Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 84 (2009)

Artikel: Relatively hyperbolic groups : geometry and quasi-isometric invariance
Autor: Druu, Cornelia

DOl: https://doi.org/10.5169/seals-99129

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-99129
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 84 (2009), 503-546 Commentarii Mathematici Helvetici

© Swiss Mathematical Society

Relatively hyperbolic groups: geometry and quasi-isometric
invariance

Cornelia Drutu

Abstract. In this paper it is proved that relative hyperbolicity is a quasi-isometry invariant. As
byproducts of the arguments, simplified definitions of relative hyperbolicity are provided. In
particular we obtain a new definition very similar to the one of hyperbolicity, relying on the
existence of a central left coset of a peripheral subgroup for every quasi-geodesic triangle.
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504 C. Drutu CMH
1. Introduction

1.1. Rigidity result. M. Gromov asked ([Gro87], [Gro93]) which properties of
infinite finitely generated groups are invariant under quasi-isometry. Such properties
are sometimes called geometric, while a class of groups defined by a geometric
property is called rigid.

For instance, the class of virtually nilpotent groups is rigid [Gro81], while the
class of virtually solvable groups is not rigid [Dyu00]; but smaller classes of virtually
solvable groups are rigid ([FM9I§], [FM99], [EFWO0O5]). Recall that a group 1s said to
virtually satisty a property (P) if a finite index subgroup of it has property (P).

Also, different classes of lattices of semisimple groups are rigid (this statement
includes many deep results of different authors; see [[Far97] and [Dru04] for surveys
of these results).

The present paper focuses on the class of relatively hyperbolic groups.! This
notion was introduced by M. Gromov in [Gro87]. Other definitions, as well as
developments of the theory of relatively hyperbolic groups can be found in [Bow97],
[Far98], [Dah03b], [Yam04], [DS03b], [Osi06]. In § 1.2 and § 1.3 we discuss in more
detail different ways to define relative hyperbolicity.

Beside hyperbolic groups, other examples of relatively hyperbolic groups are:

(1) fundamental groups of finite graphs of groups with finite edge groups; these
groups are hyperbolic relative to the vertex groups [Bow97];

(2) fundamental groups of complete finite volume manifolds of pinched negative
sectional curvature; these are hyperbolic relative to the fundamental groups of
their cusps ([Bow97], [Far98]);

(3) fundamental groups of (non-geometric) Haken manifolds with at least one hy-
perbolic component; such groups are hyperbolic relative to fundamental groups
of maximal graph-manifold components and to fundamental groups of tori and
Klein bottles not contained in a graph-manifold component;

(4) fully residually free groups, also known as limit groups; it is proved in [Dah03a]
that these groups are hyperbolic relative to their maximal Abelian non-cyclic
subgroups; moreover they are CAT(() with isolated flats [ABOS5].

There exist also interesting examples of groups displaying an “intermediate” ver-
sion of relative hyperbolicity. Such groups are weakly relatively hyperbolic, not
(strongly) relatively hyperbolic, but nevertheless they have some features in common
with (strongly) relatively hyperbolic groups, for instance, their asymptotic cones have
a tree-graded structure in the sense of [DS05b] (see Definition 3.1 in the present pa-
per). Such groups are the mapping class groups of surfaces of complexity at least

1By relatively hyperbolic group we mean what is sometimes called in the literature strongly relatively hyper-
bolic group, in contrast with weakly relatively hyperbolic group.
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two ([Beh05], [BDMO3]), fundamental groups of 3-dimensional graph manifolds
([KI.98], [KKI.98], [BDMO3]), as well as many Artin groups ([KS04], [BDMO5]).

Recently, relatively hyperbolic groups have been used to construct examples of
infinite finitely generated groups with unusual properties. Thus in [Os104] it is proved,
using relatively hyperbolic groups, that there exist torsion-free two-generated groups
with exactly two conjugacy classes.

Convention 1.1. Throughout the paper, relatively hyperbolic groups are assumed to
be finitely generated and hyperbolic relative to finitely many proper finitely generated
subgroups.

If a group G 1s hyperbolic relative to some subgroups Hy, ... Hy, then the sub-
groups Hy, ..., H,, are called peripheral subgroups.

The present paper answers affirmatively to the question whether relative hyper-
bolicity is a quasi-isometry invariant (Problem 1.15 in [DS05b]).

Theorem 1.2 (relative hyperbolicity is geometric, Theorem 5.7). Let G be a group
hyperbolic relative to a family of subgroups Hy, ..., H,. If a group G’ is quasi-
isometric to G then G’ is hyperbolic relative to H, ..., H},, and each H] can be
embedded quasi-isometrically in H; for some j = j(i) € {1.2,...,n}.

Rigidity has previously been proved for some sub-classes of relatively hyper-
bolic groups (with stronger versions of rigidity theorems): non-uniform lattices in
rank one semisimple groups different from SL(2, R) [Sch96], fundamental groups
of non-geometric Haken manifolds with at least one hyperbolic component ([KL95],
[KL97]), fundamental groups of graphs of groups with finite edge groups [PW02].

Question 1.3. Can the conclusion of Theorem 1.2 be improved to: “G’ is hyperbolic
relative to H1, ..., H,,, with each H quasi-isometric to some H;, j = j(i)”?

This is known to hold only under extra hypotheses on f; ([DS0O5b], [BDMO5]).
The weakest such hypothesis 1s that every H; is not relatively hyperbolic in the sense
of Convention 1.1 [BDMO5].

The main steps in the proof of Theorem 1.2 are explained in what follows.

1.2. Metric and algebraic relative hyperbolicity. In order to study rigidity it is
necessary to have a definition of relative hyperbolicity of a group only in terms of its
Cayley graphs. Most definitions (except the ones in [DS05b] and in [Osi106]) use not
only a Cayley graph of the group but also a metric space obtained from this graph by
gluing to each left coset of a peripheral subgroup some geometric object (a hyperbolic
horoball [Gro87], countably many edges with one common endpoint [Far98] etc.).
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We recall definitions from [DS05b]. A complete geodesic metric space IF is tree-
graded with respect to a collection P of closed geodesic subsets (called pieces), if
the following two propertics are satisfied:

(77) two different pieces have at most one point in common;
(T2) any simple non-trivial geodesic triangle is contained in one piece.

A metric space X 18 asymptotically tree-graded with respect to a collection of
subsets A if every asymptotic cone of X is tree-graded with respect to the collection
of limit sets of sequences in # (see Section 2.2 for definitions of asymptotic cones,
and of limit sets). Equivalently, X is asymptotically tree-graded with respect to #4 if
the following three geometric propertics are satisfied (for details see Theorem 4.1 in
[DSO5b], Theorem 4.9 in this paper):

(ce1) finite radius tubular neighborhoods of distinct elements in # are either disjoint
or intersect in sets of uniformly bounded diameter;

(a2) a geodesic with endpoints at distance at most one third of its length from a set
A in 4 intersects a tubular neighborhood of A of uniformly bounded radius;

(a3) any fat geodesic polygon is contained in a tubular neighborhood of a set A in
4 of uniformly bounded radius (here the meaning of “fat” is the contrary of
“thin” in its metric hyperbolic sense; see Definition 4.5).

The space X is properly asymptotically tree-graded with respect to A if it is not
contained in any finite radius tubular neighborhood of a subset in A.

Convention 1.4. Inwhat follows we assume that all asymptotically tree-graded metric
spaces are properly asymptotically tree-graded.

The notion of asymptotically tree-graded metric space is a metric version for the
relative hyperbolicity of groups. Other similar notions can be found in [BFO1], and
in [HKO5] in the context of CAT(0) metric spaces. The fact that the metric definition
1s coherent with the definition for groups is illustrated by the following result.

Theorem 1.5 ([DS05b], Theorem 1.11 and Appendix). A finitely generated group G is
hyperbolic relative to Hy, ..., Hy, if and only if G is asymptotically tree-graded with
respect to the collection of left cosets £ = {gH; | g € G/H;, i € {1,2,...,m}}.

The equivalence in Theorem 1.5 suggests the following question, which appears as
Problem 1.16 in [DSO05b]: if a group is asymptotically tree-graded in a metric sense,
that is, with respect to a collection of subsets #4, does it follow that it is relatively
hyperbolic with respect to some finite family of subgroups ? The implication was
previously known to be true only under some restrictive metric conditions on #4 (see
[DSO5b, Theorem 5.13] and [BDMO5]).

We answer this question in the affirmative.
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Theorem 1.6 (Theorem 5.4). Let G be an infinite finitely generated group asymp-
fotically tree-graded with respect to a collection of subsets A. Then G is relatively
hyperbolic with respect to some subgroups H, ..., Hy,,, such that every H; is con-
fained in a bounded radius tubular neighborhood of a set A; € A.

Theorem 1.6 implies Theorem 1.2. Indeed, a group quasi-isometric to a relatively
hyperbolic group is asymptotically tree-graded as a metric space with respect to
the images by quasi-isometry of the left cosets of peripheral subgroups [DSO05b,
Theorem 5.1].

Theorem 1.6 is also used in [BDMO3] to prove the following result: given a group
G hyperbolic relative to Hy, . .., H,, every quasi-isometric embedding into G of a
group which 1s nor relatively hyperbolic has its tmage in a tubular neighborhood of
bounded radius of a left coset g H; ; moreover the radius of the neighborhood depends
onlyon G, Hy, ..., H, and on the constants of quasi-isometry, nor on the domain of
the quasi-isometry [BDMOS, Theorem 4.1].

From this it 1s deduced in [BDMO3] that in Theorem 1.2 under the extra assump-
tion that each peripheral subgroup H; is not relatively hyperbolic the rigidity result
holds, with the stronger conclusion that each H/ is quasi-isometric to some H;. This
generalizes previous results from [DS0Sb].

An outline of the proof of Theorem 1.6 will be given in the following sections.

Theorem 1.6 is optimal in the sense that if the group G and the collection +4 satisfy
less properties than those required of asymptotically tree-graded metric spaces then
the group G may not be relatively hyperbolic. This 1s 1llustrated by the examples
of groups constructed in [BDMOS5, §7.1] and in [OOS06]. These groups are not
relatively hyperbolic, although they do contain a collection of subsets 4 such that
all the asymptotic cones of the group are tree-graded with respect o some limits of
sequences in 4. In each cone, not all the limits of sequences in «+ are considered
as pieces though: there are limits which are geodesic lines, and different such lines
intersect in more than one point. The subsets in 4 do not satisfy property (o)
requiring uniformly bounded diameter for intersections of bounded radius tubular
neighborhoods of different subsets in #.

1.3. New definitions of relative hyperbolicity. If a group has an asymptotically
tree-graded structure equivariant with respect to left translations, then a standard ar-
gument shows that the group is relatively hyperbolic (Proposition 5.1). Thus, the main
step in the proof of Theorem 1.6 is to construct an equivariant asymptotically tree-
graded structure on a group out of an arbifrary asymptotically tree-graded structure.
A natural idea is to consider all the translated asymptotically tree-graded structures
gh = {gA | A € A}of agiven asymptotically tree-graded structure +4 on a group G,
and to take non-empty intersections of the form (), g4, with A € A . To make
such an argument work, it is necessary that the asymptotically tree-graded proper-
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ties behave well with respect to intersections. The modification of the list of three
geometric properties defining an asymptotically tree-graded metric space given in
Theorem 4.22 ensures this good behavior with respect to mtersections.

Asymptotically tree-graded metric spaces have a property that strongly reminds
of hyperbolic metric spaces. A metric space is hyperbolic if and only if the edges of
every quasi-geodesic triangle intersect a ball of uniformly bounded radius [Gro87,
§6]. A space X that is asymptotically tree-graded with respect to a collection of
subsets # satisfies a similar property, called property (x) (see Definition 4.27). If
(X, #A) satisfy only property (x) then the space X is called (x)-asymprotically tree-
graded with respect to 4. This notion is weaker than the notion of asymptotically
tree-graded metric space (see Remark 4.29, (2)).

Property (%) was essential in the proof of the fact that the Rapid Decay property
transfers from the peripheral subgroups Hy, ..., Hy, of arelatively hyperbolic group
to the group itself [DS05a]. A version of property (%) in the context of CAT(0) spaces
appears in [Hru04], where it is called the Relatively Thin Triangle Property.

A natural question to ask is under which additional conditions is a (s )-asymptoti-
cally tree-graded metric space also asymptotically tree-graded. The arguments used
to prove Theorem 4.22 can be adapted to answer this question.

Theorem 1.7 (Theorem 4.30). Ler (X, dist) be a geodesic metric space and let A be
a collection of subsets of X. The metric space X is asymprtotically tree-graded with
respect to A if and only if (X, A) satisfy properties («1) and («z), and moreover X
is (x)-asymptotically tree-graded with respect to A.

