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On theWeinstein conjecture in higher dimensions

Peter Albers and Helmut Hofer

Abstract. The existence of a “Plastikstufe” for a contact structure implies the Weinstein
conjecture for all supporting contact forms.
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1. Introduction and main result

A one-form on an odd-dimensional manifold M2n 1 is called a contact form,
provided ^ d n 1 is a volume-form. Associated to a contact form we have the
Reeb vector field X defined by

iX D 1 and iXd D 0

and the contact structure D ker. / In 1978, A.Weinstein, [21], motivated by a

result of P. Rabinowitz, [16], and one of his own results, [20], made the following
conjecture:

A Reeb vector field on a closed manifold M2n 1 admits a periodic orbit.

The first break-through on this conjecture was obtained by C. Viterbo, [19], showing
that compact energy surfaces in R2n of contact-type have periodic orbits. Extending
Gromov’s theory of pseudoholomorphic curves, [3], to symplectized contact
manifolds, H. Hofer, [4], related theWeinstein conjecture to the existence of certain
pseudoholomorphic curves. He showed that in dimension three theWeinstein conjectures
holds in many cases. In particular, he showed that Reeb vector fields associated to
over-twisted contact structures admit periodic orbits. Recently theWeinstein conjecture

in dimension three was completely settled by C. Taubes, [17, 18], who exploited
relationships between Seiberg–Witten–Floer homology, [12], and embedded contact
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homology, [11], in order to construct holomorphic curves in the symplectized contact

manifold out of nontrivial Seiberg–Witten–Floer homology classes. For more
references on theWeinstein conjecture see [6].

In this note we show that many Reeb vector fields on higher dimensional closed
manifolds have periodic orbits generalizing the main result from [4]. Our existence
result is closely connectedto the interesting attempt byK.Niederkrüger [13] to generalize

the three-dimensional notion of an overtwisted contact structure. He introduced
the concept of a Plastikstufe which currently seems to be the most compelling
generalisation given recent further developments by F. Presas, [15], and K. Niederkrüger
and O. van Koert, [14].

Let us denote by M; / a pair consisting of a closed manifold M of dimension
2n 1 and a co-oriented contact structure We denote by D2 the closed unit disk
in C with coordinates x C iy.

Definition 1.1. We say that M; / contains a Plastikstufe with singular set S
provided M admits a closed submanifold S of dimension n 2 and an embedding

W
D2 S M with f0g S/ D S having the following properties:

1) There exists a contact form PS inducing so that the one-form WD PS

satisfies ^ d D 0 and moreover ¤ 0 on D2 n f0g/ S. Near f0g S the
form is given by D xdy ydx and the pull-back of to @D2 S vanishes.

2) The complement of f0g S in D2 n @D2/ S is smoothly foliated by via an

S1-family of leaves diffeomorphic to .0; 1/ S, where one of the ends converges

to the singular set f0g S and the other is asymptotic to the leaf @D2 S.

The set P S/ D D2 S/ is called the Plastikstufe.

Let us observe that the existence of a Plastikstufe for a given contact structure
involves the existence of a certain inducing contact form. This is different from
the three-dimensional case where an over-twisted disk is defined only in terms of the
contact structure and does not require the existence of a particular contact form. In the
following we shall call a closed co-oriented contact manifold M; / PS-overtwisted
provided thereexists a contactform PS inducing containing aPlastikstufe. Recently
Niederkrüger and van Koert showed that every odd-dimensional sphere S2n 1 with
n 3 has a contact structure admitting a Plastikstufe. If now.M2n 1; / is a

cooriented contact manifold then a connected sum with a PS-overtwisted sphere admits
by standard arguments a contact structure which is PS-overtwisted. In particular, any
closed manifold of dimension 2n 1 admitting a co-oriented contact structure also
admits a PS-overtwisted contact structure. Our main result is the following theorem.

