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Amenable groups and Hadamard spaces with a totally
disconnected isometry group

Pierre-Emmanuel Caprace™®

Abstract. Let X be a locally compact Hadamard space and G be a totally disconnected group
acting continuously, properly and cocompactly on X. We show that a closed subgroup of G is
amenable if and only if it is (topologically locally finite)-by-(virtually abelian). We are led to
consider a set Bglij which is a refinement of the visual boundary d~. X. For each x € BgﬂfX ,
the stabilizer G is amenable.

Mathematics Subject Classification (2000). 20F65; 20E42, 20F50, 43A07.
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1. Introduction

The class of amenable locally compact groups enjoys remarkable closure properties
with respect to algebraic operations, such as taking quotients or closed subgroups,
or forming group extensions. However, despite of this nice algebraic behaviour, the
interaction between the amenability of a given group and its algebraic structure is still
not completely understood. This is notably illustrated by the still unresolved problem
to show whether or not there exists an infinite finitely generated simple group which
1s amenable. On the other hand, for some special classes of locally compact groups,
the notion of amenability has a very well understood algebraic interpretation. For
example, it is known that a connected locally compact group is amenable if and only
if its solvable radical is cocompact [Pat88, Theorem 3.8]. Therefore, understanding
the structure of amenable locally compact groups amounts to understand the structure
of amenable locally compact groups which are totally disconnected. The purpose of
this paper is to show that for totally disconnected groups arising in a rather wide
geometric context, the algebraic property which is relevant (o amenability 1s the
notion of topological local finiteness. A subgroup H of a topological group G i
called ropologically locally finite if every finite subset of H topologically generates
a compact subgroup of G. Basic facts on topologically locally finite groups may be

*F.N.R.S. research fellow, partially supported by the Wiener-Anspach Foundation.
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found in Section 2 below. Here we merely mention a result of V. Platonov [Pla63] (see
Theorem 2.2 below) which ensures that the class of topologically locally finite groups
1s closed under group extensions. In particular, any topological group G possesses a
topologically locally finite radical, or LF-radical, namely a unique maximal normal
subgroup N which is topologically locally finite and such that G/ N has no nontrivial
normal topologically locally finite subgroup. The LF-radical of G is denoted by
Rade#(G).

In this paper we focus on isometry groups of locally compact Hadamard spaces.
Recall that a Hadamard space is a complete CAT(0) space. Given a locally compact
Hadamard space X, its isometry group Is{ X ), endowed with the topology of uniform
convergence on compact subsets, 18 a locally compact second countable topological
group. The main result of this paper is the following:

Theorem 1.1. Let X be a locally compact Hadamard space and G be a totally
disconnected group acting continuously, properly and cocompactly on X. Then a
closed subgroup H < G is amenable if and only if Radgg(H } is open in H and the
quotient H/ Radeg(H ) is virtually abelian.

Note that the hypothesis that G is totally disconnected is naturally satisfied in the
case of singular Hadamard spaces, for example when X is a CAT(0) cell complex
and the G-action is cellular. In fact, the same result as above holds if one replaces the
hypothesis that G 1s totally disconnected and cocompact by the following require-
ments: X is a locally finite cell complex with finitely many isometry types of cells
and finitely many types of links, and the G-action is cellular.

Corollary 1.2. Maintain the assumptions of the theorem and let I' be a finitely
generated simple subgroup of G. The the closure I is amenable if and only if T is
Jinite. In particular, if T" is amenable, then it is finite.

In the special case when X is CAT (—1) and Is(X) acts cocompactly with no fixed
point at infinity, one has the following dichotomy: either Is(X) is virtually connected,
or it is totally disconnected, see [MMS04, Theorem 21]. This yields the following:

Corollary 1.3. Let T be a finitely generated infinite simple group acting nontrivially
on a CAT(—1) space X such that 1s(X) acts cocompactly with no fixed point at
infinity. Then T" has no fixed point in X U dog X.

Specializing Theorem 1.1 to discrete groups, we also recover the following result,
due to S. Adams and W. Ballmann [AB98, Corollary B]. It 1s a generalization to
amenable subgroups of the so called Solvable Subgroup Theorem for CAT (0) groups
[BH99, Theorem 11.7.8]:
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Corollary 1.4. Let I" be a group acting properly discontinuously and cocompactly on
a complete CAT(0) space X. Then any amenable subgroup of T is virtually abelian
and finitely generated.

Applying an argument due to M. Burger and V. Schroeder [BS87, Proot of Corol-
lary 2], one can show furthermore, as in [AB98, Corollary B], that every amenable
subgroup of I' leaves some flat of X invariant (the flat is possibly reduced to a point).

We refer to the introduction and reference list of [AB9&] for a historical back-
ground on amenability in the geometrical context of non-positive curvature. The
proof of Theorem 1.1 is based on the one hand, on obstructions for amenable groups
to act by isometries on Hadamard spaces established by S. Adams and W. Ballmann
[AB9S] (see Theorem 5.1 below) and, on the other hand, on an elementary construc-
tion which associates to every point £ of the visual boundary of any CAT(0) space X
another CAT (0) space X¢. This construction is described in Section4 below; it is orig-
inally due to F. KarpeleviC [Kar65], who considered it in the context of Riemannian
symmetric spaces, (implicitly) by E Bruhat and J. Tits [BT72, Proposition 7.6.4] in
the context of Euclidean buildings, and then by B. Leeb [Lee00, §2.1.3] in the context
of general Hadamard spaces. As suggested in [Lec00], one may iterate this construc-
tion to define a boundary 3" X of a proper CAT(0) space X of bounded geometry
which refines the usual visual boundary do X, in the sense that there is a canonical
Is(X)-equivariant surjection 31X — 9., X. Therefore, the set 91X is called the
refined visual boundary of X. A generic point of 9% X is a sequence of the form
(61.82..... &, x)suchthatg € 0o X, &1 € 000 Xg,. ¢, foreachi =1,... . k—1
and x € X¢ ¢ . When X is of bounded geometry, the maximal possible length of
this sequence happens to be bounded above by a constant depending only on X, see
Corollary 4.4 below. The following result provides a more geometric description of
amenable subgroups of G:

Theorem 1.5. Let X be a locally compact Hadamard space and G be a totally dis-
connected group acting continuously, properly and cocompactly on X. Any amenable
subgroup of G has a finite index subgroup which fixes a point in X U ngeX . Con-
versely, given any point x € X U 3 X, the stabilizer Gy is amenable.

It is likely that if Is(X') is cocompact, then the full stabilizer Is(X ), of any point
x € X U9l X is always amenable. In fact, this is already known if X is CAT(—1)
by a result of M. Burger and Sh. Mozes [BM96, Proposition 1.6].

Acknowledgements. A substantial part of this work was accomplished when I was
visiting F. Haglund at the Université de Paris XI in Orsay; I thank him for stimulating
discussions. The results presented here were first discovered in the special case
when X is a building. Their extensions to a higher level of generality benefited from
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exchanges with N. Monod, to whom [ express my special gratitude. Finally, I thank
A. Lytchak for a careful reading of an earlier version of the manuscript.

2. On topologically locally finite groups

Let G be a topological group. A subgroup H < G 1is called fopologically locally
Jinite if the closure of every finitely generated subgroup of H is compact. It is readily
scen that if G itself is topologically locally finite, then so is any subgroup and any
continuous quotient group. Moreover, we have:

Lemma 2.1. Let G be a locally compact group and H be a topologically locally
Jinite subgroup. Then the closure H is topologically locally finite, and H endowed
with the induced topology is a ropologically locally finite group.

Proof. Suppose that G contains a dense subgroup H which is topologically locally
finite. We must show that G 1tself is topologically locally finite. Let C' be a relatively
compact open neighborhood of the identity in G. Given ¢y, ..., cx € G, the subset
Gy = Uf:o c; C, where ¢y = 1, is a relatively compact open neighborhood of the
identity containing ¢y, ..., cx. Weset U = C; U C[ 11t suffices to prove that the
subgroup of G generated by U 1s compact. Note that this subgroup is open, hence
closed. -

Letnow y € U2, Then yU N U? is a nonempty open set. Hence there exists 4 €
HnNyUNU?2, SinceU = U 'andh € yU,wehave y € hU. Therefore, we deduce
that U? C | ), egnu2 #U. Since U? is compact, there exist #y,...,h, € H such
that U2 C | J7_, h:U. Let K be a compact subgroup of G containing {/1, ..., hn}.
Then we have:

U=U?Uc(K-U)U=K-U*cK-K-U=K-U.

We obtain inductively that U™ is contained in K-U foreachn. Since (U) = J,,., U"
and since K - U is compact, it follows that (U) is compact, as desired. 0

By Zom’s lemma, any topological group G possesses a maximal normal subgroup
which is topologically locally finite. It is called the LF-radical of G and denoted
Radg#(G). By Lemma 2.1, the LF-radical of a locally compact group is a closed
subgroup. The following result was proven by V. Platonov [Pla65, Theorem 2]:

Theorem 2.2. Let G be alocally compact group and N be a closed normal subgroup.
If N and G/ N are both topologically locally finite, then so is G. O

It follows from Theorem 2.2 that Rad¢#(G/ Rade#(G)) = {1} for any locally
compact group G. Another useful basic fact is the following:
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Lemma 2.3. Let G be alocally compact group. Then G is topologically locally finite
if and only if every compact subset of G is contained in a compact subgroup.

Proof. The ‘if” part is clear. We focus on the opposite implication and assume hence-
forth that G 1s topologically locally finite. Let Q be a compact subset of G such
that ¢ = O~!. We must show that @ is contained in a compact subgroup of G.
Up to replacing G by the closed subgroup which is generated by @, this amounts
to showing that if G is compactly generated, then it is compact. Let thus U be a
compact symmetric neighborhood of the identity which generates G. There exist
g1....,8n € G such that U2 C J'_, g:U. Now we can conclude by the same
argument as in the proof of Lemma 2.1. O

Corollary 2.4. Let G be a locally compact group which is topologically locally finite.
Then G is amenable.

Proof. Tollows from Lemma 2.3 together with Fglner’s characterization of amena-
bility. O

3. On proper actions of totally disconnected groups on Hadamard spaces

Let X be a locally compact Hadamard space, namely a complete locally compact
CAT(0) space. Let also G be a totally disconnected group acting continuously on X .
Any compact subgroup of G fixes a point in X by [BH99, Chapter II, Corollary 2.8].
Recall that the full isometry group Is(X), endowed with the topology of uniform
convergence on compact subsets, s a locally compact second countable group. In
particular, if the G-action on X is proper, then G 1s locally compact. The following
basic fact will be useful:

Lemma 3.1. Let G be any totally disconnected locally compact group. Then every
compact subgroup of G is contained in a compact open subgroup of G.

