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Hamiltonian pseudo-representations

Vincent Humiliere

Abstract. The question studied here is the behavior of the Poisson bracket under C°-pertur-
bations. For this purpose we introduce the notion of pseudo-representation and prove that the
limit of a converging pseudo-representation of any normed Lie algebra is a representation.

An unexpected consequence of this result is that for many non-closed symplectic manifolds
(including cotangent bundles), the group of Hamiltonian diffeomorphisms (with no assumptions
on supports) has no C ™! bi-invariant metric. Our methods also provide a new proof of the
Gromov—Eliashberg Theorem, which says that the group of symplectic diffeomorphisms is C°-
closed in the group of all diffeomorphisms.

Mathematics Subject Classification (2000). 37105, 37115, 53D05.

Keywords. Symplectic topology, Poisson brackets, Hamiltonian representation, Hamiltonian
groups, Hofer’s distance.

1. Statement of results

1.1. Poisson brackets and C®-convergence. We consider a symplectic manifold
(M, ). A function H on M will be said normalized if ,, Hw" = 0for M closed or
if H has compact support otherwise. We will denote C§* (M) the set of normalized
smooth functions. Endowed with the Poisson brackets { -, -}, it has the structure of a
Lie algebra.

In the whole paper, we will denote Xy the symplectic gradient of a smooth
function H, i.e., the only vector field satistying dH = tx,, . Then the Poisson
brackets are given by { H, K} = dH(Xg).

Let g be a Lie algebra of finite dimension.,

Definition 1. A sequence of linear maps
pn: g — C5o (M)

is called a pseudo-representation if for any elements f, g € g, the sequence of smooth
functions

B.(f.g) =1{pn(f). pn (@)} — pr([f. g])

converges uniformly to 0.
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If a pseudo-representation has a limit (i.e., if for any f € g there exists p(f) €
CE(M), such that (p,(f)) C°-converges to p(f)), we may ask whether this limit
1s a representation. If so, we would have

{on (). pn(g)y — {p(f), p(g)}, forall fig € q.

This has been proved in [2] for abelian Lie algebras. The main result of this paper is
that 1t holds for all finite dimensional Lie algebras.

Theorem 2. For any finite dimensional Lie algebra, the limit of a converging pseudo-
representation is a representation.

Remark 1. This result generalizes Gromov—Eliashberg’s theorem of CY closure of
the symplectomorphism group in the group of diffeomorphisms.
Indeed, a diffeomorphism of R?” is symplectic if and only if its coordinate func-

tions ( f;), (g;) satisfy
{i.giy =36y, i, fi} =1gi. g} =0.

Thus we can easily see that a sequence of symplectomorphisms gives a pseudo-
representation of a 2-nilpotent Lie algebra. If the support of the coordinate functions
were compact, we could immediately apply Theorem 2. In fact, for compactly sup-
ported symplectomorphisms, these functions are affine at infinity, and we have to
adapt the proof to this case (See Appendix 2.3 for details).

Remark 2. Consider the following question: If F,,, G, and {F,, G, } respectively
converge 1o F', G and H (all function being smooth and normalized, and all conver-
gence being in the C° sense), is it true that {F, G} = H?

Theorem 2 states that the answer is positive when there is some Lie algebra
structure. Nevertheless, in general, the answer is negative, as shows the following
example, which is derived from Polterovich’s example presented in Section 2.3. Let
x be a compactly supported smooth function on R, and set the following functions
on RZ;

Fu(gq, p) = %COS(HQ),
Challg, £ = Xf/’; sin(nq).

It is easy to see that /3, and G, converge (o 0, but that their Poisson brackets equal
x(p)x'(p) #0.

