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New constructions of slice links

Tim Cochran, Stefan Friedl and Peter Teichner

Abstract. We use techniques of Freedman and Teichner [FT] to prove that under certain cir-
cumstances the multi-infection of a slice link is again slice (not necessarily smoothly slice). We
provide a general context for proving links are slice that includes many of the previously known
results.

Mathematics Subject Classification (2000). 57M25.
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1. Introduction

A link of m components is the image of a flat embedding S' I --- LI S < §3 of
the ordered disjoint union of m oriented copies of the circle S!. Two such links are
called concordant if there exists a flat embedding

(STIT--- 1T SYH x[0,1] — S* x [0, 1]

which restricts to the given links at the ends. A link is called (topologically) slice if
it i1s concordant to the trivial mi-component link or, equivalently, if it bounds a flat
embedding of m disjoint slice disks D? 11 --- 11 D? < D*  In the special case
m = 1 werefer to the link as a knot. If the embeddings above are required to be C°°,
or smooth, then these notions are called smoothly concordant and smoothly slice.
The study of link concordance was initiated by Fox and Milnor in the early 1960s
arising from their study of isolated singularities of 2-spheres in 4-manifolds. It is
now known that specific questions about link concordance are equivalent to whether
or not the surgery and s-cobordism theorems (that hold true in higher dimensions)
hold true for topological 4-manifolds. Moreover, the difference between a link be-
ing topologically slice and being smoothly slice can be viewed as “atomic” for the
existence of multiple differential structures on a fixed topological 4-manifold.
There 1s only one known way to construct a smoothly slice link, namely as the
boundary of a set of ribbon disks [Ro90]. The known constructions of (topologically)
slice links are also fairly limited. In 1982 Michael Freedman proved that any knot with



618 T. Cochran, S. Friedl and P. Teichner CMH

Alexander polynomial 1 is slice [F85]. It is known that some of these knots cannot
be smoothly slice and hence cannot arise from the ribbon construction. Freedman
[F85], [F88] and later Freedman and Teichner [FT] gave other techniques showing
that the Whitehead doubles of various links are slice. The 4-dimensional surgery
and s-cobordism theorems (for all fundamental groups) are in fact equivalent to the
free sliceness of Whitehead doubles of all links with vanishing linking numbers, see
[FQ90]. Here a link is freely slice if the complement of some set of slice disks in D*
has free fundamental group. However, it is conjectured that:

Conjecture 1.1. The Whitchead double of a link is freely slice if and only if the link
is homotopically trivial (i.e. has vanishing non-repeating Milnor fi-invariants).

Since vanishing linking numbers corresponds to vanishing Milnor invariants of
length 2, the above conjecture (applied to, say, the Borromean rings) would imply
that one of those theorems does not hold for free groups. The conjecture 1s known
for links with one or two components ([F88]) but is widely open for all other cases,
the harder part being the “only if” direction. Continuing the history of constructions
for slice links, the second two authors recently found a new technique for knots,
including examples that are not ribbon knots, do not have Alexander polynomial 1
and are not Whitehead doubles [FrT0O5], [FrT06].

In the present paper we discuss a method of constructing slice links that generalizes
many of the above. The construction begins with a ribbon knot or link and modifies
it by a procedure called a multi-infection (previously called infection by a string link
[CO4, p.385] and a fangle sum [CO94, Section 1]) which generalizes the classical
satellite construction. Special cases of this construction have been used extensively
since the late 1970s to exhibit interesting examples of knots and links that are nor
slice [Gi83], [LO5], [COTO3], [COT04], [HO6], [Ci06]. Therefore the present paper
complements these results, giving hope for an eventual complete resolution of the
question of when this construction results in a slice knot or link. Our result also
provides a method of producing interesting examples for testing the new obstructions
to a knot or link being smoothly slice [OS03], [Ra04], [MOO5], [BWO05], [GRSO7].

In order to state our main theorem we now define the multi-infection of a link by a
string link. By an r-multi-disk E we mean the oriented disk D? together with r ordered
embedded open disks E1, ..., E, (cf. Figure 1.2). Given a link L C S? we say that
amap ¢: E — S3 of an r-multi-disk into S3 is proper if it is an embedding such that
the image of the multi-disk (which we denote by E,) intersects the link components
transversely and only in the images of the disks £y, ..., E; as in Figure 1.3. Now
let J = Ji,...,J, € D? %[0, 1] be an (unoriented) r-component string link. Then
we can thicken up E,, € S? using the orientation of E,, and tie J into L along E,,
(cf. Figure 1.4). We call the resulting link the multi-infection of L by J along E,,
and denote it by I(L, J,E,). We refer to Section 2.2 for a more formal definition.
We will always refer to the image of the boundary curves of ¢(Eq),...,¢(E,) by
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Figure 1.2. Multi-disk.
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Figure 1.4. Multi-infection of L by J.

N1, --.,Nr. Note that in the case r = 1, the multi-infection of a link L by a string
knot J along a 1-mult-disk E,, depends only on the curve 5 and on the closure J. In
fact the resulting link is just the satellite link of L with companion J and axis 7, that
we denote I(L, J, ).