1.4. Organization of the paper. Section 2 contains preliminaries on asymptotic
cones, as well as notation.

In Section 3 are recalled some basic facts about tree-graded spaces. Proposi-
tion 3.9, proved in this section, 18 very useful in arguments deducing the general
property (7T>) from (77) combined with (75 ) restricted to particular types of geodesic
triangles (see for instance property (I13) below).

Section 4 begins with a short overview of properties of asymptotically tree-graded
metric spaces. In §4.2 an induction argument and Proposition 3.9 are used to show
the following central result. Denote by (I13) the property (T3) restricted to triangles
with edges limits of sequences of geodesics. If in an asymptotic cone Con,, (X) of
a metric space X a collection #4,, of closed subsets satisfies (77) and (I13) then A,
satisfies (73 ) in full generality (Corollary 4.19).

This statement is the main ingredient in the proof of Theorem 4.22, given in § 4.3.
[t also plays a central part in the proof of Theorem 1.7 givenin § 4.4. Another difficult
step in the proof of Theorem 1.7 is to deduce from properties (), (1) and (o) the
fact that fat quadrilaterals are contained in finite radius tubular neighborhoods of
subsets in A (LLemma 4.33). Once this last statement is proved, from it as well as
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from property (x} and Proposition 3.9 can be deduced property (IT3). Corollary 4.19
allows to finish the argument.

Theorem 1.6 is proved in Section 5. The first and most difficult step of the proof is
to construct from a given asymptotically tree-graded structure on a group an equivari-
ant asymptotically tree-graded structure. The subsets in the new equivariant asymp-
totically tree-graded structure are indexed by equivalence classes of fat hexagons.
A simple argument then shows that the existence of an equivariant asymptotically
tree-graded structure implies that the group is relatively hyperbolic (Proposition 5.1).
This completes the proof of Theorem 1.6 and thus of Theorem 1.2.

Acknowledgement. The author wishes to thank the referee for numerous useful
comments. Thanks are also due to Mark Sapir and Jason Behrstock for remarks that
helped improving the exposition in the paper.

2. Preliminaries

2.1. Definitions and notation. Let Y be a subset in a metric space (X, dist). We
denote by N5(Y) the set {x € X | dist(x,Y) < &}, which we call the §-tubular
neighborhood of Y. We denote by N5 (Y) the set {x € X | dist(x,Y) < &}, called
the 8-closed tubular neighborhood of Y .

When Y is a singleton y, we also use the notation B(y, §) and respectively B (y, §).

Definition 2.1. An action of a group & on a metric space X is called JC-transitive,
where J is a non-negative constant, if for every x € X the closed tubular neighbor-
hood N 5 (Gx) of the orbit of x coincides with X .

An (L, C)-quasi-isometric embedding of a metric space (X, disty) into a metric
space (Y, disty ) is amap a.: X — Y such that for every x1, x5 € X,

1
3 disty (x1, x2) — C < disty(g(x1),q(x2)) < Ldistx (x1,x2) + C, (1)

for some constants L > 1 and C > 0.

If moreover Y is contained in the C-tubular neighborhood of g(X) then g is
called an (L, C)- quasi-isometry. In this case there exists an (L, C)-quasi-isometry
g: Y — X such that g o g and g o g are at uniformly bounded distance from the
respective identity maps [GdIH90]. The quasi-isometry g is called quasi-converse
of q.

If q: [a,h] — X is an (L, C)-quasi-isometric embedding then g is called an
(L. C)-quasi-geodesic (segment) in X . The same name is used for the image of g.

Notation 2.2. For every quasi-geodesic segment g in a metric space X, we denote
the origin of g by g_ and the endpoint of g by g .
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If g;: [0,£;] > X,i = 1,2, are two quasi-geodesic segments with q;(£,) =
a2(0), then we denote by g1 Ll g, the map g: [0,£1 + £3] — X defined by q(r) =
ql(f) fort e [0,£1] and Q(f) = qZ([ _’61) fort e [31,121 + ,€2]

If an (L, C)-quasi-geodesic g is L-Lipschitz then g is called an (L, C)-almost
geodesic.

2.2. Asymptotic cones of ametric space. The notion of asymptotic cone of a metric
space was used implicitly in [Gro&81], and it was defined in full generality and studied
in [dDW84] and [Gro93]. For the definition, one needs the notion of non-principal
ultrafilter. 'This is a finitely additive measure w defined on the set of all subsets
of N (or, more generally, of a countable set) and taking values in {0, 1}, such that
w(F) = 0 for every finite subset F of N.

Convention 2.3. Throughout the paper all ultrafilters are non-principal, therefore we
will omit mentioning it each time.

Notation 2.4. Let A, and B, be two sequences of objects and let R be a relation
that can be established between A, and B, for every n € N. We write A, R, B, it
and only if A, R B, w-almost surely, that is,

wo({neN| A, RB,}) = 1.
ERAmples: = ps Con

Given an ultrafilter @, an w-limir lim,, x, of a sequence (x,) in a topological
space X is an element x € X such that for every neighborhood N of x, x, €, N.
In a Hausdorff separable space if the w-limit of a sequence exists then it is unique. If
(x5,) 1s contained in a compact space then it has an w-limit [Bou65].

Given a space X one can define its ultrapower X as the quotient X / ~, where
(xn) & () if Xy =0 Yn.

Let now (X, dist) be a metric space, ¢ an clement in its ultrapower X ¢, (e,)
a representative of e, and d = (d,) a sequence of numbers in (0, +00) such that
lim,, d, = +o¢. Consider

8.(X) = {(xn) € XN | there exists My such that dist(xy, ex) <o Mxdn}. (2)
Define the equivalence relation

dist(xy, yn)

0.
dn

(xn) ~ (yn) &= haf)n

The quotient space 8.(X)/ ~ is denoted by Con,, (X:e,d) and it is called the
asymptotic cone of X with respect to the ultrafilter w, the scaling sequence d and
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the sequence of observation centers e. It is endowed with the natural metric dist,,

defined by

dist(x,, yn)
dp

Every asymptotic cone is a complete metric space.

A sequence of subsets (A,) in X gives rise to a limit subset in the cone, defined
by

dist,, (x, y) = lim
[43]

lim (4,) = {limy, (@) | an €4 An}-

If limy, %’;‘;A’l) = 4o0 then lim,, (4,) = @. Every non-empty limit subset
lim,, (A,) is closed.

If cach set A4, is a geodesic g, with length of order O(d,) and lim,, (q, ) is non-
empty, then it is a geodesic in Con,, (X ; e, d). Therefore if X is a geodesic space
then every asymptotic cone of it is geodesic.

Definition 2.5. We call a geodesic in Con,, (X;e, d) which appears as lim,, (q,)
with g, geodesics in X a limit geodesic.

Notevery geodesic in Con,, (X ; e, d) is a limit geodesic, not even in the particular
case when X is a finitely generated group with a word metric.

Example (of a group with continuously many non-limit geodesics in an asymptotic
cone). On the two-dimensional unit sphere S consider a family of horizontal circles,
in parallel planes, such that two consecutive circles are at spherical distance Zlk,
and such that the North and the South poles are at distance Zik from two respective
horizontal circles. Consider also a family of meridians of endpoints the North and
the South poles, such that the intersection points of two consecutive meridians with
the Equator are at spherical distance 7.

The horizontal circles and the meridians compose a spherical grid T',. We have
that I, C I'p,,. Let I’y be the graph obtained from I'; by joining with spherical
geodesics all pairs of vertices not on the same meridian nor on the same horizontal
circle, and at distance at most ﬁ Let ['x be the graph obtained from I'/ by deleting

all the vertical edges above the Equator, except the one having the East pole (1, 0, 0)
as an endpoint, and replacing each of them by a path of double length zk’% (see
Figure 1). Let distz be the shortest-path metric on I'x.

Proposition 7.26 from [DS05b] applied to the sequence of graphs (T, disty),
and Lemma 7.5 from the same paper imply that there exists a two-generated and
recursively presented group & with one asymptotic cone tree-graded, with all pieces
isometric to S%. Moreover, from the construction of G it follows that in each of the



512 CMH

Figure 1. The graph I'z.

pieces, for an appropriate choice of the North, South and East poles, all geodesics
joining North and South poles and not containing East pole are not limit geodesics.

The same argument as in [DS05b, §7] allows in fact to construct a two-generated
and recursively presented group with continuously many non-homeomorphic asymp-
totic cones with the property that continuously many geodesics in each of these cones
are not limit geodesics.

3. Tree-graded metric spaces

3.1. Definition and properties. The notion of (ree-graded metric space has been
introduced in [DSO5b]. In this paper we use the following version of this notion.
Recall that a subset A in a geodesic metric space X is called geodesic if every two
points in A can be joined by a geodesic contained in A.

Definition 3.1. Let IF be a complete geodesic metric space and let # be a collection
of closed geodesic subsets, called pieces. Suppose that the following two properties
are satisfied:

(77) Every two different pieces have at most one point in common.
(T>) Every simple non-trivial geodesic triangle in IF is contained in one piece.

Then we say that the space ¥ is tree-graded with respect to P.
When there is no risk of confusion as to the set &, we simply say that F 1s
tree-graded.
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Remarks 3.2 (pieces need not cover the space). (1) In [DS05b] trivial geodesic tri-
angles are allowed in property (7). This is equivalent to asking that F is covered
by the pieces in . In the present paper we remove this convention. The reason is
that a main purpose when introducing the notion of tree-graded space is to produce a
convenient notion of relatively hyperbolic metric space (called asymptotically tree-
graded metric space in [DS05b] and 1n this paper, see Definition 4.1). The condition
that pieces cover F produces some unnatural restrictions for a space to be asymp-
totically tree-graded (i.e. relatively hyperbolic) with respect to a list of subsets. See
Remark 4,12 for details.

(2) Possibly & is empty, in which case IF' is a real tree.

(3) When a group G acts transitively on ¥ (for instance when [ is an asymptotic
cone of a group) and G permutes the pieces, the condition that pieces cover [ is
automatically satisfied.

All properties of tree-graded spaces in [DSO5b, §2.1] hold with the new defi-
nition 3.1, as none of the proofs uses the property that pieces cover the space. In
particular the results below hold. In what follows and throughout the paper by topo-
logical arc we mean a homeomorphic copy of the interval [0, 1].

Lemma 3.3 (|[DS05b], §2.1). Let x be an arbitrary point in ¥ and let Ty, be the set of
points y € F which can be joined to x by a topological arc intersecting every piece
in at most one point.

The subset Ty is a real tree and a closed subset of ¥, and every topological arc
joining two points in Ty is contained in Ty. Moreover, for every y € Ty, T, = T.

Definition 3.4. A subset 7, as in Lemma 3.3 is called a transversal tree in ¥

In [KKL98] is defined the notion of space of type I, which 1s equivalent to that of
a tree-graded space with the extra property that for every x the transversal tree 7', 18
a geodesically complete tree which branches everywhere.

Remark 3.5. One can ensure that pieces in a tree-graded space cover it by adding to
the list of pieces the transversal trees. Thus a tree-graded space [F with set of pieces &
in the sense of Definition 3.1 can be seen as tree-graded in the sense of Definition 2.1
in [DSO5b] with respect to a set of pieces £’ such that P\ P is a collection of real
trees.

3.2. Topological bigons contained in pieces

Definition 3.6. Let g1 and g, be topological arcs. A fopological bigon (or T -bigon,
for short) formed by g1 and g is a union of a sub-arc g’ of g with a sub-arc g’ of g»
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such that g and g’ have common endpoints x and y. The endpoints of the T -bigon
are the points x and y. The interior of the T -bigon is the set g} U g5 \ {x, y}.

If ¢/ and g} intersect only in their endpoints then the 7 -bigon is called simple (it
is a simple loop).

Note that a ¥ -bigon with non-empty interior cannot be trivial, i.e. reduced to a
point.

The results in this section are useful in arguments aiming to prove property (7% ) for
a collection of closed subsets of a metric space. In several contexts it proves necessary
to deduce from (77 ), and (73 ) satisfied only for some special type of geodesic bigons,
the general property (73).

Lemma 3.7. Let g1 and g2 be two topological arcs with common endpoints. Then
every point z € g1 \ Q2 I8 in the interior of a simple T -bigon formed by q1 and q».

Proof. Yori = 1,2, g;:[0,£;] — Y is a topological embedding. Let ¢ € [0,£1] be
such that g1(r) = z. The set K = g7 (g2 ([0. £,])) is a compact set not containing .
Let » be the maximal element of the compact set K N [0, ], and let s be the minimal
element of the compact set K N[z, £1]. Then q{(r) = q2(r") and g (s) = ga(s’) for
some #’, 5" € [0,£;]. The union of g, restricted to [r, s] with g5 restricted to [r', 5]
is a simple 7 -bigon formed by g1 and g2, containing z in its interior. O

Lemma 3.8. Let Y be a metric space and let B be a collection of subsets of Y which
satisfies property (Th).

