AQ singular fibers resulting from a

generic perturbation of Fz.

3.4. Isotrivial curves. A trigonal curve B †k is called isotrivial if jB D const.
All simplified isotrivial curves can easily be classified.

1) If jB 0, then g2 0and g3 is a section ofOP1.3k/ whose all roots are simple

2

or double, see Proposition 3.1.1. The singular fibers of B are of type AQ over0
the simple roots of g3) or AQ over the double roots of g3).

2) If jB 1, then g3 0 and g2 is a section of OP1.2k/ with simple roots only,
see Proposition 3.1.1. All singular fibers of B are of type QA1 over the roots
of g2).

3) If jB D const ¤ 0; 1, then g3 2 for some 2 C ; in view of Propo¬

sition
2 g2

3.1.1, this implies that k D 0 and g2; g3 D const, i.e., B is a union of
disjoint sections of †0. In particular, B has no singular fibers.)

Note that an isotrivial trigonal curve cannot be fiberwise deformation equivalent to a

non-isotrivial one, as a non-constant j-invariant jB would take value 1 and hence

the curve would have a singular fiber of type QA0 or AQp, p > 0, see Table 1.
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3.4.1 Proposition. Any non-constant meromorphic function j W
P1 P1 is the j -

invariant of a certain simplified trigonal curve B †k; the latter is unique up to the
change of coordinates given by 3.1).

Proof. For simplicity, restrict all functions/sections to an affine portion C1 P1,
whichweassume to contain all pull-backs j 1.0/ and j 1.1/. Represent the function

l D j=.1 j/ by an irreducible fraction p=q. Since l.1/ ¤ 0; 1, one has degp D
deg q. For each root a of p of multiplicity 1 mod 3 respectively, 2 mod 3), multiply
bothp and q by z a/2 respectively, z a/4), and for eachroot b of q of multiplicity
1 mod 2, multiply both p and q by z b/3. In the resulting representation l D Np= Nq,

the multiplicity of each root of pN
respectively, qN) is divisible by 3 respectively, 2),

and pN and qN have no common roots of multiplicity > 6. Hence, one has pN D 4g3 and2

Nq D 27g23 for some polynomials g2, g3 satisfying the condition in Proposition 3.1.1,
and the function j D l=.l C 1/ D pN=.pN C qN/ is the j -invariant of the simplified
trigonal curve B †k given by the Weierstraß equation with coefficients g2, g3,
where k D

1
6

deg pN D
1
6

deg Nq. Clearly, the polynomials g2, g3 as above are defined
by l uniquely up to the transformation given by 3.1).

3.4.2 Proposition. A fiberwise deformation of a non-isotrivial trigonal curve B
results in a deformation of its j -invariant j D jB W P1 P1 with the following
properties:

1) the degree of the map j W P1 P1 remains constant;

2) distinct poles of j remain distinct, and their multiplicities remain constant;

3) the multiplicity of each root of j remains constant mod 3;

4) the multiplicity of each root of j 1 remains constant mod 2.

Conversely, any deformation of nonconstant meromorphic functions j W P1 P1
satisfying conditions 1)–(4) above results in a fiberwise deformation of the
corresponding via Proposition 3.4.1) simplified trigonal curves.

3.4.3 Remark. Condition 3.4.2 3) means that a root of j of multiplicity divisible
by 3 may join another root and, conversely, a root of large multiplicity may break
into several roots, all but one having multiplicities divisible by 3. Condition 3.4.2 4)
should be interpreted similarly.

0

3.4.4 Remark. Note that just an equisingular notnecessarily fiberwise) deformation
of trigonal curves does not always result in a deformation of their j -invariants. In the
case of simplified curves, the degree of jB drops whenever a type AQ singular fiber
of B joins another singular fiber, of type QA0 AQ 1, or AQ 2, to form a fiber of type AQ 0
QA1 or QA2 respectively, see Table 1.
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Proof. The direct statement follows essentially from Table 1. Indeed, the multiplicities

of the poles of jB, mod 3/-multiplicities of its roots, and mod 2/-multiplicities
of the roots of jB 1 are encoded in the singular fibers of B, and the degree deg jB
can be found as the sum of the multiplicities of all poles of jB. Since the expression
for jB depends ‘continuously’ on the coefficients of the Weierstrass equation and
deg jB remains constant, there is no extra cancellation during the deformation and

the map jB W P1 P1 changes continuously.
The converse statement follows from the construction of the simplified trigonal

curve B from a given j -invariant j see the proof of Proposition 3.4.1. Since the
degree deg l D deg j remains constant, the polynomials p and q in the irreducible
representation l D p=q change continuously during the deformation. Crucial is the
fact that the passage from p=q to pN=qN

depends only on the roots of p and q whose

multiplicity isnotdivisible by 3 and 2, respectively. Hence, duetoConditions 3.4.2 3)
and .4/, the degree deg

pN D deg
qN will remain constant, the polynomials pN and

qN will
change continuously, and so will the coefficients g2, g3 of theWeierstrass equation.
The fact that the resulting deformation of the trigonal curves is fiberwise follows
again from Table 1.

4. Dessins d’enfants and skeletons

According to Propositions 3.4.1 and 3.4.2, the study of simplified trigonal curves in
Hirzebruch surfaces is reduced to the study of meromorphic functions j W

P1 P1
with three ‘essential’ critical values 0, 1, and 1 and, possibly, a few other critical

values. Following S. Orevkov [26], [27], we employ a modified version of
Grothendieck’s dessins d’enfants. Below, we outline briefly the basic concepts and
principal results; for more details and proofs we refer to [15], Sections 5.1 and 5.2.
Note that [15] deals with a real version of the theory, where functions graphs) are

supplied with an anti-holomorphic respectively, orientation reversing) involution;
however, all proofs apply to the settings of this paper literally, with the real structure
ignored.

Since, in this paper, we deal with rational ruled surfaces only, we restrict the
further exhibition to the case of graphs in the sphere S2 Š P1.

4.1. Trichotomic graphs. Given a graph S2, we denote by S2 the closed
cut of S2 along The connected components of S2 are called the regions of
Unless specified otherwise, in the topological part of this section we are working in

the PL-category.)

A trichotomic graph is an embedded oriented graph S2 decorated with the
followingadditional structures referred to as colorings of the edges and verticesof
respectively):
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– each edge of is of one of the three kinds: solid, bold, or dotted;

– each vertex of is of one of the four kinds: B, or monochrome the vertices
of the first three kinds being called essential)

and satisfying the following conditions:

1) the valency of each essential vertex of is at least 2, and the valency of each

monochrome vertex of is at least 3;

2) the orientations of the edges of form an orientation of the boundary @S2; this
orientation extends to an orientation of S2 ;

3) all edges incident to a monochrome vertex are of the same kind;

4) -vertices are incident to incoming dotted edges and outgoing solid edges;

5) -vertices are incident to incoming solid edges and outgoing bold edges;

6) B-vertices are incident to incoming bold edges and outgoing dotted edges.

