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Counting tropical elliptic plane curves with fixed j-invariant

Michael Kerber and Hannah Markwig

Abstract. In complex algebraic geometry, the problem of enumerating plane elliptic curves
of given degree with fixed complex structure has been solved by R. Pandharipande [8] using
Gromov–Witten theory. In this article we treat the tropical analogue of this problem, the
determination of the number Etrop.d/ of tropical elliptic plane curves of degree d and fixed “tropical

j -invariant” interpolating an appropriate number of points in general position and counted with
multiplicities. We show that this number is independent of the position of the points and the
value of the j -invariant and that it coincides with the number of complex elliptic curves with

j -invariant j … f0; 1728g). The result can be used to simplify G. Mikhalkin’s algorithm to
count curves via lattice paths see [6]) in the case of rational plane curves.

Mathematics Subject Classification 2000). Primary 14N35, 51M20; Secondary 14N10.

Keywords. Enumerative geometry, tropical geometry.

1. Introduction

In classical algebraic geometry, the isomorphism class of an elliptic curve is given
by its j-invariant. The enumeration of complex plane elliptic curves with fixed j -
invariant using Gromov–Witten theory has been undertaken by R. Pandharipande [8].
He computed the number of elliptic curves of degree d through 3d 1 points and

with fixed j-invariant to be E.d; j / D
d 1
2 N.d/ for j … f0; 1728g, where N.d/

denotes the number of irreducible rational curves of degree d interpolating 3d 1
points in general position in case j 2 f0; 1728g, the numbers differ by a factor, due
to the presence of extra automorphisms).

In tropical geometry, the isomorphismclassof anelliptic curve isdeterminedby the
integer) length of its only cycle. This length, called tropical j-invariant, can be

viewed as a tropical analogue of the j -invariant of an elliptic curve in classical
algebraic geometry [7]. The tropical reformulationof the enumerativeproblem above is the
enumeration of tropical curves of genus 1 and degree d with prescribed tropical j -
invariant passing through acollection of 3d 1 points inR2 intropical generalposition.

Supported by the German Research Foundation Deutsche Forschungsgemeinschaft DFG)) through the
Institutional Strategy of the University of Göttingen.
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In this paper,weconstruct themoduli space of tropical elliptic curves asaweighted
polyhedral complex. Furthermore, we define the multiplicity of a tropical elliptic
curve with fixed j -invariant – similar to the case of tropical rational curves – as the
absolute value of the determinant of the evaluation map times a weight of the moduli
space. Then we define the numberEtrop.d /tobe the number of tropical elliptic curves

with fixed tropical j-invariant and interpolating 3d 1 given points in R2, counted

with multiplicities.
We prove that the numbers Etrop.d/ are independent of the choice of the j -invariant

for all values j 2 R 0, without exceptional values for the j -invariant which
is different for the complex case). Therefore we can choose a special j-invariant
to compute Etrop.d /. There are two possibilities to choose a special j-invariant
such that we can relate the elliptic tropical curves with that j -invariant to rational
tropical curves. One possibility is to choose a very large j -invariant, the other a

very small j-invariant. We prove that an elliptic tropical curve with a very large

j-invariant contains a contracted bounded edge in a way that its image in R2 can also
be interpreted as rational tropical curve. In this way we can show that the numbers

Etrop.d/ satisfy the equation

2
Ntrop.d /; 1)Etrop.d/ D

d 1

where Ntrop.d/ denotes the number of plane rational tropical curves of degree d
through 3d 1 points, counted with multiplicities see [6], Definition 4.15). Since
by G. Mikhalkin’s Correspondence Theorem see Theorem 1 of [6]) the number of
rational tropical curves Ntrop.d / coincides with its complex counterpart N.d/, it
follows using Pandharipande’s result) that Etrop.d/ D E.d; j/ for j 62 f0; 1728g.
Hence our result leads to a “correspondence theorem” for elliptic curves with fixed

j-invariant. It would be interesting to investigate whether there is also a direct
correspondence as in G. Mikhalkin’s theorem, that is, a bijection between the set

of tropical elliptic curves with fixed j -invariant with multiplicity) and the set of
complex curves with fixed j -invariant and which complex j -invariant corresponds
to which tropical j-invariant). Also, it would be interesting to see why there is no

such bijection in the cases where the complex j-invariant is j 2 f0; 1728g.
The methods of our computation of Etrop.d / using a very large j-invariant are

analogous to Pandharipande’s computation of the numbers E.d; j / – we use moduli
spaces of tropical elliptic curves and evaluation maps. But we can also compute

Etrop.d/ as mentioned above in another way, using a very small j -invariant. Tropical
curves with a very small j -invariant can be related to rational curves, too. Thus we
can determine the number Etrop.d/ with the aid of G. Mikhalkin’s lattice path count
see Theorem 2 of [6]). The computation of Etrop.d/ using the very small j-invariant

does not have a counterpart in complex algebraic geometry.
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We think that our computation ofEtrop.d/ gives new insights in tropical geometry.
As the most important example, we want to mention here the construction of the
moduli space of tropical elliptic curves. This space contains cells which are equipped
with weights. For some cells these weights are not natural numbers but contain a

factor of 1
2

This happens due to the presence of “automorphisms”; we therefore think
that our moduli space might be an example of a “tropical orbifold”.
Furthermore, equating our two formulas to determine Etrop.d/ – the one using a very
large j -invariant and the one using a very small j-invariant – we get a new formula
to enumerate tropical rational curves. Combined with G. Mikhalkin’s lattice path
algorithm to count tropical curves see Theorem 2 of [6]), this leads to a new lattice
path count for tropical rational curves, which has the advantage that fewer paths have

to be taken into account see Corollary 7.2).
Note that, with some minor changes, many of our concepts can be carried over

to curves on toric surfaces other than the projective plane, as G. Mikhalkin’s
correspondence theorem holds for these surfaces as well. But not all of our results can be

generalized to these surfaces, as e.g. Corollary 7.2 has no counterpart for arbitrary
toric surfaces, because the notion of column-wise Newton subdivision is lost see

Remark 3.10 of [3]).
The paper is organized as follows: in Section 2, we recall some basic definitions

concerning abstract and plane tropical curves and their moduli. After that, we
construct in Section 3 the moduli space of tropical elliptic curves as a fractional)
weighted polyhedral complex. In Section 4, we define tropical evaluation maps and
use them to definemultiplicities for elliptic curveswith fixed j-invariant. Using these
multiplicities, we prove in Section 5 the independence of the numbers Etrop.d/ from
the configuration of the given general points and the given value of the j -invariant.
This independence is used in Section 6 to compute the numbers Etrop.d / and in Section

7 to obtain our modified version of G. Mikhalkin’s algorithm to count rational
plane curves via lattice paths.

Wewould like to thankAndreas Gathmann forhis inspiring ideas and fornumerous
helpful discussions.

2. Tropical elliptic curves and their duals

We will define tropicalcurvesalmost in thesamewayas in [2],with theonly difference
that we allow curves of higher genus. Let us first introduce some notions concerning
graphs and metric graphs that we will need. For more details on graphs, see Definition

2.1 of [2]. Agraphcan have bounded as well as unbounded edges. We denote the
set of vertices by 0 and the set of edges by 1. The subset of 1 of bounded edges

is denoted by 1
0 and the subset of unbounded edges by 11 Unbounded edges will

also be called ends. A flag F of is a pair V;e/ of a vertex V and an edge e starting
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at V We will denote the edge e of a flag F D V;e/ by OEF D e, and the vertex V by
@F D V We can think of a flag V; e/ as a “directed edge” pointing away from the
vertex V For a bounded edge e there are two flags F and F 0 with OEF D e, for an
unbounded edge e there is only one flag F with OEF D e. We denote the set of flags
of by 0. Now assume is a metric graph, i.e. all bounded edges e are equipped
with a length l.e/ they can be thought of as real intervals of length l.e/). Given a flag

F D V; e/ of a bounded respectively unbounded) edge, we can parametrize e using
an affine map of slope 1, i.e. a map of the form t 7! c t by an interval OE0; l.e/
respectively, OE0; 1/), such that the vertex V is at 0. This parametrization will be

called the canonical parametrization for F The genus of a graph is defined to be

its first Betti number g. / WD 1 # 0
C#

1
0 D 1 dimH0. ; Z/CdimH1. ; Z/.

11

Definition 2.1. An abstract tropical curve of genus g is a metric graph of genus

g whose vertices have valence at least 3. An abstract n-marked tropical curve of
genus g is a tuple ; x1; : :: ; xn/ where is an abstract tropical curve of genus g
and x1; : : : ; xn 2 are distinct unbounded edges of We will refer to the xi as

marked ends or marked points a reason why we call them marked points is given
in Remark 2.7 of [2]). Two abstract n-marked tropical curves ; x1; : : : ; xn/ and

Q; xQ1;: : : ; xQn/ are called isomorphic and will from now on be identified) if there is
a homeomorphism Q mapping xi to xQi for all i and preserving the lengths of
all bounded edges i.e. every edge of is mapped bijectively onto an edge of Q by
an affine map of slope 1).

The set of all isomorphism classes of connected n-marked tropical curves with
exactly n unbounded edges and of genus g is calledMtrop; g;n.

Example 2.2. We want to determine the spaceMtrop; 1;1. An element ofMtrop; 1;1 is
an abstract tropical curve with one unbounded edge, and of genus 1. As no divalent
vertices are allowed, such an abstract tropical curve consists of one bounded edge
whose two endpoints are identified and glued to the unbounded edge.

These curves only differ in the length of their bounded edge, which has to be positive.
Therefore Mtrop; 1;1 is isomorphic to the open interval .0; 1/. We defineMx trop; 1;1
to be the interval OE0; 1/. Following G. Mikhalkin, we call the length of the bounded
edge – which is an inner invariant of the tropical elliptic curve – its tropical j -invariant,

as it plays the role of the j-invariant of elliptic curves in algebraic geometry
see Example 3.15 of [7], see also Remark 2.6 and Definition 4.2).

Definition 2.3. An n-marked plane tropical curve of genus g is a tuple

;h; x1; : : : ; xn/;
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where is an abstract tropical curve of genus g, x1; : : : ;xn 2 11 are distinct
unbounded edges of and hW R2 is a continuous map satisfying:

i) On each edge of the map h is of the form h.t/ D a C t v for some a 2 R2
and v 2 Z2 i.e. “h is affine linear with rational slope”). The integral vector v
occurring in this equation if we pick for e the canonical parametrization with
respect to a chosen flag F of e will be denoted v.F/ and called the direction
of F

ii) For every vertex V of we have the balancing condition

X
F2 0W@FDV

v.F/ D 0:

iii) Each of the unbounded edges x1; : : : ; xn 2 11 is mapped to a point in R2 by h
i.e. v.F/ D 0 for the corresponding flags).

Two n-marked plane tropical curves ; x1; : : : ; xn;h/ and Q; xQ1; :: : ; xQn; hQ/ are
called isomorphic and will from now on be identified) if there is an isomorphism

' W ; x1; :: : ;xn/ Q; xQ1; : : : ; xQn/ of the underlying abstract curves such that
hQ B ' D h.

