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Chern numbers and the geometry of partial flag manifolds

D. Kotschick and S. Terzié

Abstract. We calculate the Chern classes and Chern numbers for the natural almost Hermitian
structures of the partial flag manifolds I, = SU{n +2)/S(Un)x U(1) xU(1)). Foralln > 1
there are two invariant complex algebraic structures, which arise from the projectivizations of the
holomorphic tangent and cotangent bundles of € P?+1. The projectivization of the cotangent
bundle is the twistor space of a Grassmannian considered as a quaternionic Kihler manifold.
There is also an invariant nearly Kahler structure, because Fj, is a 3-symmetric space. We
explain the relations between the different structures and their Chern classes, and we prove that
F;, 1s not geometrically formal.

Mathematics Subject Classification (2000). Primary 53C30, 57R20; Secondary 14M15,
53C26, 53C55.

Keywords. Flag manifold, invariant complex structure, Chern class.

1. Introduction

In this paper we discuss the geometry of the homogeneous spaces
Fp = SUn +2)/SUn) x U1) x U(1))

from several points of view. These flag manifolds carry a number of interesting
structures that we would like to understand. The relations between the different
structures are quite intriguing. Note that Fp 1s the 2-sphere, and everything we will
say is either trivial or does not apply in this case. Next, [} is the manifold of complete
flags in €3, of real dimension 6. This plays a special rdle in our discussion. The
general case begins with 75, of real dimension 10, All F, with n > 2 are genuine
partial flag manifolds.

We now briefly describe the different geometric features of F, that we shall
consider.

1.1. Complex structures. It is a classical fact due to Borel, Koszul and Wang that
F,, admits at least one invariant Kiihler structure. The starting point of this work was
an observation of Borel and Hirzebruch [6], pointing out that F> has two different
invariant structures as a complex projective variety, for which the values of the Chern
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number cf are different. Extending this observation, we shall see that, up to conju-
gation and automorphisms, each F, with #» > 2 has precisely two invariant complex
structures. We shall give explicit formulae for their Chern classes and indicate how to
calculate the Chern numbers in several different ways. As a particular application of
these calculations we will see that the value of the Chern number ¢3"*! always dis-
tinguishes the two structures. For n < 3 we give the values of all the Chern numbers
for the two complex structures.

One way of calculating the Chern numbers is through Lie theory, using the de-
scription of Chern classes as polynomials in the roots due to Borel and Hirzebruch [6].
Another way, also used by Hirzebruch in his recent paper [12], is to look for a ge-
ometric interpretation of the complex structures on F;,, and to perform the calcula-
tions using differential or algebraic geometry. This works out very nicely because
the two complex structures on £, are precisely those of the projectivizations of the
holomorphic tangent and cotangent bundles of C P**1. Moreover, the projectiviza-
tion of the cotangent bundle carries a tautological complex contact structure, and
this identifies it with the total space of a certain S?-bundle over the Grassmannian
G, = SUn+2)/S(U(n)xU(2)), as first observed by Wolf [30]. With hindsight the
Grassmannian is a quaternionic Kéhler manifold in the sense of Salamon [23], and the
S2-bundle over it is its twistor space. This relates our calculations of Chern numbers
for the projectivization of the cotangent bundle of C P"*! (o earlier calculations of
the indices of certain elliptic operators on G, cf. [26].

Our initial motivation for the calculations of Chern numbers of the complex struc-
tures on F, was Hirzebruch’s problem asking which lincar combinations of Chern
numbers are topological invariants of smooth projective varieties or of compact Kéhler
manifolds. This problem, originally raised in [11], was recently resolved completely
in complex dimensions strictly smaller than 5, see [16], and we hope that the cal-
culations performed in this paper will be useful 1n studying this problem in higher
dimensions. The calculations in complex dimension 5, that is for F5, summarized in
Table 1 might lead one to speculate about what happens for arbitrary ». In order to
test such speculations we completed all the calculations for n = 3, that is in com-
plex dimension 7. They are summarized in Table 2 at the end of the paper. We also
give closed formulae for a few Chern numbers for arbitrary » in Theorems 3 and 4.
Nevertheless, we do not pursue the applications to Hirzebruch’s problem here.

1.2. Generalized symmetric spaces and geometric formality. According (o Gray
[9], compare also [27], every F, endowed with the normal homogeneous metric
induced by the Killing form is a 3-symmetric space. Generalizing the definition
of symmetric spaces, this means that for every p € F, there is a globally defined
isometry #: F, — F, having p as an isolated fixed point and satisfying 6° = Id.
More general k-symmetric spaces are defined in the same way by requiring 6 to be
of order k.
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A closed manifold is called geometrically formal if it admits a Riemannian metric
for which all wedge products of harmonic forms are harmonic; cf. [15]. Compact
symmetric spaces provide examples of geometrically formal manifolds because the
harmonic forms for an invariant metric are precisely the invariant forms. This is no
longer true for k-symmetric spaces with & > 2. In [17] we showed that the structure
of the cohomology ring of many k-symmetric spaces of the form G/ T, where T C G
is a torus, is incompatible with geometric formality. We will generalize the arguments
from [17], which in particular showed that /7 is not geometrically formal, to show
that F, is not geometrically formal for all » > 1. Thus no Riemannian metric on £,
has the property that the harmonic forms are a subalgebra of the de Rham algebra. For
invariant metrics this is not hard to see, and is of interest in the context of Arakelov
geomeltry, cf. [18].

1.3. Nearly Kihler structures. The order 3 symmetry # of the normal homoge-
neous metric g on Fy, can be identified with an automorphism of G = SU(n + 2)
fixing the subgroup H = S(U(n) x U(1) x U(1)). The derivative of &, also denoted
8, acts as an automorphism of the Lie algebra g with fixed point set . Although
6 —1d is not invertible on g, it is invertible on T, F, = g/ b. Therefore,

0=03—1d = (8 —1d)(#* + 6 +1d)
implies 62+ 6 +1d=00on T, F, = q /Y. Now,on T, F, = g/ b, one can define
1
V3

This is an isometry of g satisfying J7 = —Id, as follows immediately from 62 + 6 +
Id = 0. Thus Jy is an almost complex structure and (g, Jg) is an almost Hermitian
structure called the canonical almost Hermitian structure of the 3-symmetric space.

Gray [9] proved that the canonical almost complex structure of a 3-symmetric
space is nearly Kiihler, 1. e.

Jg = —(1d + 20).

(Vydg)v =0

for all vector fields v, where V denotes the Levi-Civita connection of g. Conversely,
Butruille [7] recently proved that every homogeneous nearly Kiéhler structure that 1s
not Kihler comes from a 3-symmetric space.