In 4)–(6) the lists are complete, i.e., vertices cannot be incident to edges of other
kinds or with different orientation.

Condition 2) implies that the orientations of the edges incident to a vertex alternate.

In particular, all vertices of have even valencies.

4.2. Dessins. In view of 4.1 3), the monochrome vertices of a trichotomic graph
can further be subdivided into solid, bold, and dotted, according to their incident

edges. A path in is called monochrome if all its vertices are monochrome. Then,
all vertices of the path are of the same kind, and all its edges are of the same kind as

its vertices.) Given two monochrome vertices u;v 2 we say that u v if there is
an oriented monochrome path from u to v. Clearly, only vertices of the same kind
can be compatible.) The graph is called admissible if is a partial order. Since
is obviously transitive, this condition is equivalent to the requirement that should
have no oriented monochrome cycles.

In this paper, an admissible trichotomic graph is called a dessin.

4.2.1 Remark. Note that the orientation of is almost superfluous. Indeed, may
have at most two orientations satisfying 4.1 2), and if has at least one essential
vertex, its orientation is uniquely determined by 4.1 4)–.6/. Note also that each

connected component of an admissible graph does have essential vertices of all
three kinds), as otherwise any component of @S2 would be an oriented monochrome
cycle.

4.2.2 Remark. In fact, all three decorations of a dessin orientation and the two
colorings) can be recovered from any of the colorings. However, for clarity we retain
both colorings in the diagrams.
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4.3. The dessin of a trigonal curve. Any orientation preserving ramified covering

j W
S2 P1 defines a trichotomic graph j / S2. As a set, j/ is the

pullback j 1.P1R/. Here, P1R P1 is the fixed point set of the standard real structure

z 7! Nz.) The trichotomic graph structure on j / is introduced as follows: the - B-,
and -vertices are the pull-backs of 0, 1, and1, respectively monochrome vertices
being the ramification points with other real critical values), the edges are solid, bold,
or dotted provided that their images belong to OE1; 0 OE0; 1 or OE1; 1 respectively,
and the orientation of j / is that induced from the positive orientation of P1R i.e.,
order of R).

As shown in [15], a trichotomic graph S2 is a dessin if and only if it has

the form j/ for some orientation preserving ramified covering j W S2 P1; the
latter is determined by uniquely up to homotopy in the class of ramified coverings
having a fixed trichotomic graph.

We define the dessin B/ of a trigonal curve B as the dessin j / of its j -

invariant j W P1 P1. The correspondence between the singular fibers of a simplified

trigonal curveB and thevertices of itsdessin B/ is given byTable 1 see j.z/
the valency of a vertex z being twice the ramification index indz j The - respectively,

B-) vertices of B/ of valency 0 mod 6 respectively, 0 mod 4) correspond to
the nonsingular fibers of B with complex multiplication of order 3 respectively, 2);
such vertices are called nonsingular, whereas all other essential vertices of are
called singular.

4.4. Equivalence of dessins. Let S2 be a trichotomic graph, and let v be a

vertex of Pick a regular neighborhood U S2 of v and replace the intersection

\ U with another decorated graph, so that the result 0 is again a trichotomic
graph. If 0 \ U contains essential vertices of at most one kind, then 0 is called a

perturbation of at v), and the original graph is called a degeneration of 0.

A perturbation 0 of a dessin is also a dessin if and only if the intersection 0\U
contains no oriented monochrome cycles. There are no simple local criteria for the
admissibility of a degeneration.

4.4.1 Remark. Assume that the perturbation 0 is a dessin. Since the intersection

0\@U is fixed, the assumption on 0\ U implies that 0\U either is monochrome

if v is monochrome) or consists of monochrome vertices, essential vertices of the
same kind as v, and edges of the two kinds incident to v.

A perturbation 0 of a dessin at a vertex v and the inverse degeneration of 0

to is called equisingular if v is not a -vertex and the intersection 0\U contains
at most one singular -or B-vertex. Two dessins 0; 00 S2 are said to be equivalent
if they can be connected by a chain 0 D 0; 1;: : : ; n D 00 of dessins, where
each i 1 6 i 6 n, either is isotopic to i 1 or is an equisingular perturbation or
degeneration of i 1. Clearly, equivalence of dessins is an equivalence relation.
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4.4.2 Remark. By an isotopy between two dessins 0 and 00 we mean a PL-family

t of PL-autohomeomorphisms of S2 such that 0 D id and 1. 0/ D 00, the latter
map taking vertices to vertices and edges to edges and preserving both colorings of
the dessins. Note that, since the mapping class group of S2 is trivial, one can just
require that 0 is taken to 00 by an orientation preserving PL-autohomeomorphism
of S2 respecting the graph structure and the colorings.

The following statement, essentially based on the Riemann existence theorem,
is an immediate consequence of Propositions 3.4.1 and 3.4.2 and the results of [15]
particularly, Corollaries 5.1.8 and 5.2.3, with the real structure ignored).

4.4.3 Theorem. The map B 7! B/ sending a trigonal curve B to its dessin

establishes a one-to-one correspondence between the set of fiberwise deformation
classes of simplified trigonal curves in Hirzebruch surfaces and the set of equivalence
classes of dessins.

4.4.4 Definition Maximal curves and dessins). A dessin S2 is called maximal
if it satisfies the following conditions:

1) all vertices of are essential;

2) all - respectively, B-) vertices of have valency 6 6 respectively, 6 4);

3) all regions of are triangles.

A simplified trigonal curve B is called maximal if its dessin B/ is maximal.

4.4.5 Remark. Conditions 4.4.4 1) and 3) in the definition of a maximal dessin can
be restated as the requirement that the function j W

S2 P1 constructed from
see 4.3, should have no critical values other than 0, 1, and1.

4.4.6 Remark. Any maximal trigonal curve is defined overan algebraic number field.
Indeed, as any function with three critical values, the rational function j W

P1 P1
has finitely many Galois conjugates and hence is defined over an algebraic number
field. Then, the construction in the proof of Proposition 3.4.1 shows that the coefficients

g2, g3 of theWeierstraß equation are defined over the splitting field of j One
may need to add to the field some roots and poles of j
4.4.7 Proposition. A trigonal curve B0 is fiberwise deformation equivalent to a maximal

trigonal curve B if and only if the dessins B0/ and B/ are isotopic. Furthermore,

a permutation of the singular fibers of a maximal trigonal curve B is realized
by a fiberwise self-deformation if and only if the corresponding permutation of the
vertices of B/ is induced by an isotopy of B/.



Vol. 84 2009) Zariski k-plets via dessins d’enfants 653

Proof. A maximal dessin does not admit nontrivial equisingular perturbations due

to Conditions 1) and 2), as an equisingular perturbation requires a vertex of high
valency) ordegenerations due to Condition 3), as a perturbation produces more than
triangle regions). Hence, any equivalence to a maximal dessin is an isotopy.