The degree of an n-marked plane tropical curve is defined to be the multiset

D fv.F/I OEF 2 11nfx1; :: : ;xngg of directions of its non-marked unbounded
edges. If this degree consists of the vectors 1; 0/, .0; 1/, .1; 1/ each d times then
we simply say that the degree of the curve is d.

Remark 2.4. Note that the direction vector of a flag F D V;e/ if it is nonzero)
can uniquely be written as a product of a positive integer called the weight e/ of
the edge e) and a primitive integer vector called the primitive direction u.F / of the
flag F

Definition 2.5. For all n 0 andd > 0, we define Mtrop; 1;n.d/ to be the set of all
isomorphism classes of connected plane tropical curves ; h; x1;: : : ; xn/ of degree

d and genus g 1.

Remark 2.6. Note that for a connected graph the genus satisfies

g D 1 dimH0. ; Z/ C dimH1. ; Z/ D dimH1. ; Z/:

Hence for a connected plane tropical curve of genus 1, we have dimH1. ;Z/ D 1,
so there is onecycle which generatesH1. ; Z/. When we avoid to pass an edge twice
in both directions, there is a unique way to choose a chain of flags around this cycle
up to direction - we can go two ways around the cycle; and up to starting point). In

the following, we will therefore speak of “the cycle” of an element of Mtrop; 1;n.d/
of genus 1, meaning this chain of flags.
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The combinatorial type of an abstract n-marked tropical curve ; x1; : : : ; xn/ is
the homeomorphism class of relative x1;: : : ; xn i.e. modulo homeomorphisms
that map xi to itself). We can think about it as the graph with the information of
the length of the bounded edges dropped. The combinatorial type of a plane tropical
curve ; h; x1; :: : ;xn/ is the combinatorial type of ;x1; : : : ;xn/ together with
the directions v.F/ for all flags F 2 0. M d/ is defined to be the subset oftrop; 1;n
Mtrop; 1;n.d/ of tropical curves of combinatorial type

Definition 2.7. Let be a combinatorial type in the space Mtrop; 1;n.d /. The
deficiency def. / is defined to be

def. / D
8
<̂

:̂

2 if g D 1 and the cycle is mapped to a point in R2;

1 if g D 1 and the cycle is mapped to a line in R2;

0 otherwise:

We will also speak of the deficiency def.C/ of a curve C.

Having defined elliptic tropical curves we now want to come to their dual Newton
subdivisions.

Let V be an r-valent vertex of a plane tropical curve ;h/ without markings)
and let e1; :: : ;er be the counterclockwise enumerated edges adjacent to V Draw in
the Z2-lattice an orthogonal line L.ei/ of integer length ei/ where e/ denotes

the weight of e, see Remark 2.4) to h.ei/, where L.e1/ starts at any lattice point
and L.ei/ starts at the endpoint of L.ei 1/, and where by “integer length” we mean
#.Z2 \ L.ei// 1. The balancing condition tells us that we end up with a closed

r-gon. If we do this for every vertex we end up with a polygon in Z2 that is divided
into smaller polygons. The polygon is called the Newton polygon of the tropical
curve, and the division the corresponding Newton subdivision. Note that the ends of
the curve correspond to line segments on the boundary of the Newton polygon. The
Newton polygon of a curve of degree d is the triangle d with vertices .0; 0/, .0; d/
and d; 0/. For more details on the dual Newton subdivision of a tropical curve, see

[6], Section 3.4.
Some properties of plane tropical curves can be read off from their dual picture.

Here are some examples:

a) A plane tropical curve is called simple if its dual subdivision contains only
triangles and parallelograms see Definition 4.2 of [6]). This property can also
be defined without using the dual language.)

b) The genus of a simple plane tropical curve ; h/ is equal to thenumber of lattice
points of the subdivision contained in the interior of the Newton polytope minus
the number of parallelograms see Lemma 4.6 of [6]).
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c) Let V be a trivalent vertex of and e1; e2; e3 the edges adjacent to V The

multiplicity of V is defined to be the area of the parallelogram spanned by the
two directions of e1 and e2. Due to the balancing condition this is independent
of the choice of e1 and e2.) It is equal to 2 times the area of the dual triangle
see Definition 2.16 of [6]).

d) The multiplicity mult.C/ of a 3-valent tropical plane curve is the product over all
multiplicities of the vertices. In the dual language, the multiplicity of a simple
curve is the product over all double areas of triangles of the dual subdivision
see Definition 4.15 of [6]).

For more details on dual Newton subdivisions, see for example [5], Section 5.

3. The moduli space of tropical elliptic curves

Let us study the spaceMtrop; 1;n.d/. There areonly finitely many combinatorial types

in the spaceMtrop; 1;n.d/ analogously to 2.10 of [2]).

Lemma 3.1. For every combinatorial type occurring in Mtrop; 1;n.d/ the space

Mtrop; 1;n d/ is naturally an unbounded) open convex polyhedron in a real vector

space of dimension 2 C # 1
0 that is a subset of a real vector space given by finitely

many linear equations and finitely many linear strict inequalities. The dimension of

Mtrop; 1;n d/ is equal to

trop; 1;n.d// D 3d C n C g 1 X
V 2 0

dim.M val V 3/ C def. /

Proof. Fixing a combinatorial type means we fix the homeomorphism class of
and the directions of all flags. We do not fix the lengths l.e/ of the bounded edges.
Note that the length of an image h.e/ R2 is determined by l.e/ and the

direction.) Also, we can move an image h. / in the whole plane. Choose a root
vertex V of Two coordinates are given by the position of the image h.V / in the
plane. # 1

0 coordinates are given by the lengths of the bounded edges which have

trop; 1;n d / in R2C#
1

to be positive). Hence we can embed M 0 Note that a graph
with 3d C n unbounded edges and of genus 1 has 3d C n PV 2 0 val V 3/
bounded edges, whereas a rational graph with 3d C n unbounded edges has 3d C
n 3

PV 2 0 val V 3/ bounded edges see for example [6], proof of 2.13). For
a genus 1 curve C, the lengths of the bounded edges are not independent however,
as some are contained in the cycle. So these lengths satisfy two conditions, namely
that their images have to close up a cycle in R2. These conditions are only
independent if def.C / D 0. If def.C / D 1 there is one independent equation, and if
def.C / D 2 there is none. Hence the dimension of the polyhedron Mtrop; 1;n d/ in
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R2C#
1

0 2Cdef.C/ D 3d Cn PV2 0 val V 3/ Cdef.C /. Note0 is 2C#
1

that the polyhedron is unbounded, because we can for example move the image of the
root vertex in the whole plane. For rational curves, no equations have to be fulfilled
and we have dimMtrop; 1;n d/ D 3d C n 1

PV2 0 val V 3/.

Proposition 3.2. Let be a combinatorial type occurring in Mtrop; 1;n.d /. Then

every point inMx trop; 1;n.d/ where the closure is taken in R2C# 1
0 see Lemma 3.1)

can naturally be thought of as an element inMtrop; 1;n.d/. The corresponding map

i WMx trop; 1;n.d/ Mtrop; 1;n.d /

trop; 1;n d/ to a union of strata M 0maps the boundary @M trop; 1;n d/ such that 0 is a

combinatorial type with fewer internal edges than Moreover, the restriction of i
to any inverse image of such a stratumM 0

trop; 1;n d / is an affine map.

Proof. Note that by the proof of 3.1 a point in the boundary of the open polyhedron

Mtrop; 1;n d/ R2C#
1
0 corresponds to a tuple ;h; x1; : : : ; xn/where some edges e

have length l.e/ D 0. Such a curve is of a different combinatorial type then, because

the homeomorphism class of the graph has changed. For all edges e with length

l.e/ D 0 the vertices @F and @F 0 of the two flags F and F 0 with OEF D OEF 0

D e are

identified. We can as well remove the edges of length 0 then. Note that the balancing
condition will be fulfilled at the new vertices. Two examples what this can look like
areshown in the following picture. Theedges which tend to have length zero when we
move towards the boundary of the open polyhedronMtrop; 1;n d/ are drawn in bold.

1
1

Let 1 be the graph which is obtained by removing the edges of length 0. Note that

1 has fewer bounded edges than The tuple 1; hj 1 ;x1; :: : ; xn/ is a tropical
curve again, possibly of a smaller genus than ; h; x1; : : : ; xn/. This shows that the
points in the boundary @Mtrop; 1;n d/ can naturally be thought of as parametrized
tropical curves in Mtrop; 1;n.d/ themselves. The combinatorial types 0 that can
occur in the boundary of Mtrop; 1;n d/, that is, in the image i @Mtrop; 1;n d //, have

by construction fewer bounded edges than Finally, it is clear that the restriction of
i to the inverse image of any stratum M 0

trop; 1;n d/ is an affine map since the affine
structure on any stratum is given by the position of the curve in the plane and the
lengths of the bounded edges.
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Definition 3.3. We will say that a type 0 appears in the boundary of another type

if there is a point in @Mtrop; 1;n d/ that is identified with a curve of type 0 as in the
proof of Proposition 3.2).

Our aim is to de fine a slightly different moduli space M0trop; 1;n d/, where the
strata of dimension bigger than 3d C n are excluded and where we add a weight for
each stratum. In fact, our moduli space should be something similar to an abstract
tropical variety, a weighted polyhedral complex:

Definition 3.4. Let X1; : : : ;XN be possibly unbounded) open convex polyhedra in
real vector spaces. A polyhedral complex with cells X1; : : : ; XN is a topological
space X together with continuous inclusion maps ik W SXk X such that X is the
disjoint union of the sets ik.Xk/ and the “coordinate changing maps” i 1

k B il are

linear where defined) for all k ¤ l We will usually drop the inclusion maps ik in
the notation and say that the cells Xk are contained in X.

The dimension dim X of a polyhedral complex X is the maximum of the dimensions

of its cells. We say that X is of pure dimension dim X if every cell is contained
in the closure of a cell of dimension dim X. A point of X is said to be in general
position if it is contained in a cell of dimension dim X. For a point P in general
position, we denote the cell of dimension dim X in which it is contained by XP

Aweighted polyhedral complex is apolyhedralcomplexsuch that there is aweight

Xi/ 2 Q associated to each cell Xi of highest dimension.

We are now ready to define the moduli spaceM0trop; 1;n d/, which is important for
our methods:

Definition 3.5. Remove thestrata of dimension bigger than3dCn fromMtrop; 1;n.d /.
Also, remove the strata of rational curves which are not contained in the boundary of
a genus 1 curve as in 3.3. Let be a type such that dimMtrop; 1;n d/ D 3d Cn. We

associate the following weights to the strata of dimension 3d C n:
a) Assume def. / D 0, and the curves of type are of genus 1. As we have already

seen, the condition that the image of the cycle closes up in R2 is given by two
independent linear equations a1 and a2 on the lengths of the bounded edges.