Let a1 and g2 be two topological arcs with common endpoints and with the
property that any non-trivial simple T -bigon formed by g1 and g2 is contained in a
subset in 8.

If g1 is contained in B € B then q, is contained in B.

Proof. Take z an arbitrary pointin g, \ 1. By Lemma 3.7 the point z is in the interior
of a simple 7 -bigon formed by g; and g», of endpoints z1, z;. By hypothesis this
T -bigon is contained in a subset B, € B. As {z1,z2} isin B N B; it follows by (77)
that B, = B and thatz € B. O

Proposition 3.9. Let Y be a metric space and let B be a collection of closed subsets
of Y, B with property (Ty).

Let £1 and g1 be two topological arcs with common endpoints u,v. Let £, and
g2 be two, possibly identical, fopological arcs with common endpoints v, w. Assume
that:

(1) £1 NLy = {v};
(2) g1 N g2 contains a point a # v;
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(3) all non-trivial simple T -bigons formed either by a1 and q,, or by q; and £;,
I = 1,2, are contained in a subset in B.

Then the T -bigon formed by g1 and gq» with endpoints a and v is contained in a
subset in 8.

Proof. Step 1. Let g} denote the sub-arc of g; of endpoints @ and v,i = 1,2.

We prove that there exists b € g} N a5 \ {a}, such that the 7"-bigon formed by g
and g of endpoints a, b is contained in some B € B.

Hypothesis (1) implies that either @ & £ or a &€ £,. Without loss of generality
we may assume that ¢ & £1. Then a is in the interior of a simple 7 -bigon formed
by £ and g1, of endpoints x and y, with y on g/. Property (3) implies that this
7 -bigon is contained in a set By € B.

If y € g5 thentake b = y.

Assume that y ¢ g5. Then y is in the interior of a simple 7 -bigon formed by g
and g5, of endpoints y;, y» (with y, closer to v than y; on g7 ). By (3) this 7 -bigon is
contained in some By € B (see Figure 2). The intersection By N B, contains {y, v1}
hence by (T7) we have that By = B, = B. Take b = y,.

The sub-arc of g/ with endpoints a and b is contained in B. By property (3) we
can apply Lemma 3.8 and obtain that the sub-arc of g5 in between a and b is also
contained in B,

Figure 2. Step 1.

Step 2. Let € be the set of points b € g7 N a5 \ {a}, such that the 7" -bigon formed by
g and g’ of endpoints a. b is contained in some B € B. We prove that there exists
¢ € & such that g between ¢ and v contains no other point from &.
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Note that by property (77) of 8 all 7 -bigons of endpoints a and b, for some
b € &, are contained in the same By € B.

Letg: [0.£4] — Y beaparametrization of g1, ¢(£) = v, andletr be ¢! (a). The
pre-image &’ = ¢! (&) is contained in (7, £]. Let T be the supremum of &’. Then
T = lim¢t, for some increasing sequence (7, ) in &, hence ¢ = ¢(T') is the limit of
the sequence of points b, = ¢(t,) € €. Obviously ¢ € g} Na’ \ {a}. Since By € B
is closed and b, € By, it follows that ¢ € By. Thus the sub-arc of g between a
and ¢ is completely contained in By. By Lemma 3.8 and property (3), the 7 -bigon
formed by g’ and g5 of endpoints a and ¢ is in By.

Step 3. We prove that the point ¢ obtained in Step 2 coincides with v.

Assume that ¢ # v. Step 1 applied to the point ¢ instead of @ implies that there
exists d € g} Na5\ {c}, d between ¢ and v on both g’ and g5, such that the 7 -bigon
formed by ¢ and g’ of endpoints ¢, d is contained in some B" € 8.

Since ¢ # v it cannot be contained simultaneously in £, and in £,. Assume that
¢ &€ £1. Then ¢ is in the interior of a simple 7 -bigon formed by g1 and &£;. According
to (3) this 7 -bigon is contained in some B” € B. The intersections By N B” and
B’ N B” both contain non-trivial sub-arcs of g/, therefore By = B” = B’. Thus the
point d is in the set & and it is strictly between ¢ and v on g/. This contradicts the
choice of c.

We conclude that ¢ = v. O

4. Asymptotically tree-graded metric spaces

4.1. Definitions and properties. Let (X, dist) be a geodesic metric space and let
A = {A; | i € I} be a collection of subsets of X. In every asymptotic cone
Cong, (X: e, d), we consider the collection +,, of limit subsets

{flim (4;,) | i = (1,)® €I® such that there exists an M; with
w

the property dist (e, A;,) <o M; dn}.

Definition 4.1. The metric space X is asymptotically tree-graded (ATG) with respect
fo A if every asymptotic cone Con,, (X; e, d) is tree-graded with respect to #,,.

Following Convention 1.4, in the rest of the paper we shall assume that all ATG
metric spaces are proper, that is, no subset A € # contains X in a tubular neighbor-
hood of it.

The ATG property 1s meant to be an extension of the property of (strong) relative
hyperbolicity from groups to metric spaces. Theorem 1.5 emphasizes that it is the
correct property to work with.
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Remark 4.2. Let X be ATG with respectto A = {A4; | { € I}.

(1) It is easy to see that for every v > 0, the space X is ATG with respect to
{Ne(A) | i e T}

(2) More generally, let B be a collection of subsets of X such that there exists a
constant K > 0 and a bijection ¢p: A — B verifying disty (A, ¢(A)) < K.
Then X is ATG with respect to B.

The notion of ATG metric space can also be defined by a list of geometric con-
ditions, without involving asymptotic cones. First we introduce some notation and
terminology.

Notation 4.3. For a given quasi-geodesic p and an r > O we denote by p, the set
P\ N ({p—. p+})

We say that a metric space P is a geodesic (quasi-geodesic) k-gonal line if it is
a union of k geodesics (quasi-geodesics) a1, - - -, ax such that (a;)+ = (gi+1)- for
i = 1,...,k — 1. If moreover {(ax)+ = (q1)— then we say that P is a geodesic
(quasi-geodesic) k-gon.

Let P be a quasi-geodesic polygon, with set of vertices V. Points in P \ 'V are
called interior points of P.

Notation 4.4. Given a vertex x € V and q, g’ the consecutive edges of P such that
x = g+ = a’_, we denote the polygonal line P \ (q U q") by O, (P). When there is
no possibility of confusion we simply denote it by O,..

Let p € P. The inscribed radius in p with respect to P is either the distance
from p to the set O, if p is a vertex, or the distance from p to the set P \ q if p is
an interior point contained in the edge q (see Figure 3, taken from [DS05b]).

Figure 3. Properties (Fat;) and (Faty).
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Definition 4.5 (fat polygon). Let6 > 0,0 > l and v > 4. We call a k-gon P with
quasi-geodesic edges (6, o, v)-fat if the following properties hold:

(Faty) (large inscribed radii in interior points, large comparison angles) for every
edge g we have, with the notation 4.3, that

dist(do6 ., P\ a) = 0;

(Fata) (large inscribed radii in vertices, large edges) for every vertex x we have
that

dist(x, Oy) = ve.
When o = 2 we say that P is (6, v)-fat.

Lemma 4.6, Let P be a polyvgon (0, 0,v)-fat for some 8 > 0,0 > 1l and v > 4o.
Then any two edges of P without a common vertex are at distance at least 6 from
each other.

Proof. Letg and g’ be two edges without a common vertex. Assume that there exists a
point @ € g such that dist(a, q"} < 8. Property (Faty ) implies that a € N¢ ({x, y}),
where x, y are the endpoints of . Property (Fat,) implies that dist ({x, v},q") > v6.
Therefore dist(a, q') > (v —o0)6 > 308 > 36. This contradicts the assumption that
dist(a,q’) < 6. ]

The following lemma describes a situation in which given two consecutive edges
of a geodesic polygon, any two points on each of these edges which are at distance
at least 26 from the common vertex are at distance at least € from one another.

Lemmad.7. Let P be a geodesic polygonwith two consecutive edges [x, yland [y, z]
such that dist(x, [y, z]) = dist(x, v}. Then both the distance from [x, y] \ B(y, 26)
to [y, z|, and the distance from [v, z] \ B(y,20) to [x, v] are at least 6.

Proof. 'The distance from [x, y] \ B(v,286) to [v, z] is 28 because of the hypothesis
that dist(x, [y, z]) = dist(x, y).

Now assume that there exists p € [v,z] \ B(y,20) and p’ € [x, y] such that
dist(p, p’) < 8. Then dist(y, p’) > dist(y, p) — dist(p, p’) > 6 > dist(p, p’).
It follows that dist(x, p) < dist(x, p’) + dist(p’, p) < dist(x, p’) + dist(p’, y) =
dist(x, y). This contradicts the fact that dist(x, [y, z]) = dist(x, y). O

We shall also need in the sequel a way of obtaining from a fat k-gon a fat (k + 1)-
gon. This is described in the next lemma.
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Lemma 4.8. Ler P be a geodesic k-gon with two consecutive edges [x, y] and [y, z],
such that dist(x, [y, z]) = dist(x, ). If P is (0,v)-fat then the (k + 1)-gon P’
obtained from P by adding as a vertex the point v € [x, y] with dist{v, y) = % is
(6, %)-fat.

12

Proof. Property (Faty) for P’ follows easily from property (Fat;) for P.

Property (Fat,) holds for all the vertices different from x, v, y, by property (Fat,)
in P.

The polygonal line O, (P") = O(P) U [v, y] is in the % -tubular neighborhood
of @,(P), hence at distance at least % from x.

The polygonal line @, (P’) is equal to O, (P) U [x,v]. The line O,(P) is at
distance > v from y and [x, v] is at distance % from y.

Finally, O,(P') = O,(P) U [y.z]. Since dist(v,y) = * it follows that
dist (v,0,) > 2. If there exists p € [y,z] such that dist(v, p) < £ then
dist(x, p) < dist{x, v) +dist{v, p) < dist(x, v)+ % = dist(x, y). This contradicts
the hypothesis that dist(x, [y, z]) = dist(x, y). O

A metric space X can be defined to be asymptotically tree-graded with respect to a
collection of subsets 4 without using asymptotic cones, simply by putting conditions
on intersections of tubular neighborhoods of subsets in #, and on the behavior of
geodesics and of fat polygons with respect to such neighborhoods.

Theorem 4.9 (|DS05b], Theorem4.1 and Remark 4.2 (3)). Let (X, dist) be a geodesic
metric space and let A = {A; | i € I} be a collection of subsets of X. The metric
space X is asymptotically tree-graded with respect to A if and only if the following
properties are satisfied:

(1) For every § > O the diameters of the intersections Ns(A;) N Ns(A;) are uni-
Sformly bounded for alli # j.

(ay) There exists e in [O, %) and M > O such that for every geodesic g of length £ and
every A € A with q(0), g(£) € N (A) we have that q([0,£]) N Ny (A) #£ .

(aez) For everyv k > 2 there exist 8 > 0, v > 8 and y > 0 such that every k-gon
P in X with geodesic edges which is (0, v)-fat satisfies P C N, (A) for some
A € A,

Remarks 4.10 ([DS05b], Theorem 4.1 and Remark 4.2). (1) Property (o) from
Theorem 4.9 is a slight modification of the similar property appearing in Theorem 4.1
in [DSO5b]. Nevertheless it implies property (ag) from [DS05b, Remark 4.2, (3)],
which accounts for the accuracy of the modified statement.

(2) As a necessary condition, (o2 ) can be strengthened to “for every & from [O, %)
there exists M > 0 such that etc.”
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Notation 4.11. We denote by diamg a uniform bound provided by property (¢ ) for
an arbitrary § > 0.

Remarks 4.12 (on the condition that pieces cover the space). (1) In property (73)
of the definition of a tree-graded space (Definition 3.1), we might allow for trivial
geodesic triangles, that is, we might ask that pieces cover the space. This would also
change the definition of an asymptotically tree-graded space; in Theorem 4.9 in order
for the equivalence to hold the following condition would have to be added:

(ctg) there exists 7 > Osuch that X = .4 N (4).

The difference between these definitions of (asymptotically) tree-graded spaces
and the ones that are actually used in the paper consists in the addition of a set of
singletons to the collection of pieces & (respectively, to the collection of subsets #4).
Indeed, if (X, A) satisty only (o), (¢2), (@3) but not (¢ ) then it suffices to add some
singletons to # in order to ensure (cp). For some v > O considerin X \ | 4. 4 Nr(A4)
a maximal subset g with the property that dist(p, p’) = t for every p, p’ € g.
The space X coincides with ., Nz(A4) U Upep N ({p}). Properties {c;) and
(c2) are obviously satisfied by singletons, whence X is ATG with respect to A =
AU pt| p € p}; moreover A’ also satisfies (o).