This example shows that when the Poisson brackets C °-converge, then their limit
1s not necessarily the brackets of the respective limits. But i that case, we can see
that the Hamiltonians £, and G, do not generate a pseudo-representation.
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Remark 3. It will be clear from the proof that, in fact, Theorem 2 holds for Lie
algebras that are not necessarily finite dimensional, but for which there exits a norm
that makes the Lie bracket confinuous. In these settings, a pseudo-representation will
be a sequence of bounded linear maps p,: ¢ — C5° (M), such that B, converges to 0
as bilinear forms on g taking their values in C§°. Here, of course, C5° is endowed
with the C° norm. A pseudo-representation will also be converging if it converges
as a sequence of bounded linear maps.

Remark 4. The theorem holds if we replace the symplectic manifold with a general
Poisson manifold. Indeed, Poisson manifolds are foliated by Poisson submanifolds
that are symplectic, and we just have to apply Theorem 2 to each leaf.

Remark 5. The theorem leads us to the following definition:

A continuous Hamiltonian representation of a finite dimensional Lie algebra g
is a linear map g — C°(M) which is the C°-limit of some pseudo-representation
of q.

We will not study this notion further in this paper. Nevertheless let us give some
example.

Let p: g — Cg°(M) be a smooth Hamiltonian representation in the usual sense,
and let ¢ be a homeomorphism of M which is the C°-limit of a sequence of sym-
plectomorphisms. Then p’: @ — CY(M), given by p'(g) = p(g) o ¢, is clearly a
continuous Hamiltonian representation.

Remark 6. A very similar proof would give the following statement (we denote
ad(G) the map F — {F,G}):

If we have sequences of smooth functions I,, G, that converge uniformly to
smooth functions F, G, if for any integer k,

ad(G ) F,, converges uniformly in Cyo (M),
and if these convergences are uniform in k, then

{F.G} = lim {F,, Gp}.
n—>00

Remark 5 above is a motivation for stating Theorem 2 in its given form instead of
this one.

Question 1. Given two sequences of Hamiltonians (Fy), (G,) that C°-converge to
smooth F and G, is there some sufficient condition for the bracket {F, G} not to be
the limit of the brackets {F},, G,}? Propositions 11 and 12 give restrictions on the
possible counter-examples.
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Question 2. Letus consider the following number introduced by Entov, Polterovich
and Zapolsky in [3]:

T(F.G) = limint {|{F". G} ||F - F'l|co <,
£—

G — G,HCO < 8}

The result of Cardin and Viterbo mentioned above which 1s exactly Theorem 2 in the
abelian case can be restated as follows:

Y(F,G)>0 ifandonlyif {F, G} #0.

With various methods, Buhovski, Entov, Polterovich and Zapolsky have improved
this result by proving Y(F,G) = ||[{F, G}||co (see [3], [18], [4] and [1]). We may
wonder whether there exist similar results in the non abelian case.

1.2. Bi-invariant distances. Recall that a bi-invariant distance on a group G is a
distance ¢ on G such that for any ¢, ¥, y in G,

d{g, V) = ddx. vx) = d(xp. xi).

We now introduce the concept of C ! distance. We denote J¢ (M ) the group of
Hamiltonian diffeomorphisms on M. If we denote ¢}, the flow generated by Xg (if
it exists), and g = ¢}, the time-1 map, J(M) is the set of all diffeomorphisms
¢ for which there exists a path of Hamiltonian functions H; € C° (M) such that
¢ = ¢ug. We also denote F,.(M) the subgroup of diffeomorphisms generated by
compactly supported Hamiltonian functions.

Definition 3. We will say that a distance d on # (M) is C ! if its composition
with the map ®: H > ¢}, is a continuous map 71 (§) x &71(§) — R, where
d~1(g) C C®(R x M) is endowed with the compact-open topology.

If M is not compact, and if 4 is only defined on #. (M ) we will say that  is C !
if the restriction of the above map to compactly supported Hamiltonian functions is
continuous.

There are several examples of C~! bi-invariant distances defined on . (M),
as, for example, Hofer’s metric defined for any M (see [9] or [8]), Viterbo’s metric
defined for M = R2" (see [17]), and its analogous version defined by Schwarz in
[14] for symplectically aspherical closed symplectic manifolds.