We can now state our main theorem which is an application of the techniques of
[T (see also [KO3]). Werefer to [M57] for the definition of the jt-invariants for links.
For string links, these can actually be defined without indeterminacy but we will not
need that fact here since the vanishing of the je-invariants up to a certain length 1s well
defined and depends only on the link closure of the string link, compare Figure 2.2.
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Theorem 1.5. Let D = Dy 11 --- 1 D,, < D* be slice disks for a link L in S°.
Let ¢: E — S3 be a proper map of an r-multi-disk such that 0y, . .., n, bound a set
of immersed disks 8; in D* ~ D in general position. Let ¢ be the total number of
intersection and self-intersection points of the &; and let J be an r-component string
link with vanishing Milnor ji-invariants up to (and including) length 2c.

Then the multi-infection I(L, J,E,) of L by J along E, is also slice.

It is not hard to show that the theorem holds for ¢ = 0. We will therefore assume
below that ¢ > 0 and in particular that the string link J has trivial linking numbers
(i.e. p-invariants of length 2).

Note that, in the case r = 1, Jisa knot, and hence all Milnor’s ji-invariants of
J are zero. In this case Theorem 1.5 simplifies to the following.

Corollary 1.6. Let D = D, ---11 D,,, <> D* be slice disks for alink L in S>. Let
n be a closed curve in S3~ L, unknotted in§3, such that n is trivial in w1 (D*~ D).
Then for any knot J the satellite link I(L, J, n) is slice.

We note that our proof of Theorem 1.5 would go through under the weaker as-
sumption that J has trivial linking numbers if the 4-dimensional surgery sequence
were exact for all fundamental groups. The latter is still an open problem. We use the
assumption on the vanishing of higher Milnor-invariants of J to get ourselves into
the 1 -null setting where Freedman and Quinn [FQ90] proved a surgery theorem up
to s-cobordism. Conversely, if our theorem were true under this weaker assumption
on J then the surgery sequence would be exact and the s-cobordism theorem would
hold for arbitrary fundamental groups. This follows from the following discussion
and the comments below Conjecture 1.1,

Remark. An important special case of the theorem is when L is the trivial link and
D 1s a set of slice disks coming from disks in 3-space. Take r = m and choose
7; in such a way that (L;, 7;) form Whitehead links in disjoint 3-balls. Then there
are obvious immersed disks §; bounding 7; each having exactly one self-intersection
and no other intersections. This means that ¢ = m in the above theorem. Using the
symmetry of the Whitehead link, one can redraw the picture so that the 7; lie in a plane
that also contains a multi-disk E. Tt is then not hard to see that the multi-infection
I(L,J,E,) is the Whitehead double of the closure of J. Our theorem thus implies
that this Whitehead double is (freely) slice if the j-invariants of J vanish up to length
2m. Theorem 3.1 in [FT] gives the same result with the better bound m + 1 rather
than 2m. This is the best known result concerning the “if”” part of Conjecture 1.1
above (the Conjecture implies that 72+ 1 can be improved to m). Note that our current
theorem vastly generalizes this very special case and hence it is not surprising that
we need a slightly stronger assumption on the link J in the general setting.
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Theorem 1.5 places conditions on both the link J (having vanishing Milnor in-
variants up to a certain length) and the curves {7; } (being null-homotopic in D*~ D).
In general both these conditions are necessary. For example, in case L and J are
knots (rn = r = 1), if the condition on 7 is relaxed then in many cases (L, J, E,)
is provably nof slice, despite the fact that all the Milnor invariants vanish for J. In
the case that L 1s a link, even if the #; are null-homotopic, in general some condition
on J is necessary. Examples are given in Section 4.

Theorem 1.5 gives a very general method to prove that links are slice links. Yet the
theorem applies only to links obtained by multi-infection starting from a known slice
link, which a priori seems like a very special class. In fact, up to smooth concordance,
it is not a restrictive class. The following observation, proven in Section 3, shows
that, up to smooth concordance, every algebraically slice knot can be obtained from
a ribbon knot L by multi-infection on a set of curves {»; } that lic in the commutator
subgroup of 71 (S? ~ L) (such #; are at least candidates to be null-homotopic in the
exterior of some set of slice disks for L).

Proposition 1.7. Suppose &£ is any algebraically slice boundary link (for example
any algebraically slice knot). Then L is smoothly concordant to a link I which is
of the form I(L,J,E,) where L is a ribbon link, J is a string link with linking
numbers zero and the n; lie in the intersection of the terms of the lower central series
of T (S3~L).

Note that, by Stallings’ theorem, a curve »; that is null-homotopic in the exterior
of some set of slice disks must lie in the intersection of the lower central series of the
link group.