The nearly Kéhler structure of a 3-symmetric space is Kéhler, meaning V, Jg = 0
for all v, if and only if it is Hermitian symmetric. As F, is not a symmetric space
for any n > 1, its nearly Kihler structure can not be Kihler. We will see that the
Jy defined above is the unique (up to conjugation) non-integrable invariant almost
complex structure on F},. Moreover, this structure 1s a special case of non-integrable
almost complex structures on twistor spaces introduced by Eells and Salamon [8];
compare also [24], [1], [22]. We shall compute its Chern classes and compare the



590 D. Kotschick and S. Terzié CMH

Table 1. The Chern numbers of the invariant almost Hermitian structures on F>.

standard structure twistor space nearly Kihler
P(TCP?) P(T*C P?) structure

] 4500 4860 —20
c3ea 2148 2268 —4

c1e3 1028 1068 —4

c?cs 612 612 20

Ca2C3 292 292 4

C1C4 108 108 12

Cs 12 12 12

Chern numbers to those of the integrable Kihlerian structures. See Tables 1 and 2
for a summary of these calculations for n = 2 and 3.

1.4. Einstein metrics. Itis well known that the six-dimensional flag manifold £, has
exactly two invariant Einstein metrics, up to scale and isometry; see for example [2],
[4], [13]. One of these 1s Kihler—Einstein, compatible with the essentially unique
integrable complex structure, and the other one is non-Kihler, but almost Hermitian.
This is the normal metric, which, as explained above, is nearly Kihler because it is
3-symmeitric.

For n > 2, there are precisely three invariant Einstein metrics on £, up to scale
and isometry. This is due to Arvanitoyeorgos [2] and Kimura [13]. Two of the three
Einstein metrics are Kihler—Einstein, compatible with the two different invariant
complex structures. The third Einstein metric, which is not Kihler, is not the normal
nearly Kihler metric. In [9], Gray had claimed that the normal metric of any 3-
symmetric space 18 Einstein, but, in [10], he himself corrected this, and mentioned
that the normal metric of 7% is not Einstein. [tis a result of Wang and Ziller [29] that
the normal metric on £, is not Einstein for all # > 2.

Both the invariant nearly Kihler metric and the invariant Einstein non-Kéhler
metric on F), are obtained from the Kihler—Einstein metric of the twistor space by
scaling the S? fibers, but the scaling factor is different for the two metrics; see [1].
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Outline of the paper. In Section 2 we recall some facts from the theory developed
by Borel and Hirzebruch in [6] and apply them to determine the invariant almost
complex structures of F,, and discuss their integrability. In Section 3 we calculate
Chern classes and Chern numbers for these structures using Lie theory.

In Section 4 we discuss the complex and the nearly Kihler structures of F,, without
using Lie theory. Our point of view here is complementary to that of Section 2,
and relies on the work of Salamon and his coauthors [23], [24], [8], [19]; compare
also [1], [3], [22]. This section, and Sections 5 to 8 which are based on it, can be read
independently of Sections 2 and 3, except for a few isolated remarks aimed at relating
the two points of view. In Section 5 we give a simple description of the cohomology
ring of F, and use 1t to prove a general result about Hodge and Chern numbers for
arbitrary Kihlerian complex structures on manifolds with this cohomology ring, and
we also prove that F}, is not geometrically formal. Sections 6 to 8§ contain calculations
of Chermn numbers for the three different almost Hermitian structures.

In Section 9 we comment on the relations between the different points of view.

2. The Lie theory of generalized flag manifolds

The partial flag manifolds F;, are a special subclass of the so-called generalized flag
manifolds, which are homogeneous spaces of the form G/H, with G a compact
connected semisimple Lie group and H C G a closed subgroup of equal rank that is
the centralizer of a torus. For such generalized flag manifolds the cohomology ring,
the mvariant almost complex structures and their Chern classes, their integrability,
and the invariant Einstein metrics can be described explicitly in the framework of the
theory initiated by Borel and Hirzebruch [6]; see also [3], [28], [29], [31]. We recall
some aspects of this theory relevant to our calculations of Chern numbers on F,,. For
a different point of view on some of these matters, the reader may consult [21].

2.1. Some general theory. For a compact homogencous space G/H as above one
has the isotropy representation of H on T, g (G/ H ), which can be decomposed into a
direct sum of irreducible summands. By Schur’s lemma a G -invariant metric on G/ H
restricts to each of the irreducible summands as a constant multiple of the Killing
form. Conversely, any choice of positive-definite multiples of the Killing form for
each irreducible summand uniquely specifies a G-invariant metric on &G/H. The
determination of invariant Einstein metrics in [29], [13], [2] proceeds by solving—
if possible—the algebraic system for the multiples of the Killing form given by the
equation making the Ricci tensor proportional to the metric. For example, if the
1sotropy representation 1s irreducible, then the normal homogeneous metric given by
the Killing form is Einstein, and is the only invariant Einstein metric. For the partial
flag manifolds F,, the isotropy representation decomposes into the direct sum of three
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irreducible summands, one of real dimension 2 and two of real dimension 2#n, see (6)
below. For F; the method of Wang and Ziller [29] yields exactly two non-isometric
non-homothetic invariant Einstein metrics, and for F,, with n > 2 it yields three;
compare [2], [13].

The invariant almost complex structures on generalized flag manifolds can be
enumerated in the same way, as they correspond to complex structures on the vec-
tor space T, (G/H) invariant under the isotropy representation. Note that every
generalized flag manifold admits an invariant complex structure, as its isotropy sub-
group is the centralizer of a torus. Therefore, again by Schur’s lemma, any isotropy
invariant complex structure in T,z (G/H ) is unique up to conjugation on every irre-
ducible summand of the isotropy representation. Thus, if the isotropy representation
decomposes 1nto p irreducible summands, each admitting a complex structure, then
the number of invariant almost complex structures on G/H is 27. If we identify
complex conjugate structures this leaves 2#~! invariant almost complex structures,
but some of these may still be equivalent under automorphisms of G. For the partial
flag manifolds F, we have p = 3, so up to conjugation there are always 2371 = 4
invariant almost complex structures. However, it will turn out that after taking into
account automorphisms we are left with only 3 almost complex structures for n > 2.
For n = 1 two of the three are equivalent under an additional automorphism that is
not present in the general case.

This enumeration of invariant almost complex structures is too crude to determine
which ones are integrable, and for the calculation of Chern classes. Following Borel
and Hirzebruch [6] one deals with these two points using the roots of the Lie algebra
g with respect to a Cartan subalgebra.

Let t C g be a Cartan subalgebra for g and L) . This gives rise to a root space
decomposition

g=0Dgip & Dgug,.

where the +8; are the complementary roots for ) C g. Note that T,z (G/H) is
identified with g, g ©--- B gp, -

Now any isotropy invariant complex structure on T, {(G/H) is also invariant
under the adjoint representation of a maximal torus, and therefore induces a complex
structure on each root space g B;- Comparing this orientation on g B; with the
orientation given by the adjoint representation, one assigns a sign £1 to g4 B Note,
further, that each irreducible summand of the 1sotropy representation i1s a sum of
some of these root spaces. Therefore, invariant almost complex structures on G/H
are specified by choices of signs for the complementary roots compatible with the
irreducible summands of the isotropy representation.

The following three lemmata are due to Borel and Hirzebruch [6].

Lemma 1 ([6], 13.7). An invariant almost complex structure is integrable if and only
if one can find an ordering on the coordinates for the Cartan algebra such that its
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corresponding system of complementary roots is positive and closed in the sense that
whenever « and 8 are complementary roots and o + B is a root, then « + B is a
complementary root.