Proof. Let K be a compact subgroup of G and choose a compact open subgroup
Q0 < G; it is well-known that such a subgroup exists, see [Bou71, III §4 No 6].
Considering the open cover | Jpcx kQ of the compact group K, we may extract
finitely many k1,...,k, € K such that K C | J!_, k, Q. Inparticular Q has finitely
many K-conjugates and we deduce Qo := (reg K@k~ = (72, kn @k, '. Thus
the subgroup Q, which is by definition compact and normalized by K, is moreover
open. It follows that K 1s contained in the compact open subgroup K - Q. O

We say that the G-action is smooth it G is open in G for each x € X. The term
smooth is borrowed from the representation theory of p-adic groups.
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The following lemma, though elementary, is crucial to the proof of the main
results:

Lemma 3.2. Assume that G acts properly on X. Let (x,)n>0 be a sequence of points
of X and (Yn)n=0 be a sequence of elements of G such that the sequence (Yn.Xn)n>0
has a subsequence converging to some ¢ € X. Then we have the following:

(i) There exists a sequence (X, )n=0 of points of X such that, given any g € G with
limy o0 d(Xn, g.xn) = 0, we have g.x;, = x,, for all but a finite number of
indices n > 0.

(i1) Assume moreover that the G-action is smooth. Then, given any g € G such that
limy, o0 d{xy,2.X,) = I, there exists k € G such that d(c,k.c) = [ and that
the set {n > 0 | yagy, ' € kG,} is infinite.

Proof. Up to extracting, we may and shall assume that lim,_, o y».x, = c. Let
g € G be such that limy, o d(x,, g.x,) = [. We have

lim d(x,,g.x,) = lim d(y,.xs, (yngyn_l)yn.xn) = Iy
n—>00 H—r00

Therefore, it follows that lim,—s d(c, v,gy, *.c) = [. In particular, the set
{vng vy inso is relatively compact in G. Hence, up to extracling, we may assume
that the sequence (y,gy, ' Ju=0 converges. By construction, its limit & maps the point
¢ to a point ¢’ such that d(c¢, ¢y = [.

Assume first that [ = 0. Thus ¢ = ¢’. By Lemma 3.1, there exists x € X such
that G, C G and G is compact open. Since the sequence (Y, gy, n>0 converges
to k € Gy, it follows that the set {n > O | yngy, ! € Gy} contains all sufficiently
large n. Now, setting x/, = y, !.x, we obtain that g fixes x/, for almost all n. Thus
(i) holds.

Assume now that / is arbitrary and that G acts smoothly. Then G, is open, hence
sois the coset kG, = {h € G | h.c = ¢'}. Therefore, for all n sufficiently large, we
have y,gy, ! € kG, and (ii) holds. O

Recall that, given y € G, the displacement functionof y isthemap d,: X — Ry,
X = d(x,y.x). Its infimum is denoted by || and is called the translation length of
yinX.

Note that when G is cocompact, the existence of a sequence (¥ )n>0 as in the
lemma is automatic. In particular, we obtain (sece [BH99, Chapter II, Section 6.1—
6.3]):

Corollary 3.3. Assume that G acts properly and cocompactly on X. Then every
element vy € G with |y| = 0 has a fixed point in X, and the set {|y| | y € G} of
translation lengths of elements of G is discrete ar 0. Furthermore, if the G-action is
smooth, then it is semisimple: any element acts as an elliptic or a hyperbolic isometry.
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Proof. Let y € G and choose x, € X so that d(x,, y.x,) tends to |y| as n tends to
infinity. Since X/G is compact, there exists v, € G such that {y,.x,} is relatively
compact in X. Thus, up to extracting, we may assume that (yn.X,)n>0 CONVErges
to some ¢ € X. If |y| = 0, then Lemma 3.2 (i) shows that y,yy, ! is elliptic for
some n, hence so is y. Similarly, if the G-action is smooth, Lemma 3.2 shows that
the displacement function ¢, attains its infimum |y|.

Let now (g, )n>0 be a sequence of elements of G such that |g,| tends to 0 as
tends to infinity and assume in order to obtain a contradiction that |g,| > 0 for all n.
Since X/ G is compact, we may and shall assume, up to replacing g, by a conjugate,
that there exists ¢ € X, r € R and x,, € X such that d(c, x,) < r for all » and
that d(x,, g,.X,) tends to 0 as # tends to infinity. Up to extracting, we may assume
that the sequence (x,)n>0 converges to some x € X. Since {gn}a>0 18 relatively
compact in G, we may assume, up to a further extraction, that (g, )»>0 converges to
some g € G. Clearly g fixes x. By Lemma 3.1, this implies that g, is elliptic for
all n sufficiently large. Thus |g,| = 0, which is absurd. O

Recall from [Bri99, Theorem A] that if X is a CAT(0) cell complex with finitely
many 1sometry types of cells, and if the G-action 18 cellular, then it 18 semisimple and
the set of translation lengths of elements of G is discrete at 0. Thus the hypothesis
that X/ G is compact is superfluous in that special case. Note that G is automatically
smooth in this case.

We record the following observation:

Lemma 3.4. Assume that G acts properly and smoothly on X. Let F C X be
a flat and let p: Gipy — 1s(F) be the homomorphism induced by the action of
the stabilizer G¢py of F on F. Then ¢(G¢py) is a discrete subgroup of Is(F). In
particular G¢py/ Ker ¢ is virtually abelian and G ¢y possesses afinite index subgroup
which fixes a point in deo F.

Proof. LetT' = ¢(G¢ry). We must show that I' < Is(F") acts properly discontinu-
ously on F.