2. Proof of Theorem 1.5

2.1. A sliceness criterion. We start the proof of Theorem 1.5 by recalling the fol-
lowing well-known criterion for links that asserts that a link L is slice if and only if
M7 , the 3-manifold obtained from L by zero-framed Dehn surgery, is the boundary of
a 4-manifold meeting certain homological criteria. The strategy of our proof will be
to construct such a 4-manifold for the zero surgery on the link 7(ZL, J, E,) obtained
by infection as in Theorem 1.5.

Proposition 2.1. A link L. = Ly 10 --- I L,, is slice if and only if there exists a
4-manifold W such that

(1) oW = My,
(2) 71 (W) is normally generated by images of meridians of L,
3y Hi(W) = Z"™,
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(4) Hy(W) =0.

Proof. let L = L, ---ULybealinkin S3andlet D = Dy U ---1I D, bea
union of slice disks for L. Let W := D* ~ vD where vD is a tubular neighborhood
of D, which exists because D 1s assumed (o be locally flat. It 1s easy to see that W
satisfies the required properties.

Conversely, given such W we add a 2-handle to W along a meridian of each
component of I and call the resulting manifold W', Using the properties (1) (o (4)
we can easily see that dW’ = S3, 7 (W') = 0, and H>(W’) = 0. Hence W' is
homeomorphic to D* by Freedman’s solution of the topological Poincaré conjecture
in dimension 4, Moreover the cocores of the 2-handles in W’ form a disjoint union
of slice disks for the components of L. O

2.2. Multi-infections and bounding 4-manifolds. The starting point of Theorem 1.5
is a slice link L. Thus M is the boundary of a 4-manifold, W, = D*~vD; LI ---1I
v D, that satisfies the properties of that Proposition 2.1. Our goal is to produce a 4
manifold whose boundary is My (7, 1 E,,) thatsatisfies the properties of Proposition 2.1.
This will establish that /(L, J, E,) is slice. In this subsection, as a preliminary step
we will exhibit a canonical cobordism between My,, My (;,, s k) and a third manifold
M ;, the zero surgery on the link obtained by closing up the string link .J, as shown
in Figure 2.2.

D% x0

DZx1

Figure 2.2. String link and its closure.

First we give a more formal definition of the multi-infection of alink. Let L C S
be anarbitrary link and ¢ : E — S3 be a proper map of an r-multi-disk. Recall thatE,,
is the image of that disk and we denote by E, the complement of the r subdisks in [E,.
Let J be an arbitrary r-component string link as in Figure 2.2. Note that (E, ~ E,)
(as shown in Figure 1.3) is a 2-disk with r subdisks deleted and so (E, ~ E,) x [0, 1]
(as shown in the center of Figure 1.4) may be viewed as a copy of the exterior of the
trivial r-component string link. This manifold has the same boundary as the exterior
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of the r-component string link J, denoted (D?x[0,1] ~ vJ). Thus we can alter
S?3 (in the complement of L) by deleting the exterior of this trivial r-string link and
inserting the exterior of the (nontrivial) string link J. This should be done in such a
way as to equate the meridians and longitudes of these two string links. Recall that
the meridians of the trivial string link are the boundary curves of ¢(E),. .., e(E;)
that we denote by 71, .. ., n-. We claim that the resulting manifold is homeomorphic
to S? since

(S? ~Int((Ey ~ Ey) x [0, 1])) U (D*x[0, 1] ~vJ)
= (S°~E, x[0.1]) U ((D*x[0, 1] ~vJ) U(E, x [0,1])) = S°.

The last homeomorphism follows from the observation that the previous space is the
union of two 3-balls. Finally we define the link 7(L, J, E,,) to be the image of the link
L under this homeomorphism. Itis easy to see that this formal definition agrees with
the more intuitive definition in the introduction. In the sequel, we often abbreviate
I(L,J,E,)by .

This definition yields a description of the multi-infection as follows: deleting the
exterior of a trivial string link and inserting the exterior of a non-trivial string link.
Since this deletion/insertion occurs in the complement of L, it applies equally to the
zero-framed surgery manifolds My, and Mj. That s,

My = (M, ~ {exterior of trivial string link}) U (exterior of J).

From now on assume that we are in the situation of Theorem 1.5 where L is a slice
link and let Wz, = D* ~vDy II--- 11 vD,. Recall that 3W;, = My, contains a copy
of the exterior of the trivial r-string link, the handlebody H = (E, ~ E,) x [0, 1] as
in the center of Figure 1.4. Furthermore we claim that M ; also contains a canonical
copy of H. In fact M; decomposes as the union of the exterior of the string link J
and the exterior of a trivial r-component siring link. To see this, view D? x [0, 1]
as a submanifold of S3 via the standard embedding and let B? x [0, 1] denote the
complementary 3-ball. View the string link J as contained in D? x [0, 1] and regard
the remainder of J as a trivial string link, 7', contained in B? x [0, 1]. Clearly then

(S3~vJ) = (D?x[0, 1] ~vJ)U (B2 x[0,1] ~vT).

