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On the Weinstein conjecture in higher dimensions

Peter Albers and Helmut Hofer*

Abstract. The existence of a “Plastikstufe” for a contact structure implies the Weinstein con-
jecture for all supporting contact forms.
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1. Introduction and main result

A one-form A on an odd-dimensional manifold M?2"~! is called a contact form,
provided A A dA"! is a volume-form. Associated to a contact form A we have the
Reeb vector field X defined by

ixA=1 and ixydA =0

and the contact structure & = ker(1). In 1978, A. Weinstein, [21], motivated by a
result of P. Rabinowitz, [16], and one of his own results, [20], made the following
conjecture:;

A Reeb vector field on a closed manifold M>"~! admits a periodic orbit.

The first break-through on this conjecture was obtained by C. Viterbo, [19], showing
that compact energy surfaces in R?" of contact-type have periodic orbits. Extending
Gromov’s theory of pseudoholomorphic curves, [3], to symplectized contact mani-
folds, H. Hofer, [4], related the Weinstein conjecture to the existence of certain pseu-
doholomorphic curves. He showed that in dimension three the Weinstein conjectures
holds in many cases. In particular, he showed that Reeb vector fields associated to
over-twisted contact structures admit periodic orbits. Recently the Weinstein conjec-
ture in dimension three was completely settled by C. Taubes, [17, 18], who exploited
relationships between Seiberg—Witten—Floer homology, [12], and embedded contact
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homology, [11], in order to construct holomorphic curves in the symplectized con-
tact manifold out of nontrivial Seiberg—Witten—Floer homology classes. For more
references on the Weinstein conjecture see [6].

In this note we show that many Reeb vector fields on higher dimensional closed
manifolds have periodic orbits generalizing the main result from [4]. Our existence
result s closely connected to the interesting attempt by K. Niederkriiger [ 13] to gener-
alize the three-dimensional notion of an overtwisted contact structure. He introduced
the concept of a Plastikstufe which currently seems to be the most compelling gener-
alisation given recent further developments by F. Presas, [15], and K. Niederkriiger
and O. van Koert, [14].

Let us denote by (M, &) a pair consisting of a closed manifold M of dimension
2n — 1 and a co-oriented contact structure £. We denote by D? the closed unit disk
in € with coordinates x + 7 y.

Definition 1.1. We say that (M, &) contains a Plastikstufe with singular set S pro-
vided M admits a closed submanifold S of dimension » — 2 and an embedding
t: D% x S — M with ({0} x S) = S having the following properties:

(1) There exists a contact form Aps inducing & so that the one-form § 1= (*Apg
satisfies B A df = 0 and moreover B # 0 on (D?\ {0}) x S. Near {0} x S the
form f is given by B = xdy — ydx and the pull-back of B to dD? x S vanishes.

(2) The complement of {0} x S in (D? \ 3D?) x .S is smoothly foliated by 8 via an
S -family of leaves diffeomorphic to (0, 1) xS, where one of the ends converges
to the singular set {0} x S and the other is asymptotic to the leaf D% x S.

The set PS(S) = 1(D? x S) is called the Plastikstufe.

Let us observe that the existence of a Plastikstufe for a given contact structure
involves the existence of a certain inducing contact form. This is different from
the three-dimensional case where an over-twisted disk 1s defined only 1n terms of the
contact structure and does not require the existence of a particular contact form. In the
following we shall call a closed co-oriented contact manifold (M, £) PS-overtwisted
provided there exists a contact form Apg inducing & containing a Plastikstufe. Recently
Niederkriiger and van Koert showed that every odd-dimensional sphere S27~1 with
n > 3 has a contact structure admitting a Plastikstufe. 1f now (M?"~1 £) is a co-
oriented contact manifold then a connected sum with a PS-overtwisted sphere admits
by standard arguments a contact structure which is PS-overtwisted. In particular, any
closed manifold of dimension 2n — 1 admitting a co-oriented contact structure also
admits a PS-overtwisted contact structure. Our main result is the following theorem.