As far as we know, if we remove the assumption of the compactness of the support,
the question whether there exist such distances is still open. Here we prove that the
answer 1s negative for a large class of symplectic manifolds.

Let (N, &) be a contact manifold with contact form « (i.e., a smooth manifold
N with a smooth hyperplane section & which is locally the kernel of a 1-form o
whose differential de is non-degenerate on &). Its symplectization is by definition the
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symplectic manifold § N = R x N endowed with the symplectic form @ = d(e’a),

where s denotes the R-coordinate in R x N. TFor any contact form «, one can

define the Reeb vector field X p by the identities ¢y ,do = 0 and a(Xg) = 1. The

trajectories of X g are called characteristics. The question of the existence of a closed

characteristic constitutes the famous Weinstein’s conjecture. It has now been proved

for large classes of contact manifolds (see e.g. [5], [6], [7], [13], [12], [16], [15]....).
Let us now state our result that will be proved in Section 2.3

Theorem 4. If M is the symplectization of a contact manifold whose dimension is
at least 3 and that admits a closed characteristic, then there is no C ™! bi-invariant
metric on #(M).

Corollary 5. If N is a smooth manifold whose dimension is at least 2 and if T* N is
its cotangent bundle, then there is no C ™1 bi-invariant metric on ¥ (T*N).

Remark. At least in the case of manifolds of finite volume, there probably exists
non closed manifolds with such distances. Indeed, it follows from our previous work
[10] that Viterbo’s metric extends to Hamiltonian functions smooth out of a “small”
compact set. Replacing Viterbo’s metric with Schwarz’s metric, we can reasonably
expect to have: If M?" is a closed symplectically aspherical manifold and K is a
closed submanifold of dimension < n — 2, then Schwarz’s metric on J (M ) extends
to £ (M — K).

2. Proofs

2.1. Identities for Hamiltonian pseudo-representations. The following lemma
concerns not only converging, but also bounded pseudo-representations, 1.¢., pseudo-
representations (py) such that the sequence of norms

lenll = sup flpn(g)lco
lglis1

is bounded, for some norm || - || on g.

Lemma 6. Let (p,) be a bounded pseudo-representation of a finite dimensional Lie
algebra q. Let f, g € q, then the sequence of Hamiltonian functions

+oc » j
on(f)eds oy — > palad(g)’ f) %
j=0 )

converges to zero for the C°-norm on M. Moreover, the convergence is uniform over
the s’s in any compact interval.
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Remark. For a representation equality holds. It recalls the Baker—Campbell-Haus-
dorff formula.

Proof. First remark that the considered sum converges. Indeed, the € ®-norm of its
remainder can be bounded by the remainder of a converging sum, as follows:

+o0 ' e |
|3 putaacer 5] < 3 min S
= I =N j!

where || - || is a norm on ¢, R is an upper bound for the sequence ||p, ||, and C the
induced norm of the Lie bracket.
Now, let us prove our lemma. Poisson equation gives

d
15 Pn )2 8) = ton () (&)} 2 5,

and hence

on(f) 0 ¢ ) = pn<f>+[ {n(F). pr(@)k 0 51 oy s

= pu(f) -l-[ pn([f. 8]) o ¢’p (2) ds "‘/ Bu(f.8) o ¢p (g) 51

Then, by a simple induction, we get for all integer N that

N

pn(f) o d 0y = an(ad(g)ff) 0 4 Ryp(50) + Swa(so),

j=0

where

Rt = [ [ [ pataat@r T < 60 dswa

and
N S0 81 Sj ) S'+1
Sn.n(s0) = Z[o .[0 [0 Bn(ad(g)‘]ﬁg))ogbp’;(g) dsjy1...dsy.
j=0

Let us now denote

IBrll = sup{ll{pa(f). pn(€)} = pallf. gDllco [ 1111 = llgll = 13-

By assumptions || B, || converges to 0.
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Then