Since
Mj — (Ss\vj) U (U;‘f:l . XDz),

M ; decomposes into (D?x[0, 1] ~ vJ), the exterior of the string link ./, and the
handlebody

(B2 x[0.1]~vT) U (Ujzy g, x D?) = (B* x [0.1] ~vT)
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The last homeomorphism follows from the fact that each u Ji X D2 is attached only

along i i X A where A is an arcin 3D?. Namely, it is the arc running along T, rather
then J. It follows that the fundamental group of this handlebody is the free group on
1, -, iy, the meridians of 7 and J. We now form a 4-manifold

N =W, U(M; x[0,1])

as shown schematically in Figure 2.3, by identifying H, the copy of the trivial string
link exterior in dWy, with the copy in M ; x {0} (shown dashed in Figure 2.3) in a

Wr.

Figure 2.3

way such that the curves 7; on the former get identified to the meridians J, of the
latter. This is done in such a way that the “new” boundary component created is
precisely My since it is obtained from M, be deleting the trivial string link exterior
and inserting the exterior of J.

A key observation is that the curves n; which are equated to the meridians p; of
J live in H C aWp, and are null-homotopic in Wi, by hypothesis.

If J were itself a slice link then we would know that M 7 were the boundary of
some 4-manifold W that satisfies the conditions of Proposition 2.1. We could then
use this W to cap off M; C N, resulting in 4-manifold N” whose boundary is My
and which satisfies the conditions of Proposition 2.1, proving that the infected link
I were slice. This establishes the following (previously known) very special case of
Theorem 1.5 which holds without any hypotheses on the curves 7;.

Corollary 2.4. The link obtained by a multi-infection of a slice link L using a string
link J whose closure is a slice link, is again a slice link.

However, in general M ; will not bound a 4-manifold that satisfies Proposition 2.1.
In this case we must be more clever and make use of our hypotheses on the n; curves.
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Lemma 2.5. N satisfies the following conditions:
(1) d(N) = M; LI -M3,
(2) w1 (N) is normally generated by the meridians of I,
(3) Hi(M;) — H{(N) is an isomorphism,
(4) Hy(M ;) — H>(N) is an isomorphism,
(5) m (M) — w1 (N)is the zero map.

Proof. N is the union of Wy, and M ; x [0, 1] glued along H. Note also that {u; } is a
basis for the first homology of H. Therefore the Mayer—Vietoris sequence becomes

0 —>H2(WL) &) Hz(Mf X [0, 1]) —> Hz(N)

— 6P Zpi — H\(Wp) @ Hi(M; x [0, 1]) — Hi(N) — 0.

i=1

Since P; _, Ly, —> H;(M ;) andsince H>(Wy) = 0, it follows that H>(M ;) —
H>(N) is an isomorphism, establishing (4). Since u; = n; dies in H{ (W) it also
follows that H, (W} — H;(N)isanisomorphism. But H, (W) = H{(Mp) = Z™
generated by the meridians of L. Clearly these same meridians are a basis for H; of
the infected link exterior and thus for H1(Mjy). This establishes (3).

In order to prove (5) note that the map

(i) = m(H) — JT](Mj x [0, 1])
is surjective and the map
(i) = mi(H) — 71 (W)

is the zero map. When gluing the two copies of H, the meridians p; are identified
with the 7;, establishing (5). By the Seifert—van Kampen theorem we have

m(N) = m (W) *{n;=1;} JTI(Mf)-

Moreover 71 (Wy ) is normally generated by the meridians of the link 7, and 771 (M ;)
is normally generated by {n;} which are trivial in 571 (Wp). Thus 71 (N} is normally
generated by the meridians of / establishing (2). O

2.3. Conclusion of the proof. We show how the proof of a theorem of Freedman
and Teichner can be used to alter N (o a 4-manifold, N, whose boundary is My
and which satisfies Proposition 2.1. We strongly encourage the reader to have pages
547-549 of [FT] available.
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Recall the situation shown on the right-hand side of Figure 2.3. Let M denote
a collar on the M ; boundary component as indicated by the shaded portion on the
left-hand side of Figure 2.6. A note of caution 1s in order. We shall shortly appeal to
the details of a proof in [FT]. In that proof, the M ; -boundary component of N is
capped off by a 4-manifold that is called M. But in fact this “cap” is not important
to the proof (since the strategy 1s to replace it anyway). Therefore we omit the cap.
Our collar M will play the role of M and our N will play the role of N in [FT].

N\Ml

Figure 2.6

Let 3t M denote the “outer” boundary component of the collar M. Recall that
(0T M) = m1(M ;) is normally generated by its meridians p; = n1,..., , =17,
and by assumption these curves bound immersed disks &; in Wz, where c¢ is the total
number of intersections and self-intersections. One such disk 1s shown schematically
on the left side of Figure 2.6. We now closely follow the proof of [FT, p. 547] using
the same notation. In accordance with that notation, set y; = n; = p;. Let M,
be a regular neighborhood of M U {8;} < N as shown schematically on the right-
hand side of Figure 2.6 by the shaded portion of N. Now discard M, and consider
N ~ M, the unshaded part of the figure. The latter has a new boundary component,
9% M. The strategy is to produce, using the proof in [FT], another 4-manifold M;
with 9M3 = 07 My and use it to plug up this hole in N ~ M. Then, letting

N! = (N\Ml) U3M3 M37

we see that IN' = M7 and we will verify that N’ also satisfies the other conditions
of Proposition 2.1, establishing that / is a slice link.