Theorem. Ler (M, §) be a closed PS-overtwisted contact manifold. Then every Reeb
vector field associated fo a contact form A inducing & has a contractible periodic
orbit.
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Remark 1.2. In [13] Niederkriiger shows that a PS-overtwisted contact structure
does not have a semi-positive symplectic filling. We noticed that some of his idea
combined with ideas from [4] lead to the above theorem. We also observed that
the limitation to semi-positive fillings is not necessary and can be removed using
polyfolds [5]. This will be discussed in a forthcoming paper.

2. Background

All material in this section 1s taken from [13].

2.1. Local normal form. Let (M, A) contain a Plastikstufe PS$(S). In [13, Sec-
tion 3.1] 1t 1s proved that there exist constants €, C > O and an open set V in the
symplectic manifold ((—&,0] x M, d(e*))) such that {0} x S C V and V is sym-
plectomorphic to the subset

—C < Re(z1) =0,
U:={((z1.22).(q. p)) e C2x T*S | —C <Im(z1) <C, @.1)
Re(z1) + |z2)* + &|Ipl* <0

of C? x T*S which carries its natural symplectic structure. Moreover, M N V
corresponds to equality in the last equation and PS$(S) N V to equality and
Im(z1) =0, p =0.

2.2. Bishop family. The local model U contains a natural (n — 1)-dimensional
Bishop family given by

.2 2 *
Uggqo: D7 — Co x TS,

L
z > ((—10.2+/10 2). (40. 0)). e

where 0 < 9 < C is a real parameter and go € S. The maps u,,q,) are (7 x j)-
holomorphic, where j denotes the natural almost complex structure on 7* S induced
by the Levi-Civita connection of a Riemannian metric on S. Moreover, they have
boundary on the set corresponding to S (S).

We denote by J the almost complex structure on V' obtained by pulling back the
almost complex structure 7 x j from C? x T*S. Then we can pull back the Bishop
family to holomorphic maps (denoted by the same symbols)

Upq0: D? —> V C (—&,0] x M. (2.3)
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2.3. Uniqueness results for holomorphic disks. We extend the almost complex
structure J from the set V' to a compatible almost complex structure on (W =
(—o0,0] x M, d(e*A)). We introduce the notation

PS(S) = PS(S)\ (I PS(S)U S) (2.4)

and remark that S (.S) is totally real with respect to J. The following proposition
is taken from [13, Proposition 7].

Proposition 2.1. Letu: (D2, D) — (W, £8(S)) be a J-holomorphic disk which
is simple. Moreover, we assume that u(S') C PS(S) bounds a disk in PS(S) and

image(u) NV # @. (2.5)
Then, up to an element in Aut(D?), we have
U = U,q0- (2.6)

that is, after reparametrization, the holomorphic disk v is a member of the Bishop
Jfamily.

3. Proof of the theorem

By assumption there exists a contact form Aps on M containing a Plastikstufe. Let A
be another contact form inducing the same contact structure.

We assume by contradiction that there exists no contractible closed Reeb orbit for A.

3.1. The set-up. We choose a function f: M — R such that A = fAps. Since
multiplying A with a non-zero constant does not change its Reeb orbits (up to repara-
metrization) we may assume without loss of generality that the function f takes only
values in (0, 1). Then we can choose a smooth family of functions f: M — (0, 00)
for s € [—1, —¢] satisfying

1 . J
s = flgars = and moreover ﬁ > 0. (3.1)
f nears = —1, ds

This gives rise to a smooth family Ay = fsAps of contact forms which we extend by
Aps fors > —sand by A fors < —1. On W = (—o0, 0] x M we choose an exact
symplectic form €2 which satisfies

5 {d(esxps) on [—e,0] x M, 55

d(e*A) on (—oc, —1] x M.
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This is possible due to our choice of the family f;. This has been used in the literature
many times, see for instance [7]. We modify the almost complex structure J from
above to a compatible almost complex structure J on (W, ) by requiring that on
(—o0, —2] x M the almost complex structure is adapted to the negative part of the
symplectization of A, in the sense of [1]. On V' it remains as defined in the previous
section. In particular, (W, ) still contains the Bishop family w4, 4,. We denote the

relative homotopy class given by the Bishop disks by a € w2 (W, PS(S)) and set

M) = {u : (D2, D% — (W, PS(S)) | dyu = 0, [u] = a, k(u,S) = 1},
(3.3)