S0 81 SN—1
| Ry,n (s0) | co sfo f f RlgIYCN| flldsw -..ds1,

gl CVsyf
Rllfll—o,

which proves that Ry ,(so) converges to O with N, uniformly in ».
In addition,

N-2 SO 51 S .
IISN,n<So>H$ZfO[O [0 1Bl F1lll dsjsr...ds
i=0

We thus have || Sy (so}|| < || Ball || f ]l exp(so|lgll) for any N. As a consequence,
letting N converge to 400, we get

+oo ' Sj
(1) B = 2 pa @@ ) | < 1B Lot
j=0 '

This achieves the proof because the right hand side converges to 0. O

2.2. Proof of Theorem 2. Let f,g € g. We want to prove that {p(f),p(g)} =
p([ £, g]). We can assume without loss of generality that ||g|| < 1.
By Lemma 6,

+oo SJ o
on1) o B = D pn(ad(e) ) = o

4=0

Each term of the sum converges with n. Since the sum converges uniformly in 1, we
get that for any s,

g To¢ . Sj
pnlf) O¢zn(g) C—> Zp(ad(g)J ) F
j=0 ‘

As a consequence, the flow generated by pa(f) o (;5;” (g) Y-converges (o the flow

generated by Z % plad(g)! f ) L4
But on the other hand, theﬂowofpn(f)ogbp (¢ )1st > ¢pn(g)¢pn(f)¢p (g),WhICh

y-converges (o ¢p(g)¢ (f)¢p(g) Indeed, pn(g) _> p(g) and pn(f) —> p(f)
which implies that there respective flow y-converges.
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Therefore, 1 +— qbﬁj(sg)qb;(f)gbz(g) is the flow of ijg p(ad(g)’ f) “;—J, The func-
tions being normalized,

+oo ‘ 5
p(f)odlg =S p(ad(g) f) %

j=0
Now, taking first derivative with respect to s, we get {p(f )}, p(g)} = p([f. g]). O

2.3. Proof of Theorem 4. Let us consider the following Hamiltonian functions
on R? (this example is due to Polterovich) with symplectic form written in polar
coordinates rdr A d6: -

Fp(r,0) = ﬁ cos(nb),

r
N
We see that {F,,G,} = 1 and that F, and G, converge to 0. Now, consider g
the 3-dimensional Heisenberg Lie algebra (i.e., the Lie algebra with basis { 1, g, i1}
such that [f. g] = hand [f.h] = [g.h] = 0) and set p, (f) = Fu, pn(g) = Gy
and p, (h) = 1. Then p, is a pseudo-representation of g. The limit p of p, satisfies
p(f) =0,p(g) =0, ph) = 1. Since {p(f), p(g)} # p(h), pisnot a representation
of g.

Since g has finite dimension, this example shows that Theorem 2 1s false in general
if we replace CJ° (M) with C*(M) for a non-compact manifold M, and uniform
convergence with the uniform convergence on compact sets (compact-open topology).

If we carefully read the proof of Theorem 2, we see that the whole proof can be
repeated in these settings except for the three following points where the compaciness
of supports is needed

Gn(r,0) = —— sin(n#).

e Fach time we consider the flows of the Hamiltonians, they must be complete. This
is automatic for compactly supported Hamiltonians, but false in general. With the
notation of the proof, the flows needed are those of p, (1), p(f). pn(g), p(g) and

¥/55 pad(g)’ ) 5.
e The functions p, (f), p(f), pa(g), p(g) have to be normalized in some sense.

e We use a C ! bi-invariant metric. This exists on #.(M), but we do not know
whether it exists on J (M ).

The following lemma follows from the above discussion.

Lemma 7. Let M be a non-compact symplectic manifold, g a normed Lie algebra,
and py, a pseudo-representation of g in C° (M), with limit p. Suppose there exist
two elements f and g in g, such that:
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o all the Hamiltonianfunctions pa(f ), p(£). pu(2). p(g) and 3725 plad(g)! f) %5
exist and have complete flows,

e there exists an open set onwhich all the functions pa(f ), p(f), pa(g), p(g) vanish
identically.

o {p(f).p(0)} # p(lf: gD

Then the group of Hamiltonian diffeomorphisms # (M ) admits no C ™! bi-invari-
ant nietric. O

Proof of Theorem 4. We want (o apply Lemma 7. We first consider the case of S
In that case we are not able to get the second requirement of Lemma 7, but let us
show how we get the others.