Let x € F be any point. We may choose n 4 1 points xg, ..., x,, where n =
dim £, in such a way that the group G(r x,,....x, fixes pointwise a neighborhood of
x in F. Therefore, the group G¢gy x,,....x, 18 contained in Ker ¢. Since Gy, .. x,
is an open subgroup of the compact open subgroup G, it follows that the index of
,,,,, x, 1N Gy 18 finite. In particular, for each x € I, the index of Ker ¢ in G¢py »
is finite or, in other words, for each x € F, the stabilizer [ is finite.

Suppose now that the I"-action on F is not properly discontinuous. Then there
exist xo € I and r € R4 such that the set Sy = {y € I' | d(y.xp, x0)} is infinite.
Since T’y 1s finite for each x € X, it follows that the set Sy = {y.xo | ¥ € Sr} 1s
infinite. Let x; € F be a cluster point of Sy. Let also (gx)n>0 be a sequence of
elements of G¢p; such that lim g,.xo = x; and that g,,.x9 7# gu.Xo for m # n.
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Since { g, tn>0 i8 relatively compact, we may assume that (g, ), >0 converges to some
g € G suchthat g.xg = xy. Since G, is openin G, sois gGy,. Therefore, we have
gn-Xo = x1 for all sufficiently large n. This contradicts the fact that g,,.x¢ # gn-Xo
for m # n. Thus I' is a discrete subgroup of Is{(F).

The fact that I is virtually abelian now follows from [Thu97, Corollary 4.1.13].
It remains to show that I' has a finite index subgroup which fixes an element in the
sphere at infinity do F. This is trivial if " is finite. If [ is infinite, then there exists
an element vy € I'" which acts as a hyperbolic isometry on /. Some power of y 18
centralized by a finite index subgroup I'y < I'. Therefore, the group I'y fixes the
unique attracting fixed point of y in do, F. O

4. Projective limits of horoballs: the space X;

The purpose of this section is to study the main geometrical tool of this paper. In the
first subsection, we collect a few subsidiary facts on metric geometry.

4.1. On metric spaces of bounded geometry. Let (X, d) be any metric space.
Given ¢ > 0, a subset N C X is called e-sparse if d(x,x’) > eforall x # x" € N.
Note that a e-sparse subset is discrete; in particular, if it is contained in a compact
subset, then it is finite. Given a subset C C X, we denote by n.(C) the maximal
cardinality of a s-sparse subset of C. Note that if n.(C) is finite, then a s-sparse
subset N C C of maximal possible cardinality 1s necessarily e-dense: every point
of C is at distance less than ¢ from some point of N. Givenr > Oand ¢ > 0, we also
set

Nre(X) = sup n(B(x,r)),
xeX
where B(x, r) denotes the open ball of radius r centered at x.
We say that the metric space (X, d) is of bounded geometry if for all r > & > 0,
one has #n,.(X) < oo. We record some elementary facts for later references:

Lemma 4.1. We have the following:

(1) If (X, d) is complete and of bounded geometry, then it is proper; i.e. any closed
ball is compact.

(i) If (X, d) is locally compact and X/ 1s(X) is compact, then X is of bounded
geometry.

Proof. (1) follows from the characterization of compact metric spaces as those metric
spaces which are complete and totally bounded. The argument goes as follows. Let
B be aclosed ball in X and S be an infinite set of points of B. Since X is of bounded
geometry, the ball B can be covered by a finite number of balls of radius 1. Thus there
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exists by € B such that the ball B(b,, 1) contains an infinite subset of S. Repeating
this argument inductively, we construct a sequence (b, ),>o of points of B such that
B(b,,27") contains an infinite subset of S and that b, € B(b,,27"). Inparticular
the sequence (b, ),>0 is Cauchy. Let b denote its limit. Clearly & is a cluster point
of S. Hence B is compact.

The proof of (ii) is a standard exercise and will be omitted here. [

4.2. The space X; and the refined boundary 3¢ X . Tet X be any CAT(0) space.
Given any point £ € d, X in the visual boundary of X, we now describe a canonical
construction which attaches a CAT(0) space X¢ to §£. Any closed horoball centered
at & is a closed convex subset of X. The collection of all of these horoballs form a
chain of subspaces of X. Endowing this chain with the orthogonal projections, we
obtain a projective system of CAT (0) spaces. By definition, the space X is the metric
completion of the projective limit of this system. Note that the projective limit itself
need not be complete even if X 1s so. Indeed, consider for example the convex subset
of the Buclidean plane R? defined by X = {(x,y) | xy > 1, x,y > 0O}. Then the
space X associated to the direction of the positive y-axis is an open half-line, which
is thus not complete. It is therefore important to take a completion since we want to
deal with Hadamard spaces. The space X¢ is endowed with a canonical surjective
projection
TTg . X—-> X 13

induced by the orthogonal projections onto horoballs. Note that m¢ is 1-Lipschitz: it
does not increase distances.