We associate as weight the index of the map

a1

a2
W Z2C#

1
0 Z2:

For more details on lattices, maps between vector spaces and lattices and their
indices, see [9].)

b) Assume def. / D 1. Assume first that the 4-valent vertex is adjacent to the
cycle, that is, locally the curves look like the following picture:
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v
n u

m u

In the notations above, n u, m u and v denote the direction vectors of the
corresponding edges nandmare chosen such that their greatest common divisor
is1). If n ¤ m, or ifn D m D 1 and the cycle is formedby three edgesdueto the
presence of a marked point, we associate the weight jdet.u; v/j. If n D m D 1
and no point is on the flat cycle, then we associate 1

2 jdet.u; v/j. Due to the
balancing condition this definition is not dependent of the choice of v.)
In case the 4-valent vertex is not adjacent to the cycle, we associate the weight 0.

c) Assume def. / D 2. Assume first that the 5-valent vertex is adjacent to the
cycle, that is, locally the curves look like this:

u

v

where u and v denote the direction vectors of the corresponding edges. We
associate theweight 1

2 jdet.u; v/j 1/. Note thatdue to thebalancing condition
this definition is independent of the choice of u and v.) In the case that there
are two 4-valent vertices or that the 5-valent vertex is not adjacent to the cycle,
we associate the weight 0.

The strata of dimension 3d Cn or less together with these weights for the strata of top
dimension form the spaceM0trop; 1;n d /, called the moduli space of relevant) elliptic
tropical curves.

The reason to drop the cells of dimension bigger than 3d C n is that we want to
construct later on a morphism to a polyhedral complex of the same dimension3d Cn.
The strata of dimension bigger than 3d C n would not be mapped injectively to the
image. We will only be interested in strata which are mapped injectively, therefore
the strata of dimension higher than 3d C n are not important to us and we can drop
them.
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Remark 3.6. Note that the definitions of weight do not depend on the choice of
coordinates for the cellMtrop; 1;n d/. This is clear for each case except the first one.

In the first case, the two equations given by the cycle do not depend on the choice
of a root vertex, they depend only on the choice of an order for the bounded edges.

But this corresponds to an isomorphism on R2C# 1
0 of determinant 1, therefore the

a2 does no depend on this choice.index of a1

The definition of the weights for the different strata seems somewhat unnatural.
However, we will see that the weights are just the right ones for our proofs later
on. The idea behind this definition is that we think of elliptic tropical curves as

rational tropical curves with two additional marked points, whose images we require
to coincide.

h

The space of rational curves with two additional marked points is of course bigger
than the space of elliptic curves, but it contains the space of elliptic curves as the
kernel of the map a1 a2. Note that the index of a1 a2 is equal to

gcd.a1/ gcd.a2/ ker.a1/; ker.a2/ ;

where ker.a1/; ker.a2/ denotes the index of the sublattice generated by ker.a1/C
ker.a2/ in Z2C# 10 see example 1.5 of [9]).

If def.C / D 1, the weight we choose is derived in the same way: we compute
the multiplicity of a rational curve with two additional marked points.

Sometimes we included a factor of 1
2 in our weights. It seems maybe unnatural to

allow weights which are not natural numbers. But the factors of 1
2 are only necessary

when the cycle of the elliptic curve “allows automorphisms”: when it is a loop
consisting of one edge with two non distinguishable orientations, or when it consists

of two non distinguishable edges. Due to these factors we believe that the moduli
space we construct here can be thought of as a “tropical orbifold”.
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Lemma 3.7. The spaceM0trop; 1;n d/ defined in 3.5) is a weighted polyhedral complex

of pure dimension 3d C n.

Proof. Thecellsare obviously thestrataMtrop; 1;n d /correspondingto relevant types.
By 3.1 they are open convex polyhedra. By Proposition 3.2, their boundary is also
contained inM0trop; 1;n d/, and thecoordinate changing maps are linear. By definition,
the highest dimension of a relevant cell is 3d C n. Furthermore, by definition each
rational type which is contained inMtrop; 1;n d/ is in theboundary ofa typeof genus1.
Each higher-valent vertex can be resolved to 3-valent vertices. Therefore each type
is contained in the boundary of a type of codimension 0. By definition, the strata of
top dimension are equipped with weights as required.

4. The multiplicity of an elliptic tropical curve

We also want to define morphisms between weighted polyhedral complexes.

Definition 4.1. A morphism between two weighted polyhedral complexes X and Y
is a continuous map f W X Y such that for each cell Xi X the image f Xi/ is
contained in only one cell of Y and f jXi is a linear map of polyhedra).

Assume f W X Y is a morphism of weighted polyhedral complexes of the
same pure dimension, and P 2 X is a point such that both P and f P/ are in general
position in X resp. Y Then locally around P the map f is a linear map between
vector spaces of the same dimension. We define the multiplicity multf P / of f at

P to be the absolute value of the determinant of this linear map times the weight of
the cell XP Note that the multiplicity depends only on the cell XP of X in which P
lies. We will therefore also call it the multiplicity of f in this cell.

A point Q 2 Y is said to be in f -general position if Q is in general position
in Y and all points of f 1.Q/ are in general position in X. Note that the set of
points in f -general position in Y is the complement of a subset of Y of dimension
at most dim Y 1; in particular it is a dense open subset. Now if Q 2 Y is a point
in f -general position we define the degree of f at Q to be

degf Q/ WD X
P2f 1.Q/

multf P /:

Note that this sum is indeed finite: first of all there are only finitely many cells in X.
Moreover, in each cell of maximal dimension) of X where f is not injective i.e.

where there might be infinitely many inverse image points of Q) the determinant of

f is zero and hence so is the multiplicity for all points in this cell.
Moreover, since X and Y are of the same pure dimension, the cones of X on

which f is not injective are mapped to a locus of codimension at least 1 in Y Thus
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the set of points in f -general positionaway from this locus is also adense open subset

of Y and for all points in this locus we have that not only the sum above but indeed
the fiber of Q is finite.

Note that the definition of multiplicity multf P / in general depends on the

coordinates we choose for the cells. However, we will use this definition only for
the morphism ev j see 4.2) for which the absolute value of the determinant does
not depend on the chosen coordinates, if they are chosen in a natural way in our

case this means we choose a lattice basis of the space Mtrop; 1;n d/ R1C#
1
0 see

Remark 4.7).
The following maps will be important to count elliptic curves:

Definition 4.2. Let

evi
W

M0trop; 1;n.d / R2; ; h;x1; :: : ;xn/ 7! h.xi/
denote the i-th evaluation map. By ev D ev1 evn we denote the combination
of all n evaluation maps.

If C is an elliptic curve, let 1 be the minimal connected subgraph of genus 1
of that contains the unbounded edge x1. Note that 1 cannot contain vertices of
valence 1. So if we“straighten” the graph 1 at all 2-valent vertices that is we replace
the two adjacent edges and the vertex by one edge whose length is the sum of the
lengths of the original edges) then we obtain an element ofMx trop; 1;1 D OE0; 1/ that
we denote by j.C/. For an elliptic curve, j.C/ ¤ 0.) If C is rational, we define

j.C/ D 0 2Mx trop; 1;1 D OE0; 1/. We call j.C/ the tropical j-invariant of C.
A combination of these maps yields

ev j W
M0trop; 1;n.d/ R2n Mx trop; 1;1:

Example 4.3. The following picture shows an elliptic curve C. The marked points
are drawn as dotted lines. The subgraph 1 is indicated with a bold dotted line. The
image j.C/ is an abstract tropical curve where the cycle has length l1Cl2C Cl8.

x1

l1 l2

l8 l3

l5l6
l7 l4

j.C/
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Lemma 4.4. The map ev j restricted to a stratumMtrop; d / is a linear map.1;n

Proof. The coordinates on Mtrop; 1;n d / are by 3.1 given by a root vertex V and
an order on the bounded edges. Of course, these coordinates do not need to be

independent, but if they are not, they fulfill a linear condition themselves. As is
connected, we can reach xi from the root vertex V by a chain of flags F such that
OEF is a bounded edge. Then the position of h.xi / is given as a sum

h.V /CX
F

v.F/ l.OEF /;

where the summation goes over all flags F in the chain. Hence the position h.xi / is
given by two linear expressions in the coordinates ofMtrop; 1;n d /. The length of the
bounded edge of j.C/ is by definition given as the sum of the lengths of all bounded
edges contained in the cycle of 1 that we straightened to get j.C/.

Lemma 4.5. Let n D 3d 1. Then the map ev j is a morphism of weighted
polyhedral complexes of the same dimension.

Proof. The spaceM0trop; 1;n d/ is a weighted polyhedral complex of dimension 3d C
n D 3d C3d 1 D 6d 1 by 3.7. The space R2n Mx trop; 1;1 is by 2.2 isomorphic
to R2n OE0; 1/. This is obviously a polyhedral complex with only one cell, and
we can make it weighted by associating the weight 1 to this cell. Its dimension is

2n C 1 D 2.3d 1/ C 1 D 6d 1, too. The map ev j restricted to a cell of the
weighted polyhedral complex M0trop; 1;n d / is linear by 4.4. Furthermore, it maps

each cell into the one cell of the space R2n Mx trop; 1;1.

We will from now on assume that n D 3d 1, in order to have a morphism
between polyhedral complexes of the same dimension.

Remark 4.6. Fix n points p1; :: : ;pn and a j-invariant l in ev j -general position

see Definition 4.1). Then determine the set of tropical elliptic curves
ev j/ 1.p1; : : : ; pn; l/ which pass through the points and have j-invariant l. We

count each such elliptic curve with its ev j-multiplicity, that is, we determine
degev j p1; :: : ;pn; l//. Define Etrop.d/ D degev j p1; : : : ;pn; l// to be the
number of tropical elliptic curves through 3d 1 points in general position and
with fixed j-invariant. Our aim is to show that this definition does not depend on the
choice of p1; : : : ; pn; l/. This statement will be shown in Theorem 5.1.