Lemma 2.7. There exists a 4-manifold M3 with 0Ms = 0% My such that
(1) The inclusion of the boundary induces an isomorphism H{(dM3) ~ H{(M3).
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(2) M is homotopy equivalent to awedge of c circleswhere these circles correspond
precisely to the double point loops among the §;.

Before constructing M3, we prove that its existence will enable us to finish the
proof of Theorem 1.5.

Lemma 2.8. Using the inclusion induced maps, the following statements hold:
(1) Hy(N ~ M) — H{(N)is an isomorphism,
(2) Hy(dTMy) — H>(N ~ M) is surjective,

(3) 71 (N ~ M) is normally generated by the meridians of I and the meridians of
the disks 6;.

Proof. First note that, since M is a collar, N ~ M, = N ~ |, vd;, where v§;
is a (closed) regular neighborhood of §;. Then excision and Poincaré duality give
isomorphisms

Hp(N.N ~ M) = H,(N.N ~ U, v&;)

where we have decomposed the boundary 8( s v&-) of the regular neighborhood
into the two relevant parts. The latter groups are given by

7" if p =2,
Hp(N, N ~ My) =~ H* P (U, vé;, U, v(@8)) = < Z¢ if p = 3,
0 else.

For p = 2, generators are given by transverse disks to the §; and for p = 3, each
mtersection point P contributes a generator via a solid torus Tp 1n a small neighbor-
hood of P (whose boundary is the well known Clifford torus and which intersects the
double point loop exactly once). Thus the long exact sequence of the pair (N, N~ M)
becomes

7€ — Hy(N ~ M) — Hy(N) > Z" — H{(N ~ M;) — H{(N) — 0,

where 7 is given by the algebraic intersection numbers with the various 8;. Thus the
composition of H>(M ;) = H>(N) (sce (4) of Lemma 2.5) with 7 is given by the
matrix of intersection numbers of capped-off Seifert surfaces for J; with the 38 i = Y.
Since y; is a meridian of fj this matrix is the identity with respect to these bases (we
have used that the linking numbers of J are zero). Thus 7 is an isomorphism and
(1) above follows. It also follows that H, (N ~ M) is generated by the Clifford tori
dTp and since these clearly lie in 9 M, statement (2) also follows.
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For (3), recall from property (2) of Lemma 2.5 that 71 (N ) is normally generated
by the meridians of /. Any homotopies in N may be assumed to hit §; transversely,
s0 (3) follows immediately. O

Now, assuming we have constructed M3 as in Lemma 2.7, we claim:
Lemma 2.9. N’ = (N ~ M) Uy, M3 satisfies the conditions of Proposition 2.1.

Proof. Consider the Mayer—Vietoris sequence for N = (N ~ M) U Mj3:

Hy (37 M) > Hi(N ~ My) @ Hi(M3) — Hy(N') — 0.

By property (1) of Lemma 2.7, H; (3" M) >~ H{(M3). It follows that v is injective
and that
Hl(N ~ M1) 2= Hl(N/),

and so by properties (3) of Lemma 2.5 and (1) of Lemma 2.8
Hi(Myp) = Hi(N)~ Hi(N ~ M) = H1(N’).

This establishes condition (3) of Proposition 2.1. Moreover examining Mayer—Vie-
toris again:

Ha (0 My) — Hy(N ~ M) @ Ha(M3) — Hy(N') — H (0 M) s

where v is injective and Hy(M3) = O by property (2) of Lemma 2.7. Therefore
H>(N ~ M) — H,(N') is surjective. Thus by property (2} of Lemma 2.8,

H>(0T M) — H>(N ~ M) — H>(N')

is surjective. Sinceany classin H,(N’)iscarriedby 0™ M| = dM3and Ho(M3) = 0,
it follows that H2(N') = 0, establishing condition (4) of Proposition 2.1,
Finally consider 71 (N') which, by the Seifert—Van Kampen theorem, equals

TN ~ M) x5 o+ prp) T1(M3).

The map 71 (3" M) — 7, (M3) is surjective because the double point loops come
from the boundary. Therefore, 71 (N ~M1) — 71(N')is also surjective. Property (3)
of Lemma 2.8 implies that 571 (N} is normally generated by the meridians of 7 and the
meridians of the disks §;. But the meridians of the disks &, live on the Clifford tori and
hence intersect trivially with the solid tori 7p from Lemma 2.8. In the construction
of M3 it will become clear that intersections with 7p give the isomorphism of 71 M3
with the free group on ¢ generators. Therefore, the meridians to §; map trivially to
71 M5 and thus 71 (N') is normally generated by the meridians of I alone. Thus N’
satisfies all the conditions of Proposition 2.1. O