4.4.8 Proposition. A trigonal curve B is maximal if and only if it does not admit a

nontrivial degeneration, see 2.4, to a non-isotrivial curve.

Proof. Let D B/. After a small deformation, we can assume that satisfies
the general position assumptions 4.4.4 1) and 2). Then, if B is not maximal, has

a region R whose boundary contains at least two -vertices, and these two vertices
can be brought together within R. This degeneration of results in a nontrivial
degeneration of the curve.

Conversely, assume that B has a nontrivial degeneration to a curve B0, which is
necessarily trigonal. Then, up to isotopy, is obtained from B0/ by removing
disjoint regular neighborhoods of some of its vertices and replacing them with new
decorated graphs. Since deg j may change, it is no longer required that each of
the new graphs should contain essential vertices of at most one kind. Note that we
do not discuss the realizability of any such modification by an actual degeneration
of curves.) If this procedure is nontrivial, it results in a graph with at least one

non-triangular region.

4.5. Skeletons. An abstract skeleton is a connected planar map Sk S2 whose
vertices have valencies at most three; we allow the possibility of hanging edges, i.e.,

edges with only one end attached to a vertex. An isomorphism between two abstract
skeletons Sk0 and Sk00 is an orientation preserving PL-autohomeomorphism of S2
taking Sk0 to Sk00.

The skeleton of a maximal trigonal curve B is the skeleton Sk.B/ S2 obtained
from the dessin B/ by removing all -vertices and incident edges i.e., all solid
and dotted edges) and disregarding the B-vertices. Note that the resulting graph is
indeed connecteddueto Condition 4.4.4 3).) Clearly, a maximal dessin is uniquely
up to homotopy) recovered from its skeleton Sk: one should place a B-vertex at the

middle of each edge at the free end of each hanging edge), place a -vertex vR at

the center of each region R of Sk, and connect this vertex vR to the - and B-vertices
in the boundary @R by appropriate respectively, solid and dotted) edges. The last
operation is unambiguous as, due to the connectedness of Sk, each open region R is
a topological disk.

4.5.1 Theorem. The map B 7! Sk.B/ sending a maximal trigonal curve B to
its skeleton establishes a one-to-one correspondence between the set of fiberwise
deformation classes of maximal trigonal curves in Hirzebruch surfaces and the set

of isomorphism classes of abstract skeletons in S2.
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Proof. Thestatement follows from the correspondence between maximaldessins and

skeletons described above, Theorem 4.4.3, and Proposition 4.4.7.

4.5.2 Remark. Removing from a dessin j / all -vertices and incident edges
results in a classical dessin d’enfants in the sense of Grothendieck, i.e., the bipartite
graph obtained as the pull-back j 1.OE0;1 / The passage to the skeletons is a further
simplification due to the fact that, under the assumptions on maximal dessins, all

B-vertices have valency at most two.

4.5.3 Remark. Theorem 4.5.1 suggests that, in general, the classification of maximal

trigonal curves with a prescribed combinatorial type of singular fibers is a wild
problem: one would have to enumerate all planar maps with prescribed valencies of
vertices and numbers of edges of regions. The only general result in this direction
that I am aware of is the Hurwitz formula [20] see also [8]), which establishes a
relation between a certain weighed count of planar maps more precisely, ramified
coverings of P1, not necessarily connected) and characters of symmetric groups.

4.6. Vertex count. We conclude this section with a few simple counts. For a

dessin denote by # D # / the total number of -vertices where is either
or B, or and by # i/, i 2 N, the number of -vertices of valency 2i. Recall that
valencies of all vertices of a dessin are even.) Consider a trigonal curve B †k, its

j-invariant j W P1 P1, and its dessin D B/. Counting the number of points
in one of the three special fibers of j one obtains

deg j DXi>0

i# i/ DXi>0

i#B.i/ DXi>0

i# i /: 4.1)

Since B can be perturbed to a generic trigonal curve in the same surface †k, and a

generic curve has deg D 6k simplest singular fibers, Table 1 yields

6k DXi>0

i# i/ C 2 X
iD1.3/

# i/ C 3 X
iD1.2/

#B.i/ C 4 X
iD2.3/

# i /: 4.2)

Alternatively, one can notice that the first term in 4.2) equals deg j see 4.1), and

the remaining part of the sum is 6k deg j see degj in Table 1.) Finally, the
Riemann–Hurwitz formula applied to j results in the inequality

# C #
B C # > deg j C 2; 4.3)

which turns into an equality if and only if j has no critical values other than 0, 1,

and1, i.e., Conditions 4.4.4 1) and 3) are satisfied.
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5. The fundamental group

5.1. The braid group. Recall that the braid group B3 can be defined as the group
of automorphisms of the free group G D h 1; 2; 3i sending each generator to a

conjugate of another generator and leaving the product 1 2 3 fixed. We assume that
the action of B3 on G is from the left. One has B3 D h 1; 2 j 1 2 1 D 2 1 2i,
where

1 W 1; 2; 3/ 7! 1 2
1

1 ; 1; 3/; 2 W 1; 2; 3/ 7! 1; 2 3
1

2 ; 2/:

We will also consider the elements 3 D
1

1 2 1 and D 2 1 D 3 2 D 1 3.

The center of B3 is the infinite cyclic group generated by 3.
Note that the maps 1; 2/ 7! 2; 3/ 7! 3; 1/ define automorphisms of B3;

in particular, the pairs 2; 3/ and 3; 1/ are subject to all relations that hold for
1; 2/. In what follows, we use the convention

3lCi D i i D 1;2; 3, l 2 Z.
The degree deg of abraid 2 B3 is defined as its image under the abelianization

homomorphism B3 Z, 1; 2 7! 1. A braid is uniquely recovered from its degree

and its image in the quotient B3= 3.