(2) Let H? be the 3-dimensional real hyperbolic space and let (Hbo,)en be
a countable collection of pairwise disjoint open horoballs. The complementary
set Xo = X \ |,eny Hbon and the collection of boundary horospheres A =
{dHbo, | n € N} is the typical example one has in mind when trying to define rel-
ative hyperbolicity for metric spaces. The pair (Xj, #4) does not in general satisfy
(o), one has to add singletons to # to ensure that property. In order to remove
this inconvenient, we have given up the condition that pieces cover the space in the
Definition 3.1 of tree-graded spaces.

Remark 4.13. If X is a metric space ATG with respect to 4, and a group G acts
J -transitively (in the sense of Definition 2.1, with X > 0) by isometries on X, G
permuting the subsets in A, then property («) is satistied with 7 = K.

It is for instance the case when X is itself a group and A is the collection of left
cosets of a family of subgroups.

4.2. Property (T2) and polygons with limit edges. Property («3) in the definition
of ametric space X ATG with respect to a collection # (requiring thatfat polygons stay
in tubular neighborhoods of subsets in #) is used to prove property (75 ) in an arbitrary
asymptotic cone of X with respect to the collection of limit sets #4,, (requiring that
simple non-trivial geodesic triangles are contained in pieces from A, ). If X is such
that any geodesic in an asymptotic cone of it is a limit geodesic (for instance if X is a
CAT(0) metric space) then it suffices to have property («3) for fat hexagons, that is:
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(B3) there exists # > 0, v > 8 and y > O such that any geodesic hexagon (6, v)-fat
is contained in N, (A), for some A € A.

This is due to the following general fact.

Proposition 4.14. Let (X, dist) be a geodesic metric space and let 8 > 0 and v > 8
be two arbitrary constants. In any asymprtotic cone Cony, (X ; e, d), any simple non-
trivial triangle whose edges are limit geodesics is the limif set lim,, (Hy,) of a sequence
(Hy,) of geodesic hexagons that are (8, v)-fat w-almost surely.

Proof. Consider a non-trivial simple geodesic triangle A in an asymptotic cone
Con,, (X:e,d), whose edges [a,b], [b, c] and [c, a] appear as limit sets of sequences
[ctn, b}, [Bn, )] and [cy, a),] of geodesics in X . Wehave thatdist{a,, a,), dist(b,, b))
and dist(c,, c,) are of order o(d,) w-almost surely.

Let d be the maximum between dist([ay,, b%], [a,, ¢4]) and v8. Notethatd! > 0
and thatd2 =,, o(d,). Takea} to be the farthest from a,, pointon [a,, b, ] at distance
d 4 from [a , cn]. Consider then a2 the farthest from a/, point on [a/,, ¢,] at distance
d! A from a,. Obviously dist(a), a n) =i,

The pairs of points (bl,52) in [b,, ¢ n] x [b!,an], and respectively (¢}, ¢2) in
[cn,al] x [c}, bu] are Chosen similarly. Since the limit trlangle A is simple, it fol-
lows that the sets {a,, al,.a}, a2}, {b,, bl b}, b2} and {c,, c,, ¢}, ¢2} have w-almost
surely diameters of order o(d,). Hence the sequence of geodes1c hexagons H, of
vertices al, b2, bl c2, ¢}, a2 with edges [al,b?] C [an, b, [b},c2] C [bn.cl],
[el, a2] C [cn,al], has the property that lim,, (Hy,) is A. It remains to prove that H,
is w-almost surely (4, v)-fat.

(Faty): The fact that the edge [a}, a2] is at distance O(d,,) from [b2, b ] U[bL, 21U
[¢2, c!] and TLemma 4.7 imply that [a}, a2] satisfies property (Faty).

In the same manner it can be shown that the edges [b},52] and [c], ¢2] satisfy
(Fatyq).

The edge [a], b2] is at distance O(dy) from [¢], ¢2
pair (b1, h2) implies that [a], 2] is at distance at least v6 from [h]
e 477 alloss 1o conclude M [al, b2] satisfies (Faty).

Similar arguments show that the edges [b!, c2] and [c]

¢?]. The choice of a and of the
] U [eg

n’n n’n

ol 1. a2] satisfy (Fatl)
(Faty): The distance from a, to [a2,c]] is at least v6 by the choice if @), while the
distance to [b2, b} U [b], n] Ulc2, ¢l is O(dy). The same kind of argument shows

that (Fat,) is satisfied w-almost surely by all the vertices of H,,. O

In general not every geodesic in an asymptotic cone is a limit geodesic (see the
example in the end of Section 2.2). Thus, in order to ensure that in every asymptotic
cone every non-trivial simple geodesic triangle is contained in some limit set from
A (1.e. property (T3)), in [DSO5b] property (w3 ) is required for all fat polygons, not
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just for hexagons, and it is combined with the fact that limit sets are closed, and with
the following result.

Lemma 4.15 ([DSO5b], Proposition 3.34). Ler A be an arbitrary simple geodesic
triangle in Cony, (X e,d). Foreverye > O sufficiently small there exists kg = ko(g)
and a simple geodesic triangle A, with the following properties.

(a) distg (A, Ag) <&/
(b) Ag contains the midpoints of the edges of A;
(c) for every 6 > O and v > 8 the triangle A, is the limit set lim,, (Pf) of a

n

sequence (PF) of geodesic k-gons in X, for some k < ko, that are (0, v)-fat
w-almost surely.

Remark 4.16. If A is non-trivial then the set of midpoints of edges of A has cardi-
nality 3, hence the triangles A, are also non-trivial.

In this section we prove that if in every asymptotic cone property (77) holds for
the collection of limit sets A, (that is, two distinct sets in 4, intersect in at most
one point), then property (83} for the collection #, granting that fat hexagons stay in
tubular neighborhoods of subsets in #, suffices to deduce property (T3) for A, (i.e.
that every simple non-trivial geodesic triangle is contained in a set from #A,, ). To this
end, we define the following property in an asymptotic cone Con,, (X; e, d):

(I1g) every simple non-trivial k-gon with edges limit geodesics is contained in a
subsel from A,,.

Corollary 4.17. Assume that in an asymptotic cone Con,, (X; e, d) a collection A,
of closed subsets satisfies properties (T1) and (I1g) for evervk € N, k > 3. Then
A satisfies (T>).

Proof. Consider a simple non-trivial geodesic triangle A in Con, (X;e,d). By
Lemma 4.15 for every large enough & € N there exists a simple non-trivial geodesic
triangle Ay at Hausdorff distance at most % from A, containing the midpoints of

the edges of A, moreover A; = lim,, (P,,fk)), where P%) is n-w-almost surely a
geodesic m-gon, m = m(k). By property (I1,,) the triangle A is contained in some
Ap € A,. All Ag contain the midpoints of the edges of A. Property (T7) implies
that there exists A € 4, such that Ay = A for all k. All Ay are in A, A is the limit
of Ag with respect to the Hausdorff distance, and A 1s closed, therefore A C A. O

In view of Corollary 4.17 it suffices to prove that 4., satisfies (I1;) forall k > 3
to deduce that +,, satisfies property (73).

Obviously (I ) implies (I1;) for every i < k. It turns out that with the additional
assumption that (77) is satisfied, the converse implication also holds.
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Lemma 4.18. Assume that in an asymptotic cone Con,, (X;e.d), the collection of
subsets A, satisfies the properties (T ) and (I13). Then A, satisfies property (Iy)
for everyk = 3,

Proof. We prove property (I1;) by induction on k. The cases k = 2 and k = 3 hold
by hypothesis. Assume that the statement is true for every k& < m — 1 and consider
a simple non-trivial geodesic m-gon P in Cony, (X;e,d), m > 4, with edges limit
geodesics.

Let [x, v] and [y, z] be two consecutive edges of P, in clockwise order. Denote
by £ the union of the two edges [x, y] U [y, z] of P, and by £ the union of the other
m — 2 edges of P, in clockwise order.

Consider a limit geodesic g joining x and z. If g coincides with &£; or with £
then P is a simple geodesic polygon with at most m — 1 edges, all of them limit
geodesics. By the inductive hypothesis P is contained in a subset 4 in A,.

Assume that g does not coincide either with &£ or with £.

Step 1. We prove that g U £ is contained in some A € A,,.

Leto € £\ g. Lemma 3.7 implies that « is in the interior of a simple 7 -bigon
formed by £ and g, of endpoints @ and b, with a closer to x than » on £. This
7 -bigon is a geodesic polygon with at most m — 1 edges which are limit geodesics,
therefore by the inductive hypothesis it is contained in a subset A € A,,.

If a = xand b = z then g U £ is a simple 7 -bigon and it is contained in some
A € A, by the inductive hypothesis. Assume therefore that (a, b) # (x, z). Without
loss of generality we may assume that a # x.

We apply Proposition 3.9 to £, g1 = g, and g, = £, the sub-arc of £ in
between x and «. Property (3) is satisfied by the hypothesis of the induction. It
follows that the 7 -bigon formed by g and £ of endpoints x and « is contained in
some A € A,.

The pointa isin £\ £, henceitisin g\ £;. By Lemma 3.7, a is in the interior
of some simple 7 -bigon formed by £, and g, and by (I13) this 7 -bigon is in a subset
Al € A,,. Since A7 N A and A N A contain non-trivial sub-arcs of g property (77)
implies that A = A} = A;.

If moreover b # z, a similar argument gives that the 7 -bigon formed by g and
£ of endpoints z and & is contained in A (see Figure 4).

£

A @G A
X \—/1 A 2 z q
4 4, %

Figure 4. Step 1 in the proof of Lemma 4.18.
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We conclude that g U &£ is contained in A.

Step 2. We prove that £ is also contained in A. Property (I13) implies that any
non-trivial simple ¥ -bigon formed by &£, and g is contained in a subset in #A,,. We
apply Lemma 3.8 to £ and ¢ C A and we conclude that £; C A. Consequently A
contains £1 U £ = P. O

Corollary 4.19. Assume that in an asymptotic cone Cony, (X ; e, d), the collection of
closed subsets A, satisfies properties (T1) (two distinct subsets from ., intersect in
at most one pointy and (I13) (simple non-tfrivial triangles with edges limit geodesics
are contained in subsets from Ay). Then A, satisfies property (T) (i.e., all simple
non-trivial geodesic triangles are contained in subsets from Ay).

Corollary 4.20. Let X be a geodesic metric space and 4 a collection of subsets in X,
such that property (3) is satisfied (i.e., fat hexagons are contained in tubular neigh-
borhoods of subsets from #), and such that in any asymptotic cone Con,, (X;e,d),
the collection of limit subsets A, satisfies property (T1). Then A, satisfies prop-

erty (T3).

Note that the only thing missing in Corollary 4.20 to conclude that X is ATG with
respect to # is that A, is composed of geodesic subsets.
Another useful consequence of Proposition 4.14 is the following.

Corollary 4.21. Let (X, dist) be a geodesic metric space. Assume that for some
8 > O and v > 8 the set of (8, v)-fat geodesic hexagons is either empty or composed
of hexagons of uniformly bounded diameter. Then X is hyperbolic.

Proof. Proposition 4.14 implies that in any asymptotic cone of X any simple triangle
with edges limit geodesics 1s trivial. This statement can be extended by induction to
all polygons. Indeed, suppose that in any asymptotic conec of X forall3 <k <m—1
all simple k-gons with edges limit geodesics are trivial. Consider P a simple m-gon
with edges limit geodesics in some Con,, (X;e,d). Let [x, y] and [y, z] be two
consecutive edges of P and let g be a limit geodesic joining x and z. All simple
T -bigons formed by [x, y] U [y, z] and g must be trivial by the inductive hypothesis,
thus g = [x, y] U [y, z]. Tt follows that P is a simple (m — 1)-gon with edges limit
geodesics, hence by the inductive hypothesis it is trivial.

Lemma 4.15 and Remark 4.16 imply that in any Cong, (X;e,d) any simple
geodesic triangle must be trivial. It follows that Con,, (X;e,d) is a real tree, and
since this holds for all asymptotic cones we conclude that X 1s hyperbolic ([Gro93,
§2.4], see also [Dru02, §3]). ]

4.3. New definitions, useful for the rigidity of relatively hyperbolic groups. In
this section new versions of the definition of an ATG metric space are stated and
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proved. They play an important part later on, in the proof of the quasi-isometric
invariance of relative hyperbolicity.

Theorem 4.22. In Theorem 4.9 the following modifications can be made in the list
of properties defining an asymptotically tree-graded metric space:

(Modif,) property («3) requiring that fat polygons stay in tubular neighborhoods of
subsets in A can be replaced by property (B3) requiring the same thing but
only for hexagons;

(Modify) property (az) can be either maintained or replaced by one of the following
Iwo properties.