This concludes the proof that / is slice and hence the proof of Theorem 1.5,
modulo the proof of Lemma 2.7.
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2.4. Using the proof in [FT] to construct M3. [FT, p. 548] explains how to draw
a “Kirby diagram” for the 3-manifold % M as follows. First consider the abstract
4-manifold obtained from M by adding r 2-handles along (y;. f;) C 3T M = M;
using framings f; induced from the &;. This is nor embedded in N. Let ¥ denote
the resulting homology sphere obtained as the top boundary, i.e. X is obtained from
M ; by f;-framed surgery on the meridians y; as shown in part (a) of Figure 2.10
(only one component of J is shown). Let {my,...,m,} denote a set of meridians
for the {y1,...,yr}, also shown in part (a) of the figure. Let L denote the link

(a) (b) (c) (d)
Figure 2.10

{myq,...,m,} C Xand Xy denotethe O-framed surgeryon L < 3. Meridians of this
link are called y; and are shown dashed in part (a) of the figure. Pictures (a) through
(d) illustrate a proof of the observation in [FT, p. 547] that X7, = M; = 0TM bya
map that sends a meridional set {47, ..., 1.} to {y1,....yr}. This observation will
be used later. This is seen by first sliding each component J; over the corresponding
O-framed m; which results in part (b) of Figure 2.10. Then the O-framed m; cancels
with the f;-framed y;, yielding part (d) of the figure.

To obtain a description of 3T M, from X, one must take into account the self-
plumbings of the &;.

Lemma 2.11. There exists a 4-manifold M> with fundamental group free on c gen-
erators and with dM> = 01 My such that

(1) the inclusion of the boundary induces an isomorphism Hy(0M5) = H{(M>);
(2) ma My is a free Z[my Ms]-module with hyperbolic intersection form.

Proof. In[FT, Figures 4.1-4.3], a “Kirby calculus” description of 3+ M| is obtained,
viewed as handles attached to the unique contractible 4-manifold Z with boundary X.
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Let M5 denote the 4-manifold given by [FT, Figure 4.3]. It is obtained from Z by
attaching ¢ 1-handles and 2¢ 2-handles to ¥ = dZ in a way that oM, = dM;.
Moreover, the 2-handles go homotopically trivially over the 1-handles, implying the
statement for the fundamental group. Moreover, it follows that M, is homotopy
equivalent to a wedge of ¢ circles and 2¢ 2-spheres, in particular mo M5 is a free
Z|my M>]-module of rank 2¢. Finally, the figure clearly shows that the 2-handles
generate a hyperbolic form on 7, M, which by the homology long exact sequence
for the pair (M5, dM,) implies (1). O

If surgery worked over the free group, we could remove the hyperbolic form on
mwa M5 to get a manifold M3 with the desired properties of Lemma 2.7. We actually
just need surgery (0 work up to s-cobordism (rel. boundary) and this 1s in fact a
theorem in the my-null case [FQ90]. This condition means that the union of the
images of all immersed 2-spheres representing the hyperbolic form maps trivially on
1 into the 4-manifold. In the case of M», the 2-spheres are made from the cores of
the 2-handles, together with null-homotopies of the attaching circles in Z. Since Z
is simply connected, it suffices to keep those 2¢ null-homotopies disjoint to make the
union of all 2-spheres sr{-null.

This is where our assumption on the Milnor invariants of J comes in: The above
2-handles are attached to a number of parallel copies of the circles #; where the total
number 1s precisely 2¢. We now claim that we can replace [FT, Lemma 4.2] by

Lemma 2.12. Any link consisting of 2¢ untwisted parallel copies of the components
m; of L = {my,...,m;}in X bounds a set of disjointly immersed disks in Z. Here
we mean that 2c is the sum of the number of parallels, c;, of m;.

Given this lemma, we can eliminate all the second homology of M» by the 771 -null
surgery theorem up to s-cobordism. This gives the 4-manifold M3 that is homotopy
equivalent to a wedge of circles and satisfies Lemma 2.7. The argument works
exactly like in the paragraph just below Lemma 4.2 in [IFT]. This concludes the proof
of Lemma 2.7, modulo the proof of Proof of Lemma 2.12.

Proof of Lemma 2.12. The lemma is vacuously true for ¢ = 0, so assume ¢ > 1. By
[FT, Lemma 2.7], the conclusion of the lemma is equivalent to the property that

All pi-invariants of length less than or equal to 2¢ vanish for L. (2.13)

Milnor’s invariants for links in homology 3-spheres are defined in the exactly same
way as for links in S3, see [FT]. Now let F be the free group on r generators and
F — (X ~ L) be the meridional map. The vanishing of the ji-invariants of L is
equivalent to the following three statements:

FiFep 2m(E~L)/m(EZ~ L)1, (2.14)
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F/F = m(XL)/m1(XL)2e, (2.15)

Hz(EL) —> HZ(WI(EL)/ﬂI(EL)ZC—l) 1s the trivial map. (216)