5.2. Van Kampen’s method. Let B † D †k be a generalized trigonal curve,
and let E † be the exceptional section. The fundamental group 1.† X.B[E//
can be found using an analogue of van Kampen’s method [21] applied to the ruling
of †. Pick a fiber F1 singular or not) over a point1 2 P1 and trivialize the ruling
over P1 X1. Let F1; : : : ; Fr be the singular fibers of B other than F1. Pick a

nonsingular fiber F distinct from F1 and a generic section S disjoint from E and

intersecting all fibers F;F1; : : : ;Fr; F1 outside of B.
Clearly, F X B [E/ is the plane C1 D F X E with three punctures. Consider

the group G D 1.F X B [ E/; F \ S/, and let 1, 2, 3 be a standard set

of generators of G. Let, further, 1; : : : r be a standard set of generators of the
fundamental group 1.S X.F1[S

r
jD1 Fr /; S\F/, so that j is a loop around Fj

j D 1; : : :; r. For each j D 1;: : : ; r, dragging the fiber F along j and keeping
the base point in S results in a certain automorphism mj W G G, called the braid
monodromy along j Strictly speaking, mj is not necessarily a braid unless B is
disjoint from E); however, it still has the property that the image mj i/ of each

standard generator i i D 1; 2; 3, is a conjugate of another generator i 0

According to van Kampen, the group 1.† X.B[E [F1[S
r
jD1 Fr /; S \F/

is given by the representation

1; 2; 3; 1;: : : ; r j
1

j i j D mj i /, i D 1; 2;3, j D 1;: : : ; r ;

and patching back a fiber Fj j D 1; : : : ; r, results in an additional relation j D 1.
Thus, if B has no linear components, the resulting representation for the group
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1.† X B [E [F1/;S \F/ is

1; 2; 3 j i D mj i /, i D 1; 2; 3, j D 1; : : : ;r :

Patching back the remaining fiber F1 gives one more relation D 1, where is the
class of a small loop in S around S \F1; an expression of in terms of 1, 2, 3
in the special case of trigonal curves is found below, see Remark 6.2.1.

5.2.1 Remark. Van Kampen’s approach applies as well in the case when the curve
has linear components: for each such component, one should keep the corresponding
generator j and keep the relation 1

j i j D mj i / instead of i D mj i /.

5.2.2 Proposition. Let Bk †k and BkC1 †kC1
be two generalized trigonal

curves, so that Bk is obtained from BkC1 by an elementary transformation whose

blow-up center O does not belong to BkC1. Then there is a natural isomorphism

1.†k X Bk [Ek// D 1.†kC1 X BkC1 [ EkC1//;

where Ei †i i D k;k C 1, are the exceptional sections.

Proof. Let FkC1 †kC1
be the fiber through O, and let Fk †k be the fiber

contracted by the inverse elementary transformation. The diffeomorphism 2.1) induces
an isomorphism

1.†k X Bk [Ek [Fk// D 1.†kC1 X BkC1 [ EkC1 [ FkC1//:

The group 1.†k X.Bk[Ek// is obtained from 1.†k X.Bk[Ek[Fk// by adding
the relation OE@ k D 1, where k †k is a small analytic disk transversal to Fk
and disjoint from all other curves involved. Similarly, patching the fiber FkC1 results

in an additional relation OE@

kC1 D 1, where
kC1 †kC1

is a small analytic
disk transversal to FkC1 and disjoint from the other curves in †kC1. Under the
assumptions, one can choose

kC1
passing through the blow-up center O; then its

proper transform can be taken for k. Hence, one has OE@ k D OE@

kC1 and the two
quotient groups are isomorphic.

5.2.3 Proposition. Let C P2 be an algebraic curve of degree m with a
distinguished singular point O of multiplicity m 3/ and without linear components.
Assume that C has a branch b at O of type E12. Then C is irreducible and the
fundamental group 1.P2 X C/ D Zm is abelian.

Proof. Blow O up and consider the proper transform B1 †1 of C, see 2.5. The
transform of b is a type E6 singular point of B1, and the elementary transformation
centered at this point converts B1 to a generalized trigonal curve B2 †2 with a

type AQ 0 singular fiber. In particular, the curve is irreducible.
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The inverse transformation is as in Proposition 5.2.2, i.e., its blow-up center does

not belong to the curve B2 or the exceptional section E2. Hence, one has

1.P2
X C/ D 1.†1 X B1[E1// D 1.†2 X B2 [ E2//:

The first isomorphism is obvious; the second one is given by Proposition 5.2.2.) The
last group can be found using van Kampen’s method, see 5.2. Under an appropriate
choice of the generators 1, 2, 3, the braid monodromymabout a typeAQ 0 singular
fiber is 2 B3, and the relations m. i/ D i i D 1; 2; 3, yield 1 D 2 D 3.

Hence, the group is abelian.

5.2.4 Proposition. Let C be the union of an irreducible curve as in Proposition 5.2.3
and r > 1 linear components none of which is tangent to the branch b of type E12.
Then one has 1.P2 X C/ D Z h 1; :: : r 1i. In particular, if r 6 2, the group is
still abelian.

Proof. As in the proof of Proposition 5.2.3, there is a relation 1 D 2 D 3, and
due to the properties of the braid monodromy each generator is taken to a conjugate
of a generator) the relations 1

j i j D mj i/ turn into OE j ; i D 1.

6. The braid monodromy

In this section, we describe the braid monodromy of a simplified trigonal curve. We
fix such a curve B † D †k and let D B/. Further, we denote by Fz the fiber
over a point z 2 P1, and let Bz D B \ Fz and Ez D E \Fz, where E † is the
exceptional section. Note that Fz X Ez is an affine space over C1; in particular, one
can speak about its orientation, lines, circles, angles, and length ratios. We use the
notation F B

z for the punctured plane Fz X Bz [Ez/.

6.1. Geometry of the fibers. The definition of the j -invariant gives an easy way to
recover the topology of B from its dessin The set Bz consists of a single triple
point if z is a singular - or B-vertex. If z is a -vertex, Bz consists of two points, one
simple and one double. In all other cases, Bz consists of three simple points, whose
position in Fz X Ez can be characterized as follows.

1) If z is an inner point of a region of the three points of Bz form a triangle with
all three edges distinct. Hence, the restriction of the projection B P1 to the
interior of each region of is a trivial covering.

2) If z belongs to a dotted edge of the three points of Bz are collinear. The ratio
smallest distance/=.largest distance/ is in .0; 1

2
/; it tends to 0 respectively, 1

2
when z approaches a - respectively, B-) vertex.
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3) If z belongs to a solid bold) edge of the three points of Bz form an isosceles

triangle with the angle at the vertex less than respectively, greater than) 3.
The angle tends to 0, 3, or when z approaches, respectively, a - - or

B-vertex.

Furthermore, a simple model example proves the following statement.

4) For a point z as in 1), arrange the vertices of Bz in ascending order based on the
length of the opposite edge. The resulting orientation of Bz is counterclockwise
if and only if jB.z/ > 0.

6.2. Proper sections. To define the braid monodromy, we need to fix a ‘fiber at

infinity’ F1, see 5.2, and a generic section S that would provide the base points
Sz D S \ Fz 2 F B

z We take for F1 the fiber over a fixed point 1 … and

construct S as a small perturbation of E CkF0, where F 0 is the fiber over a point z0

in the same open region of as 1. If the perturbation is sufficiently small, the
section S has the following property: there is a closed neighborhoodK 3 1disjoint
from and such that, for each point z 2 P1 X K, the base point Sz 2 Fz is outside
a disk Uz Fz containing Bz and centered at its barycenter cf. Figure 1, right,
below). In what follows, a section S satisfying this property is called proper and,
when speaking about the fundamental group 1.FB

z ;Sz/, we always assume that the
point z is outside the above closed neighborhood K.