(B2) there exists € > O and M > 0 such that for any geodesic q of length £ and
any A € A satisfying §(0), g(£) € Neg(A), the middle third g ([, Z]) is
contained in Ny (A);

(Qconv) (uniform quasi-convexity of pieces) there exists t > 0 and Ky > 0 such
that for every A € A, K > Ky and x,y € Ng(A), every geodesic joining
x and y in X is contained in N, g (A).

Proof. Assume that X is ATG with respect to 4. We prove that (X, 4A) satisfies
properties (f,) and (Qconv). Property (f3) is obviously satisfied, as it is a particular
case of property («3).

The uniform quasi-convexity condition (Qconv) is satisfied by Lemma 4.3 in
[DSO5b].

Property (82) can be obtained for any € < é, where ¢ is the constant from
(Qconv), as follows. Consider a geodesic g of length £ and A € 4 as in (85). We
may assume that e£ > Ky, otherwise g would be contained in N Ko By (Qconv) the

geodesic g is then contained in N;e¢(A). If 6 = te < % then by Theorem 4.9 and

Remark 4.10 there exists M = M () such that g([0, £]) and g([%¢, £]) intersect

Ny (A). Uniform convexity implies that g ([% , %
M’ = max(M, Dy).

It remains to prove the converse statements in Theorem 4.22, 1.¢., that any of
the triples of properties {(¢1 )& ()& (3), (1) &(B2)&(B3) or (a1)&(Qconv)&(f3)
implies that X is AT'G with respect to 4. We begin by proving that the first two triples
of properties are equivalent to the last one.

The implication (aq)}&(a2) = (Qconv}) is proved in [DS0O5b, Lemma 4.3].

]} is contained in N;psr (A), where

(a1)&(B2) = (Qconv). The constant Ky in (Qconv) is taken equal to the constant
M in (f,).

Suppose by contradiction that for every n € N* there exists 4, € A, K,, > M
and x,, v, € Nk, (A,) such that a geodesic [x,. y,] is not contained in N, g, (4,).
For each n € N* we define D, to be the infimum over the distances dist{x,, y,)
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between pairs of points satisfying the properties above for some set in #. In what
follows we assume that we chose x,, v, atdistance 4, < D, + 1 of each other. Since
[Xn. yul 1810 N5, ;5 ({Xn, Yn}) C N, 24k, (An) it follows that Tl_zé'n > K,. In
particular for n large enough K, < €6,, where € > O1is the constantin (83). Itfollows
that the middle third [ay, b, ] of [x,, v,] is contained in N (A,). Since K, > M, the
fact that [xy, va| & MNuk, (An) implies that either [x,,, a,] or [b,, 5] 1 not contained
in Nyg, (Ag). Tt follows that D, < ‘%" < £ "3+1, hence that the sequence (Dj) is
uniformly bounded. This contradicts the fact that D, > (2n —2)M .
(01)&(Qeonv)&(B3) = (w2), (B2). Letg: [0,£] — X beageodesic with endpoints
x = g(0)and y = g(£) contained in N.y(A) for some A € A. We shall prove that
for a fixed positive constant D, the geodesic g intersects Np (A4).
According to (Qconv), the geodesic g is contained in N,z (A).

Notation 4.23. We denole ¢ by € and we assume in what follows that e < é. We
denote by D the maximum between 1Ky + 4v 6, y and diamg (with the notation4.11)
for § = max(y,tKyp). Here t and Ky are the constants appearing in (Qconv), while
v, 8, y are the constants appearing in (f3).

Suppose by contradiction that g does not intersect Np (A). Note thatsince ef > D
it follows that £ > 8D.

Consider x” and y’ points in A such that dist(x, x”) and dist(y, y’} are at most &£,
By (Qconv), a geodesic g’ joining x” and y’ is contained in Nk, (A).

Letc € g and ¢’ € g’ be two points such that dist(c, ¢’) = dist(g, g¢’). Without

loss of generality we may suppose that dist(x, c) > towe may also suppose that

dist(x, x") = dist(x, g¢’}. In order to transform the 4—g20n of vertices x, x’, ¢, ¢, into
a fat polygon we make the following choices. Let x; be the point on g between x
and ¢ which is farthest from x and at distance at most 2v8 from [x, x’]. Let x5 be the
farthest from x point on [x, x’] which is at distance 2v 6 from x;.

We prove in the sequel that the geodesic pentagon of vertices x1, x2, x", ¢/, ¢ is
(6, 2v)-fat. To simplify we shall denote its edges by [v, w] if v, w are two consecutive

vertices, keeping in mind that [xy, ¢] C g and that [x", ¢/] C q.

(Faty): Apointin[c,c]\ Mg ({c, c'}) is at distance at least (3 — 2¢) £ from [x, x'],
hence at distance at least (% —2e) £ —2v8 of [x1,x5]. Since £ > 8D > 32v6, it
follows that [c, ¢'] \ NMag({c, ¢}) is at distance at least & from [x1, x2] U [x2, x'].

The choice of ¢, ¢’ implies that all points in [c, ¢’ \ Mg ({c,c’}) are at distance
at least 26 from g and from ¢’.

The points in [xq, ¢]\ Nag ({x1, ¢}) are at distance at least D —¢ K from g’, and at
distance at least 2v 6 from [x;, x’]. Lemma 4.7 allows to conclude that [x, c] satisfies
property (Faty).

The distance between [x1. x] and [c, ¢] is at least (5 — 2¢) £ — 2v8, and the one
between [xq, x,] and [x’, ¢] is at least D — 1Ky — 2v6. Thus, it suffices to verify
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that the distance between [xy, x5] \ Nag({x1.x2}) and [¢, x1] U [x5, x'] is at least 6.
According to the choices of x1, x, this distance is 26. This, and Lemma 4.7 also
imply that [x,, x'] satisfies (Fat; ).

The fact that the edge [x’, ¢] is at distance atleast D —1 Ky —2v 6 from gU[x1, x2],
together with Lemma 4.7, imply that [x', ¢/] satisfies (Faty ).

(Faty): The vertex ¢’ is at distance at least D — tKy — 2v6 from [c¢, x1] U [x1, x2]
and at distance at least (3 — 2¢) £ from [x2, x].

The vertex ¢ is at distance at least D — 1K from [x’, ¢/] and at distance at least
(% —2€) £ — 2v# from [xq, x3] U [x, x'].

We have chosen x; at distance 2v8 from [x,, x’]. The same vertex is at distance
atleast D — 1K, from [x, ¢'], and at least (5 — 2¢) £ — 2v8 from [c, ¢].

Similarly, x5 is at distance 2v#6 from [x1, ¢], at distance at least (3 — 2¢) £ — 206
from [c, ¢/] and at least D — tKy — 2v# from [x/, ¢/].

The vertex x” is at distance at least D — ¢t Ky — 2v6 from [c, x1] U [x1, x3] and at
least (% — 2€) £ from [, ¢'].

The pentagon of vertices x1, xo, X', ¢, cis (¢, 2v)-fat. Lemma 4.8 and the fact that
dist(c, ¢’) = dist(c, [¢/, x’]) implies that by adding a vertex on [c, ¢] this pentagon
becomes a hexagon (6, v)-fat. Therefore by (f3) it is contained in N, (A”) for some
A" € A, Inparticular the edge [x/, ¢'] is contained in N, (A") N Nk, (A). This edge
has length at least % > 2D and D is at least diamg for § = max(y, tKp). It follows
that A = A’ and that D < y, which is a contradiction.

We conclude that property (3 ) is satisfied for e < S—It and for D chosen above.

Property (f>) is obtained as follows. If a geodesic q: [0, £] — X joins two points
in Ns¢(A) thenitis contained in Nys¢(A4) by (Qconv). If § < 5 then by (a2 ) the sub-
geodesics g([0. g]) and g([%,ﬁ]) intersect Mps(A). Then by (Qconv), g([%, 2—35])
is contained in N;p7(A).

In order to finish the proof of Theorem 4.22 1t now suffices to prove the following.

(o1& (02)&(Qeonv)&(B3) = X is ATG with respect to A in the sense of Defini-
tion 4.1.

In an asymptotic cone Con,, (X; e, d), the limit sets in #A,, are closed. Property
(Qconv) easily implies that all subsets in #4,, are geodesic,

The fact that two distinct limit subsets from 4, intersect in at most a point (i.c.,
property (77)) is deduced from (1) and (o) as in [DSO5b, Lemma 4.5]. Properties
(T1)&(B3) imply that non-trivial simple geodesic triangles are contained in subsets
from A, (i.c. property (72)) by Corollary 4.20. O

In the new definitions of ATG metric spaces provided by Theorem 4.22 property
(B3) can be still weakened, in the following sense.

Proposition 4.24. For any n > 0 property (B3) can be replaced in Theorem 4.22 by
the following version of it, in which only large hexagons are taken into account:
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(B1) there exists 6 > 0, v > 8and y > 0 such that any geodesic hexagon (6, v)-fat
of diameter at least n is contained in N, (A), for some A € A.

Proof. Indeed, as a sufficient condition (f3) is used in combination with Proposi-
tion 4.14 to prove that in any asymptotic cone property (IT3) holds (i.c., every simple
non-trivial triangle with edges limit geodesics is contained in a limit set lim,, (A4,)
with A, € A).

Given, in an asymptotic cone, such a simple non-trivial triangle with edges limit
geodesics, and the sequence of hexagons H, provided for this triangle by Proposi-
tion 4.14, the sequence of diameters of H, has w-limit co. Property (87) suffices
therefore to obtain property (I13).

Property (f3) is also used in the proof of Theorem 4.22, combined with {(«) and
(Qconv), to deduce property (c2). There also it can be replaced by (87), for any large
7. Indeed, it suffices to take, in the proof of the implication (v1)&(Qconv)&(B3) =
(c2), the constant D larger than r Ky + 7 to obtain that the geodesic pentagon with
vertices x1,x2,x’,¢’, ¢ has diameter at least dist(c,c¢’) > D —tKy > n. That
pentagon is (6, 2v)-fat, hence by Lemma 4.8 it can be made into a hexagon (6, v)-
fat of diameter larger than 7; therefore by (83) it is contained in N, (4’) for some
A" € A. The rest of the argument is carried out similarly. O

Corollary 4.25. Let AL, be the set of A € A such that Ny (A) contains a (6, v)-fat
geodesic hexagon of diameter at least n. Then the space X is ATG with respect
10 A

red*

Proof. Since A, C A, and A satisfies («1) and (B2), the same properties are
satisfied by A, Property (A7) is also satisfied by A, hence by Proposition 4.24,

red* red?

X is ATG with respect to A . O

Corollary 4.26. For every A > O the space X is also ATG with respect to the subset
Ay in A composed of all the subsets of diameter at least A in A.

Proof. Indeed 4, C A implies that properties (c;) and (85 ) are satisfied by 4.
Let 7 = A + 2y. Then AL, C s, which implies that property (87) is satisfied
by 4. By Proposition 4.24, X is ATG with respect to #4 . O

4.4. New definition, closer to the definition of hyperbolicity. In[DS05a] a version
for groups of the following notion has been introduced.

Definition 4.27. Let X be a geodesic metric space and let A be a collection of
subsets of X. We say that X is (x)-asymptotically tree-graded with respect to A if
for every C > 0 there exist two constants o and é such that every triangle xyz with
(1, C)-almost geodesic edges is in one of the following two cases:
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(C) there exists @ € X such that B(a, o) intersects each of the sides of the triangle;

(P) there exists A € + such that N (A) intersects each of the sides of the trian-
gle, and the entrance (resp. exit) points xq, yq, 2y (resp. yz, z2, x2) of the sides
[x, ¥], [v, 2], [z, x] in (from) N, (A) satisfy

diSt()Cl,)Cz) < 4, diSt(y1, yg) <4, diSt(Zl, Zz) < 0.

See Figure 5, taken from [DS0O5b].

¥

Figure 5. Case (P) of Definition 4.27.

In Definition 4.27, (C) stands for “center”, since the point @ is in some sense a
center of the triangle xyz; (P) stands for “piece”, since in this case the triangle xyz
has a central piece.

Remark 4.28. If X is a geodesic metric space in which for some constant o > 0 every
geodesic triangle satisfies property (C), then X is a hyperbolic space. Conversely, in
a hyperbolic geodesic metric space for every L > 1 and C > 0 there exists o > 0
such that every triangle with (L, C )-quasi-geodesic edges satisfies property (C).

Remarks 4.29. (1) If a metric space X is ATG with respect to a collection of subsets
A then X is (x)-ATG with respect to #; this follows from [DS0O5b, Corollary 8.14
and Lemma &8.19].