The equivalence of (2.13), (2.14) and (2.15) is standard for links in S® [M57]. For
links in general homology spheres most of this is derived in [FT, Section 2]. In
particular the equivalence of (2.14) and (2.16) is established there using [D75, The-
orem 1.1]. Now we have reached the key point: the desired property (2.16) depends
only on the zero surgery X7, not on L itself (indeed it only depends on 71 (27)). At
this point we only have to recall our previous observation that X7 =~ M ;. Therefore
each of the above conditions 1s equivalent to the requirement that the fi-invariants
of length less than or equal to 2¢ vanish for J. But this was the assumption of our
Theorem 1.5. L

3. Proof of Proposition 1.7

Suppose &£ is an algebraically slice boundary link of m components. We give the
proof in the case that £ is a knot. The proof for aboundary link is identical. Since £ is
algebraically slice, there is a genus » Seifert surface X which is in “disk-band” form,
as suggested by the left-hand side of Figure 3.1, where the “«-bands™ are untwisted
and such that the link J formed by the cores of these bands has zero linking numbers.
This 1s possible since we can choose the «-bands to generate a metabolizer of the
Seifert form.

Figure 3.1

It is well known that if J is (smoothly) slice then £ is (smoothly) slice (since
then the Seifert surface could be “surgered” to a disk using the slice disks for J).
Let ¢: E — S? denote an r-multi-disk that hits each «-band once transversely as
suggested on the right-hand side of Figure 3.1. By thickening up E we arrive at
the local picture shown in the left-most part of Figure 3.2, of a 2-cable of the trivial
r-string link 7.

Let J denote the r-string link formed by the cores of the «-bands in the exterior of
the thickened E. Suppose we replace the 2-cable of T' by the 2-cable of the string link
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G
AT TN —J
@ @ L By BB
L1 11 \/
T _J —T# T -
------- AT L

Figure 3.2

—J as shown in the second frame of Figure 3.2, and call the resulting knot L. Then
L is a knot that admits a disk-band form whose «-bands form a link that is the closure
of —J # J. Since the latter is a ribbon link, L is a smoothly slice knot (actually
a ribbon knot although this takes a little more work to show). On the other hand,
suppose we replace T by the 2-cable of the string link —J # J, as shown in the third
frame of Figure 3.2, and denote this knot by /. Then [/ is obtained from the ribbon
knot L by a multi-infection using the string link J as indicated by the equivalence
of the third and fourth frames of Figure 3.2 (the knot in the fourth frame clearly
differs from the knot in the second frame by a tangle insertion-deletion). Moreover
since the string links 7" and —J # J are smoothly concordant, their 2-cables are also
smoothly concordant. It follows that the knot &£ is concordant to the knot / (just alter
the product concordance from £ to itself by the string link concordance). Thus, the
original knot £ 1s smoothly concordant to the knot 7 which is obtained from the slice
knot L by infection using J. The curves {#; } are meridians to the ¢-bands and hence
lie in the exterior of a system of Seifert surfaces that exhibit L as a boundary link.
Then it is well known that they lie in the intersection of the terms of the lower central
series of 71 (S3 ~ L), since the Seifert surfaces can be used to construct a map to a
wedge of circles that sends the 7; to the wedge point. This concludes the proof of
Proposition 1.7.

4. Examples

In this section we give several examples of the applicability of Theorem 1.5 and
Corollary 1.6. In Section 1 we explained how, given any link ./, Theorem 1.5 could
be applied to classes of links much more general than Whitehead doubles of J. In
the current section we restrict to the case that J is a knot.
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Let L C S®bealinkandletn C S3~ L bea closed curve which is the trivial knot
in §3. The curve i bounds an embedded disk in S* which intersects L transversely
and extending this disk so that 7 lies 1n the interior we get an embedded 1-multi-disk
Ey. Let J be aknot and let J be a string knot such that its closure is /. Recall that,
in this case, all of Milnor’s p-invariants of J are zero. We can form the infection
link I(L,J,[E,). It is easy to see that this link only depends on 7 and J, and we
therefore denote it by 7(L, J. 7). As we have mentioned, in the literature (L, J, )
is sometimes called the satellite link of L with companion J and axis 7.

4.1. Infection of ribbon knots by a knot. In this section we compare Theorem 1.5
with the two previously known slicing theorems:

(1) If K is a knot with Ag (¢} = 1, then K is slice ([F85]).

(2) If K is a knot with Ag(r) = (2t — 1)(r — 2) and if a certain non-commutative
Blanchfield pairing vanishes, then K is slice ([FrTOS]).

We first consider Figure 4.1. The shaded region in Figure 4.1 (a) 1s part of a
ribbon disk D for a ribbon knot K. Figure 4.1 (b) shows a curve n which is clearly
the unknot in S3. Note that 5 is homotopically equivalent to a curve linking the

P . S M ——— PO S N

(@) (b) (c)

Figure 4.1. Infection by a knot.

ribbon disk D once without intersecting it (cf. Figure 4.1 (¢)). It 1s therefore clear
that 7 is homotopically trivial in D*~ D. It follows immediately from Corollary 1.6
that /(K. J, n) is slice for any knot J

(1) Now consider Figure 4.2, it shows two isotopic pictures for the link n U K. In
the special case that D is the trivial ribbon disk for the unknot X, it follows imme-
diately from Figure 4.2 (b) that /(K J, ) is the Whitehead double of J. Therefore
Corollary 1.6 gives another proof that the Whitehead double of any knot J is slice.
Note though that there exist many Alexander polynomial knots which are not White-
head doubles (e.g. the Kinoshita—Terasaka knot), and to which Theorem 1.5 a priori
does not apply.