Theorem. Let M; / be a closed PS-overtwisted contact manifold. Then every Reeb

vector field associated to a contact form inducing has a contractible periodic
orbit.
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Remark 1.2. In [13] Niederkrüger shows that a PS-overtwisted contact structure
does not have a semi-positive symplectic filling. We noticed that some of his idea

combined with ideas from [4] lead to the above theorem. We also observed that
the limitation to semi-positive fillings is not necessary and can be removed using
polyfolds [5]. This will be discussed in a forthcoming paper.

2. Background

All material in this section is taken from [13].

2.1. Local normal form. Let M; / contain a Plastikstufe P S/. In [13, Section

3.1] it is proved that there exist constants "; C > 0 and an open set V in the
symplectic manifold ";0 M;d.es / such that f0g S V and V is
symplectomorphic to the subset

U WD 8<:
z1; z2/; q; p/ 2 C2 T S

C < Re.z1/ 0;
C < Im.z1/ < C;

Re.z1/ C
1
4 jz2j

2
C

1
9=;

2 jjpjj2 0

2.1)

of C2 T S which carries its natural symplectic structure. Moreover, M \ V
corresponds to equality in the last equation and P S/ \ V to equality and

Im.z1/ D 0, p D 0.

2.2. Bishop family. The local model U contains a natural n 1/-dimensional
Bishop family given by

ut0;q0 W D2 C2 T S;

z
7 t0;2pt0 z/; q0; 0/ ;

2.2)

where 0 t0 < C is a real parameter and q0 2 S. The maps u.t0;q0/ are i j /-
holomorphic, where j denotes the natural almost complex structure on T S induced
by the Levi-Civita connection of a Riemannian metric on S. Moreover, they have

boundary on the set corresponding to P S/.
We denote by J the almost complex structure on V obtained by pulling back the

almost complex structure i j from C2 T S. Then we can pull back the Bishop
family to holomorphic maps denoted by the same symbols)

ut0;q0 W D2 V "; 0 M: 2.3)
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2.3. Uniqueness results for holomorphic disks. We extend the almost complex
structure J from the set V to a compatible almost complex structure on W WD

1; 0 M; d.es / We introduce the notation

P S/ D P S/ n .@ P S/ [ S/ 2.4)

and remark that P S/ is totally real with respect to J The following proposition
is taken from [13, Proposition 7].

Proposition 2.1. Let uW D2; @D2/ W; P S/ be a J -holomorphic disk which
is simple. Moreover, we assume that u.S1/ P S/ bounds a disk in P S/ and

image.u/\V ¤ ;: 2.5)

Then, up to an element in Aut.D2/, we have

u D ut0;q0 ; 2.6)

that is, after reparametrization, the holomorphic disk u is a member of the Bishop
family.

3. Proof of the theorem

By assumption there exists a contact form PS onM containing a Plastikstufe. Let
be another contact form inducing the same contact structure.

We assume by contradiction that there exists no contractible closed Reeb orbit for

3.1. The set-up. We choose a function f W M R such that D f PS. Since

multiplying with a non-zero constant does not change its Reeb orbits up to
reparametrization) we may assume without loss of generality that the function f takes only
values in .0;1/. Then we can choose a smooth family of functions fs W M .0;1/
for s 2 OE 1; " satisfying

fs D ´ 1 near s D ";

f near s D 1;
and moreover

@fs
@s

0: 3.1)

This gives rise to a smooth family s D fs PS of contact forms which we extend by

PS for s " and by for s 1. On W D 1; 0 M we choose an exact
symplectic form which satisfies

D ´d.es PS/ on OE "; 0 M;
d.es / on 1; 1 M:

3.2)



Vol. 84 2009) On theWeinstein conjecture in higher dimensions 433

This is possible due to our choice of the family fs. This has been used in the literature
many times, see for instance [7]. We modify the almost complex structure J from
above to a compatible almost complex structure J on W; / by requiring that on