There is a more down-to-earth description of X which goes as follows. Let X é"
be the set of all geodesics rays of X which point toward &. The set X g‘ 1s endowed
with a pseudo-distance defined by:

d(p,p’) = iy d(p@), p' (1))

The space X¢ is the completion of the quotient of X g* by the relation which identifies
two rays at distance 0, namely two rays which are strongly asymptotic. It is readily
verified that this construction yields the same space as the preceding one. Note that
X¢ need not be locally compact, even if X is so. Indeed, consider for example the
CAT(0) cube complex X which is defined as follows. For each positive integer #,
we define a closed convex subset C,, of the Hilbert space £2(IN) consisting of those
functions f € £2(N) satisfying

f©O) en—1n],
fkye[0,1] fork e {1,....,n—1},
fky=20 fork > n.
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Thus C,, is isometric to the unit cube in the Euclidean n-space. Now we define X as
the union over all n > 0 of the C,’s, endowed with the length metric induced from
£2(N) (see [BH99, Definition 1.3.3] for the definition of the induced length metric).
Thus X is a locally compact CAT(0) cube complex. Note that the visual boundary
doo X comsists of a single point &, associated with the geodesic ray

p: |R_|_ - X, b LY{oy-

Moreover, it is easily seen that for each n > 0 the horosphere centered at & with base
point 0 and radius —n 1s a n-cube. Therefore the space X s an nfinite-dimensional
cube; 1n particular it 1s not locally compact.

The fact that 7¢ does not increase distances yields the following:

Lemma 4.2, Let & € doo X and r,e > 0 be positive numbers. Let xg,X1,...,X, €
X¢ be such that d(xo,x;) < r for each i and that the set {x1,...,X,} is e-sparse.
Then there exist Vo, V1, ---, Vn» Yn+1 € X such that d(vy, v;) < r for each i and
that the set {y1,..., Yn, Yn+1} I8 £-sparse.

Proof. Let po,p1,...,pn: Ry — X be geodesic rays which are representatives
of xg, x1,...,x, respectively. Note that forall i = 0,...,n and 1 € Ry, we
have me(p;i(t)) = x;. Let Ro = po(R4). By definition, for eachi = 1,...,n
there exists #; € R4+ such that d (Pi (i ), proj g, (pi (tl-))) < r. Here proj denotes
the orthogonal CAT(0) projection map [BH99, Chapter II, Proposition 2.4]. Let
now H be a closed horoball centered at &, whose radius is sufficiently small so that
$0i(1:),projr, (pi (1)) | = 1,...,n} N H = & and that po(¢) does not belong to
H either. Set y; = projg (p;(0)) foreachi =0, ..., n; this makes sense since H is
closed and convex. Note that projg (p; (0)) = projg (pi(t;)) for alli > 0. Therefore,
we have

d(yi. yo) < d(pi(t;). projg, (pi (1)) < r

foreachi = 1,...,n since projgy does not increase distances. Note also that the set
{¥1,..., Yny 18 e-sparse since m¢ does not increase distances and since {x1,....,x,}
1S e-sparse.

It remains to define v,4q. To this end, let 75 € R4 be the unique real such
that po(t9) = vo. We set yu+1 = polto — €). Thus d{(yg, yn+1) = €. Since
projg (Va+1) = yo, we have d(y, vu4+1) > e forall y € H. In particular, the set
{V1.s..os Yn. Ynt1}) 18 e-sparse. Finally, since ¢ < r, we have d(vo, Va+1) < F as
desired. O

The following proposition collects some of the basic properties of Xe:

Proposition 4.3. Let § € do X. We have the following:
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(i) Xg is a complete CAT(0) space.

(1) There is a canonical continuous homomorphisn gg: 1s(X)e — Is(X¢), where
Is(X) and 1s(X¢) are endowed with the topology of uniform convergence on
compact subsets.

(ii1) If X is proper and of bounded geometry, then so is Xg.

Proof. (1) follows immediately from the definition in terms of horoballs. For another
argument using the alternative construction of X¢, see B. Leeb [Lee00, Proposi-
tion 2.8].

(i1). The map ¢ is defined by

pe(g).mg(x) = mg(g.x). (4.1)

It is immediate from the definition that it is a homomorphism. Assume in order to
obtain a contradiction that ¢¢ is not continuous. Then it 18 not continuous at 1. Thus
there exists a compact subset ¢ C X, areal ¢ > 0, a sequence (¥n)n=o0 of points
of C and a sequence (g, )n=0 of elements of Is(X )¢ such that lim, o, g» = 1 and
d(@e(gn)-Yn, ¥n) > € for each n. Tet D C C be a finite subset which is 3-dense
in C. Let D’ C X be a finite subset such that mz (D’) = D. Since lim, o g» = 1
and since D' is finite, we have d(g,.x. x) < £ forall x € D’ and all sufficiently large
n. Since ¢ does not increase distances, we deduce from the definition of ¢ that
d(ps(gn).y,y) < 5 forall y € D and all sufficiently large n. Since D is Z-dense
in C, it finally follows that d(¢g(gn).z,z) < € for all z € C and all sufficiently
large n. This is a contradiction.

Note that ¢¢ need not be proper.

(ii1). By definition, the space X¢ is complete. In view of Lemma 4.1 (1), it 1s
proper whenever it is of bounded geometry. The fact that it is of bounded geometry
follows casily from Lemma 4.2, O]

Important to us will be the fact that the length of a sequence (&1, &3, . .., &) such
that §; € doo X and &1 € 0o X¢,. ¢ foreachi = 1,...,k — 1 may not be
arbitrarily large under suitable assumptions on X :

Corollary 4.4. Let X be a complete CAT(0) space of bounded geometry. Then
there exists an integer K > 0 depending only on X such that, given any sequence
(61.52..... &) with§, € 0o X and &1 € 0o X, g foreachi =1,... k-1,
the space Xg,, ¢, is bounded whenever k = K. In particular 0o Xe,, g, is empty
whenever k = K,