We just adapt Polterovich’s example by setting:

s/2
pu(f)(5.6) = eﬁ cos(nf),

s/2
pn()(s5,0) = —— sin(n6).

Jn

The symplectic form being defined on R x S! by d(e°d8) = e%ds A d6, we get
Lon(f), pn{g)t = 2. Since p(f) = p{g) = 0 we have a pseudo-representation of

the 3-dimensional Heisenberg Lie algebra, and its limit is not a representation. We

can also verify that all elements pn (f), p(f), pa(2). p(g) and 3755 p(ad(g) £) 55

exist and have complete flows for f, g generators of the 3-dimensional Heisenberg
Lie algebra, and p,, p as in the example. '

Since p(f) = 0, p(g) = 0 and ijg p(ad(g)’ 1) “}—J, = 2s, this is obvious for
them.

The Hamiltonian vector field of p,( f) is

(e_s/zﬁsin(n(?)) g 2 cos(nQ))a%,

J
e (2ﬁ
which is equivalent through the symplectomorphism

R x S!,d(e*dB)) — (R2 — {0}, rdr A dB)), (5.0) > (¢7/2,8)),

to the vector field

0 0
(r/nsin(n8)) =+ (% cos(n@))g.

The norm of this vector field is bounded by a linear function in ». Therefore, it is a
consequence of Gronwall’s lemma that it is complete.
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Let us consider now the case d = dim(N) = 3. There, we will be able to get all
the requirements of Lemma 7. Denote by y a closed characteristic, parameterized by
6 € S!. Since the Reeb vector field is transverse to the contact structure £, there exists
a diffeomorphism that maps a neighborhood 'V of the zero section in the restricted
bundle £|, onto a neighborhood V; of y in the contact manifold N. Since &|, is a
symplectic bundle over S, it is trivial. We thus have a neighborhood U of 0 in R?"
and a diffeomorphism ¥ : S x U — V; C N. The pull back of £ by v is a contact
structure on S x U which is contactomorphic (via Moser’s argument) to the standard
contact structure 46 — pdg on S! x U. Therefore, the above diffeomorphism i can
be chosen as a contactomorphism.

Then the symplectization §y of the closed characteristic gives a symplectic em-
bedding $§S! < §N. This embedding admits $ (S* x U) as a neighborhood. More-
over, if we denote s, # and x the coordinates in § (Sl x U), ¥ has been constructed
so that s and 8 are conjugated variables and the direction of x is symplectically
orthogonal to those of s and #. That will allow the following computations.

Justlike in the above example, we have a pseudo-representation of g if we consider

s/
(o () (s, 6, ) = &\/%2 —]
x)es/?
(0 (8))(5. 8. %) = % sin(n6), W)

and (p, (h))(s, 8, x) = 2x(x)?. Indeed, we have again { o, (f), pr(g)} = pn(h), but
its limit p satisfies {p(f), p(g)} = 0 # 1 = p(h) and is not a representation. The

fact that the elements p, (f), p(f), pn(g), p(g) and ijg plad(g)’ 1) SJ—J, exist and
have complete flows follows from the case d = 1. O

Proof of Corollary 5. Let M be a smooth manifold, and choose a Riemannian metric
on it. Then, consider the symplectization §ST*M of the sphere cotangent bundle
ST*M . The cotangent bundle can be seen as the compactification of SST* M, the
set at infinity being the zero section of T7*M (or {—oo} x ST*M if we see SST*M
as R x ST*M).