M(J) := M(J)/Aut(D?), (3.4)

where Tk (u, S) is the linking number of u(S!) in PS(S) with the set S. This is
defined as follows. By definition PS8(S) is foliated by an S!-family of Legendrian
submanifolds, thus there exists a natural map 6 : PS (S) — S1. Wesetlk(u,S) :=
deg(@ 0 M|Sl).

3.2. The proof. We need the following three facts established in Propositions 810
in [13].

(1) The Maslov index of @ equals jiyasiov (@) = 2,
(2) the almost complex structure J is regular at members of the Bishop family,
(3) the energy of all elements in M (J) is uniformly bounded.

The totally real submanifold PS (S) is non-compact. Since d PS (S) is a closed leaf
of the characteristic foliation the maximum principle implies that no holomorphic
maps intersect d $S(S) at an interior point. According to Proposition 2.1 near S
the only holomorphic disks are members of the Bishop family. Therefore, the non-
compactness of PS (S) poses no problem. Moreover, due to the energy bounds and
the specific structure of the almost complex structure J on the end of W we can apply
the ideas of the SFT-compactness theorem [1]. Since we assumed that there exists no
contractible closed Reeb orbits bubbling-off cannot occur in the interior. Therefore,
the only non-compactness of the moduli space M(J) comes from bubbling-oft of
holomorphic disks having boundary on PS (S). The next proposition is taken from
[13, Proposition 11] and shows that there exists no bubbling-off of holomorphic disks.

Proposition 3.1. Given a sequence (u,) C M (J ) there exists a subsequence either
converging to an element in M(J) or to a point in S.

The latter case occurs if a family of Bishop disks shrinks to a point in .S. We
remark that in the former case the limit is simple.
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Proposition 3.2. For a compatible almost complex structure J, which is generic on
the subset ((—2, 0] x M ) \V of (W, Q), the moduli space M(J) is a smooth manifold
of dimension

dim M(J} =n + 2. (3.5)

Proof. We pick u € M(J). In case that image(u) NV # @ we conclude from
Proposition 2.1 that u is a member of the Bishop family. In particular, image(u) C V.
Moreover, J is already regular for members in the Bishop family.

Ifimage(u) NV = @ then u has to pass through the region ((—2, 0]x M )\ V. Since
all the disks are stmple a generic J will be regular, see for example [2]. The dimension
formula follows from the fact that a0y (@) = 2 and dim PS (S)=n. O

We consider the evaluation map

ev: M(J)g1 1= M(T) Xaup2) St — P5(S) C M,
2mit
)

(3.0)

[u, ] —> u(e

?

defined on the smooth manifolds f((] )1 of dimension dim f((] )g1 = n. The
following proposition is proved analogously to the transversality result above.

Proposition 3.3. For a generic J as in the previous proposition the evaluation map
is smooth.

To derive the contradiction to the assumption that A has no closed Reeb orbits we
make the following

Definition 3.4, Forapoint p = ((z,s) € (D?*xS) = PS(S) we define the distance
of pto S by d(p,S) = |z| and set for § > O sufficiently small

MY = {u, 1] € M(Dg1 | d(ev([u.1]). S) = 8} (3.7)
Then we have by construction of the Bishop family
ev(@M(I)2,) = «(S) x S), (3.8)
where S = {z € D? | |z| = §}. We conclude that
[ev(aM()%)] € Hamt (PS(S). Z/2)

is the generator. On the other hand the set eV(Bﬂ(J )?;,1) is clearly the boundary of
the compact, see Proposition 3.1, manifold ev (ﬁ (J )il). This implies, that

[ev(0M(1)2,)] = 0 € Huo1 (P5(S). Z/2).

This contradictions concludes the proof of the theorem.
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