Lemma 2 ([6], 10.8). For aninvariant almost complex structure J its complementary
roots B; considered as elements of H*(G/H ) are the Chern roots, i.e. the total Chern
class is

k
c(T(G/H). J) =[]+ B).

=1

Lemma 3 ([6], 14.10). Every invariant integrable almost complex structure makes
G/H into a rational projective algebraic manifold over C, all of whose cohomology

is of Hodge type (p, p).

Remark 1. It is also proved in [6], 13.7, that if for two invariant complex structures
on G/H there is an automorphism of the Cartan algebra t which carries the root
systemn of one structure into that of the other structure and fixes the root system of
H, then these two structures are equivalent under an automorphism of G fixing H.

2.2. Application to the partial flag manifolds F,. We now specialize this general
discussion to the consideration of F,, withG = SU(n+2)and H = S(U(1)xU(1)x
U(n)). At the level of Lie algebras this means that we consider A, 1/(t> ®A4,_1),
with the specific embedding of the subalgebra given by the 3-symmetric structure,
see for example [31], [28].

Proposition 1. The cohomology ring of I, is

H*(Fp) = (R[x,y, 302 y2. - Xim w7/ (P2s -, Paaa), (1)

where

n k
P o= (—y)k—i—(—x—l—y)k—i—Z(yl— —|—%x) fork=2,....n+2. (2)

i=1

Proof. letxy,...,xy4+2 becanonical coordinates on the maximal Abelian subalgebra
of Ayy1 with X1 + --- 4 X,42 = 0. Analogously, let x, y be linear coordinates on t2
and y1, ... ¥, canonical coordinates on A, with y; 4 --- 4 y, = 0. It is not hard
to see that the relations between xi,...,xXz+2 and x, ¥, ¥1,..., ¥, are as follows
(cf. [28]):

1 .
xi:yi—i—;x forl <i <n, 3)

Xn+1 = —X+ Y, Xpt2=—).
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Cartan’s theorem on the cohomology of compact homogeneous spaces together with
the relations (3) implies that for G = SU(n + 2) and H = S(U(1) x U(1) x U(n))
the cohomology ring of the quotient 1s given by (1) and (2). ]

The relations P, for k& = 2,...,n climinate the cohomology generators
Yo yE Yt vt It follows that H*(F,) is generated by the two genera-
tors x and y of degree 2, with relations in degrees n + 1 and n 4 2.

Lemma 4. The complementary roots for A, with respect to t> ®A,_, are, up 1o
sign, the following:

Xp41 — Xpy2 = 2y — X, and
n+1

Xj — Xp41 = Vi + x—y forl =i <n, 4)

1
Xi—Xpyr=Vi+—x+y forl <i <n.
H
Proof. Theroots for the algebra A, 41 are £(x; —x;), 1 <i < j <n+2,andforthe

subalgebra A,_1 the roots are =(y; — y;), | <i < j < n . Using the relations (3),
we can express the roots for A, 41 in the form

1 n—+ 1
(i — i) i(%4-;x+y) +(x —2y), i(%+— ” x—y)
From this it is clear that the complementary roots are given by (4). O

We now deduce the following classification of invariant almost complex structures.

Proposition 2. The homogeneous space I, admits at most three invariant almost
complex structures I, J and J, up to equivalence and conjugation. Their rools are:

n—+1 1 .
Iy + X=y. yit_x+y —x+2y lsiszna,
n+1 1 .
e yl—|— X—=¥V, —Vi——X—YV, x—Zy, lflfn’ (5)
n
" n—+1 1 .
oo+ X=y, —yi——X—y, —x+2y l=i<n
n

The structures I and J are integrable, and J is not.

We will see that for n = 1 the integrable structure [ is equivalent to the complex
conjugate of J under an automorphism, whereas for n > 2 this is no longer true; in
fact the different integrable structures are then distinguished by their Chern classes.
The non-integrable invariant almost complex structure is the natural nearly Kihler
structure arising from the 3-symmetric structure, as discussed in Subsection 1.3 above.
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Proof. From the description of the complementary roots in Lemma 4 it follows that
the isotropy representation decomposes into the direct sum of the following three
irreducible summands:

Ry = Dxpp1—xn42°

Rl = gxl—xn+1 K & gxn—xn_H’ (6)

Ry = gx1_x”+2 B D gxn_xn+2 .

It follows that, up to conjugation, there are 4 invariant almost complex structures.
Their roots are given by choosing signs for the irreducible summands of the isotropy
representation. Up to conjugation, we may take the following signs:

(@) RY, R R,

(b) Ry, R{, RS,

(©) Ry, R, R7,

(d) Ry, R, R;.
The invariant almost complex structures given by the first three choices are integrable
by Lemma 1, as their roots correspond to the orderings x; < +++ < Xp41 < Xp+2,
X1 <o < Xpg2 < Xp4q and Xp40 < X1 < -0 < Xp41, respectively. Moreover, the
automorphism of the maximal Abelian subalgebra for A, given by interchanging
Xn+1 and x,42 maps the complementary roots of the first structure to the comple-
mentary roots of the second structure and leaves the root system of 4,_; invariant.
Therefore, it follows from Remark 1 that these two structures are equivalent under
an automorphism of the homogeneous space.

The fourth structure is not integrable, as there 18 no ordering on the coordinates
X1, ..., Xp42 for which the roots defining this structure are positive.
Thus there are two integrable and one non-integrable invariant almost complex

structure on F,. The roots in (5) arise from (a) for 7, (¢) for J and (d) for J by
combining (6) (with the appropriate signs) with (4). [

3. Chern numbers from Lie theory

We now calculate certain Chern classes and Chermn numbers of the invariant almost
complex structures on F, using Lie theory.

Example 1. The first Chern classes for the structures /7, J and J are obtained immedi-
ately from Lemma 2 using the description of the corresponding roots in Proposition 2.
The result is:

cil)=m+Dx+2y, ci1(J)y=n—+1{x—-2y), cl(f) ={n—-1(x-2y).
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Example 2. The cohomology relation P from (2) gives that

1
Zyl—2xy 22 -
i=1

Using this, we compute the second Chern classes for the invariant almost structures
using Lemma 2 and the description of their roots given by Proposition 2. The result
is:

cz(l)—m 24 Bn+2)xy + 2 —n)y?,
ca(J) = M2+(22—3n—2)xy—|—(2n + 3n + 2)y?,
cz(f)— e —5 x2 4+ (=212 4+ 50 — 2)xy + (2n? — 501 4 2)y>.

2

Remark 2. Proposition 2 implies that for even » the structures / and J define the
same orientation on Fy,, while J defines the opposite orientation. For odd »n, the
orientations given by / and J are the same, while the one given by J is different.
This fact will show up in the sign of their top Chern classes in the calculations we
provide below forn = 2 and n = 3.

To calculate Chern numbers explicitly we now consider the cases where » 1s small.