Note that, together with the exceptional section E and the zero section given by

z 7! the barycenter of Bz), a proper section S gives a trivialization of the ruling
over P1 X K, which is necessary to define the braid monodromy.

6.2.1 Remark. From the construction of a proper section S it follows that the class

of a small loop in S surrounding F1 \ S see 5.2) is, up to conjugation, given by

D 1 2 3/k 1 : : : r Hence, in this case, the final relation in van Kampen’s
method is 1 2 3/k D 1.

6.3. Markings and canonical bases. Let z 2 be a nonsingular -vertex.
According to 6.1 3), the three points of the set Bz form an equilateral triangle. There

is a natural one-to-one correspondence between the bold edges incident to z and the
points of Bz: an edge e corresponds to the point p 2 Bz that turns into the vertex
of the isosceles triangle when z slides from its original position along e. In fact, the
same point p turns into the vertex of the isosceles triangle when z slides along the
solid edge e0 opposite to e, so that the two other points are brought together over the

-vertex ending e0.

Inwhat follows, we always assume that the three bold edges e1; e2; e3 incident to z
are oriented in the counterclockwise direction, as in Figure 1, left. Such an ordering
is called a marking at z, and an edge ei incident to z is said to have index i at z. A
marking at z is uniquely determined by assigning an index to one of the three bold
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edges incident to z. Alternatively, a marking is determined by assigning an index to
one of the three points constituting Bz.

A marking of a dessin is defined as a collection of markings at each nonsingular
-vertex of The notion of marking and index of edges extends to skeletons in the

obvious way.
Using 6.1 1)–(3), from 6.1 4) it follows that if e1; e2; e3 is a marking at a

nonsingular -vertex z, the corresponding points p1; p2; p3 2 Bz form the clockwise
orientation of the triangle Bz Figure 1, right).

e1

e02

e3

e01

e03

e2

@Uz

Sz

p1

p3
p2

Figure 1. A canonical basis for Gz.

Pick a proper section S, see 6.2, and consider the group Gz D 1.F B

z ;Sz/. A
canonical basis for Gz is a basis 1; 2; 3 shown in Figure 1, right, where the
space F B

z is regarded as the affine line Fz X Ez punctured at p1;p2;p3 2 Bz. More
precisely, each element i is the class of the loop formed by a small counterclockwise
circle about pi i D 1; 2;3, which is connected to Sz by a radial segment, an arc of
a circle @Uz separating Sz from Bz cf. 6.2), and another radial segment, common
for all three loops. It is required that each consecutive arc is 2 3 longer than the
previous one; however, we do not make any assumption about the length of the first
arc: it is defined up to a multiple of 2 As a result, a canonical basis 1; 2; 3 is
determined by a marking at z uniquely up to conjugation by 1 2 3, i.e., up to the
central element 3

2 B3.
A canonical basis defines an isomorphism z W Gz G to the ‘standard’ free

0z

group G D h 1; 2; 3i. This isomorphism is determined by a marking at z up

to 3. Below, all braids involving z are considered up to a power of 3. The
isomorphism defined by the cyclic permutation e2; e3; e1 of the bold edges is
given by 0z D B z.

6.3.1 Remark. In a similar way, one can define a canonical basis and isomorphism

z W Gz G for a nonsingular B-vertex z. The basis and the isomorphism are
determined up to a power of 3 by an ordering of the two bold edges incident to z.
Our choice of -vertices is motivated by the fact that we will apply the results to
skeletons.
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6.4. Assumptions and settings. For the rest of this section, we make the following
assumptions about :

1) has no monochrome vertices, all its -vertices have valency 6 6, and all its

B-vertices have valency 6 4;

2) the union of all - and B-vertices of and its bold edges is connected;

3) has at least one nonsingular -vertex.

Note that Condition 1) means that the curve is generic within its fiberwise
deformation class, and 2) can be satisfied after a sequence of equisingular perturbations
and degenerations, cf. [15]. Thus, the only true restriction is 3). In particular, any
maximal dessin satisfies 1) and 2), and the remaining Condition 3) rules out four
series of maximal curves: those whose skeleton is a simple cycle one curve in †k
for each k > 1) or a linear tree two curves in †1 and three curves in †k for k > 2;
a curve is determined by the number of hanging edges in the skeleton). All these

curves are irreducible.
Chose and fix the ‘fiber at infinity’F1 over a point1 … and a proper section S,

see 6.2. Denote by SB P1 Š S2 the affine plane P1 X1punctured at the singular
fibers of B. Since S is a section, SB can as well be regarded as a subset of S.)

As above, let G D h 1; 2; 3i be the free group on three generators. Fix a

marking of and consider the corresponding isomorphisms z W Gz G, see 6.3.
Given a path in SB connecting two nonsingular -vertices z0 and z00, consider the
monodromy mQ W Gz0 Gz00 and define the automorphism m D z00 B mQ B

1
z0

of G. It is a braid due to the fact that S is proper). We consider m as an element of
the reduced group B3= 3, thus removing the ambiguity in the definition of In the
special case z0 D z00, i.e., when is a loop, m is a well defined element of B3. It
can be recovered from its image in B3= 3 using the following obvious statement.

6.4.1 Proposition. The degree of the monodromy mQ W Gz Gz defined by a simple
loop in SB is equal to the total multiplicity P mult Fi see Table 1) of the singular
fibers of B encompassed by i.e., separated by from1.

6.5. The monodromy. To uniformize the formulas below, we use the convention

e3lCi D ei i D 1;2; 3, l 2 Z, for the ordered edges incident to a given nonsingular
-vertex cf. similar convention for the braid group in 5.1).

Let z0, z00 be two nonsingular -vertices, connected by the path in formed by
two bold edges incident to the same B-vertex. Denote m D mi;j 2 B3= 3, where

i j are the indices of the edges constituting at z0 and z00, respectively. Then

mi;iC1 D i; miC1;i D
1

i ; and mi;i D i i 1 i : 6.1)

More generally, let s > 0 be an integer, and let be a simple path from z0 to z00

composedof 2s bold edges, sC1/ B-vertices, and s -vertices of valency4. Perturb
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so that each singular -vertex is circumvented in the counterclockwise direction, and

denote by mi;j s/ 2 B3= 3 the resulting monodromy. Then, for all integers s; t > 0,
there is a reciprocity relation

mjC1;i t/ miC1;j s/ sCtC2i D 1; 6.2)

which can be used to find m ; s/ in terms of m ; .0/ D m ; One has

mi;iC1.s/ D
s

iC1 i; miC1;i s/ D
s 1

i ; and mi;i s/ D
s 2

i
1

iC1:

Now, let be the loop composed of a small counterclockwise circle around a

-vertex of valency 2d connected along a solid edge e0i see Figure 1, left) to a

nonsingular -vertex z. The resulting monodromy ci d/ D m 2 B3 is given by

ci d / D
d
iC1: 6.3)

Finally, consider a chain of distinct bold edges starting from an edge ei at a
nonsingular -vertex z and ending at a singular vertex. Let be a simple loop at z encompassing

all vertices of the chain except z itself) and oriented in the counterclockwise
direction, and let li d / D m 2 B3 be the monodromy, where d D deg li d /. If
the chain contains s -vertices of valency 4, then d can take the values 4s, 4s C2, or
4s C 3, depending on whether the chain ends at a -vertex of valency 4, B-vertex, or
-vertex of valency 2.) One has

i
s

i 1
3s and li .4s C / D

2s 5Cli.4s/ D
s

i
1

iC1
3sC3 ; 6.4)

where D 2 or 3.