Proof. Suppose that X¢, ¢ 18 of diameter > r. Then X, ¢, contains two points
at distance r from one another. Applying Lemma 4.2 inductively, we construct a
finite subset N C X of cardinality & 4+ 2 which is r-sparse and of radius < r + ¢,
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where ¢ > 0 is a fixed positive number (which may be chosen arbitrarily small). In
particular, we obtain k + 2 < n, 4, ,(X). The desired result follows. O

Remark. Using results of B. Kleiner [K1e99], it can be shown that if X' is complete
and GeomDim(Xg) > #, then GeomDim(X) > n+ 1. Inparticular, if GeomDim(X )
is finite, then GeomDim(X¢) < GeomDim(X'). Therefore, if X is complete and
GeomDim(X) is finite, then there exists a constant K such that 0o Xg, g, iS empty
whenever k > K. Note that a CAT(0) space X such that d,, X is empty might be
unbounded: for example take X to be a metric graph which is a star with infinitely
many branches of finite length, such that the supremum of the length of the branches
is infinite. Note also that the fact that X is of finite geometric dimension is unrelated
to the local compactness of X. In particular, if X is a CAT(0) piecewise Euclidean
cell complex with finitely many types of cells (such as a building [Dav9§] or a finite
dimensional cube complex), then GeomDim( X)) is finite but X need not be locally
compact.

We define the refined visual boundary 3% X to be the set of all sequences

(15 Eoom + 5 Bl
suchthat& € doo X, & 41 € 000 Xg,,..g; foreachi = 1,... . k—landx € X¢ ¢, .
Given such a sequence (£1, &, ..., &, x) in the refined boundary, we define its level

to be the number &. In order to associate a level to each point of X U 8%¢ X, we adopt
the convention that points of X are of level 0. Corollary 4.4 gives sufficient conditions
on X for the existence of an upper bound on the level of all points in X U ngeX :

4.3. Structure of the stabilizer of a point in the refined boundary. Given a point
£ € dxc X and a base point x € X, we let b¢ 1 X — R be the Busemann function
centered at & such that bg ,(x) = 0. Recall that Busemann functions satisfy the
following cocycle 1dentity for all x, v,z € X:

b«?,x(y) - bé,x(z) = bé,z(y)-

It follows that the mapping

Pe: Is(X)e = R, g+ bgx(g.x),

is independent of the point x € X and is a group homomorphism. It is called the
Busemann homomorphism centered at &.

Proposition 4.5. Let X be a proper CAT(0) space and G be a totally disconnected
group acting continuously, properly and cocompactly on X. Given & € 05X, we
have the following:
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(i) Given any x € Xg, the LF-radical Radgg(Ge ) is open in Gg ., it coincides
with the kernel of Be: Ge x — R.

(i1} Let K¢ be the kernel of the restriction of ge to Gg, where ¢¢ is defined by (4.1)
on page 447. Then Radgs(Ke) is open in Kg, it coincides with the kernel of
Be: Ke — R. In particular, the group Ke/Radgs(Ke) is isomorphic to a
subgroup of R.

(iii) Let (§1,62,....84,x) € 8226)( be a point of level n in the refined visual bound-
ary. Set H = Gg, . ¢, 5. ThenRadgg(H ) is openin H, it contains all elements
of H which act as elliptic isometries on X and, furthermore, H/ Rades(H) is
abelian and torsion free. In particular H is amenable.

Proof. Note that (1) 1s a special case of (iii). However, the proof of (ii1) involves
some technicalities which can be avoided in the situation of (i). Therefore, in order
to make the argument more transparent, we prove (i) separately.

(1). Let K¢y denote the kernel of the restriction to Gg , of the Busemann ho-
momorphism B¢, Let y € X be such that 7¢(y) = x and p = pgy: Ry — X
be the geodesic ray pointing towards & with origin y. Define x,, = p(n) for each
n € N. Since G is cocompact, there exists a sequence (Y }n>0 of elements of G
such that (yn.Xn)n=0 converges to some ¢ € X. Now, given any g1, ..., gk € K¢ x,
we have limy, o d(xn, gi.xn) = O foreachi = 1,...,k. Therefore, applying
Lemma 3.2 inductively, we deduce that there exists » € N such that g; < Gyn_l_c
foreach/ = 1,...,k. In particular, the set {gq, ..., g} is contained in a compact
subgroup of G. This shows that K , is topologically locally finite.

Now, the inclusion K¢, C Radgs(Ge ) is obvious. Conversely, given any
element g € G¢ , which does not belong to K¢ ., then g is not elliptic, hence it is
not contained in Rad¢#(G¢ ). Thus K¢ y = Radg#(Ge, ) as desired.

The fact that K¢ , is open in Gg . is clear: by definition G , is closed and any
compact open subgroup of G, fixes a point in X, and is thus contained in K¢ ..

(ii). By definition, we have K¢ = [, x; Gg.x. Hence the desired assertion
follows from (i).

(iii). Foreachi = 1,....n,let Bg : Gg, & — R be the restriction of the
Busemann homomorphismcentered at &; . In particular, restricting further, one obtains
a homomorphism f¢, : H — R. The direct product of these homomorphisms defines
a homomorphism

B =P x--xPe,: H—>R",
whose kernel is the subgroup K = ()7 Ker f¢,. Clearly K contains all elements of
H whichact as ellipticisometries on X (andhence on X¢ ¢ foreachi =1,...,n).
In particular it follows that K is open in /.