Moreover, according to [DS0O5b, Corollary 8.14] if a geodesic triangle is in case
(P) then for every ¢’ > ¢ there exists ¢’ such that the pairs of entrance points in
N o+ (A) are at distance at most &’
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(2) The notion of (x)-ATG space is weaker than the one of ATG space. Forinstance
if X is a geodesic hyperbolic space and if A is any collection of subsets covering
X, then X is (x)-ATG with respect to », and the collection #4 needs not satisty
property (o) requiring uniformly bounded diameter for intersections of bounded
radius tubular neighborhoods of distinct subsets in #4, or property (Qconv) requiring
uniform quasi-convexity for subsets in #.

It turns out nevertheless that one can formulate an equivalent definition of ATG
metric spaces using the (x)-property.

Theorem 4.30. Ler (X, dist) be a geodesic metric space and let A be a collection of
subsets of X. The metric space X is asymptotically tree-graded with respect to A if
and only if (X, A) satisfy properties (o1) and («2) from Theorem 4.9, and moreover
X is (x)-ATG with respect to 4.

Proof. The direct implication has already been discussed, we now prove the converse
statement, that is, we prove that (o1 )& (a2)&(x) imply that X is asymptotically tree-
graded with respect to #A.

In order to simplify some technical arguments, we make the assumption that for
all C' > O the constant ¢ in the (*)-property is larger than the constant M appearing in
property (cr2). By Remark 4.29, (1), if X is ATG then such a choice of ¢ is possible.

By [DS05b, Lemma 4.3] properties (¢1)&(«z) imply property (Qconv) on the
quasi-convexity of subsets in #. From this property follows that in any asymptotic
cone Cony, (X; e, d) the collection A, is composed of closed geodesic subsets.

Again (oq)&(xz) imply property (T7) for #A,, (i.e. that distinct subsets from A,
intersect in at most one point). According to Corollary 4.19, in order to conclude
that Cony, (X;e, d) is tree-graded with set of pieces #,, (and thus finish the proof of
Theorem4.30), it suffices to prove property (I13),1i.e., that simple non-trivial triangles
with edges limit geodesics are contained in subsets from #,,.

We split the proof of (IT3) into several steps, which we formulate as separate lem-
mata. The main and most difficult step is Lemma 4.33 stating that (o )& (o) & () im-
ply that fat quadrilaterals stay close to subsets in 4. From Lemma 4.33 it may be first
deduced that property (I1,) is satisfied by A, in any asymptotic cone (LLemma 4.35),
then that property (IT3) is satisfied by 4, (Lemma 4.36).

Lemma 4.31 (entrance points in nested tubular neighborhoods). Let (X, dist) be a
geodesic metric space and let A be a collection of subsets of X satisfving property
(a2) for some € € 10,1/2) and M > 0.

_Letp =v = M, let g be a geodesic and A a subset in A such that g intersects
Nv(A). If ey, and e, are the entrance points of q in N ,(A) and respectively N, (A)
then dist(ey, e,) < £.
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Proof. 1fedist(e,, e,) > p thenby («y) the sub-arc of g between e;, and e, intersects
Ny (A) C N, (A), which contradicts the definition of e,,. O

Lemma 4.32. If (X, A) satisfy properties (x) and (a2) then for every C = 0 there
exist k > 0 and A > 0 such that for any two geodesics g and q’ in X with g— = g’
and dist(g 4., g ) < C the following holds:

(1) any point z on ' is either contained in N (g) or it is contained in N (A) for
some A € A such that N (A) intersects q;

(2) if N (A) intersects g and o', and e, f ande’, f' are the entrance and exit points
from N (A) of g and respectively g', then dist(e, e'), dist(f, f') < A.

Proof. Letpbethepath g U[g+, g/, |. where [g4. g/, ] is a geodesic segment joining
g+ and g/, . Itis a (1, 2C)-almost geodesic. Let o and é be the constants of property
() for 2C, and let z be an arbitrary point on g', dividing g into two sub-arcs, g
and g». The triangle A of edges g1, g2 and p is either in case (C) or in case (P) of
Definition 4.27.

If it is in case (C) then there exist a; € g1, @2 € gz and b € p such that the set
{ay,a,, b} has diameter at most 2¢. The point z is on a geodesic joining @; and a,,
hence it is at distance at most 3¢ from b, thus it is contained in N 35+¢ ().

If A is in case (P) then there exists A € 4 with N 5 (A4) intersecting g1, g2 and p.
Let x1,21, z2, ¥y1 and x2, y» be the entrance and exit points from N, (A4) of g1, g2
and p respectively. Then dist(xy, x3), dist(yy, y2) and dist(zy, z5) are all at most 4.
Since z is on a geodesic joining zy and z3, z € N,y5/2(A). Note that N, (A)
intersects p, therefore N ;1 ¢ (A) intersects g.

Takeic:max(3o—|—C,o—|—g, cr—i—C).

The points x; and y; are the entrance and respectively the exit point of g’ from
N (A). If we consider ¢’ and f' the entrance and exit points of g’ from N ((A),
Lemma4.31 implies that dist(x1, ¢’y and dist(y1. /') are at most 7. Hence dist(e’, x5)
and dist( /", y,) are at most - + 4.

Let e and f be the entrance and exit points of g into (from) & (A). If either x,
or both x; and y, are in g then they are the entrance and respectively the exit point
of g from N, (A4). Lemma 4.31 implies that either dist(x,, e) or both dist(x», ¢) and
dist(y,, /) are at most %, hence that either dist(e, ¢’) or both dist(e, ¢’), dist( £, /)
are O(1).

Assume that y; € [g4.q” ]. Then g is in N (4), hence g4 = f. Tt follows
that dist( f, y2) < C and that dist(f, /') < C + £ + 6.

Assume that x> € [g+, g’ ]. The point g is in N (A), and if edist(e, g4) > «
then q intersects Nys (A) between ¢ and g .

In the beginning of the proof of Theorem 4.30 we made the assumption that for
all C > 0 the constant o in the (x)-property is larger than the constant M in property
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(er2). It follows that Mps(A) C N, (A), hence g intersects N (A) between e and
a+. This contradicts the fact that x, is the entrance point of p into N ,(A). Thus
dist(e, g+) < £ and dist(e, x2) < £ + C, whence dist(e,e’) < 2% + C + 4. O

Lemma 4.33. Assume that (X, dist) is (x)-ATG with respect to A, and that (X, A)
satisfies properties (a1), {(«z) from Theorem 4.9 and the uniform quasi-convexity
condition {Qconv),

Then there exist 6 > 0, v > 8 and y > 0 such that any geodesic quadrilateral
which is (8, v)-fat is contained in N, (A) for some A € A.

Proof. let P be a (#, v)-fat geodesic quadrilateral with vertices x, y, z, w in coun-
terclockwise order. Let [x, z] be a geodesic joining the opposite vertices x and z.

Case 1. Assume that both geodesic triangles x yz and xzw have a center, that is, they
are in case (C) of Definition 4.27. Then there exists a1 € [x, y], az € [y, z] and
as € [x,z] such that the set {aq,a,,a,} has diameter at most 2o. Likewise there
exists by € [z, w], by € [w, x] and b3 € [z, x] such that {bq, b,, b3} has diameter at
most 20. If 8 > 20 thenay,a; € B(y,26) and by, b5 € B(w,286).

& b2 w
N as as \
ﬁK(A),,/ SR
v ||
ay 43 o ay
4 a = - z

Figure 6. Case 1 in the proof of Lemma 4.33.
Without loss of generality we may assume that a3 € [x, bs].

Notation 4.34. For C = max (20, §) we denote by « and A the constants given by
Lemma 4.32.

_ Lemma 4.32 applied to [x,b;] and to a3 € [x,b3] implies that either a3 €
N([x, bs]), or az € N, (A4) such that the entrance respectively exit point, a4, as, of
[x. bs] into (from) N . (A) are at distance at most A from [x, b,]. If @ > 20 + « then
by Lemma 4.6 the first case cannot occur.
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In the second case we have that dist (a3, {a4, as})isatleast 0—20—A. Lemma4.32
applied to [z, a»] and to as € [z, a] implies that either as € N (([z, a»]) or thatas €
N (4") such that the entrance and the exit point ag, a7, of [a3, z] from N . (A’) are at
distance at most A from [z, a»]. The first case cannot occurif > A +«. Inthe second
case dist (as, {ag,a7}) = 6 — 2. The intersection [a3, as] N [ag, as] has length at
least 8 — 20 — 2A. By the uniform quasi-convexity of subsets in 4 (Qconv) this
intersection is contained in N 1 1 {A) N Ny 1(A"). If 6 > 20 +2A +diam, 11 + 1
then A = A’.

The point a4 is the entrance point of [x, b3] in N (A) while ae is the entrance
point of [a3, z] in N (A). If ay € [az, b3] then ay = ag, and this point is at distance
at most A from both [x, w] and [y, z]. If & > 2A then this cannot occur. Thus we may
assume that a4 € [x, a3]. Likewise we have that ay € [b3, z] (see Figure 6).

We apply Lemma 4.32 to [x, @] andto a4 € [x, as]. If we are in the second case of
the conclusion then a4 € N (A"), and the entrance and exit point, a}, ay, of [x, as]
from N (A”) are at distance at most A from [x, a1]. If dist(a4, @} ) > diam;e41 + 1
then A” = A and a4 = aj. Thus, in all cases ay4 is at distance O(1) from [x, a,].
Recall that a is at distance at most A from [x, w]. [t follows that if # is large enough
then ay € B(x,26 + A).

A similar argument gives that a7 € B(z,260 + A).

We have thus that {x,z} C d\_[29+)L+K (A). Also, since {asz, b3} C [aq,a7] C
o 15z (A) it follows that {y, w} C N 20+20+1(A). The quasi-convexity property
(Qconv) applied to A implies that P C N, (A), where y = (20 + A + 20 + k).

Case 2. Assume that the triangle xyz has a central piece, 1.e., it 1s in case (P) of
Definition 4.27, while x zw has a central point, i.¢., it is in case (C). Then there exists
A € A such that &, (A) intersects all the edges of xyz. Moreover if x5, y; are the
entrance and exitpointof [x, y]in N ,(A), while y,, z; and z,, x; are the entranceand
exit points of [y, z] and respectively [z, x] in N (A) then dist(x1.x2). dist(y1, y2)
and dist{z;, z») are at most §.

Let also b1 € [z,w], b» € [w,x] and b3 € [x,z] be such that {h;, b>, b3}
has diameter at most 2o. If 6 > 2o then property (Faty) implies that {61,b2} C
B(w,20).

Case 2.a. Assume that b3 € [x1, z3]. Note that dist(b3, x1) > dist(w, [x, y]) — 26 —
20 — 8 > 66 — 20 — §. Same for dist(b3, z2). Thus for 8 large both dist(b3, x1) and
dist(h3, z» ) are large.

_ Lemma 4.32 applied to x1 € [x,b3] and to [x, b>] implies that either x; €
N ([x. bs]) or x1 € N (A1) such that the entrance and exit points x/, x{ of [x, b3]
from N . (A;) are at distance at most A from [x, b,]. In the latter case if dist(x;, x7) >
diam; where r = rmax(o,k) + 1 then A; = A and x; = x|. Thus in all cases
dist(xy, [x, w]) = O(1). For 8 large enough it follows that x, € B(x,26), hence
x € Nagye(A). A similar argument gives that z € N g4 (A).
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If @ > & then dist(y, y1) < 26 and y € N2g4q(A).
Also b3 € [x1,22] C Nio(A), hence w € N 5426+20(A). We conclude by the
quasi-convexity property (Qconv) that P C N, (A) for some y = O(1).

Case 2.b. Assume that b3 & [x1, z2]. Without loss of generality we may assume that
[xl, Zz] C [x, b3).

_ Lemma 4.32 applied to b3 € [z2,z] and to [zq,z] implies that either b3 €
N([z1,2]) or that b3 € N (B) such that N, (B) intersects [z, z], and if by, b5
are the entrance and exit point of [z, z] from . (B) then these points are at distance
at most A from [zq, z]. For & large enough the first case cannot occur. In the second
case dist(hs, {by, bs}) = dist(w, [y,z]) —A —2(0 +0) = 660 — A — 20.

Applying Lemma 4.32 now 0 by € [x, b3] and to [x, b2] gives that for 6 large
enough by € N (B') such that ¥, (B’) intersects [x, b3], and the entrance and exit
points bg, b7 of [x,b3] from N (B’) are at distance at most A from [x, bs] (see
Figure 7). Moreover dist(by4, {bg, b7}) = 0 —2A. Thus N, (B) N N ;. (B’) contains
[h4, b7] N [b4, b3] of length min(66 — A — 20, 8 — 2A). For 6 large we conclude that
B =R,

x by il
by
y 71 7

Y2

Figure 7. Case 2.B in the proof of Lemma 4.33.