3.1. The complete flag manifold Fy. The case n = 1 is special because the three
irreducible summands of the isotropy representation are all of the same real dimension
equal to two. The map interchanging x and x5 but fixing x3 defines an automorphism
of A, fixing the Abelian subalgebra t? which interchanges the invariant complex
structure / and the complex conjugate of J on Fj. It follows in particular that they
have the same Chern numbers.

In this case the two cohomology generators x and y satisfy the relations y? —
xy+x? =0and —y> + (y — x)* + x* = 0 obtained from (2) by setting k = 1 and
k = 2 respectively. The second relation simplifies to xy? = x2y, which together
with the first relation implies x* = y3 = 0. Using the relations we find, in addition
toc1(J) = 2(x + y) from Example 1, that ¢3(/) = 6xy and c3(/) = 6x?y. Clearly
the topological Euler characteristic is 6, so x2y = xy?2 is the positive cohomology
generator in top degree with respect to the orientation defined by the complex structure
1. Multiplying out and using the relations again we find the well known values for
the Chern numbers: cye2(1) = 24 and ¢ (1) = 48.

For the non-integrable invariant almost complex structure J we already know
c1(J) = Obysettingn = linthe formulain Example 1. Thusc cy(J) = cf(J) =
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By the discussion in Subsection 1.3, the non-integrable invariant almost complex
structure J is nearly Kihler because A, and t2 form a 3-symmetric pair. Tt is a result
of Gray [10] that every non-Kiihler nearly Kihler manifold of real dimension 6 has
vanishing first Chern class.

3.2. The case n = 2. This is the example mentioned first by Borel and Hirzebruch
in [6], 13.9 and 24.11, and then in [12]. There only the values of cf are given for two
different invariant complex structures. These are the / and J discussed above, and
we now give complete calculations for their Chern numbers.

The formula (2) for the cohomology relations gives, for & = 2, that y; = z
satisfies z2 = —1(3x2 — 2xy + 2y?). Therefore, using again (1) and (2), we see
that the generators x and y of the cohomology algebra of F; satisfy the relations

xd =202y —xy?), y*=o.

This gives the following relations in top degree cohomology:
y?=xy* =0, x'y=x%y?=2x2y5
Using LLemma 2 and the relations in cohomology we find that the Chern classes
of [ are as follows:

ci(l) =3x 42y, c(I) =3x>+8xy, c3(]) = —x + 14x%y,
ca(l) = —14x3y + 14x2y2 — 8xy3, os(1) = 12x2y3,
Since the Euler characteristic of this space is 12, we obtain the Chern numbers given

in the first column of the table in the introduction.
For J we find in the same way

cr(J)y=3(x—2y), c3(J) =3x%—16xy + 1632,
c3(J) = x> — 14x2y + 36xy? — 24y,
ca(J) = —2x3y +22x2y% —40xy3, c5(J) = —12x%y3.

Multiplying out and using the relations in cohomology this leads to the Chern numbers
eiven in the second column of Table 1.

There are several ways to check that we have not made numerical mistakes in the
calculations. First of all, as explained in Sections 6 and 7 below, all these numbers
can be calculated in a completely different way without using Lie theory, and that
calculation leads to the same results. Second of all, the Chern numbers must sat-
isfy certain relations imposed by the Hirzebruch—Riemann—Roch theorem. For the
arithmetic genus of our five-fold F>, HRR gives

5
1

Z(—l)qho’q = m(_C1C4 + cf03 + 3clc§ — cfcz).

g=0
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The left hand side is = 1 because all the cohomology is of type (p. p) by Lemma 3.
Substituting the values of the Chern numbers computed above into the right hand side
provides a non-trivial consistency check.

In the same way as we did the calculation for the integrable structures, we can
also compute the Chern classes for the non-integrable invariant complex structure J:

a(J)=x=2y, c)=—x2 c3(J) =—x>+6x%y—12xy% 4+ 83,
el Ty = 633y — 18x2y% + 24xy3, es(J) = 12523,
This gives the Chern numbers in the third column of Table 1.

3.3. The case n = 3. Now we consider [, of real dimension 14, From (1) it
follows that its real cohomology algebra has two generators x and y of degree 2 and
the relations in degree 4 and 6 are

Zyl = 2xy — Z yl — 5x2y + Sxyz.

=1 i=1

Taking into account these expressions, the relations in degree 8 and 10 produce the
following relations between x and y:

¥ fopt — Bax¥y Lty By, P =B
Therefore in degree 12 we get that x and y satisfy the following relations:
y6 = xyS =0, x*x? = —4x2y% 1 3x3)3,
xsy = —103623/4 + 5x3y3, x® = —15xzy4 + 5x3y3.
This implies that in top degree cohomology we have

37 = xy8 = x2y5 =0,

Xty =33yt x5y = 53yt
xby =35x3y*, X7 =0.
From Lemma 2 and the cohomology relations we find for 7:
c1(l) = 4x+2y, ca(l) = 6x2—|—11xy—y2, c3(l) = 4x3—|—21x2y—|—3xy2—2y3,
ca(I) = —5x* +35x3y —5x2y2,  cs5(1) = 5x*y + 25x3y2 — 10x2y3,
ce(l) = 15x*y? —5x3y3,  ¢7(1) = 20x3y*.

Now by a direct calculation one can obtain all the Chern numbers for / in this case.
These are the numbers contained in the first column of Table 2.
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We can also calculate the Chern classes and Chern numbers for J and for J in
the same way. We obtain that the Chern classes for J are:

c1(J) =4x =2y, ca(J) = 6x% —29xy + 292,
e3(J) = 4x3 —39x%y 4+ 93xy? — 62y°,
ca(J) = —85x* 4+ 235x3y — 235x2y2,
es(J) = 1095x%y — 1245x3 y2 4+ 23022y 3,
cs(J) = =30x*y? + 50x3y3,  c7(J) = 203 y*.
For J the Chern classes are given by:
() =2x—4y, c(J) = —5xy+5y2,  e3(f) = —2x3 +7x2y—9xy? + 63,
ea(J) = 25x% —65x3y + 65x% 92, os(J) = —45x*y + 115x3y% — 110x2y3,

ce(J) = 15x*y2 —25x3y3, er(J) = —20x3y*.

The Chern classes for J and J lead to the second and third columns of Table 2.

4. The complex geometry of F,

We now give geometric descriptions of the almost Hermitian structures of 3, without
using Lie theory or Gray’s results on the structure of 3-symmetric spaces.
We think of F;, as being a partial flag manifold, as follows:

F, ={(L,P)| P a2-planein C"*2 L alincin P}.

This has a natural complex projective-algebraic structure with ample anti-canonical
bundle and a Kiihler—Einstein metric of positive scalar curvature. With respect to this
complex structure, there are two forgetful holomorphic maps, mapping a pair (L, P)
to either L or P. On the one hand, the map to L gives a fibration

p: F, — Ccprtl,
exhibiting F, as the projectivized tangent bundle of C P**1, On the other hand, the
map (L, P) — P defines a holomorphic fibration

n: F, — G,

where G, = Gry , 1s the Grassmannian of complex 2-planes in C"*2, The fiber of
TisCP!L.
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The Grassmannian
n=3S8U(n+2)/SUn) x U(2))

has a homogeneous complex structure, which is unique up to conjugation. With
respect to this structure G, is a Hermitian symmetric space and carries a Kéhler—
Einstein metric. This metric 1s quaternionic Kithler in the sense of Salamon [23],
meaning that its reduced holonomy group is contained in Sp(n) - Sp(1), the quotient
of Sp(n) x Sp(1) by the subgroup {+(1, 1)} = Z,. Moreover, the scalar curvature
of this metric 1s positive.