6.6. Proofs. But for the choice of the trivialization of the ruling, which is also
accountable for the 3-ambiguity, the monodromy m is local with respect to
and it can be found using the description of the geometry of the fibers given in 6.1.
We do use this straightforward approach to establish relations 6.1) and 6.3). The
expression for li .4s/ in 6.4) follows from Proposition 6.4.1 and the obvious relation

li .4s/ D mj;i s/ mi;j s/; j 2 Z;

in B3= 3, which is due to our convention that the paths are perturbed so as to circumvent

all singular vertices in the counterclockwise direction.
For the rest, we observe that the monodromy related to a fragment of can be

found in any other dessin containing this fragment. The reciprocity relation 6.2) is
obtained assuming that the two paths resulting in the two m ; monodromies form
the boundary oriented in the clockwise direction) of a single region R of the skeleton

of the dessin, so that R contains a single -vertex. The factor sCtC2 in the relationi
is, in fact, ci 1.s Ct C2/.) The expressions for li are obtained in a similar way: we
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close the unused bold edges ei 1, eiC1 at z ‘around’ the chain of edges in question
and place a single -vertex at the center of the resulting region R. Computing the
monodromy around @R gives the relations

ci 1.2s C 5 / li .4s C / D li .4s C / ciC1.2s C 5 / D mi 1;iC1

in B3= 3 where D 2 or 3), which can be used to find li

6.6.1 Corollary. A maximal trigonal curve B is reducible if and only if all vertices of
its skeleton Sk are nonsingular i.e., have valency 3) and Sk admits a marking with
the following properties:

1) each hanging edge has index 1 at the only) vertex incident to it;

2) any other edge has indices .1; 1/, .2; 3/, or .3; 2/ at its two endpoints.

6.6.2 Remark. Clearly, a marking at any vertex of Sk extends to at most one marking
satisfying Condition 6.6.1 2). If Sk has ahanging edge, itadmits at most one marking
satisfying 6.6.1 1) and 2).

6.6.3 Remark. Corollary 6.6.1 still makes sense for a trigonal curve B, not necessarily

maximal, whose dessin satisfies Conditions 6.4 1) and 2). In this case, the
existence of a marking as in Corollary 6.6.1 is necessary for B to be reducible; in
general, it is not sufficient.

Proof. Let BB be the portion of thecurve over SB, and let prW
BB SB be the restriction

of the projection †k P1. It is a triple covering whose monodromy is obtained
by downgrading the braid monodromy to the symmetric group S3. From 6.4) it
follows that the monodromy about a singular -vertex acts transitively on the decks

of pr, and hence any curve with such a vertex is irreducible. As this argument is
local, it applies as well to the four exceptional series mentioned in 6.4, proving that
they are all irreducible.)

Assume that B is reducible. Then it contains as a component a section of the
ruling. Any such section B1 B defines a marking of Sk: one assigns index 1
to the point B1 \ Fz 2 Bz, see 6.3, and Conditions 6.6.1 1) and 2) merely list
all monodromies li .3/ and mi;j preserving p1. Conversely, for any marking as in
the statement, the points p1 2 Bz over all -vertices z 2 B/ belong to a deck
of pr which is preserved by the monodromy. One needs to take into account the
obvious fact that, for a maximal curve without singular -vertices, the inclusion
homomorphism 1.Sk/ 1.SB/ is an isomorphism.) Hence, the curve contains a

section of the ruling as a component.
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7. The construction

7.1. Proofs of Theorems 1.1.1 and 1.1.3 are based on the existence of large Zariski
k-plets of maximal trigonal curves in Hirzebruch surfaces.

7.1.1 Proposition. For each integer k > 2, there exists a collection of

C.k 1/ D
1

k
2k 2

k 1

pairwise distinct fiberwise deformation families of irreducible maximal trigonal
curves B †k with the following properties:

1) each curve has one fiber of type AQ 0 one fiber of type AQ 5k 3, and k fibers of
type QA0 and no other singular fibers);

2) none of the curves admits a fiberwise self-deformation inducing a non-trivial
permutation of the singular fibers of the curve.

Proof. Denote by Ts, s > 1, the set of all binary rooted trees on s vertices. Recall
that the cardinality of Ts is given by the Catalan number C.s/,

#Ts D C.s/ D s
!:1

s C 1

2s

Each tree T 2 Ts admits a standard ‘monotonous’ geometric realization jTj R2,
see Figure 2, left. For example, one can map the level l l > 0, vertices of T to the
points vl;i D 1C.2i C1/=2l; l/, i D 0; : : :; 2l 1, so that the left respectively,
right) edge originating at vl;i connects vl;i to vlC1;2i respectively, vlC1;2iC1).

Figure 2. Extending a binary tree T to a skeleton Sk.T /.

Pick a tree T 2 Tk 1 and extend its geometric realization jTj R2 P1 to
a skeleton Sk.T / as follows: mark the root of T by adding a monovalent vertex at

.0; 1/ and connecting it to v0;0 by an edge, and complete the valency of each vertex
of jT j to three by replacing the missing branches with ‘leaves’, each leaf consisting
of a vertex at an appropriate point vl;i l > 0), a loop at this vertex, and a stem



664 A. Degtyarev CMH

connecting the vertex to the point vl 1;OEi=2 See Figure 2, right, where the trunk and

the k leaves added to jT j are shown in grey.)
The resulting skeleton Sk.T / has one monovalent and .2k 1/ trivalent vertices;

its faces are k monogons the interiors of the leaves) and one .5k 2/-gon the outer
region). Furthermore, one can easily observe that none of Sk.T / has a nontrivial
automorphism and that two skeletons Sk.T1/, Sk.T2/ are isomorphic if and only if
T1 D T2 in Tk 1. Here, the key observation is the fact that the root of the original
tree T is ‘marked’ by the only monovalent vertex of the skeleton Sk.T /. Hence, any
isomorphism of the skeletons would induce an isomorphism of oriented rooted trees
as it also preserves the orientation of S2). In particular, essentially by its very

definition, an oriented rooted tree never admits an orientation preserving automorphism.
Applying Theorem 4.5.1, one obtains #Tk 1 D C.k 1/ deformation families of

maximal trigonal curves with the desired properties. Each curve is irreducible since

it has a type AQ 0 singular fiber.)