Remark 4.7. Given a stratumMtrop; 1;n d/ of top dimension we choose a lattice basis

trop; 1;n d / inR2C# 1of the spaceM 0 whichcontains the latticeZ2C# 1
0. ForR2C# 1

0

we choose natural coordinates given by a root vertex and an order of the bounded
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edges.) With this choice, we can compute a matrix representation of ev j and hence

compute its determinant. We claim that the absolute value of this determinant and
thus, the ev j-multiplicity) does not depend on the choices we made. To see this,
note first that a different choice of the root vertex or the order of the bounded edges

corresponds toa basischange ofdeterminant 1 see Remark 3.2 of[2]). If we choose

a different lattice basis forMtrop; 1;n d /, then we have to multiply the matrix of ev j
with the basis change matrix. But as this is a basis change of lattice bases, it is of
determinant 1 and does therefore not change the absolute value of the determinant
of ev j

The following remark helps us to determine multC ev j / in some cases:

Remark 4.8. Let be a type of 3-valent genus 1 curves with def. / D 0. We want
to determine the multiplicity of ev j in the stratum Mtrop; 1;n d /. By definition, it
is equal to the absolute value of the determinant of ev j times the weight of the cell

Mtrop; 1;n d/. The weight of the cell is defined to be the index of the lattice map a1
a2

wherea1 and a2 denote the two equationsgiven by the cycle see 3.5). To compute the
ev j-multiplicity, we need to compute this weight, and then a matrix representation
of ev j restricted to ker.a1/\ ker.a2/. To get this matrix representation, we need

a lattice basis of the subspaceMtrop; 1;n d/ R2C#
1
0 However, lattice bases are in

general not easy to determine. We can instead use example 1.7 of [9]. It states that

jdet.ev j/j times the lattice index is equal to the absolute value of the determinant
of the map

ev j a1 a2W R2C#
1
0 R6d 2

Mx trop; 1;1 R2

where ev and j denote here matrix representations of ev respectively j in the
coordinates given by the root vertex and the lengths of all bounded edges). This
map goes from the space R2C#

1
0 which surrounds Mtrop; 1;n d /. More precisely,

trop; 1;n d/ is equal to ker.a1/ \ ker.a2/ R2C#
1

M 0 The bigger space R2C#
1
0

does not parametrize tropical curves, as the length coordinates of a general vector of
R2C#

1
0 do not need to fulfill the conditions given by the cycle. But after choosing

coordinates and chains of flags from the root vertex to each marked point) we can still
write down the matrix of ev j a1 a2. Note that while the matrix does depend

on the choices we make, the absolute value of the determinant does not see Remark
4.65 of [5]). That is, to compute the multiplicity of ev j in Mtrop; d/, we can1;n
write down a matrix representation for the map ev j a1 a2 and compute its
determinant. In the following, we will denote the map by ev j a1 a2, even

though it is not uniquely determined by this term. It depends on the chosen matrix
representation, that is, on the chosen chains of flags. We will keep in mind that

jdet.ev j a1 a2/j is uniquely determined, though.
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Example 4.9. Compute jdet.ev j a1 a2/j for the following local) picture of
an elliptic curve.

V

v4

v1 v5

x2

x1
v2

v3

2

Let V be

v0BB@

the root vertex. We choose the following chains of flags: for x1, we pass

v1. For x2, we pass v2 and v3. For a1 a2, we pass v2, v4 and v5. Then the matrix
reads:

E2 v1 0 0 0 0

E2 0 v2 v3 0 0
0 0 0 v4 v5

0 0 1 0 1 1

1CCA

Each row except the last represent two rows, the first column represents two columns.

E2 stands for the 2 2 unit matrix.

We add four other statements that help to determine the ev j-multiplicity in
some cases:

Lemma 4.10. Let def.C/ D 2, that is, C contains a contracted loop. C0 denotes

the rational curve which arises from C if we remove the loop.
If the vertex V to which the loop is adjacent is 5-valent, then

multev j C / D
1

2
mult.V / 1 mult.C 0/;

where mult.V / denotes the multiplicity of the vertex V of C0 from which the loop was

removed and mult.C0/ denotes the multiplicity of the tropical curve C0.

Else the ev j -multiplicity of C is 0.

Proof. To determine a matrix representation for ev j we do not have to consider
equations given by the cycle and lattice bases – the lengths of the bounded edges
are independent. That is, we can choose a root vertex and an order of the bounded
edges and write down the matrix of ev j with respect to this basis. Note that in the

j-rowthere is just one unit at thecoordinate of the contracted edge, asno other edge is
contained in the cycle. To compute the determinant, we can therefore remove this last
line and the column of the coordinate of the contracted edge which forms the cycle.
The remaining matrix consists of the evaluation maps in the 3d 1 marked points,
and it does not take the contracted edge into account. That is, this matrix describes
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the evaluation in the marked points of the rational curve C0 which arises when we
remove the contracted edge. Proposition 3.8 of [2] tells us that the determinant of
this matrix is equal to the multiplicity of the rational curve C0. To determine the
ev j-multiplicity, we also have to multiply with the weight of the stratum in which
C lies. The only case where the weight is non-zero is 3.5(c), so we can assume

that the contracted loop is adjacent to a 5-valent vertex V and denote the direction
vectors of two of the other adjacent edges by u and v. Then the weight of the stratum
is 1

2 jdet.u; v/j 1/ by definition. If we remove the loop and consider the rational
curve C0, then this weight is equal to 1

2 mult.V / 1/, where mult.V / denotes the
multiplicity of the vertex V to which the contracted loop was adjacent.

Lemma 4.11. Let C be a 3-valent) curve with acontracted bounded edge e, which is
not a loop. Let C0 denote the rational curve that arises if we remove e and straighten
the two 2-valent vertices V1 and V2 emerging like this. Let u denote the direction of
a remaining edge adjacent to V1, and let v denote the direction of a remaining edge
adjacent to V2.

If e is part of the cycle, then

multev j C / D jdet.u; v/j mult.C 0/:

Else the ev j -multiplicity of C is 0.

Proof. We assumed that the contracted bounded edge e is adjacent to two different
3-valent vertices. These vertices have to be 3-valent, as we only compute the ev j -

multiplicity in strata of top dimension.)
The balancing condition implies that at each of these two vertices the two other

adjacent edges are mapped to opposite directions:

h

e1

e

e2

e3 e4

u

u

v

v

We are going to use Remark 4.8 to compute the ev j-multiplicity, that is, we use a

matrix representation of ev j a1 a2, where a1 and a2 denote the two equations

of the cycle. If e is not part of the cycle its length is a coordinate which is needed
neither for the evaluations nor for the map j so we get determinant 0. Assume now
that e is part of the cycle. Then e is only needed for the map j as it is contracted by

h it is not needed to describe a position of the image of a marked point. That is, in
the column for e, we have a 1 at the row of the map j and 0 in every other row. In the
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matrix of ev j a1 a2, we can choose a chain of flags to each marked point which
avoids the edge e. This is possible, as e is contained in the cycle. In the two equations

a1 and a2, exactly one of the edges e1 and e2 will take part, and also exactly one of
the edges e3 and e4. Assume without loss of generality that e1 and e3 are part of the
cycle. If e1 is used in a chain of flags to a marked point, then also e2, and if e3, then
also e4. Let li denote the length of ei and l denote the length of e. Assume that the
directions are as labelled in the picture. Then the ev j a1 a2-matrix looks like
this:

h.V / l1 l2 l3 l4 l other edges

marked points using neither of the ei E2 0 0 0 0 0

marked point using e1 E2 u u 0 0 0

marked points using e3 E2 0 0 v v 0

a1; a2 0 u 0 v 0 0

coordinate ofMx trop; 1;1 0 1 0 1 0 1

We perform the following operations which do not change the absolute value of
the determinant: we delete the last row and the l-column. We subtract the l2-column
from the l1-column and we change the place of the l1-column: it shall appear as first
column. Then, we subtract the l4-column from the l3-columnandmove the l3-column
to the second place. At last, we put the two rows a1 and a2 to the beginning. After
these operations the matrix looks like this:

l1 l3 h.V / l2 l4 other edges

a1; a2 u v 0 0 0

marked points using neither of the ei 0 0 E2 0 0

marked point using e1 0 0 E2 u 0

marked points using e3 0 0 E2 0 v

Note that this matrix is now a block matrix with a 2 2 block on the top left, and
a block that we will denote by A on the bottom right. That is, its determinant is equal
to det.u; v/ det A. NowA is the matrix of the evaluation map in the 3d 1 marked
points of the rational curve C0 which arises from C when we remove the contracted
bounded edge e and straighten the two bounded edges e1 and e2 as well as the two
bounded edges e3 and e4 to one edge. As before, Proposition 3.8 of [2] tells us that

jdetAj D mult.C 0/. That is, the ev j-multiplicity of C is equal to jdet.u; v/j times
the multiplicity of the rational curve C0 which arises after removing the contracted
edge and straightening the adjacent edges. Our argument here assumes that the edges
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e1; : : : ; e4 are all bounded. However, we can prove the same if some of these edges

are not bounded. Their lengths do not appear as coordinates then, but also there
cannot be marked points behind unbounded edges.

Lemma 4.12. Let C be a curve with a flat cycle that is, def.C / D 1) which is not
adjacent to a marked point. If there is no 4-valent vertex adjacent to the flat cycle,
then multev j C / D 0. Else, with the notations as in the picture below, we have

multev j C / D
m C n/ jdet.u; v/j mult.C0/ if m ¤ n

jdet.u; v/j mult.C0/ if m D n D 1

where C0 denotes the rational curve that arises if we glue the two edges that form the
cycle to one edge of direction mCn/ u and straighten the 2-valent vertex emerging
like this.

Proof. The following picture shows the flat cycle of the curve C. We choose m and

n such that gcd.m; n/ D 1.

v
m u mC n/ u

n u

To determine the matrix of ev j we need a lattice basis of Mtrop; 1;n d/. As the
equations of the cycle are given by l1 m u l2 n u, we can choose unit vectors
for all coordinates except l1 and l2, plus the vector with n at the l1-coordinate and m
at the l2-coordinate. As gcd.m; n/ D 1, this is a lattice basis. The j-invariant of C
is given by l1 Cl2. That is, in the j -row of the matrix, we have only zeros except for
the column which belongs to the vector with n at l1 and m at l2, there we have the
entry mCn. But then we can delete the j -row and this column. The determinant we
want to compute is equal to mCn/ times the determinant of the matrix which arises

after deleting. This matrix can easily be seen to be the matrix of evaluating the points
of the rational curve C0 which arises after identifying the two edges which form the
cycle. Due to [2], Proposition 3.8, its determinant is equal to mult.C0/. The factor
of jdet.u; v/j respectively, 1

2 jdet.u;v/j if n D m D 1) has to be included, because

trop; 1;n d /.this is by Definition 3.5 b) the weight of the stratumM

Lemma 4.13. Let C be a curve with def.C / D 0 and such that the cycle is formed
by 3 edges.

Then multev j C / D mult.V / mult.C0/, where C0 is the rational curve which
arises when we shrink the cycle to a vertex V
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Proof. We compute the ev j-multiplicity of C using Remark 4.8. That is, we
compute the determinant of the matrix ev j a1 a2, where a1 and a2 denote the
two equations of the cycle. The following picture shows the curve locally around the
cycle and fixes a labeling of the adjacent edges:

v1

v3

V

C C0

v2

Note that the matrix ev j a1 a2 has a block form with a 0 block on the bottom
left, because the equations of the cycle and the j -invariant only need the three length
coordinates of v1, v2 and v3. The block on the top left is just the evaluation of the
rational curve C0 at the marked points – hence by [2], Proposition 3.8, its determinant
is equal to mult.C 0/. So multev j C/ is equal to mult.C 0/ times the absolute value

of the determinant of the matrix

1 1 1
v1 v2 v3

where the last row stands for the two rows given by the equation of the cycle. The
absolute value of this determinant can be computed to be

jdet.v1; v2/j C jdet.v1; v3/j C jdet.v2; v3/j

which is – using the dual picture, for example – easily seen to be equal to mult V :

The sum of the three determinants is equal to the double areas of the three small
triangles, mult V is equal to the double area of the big triangle.