To any quaternionic Kihler 4 -manifold M with positive scalar curvature, Sala-
mon [23] associates a twistor space Z, which is the total space of a certain S2-bundle
over M, together with a complex structure J and compatible Kihler—Einstein met-
ric g of positive scalar curvature on the total space, with the following properties,
see [23], [19]:

* the projection 7: Z — M is a Riemannian submersion with totally geodesic
fibers of constant Gaussian curvature,

* the fibers of 7 are holomorphic curves in Z (although A is not usually complex,
so that 7 1s not holomorphic in any sense), and

» the orthogonal complement D of the tangent bundle along the fibers 7'z 1s a
holomorphic contact distribution.

Just like in the real case, a contact distribution is a maximally non-integrable hyper-
plane distribution. Given D C TZ, let L. = TZ /D be the quotient line bundle
and o: TZ — L the projection with kernel D. The maximal non-integrability of D
means that if we think of ¢ as a one-form with values in L, then the (2n + 1)-form
a A (da)™ with values in L™t is no-where zero. Thus a A (da)” is an isomorphism
between the anti-canonical bundle K1 and L*+1. Inparticular ¢{(Z) = ¢ (K™!) =
(n+ 1)c1(L). Thisrelation, for arbitrary holomorphic contact manifolds, was already
observed by Kobayashi [14].

As the fibers of 7 are holomorphic curves in Z, the tangent bundle along the fibers
1" 1s acomplex line bundle over Z. The projection & gives an isomorphism between
T and L. Thus, disregarding the holomorphic structure, we have an isomorphism
TZ = L & D of complex vector bundles over Z.

Following Eells and Salamon [8] one can define another almost Hermitian struc-
ture (J, &) on Z as follows. With respect to g the subbundles T and D of T Z are
orthogonal, and g agrees with gon D. Forv, w € T wedefine g(v, w) = %g(v, w).
The subbundles 7' and D of T Z are invariantunder J , and J agrees with J on D and
agrees with —J on 7. According to [11, [22], the pair (J, §) satisfies (V,J)v = 0
for all vector fields v, where V denotes the Levi-Civita connection of g. This precisely
means that (J, §) is a nearly Kihler structure in the sense of Gray [10]. Note that by
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the definition of J , the complex vector bundle (T Z, J ) is isomorphic to L 'o D.
This will allow us to determine the Chern classes of the nearly Kihler structure from
those of the twistor space structure.

5. The cohomology ring and some consequences

We can easily describe the cohomology ring of F, explicitly using its description as
the projectivization of the tangent bundle of C P" 11,

Proposition 3. The cohomology ring of Fy, is generated by two elements x and y of
degree 2, subject to the relations

(x 4 y)n+2 _ xn+2

k4

xn+2 — 0’

={. (7)

Proof. Consider the fibration p: F,, — C P"*! given by the projectivization of the
tangent bundle of C P**1!. Let x = p*(H) denote the pullback of the hyperplane
class. Then x"*2 = 0 for dimension reasons. Let y be the tautological class on the
total space, restricting to the hyperplane class on every fiber. By the Leray—Hirsch
theorem the cohomology ring of Fy, is a module over the cohomology ring of C P 1,
generated by the class y.

The definition of Chern classes shows

v eyt b ep =0, (8)

where the ¢; are the pullbacks to the total space of the Chern classes of the base.
As the total Chern class of C P"*1 is given by (1 + H)"*2, the relation (8) can be
rewritten as ((x + y)" ™2 —x"T2)/y = 0. O

The proposition holds for integral coefficients, so the class x"* 1 y" generates the

top degree integral cohomology of F,. Monomials of the form x™ y?" 1= yanish
if m > n 4 1. The remaining relations in top degree are given explicitly by
1+ k
Xk etk (_l)k(”+k+ )xn-l-lyn fork <n-+1. ©)
This can easily be derived from (7) by induction on k.
The Poincaré polynomial of F,, is
Pr, () =042+ -+ 422+ 412112, (10)

Therefore the Betti numbers of F,, are

bzp(Fn) = b4n+2—2p(Fn) =p+1 forO=<p=<n, (11)
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and zero otherwise. Note that additively the cohomology of F), is the same as that of
C P" x CP"*!, but the ring structure is different.

5.1. Failure of geometric formality. Recall that a closed manifold is called ge-
ometrically formal if it admits a Riemannian metric for which wedge products of
harmonic forms are harmonic; cf. [15]. We now prove the following:

Theorem 1. For all n > 1, any closed oriented manifold M with the cohomology
ring of Fr, = SU(n 4+ 2)/S(U(n) x U(1) x U(1)) is not geometrically formal.

This is a consequence of the ring structure on cohomology, bringing out the
difference between F,, and C P" x CP"*!  The latter is a symmelric space, and
therefore geometrically formal. The case n = 1 was proved in [17], where we also
considered other homogeneous spaces G/ H where H is a torus. The following proof
shows that the arguments of [17] apply much more generally.

Proof. Letxandy € H?(M: Z)be as in Proposition 3, so that x” 1 y" is a generator
for the top cohomology of M. We can use x and z = x 4 y as a basis for the
cohomology. Then z"12 = 0 by Proposition 3, but

xnzn+1 — xn(yn—l—l 4 (n g l)xyn) — _xn—l—lyn # 0

by (9).

Suppose now that M was geometrically formal. Then, identifying the harmonic
forms for a formal metric with their cohomology classes, the above relations hold for
the harmonic forms. Thus x* T2 = z?12 = 0, but both x*T! and z*T! are nowhere
zero, because x"T1y" = —x"z"*1 ig a volume form. Thus both x and y are closed
2-forms of rank 2n + 2, with kernels of rank 2#.

Now rewriting (8) in terms of x and z we obtain

at the level of forms. Contracting this equation with a local basis vy, ..., vy, for the
kernel of x, we find

ivl .« . iv2n2n+1 —I_ X /\ ivl .. ivznzn — 0-
Next, contract this equation with w in the kernel of z, to obtain

b X Aiduy ooy, 20 = O

This implies that x™ 12" cannot be a volume form, contradicting the metric formality
of M. O
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5.2. Kihler structures and Hodge numbers. The structure of the cohomology ring
has the following implications for the Hodge and Chern numbers of Kihler structures:

Theorem 2. Let M be any closed Kdhler manifold with the cohomology ring of F,.
Then all its cohomology is of Hodge type (p, p). In particular h#? = b, and all
other Hodge numbers vanish.

The Chern numbers of M satisfy

cant+1 = (n + D(n + 2), (12)
crcan = (n + 1)°(n 4+ 2). (13)

The statement about the Hodge structure is a generalization of the corresponding
statement for homogeneous complex structures in Lemma 3. Formula (13) does not
hold for a non-integrable nearly Kihler structure, see (30) below.