7.1.2 Proposition. If k D 2s is even, then C.s 1/ of the trigonal curves given
by Proposition 7.1.1 are real with respect to some real structure on †k). All other
curves and all curves for k odd) split into pairs of complex conjugate curves.

Proof. A maximal trigonal curve is real if and only if its skeleton is symmetric with
respect to some orientation reversing involution of the base S2 cf. [15], §5 and

especially Corollary 5.1.8, where real dessins of real curves are considered: clearly,
a symmetric skeleton can be completed to a symmetric dessin, due to the results
of [15] cited above, a symmetric dessin gives rise to a real j -invariant, and the
further passage from the j -invariant to a trigonal curve is equivariant, cf. the proof
of Proposition 3.4.1). A binary rooted tree can be symmetric only if its number of
vertices is odd, and all symmetric trees in T2s 1 can be parametrized by their ‘left
halves’, i.e., by Ts 1.

7.2. The braid monodromy. In this section, we apply the results of 6.5 to describe
the braid monodromy of the curves given by Proposition 7.1.1.

Fix a curve B corresponding to a tree T 2 Tk 1 and let D B/, Sk D Sk.B/.
Let v0;0 be the root of the original tree T Denote by the set of -vertices of of
valency 2 equivalently, the set of type QA0 singular fibers of B). Each vertex u 2
can be encoded by a word wu in the alphabet fr; lg as follows: let Nu be the -vertex in
the leaf encompassing u, and let u be the simple path in Sk from v0;0 to Nu; starting
from v0;0 and the empty word, walk along u and, at each vertex, add to the word r
or l if the right respectively, left) branch is chosen at this vertex. For example, in
Figure 2, the -vertices encompassed by the five leaves are encoded, from right to
left, by the words rr, rl, lr, l lr, and l ll.) Order lexicographically, with r < l.
This is the right to left order in the standard geometric realization of the graph, cf.

Figure 2.)
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As in 6.4, pick a point1 2 P1X and denote by SB the plane P1X1punctured
at the singular vertices of Take v0;0 for the base point, and consider the basis u,

u 2 i i for 1.SB; v0;0/ defined as follows:

1) u, u 2 is the loop in Sk formed by the circumference of the leaf surround¬

ing u connected to v0;0 by the simple path u;

2) i is a small circle surrounding the -vertexof valency 10k 4, connected to v0;0
by the left solid edge at v0;0;

3) i is a small circle surrounding the singular -vertex, connected to v0;0 by the
bold edge.

All loops are oriented in the counterclockwise direction.) Then, the braid
monodromy 1.SB; v0;0/ B3 is given by the following relations:

u 7! wNu 3wN
1

u ; i 7!
5k 2
1 ; i 7! 1 2;

where wNu is the braid obtained from wu by replacing each instance of r and l with
2 and 1

1 respectively.

Proof. We choose a marking at each nonsingular -vertex of Sk so that e2 is the
edge pointing downwards and hence e1 and e3 are, respectively, the left and right
branches of the tree). Then i 7! c3.5k 2/, see 6.3), i 7! l2.2/, see 6.4), and
the image of each element u is found by composing appropriate monodromies mi;j
see 6.1).

7.3. Proof of Theorem 1.1.1. Let k and be as in the statement. Note that k > 3
and 6 OEk=2 Pick one of the trigonal curves B †k given by Proposition 7.1.1.
In order to convert B to a plane curve, we need to perform k 1/ elementary
transformations. We choose the transformations so as to contract the type AQ 0 fiber
of B, OEk= 2 of its k type QA0 fibers, and OE.k 3/=2 nonsingular fibers. In the type AQ 0
fiber and type QA0 fibers the blow-up centers are chosen outside of the curve and the
exceptional section; in each other fiber the blow-up center is taken on a branch of B
transversal to the fiber. The total number of deformation families thus obtained is

OEk=2

OEk=2
Z.m/ D C.k 1/

k
;

0

the three factors standing, respectively, for the choice of B, the choice of OEk=2 of
its k type AQ fibers to be contracted, and the choice of of the OEk=2 fibers where
the blow-up center is not on B. In each case, the transform is an irreducible curve

zC D B1 †1 with the set of singularities

A5k 3 C E6 C D5 C
k
2

A2 C
k 3

2
A1; 7.1)
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so that all points except the first A5k 3 are in the exceptional section E1 †1 and

the local intersection index of zC and E1 at each singular point is minimal possible

i.e., 2 at a double point and 3 at a triple point). Blowing E1 down, one obtains an
irreducible plane curve C of degree 2k C 2 C D m. Since the combinatorial data

of C are determined by the those of zC CE1, all curves thus obtained share the same

set of singularities.
The fundamental groups 1.P2XC/ are all abelian due to Proposition 5.2.3.

7.4. Proof of Theorem 1.1.2. A real curve C is obtained from a real trigonal curve

B †k; hence, k D 2s is even and the number of real trigonal curves is given by
Proposition 7.1.2. Next, one should choose a real i.e., invariant under the complex
conjugation) collection of blow-up centers for the elementary transformations
converting B to zC, see 7.3. Since the k type QA0 singular fibers of B split into k=2 D s
conjugate pairs and k=2 D s blow-up centers should be chosen in these fibers, s
must also be even, s D 2t, and the number of choices is s

t : one chooses t of the
s conjugate pairs. Finally, D 0 as one cannot choose only one special fiber with
the blow-up center not on the curve: for the transformation to be real, the conjugate
fiber would have to have the same property.

7.4.1 Remark. It is worth mentioning that, in the settings of Theorem 1.1.2, each

deformation class containing a real curve splits into at least t2 equisingular real
deformation classes. Indeed, let P1R P1 be the real part of the base of the ruling. It
contains the singular -vertex of the root of the original tree, and the -vertex of
of valency 10k 4. Thus, the singular fibers of B divide P1R into two distinguishable
intervals, and each of the 2t 2 nonsingular fibers containing blow-up centers can
be chosen either in a conjugate pair or over one of the two intervals. The number of
choices is the number of ordered pairs a; b/ 2 Z Z such that a; b > 0, a C b 6
2t 2, and a C b is even. It is t2.

7.5. Proof of Theorem 1.1.3. The proof is similar to that of Theorem 1.1.1. Let
k D m 5, and pick one of the trigonal curves B †k given by Proposition 7.1.1.
Blow up the only singular point of B and blow down the corresponding fiber. Repeat

this procedure k 2/ times. The result is an irreducible curve B2 †2 which
intersects the exceptional section at a nonsingular pointP with multiplicity k 2/ and
has a type A3kC1 singular point Q in the fiber FP through P. Now, add the fiber FP
as a component, perform an elementary transformation to contract the type AQ 0 fiber
of B2 to a type E6 singular point in the exceptional section, and blow down the
exceptional section. The fiber FP is added to the curve to make sure that, during
the deformations, the intersection point P and the singular point Q remain in the
same fiber.) The result is a plane curve C of degree m. Clearly, all C.k 1/ curves
obtained in this way share the same combinatorial data. The fundamental groups

1.P2 X C/ are all abelian due to Proposition 5.2.4.
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The count for the number of real curves is based on Proposition 7.1.2: from the
construction it follows that a family contains a real curve if and only if the original
trigonal curve B is real.