(2) We consider Figure 4.3 (a). The knot K 1s the ribbon knot 6. As we saw
above, the knot I = I(K;,J, ) is slice for any knot /. Note that Az (r) =
Ag, () = 2t —1)(r —2). In fact [Fr'TOS, Proposition 7.4] also applies to show that
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(a) (b)

Figure 4.2. Isotopy of K U 7.

Figure 4.3. The knots K7 and K> with curves 1 and 7».

I is slice. We point out that in [FrTOS, Figure 1.5] a different and incorrect curve n
was chosen (cf. also the correction in [Fr'T06]).

(3) We now turn to Figure 4.3 (b). By the above discussion I = I(K3, J, 7,) 18
slice for any knot J. Note that Ay (1) = Ak, (t) = (2t —3}(2¢~! — 3). In particular
neither of the two previous slicing theorems can be applied directly.

Remark. All of the knots in Figure 4.3, (K, J , 1), i = 1,2, are in fact smoothly
concordant to the Whitehead double Wh(.J). Indeed, by “cutting the ribbon band”
and capping off the trivial component that splits off, one constructs a smooth ribbon
concordance from [ (Kl, J, n;) to the case in Figure 4.2 (b) where the knot is the
Whitehead double of J. For - many J , the knot Wh(J ) is known not to be smoothly
slice, in particular for such J the knots 1 (I J , 1; ) are slice but not smoothly slice.

4.2. Satellite links. We now turn to the study of satellite links. We first point out
an array of examples from the literature that illustrate the apparent necessity of the
conditions in Theorem 1.5. First we give examples illustrating the necessity of the
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conditionsonthe n;. If wetake L = L 1L, tobethe trivial link and 7 as in Figure 4.4
then it is easy to see that n is a non-trivial element, namely it is the commutator

Figure 4.4. Satellite construction with J the figure 8 knot, and L the trivial 2-component link.

[xl,xz] in the free group 7'[1(53 ~ Ll I Lz) = Jrl(D4 ~ D1 LI Dz) = ()Cl,X2)
where D¢ I D, 1s the obvious slice disk for the trivial link. Hence Theorem 1.5 does
not apply. Indeed, in many cases it is known that (L, J, ) (which is just the Bing
double Bing(J) of a knot J) is not slice. For example Bing(J) is known to fail to be
slice if J isnot an algebraically slice knot [CLRO7]. Evenif Jisan algebraically slice
knot, there are many examples where higher-order signatures obstruct Bing(./ ) from
being a slice link [CHL0O6], [CHLOS]. Much more generally, if 7 is taken to be any
homotopically essential (unknotted) circle in the exterior of the trivial link, then these
same invariants obstruct 7{L, J, ) from being slice [HO6, Corollary 5.9], [CHLOS,
Theorem 4.10], [Ch07]. Included among these examples are the so-called iterated
Bing doubles of J . Therefore for these examples it seems likely that /(L, J, n) will
be slice if and only if either # is null-homotopic or J is itself a slice knot.

Even if 5 is a null-homotopic link, the link /(L, J , 1) can fail to be slice. If we
take L to be the trivial 2-comp0nentﬁlink and takq 11, N2 to be curves as in Figure 4.1,
then, as previously observed, (L, J, )} is Wh(J). But the Whitchead double of the
Hopf link is known not to be slice (cf. [F88]). Thus some condition on the link J is
necessary in general.

On the other hand consider the following very general example. The shaded region
in Figure 4.5 (a) is part of two ribbon disks D and D> for a link L = L 11 L.
Figure 4.5 (b) shows a curve 7. If we view 1 as aknot in S* we see that the kinks of 7
cancel with the twists, hence n  S3 is the unknot in S 3. Note that after resolving the
self-intersections of n we can contract 7 in the complement of L to the trivial knot,
in particular % is homotopically trivial in D* ~ D. Tt now follows immediately from
Corollary 1.6 that I(L, J, ) is topologically slice for any knot .J. Also note that 7 is
unknotted in the complement of each component, in particular if L has components
Lyand L,,then I(L, J, n) also has components L and L, albeit linked differently.



636

T. Cochran, S. Fried] and P. Teichner CMH

Dy

(a) (b)

Figure 4.5. Infection of a link by a knot.

In the very special case that L is the trivial link and D, and D, are disjointly
embedded disks, then one can see that 1 (L, J, n) is the Bing double of the Whitehead
double of J. Itis well known that this link is in general not smoothly slice. We refer
to [Ci06] to a summary of known obstructions to the Bing double of a Whitehead
double being smoothly slice.
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