Proof. For any Kihler manifold with the same cohomology ring as F, we have
hU1 4+ 2020 = by(M) = by (Fy). As ht! > 1 and b, = 2, we conclude A1 =
by = 2, and h*° = 0. By Proposition 3 the cohomology ring is generated by
H?*(M) = H“'(M), and so all the cohomology is of type (p, p).

The top Chern number c5, 41 is just the topological Euler number Pp, (—1) =
(n+ 1){n +2).

It is known that for any compact complex manifold of complex dimension m
the Chern number c;¢;,—1 1s determined by the Hodge numbers, see [20], [25]. As
our F, of complex dimension 2r + 1 has the same Hodge numbers as the product
CP"xCP" 1, weconclude cican (M) = c1c2,(C P" xC PP+, The value of this
last Chern number on C P" x C P"*! can be determined by a standard calculation.
Alternatively, Proposition 2.3 of Libgober and Wood [20] gives

2n+1 7 1
D OEVPL ae = (@ + DG = Deangr + crcan). (14)
= ) 12
with
2n+1
to = Y 1TRP,
q¢=0

As all the cohomology is of type (p, p) we obtain
Xp = (PP = (—1)Phyp.

Substituting the values of the Betti numbers from (11), and plugging the result
into (14), a lengthy calculation involving identities for sums of binomial coefficients
leads to (13). ]
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The other Chern numbers are not in general determined by the Hodge numbers,
and may vary with the complex structure under consideration. We carry out the
relevant calculations in the next two sections.

6. Chern numbers for the standard complex structure

Here is the general formula for the Chern classes of the standard complex structure
on F,:

Proposition 4. The total Chern class of F, is

C(Fn): 1+y

(15)

Proof. The fibration p: F, — CP"*! is holomorphic, so we can calculate ¢(Fy)
as the product of the total Chern classes of p*(TCP"*1) and of Tp, the tangent
bundle along the fibers. As mentioned above, the total Chern class of p*(TC P*+1)
is (1 + x)"*2. For the calculation of ¢(Tp) consider the exact sequence

L' — p5(TCP"Yy — L' Tp,

where L is the fiberwise hyperplane bundle on the total space. As ¢;(L™!) = —y,
we can write formally

A(Tp) =1 +x+y)"P?A—y+y>—y> +-) O

Combining this with Proposition 3, one can calculate all the Chern numbers of
F,. The calculation is completely elementary, but very tedious. It gives results like
the following:

Theorem 3. For the standard complex structure on Fy, the projectivization of the
tangent bundle of C P"+1 we have

" T ) = 2(n + D" (n + 3)" (MJ 1)’ (16)
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2n — 1

et lea(Fy) = 4(n4—|—7n3—|—17n2—|—16n+7)(”1+1)n2(n+3)n2( ) (17
n

Proof. From Proposition 4 we have
c1(Fp) = (n+ D(x +y) + (n + 3)x.

Using the relations x" 72 = 0 = (x + y)*12 and (9), this gives
") = (2" ,j 1) ((n+ "0+ 3)"x" (x + )"
b+ 1)+ 3P (x4 )7
= (n+ D"(n +3)" (zn,j 1)(01 + D (x + y)"
+ (43" x + ")
— (4 1)+ 3" (211]:— 1)((71 n 1)(xnyn+1
+ (1 + DY) 4 (0 + 3)xmH )

= (n+ D) (n + 3" (”ﬂj 1) 2.

A similar calculation proves (17) using the expression
L, 5 B n+1 5
ca(Fy) = S (7 + 50+ 8)x7 + (0 +dn+ Dx(x + 1)+ | &+ )

obtained from Proposition 4. O

For n = 1 Theorem 3 gives cf(Fl) = 48 and cic2(F1) = 24. The latter value is
actually determined by the Hodge numbers, and can be obtained from (13) as well.

6.1. The case n = 2. Here Theorem 2 gives ¢5(F3) = 12 and cic4(F2) = 108.
Theorem 3 gives us ¢3 (F2) = 4500, which checks with the value given in [6],
[12], and cjco(F2) = 2148. In this case it remains to calculate ¢i¢3, cfes and
c>c3. We do this in some detail in order to illustrate some shortcuts in calculations
making Proposition 4 explicit. These shortcuts are useful when calculating for F,
with larger n.

The tangent bundle of F, has a complex splitting into p*(TCP"**1) and Tp,
which have almost equal ranks. Therefore, computing certain Chern classes of F,
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using the Whitney sum formula there are not too many summands. By the proof of
Proposition 4, the total Chern class of Tp is
(I4x+ "

1+y '

However, as the rank of T'p is n, we can truncate this at terms of degree n. In the
case at hand » = 2, and we have

c(Tp) =

c(Tp) = 1 + (4x + 3y) + (6x% + 8xy + 3y?).

Combining this with ¢(p* (T C P"t1)) = 1 4-4x 4 6x? + 4x3 and using the Whitney
sum formula, we find

c1(f2) = 8x + 3y,
ca(Fa) = P8x -1 20xy + 3y2,
c3(F>) = 52x% 4+ 5022y + 12xy2.

Multiplying out using x* = 0, and substituting from (9), we quickly obtain the
numbers given in the first column of the table in the introduction.

6.2. The case n = 3. Here Theorem 2 gives ¢7(F3) = 20 and cy¢6(F3) = 320.
Theorem 3 gives us ¢] (F3) = 967680 and ¢3 ¢2(F3) = 458880. We have completed
the calculation of all the Chern numbers in this case using the procedure outlined
above. The results are presented Table 2. We shall not reproduce the details of the
calculation here, but we mention some of the intermediary steps.

Here TF; = p*(T'CP*) @ Tp splits as a direct sum of complex vector bundles
of rank 4 and 3 respectively. To find the Chern classes of 7'p we look at

and ignore all terms of degree larger than 3 to obtain
c(Tp) = 14 (5x +4y) + (10x% + 15xy + 6¥2) + (10x3 +20x2 y + 15xy2 + 4 3).

Multiplying (1 + x)° with ¢(Tp) and using x° = 0 together with (9), we find, in
addition to ¢1(F3) = 10x + 4y and c2(F3) = 45x2 4 35xy + 62, which were
already mentioned in the proof of Theorem 3, the following:

c3(F3) = 120x3 + 135x%y + 45xy2 + 4y3,

ca(F3) = 5(41x* + 58x3y + 27x%y% + 4xv?),

cs(F3) = 1037x%y 4+ 21x%y? 4+ 4x2y3).

Multiplying out and again using (9), we obtain the numbers given in Table 2.
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7. Chern numbers of the twistor space

Letus denote by Z, the twistor space of the Grassmannian G,,. Then Z, 1s diffeomor-
phic to F,, the projectivization of TC P"*!, but has a different complex structure,
as described in Section 4. The complex structure of the twistor space is in fact given
by the projectivization of the cotangent bundle of C P**1, and the holomorphic con-
tact structure of the twistor space mentioned in Section 4 is the tautological contact
structure of P(T*C P"+1); see [3], [30], [24], [19].