7.6. A remark on deformations. From the construction creating a branch of
type E12 and, in 7.5, adding a linear component) it follows that any equisingular
deformation of the plane curve C must preserve the type AQ 0 and type AQ 5k 3 singular

fibers of the original trigonal curve B. Since all other singular fibers of B are of
type QA0 and B is maximal, the resulting deformation of B is fiberwise, see Proposition

4.4.8. The blow-up centers chosen in the branches of B transversal to its type QA0
singular fibers see 7.3) should stay fixed, as otherwise the type of singularity of C
at O would change. This observation is also crucial in the proof of Theorem 8.1.2
below.) In 7.3, a blow-up center in a nonsingular fiber of B may move to a type QA0
singular fiber not containing another blow-up center), to the branch of B tangent to
the fiber. This degeneration corresponds to one of the branches of one of the type A1
points of zC, see 7.1), becoming tangent to the fiber; it is equisingular for C. Clearly,
these modifications do not affect the number of deformation families.

8. Further applications

0

8.1. In

0

this section, we present a slight modification of the construction used in
Proposition 7.1.1 and discuss a few further applications.

8.1.1 Proposition. For each integer k > 2, there exists a collection of C.k 1/
pairwise distinct fiberwise deformation families of pairs B; F /, where B †k is
an irreducible maximal trigonal curve with one fiber of type AQ 5k 2 and k C 1/
fibers of type AQ and no other singular fibers) and F is a distinguished type AQ fiber
of B. None of the curves admits a fiberwise self-deformation inducing a non-trivial
permutation of its singular fibers preserving F

Proof. Modify the construction of Proposition 7.1.1 by replacing the monovalent
vertex with an extra leaf attached to the root of the original tree T and selecting
the corresponding type QA0 fiber for F All curves obtained are irreducible due to
Corollary 6.6.1: to show that a marking as in the corollary does not exist, it suffices
to consider the two leaves attached to any maximal in the partial order defined by
level) vertex of T

8.1.2 Theorem Rigid plane curves). For each odd integer m D 2k C 1 > 5, there
is a set of singularities shared by

2

2k 2
k 1

Zar.m/ >
1



668 A. Degtyarev CMH

pairwise distinct equisingular deformation families of irreducible plane curves Ci of
degree m. Within each family, all curves are projectively equivalent and defined over
an algebraic number field.

8.1.3 Remark. The set of singularities constructed in the proof has a point of
type A5k 2 and a point of transversal intersection of k 1/ branches of type A4.
One has Zar.5/ D 1, and the only curve of degree 5 given by the theorem is the well
known quintic with the set of singularities A8 C A4, see [10]; it is defined over Q.
Note that in this case the fundamental group 1.P2 X C/ is abelian, see [12].) For

large values of m, the count Zar.m/ grows faster than am for any a < 2.

8.1.4 Remark. The curves given by Theorem 8.1.2 seem to be good candidates for
examples of exponentially large arithmetic Zariski k-plets in the sense of Shimada,
see [29], [30]. At present, I do not know whether all/some of the curves Ci are indeed
Galois conjugate over an algebraic number field except the trivial case of pairs of
complex conjugate curves). Whether the pairs P2; Ci/ or complements P2 XCi are
homeomorphic is also an open question.

0

Proof. Similar to 7.3, we start with a trigonal curve B †k as in Proposition 8.1.1,
perform k 1/ elementary transformations to convert †k to †1, and blow down the
exceptional section of †1 to get a plane curve. The k 1/ blow-up centers are taken
in type AQ singular fibers ofB, on the branchofB transversal to the fiber. This choice
makes the construction rigid, so that the resulting plane curves have 0-dimensional
moduli spaces and are defined over algebraic number fields. Indeed, since B itself is
defined over a certain algebraic number field k, see remark after 4.4.4, all its singular
fibers Fj are defined over a finite extension of k, and so are the intersection points

B \Fj Hence, each curve Ci is also defined over a finite extension of k.) The total
number of choices is C.k 1/ for the pair B; F/ times k.kC1/=2 for the choice
of k 1/ singular fibers containing the blow-up centers). Since, in each skeleton,
the distinguished leaf can be chosen in k C 1/ ways, we divide the resulting count
by k C 1/.

8.2. Elliptic surfaces. Below, an elliptic surface is a compact complex surface X
with a distinguished rational pencil of elliptic curves, i.e., elliptic fibration over a

rational base. We assume that thepencil has no multiple fibers; then it is unique unless
the topological Euler characteristic of X is 24, i.e., X is a K3-surface. By a fiberwise
deformation of elliptic surfaces we mean a deformation preserving the elliptic pencil
and the typesof itssingular fibers. Allsurfacesmentioned inTheorems8.2.1 and 8.2.2
are defined over algebraic number fields.

8.2.1 Theorem. For each integer s > 1, there are C.2s 1/ distinct fiberwise
deformation families of Jacobian relatively minimal elliptic surfaces of topological



Vol. 84 2009) Zariski k-plets via dessins d’enfants 669

0

Euler characteristic D 12s and having one fiber of type AQ one fiber of type0
A10sQ 3, and 2s fibers of type AQ and no other singular fibers).

0

8.2.2 Theorem. For each integer s > 1, there are at least C.2s 1/=.2s C 1/
distinct fiberwisedeformation families of Jacobian relatively minimal elliptic surfaces
of topological Euler characteristic D 12s and having one fiber of type AQ 10s 2 and

.2s C 1/ fibers of type AQ and no other singular fibers).

Proof of Theorems 8.2.1 and 8.2.2. The statements follow from Propositions 7.1.1
and 8.1.1 applied to k D 2s. Each surface is obtained as the minimal resolution of
singularities of the double covering of †k branched over the exceptional section E
and a trigonal curve B given by the appropriate proposition.

8.2.3 Remark. Let X be one of the surfaces given by Theorem 8.2.1 or 8.2.2, and

let L D H2.X/ be its intersection lattice. Consider the sublattice S L spanned

by the components of the pull-back of B [E. Over Q, it is spanned by the section
of X, its generic fiber, and the exceptional divisors over the only singular point of B.
Hence, S is nondegenerate. The advantage of Theorem 8.2.2 is the fact that, in this
case, the orthogonal complement S? is an even positive definite lattice of rank 2s 2.
Given that positive definite lattices tend to have many isomorphism classes within the
same genus, one can hope to use Shimada’s invariant [29] to distinguish the surfaces

topologically.
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