5. The number of tropical elliptic curves with fixed j -invariant

A string in a tropical curve C is a subgraph of homeomorphic either to R or to
S1 that is, a “path” starting and ending with an unbounded edge, or a path around
a loop) that does not intersect the closures Sxi of the marked points see also [5],
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Definition 4.47). If the number of marked points on C is less than 3d C g 1, then

C has a string. This follows from Lemma 3.50 of [5]. We will need the notion of a

string in the following proof of the main theorem of this section:

Theorem 5.1. Let n D 3d 1. The degrees degev j P/ do not depend on P. Here

P D p1; : :: ; p3d 1; l/ 2 R2n Mx trop; 1;1 denotes a configuration in ev j -general
position consisting of 3d 1 points in R2 and a length l for the j -invariant.)

Proof. Analogously to the proof of 4.4 of [2], we have that the degree of ev j is
locally constant on the subset of R6d 2 Mx trop; 1;1 of points in ev j-general position
since at any curve that counts for degev j P/ with a non-zero multiplicity the map
ev j is a local isomorphism. The points in ev j-general position are the complement

of a polyhedral complex of codimension 1, that is they form a finite number of
top-dimensional regions separated by “walls” that are polyhedra of codimension 1.
Hence it remains to show that degev j is locally constant at these points, too. Such
a general point on a wall is the image under ev j of a general tropical curve C of a

type such thatMtrop; 1;n d/ is of codimension 1. So we have to check that degev j
is locally constant around such a point C 2 M0trop; 1;n d /. More precisely, if P is

such a point on a wall, and C is a curve through P, we want to show that the sum

of the ev j-multiplicities of the curves through P0 near P and close to C does not
depend on P0. Let us determine what types are of codimension 1, using 3.1.

a) def. / D 0, is of genus 1 and has one 4-valent vertex besides the 3-valent
vertices);

b) def. / D 1 and has two 4-valent vertices;

c) def. / D 1 and has one 5-valent vertex;

d) def. / D 2 and has three 4-valent vertices;

e) def. / D 2 and has one 5-valent and one 4-valent vertex;

f) def. / D 2 and has one 6-valent vertex.

Note that the codimension 1 case that is the type of a rational curve is missing here:
the reason is that we do not “cross” such a wall consisting of rational curves, we can
only enlarge the j -invariant if j D 0, not make it smaller. More precisely, the curves

which pass through a configuration P0 in the neighborhood of a point configuration
through which a rational curve passes, are always of the same types; the types and
with them, the multiplicities with which we count) do not depend on P0.

For each of the cases in the list, we have to prove separately that degev j is locally
constant around a curve C of type The proof for a) is similar to the proof of 4.4
in [2]. There are three types which have in their boundary. The following is a local
picture:
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e
e

e

1 2 3

Tocompute the ev j -multiplicity ofa curve of each type, we use Remark 4.8, that is,
we compute a matrix representation of ev j a1 a2, where a1; a2 denote the two
equations of the cycle. We can choose the coordinates in such a way that these three
matrices only differ in one column - in the column corresponding to the new edge e.
Then we can use the same operations as in 4.4 of [2] to prove that the sum of the three
determinants is 0. The matrices we use here differ from the ones in 4.4 of [2] because

they contain the two lines corresponding to a1 and a2, and the line corresponding
to the j-invariant. However, the argument does not change in the presence of these

other lines. Also, with the same argument as in 4.4 of [2], the question whether there
is a curve of type i through a given configuration P0 close to P depends on the
sign of the determinant. So we can conclude that we either get the types where the
determinant has positive sign or the types where it has negative sign. But as the sum

is 0, the sum of the absolute values of those determinants, for which a curve exists,
stays constant and does not depend on P0.

So let usnowcome to b). First note that if none of the4-valent vertices is adjacent
to the flat cycle, then we count all curves of a type which has in its boundary
with the weight 0, so we do not have to consider this case. So at least one of the
4-valent vertices is adjacent to the flat cycle. If exactly one of the 4-valent vertices
is adjacent to the flat cycle, then the only curves which have in their boundary
and which do not count with weight 0 are the curves where the other 4-valent vertex
is resolved, as in case a). The proof is then analogous to the proof of case a),
only using the matrices of ev j instead of the big matrices of ev j a1 a2.
So we can assume now that both 4-valent vertices are adjacent to the flat cycle.
Assume first that none of the edges adjacent to a 4-valent vertex in the flat cycle is
a marked point. We claim that C has a string. Consider the connected components
of

nSi Sxi As in the proof of 3.50 of [5], remove the closures of the marked
points Sx1; : : : ; Sxn from one after the other. We only remove edges at 3-valent
vertices. Therefore each removal can either separate one more component, or break a

cycle. Assume that all connected components are rational else C contains a string).
Then one of our removals must have broken the cycle. As C is marked by 3d 1
points, we end up with 3d 1 connected components. But then there has to be

one connected component which contains two unbounded edges, hence C contains
a string.

If C has at least two strings then C moves in an at least 2-dimensional family
with the images of the marked points fixed. As Mtrop; 1;1 is one-dimensional this
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means that C moves in an at least 1-dimensional family with the image point under

j fixed. But then also the curves close to C are not fixed, hence they count 0. Sowe
do not have to consider this case. Also, if for all curves C0 which contain C in their
boundary the string does not involve an edge of the cycle, then C and all curves C0)
move in an at least 1-dimensional family with the image point under j fixed. So we
do not have to consider this case either.

So we assume now that C lies in the boundary of a type which has exactly one
string that involves at least) one of the edges of the flat cycle.

There are up to symmetry) five possibilities for the string. We will show them in
the following local picture.

Assume now that there is a marked point adjacent to a 4-valent vertex of the flat
cycle. Then the removal of this marked point both breaks a cycle and separates two
components. So we cannot conclude that C has a string. However, we can conclude
that there is no other marked point adjacent to the cycle, as else two marked points
would map to the same line. Hence in this case the curve looks locally like our sixth
picture below.

.1/ .2/

.3/ .4/

.5/ .6/

As the cycle is not a string in the cases 1)-(3) and 5), there must be a marked
point adjacent to it. Two marked points adjacent to the flat cycle are only possible if
the string does not involve any edge of the flat cycle as in 3) and 5)).

In each of the six cases, there are four types which contain in their boundary
see 3.2). The following picture shows the four types 1; :: : ; 4 for case 1). We

will give our argument only for case 1), it is analogous in all other five cases.
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x1

e5 e6

e7

e1
e2

e4 e3

V

V

1 2

V V

e8 e9 e8 e9

3 4

e8

e8

Our first aim is to show that we can choose bases of the corresponding strata

Mtrop; 1;n d/ such that the matrices ev j and the matrices ev j a1 a2 for the
types 3 and 4) contain a block which involves only the edges locally around the
flat cycle. We can then make statements about the ev j -multiplicity with the aid
of 4.8) using these smaller blocks.

Choose the root vertex for the four types to be V as indicated in the picture above.

Also choose the labeling for the edges around the cycle as above. Let vi be the
directions of the ei as indicated in the picture). We then have v5 D v6. As e5, e6 and

e7 are mapped to the same line in R2, we can choose n and m with v5 D v6 D n u
and v7 D m u such that gcd.n; m/ D 1. We will consider a matrix representation Ai
i D 1;2) of ev j for the types 1 and 2 and a matrix representation Bi i D 3;4)

of ev j a1 a2 for 3 and 4. The ev j -multiplicity for 1 is then given by

jdet.u; v2/ det A1j, the ev j-multiplicity for 2 is jdet.u;v1/ det A2j due to 3.5(b).
For 3, it is due to Remark 4.8 given by jdetB3j and for 4 by jdetB4j. Later on, we

will also need to consider matrix representations A3 and A4 of ev j for the types 3
and 4. We will however not choose a lattice bases for those, so they are not useful
for the computation of the ev j-multiplicity. We will specify later on what bases

we choose for A3 and A4.
We choose abasisof thesubspaceM i

trop; 1;n d/ R2C# i0
1 fori D 1;2consisting

of two unit vectors for the root vectors and unit vectors for all bounded edges except
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e5, e6 and e8. In addition, we take two vectors with e5, e6 and e7-coordinates as

follows: .1; 1;0/ and .0; m;n/. In fact, this is a lattice basis: As gcd.n; m/ D 1,
we can find integer numbers such that amCbn D 1. Then we can complete our basis

with the vector .0; b; a/ at e5; e6; e7) and get a lattice basis of Z2C# i
0
1. For i D 3; 4,

we choose a basis ofM i
trop; 1;n d/ R2C# i0

1 consisting of only unit vectors except
three vectors involving the coordinates of e5; : : : ;e9.

Because the baseswe choose for the Ai and for the Bi differ only by a few vectors,
there will be a block in which the matrices Ai and Bi i D 3; 4) do not differ. The

followingargumentationworks thereforeanalogously for all six matricesA1;: : : ; A4,
B3 and B4.

Assume that d1 unbounded nonmarked) edges can be reached from V via e1,

d2 via e2 and so on. As the only string passes via e4 and e3, there must be d1
marked points which can be reached from V via e1, d2 marked points via e2, d3 1
marked points via e3 and d4 1 via e4. Note that the marked points which can be
reached via e1 and e2 do not need any of the length coordinates of edges via e3 or
e4. As there are 2 d3 1 C d4 1/ rows for the marked points via e3 and e4 and

2d3 1C1 3C1C2d4 2 bounded edges via e3 and e4, all six matrices have a

0 block on the top right. For B3 and B4, we also put the equations a1 and a2 of the
cycle in the first block of rows.

h.V / other edges edges via e3 and e4

x1, pts behind e1 and e2 and j -coord E2 0

pts behind e3 and e4 E2

The block on the bottom right is the same for all six matrices. So we can disregard
itandonly consider the top left block given by the marked points whichcan be reached

via e1 and e2, the j-coordinate, a1 and a2 for B3 and B4 and the length coordinates of
e1; e2;e5; :: : e8=e9 plus the length coordinates of bounded edges via e1 respectively
e2. Choose a marked point x2 which can be reached via e1 and a marked point x3
which can be reached via e2. Choose the following order for the rows: begin with the
marked points x1; : : : ; x3, then take the j -coordinate and for the matrices B3 and B4
the equations a1;a2 of the cycle). Then take the remaining marked points. Choose
the following order for the columns: begin with h.V /, e1 and e2. For the types 1
and 2, take the two basis vectors involving e5; : : : ;e7 and then e8. For the types 3
and 4, take the three basis vectors involving e5; : : : ;e9. For B3 and B4, take the
length coordinates of e5; : : : ;e9. Then take the remaining length coordinates. Note
that each marked point which can be reached via e1 has the same entries in the first
7 respectively, 9 for B3 and B4) columns as x2. Each marked point which can be

reached via e2 has the same entries in the first 7 respectively, 9) columns as x3. That
is, we can subtract the x2-rows from all rows of marked points via e1 and the x3-rows
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from all rows of marked points via e2. Then we have a 0 block on the bottom left.
Note that the bottom right block is equal for all six matrices. That is, we can now
go on with the four 7 7-matrices and the two 9 9 matrices. The determinants of
the original six matrices only differ by the factor which is equal to the determinants
of the corresponding 7 7-matrices respectively, 9 9) matrices. Let us call these

blocks A0 respectively B0 Here are the four blocks A0 A0 andi i 1 2 B03 B04 and their
determinants:

A0
1 D 0BB@ 1CCA

E2 0 0 n u 0 nC m/ u
E2 v1 0 0 0 0

E2 0 v2 0 n m u nC m/ u
0 0 0 0 mCn 0

;

det.A01/ D n n C m/2 det.u; v1/ det.u; v2/I

A0
2 D 0BB@ 1CCA

E2 0 0 n u 0 0
E2 v1 0 0 0 0
E2 0 v2 0 n m u nC m/ u
0 0 0 0 mCn 0

;

det.A02/ D n n C m/2 det.u; v1/ det.u; v2/I

B03 D 0BBBB@

E2 0 0 n u 0 0 0 0
E2 v1 0 0 0 0 0 0
E2 0 v2 n u n u 0 0 0
0 0 0 n u n u m u v1 C n u v2 C n u
0 0 0 1 1 1 1 1

1CCCCA ;

det.B03/ D det.u;v1/ det.u; v2/ n n2
C nm/.det.u; v1/

C det.u; v2// C ndet.v1; v2/ I

B04 D 0BBBB@ 1CCCCA

E2 0 0 n u 0 0 v1 m u 0

E2 v1 0 0 0 0 0 0

E2 0 v2 n u n u 0 v1 m u v2 m u
0 0 0 n u n u m u v1 m u v2 m u
0 0 0 1 1 1 1 1

;

det.B04/ D det.u; v1/ det.u; v2/ n m2
C nm/.det.u; v1/

C det.u; v2// n det.v1; v2/ :

A computation shows that

det.u; v2/ det A0
1 C det.u; v1/ det A0

2 det B3 C det B4 D 0: 2)
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Note that in the cases 4) and 6) without marked points adjacent to the flat cycle
we have to make a difference if n D m D 1. In this case, Definition 3.5 b) tells us

that we have to multiply the types analogous to 1 and 2 which still contain a flat
cycle) with the factor 1

2 det.u; v1/ respectively 1
2 det.u; v2/, insteadof det.u; v1/ and

det.u; v2/. However, the types 3 and 4 are not different in these cases, so we count
them only once. Altogether, the weighted sum of determinants as above is still 0.

We still need to check which types occur for a given point configuration P00 near
P0. Let P00 R2n Mx trop; 1;1 be a configuration. If there exists a curve C of type

i through P00, then A 1
i P00 gives us the coordinates of C in M i

trop; 1;n d/ in the
basis fvi;1; : : : ; vi;2n 1g. That it, the first two coordinates of the vector

Xj
A 1
i P00/j vi;j M i

trop; 1;n d/

denote the position of the root vertex, and all other coordinates the lengths of the
bounded edges of C. A curve of type i exists if and only if all coordinates of the
vector

Pj A 1
i P00/j vi;j M i

trop; d/ which correspond to lengths are positive.1;n
Choose P00 close to the configuration P0, through which a curve of type exists. By
continuity of A 1

i all coordinates of
Pj A 1

i P00/j vi;j M i
trop; 1;n d/ except the

length of e8 i D 1; 2), respectively of e8 and e9 i D 3; 4), are positive.
Note that there is a curve of type i i D 1; 2) through P00 if and only if the

e8-coordinate of A 1
i P00 is positive.

Now we specify which bases we choose for the types 3 and 4. For 3, begin
again with the two unit vectors for the position of the root vertex. Take unit vectors
for all bounded edges which are not contained in the cycle. Let

M1 WD det.v1; v2/ C n det.v1; u/ n det.u; v2/;

M2 WD n det.u; v2/ and M3 WD n det.u; v1/:

Take the three vectors with entries

1; 1; 0; 0; 0/; .0; m;n;0;0/ and .0;M1; 0; M2; M3/

at the coordinates of e5; : : : ;e9. Let the vector with the entries .0; M1; 0; M2;M3/
be the last basis vector.) These three vectors are linearly independent and satisfy the
conditions given by the cycle. However, we cannot say whether this basis is a lattice
basis ofM 3

trop; 1;n d/. So we do not know whether the determinant of the matrix A3
is equal to the ev j multiplicity of 3. But we are not interested in the determinant
of A3 here, we just want to use A3 to check whether there is a curve of type 3
through P00 or not. Note that the last basis vector is the only one which involves
the lengths of e8 and e9. As due to the balancing condition we have det.u; v1/ > 0
and det.u; v2/ > 0, the two entries of this vector corresponding to these two lengths
are positive. That is, there is a curve of type 3 through P00 if and only if the last
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coordinate of A 1
3 P00 that is, the coordinate with which we have to multiply our

last basis vector to get the lengths) is positive.
For 4, choose besides the unit vectors the three vectors with entries

1; 1; 0; 0; 0/; .0;m; n; 0; 0/ and .0; M01; 0; M2; M3/

at the coordinates of e5; : : : ;e9, where

M01 WD det.v1;v2/ m det.u;v1/ m det.u; v2/:

The two entries of .0; M01; 0; M2; M3/ corresponding to the lengths of e8 and e9
are negative. Hence there is a curve of type 4 through P00 if and only if the last
coordinate of A 1

4 P00 that is, the coordinate with which we have to multiply our
last basis vector to get the lengths) is negative.

For allfour types, we are interested in the last coordinateofA 1
i P00. ByCramer’s

rule, this last coordinate is equal to det AQi= det Ai whereAQi denotes the matrix where
the last column of Ai is cancelled and replaced by P00. Note that the four matrices

A1; : : : ; A4 only differ in the last column. Hence the matrices AQi do not depend on i
and we can decide whether there is a curve of type i through P00 by determining the
sign of det Ai This argument is analogous to the proof of Proposition 4.4 in [2].)

Recall that jdetAi j is a product of a factor which does not differ for all four types
and a factor which is equal to the determinant of a 7 7-matrix A0

i which describes
a curve of type i “locally around the cycle”.

Here are the two matrices A0
3 and A0

4 and their determinants:

A0
3 D 0BB@ 1CCA

E2 0 0 n u 0 0

E2 v1 0 0 0 0

E2 0 v2 0 n m u M2 v1 n u/ CM3 v2 n u/
0 0 0 0 mCn M1 M2 CM3

;

det.A03/ D det.u; v1/ det.u;v2/ n2 n2
C nm/.det.u; v1/

C det.u; v2// C ndet.v1; v2/ I

A0
4 D 0BB@

E2 0 0 n u 0 M2 v1 m u/
E2 v1 0 0 0 0
E2 0 v2 0 n m u 0
0 0 0 0 mCn M01 CM2 M3

1CCA;

det.A04/ D det.u; v1/ det.u; v2/ n2 m2
C nm/.det.u; v1/

C det.u; v2// n det.v1;v2/ :

We know that det.u; v1/ 0, det.u; v2/ 0 and det.v1;v2/ 0. So there are now
two cases to distinguish:
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m2 C nm/.det.u; v1/ C det.u; v2// ndet.v1;v2/ 0 – then det A04 is
negative. As we have seen, a curve of type 4 exists if and only if the last
coordinate of A0 1

4
P00 is negative, hence if and only if det AQi a matrix which

depend only on P00, not on i is positive. Both det A0
1

det A0
2 are negative, a

curve of one of these types exists if the last coordinate of A0 1
i P00 i D 1; 2) is

positive, hence if det AQi is negative. det A0
3 is positive, and a curve of this type

exists if the last coordinate of A0 1
3 P00 is positive, hence if det AQi is positive.

Hence 1 and 2 are on one side of the “wall”, 3 and 4 on the other. But as

in this case equation 2 from above reads

jdet.u; v2/ det A01j jdet.u; v1/ det A02j C jdetB3j C jdetB4j D 0

we have that the sum of the ev j -multiplicities of the curves through a
configuration near the wall stays constant.

m2 C nm/.det.u; v1/ C det.u; v2// ndet.v1;v2/ 0 – then det A0
4 is

positive. A curve of type 4 exists if and only if det AQi is negative. So in this
case 1, 2 and 4 are ononeside of the”wall” and 3 on theother. But equation
2 from above reads

jdet.u; v2/ det A01j jdet.u;v1/ det A02j C jdetB3j jdetB4j D 0

and we have again that the sum of the ev j-multiplicities of the curves through
a configuration near the wall stays constant.

Let us now come to case c). As before we can argue that only those curves count,
where the 5-valent vertex is adjacent to the flat cycle. Then the following curves
contain in the boundary and do not count 0:

The proof is here again analogous to case a), only using the “small” matrices of
ev j

In case d), all curves which have in their boundary count 0. In case e), there is
only one possibility with curves that do not count 0: those where the cycle is adjacent
to the 5-valent vertex. Then the curves which have in their boundary are the curves
where the 4-valent vertex is resolved, as in a). The proof is analogous to case a),
except that we use the “small” matrices for ev j
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In case f), the 6-valent vertex has to be adjacent to the cycle, because otherwise
every curve which has in its boundary would count 0. So we can now assume that
there is a 6-valent vertex, where two of the adjacent edges are of direction 0 and form
a loop. To resolve this 6-valent vertex, we can either form a 5-valent vertex with a

loop and a 3-valent vertex these curves are contained in strata of top dimension then),
or we can resolve it to four 3-valent vertices. We cannot form a flat cycle from the
given 6 edges: the contracted edge must be part of the cycle, and it can either be the
whole cycle itself, or it forces the cycle to span R2.) In the second case, two of the
four 3-valent vertices are connected by the contracted edge and therefore mapped to
the same image point in R2. Now we want to use the statement that the number of
rational curves through given points does not depend on the position of the points for
our case here see [4], respectively use the analogous proof as for Proposition 4.4 of
[2]). More precisely, if there is a point configuration through which a curve with a

4-valent vertex passes, and we disturb the point configuration slightly, then we always
get the same number of tropical curves counted with multiplicity) passing through
the new point configuration.