The Reeb flow of ST*M projects itself to the geodesic flow on M, and the
closed characteristics are exactly the trajectories that project themselves to closed
geodesics. Since any closed manifold carries a closed geodesic (see [11]), we can
consider Example (1). It clearly extends to the compactification (the Hamiltonian
functions involved and all their derivatives converges to O when s goes to —o0), and
we can achieve the proof as for Theorem 4. O
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Appendix A. A proof of the Gromov-Eliashberg theorem

In this section we show how our methods allow to recover the Gromov—LEliashberg
theorem.

Theorem 8 (Gromov, Eliashberg). The group of compactly supported symplectomor-
phisms Symp,.(R?") is C°-closed in the group of all diffeomorphisms of R?",

Proof. Let ¢, be a sequence of diffeomorphisms that converges uniformly to a

diffeomorphism ¢. Denote ( /), (g7') (tesp. fi, g;) the coordinate functions of ¢,

(resp. ¢). These coordinate functions can be seen has Hamiltonian functions affine

at infinity (i.e., that can be written H + v with H € C2*(R?") and u affine map).

Moreover, for a given sequence (") or (g7), the linear part does not depend on n.
Since ¢, is symplectic, we have

.87y =8, TSy =1gl.g/} =0

Thus the coordinate functions of ¢, give a pseudo-representation of the 2-nilpotent
Lie algebra g generated by elements a4, , b; , ¢, with the relations

[ai,bj] = (Sij, [ai,aj] = [bi,bj] = 0, and [ai,c] = [bi,C] = 0.
Since ¢ is symplectic if and only if
{ingit =0, Ui it =1g.81=0

the proof will be achieved if we prove that the limit of this pseudo-representation 1s
a representation. Consequently, we have to adapt the proof of Theorem 2 to the case
of Hamiltonian functions affine at infinity, for 2-nilpotent Lie algebras. Gromov—
Eliashberg Theorem then follows from the next two lemmas.

Lemma9. Letu, v be two affine maps R*™ — R and H,, K,, be compactly supported
Hamiltonians, such that

H,—-H K,— K, {H,+u,K,+v} =0
Then{H +u,K +v} =0

Lemma 10. Let u, v, w be linear forms on R**, and let H,, K,, G, be compactly
supported Hamiltonians such that

H,—-H K,—~> K, G,—G,
{Hy +u,G, +w} -0, {K,+v,G,+w}—0,
$Hy +u, Ky + v} — (G, + w) — 0.
Then{H +u,G+w}=0{K+v,6+w}=0and{H +u, K+v} =6G+w.
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Letus consider a C ~! bi-invariant distance y on #,.(R>") which is invariant under
the action of affine at infinity Hamiltonians (such a condition is clearly satisfied by
Hofer’s distance). For a sequence of Hamiltonian functions that are affine at infinity
with the same affine part, we can speak of its limit for y by setting:

(Pt +u) — bru it andonlyif  y((pr1u) P, +u.1d) — 0.
Moreover, if (¢H, 1) LA ¢H +u and (g, +v) R ¢ +v then

(P +uPktv) — PH +udK +o-

Indeed, we have

y((¢Hn+u¢Kn+U)_1(¢H+H¢K+U)7Id)
= V(Ko Pr o PH 1) DK A0 (DK 1y DK +0), 1)
< V(PR uPHn+us 1) + V(KL Pk 40 1d).

Finally notice thatif | H, — H||co — O, then ¢g, 4+ 2 PH +u-
We are now ready for our proofs.

Proof of Lemma 9. We just adapt the proof of Cardin and Viterbo [2] to the “affine
at infinity” case.

First remark that the assumptions imply {u, v} = 0. Then a simple computation
shows that the flow

t gt —t —
Wn - ¢Hn +u¢;{n —|—U¢Hn —i—ugbez—i-v
is generated by the Hamiltonian function affine at infinity

/(; {H, +u, K, + U}(¢%n+v¢;in+u (x)) do,

which C%-converges to 0 = {u, v} by assumption. Therefore, Y. converges for
any s and any ¢ to Id. But on the another hand, according to the above remark, it

converges to ¢;{+u¢;(+v¢l?+u¢1;fl—v' Hence ¢;{+u¢;<+v¢1§t+u¢ifl-v = Id which
proves {H +u, K + v} =0. O