Our aim is to show that K = Radg#(H ). We have just seen that K contains all
periodic elements of H. Thus the inclusion Rad¢#(H ) C K is clear. It remains to
show that K is topologically locally finite.
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Foreachi = 1,...,n, we define

Yi = g 0. 0@ o Pgt Is(X g, g — Is(Xgy, g )-

Letgi,..., gk beelements of K. By definition, there exists a sequence (X,—1,m)m=0
of points of Xg, ¢  such that

lim d(@n—l(gi)-xn—l,ma xn—l,m) =
m—00

foreachi = 1,... k. Letnow py—2 m: Ry — Xg ¢, ,beageodesicray pointing
towards £, such that g,  (pn—2.m(t)) = Xn_1,m foreachr € R.

For each m, we may choose a sufficiently large t,, € R4 in such a way that the
sequence (Xn—2,m)m=0 defined by X2 m = pn—2.m(tm) € X¢, . g, , satisfies the
identity

mli_rfloo d{pn—2 (gi)-xn—z,mu xn—z,m) =0

foreachi = 1,... k.
Proceeding inductively, we construct in this way a sequence (X; » )m=o of points

of X, ¢ such that
Jim d(g;(g0)-%jm Xjm) = O
foreachi = 1,...,kandeach j = 1,...,n — 1. In a final further step, we then

construct a sequence (X, )m=o of points of X such that
lim d{g;.xm,xm) =0
m—00

foreachi = 1,...,k. Now, it follows by the same arguments as in the proof of (i}
that {g1...., g} is contained in a compact subgroup of &. Hence K is topologically
locally finite, as desired.

The amenability of H is now immediate from Corollary 2.4. O

Note that the proof of Proposition 4.5 (iii) shows that Rad¢g( H ) coincides with
Ker B|g, where B = B¢ x ---x Bg, 1 Gg, ¢, — R" is the direct product of the
Busemann homomorphisms centered at & fori = 1,...,a.

Lemma 4.6. Let X be a proper CAT(0) space and G be a totally disconnected
group acting continuously, properly and cocompactly on X. Then, given any element
v € Ker B, the respective translation lengths of y in X and in X¢, g, coincide.

Furthermore, if the G -action is smooth, then the action of Gg,,.. ¢, on X,
semisimple isometries.

Proof. Let § € 0o X. Since 7 does not increase distances, it is clear that the
translation length |y | of any element y € Is(X )¢ is bounded below by the translation
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length |@g (y)| of pe(y) in Xe. Conversely, if y € Ker 8, then it is easy to see that
¥l < o).

It is clear that an elliptic isometry y € Is{X) which fixes £ acts as an elliptic
isometry on X¢. Suppose now that y € Is(X) is hyperbolic and fixes &. Let A be an
axis of y. If & € doo A, then y is elliptic on Xe. Otherwise, it follows easily from
[BH99, Chapter I, Proposition 9.8 and Corollary 9.9] that A bounds a Euclidean half-
plane H such that & € do, H. Moreover, one verifies immediately that the projection
of H to X¢ is an axis for y, from which it follows that y acts as a hyperbolic isometry
on Xg. Note moreover that B¢ (y) = 0if and only if £ is the middle point of do H,
where f¢ denotes the Busemann homomorphism centered at &.

Now, if the G-action is smooth, the fact that the G¢,  _ ¢,-action on Xg ¢
1s semisimple follows from a straightforward induction on #n, since we know by
Corollary 3.3 that the G-action on X is semisimple. 0

5. The structure of amenable subgroups

The main tool in proving Theorem 1.1 is provided by the obstructions for continuous
isometric actions of amenable groups on locally compact Hadamard spaces estab-
lished by S. Adams and W. Ballmann in [AB98]. Let us recall its precise statement:

Theorem 5.1. Let H be an amenable locally compact group acting continuously by
isometries on a proper CAT(0) space X. Then H stabilizes a Euclidean flat in X, or
else H fixes a pointin X U doo X.

Proof. See [AB9S8, Theorem]. ]

Before proceeding to the proof of the main results, we still need a subsidiary
lemma:

Lemma 5.2. Let X be a proper CAT(0) space and G be a totally disconnected group
acting continuously, properly and cocompactly on X. Let (§1,...,&,) be a sequence
suchthat§y € 9o X, &1 € 0o Xgy,.¢; foreachi = 1,... ,n—1andlet F be aflar
inXg,,. &, (possiblyn = 0and F C X). Suppose that H < G is a closed amenable
subgroup which fixes (£, ...,&,) and which stabilizes F. Then H possesses a finite
index subgroup which fixes a pointin F U dy F.

Proof. As in the proof of Proposition 4.5 (iii), we let B¢ : Gg .. & — R be the
restriction of the Busemann homomorphism centered at &; and

B =Bs <% B, Gy, g, > R

be the direct product of these Busemann homomorphisms. Let R = Ker §.
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By hypothesis, we have H < Stabg,,
homomorphism

¢, (£). Thus there is a well defined

.....

p: H— Is(F).

Since H is totally disconnected, it follows from [MZ55, Chapter V, Theorem 2] that
o(H) (endowed with the quotient topology) is a discrete group. Since moreover
@(H ) is amenable and contained in the real Lie group Is(F'), it follows from [Tit72,
Theorem 1] that ¢ (H ) is virtually solvable, hence virtually metabelian because Is(F)
is abelian-by-compact. Up to replacing H by a finite index subgroup, we may — and
shall — assume henceforth that ¢( H ) is metabelian.

Let T denote the translation subgroup of Is(F). Thus wehave [¢(H ), o(H)] C T.
On the other hand, since R = Ker # contains the derived group [H, H], we deduce
that [p(H ), o(H)] € T N e(H N R). Now we distinguish several cases.