The image of the 6-valent vertex and its adjacent edges) in R2 looks like a 4-
valent vertex. The types with one 5-valent and one 3-valent vertex are mapped to two
3-valent vertices, and the type with four 3-valent vertices is mapped to two 3-valent
vertices and a crossing of two line segments. That is, the images of the 6-valent
vertex as well as of all types which contain it in their boundary look like the possible
resolutions of a 4-valent vertex. We know that there are three types which contain a 4-
valent vertex in their boundary, and we only have to check how we can add contracted
bounded edges to these 3 types, and with which multiplicity they are counted. The
following picture shows the seven possible ways to add contracted bounded edges to
the three types:

1

2

3

4

5

6 7
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Note that we can vary the length of the contracted bounded edge in each type, so the
curves of these types can have any possible j -invariant. The question whether there
is a curve of type i through a configuration P D p1; :: : ;pn; l/ 2 R2n Mx trop; 1;1
depends therefore only on the question whether the image of the curve passes through

p1; : : : ;pn/. If a curve of type 1 passes through P, then also a curve of type 2 and

vice versa. The same holds for 3 and 4, and for 5, 6 and 7. So we only have to
see that the sum of the ev j -multiplicities of the types whose images are equal can
be written as a factor times the multiplicity of the rational curve which arises after
removing the contracted bounded edge and straightening the other edges). Then
the statement follows from the statement that the number of rational curves through
given points does not depend on the position of the points see [4], respectively
Proposition 4.4 of [2]). To see this, we pass to the dual pictures. The 4-valent
vertex is dual to a quadrangle. The images of curves of type 1 and 2 are dual to
a subdivision of this quadrangle in two triangles. The same holds for the images of
curves of type 3 and 4, however the two triangles arise here by adding the other
diagonal. Images of curves of type 5, 6 and 7 are dual to a subdivision consisting
of one parallelogram and two triangles.

T5 P1

T6

T1

T2

T3

T4

Lemma 4.10 tells us that the ev j-multiplicity of a curve of type 1 is equal to
Area.T1/ 1

2/ times the multiplicity of the rational curvewhich arises after removing
the contracted bounded edge. Recall that the multiplicity of a vertex is by definition
equal to 2 Area.T /, where T denotes the dual triangle.) Analogously the ev j -

multiplicity of a curve of type 1
2 is equal to Area.T2/ / times the multiplicity2

of the same rational curve. The sum is equal to Area.Q/ 1/ times the multiplicity
of the rational curve, where Q denotes the quadrangle. We get the same for curves
of type 3 and 4. The sum of the ev j-multiplicities of 5, 6 and 7 is again by
Lemma4.10 andLemma4.11equal to Area.T5/ 1/C.Area.T6/ 1 / P1/2 2 CArea. D
Area.Q/ 1/ times the multiplicity of the corresponding rational curve. Hence the

statement follows.

6. Curves with a very large j-invariant

Nowwewant to use the independence ofdegev j P/fromP to compute degev j P/
with the aid of a special configuration P D p1; :: : ;pn; l/ – a configuration where
the j -invariant l is very large.
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Proposition 6.1. Let n D 3d 1 and P D p1; : :: ; pn; l/ 2 R2n Mx trop; 1;1 be
a point in ev j -general position whose j -invariant is very large that is, whose

image j.C/ 2 Mx trop; 1;1 is a curve with a bounded edge of a very large length).
Thenevery tropical curveC 2 ev j/ 1.P/ with multev j C / ¤ 0hasacontracted
bounded edge.

Proof. The proof is similar to that of Proposition 5.1 of [2]. We have to show that
the set of all points j.C/ 2Mx trop; 1;1 is bounded inMx trop; 1;1, where C runs over
all curves in M0trop; 1;n d/ with non-zero ev j-multiplicity that have no contracted
bounded edge and satisfy the given incidence conditions at the marked points. As
there are only finitely many combinatorial types analogously to 2.10 of [2]) we can
restrict ourselves to curves of a fixed but arbitrary) combinatorial type Since P
is in ev j -general position we can assume that the curves are 3-valent, respectively
contain a flat cycle adjacent to a 4-valent vertex it cannot contain a contracted cycle,
as we assume that is contains no contracted bounded edges at all).

Assume first that C is 3-valent. As C is marked by 3d 1 points we can conclude
with 3.50 of [5] that C has a string. Analogously to the proof of Theorem 5.1 above,
we get that there is precisely one string.

So let 0 be the unique string in C. Assume first that 0 R. Then analogously
to the proof of 5.1 of [2], we can see that the movement of the string is bounded
by the adjacent bounded edges, except if the string consists of only two neighboring
unbounded edges. But in this case the only length which is not bounded cannot
contribute to the j -invariant. So in any case j.C/ is bounded. Assume now 0 S1.
As this is the only string, there have to be bounded edges adjacent to the cycle. These

bounded edges restrict the movement of the cycle, too. Again j.C/ is bounded.
Now assume C has a flat cycle and a 4-valent vertex adjacent to it, and assume no
marked point is adjacent to that 4-valent vertex. Then all marked points are adjacent
to a 3-valent vertex, and hence we can analogously to 3.50 of [5] see that the curve
contains a string. As above, there is exactly one string and its movement is bounded.
Now assume that there is a marked point adjacent to the flat cycle. Then we cannot
use 3.50 of [5] to conclude that C has a string. However, the image of the cycle can
still not grow arbitrary large:

e1 e2

The edge e2 has to be bounded: its direction is not a primitive integer vector, as it is
equal to the sum of the directions of the two edges of the flat cycle, and therefore it
cannot be an unbounded edge. But then the cycle cannot grow arbitrary large.
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As we know that the number of curves C 2 ev j / 1.P/ counted with
multiplicity) does not depend on P by 5.1, we can now choose a special configuration

P D p1; : :: ; pn;l/ where the j -invariant l is very large. Then by 6.1 we can
conclude that all curves C 2 ev j / 1.P/ contain a contracted bounded edge, which is
contained in the cycle. As in Lemma 4.10 and Lemma 4.11, this contracted bounded
edge can either be a loop itself which is then adjacent to a 5-valent vertex), or the
contracted bounded edge is adjacent to two 3-valent vertices. In both cases, we know
that we can form a rational curve C0 of C by removing the contracted edge and
straightening other edges, and we can compute the ev j -multiplicity in terms of the
multiplicity of this rational curve. Note that a rational curve which appears like this is
3-valent, as we take an elliptic curve of codimension 0. The following lemma shows
that we can also “go back”: we can form elliptic curves out of a given rational curve
which passes through p1;: : :; pn/.

Define tropical general position of the points p1; : : : ; pn/ as in [6], Definition

4.7. Then only simple tropical curves pass through p1; : : : ; pn/. In particular,
there are only triangles and parallelograms in the dual Newton configurations of these

curves.

Lemma 6.2. Let n D 3d 1. Take the configuration P D p1;: : : ; pn;l/ where
the j -invariant l is very large, and such that p1; :: : ;pn/ are in tropical general
position. Let C0 a rational curve which passes through the points p1; : :: ; pn/.
Then there are several ways to built an elliptic curve C with j-invariant l out
of C0, and the sum of the ev j-multiplicities of these elliptic curves is equal to
d 1

2 mult.C 0/.

Proof. Let V be a 3-valent vertex of C0. Then we can make an elliptic curve C
out of C0 by adding a contracted loop at V There is only one possibility for the
length of this loop, as we want to reach that j.C/ D l The ev j-multiplicity
of C is by 4.10 equal to 1

2 mult.V / 1/ mult.C 0/ D Area.T / 1
2 / mult.C 0/,

where T denotes the triangle dual to V Assume that there is a crossing of two
edges e1 and e2 of C0, that is, the images h.e1/ and h.e2/ intersect in one point.
Then we can add a contracted bounded edge and split e1 and e2 into two edges each.

The length of these edges are uniquely determined by the image. The length of the
new contracted edge is uniquely determined by the prescribed j -invariant l The
multiplicity of the elliptic curve C we built like this is due to Lemma 4.11 equal to

jdet.u; v/j mult.C 0/ D Area.P / mult.C 0/, where u and v denote the two directions
of e1 and e2 and P denotes the parallelogram dual to the crossing of e1 and e2. So it
remains to showthat

PT
Area.T / 1

2/CPP
Area.P/ D

d 1
2

where T goes over
all triangles in the dual Newton subdivision of C0 and P goes over all parallelograms.
To see this, we use the theorem of Pick see [1], Section 5.3). Denote the number of
interior lattice points of a polygon Q by i.Q/ and the number of lattice points on the
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boundary which are not vertices by b.Q/. Then Pick’s formula states that

Area.T / D i.T / C
b.T /

2 C
1

2

for a lattice triangle T and

Area.P/ D i.P/ C
b.P/

2 C 1

for a parallelogram P. So we can rewrite the sum from above as

X
1

Area.T / CXArea.P/
2

T P

DX
T

i.T / C
b.T /

2 C
1
2

1
2 CX

P

i.P/ C
b.P/

2 C 1

DX
T

i.T / C
b.T /

2 CX
P

i.P/ C
b.P/

2

C #fPjP parallelogram in the subdivg

DX
b.T /i.T / C CX i.P/

2 C
T P

b.P/
2 C #flattice points of the subdivg;

where the last equality holds, because C is rational and the genus of a simple tropical
curve is equal to the number of points of the subdivision minus the number of
parallelograms. Now we know that the interior lattice points of the big triangle d which
is the Newton polygon of curves of degree d) that are not contained in the subdivision
must either be interior points of a triangle or a parallelogram or on the boundary of
a triangle or parallelogram. In the first case, they are counted in i.T / respectively

i.P/ of a polygon. In the latter case, as they are interior points of d they are part

of the boundary of exactly two polygons. That is, in our above sum, they are counted
as b.T /=2 respectively b.P/=2 for two polygons. Hence the first part of the sum
counts all interior points which are not part of the subdivision. So we have

XT i.T / C
b.T /

2 CX
P

i.P/ C
b.P/

2 C #flattice points of the subdivg

D #flattice points not contained in the subdivg C # flattice points of the subdivg

D #finterior points of dg D
d 1

2
!:



Vol. 84 2009) Counting tropical elliptic plane curves with fixed j -invariant 421

We can now sum up our results to prove our main theorem:

Theorem 6.3. The number Etrop.d/ of tropical elliptic curves passing through 3d 1
points and with a fixed j -invariant, counted with ev j-multiplicity, is equal to
d 1

2 Ntrop.d/, whereNtrop.d/ denotes the number of rational curves through 3d 1
points counted with multiplicity).

Proof. The number of tropical elliptic curves passing through 3d 1 points and

with a fixed j -invariant is equal to degev j P/, where we can choose any general
configuration P D p1; : : : ; pn; l/ due to 5.1. We choose a configuration with a very
large length l as in 6.1, and conclude that every elliptic curve passing through this
configuration has a contracted bounded edge. From each such elliptic curve with a

contracted bounded edge we can form a rational curve by removing the contracted
edge and straightening divalent vertices, if necessary. Also, 6.2 tells us that we can go

“backwards” and form an elliptic curve with j -invariant l from each rational curve
through p1; : : : ; pn/, and that each rational curve contributes with the factor d 1

2

to our sum of elliptic curves. Altogether, we have d 1
2 Ntrop.d/ elliptic curves with

j-invariant l through p1Š;: : :; pn/.

Corollary 6.4. The numbers Etrop.d / and E.d;j / coincide, if j … f0;1728g.

Proof. Theorem 6.3 tells us that Etrop.d/ D
d 1

2 Ntrop.d /. The latter is equal to
d 1

2 N.d/ by G. Mikhalkin’s Correspondence Theorem see Theorem 1 of [6]) and

due to Pandharipande’s count ([8]), this is equal to E.d; j /.