The point bg is the entrance point of [x, b3] into N, (B) while b, is the entrance
point of [z4, z] into N (B). If bg € [z2, b3] then bg = by and dist([y, z], [x, w]) <
2A. For 6 large enough this case is impossible. Thus bs € [x, z2].

The intersection [x1, 2] N[Ps, z2] is in N 15 (A)NN 1 (B). Note that dist(bs, z2) >
8 — A — &, thus for 6 large we may assume that dist{bg,z,) > diam, + 1 with
7 = tmax(o,x) + L.

If dist(xy, z2) < diam; + 1 then {x5, x1, z; } has diameter (1) and we are back
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in Case 1 with a; = x3,a> = z; and a3 = x; and with the constant o possibly
larger. We may then use the proof in Case 1 to finish the argument.

Assume now that dist(xy, zo) > diam; + 1. Then A = B and b5, the entrance
pointof [z, z] into N ((B), is also the entrance pointof [z, x] into N (A). As z3 is the
entrance point of [z, x| into N, (A), Lemma 4.31 implies that dist(z3, b5) = O(1).

By construction b3 € [z2, bs], hence dist(b3,z2) = O(1). On the other hand
dist(h3, z2) > dist(w, [y, z]) — 20 — 26 —§ = 66 — 20 — §. Thus for 6 large enough
we obtain a contradiction.

Case 3. Assume that both geodesic triangles xyz and xzw have central pieces, that
is, they are in case (P) of Definition 4.27. Then there exists A in + such that N (A1)
intersects all the edges of xyz. Moreover the pairs of entrance points in N, (A1),
(x1,x2), (y1, v2) and (z1, z2) are all at respective distances less than §. Likewise
there exists A, in # such that N, (42) intersects all the edges of xzw, and the pairs
of entrance points in N 5 (42), (x7.x5), (21, z5) and (wy, w2 ) are all at distances less
than & (see Figure 8).

X

\ B
/)614,_———4—;3/

X2
Y1 \

Figure 8. Case 3 in the proof of Lemma 4.33.

e

If 6 > & then yq, y2 € B(y,20) and w1, wy € B(w,26).

If Ay = Ay = Athen x; = x}, z = z{, hence dist(x], x») and dist(z, z5) are
less than 25. If 8 > 2§ it follows that x7, xo € B(x,260) and that z,, z; € B(z, 26).
Thus x,y,z,w € Nagys(A), which by (Qconv) implies that P C N, (A) for
x> t(20 + o).

Assume that A; # A,. Then [x;,z;] and [x}, z]] are either disjoint or they
intersect in a sub-geodesic of length at most diam; ;4 ;.
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Let v = r max(o, )+ 1. If either [x, 23] or [x5, 2] ] is of length at most diam, + 1
then either {x,, x1, z1} or {z], 25, x| } is of diameter at most diam, + 14-28. Therefore
we find ourselves in Case 2.B, with the constant o possibly larger. We can then finish
the argument as in that case.

Ifboth [x1, z2] and [x}, z{] have length larger than diam, + 1 and their intersection
is non-empty then either x] and z; or x> and z; are at distance at most 26 + diam;y 1 1.
If & > 26 + diam,4 41 then this is impossible. We may therefore assume that [x1, 23]
and [x}, z{] do not intersect, and are both of length larger than diam, + 1.

Without loss of generality we may also assume that [x;,z2] C [x, x73) holds.
Lemma 4.32 applied to the geodesic [x, x]] and the point z, € [x,x}] implies that
either 2, € N ([x,w]) or 22 € N, (A3), where N (A3) intersects [x, x}], and the
entrance and exit points z3, z4 of [x, x5] in N (A3) are at distance at most A from
[x, x{] (see Figure 8). If & > & + « then the first case cannot occur. In the second
case we have that dist (22, {z3,24}) > 6 — & — A. In particular we may assume
that dist(z,, z3) > diam; + 1. We also have the assumption that dist(x,z;) >
diam; + 1. Then [xy,z3] N [z3, z2] has diameter > diam; and it is contained in
N (A1) N N (A3). Therefore A; = As. In particular z4, the exit point of [x, x3]
from N . (A1), and z, the exit point of [x, z] (therefore also of [x, x5]) from N, (A1)
are at distance O(1) by Lemma 4.31. It follows that z; and [x, w] are at distance
O(1), and if 6 is large enough this gives a contradiction. O

Lemma 4.35. Ler (X, dist) and A satisfy the hypotheses of Lemma 4.33. Then in
any asymptotic cone of X property (I1y) is satisfied by the collection of limit sets Ay
(i.e., any simple non-trivial bigon with edges limit geodesics is contained in a subset
from Ag).

Proof. In an asymptotic cone Con,, (X; e, d) consider a simple bigon of endpoints
x,y whose edges are limit geodesics. Then there exist two sequences of geodesics
[Xn, yn] and [x],, y;,] such that e-almost surely dist(x,, x,) and dist(y,, v, } are of
order o(d,), while dist(x,, v,) and dist(x], ¥/ ) are of order O(d,). Let m, and m/,
be the middlepoints of [x,, v,] and respectively of [x], v, ]. Let &, be the maximum
between dist([x,, m,], [x,,m},]) and v, where 6 and v are the constants provided by
Lemmad4.33. Thené, = ,o(dy,). Similarly, §, = max {dist([#,, v,], [m},, v,]}, v8}
satisfies &), =, o(d,). Let x,ll be the farthest from x, point on [x,, ,] at distance
8n from [x/,, m,], and let x2 be the farthest from x), point on [x),, m/,] at distance &,
from x}. We choose in a similar manner y} € [yn,my,] and y2 € [y, m)]. Since
the limit bigon is simple, it follows that the sets {x,, x/, x}, x2} and {y,, y,, v}, y2}
have diameters of order o(d,) w-almost surely.

We prove that any quadrilateral having as two opposite edges [x.), v1] C [x4, ya]
and [x2, y2] C [x}, v/] is (6, v)-fat. This suffices to finish the argument, making use
of Lemma 4.33.



Vol. 84 (2009) Relatively hyperbolic groups: geometry and quasi-isometric invariance 537

(Faty): By construction dist([x}!, y1], [x2, y2]) > v@, while the edges [x}, x2] and

[y}, y2] are at distance O(d,,) from each other. The rest of the property follows by
Lemma 4.7,

Property (Fat,) follows immediately from the fact that dist([x}, v1], [x2, y2]) >
v and that dist([x, x2], [y1, v2]) = O(dy). 0

n’"n

The following statement ends the proof of Theorem 4.30.

Lemma 4.36. Let (X, dist) be (x)-ATG with respect to A. If (X, A) moreover satisfy
properties (a1) and («2) then in any asymptotic cone of X property (I13) is satisfied.

Proof. 1et Cong, (X;e,d) be an arbitrary asymptotic cone of X and let +4,, be the
collection of limit sets of sequences from . Since (¢1)& () = (Qconv) it follows
that the sets in »,, are geodesic. Also (¢1)&(az) imply that distinct limit sets from
e Intersect in at most one point, i.e. property (77 ).

Let A be a non-trivial simple geodesic triangle in Cony, (X; e, d), whose edges
[x, ¥], [¥, z] and [z, x] appear as limits of sequences [x,, v, ], [Va, z,,] and [z, x],] of
geodesics in X. Then w-almost surely dist(x,, x;,), dist(yy, v, ) and dist(z,, z;,) are
of order o(d,,), while the lengths of [x,, y,], [vn, z,] and [z, x,] are of order O(d,,).
Let T, be a geodesic triangle with vertices x,, v,, Z,. We denote its edges by [u, v],
with u, v € {x,, yu,zn}. The three limit geodesics g* = limg ([v,.2z,]), g7 =
lim,, ([xn, z,]) and g¢* = lim,, ([x, ¥x]) compose the limit triangle 7 = lim, (T5).

Case 1. Assume that w-almost surely the triangle 75, 1s in case (C) of Definition 4.27.
Then there exists a, € [xXp, nl, a2 € [vn,zn) and a’ € [z4, x,] such that the set
{al a2, a’} has w-almost surely diameter at most 20 for some constant o. It follows
that lim, (a) = lim,, (a7) = lim,, (¢}) = a. The point a is on the three edges
of T.

Without loss of generality we may assume that a ¢ {x, y}. The fact that ¢ # x
implies that either g* # [x, yv] or g # [x, z]. Property (I1,) implies that we may
apply Proposition 3.9 to £1 = [x,y], £2 = [x,z], g1 = g%, g2 = g” and to the
intersection point @ € g7 N g”. We conclude that the 7 -bigon formed by g and g”
of endpoints a, x is contained in a subset A, € A,,.

Similarly we deduce that the 7 -bigon formed by g* and g* of endpoints «a, y is
contained in a subset A, € A,,.

Ifa =zthengy, C Ay, ay C Ax. Alsoa ¢ [x, y], which by Lemma 3.7 implies
that a is contained in the interior of a simple 7 -bigon formed by [x, v] and g°. By
property (I1») this 7 -bigon is contained in some A € #A,,. The intersections A N Ay
and A N A, contain non-trivial sub-arcs of g” therefore by (77) we conclude that
A= A, = A,. The subset A contains also g~.

Property (I1,) allows us to apply Lemma 3.8 to the pairs of arcs (g%, [v, z]),
(a”,[x.z]) and (g7, [x, v]) and deduce that A = [x, y] U [y, z] U [z, x] is contained
in A.
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If @ # z then again by Proposition 3.9 the 7 -bigon formed by g* and g’ of
endpoints @, z is contained in a subset A, € #4A,. Since a is not a vertex in A it
1s contained in at most one edge of A, Without loss of generality we assume that
a &[x,y]Uly, z].

The fact that @ ¢ [x, y], Lemma 3.7, properties (I1) and (77) imply as above
that Ay = Ay. Likewise froma ¢ [y, z] we deduce that Ay = A;. Thus A = A, =
A, = A; contains T'. Property (I1) and Lemma 3.8 imply that A is also contained
in A.

Case 2. Assume that w-almost surely 7}, is in case (P) of Definition 4.27. Then there
exist A, in # such that &, (A, ) intersects all the edges of Tj,. Moreover if (x2, y,),
(2, z})and (22, x 1) are the pairs of entrance and exit points from N 5 (A) of [x4, yal,
[Vn, zn] and [z, x,] respectively, then dist(x!, x2), dist(y}, y2) and dist(z} , z2)
are less than 4.

Let ' = lim, (x}) = lim, (x2), ' = lim, (y!) = lim, (y?) and z/ =
lim, (z}) = lim,, (z2).

Assume that {x’, y’, z’} has cardinality at most 2. Assume for instance that x” =
y’. Then the point & = x" = y"isin g* N g” N g®. With the same argument as in
Case 1 we deduce that both 7" and A are contained in some A € A,,.

Assume now that {x’, y’, z’} has cardinality 3. The geodesic triangle T’ of vertices
x’,y', 2z’ and with edges contained in the edges of T is included in the piece A =
lim,, (A,).

Proposition 3.9 implies that the 7 -bigon of endpoints x, x’ formed by g and g”
is either trivial or contained in some A, € #,,. Similarly, the 7 -bigon of endpoints
v, y' formed by g and g* is either trivial or in some A, and the 7 -bigon of endpoints
z,z' formed by g* and g” is either trivial or in some A;.

If x” # x then x’ cannot be contained both in [x, y] and in [x, z]. Suppose that
x" ¢ [x, y]. Then x’ is in the interior of a non-trivial simple 7 -bigon formed by g
and [x, y]. This 7 -bigon is contained in some B, € 4, by (I1;), and its intersections
with A4, and with A contain a non-trivial sub-arc of g®. Hence A, = By = A. Thus
the 7-bigon of endpoints x, x’ is contained in A.

In the same way we obtain that the 7 -bigons of endpoints v, ¥’ and z,z’ are
contained in A. Thus in all cases 7" C A, which by Lemma 3.8 implies that A C A.

L

5. Quasi-isometric rigidity of relatively hyperbolic groups

In this section we prove one of our main results: that if a group is asymptotically
tree-graded then it 1s relatively hyperbolic (Theorem 5.4). We begin by proving an
intermediate result: if a group has an equivariant asymptotically tree-graded structure
then it is relatively hyperbolic.
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Proposition 5.1 (equivariant ATG structure implies relative hyperbolicity). Consider
a finitely generated group endowed with a word metric (G, dist), which is ATG with
respect to a collection of subsets B. Assume moreover that G permutes the subsets
in B.

Then G is either hyperbolic, or hyperbolic relative to a family of subgroups
{Hi, ..., Hy} such that for each H; there exists a unique B; € B satisfving H; C
B; C Ny (H;), where K is a constant depending only on (G, dist) and B.

Proof. Step 1. We first prove that only finitely many subsets in B may contain 1.