1; 2 M the almost complex structure is adapted to the negative part of the
symplectization of in the sense of [1]. On V it remains as defined in the previous
section. In particular, W; / still contains the Bishop family ut0;q0 We denote the

relative homotopy class given by the Bishop disks by a 2 2.W; P S// and set

M.J / WD fu W D2; @D2/ W; P S// j N@Ju D 0; OEu D a; lk.u;S/ D 1g;
3.3)

My.J / WD M.J/=Aut.D2/; 3.4)

where lk.u; S/ is the linking number of u.S1/ in P S/ with the set S. This is

defined as follows. By definition P S/ is foliated by an S1-family of Legendrian

submanifolds, thus there exists a natural map
W P S/ S1. We set lk.u; S/ WD

deg. B ujS1 /.

3.2. The proof. We need the following three facts established in Propositions 8–10

in [13].

1) The Maslov index of a equals Maslov.a/ D 2,

2) the almost complex structure J is regular at members of the Bishop family,

3) the energy of all elements inM.J / is uniformly bounded.

The totally real submanifold P S/ is non-compact. Since @ P S/ is a closed leaf
of the characteristic foliation the maximum principle implies that no holomorphic
maps intersect @ P S/ at an interior point. According to Proposition 2.1 near S
the only holomorphic disks are members of the Bishop family. Therefore, the
noncompactness of P S/ poses no problem. Moreover, due to the energy bounds and
the specific structure of the almost complex structure J on the end ofW we can apply
the ideas of the SFT-compactness theorem [1]. Since we assumed that there exists no

contractible closed Reeb orbits bubbling-off cannot occur in the interior. Therefore,
the only non-compactness of the moduli space My.J / comes from bubbling-off of
holomorphic disks having boundary on P S/. The next proposition is taken from
[13, Proposition 11] and shows that there exists no bubbling-offof holomorphic disks.

Proposition 3.1. Given a sequence un/ My.J / there exists a subsequence either
converging to an element inMy.J / or to a point in S.

The latter case occurs if a family of Bishop disks shrinks to a point in S. We
remark that in the former case the limit is simple.
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Proposition 3.2. For a compatible almost complex structure J which is generic on
the subset 2;0 M nV of W; / the moduli spaceM.J / is a smooth manifold
of dimension

dimM.J/ D n C 2: 3.5)

Proof. We pick u 2 M.J /. In case that image.u/ \ V ¤ ; we conclude from
Proposition2.1 that u is a member of the Bishop family. In particular, image.u/ V
Moreover, J is already regular for members in the Bishop family.

If image.u/\V D ; then u has topass through the region 2; 0 M nV Since

all the disks are simple a generic J willbe regular, see forexample [2]. The dimension

formula follows from the fact that Maslov.a/ D 2 and dim P S/ D n.

We consider the evaluation map

ev
W My.J/S1 WD M.J / Aut.D2/ S1 P

7

S/ M;
OEu; t u.e 2 i t /;

3.6)

defined on the smooth manifolds My.J/S1 of dimension dimMy.J /S1 D n. The
following proposition is proved analogously to the transversality result above.

Proposition 3.3. For a generic J as in the previous proposition the evaluation map
is smooth.

To derive the contradiction to the assumption that has no closed Reeb orbits we
make the following

Definition 3.4. For a point p D z; s/ 2 D2 S/ D P S/ we define the distance
of p to S by d.p; S/ D jzj and set for i > 0 sufficiently small

S1 WD °
OEu; t 2 My.J/S1 j d.ev.OEu; t /;S/ i : 3.7)My.J/i

Then we have by construction of the Bishop family

ev @My.J/iS1 D S1i S/; 3.8)

where S1i D fz 2 D2 j jzj D ig. We conclude that

ev @My.J/iS1 2 Hn 1. P S/; Z=2/

is the generator. On the other hand the set ev @My.J /iS1
is clearly the boundary of

the compact, see Proposition 3.1, manifold ev My.J /iS1
This implies, that

ev @My.J /iS1 D 0 2 Hn 1. P S/; Z=2/:

This contradictions concludes the proof of the theorem.
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