7. Curves with a very small j -invariant

In the last section, we interpreted a set of rational curves through a given point
configuration as elliptic curves withavery large j-invariant andacontracted bounded
edge). Now, we want to interpret the same set of rational curves as elliptic curves
with j-invariant 0. Section 4 helps us to express the multiplicity with which we count
the elliptic curves in terms of the rational curves we started with. We will see that
we have to count these rational curves with completely different factors than in the
previous chapter.

Lemma 7.1. The number of elliptic curves with a fixed very small) j -invariant and
passing through 3d 1 points in tropical general position is equal to

XC XT
2 Area.T /2

1

2
mult C
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where C goes over all rational curves through the 3d 1 points and T goes over all
triangles in the Newton subdivision dual to C.

Proof. Given a rational curve C, how can we interpret it as an elliptic curve with

j-invariant 0? To answer this question, we have to determine how the elliptic curves
C0 with a very small j -invariant which have C in their boundary look like. There
are three possibilities for C0:

Let def.C0/ D 0. Then the cycle has to disappear to a 3-valent) vertex of C,
hence it must be formed by three edges. Due to Lemma 4.13 the ev j-multiplicity
is mult V mult C then. For each vertex V of the rational curve C, there are i. V //
possibilities that a non degenerate cycle disappears to V where V / denotes the
triangle dual to V and i. V // the number of interior points of this triangle. Hence,
to count the elliptic curves with a non degenerate cycle we have to count each rational
curve C with the factor

PT i.T / 2 Area.T / where T goes over all triangles in the
Newton subdivision dual to C.

Let def.C 0/ D 1. If e is an edge of C with weight bigger 1, then there can be a

small flat cycle at both sides of e. The edge e is dual to an edge with interior points
in the dual Newton subdivision, and it is in the boundary of two triangles T1 and T2,
dual to the two end vertices V1 and V2 of e. Assume the flat cycle is adjacent to the
vertex V1, and assume that it is formed by two edges with directions n u and m u,
with gcd.n; m/ D 1 and n C m/ u D v, where v denotes the direction of e. Then
by 4.12 the ev j-multiplicity of this curve is

n C m/ det.u; v1/ mult C D det..n C m/u; v1/ mult C

D det.v; v1/ mult C D 2Area.T1/ mult C;

where v1 denotes the direction of another edge adjacent to V1. Respectively, if
n D m D 1 it is

det.u;v1/ mult C D det
1

2
v; v1 mult C D Area.T1/ mult C:

Assume e/ is even. Then there are e/
2 1 possibilities to separate e to two

edges with different directions that is, with n ¤ m). Each counts with the factor
2 Area.T1/. Also, there is one possibility to separate it to two edges with the same

direction, which counts Area.T1/. Altogether, we have to count the rational curve
with the factor

e/
2

1 2 Area.T1/ C Area.T1/ D e/ 1/ Area.T1/:

Assume e/ is odd. Then there are e/ 1
2

possibilities to split e to two edges with
different direction, and each counts with the factor 2 Area.T1/. In any case, we have
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to count with the factor e/ 1/ Area.T1/. Note that e/ 1 is equal to the
number of lattice points on the side of the boundary of T1 which is dual to e. But as

we have to count these possibilities for all edges of higher weight, we have to add it
for all three sides of T1, that is, altogether, we get b.T1/ Area.T1/. Hence, to count
the elliptic curves with a flat cycle we have to count each rational curve C with the
factor

PT b.T / Area.T / where T goes over all triangles in the Newton subdivision
dual to C.

Let def.C 0/ D 2. By 4.10 we have to count it with the factor Area.T / 1
2

Hence, to count the elliptic curves with a contracted cycle we have to count each

rational curve C with the factor
PT

Area.T / 1
2 where T goes over all triangles in

the Newton subdivision dual to C.
Let us sum up:

XT i.T / 2 Area.T / CX
T

b.T/ Area.T / CX
T

Area.T /
1

2
mult C

D X
T

.2i.T / C b.T / C 1/ Area.T /
1

2
mult C

D X
T

2 Area.T /2
1

2
mult C

where T goes over all triangles in the Newton subdivision dual to C.

At last, we want to apply Lemma 7.1 to a set of rational curves passing through a

certain point configuration, namely the point configuration which is used in [6],
Theorem 2, to prove that marked tropical curves are dual to lattice paths. Our application
results in a faster way to count lattice paths dual to rational curves.

Let x; y/ D x "y with a very small " > 0. Due to [6] Theorem 2 we know
that the number of -increasing paths in the triangle d is equal to the number of
tropical curves through a certain point configuration P

Use the notations of Chapter 3 of [3]. The tropical curves through P are dual to
a set of Newton subdivisions. In Proposition 3.8 and Remark 3.9 of [3] we have seen

that we can count instead of these Newton subdivisions the column-wise Newton
subdivisions for a path. Note that the set of Newton subdivisions which really appear
as dual subdivisions of a tropical curve through P and the column-wise Newton
subdivisions only differ in the location of some parallelograms, the size and locations
of the triangles coincide. As for our sum from 7.1 we only count the triangles, we
can therefore use the column-wise Newton subdivisions as well. In Remark 3.7 of
[3] we have seen that a path can only have steps which move one column to the right
with a simultaneous up or down movement), or steps which stay in the same column

and move down. The following picture shows such a path and recalls the notations.
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h.4/

h.5/

0

4

01

02

h.2/
h.3/

h.1/

1

0 1 2

For the path in the picture, we have 0 D 5, 1
D .1;1/, 2

D 1, 3
D 1, 4 D 2,

5 D 0 and 6
D 0; and h.1/ D 4, h.2/ D 3, h.3/ D 2, h.4/ D 2, h.5/ D 0. The

only possibilities for the sequences 0 are: 01 D 1, 02 D 1, 03 D 1, 04 D 0,
05 D 1. The only possibilities for the sequences are: 0

D 1, 1
D 1, 2

D 2,
3

D 1, 4
D 0, 5 D 0.

Proposition 3.8 of [3] then gives us a formula to compute the number of columnwise

Newton subdivisions times the multiplicity for a path. To get the number we
want, we only have to multiply with the factor .2 Area.T /2 1

2/ for each triangle.
But note that as in Remark 3.9 of [3] the position of the triangles below a path are
such that they lie in one column and point to the left. That is, they do not have any
interior lattice points, and their area is equal to 1

2
times the length of their right side:

There is an analogous statement for triangles above the path, of course. So, including
this factor, we get the following formula:

Corollary 7.2. The following formula holds for all d 3:

N.d/ D
2

X X
0;:::; d /;. 00;:::; 0d/

iC1 C iC11
d 1 i

i C 0i

0iC1

I iC1
C iC1 i I iC 0i 0iC1

I 2 1

2
iC1 C iC1 i/ C 2

i
C 0i 0iC1/I 2 1

where the first sum goes over all paths and the second sum goes over all sequences

0; : : : ; d / and 00; : :: ; 0d /such that 0
D d 0; 0: : : ; 0/, I iCI i D h.i/,
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00 D 0 and d i I 0i D h.i/, and where for a sequence D 1; 2; 3; : : : /
I2 1

2 denotes the sum 22 1
2 2 C

32 1
2 3 C

Proof. Using G. Mikhalkin’s Correspondence Theorem see Theorem 2 of [6]) we
conclude that N.d/ D Ntrop.d/. Furthermore,

d 1

2
Ntrop.d/ D Etrop.d/ D degev j P/;

where we can choose any point configuration P by Theorem 6.3 and Theorem 5.1.
So N.d/ D

1
d 1/2

Etrop.d/ and it remains to argue why the right hand side of the

formula above times d 1
2

is equal to Etrop.d/. We can choose a point P D
p1; : : : ;pn; l/ with a very small last coordinate l for the cycle length, and such that

p1; : : : ;pn/ are in the position described in [6], Theorem 2. We apply Lemma 7.1
that tells us that Etrop.d / D PC PT

2 Area.T /2 1
2

mult C where C goes

over all rational curves through the 3d 1 points and T goes over all triangles
in the Newton subdivision dual to C. The Newton subdivision dual to the
rational curves through p1; : : : ; pn/ differ from the column-wise Newton subdivisions

as defined in Remark 3.9 of [3]) only in the location of some parallelograms.
Size and location of the triangles coincide. Therefore the above sum is equal to

PN PT 2Area.T /2 1
2

mult.N / where N goes over all column-wise Newton

subdivisions arising from Newton subdivisions dual to rational tropical curves
through p1; : :: ; pn/. Proposition 3.8 of [3] gives us a formula to compute the number

of column-wise Newton subdivisions times their multiplicity. We only have to
multiply this formula with the factor .2 Area.T /2 1

2/ for each triangle. As in
Remark 3.9 of [3] the position of the triangles in a column-wise Newton subdivision are
such that they lie in one column and point to the left. That is, they do not have any
interior lattice points, and their area is equal to 1

2 times the length of their right side.

i
iC 0iThe factor

iC1
C iC1

0iC1 counts the possibilities to arrange parallelograms
below and above the path hence the number of Newton subdivisions). The factor

I iC1
C iC1 i I iC 0i 0iC1

counts the double areas of the triangles - hence the
multiplicity of the curves dual to the path. See also Remark 3.9 of [3]). The factor
I2 1

2
iC1 C iC1 i/C I2 1

2
i C 0i 0iC1/ is the factor .2Area.T /2 1

2/
for each triangle.

Note that even though this sum looks at the first glance more complicated than
the sum from Proposition 3.8 of [3], it is easier to compute, because we count a lot
of paths with the factor 0 – all paths with only steps of size 1.

Example 7.3. For d D 3, there is only one lattice path with a step of size bigger than
one.
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There is only one possibleNewton subdivisionfor this path, as indicated in thepicture.
There are two triangles of area 1. Both contribute 3

2
mult C D

3
2 4 D 6. Altogether,

we get 6 C 6 D 12 D N.3/, as expected.

Example 7.4. For d D 4, we only have to consider the paths below, because all other
paths have only steps of size 1.

3 3 2 4 3 1 1 4 3 2 4 3 1 4 3
36 24 96 12 24 12

1 4 3 1 4 3 2 4 3 1 16 6 4 3 2 4 3
12 12 24 96 72 24

1 4 3 1 4 3 4 4 3 2 4 3 2 4 3 1 4 3
12 12 48 24 24 12

1 4 3 1 4 3 1 36 11 2 9 8 1 9 8 4 16 6
12 12 396 144 72 384

4 4 3 4 4 3 8 4 3 4 3

6

4 16 6

6
48 48 96 72

There are three numbers in the first rowbeloweachpath: the firstnumber is the number
ofpossible Newtonsubdivisions. The second number is the multiplicity of the tropical
curves dual to theseNewtonsubdivisions. Hence the product of the first two numbers
is the multiplicity of the path.) The third number is the factor

PT
2 Area.T /2 1

2
with which we have to count here. The fourth number, in the second row, is the
product of the three numbers above, so we have to count each path with that number.
The sum of the numbers in the second row is 1860 D 3 620 D 3 N.d/, as claimed.
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