Proof of Lemma 10. First notice that the assumptions imply {u, v} = w, {u, w} =0
and {v, w} = 0, and that the equalities {H +u, G+ w} =0, {K +v,G+ w} =0
follow from Lemma 9. Here we consider the flow

r _ —i8 { s — —
wn - ¢Gn+w¢Hn+u¢Kn+v¢ n+u¢ n+v

which is generated by

(— S(Gn + UJ) + [ {Hn +u, Kp + U}(¢%n+v¢fqn+u) d(j) @ gbgn"‘w'
0
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This expression can be written

([ (Ay + Bn) do) O BE 4
0

An = Gn - Gn(¢foén+v¢gn+u)

B, = ({Hn +u, K, + U} - (Gn + w))(¢l%n+v¢}1n+u)'

where

and

By assumption, B, C°-converges to 0 and A, can be written:

Ap = (Gn — Gy (¢}In —|—u)) + (Gn — Gn (gb%n —l—v)) © ¢}In +u

t o
:f{Gn,Hn—i—u}dr—i—([ {Gn,Kn—l—v}dt)ogb}InJru
0 0

t log
:f{Gn—i—w,Hn—l—u}dT—l—([ {Gn—l—w,Kn+v}dr)o¢j{n+u,
0 0

which implies that A, C°-converges to 0 too. It follows that the generating Hamil-
tonian of ¥’ CY-converges to 0, and hence that v’ y-converges to Id. Since it also

converges to ¥* := ¢ By Pkt PH 1uProry> We get ' = Td for any s and 7.
Thus, the generating Hamiltonian of 1, vanishes identically:

(—S(G + w) + fo {H+4+u, K+ v}(¢%+v¢fq+u)dcr) o e, = 0.

But since & + w commutes with i + U and K + v, we get

[O ({H +u, K + U} — (G + w))(¢[(7{+v¢;:]+u)d(7 —0.

Taking derivative with respect to s, weobtain { H +u, K +v}— (G4+w)=0. O

Appendix B. A few additional remarks using the theory of distributions

The following results on Poisson brackets are obtained with the help of distribu-
tions. No assumptions are made on the Lie algebra generated by the Hamiltonian
functions. They show in a certain way why it is difficult to find examples of pseudo-
representations whose limit is not a representation.

Proposition 11. If F,, C?-convergesto F and G, C -convergesto G. Then{F,, G,}
converges 1o { F, G} in the sense of distributions. As a consequence, if { F,, G} C°-
converges to H, then {F,G} = H.
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Proof. For any smooth compactly supported function ¢,

0G, dF, dG, dF,

({Fn,Gn}’¢) = aq ap ap aq

B ]G 0 BFn¢ +[G J Banb

B "og \ op "op \ Og '
By assumption, the integrands C°-converge and hence the integrals converge (o
— [ G (558) + [ G (35¢) which equals ({F. G}, ). O

Proposition 12. If F, C°-converges to F, G, C°-converges 1o G and {F,,G,}
CY-converges to H when p and g go to infinity, then {F,G} = H.

Proof. Take once again a compactly supported smooth function ¢. Write

({Fp’Gq}_ {F,GL o) = ({Fp —F, Gq},qb) + ({F, Gq — G}, ).

By Proposition 11, the first term converges to 0. Hence for all € > 0, there exists an
integer go such that for any g > qo, |({F, G, — G}, ¢)| < &.

Similarly, for each fixed ¢, there exists an integer pg such that for any p > po,
[({F, — F.G,},¢)| <.

Therefore, for all € and all integers p1,q;, we can find p > p;,q > ¢ such that
[({Fp. G4t — {F. G}, $)| <2e.

Thus we can construct two extractions y, ¥ such that {{ Iy (), Gy )} —1F, G}, ¢)
converges to 0. Since we have ({Fy(n), Gy @)t —H. ¢) — 0, itimplies ({F, G}, ¢) =
(H, ¢), and this equality holds for any ¢. O
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