To calculate the Chern numbers of Z,, = P (T*C P"*1) we shall follow the same
approach as for the projectivization of the tangent bundle. First we write down the
cohomology ring in a way which is adapted to the projectivization of the cotangent
bundle:

Proposition 5. The cohomology ring of Z, is generated by two elements x and z of
degree 2, subject to the relations
(x o Z)n+2 _ xn+2

x"2 =, = 0. (18)
Z

We omit the proof because it 1s exactly the same as that of Proposition 3. The
proposition holds for integral coefficients, so the class x"1T1z" generates the top
degree integral cohomology of Z,. Monomials of the form x™z2"+1=™ vanish if
m > n + 1. The remaining relations in top degree are given explicitly by

1+ k
otk ntk _ (” +k+ )x”+1z” fork <n+ 1. (19)

This can easily be derived from (18) by induction on k.
Next we determine the total Chern class of Z,,.

Proposition 6. In the generators x and z from Proposition 5, the total Chern class
of Z, is

n+201 _ n+2
HZ,) = (1+x)""(1—x+2) . 20)
14z

Again we omit the proof, because it is exactly the same as the proof of Proposi-
tion 4,

Remark 3. The complex anti-linear isomorphism between 7C P*t1 and T*C P71
induces a diffeomorphism between £, and Z, which pulls back x to x and z to —y.
In the basis x and y which we used for F,, the total Chern class of Z,, is:

(1 + x)n+2(1 —x = y)n—l-z

c(Zy) = 1—y
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Note that the relations in the cohomology ring are neater when expressed in terms of
x and z, rather than in terms of x and y. On the top degree generators, x" 1z is
pulled back to (—1)"x"T1y” Thus, the diffeomorphism is orientation-preserving if
and only if » is even. For n odd we get different generators in top degree, and we
may have to replace one of the complex structures by its conjugate to get the same
orientation,

Combining Propositions 5 and 6, one can calculate all the Chern numbers of Z,,.
The calculation 1s again completely elementary, but rather tedious, although it 1s a
little less so than for the standard complex structure, due to the more convenient
presentation of the cohomology ring, and an easier to handle formula for the first
Chern class. This calculation leads to results like the following:

Theorem 4. For the projectivization Z, of the cotangent bundle of C P**1, we have

2n+1 2120+ 2
(Zn) = (n + 1) (n+1), L)
ey (Zy) = 200 + DTN 40+ 1)(2;), (22)

2n 3 2(2 ) (n_|_ 1)2” 3n(4n —|—8n + 10n+5)( 12) (23)

Proof. 'The previous proposition gives in particular ¢q(Z,) = (n + 1)z and

c2(Zy) = —(n + 2Dx% + (n + 2)xz + (n —ZI_ 1)22.

From this one computes mechanically using the relations (19). O

For n = 1 we find ¢7(Z1) = 48 and ¢1¢2(Z1) = 24. These are of course the
same values as for F, compare Subsection 3.1. However, for larger n we find in
particular:

Corollary 1. Forall n > 1 one has ¢3"t1(Z,) # 3" TH(Fy).

Example 3. For n = 2 Theorem 4 gives c1¢5(Z2) = 1068, ¢jca(Z2) = 2268
and ¢3(Z,) = 4860. This last value checks with a value given in [6], [12]. From
Theorem 2 we have ¢1c4(Z>) = 108, so that the only Chern numbers left to compute
for Z5 are cfc3 and cac3. Using the procedure applied to F> we determine an explicit
formula for c3(Z,), and multiplying out gives the numbers in the middle column of
Table 1.
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Example 4. For n = 3 Theorems 2 and 4 tell us some of the Chern numbers. To
calculate all of them we can apply the method outlined in the previous section. For the
Chern classes we know already that ¢, (Z3) = 4z and c3(Z3) = —5x% 4+ 5xz + 622,
and now we find

ca(Z3) = —15x3 + 15x22 + 423,
ca(Z3) = 5(x* — 2x3z — 3x%2% + 4x23),
cs(Z3) = 10(7x*z — 9x32% + 4x223).

This leads to the Chern numbers given in the middle column in Table 2.

To end this section we discuss the relationship between our calculations and a
special case of those of Semmelmann and Weingart [26]. The holomorphic line
bundle L on the twistor space is ample, because L"t! = K1 and K~! is ample
for any complex manifold with a Kidhler—Einstein metric of positive scalar curvature.
Thus one can consider (Z,,, L) as a polarised projective algebraic variety with Hilbert
polynomial

2n+1

P(r) = y(Zy,O(L") = ) (1) dim¢ H'(Z,, O(L")).

i=0
By the Hirzebruch—Riemann—Roch theorem, this can be calculated as
P(r) = {ch(L")Todd(Z,).[Z,]),

which is a polynomial of degree 2rn + 1 in r. As we know all the Chern classes of
Z, and the Chern class of L, we can in principle calculate the Hilbert polynomial.
Conversely, if we know the Hilbert polynomial, then we can read off all the combi-
nations of Chern numbers which appear in it as coefficients of powers of r. Let us
Just write out the terms of highest degree in r:

P(r)
B 1
 @2n 4 D!(n 4 1)2nt
1

T B T F e & ()T e Za)r T

1(Zn)2n+1r2n

c(Z 2n+1_2n+1
Tz T T 1y

Now Semmelmann and Weingart [26] have calculated the Hilbert polynomial of the
twistor space of the Grassmannian explicitly:

%
P(r)_n—i—Zr—i—l(n—l—r).
n+1 r
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Expanding this in powers of » we find

2
n+2r+1f{n-+r
n+1 ¥

n! (n+ 1)! (n!)2 3(n—1)!n!
Comparing the coefficients of r2* ! in the two expansions, we find
2 1
Nz =20 + 1)2"“( ";r ) (24)

This agrees with (21).

One can determine further combinations of Chern numbers for Z, by looking
at the terms of lower order in . The coefficients of 72" give no new information,
but provide a consistency check for the calculation of cf”“(Zn). Combining this

calculation with the comparison of the coefficients of 72", we find
2n—1  Ara2 an—1f2n —1
1" e Zy) =4+ n+ 1)(n+1) . : LA5)

This agrees with (22).

One could calculate some more Chern numbers by looking at the further terms
in the expansions, but this would not be enough to compute all the Chern numbers
of Z,.

8. Chern numbers of the nearly Kiihler structure

We denote by N, the smooth manifold ungerlying F, and Z,,, but endowed with the
non-integrable almost complex structure J that is part of the nearly Kihler structure
defined at the end of Section 4. The Chern classes of N, are given by the following:

Proposition 7. In the generators x and z from Proposition 5, the total Chern class
of Ny is

l—z (Q+x)"?(1—-x+2)"t?(1—-2)

c(Np) = c(Zp)- l+z 1+ z2)2

(26)

Proof. The second equality follows from Proposition 6. To prove the first equality,
recall from Section 4 that as complex vector bundles we have TZ, = L & D and
TN, = L~' @& D. Thus, for the total Chern classes we find

c(Zp) = (A +ci(L))-c(D) and  ¢(Np) = (1 —c1(L)) - (D).