According to the quasi-convexity property (Qconv) of B (see Theorem 4.22) there
exists 7 > 0 such that for any x, y in some B € B any geodesic [x, y] is contained
in N; (B). Property («1) for B implies that there exists D, such that for B # B’,
Ne (B) N Ny (B') has diameter at most D.

Assume that B € B contains 1 and has diameter at most 3D,. Then B C
B(1,3D;). As B(1,3D,) is finite, only finitely many B € B can be in this case.

Assume that B contains 1 and has diameter larger than 3D.. Then B contains
some point x with dist(1, x) > 3D.. The geodesic [1, x] is contained in N; (B) and
it intersects the sphere around 1 of radius 2D, S(1,2D-). We define a map from the
set{B e 8|1 e B, diam B > 3D} to the set of subsets of S(1,2D.)}, associating
to each B the non-empty intersection N; (B) N S(1,2D:). By (& ) and the choice of
D, two distinct subsets B, B’ have disjoint images by the above map, in particular
the map is injective. Since the set of subsets of S(1, 2 D) is finite, so is the considered
subset of 8.

Notation 5.2. Tet ¥ = {B1, B2,..., By} be the set of B € B containing 1. For
everyi € {1,2,...,k} let

I ={je{l.2,....k} | gB; = B, forsome g € G}.

Forevery j € I; wefix g; € G suchthat g; B; = B;.
Define the constants K; = max;ez, dist(1, g;) and K = max; ;< K;.

Step 2. We show that for every B € B the stabilizer Stab (B) = {g € G | gB = B}
is a subgroup of G acting K -transitively on B (in the sense of Definition 2.1).

Let x and b be arbitrary points in B. Both subsets 5! B and x ! B contain 1 and
are in B. Tt follows that "' B = B; and x™' B = B, forsome i, j € {1,2,...,k}.
Since b~'xB; = B it follows that j € I; and that B; = g; B;. The last equality
can be re-written as x ' B = g;»~' B which implies that xg;»~' € Stab(B), hence
that x is at distance at most dist(1, g;) from Stab(B)b. This finishes the proof of the
fact that Stab (B) acts K -transitively on B.

In particular we have that

Stab(B;) C B; C Nx (Stab(B;)) foralli € {1,2,... kL. (3)
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Let diam» x be the uniform bound given by property (o) for (G, B)and § = 2K
(see Notation 4.11).

If all the subsets in B have diameter at most diamy g -+ 1 then G is hyperbolic
by Corollary 4.21. Thus, in what follows we may assume that 8 contains subsets of
diameter larger than diamy gz + 1.

Notation 5.3. Denote by B’ the set of B € B of diameter larger than diam,x + 1.
Let ¥ = F NB'. Let F be asubset of F' such that for every B € 5, its orbit
G - B intersects Fy in a unique element (such a subset can be obtained for instance
by considering one by one the elements B; in ', and deleting from ¥ all B; with
Jj € I;, j # i). It follows that for every B € B’, the orbit G - B intersects 5y in
only one element.
Let By,..., B,, be the elements of Fy.

Corollary 4.26 implies that G is ATG with respect to B’. Obviously G also
permutes the subsets in B'.

Step 3. We prove that for every B € B’ there exists a unique j € {1,2,...,m} and
a unique left coset gStab (B;) such that

gStab (B;) C B C Nk (gStab(B;)). (4)

Step 3.a. Existence. Letg € B. Theng™'B € 8’and1 € g7 B,andsog "' B = B,
forsome j € {1,2,...,m}. Thedouble inclusion (3) implies the double inclusion (4).

Step 3.b. Unicity. Assume that gStab (B;) and g’Stab (B;) both satisfy (4), for
j.l€{1,2,...,m} Then

gEj C Nx (gStab (EJ)) C Ny (B) C Max (g’Stab (l_?[)) C Nox (g’E,z) .

Both g B; and g’ B are in 8B, in particular g B; has diameter at least diam, g -+ 1.
Property (c;) implies that gEj — g’ B;. According to the definition of %, this can
only happen if j = /. Then g~'g’ is in Stab (B;), and g’Stab (B;) coincides with
gStab (B;).

Step 4. We prove that the group G is hyperbolic relative to {H,..., H,,}, where
Hj = Stab (Ej)

The fact that G is ATG with respect to B’, Step 3 and Remark 4.2, (2), imply
that G is ATG with respect to {gH; | g € G/H;, j € {1,2,...,m}} . In particular
by (Qconv) each H; is quasi-convex in G, hence each H; is finitely generated.
Theorem 1.5 implies that G is hyperbolic relative to Hy, ..., Hy,.

If G = H; = Stab (B;) then (3) implies that G = B;. O

We are now ready to prove that the existence of an asymptotically tree-graded
structure on a group implies relative hyperbolicity.
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Theorem 5.4. Let (G, dist) be an infinite finitely generated group endowed with a
word metric, which is asymptotically tree-graded with respect to a collection A of
subsets of G.

Then the group G is either hyperbolic or relatively hyperbolic with respect to a
family of subgroups {H1,. .., Hy}, such that each H; is contained in Ny (A;) for
some A; € A, where x is a constant depending only on (G, dist) and .

Remark 5.5. If G is hyperbolic then it is hyperbolic relative to H = {1}. Still, in this
case one cannot state that A is contained in some A, (A) with A € 4, because in the
definition that we adopt of asymptotically tree-graded metric spaces the finite radius
tubular neighborhoods of sets A € A do not cover the whole space (see Remark 4.12).

Remark 5.6. The constant x in Theorem 5.4 can be taken to be the maximum between
the constant M in property (8,) (formulated in Theorem 4.22), and the constant y in
property (f3) (formulated in Section 4.2) of (G, 4A).

Proof. In view of Proposition 5.1, our goal is to construct a new collection of subsets
B with respect to which the group G is ATG, and which is moreover G-equivariant,

Step 1. We begin by constructing the collection 8.

The pair (G, ) satisfies properties (c1), (B2) and (B3). By Corollary 4.21, if
for 8 > 0 and v > 8 from (f3) cither there exists no (4, v)-fat geodesic hexagon in
the Cayley graph of G, or the (6, v)-fat geodesic hexagons have uniformly bounded
diameter, then G is hyperbolic.

Assume from now on that for every > 0 there exists a (6, v)-fat geodesic
hexagon of diameter at least 7.

For x» as in Remark 5.6 and diam,, given by property («1) of 4 (according to
Notation 4.11), consider the set

® = { P geodesic hexagon | P is (0, v)-fat, diam(P) > diam, + 1}.

Let g be an arbitrary element in the group G. The metric space (G, dist) is asymp-
totically tree-graded with respect to the collection of subsets gA = {gA | A € A},
moreover the constants in the properties (1), (f82) and (f3) for g+ arc the same as
for A.

Let P € ®. Then P is contained in N, (gA) for some A € A. If P is also
contained in N, (gA’) for A" € A then N,(A) N N, (A") has diameter at least the
diameter of P, hence at least diam,, + 1, consequently A = A’. Thus P defines a
map

Ap: G —> A, Ap(g)= Asuchthat P C Ny (gA).

We may then define
A: ® > Map (G, A), A(P)y=Ap,
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where Map (G, ») is the set of maps from G to »A. Consider the equivalence relation
on ® induced by A, that is

P ~ P’ < A(P) = A(P") < P and P’ are in the same N, (gA) forall g € G.

Let [ P] be the equivalence class of a hexagon P in ®. To it we associate the set

B[Pl = () M (gAp(2)).

geCG

We consider the whole collection of such sets
B =(B[P]|[Ple @/ ~}.

Step 2. We prove that (G, dist) is ATG with respect to 8.

According to Proposition 4.24 it suffices to prove that (G, B) satisfy property
(1) from Theorem 4.9, property (82) from Theorem 4.22, and property (87) from
Proposition 4.24, for some n > 0. The proof relies on the simple remark that for
every r > 0,

Ny (B[P]) C (] Mrix (gAP ().
gel

We begin by proving property (o) on the uniformly bounded diameter of inter-
sections of tubular neighborhoods of distinct subsets in 8. Let [P] # [P’], which
is equivalent to the fact that there exists go € G such that P C N, (goA4) and
P C N, (goA") with A # A’. For every § > 0,

Ns (B[P]) N N5 (B[P']) C Nstx (g0A4) N Nspx (g04")
= g0 [Ns1x () N Ny (4)].

Property («1) for - implies that the diameter of N5 (B[P]) N N (B[P’]} is
uniformly bounded.

We now prove (f2). Let € be the constant appearing in (8,) for A. Take €’ = 5
and take M’ = %x. We prove that () holds for B with the constants €' and M.

Let g bea geodesic of length £ andlet [P] € &/ ~ besuchthat g(0) and g(£) arein
Nerg (B[ P]). It follows that forevery g € G, g(0) and g(£) arein Neg4, (g Ap(g)).

Ifx 2 § & £ < Ziheng C Nx({g(0),q(0)}) C Ny, (B[P]) =
Nm’ (B[P]).

Assume that x < %E. Then for every g € G the geodesic g
endpoints in N (Ap(g)). Property (f,) implies that g~ g([

in Ny (Ap(g)) C N, (Ap(g)).

We have thus obtained that g([£, 2£]) is contained in N, (gAp(g)) for every

g € G. Itfollows that g ([, Z*]) is contained in B[P].

—1
£
3

g of length £ has its
. 2¢]) is contained
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Property (B7) holds for the constants 6 and v same as in (f3) for #, for the
constant y equal to 0, and » = diam,, + 1. Indeed every P € ®is containedin B[ P].

Step 3. We now show that the group G permutes the subsets in 8.

First we note that if P ~ P’ then gP ~ gP’ for every g € G. Consequently G
acts on the lefton &/ ~,

Indeed, the set Ap(y) is defined by the inclusion P C N, (YAp(y)). For every
g€ G, gP CN,(gyAp(y)). hence Agp(gy) = Ap(y). From this can be deduced
that P ~ P/ = gP ~ gP’,

Next we prove that forevery g € G and P € ®, gB[P]| = B|[gP], thereby ending
the proof of the fact that G permutes the subsets in 8.

The translate gB[P] = [, Nx (gy Ap(y)) is equal o

() Mo (g7 Agr(g0)) = () Mo (¥ Agr(y)) = BlgP].
yeG y'eG

Proposition 5.1 and the statements proved in Steps 2 and 3 imply the conclusion
of Theorem 5.4, L]

An important consequence of Theorem 5.4 1s the following.

Theorem 5.7. Let G be a group hyperbolic relative to a family of subgroups # =
{Hy,...,Hy}. If a group G’ is (L, C)-quasi-isometric to G then G’ is hyperbolic
relative to #' = {H{...., H],}, where each H can be embedded (A, x)-quasi-
isometrically in H; for some j = j(i) € {1,2,...,n}. The constants (A, k) depend
only on (L, C) and on (G, #).

Proof. 1f the group G is finite then the group G is also finite. We assume henceforth
that both groups are infinite.

Let g be an (L, C )-quasi-isometry from G to G’, and let g be its quasi-converse,
such that dist{(g ¢ g,idg/) < D and dist(q o g,idg) < D, where D = D(L,C).
By Theorem 1.5, G is ATG with respect to the collection of left cosets A = {gH; |
g € G/H;, i € {1,2,...,n}}. Theorem 5.1 in [DS0O5b] implies that G’ is ATG
with respect to g(4) = {q(A4) | A € A}. Moreover all constants appearing in the
properties (¢;),i = 1,2, 3 (formulated in Theorem4.9), (8;), j = 2, 3, and (Qconv)
(formulated in Theorem 4.22) for (G’, g (#)) can be expressed as functions of (L, C)
and of the constants in the similar properties for (G, #4).

Theorem 5.4 implies that G’ is either hyperbolic or relatively hyperbolic with
respect to a family of subgroups {H{,..., H, }; moreover each H is contained
in N, (q (A;)) for some A; € A, where x is a constant depending on (L, C), on
the constant M in (8,) for (G, #4), and on the constant y in (83) for (G, A) (see
Remark 5.6).
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Let 71 : Ny (a0 (A4;)) — a (A;) be a map such that dist(x, 7 (x)) < x. Then 7,
isa (1, 2x)-quasi-isometric embedding. Let 5: Np(A;) — A; bea (1,2 D)-quasi-
isometric embedding constructed similarly. The restriction to H! of mpoq o myisa
(A, k)-quasi-isometric embedding of H] into A; = gH;,forsome j € {1,2,...,n},
with (4, k) depending on (L., C), » and D.

If G’ is hyperbolic then G’ is relatively hyperbolic with respect to {1} # {G'}
and all the statements in the theorem hold.

If G = H/ then G' = N, (q(4,)), which implies that G C Nc(a(G')) C
Nix+2c+D{(A;). By Theorem 1.5, this contradicts the fact that G is (properly)
hyperbolic relative to J. O
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