Assume first that T N @(H N R) is nontrivial. By Corollary 3.3 and Lemma 4.6,
the set of translation lengths of elements of R in Xg g, 18 discrete at 0. Therefore,
it follows that T N (H N R) is a discrete subgroup of T. Letnowt € T Ng(H N R)
be a nontrivial element. Since T N ¢(H N R) is normal in ¢ (H ) and since conjugate
elements act with the same translation length, it follows from the discreteness of
T Ne(H N R)in T that o(H ) possesses a finite index subgroup which centralizes 7.
Since ¢ acts as a hyperbolic element, we deduce that its unique attractive fixed point
in the sphere at infinity d, F is fixed by a finite index subgroup of H. Hence we are
done in this case.

We assume henceforth that 7 N @(H N R) is trivial. By the above, it follows
that ¢ (H) is abelian. Suppose now ¢ (H ) contains an element ¢' which acts as a
hyperbolic element on F. Then ¢(H) fixes the attractive fixed point of " in deg F
and again we are done. Suppose finally that every element in ¢ (H ) is elliptic. Since
the fixed point set of an element in Is(F) is a linecar, hence Euclidean, subspace, a
straightforward induction on dimension shows then that ¢ (H ) has a global fixed point
in F. This concludes the proof. O

We are now ready for the

Proof of Theorems 1.1 and 1.5. Note that X 1s complete and of bounded geometry,
since Is(X) is cocompact by hypothesis.

The fact that Gy is (topologically locally finite)-by-(virtually abelian) for each
xe XU 8226)( follows from Proposition 4.5 (ii1). Any such subgroup is amenable
in view of Corollary 2.4

Let now H < G be a closed amenable subgroup. We want to show that H
possesses a finite index subgroup which fixes an element of X U ngeX ’

Assume that H fixes no point in X U do X. In view of Theorem 5.1, this implies
that H stabilizes a flat /* C X. By Lemma 5.2, we deduce that H possesses a finite
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index subgroup which fixes a pointin do, F. This shows that in all cases H possesses
a finite index subgroup Hy which fixes a point &; € X U doe X.

If &, € X we are done. Otherwise Hy acts on X, g, . Assume that H fixes no point
in X¢ U 0 Xg . Then Hj stabilizes a flat in X¢, and, by Lemma 5.2, we deduce
that Hy possesses a finite index subgroup H1 which fixes a point & in Xg, U doo X, .
Again, if £ € X¢, we are done. Otherwise H> acts on Xg ¢,.

Now we repeat this argument inductively. The process will stop after finitely many
steps in view of Corollary 4.4. Therefore, we obtain a point (£1,. .., &, x) € 91X
and a closed subgroup H, < H of finite index which is contained in G¢, . ¢, x. By
Proposition 4.5 (iii1), the latter subgroup is (topologically locally finite)-by-(abelian
torsion free) and its LF-radical 1s open. O]

Proof of Corollary 1.2. Let I < G be a finitely generated simple subgroup which is
contained in an amenable subgroup of G. In view of the characterization of amenabil -
ity in terms of a fixed point property [BAIHVO7, Theorem (G.1.7], we may and shall
assume that I' is in fact contained in a closed amenable subgroup of G, say H. Let
Hy be its LF-radical. There are two cases.

Suppose first that Hy N T is trivial. Then T' injects in the quotient H /H, which
is virtually abelian. Since I' is simple and finitely generated, it must then be finite.

Suppose now that Hy N " is nontrivial. Then I' C Hy. Therefore I 1s contained
in a compact subgroup of G. Since any such subgroup is a profinite group, it follows
that I" is residually finite. Hence, since I" is simple, it must be finite. O

Proof of Corollary 1.3. By [MMS04, Theorem 21], the group Is( X ) is either virtually
connected or totally disconnected. By assumption Is(X ) contains a finitely generated
infinite simple group I'. Such a group cannot be contained in a connected locally
compact group. Indeed, a connected locally compact group is an extension of a Lie
group by a compact group [MZ55], and any finitely generated subgroup of a compact
group (resp. a Lie group) is residually finite. Thus we may assume without loss of
generality that Is(X) is totally disconnected. Now, given any x € X, the stabilizer
Is(X), is compact and, hence, cannot contain the simple group I'. Finally, given
any £ € X, the stabilizer Is(X )¢ is amenable [BM96, Proposition 1.6] and the
conclusion now follows from Corollary 1.2. O

Proof of Corollary 1.4. Let H < I' be an amenable subgroup. Let I be its LI-
radical. It is a discrete countable locally finite group. In particular, it is a union of
an ascending chain of finite subgroups of I'. Since I' acts geometrically on X, it
follows from [BH99, Chapter 11, Corollary 2.8] that it has finitely many conjugacy
classes of finite subgroups. In particular £ is finite. Therefore, there exists a finite
index subgroup Hy < H which centralizes F. By Theorem 1.1, the group H/F is
virtually abelian. Thus H possesses a finite index subgroup H such that the derived
subgroup [Hy, H;] is contained in F. Since any finitely generated group with a finite
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derived subgroup is virtually abelian [BH99, Chapter 11, Lemma 7.9], it follows that
any finitely generated subgroup of H; is virtually abelian. On the other hand, the
group I satisfies an ascending chain condition for virtually abelian subgroups by
[BH99, Chapter 1I, Theorem 7.5], from which it finally follows that H; is virtually

abelian and finitely generated and, hence, so is f1. O
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