Vol. 84 (2009) Chern numbers and the geometry of partial flag manifolds 611

Furthermore, we have (n + 1)z = ¢1(Z,) = (n + 1)c1(L). As the cohomology of
Z, is torsion-free, we conclude ¢ (L) = z, which completes the proof. O

Combining Propositions 5 and 7, one can calculate all the Chern numbers of N,,.
This gives results like the following:

Theorem 5. For the nearly Kihler manifold N, we have

2n+1 _ ant1f2n+2
i (Na) == —1) (n 1 ) (27)
c2n=1 2n—1,,2 2n—1
cr(Ny) = —d(n — 1) (n _n_l)(n—i—l)’ (28)
2n 3 (Nn) _ 1 (n 1)274—3

n—+1

(29)
n—2
c(4n° =20t + 3403 —170% — 11ln + 16)( 1 )

c162n(Np) = (n = 1)*(n 4+ 1)(n +2). (30)

Proof. The previous proposition gives in particular ¢y (N,) = (n — 1)z and

ca(Ny) = —(n + 2)x% + (n + 2)xz + %n (n —3)z2.

From this one computes (27), (28) and (29) mechanically using the relations (19).
The only new feature is that the almost complex structure J of N, induces the orien-
tation opposite to the one induced by the complex structure of the twistor space Z,,.
Therefore x" 12" is now the negative rather than the positive generator of the top
degree cohomology.

One can also use the argument from the proof of Proposition 7 to calculate Chern
numbers of N, from those of the twistor space Z,. We use this approach to prove (30).

Recall from Section 4 that as complex vectorbundles 72, = L& D and TN, =
L™ '@ D, and that ¢;(Z,) = (n + 1)ci1 (L) and ¢1(N,) = (n — 1)c; (L). For the
Chern classes ¢jc¢3, this means

c162n(Na) = (0 — 1)(c1(L)e2n(D) — ¢ (L)can—1(D))
and

c1e2n(Zn) = (n + D(c1(L)c2n(D) + ¢ (L)can—1(D)).

Evaluating on the fundamental class of Z,, the second equation gives the following
relation between Chern numbers:

(n+ 1D’ +2) = (0 + D+ D0+ 2) + (e (L)eza—1(D), [Za])),
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where we have used (13) on the left hand side, and we have used the known value
for the top Chern number c3,+1(Z,) to identify the first term on the right hand side.
Now we can similarly evaluate the first equation on [N,] = —[Z,] and plug in what
we just computed for the evaluation of ¢§(L)ca,—1(D) to obtain (30). O

Example 5. For n = 2, Theorem 5 gives ¢j (N3) = —20, ¢ica(N2) = ¢1¢2(Ny) =
—4 and cjca(N2) = 12. In this case we can easily extract ¢3(N2) from the formula
in Proposition 7 and carry out the multiplication in the cohomology ring to prove
C%C3(N2) = 20 and Cng(Nz) = 4.

Example 6. The case n = 3 is also fairly casy because the formula for ¢» simplifies
1o ¢2(N3) = —5(x? — xz). This immediately yields ¢1¢3(N3) = —500, in addition
to the values already given by the theorem. Still, to calculate all the Chern numbers
more work is needed. TFrom Proposition 7, together with our calculation of the Chern
classes of Z3, we find the following:

c3(N3) = —5x%z 4+ 5xz% — 223,
ca(N3) = 5x* — 10x3z + 5x%z%2 — 22*,
es(N3) = 2(30x*z — 35x322 + 25x223 — 10x2* + 2°).

This leads to the numbers given in the third column of Table 2.

9. Final remarks

In this section we explain the relationship between the different points of view on the
almost Hermitian structures that we have discussed.

First of all, the holomorphic tangent and cotangent bundles of C P**! are ho-
mogencous bundles under SU(n + 2), and therefore the complex structures of their
projectivizations, denoted 7, and Z,, in Sections 4 to 7, are also homogeneous under
SU(n +2). Thus, up to conjugation, they must equal the invariant complex structures
I and J i Proposition 2, but a priori it 1s not ¢lear which is which, and the case
n = 1 shows that distinguishing between the two is not an entirely trivial matter.
By looking at the Chemn classes we can however immediately say that the standard
complex structure [, is I and the twistor space structure Z, is J. This follows most
easily by looking at the divisibilities of ¢;. On the projectivized cotangent bundle
the divisibility is a multiple of # + 1 due to the presence of a holomorphic contact
structure. This fits with the formula for ¢;(J) in Example 1, but not with ¢1(7).

The fibration of F}, over the Grassmannian G, 1s a homogeneous fibration, and the
tangent bundle along the fibers is given by the two-dimensional irreducible subrep-
resentation Ry of the isotropy representation of F,, compare Subsection 2.2. In the
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definition of the nearly Kihler structure J in Section 4 we started with the complex
structure of the twistor space and conjugated it along the fiber of the twistor fibration.
This matches precisely the relationship between the J and J in Proposition 2, which
coincide on R and R, but are conjugate to each other on Ry. Thus the J of Section 4
is the same as the homogeneous J of Proposition 2 in Section 2.

As the fibration of F, over the Grassmannian G, is homogeneous, with the tangent
bundle along the fibers corresponding to a subrepresentation of the isotropy repre-
sentation, we can modify any homogeneous metric on the total space of the fibration
by constant rescaling along the fibers leaving the orthogonal complement unchanged,
and the resulting metric will still be homogeneous. This just means that on the sum-
mand Ry of the isotropy representation we change the metric by multiplication with a
constant. Therefore the nearly Kihler metric g defined in Section 4 is homogeneous.

This scaling procedure can be applied to any Riemannian submersion with totally
geodesic fibers, and is sometimes called the canonical variation of the submersion
metric, see [3], 9G. It is a standard way to build new Einstein metrics from old ones.
For the twistor fibration of Z, over G, one has a Kihler-Einstein metric on Z,,,
and its canonical variation contains another Einstein but non-Kihler metric, see [1],
[3]. This Einstein metric is also homogeneous, and coincides with the nearly Kihler
metricif and only if # = 1, as one sees by comparing Theorem 3.1 and Proposition 3.2
of [1].

Appendix: Chern numbers for n = 3

Table 2 summarizes our calculations of the Chern numbers for the case n = 3. Up to
complex conjugation, the three columns correspond to the almost complex structures
I, J and J from Section 2. These were denoted by F, (standard structure), Z,, and
N, in later sections.
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Table 2. The Chern numbers for the invariant almost Hermitian structures of 3.
standard structure twistor space nearly Kihler

P(TCPY P(T*C P structure
ef 967680 1146880 —8960
ci¢2 458880 532480 —3200
eics 217680 247680 —1200
c1¢3 103330 115480 —500
cies 134080 148480 640
cZeacs 63580 69280 200
c1c? 18530 19480 —60
c3cs 30180 32430 50
ciey 26320 27520 880
C1€2C4 12470 12520 300
C3C4 3620 3670 —70
cies 3520 3520 400
CoCs 1670 1670 150
C1Cq 320 320 80
c7 20 20 20
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