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Counting tropical elliptic plane curves with fixed j -invariant

Michacl Kerber and Hannah Markwig™

Abstract. In complex algebraic geometry, the problem of enumerating plane elliptic curves
of given degree with fixed complex structure has been solved by R. Pandharipande [8] using
Gromov—Witten theory. In this article we treat the tropical analogue of this problem, the deter-
mination of the number Ej,(d) of tropical elliptic plane curves of degree d and fixed “tropical
j -invariant” interpolating an appropriate number of points in general position and counted with
multiplicities. We show that this number is independent of the position of the points and the
value of the j-invariant and that it coincides with the number of complex elliptic curves (with
j-invariant j ¢ {0,1728}). The result can be used to simplify G. Mikhalkin’s algorithm to
count curves via lattice paths (see [6]) in the case of rational plane curves.

Mathematics Subject Classification (2000). Primary 14N35, 51M20; Secondary 14N10.

Keywords. Enumerative geometry, tropical geometry.

1. Introduction

In classical algebraic geometry, the isomorphism class of an elliptic curve is given
by its j -invariant. The enumeration of complex plane elliptic curves with fixed j -in-
variant using Gromov—Witten theory has been undertaken by R. Pandharipande [&].
He computed the number of elliptic curves of degree d through 3d — 1 points and
with fixed j -invariant to be E(d, j) = (4;7) - N(d) for j ¢ {0, 1728}, where N(d)
denotes the number of irreducible rational curves of degree d interpolating 3d — 1
points in general position (in case j € {0, 1728}, the numbers differ by a factor, due
to the presence of extra automorphisms).

In tropical geometry, the isomorphism class of an elliptic curve is determined by the
(integer) length of its only cycle. This length, called tropical j-invariant, can be
viewed as a tropical analogue of the j-invariant of an elliptic curve in classical alge-
braic geometry [7]. The tropical reformulation of the enumerative problem above is the
enumeration of tropical curves of genus 1 and degree d with prescribed tropical j -in-
variant passing through a collection of 3d — 1 points in R? in tropical general position.

*Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the
Institutional Strategy of the University of Gottingen.
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In this paper, we construct the moduli space of tropical elliptic curves as a weighted
polyhedral complex. Furthermore, we define the multiplicity of a tropical elliptic
curve with fixed j-invariant — similar to the case of tropical rational curves — as the
absolute value of the determinant of the evaluation map times a weight of the moduli
space. Then we define the number Eyqp(d) to be the number of tropical elliptic curves
with fixed tropical j-invariant and interpolating 3d — 1 given points in R, counted
with multiplicities.

We prove that the numbers Eop(d) are independent of the choice of the j -invar-
iant for all values j € R g, without exceptional values for the j-invariant (which
1s different for the complex case). Therefore we can choose a special j-invariant
to compute Eyop(d). There are two possibilities to choose a special j-invariant
such that we can relate the elliptic tropical curves with that j-invariant to rational
tropical curves. One possibility 1s to choose a very large j-invariant, the other a
very small j-invariant. We prove that an elliptic tropical curve with a very large
j -invariant contains a contracted bounded edge in a way that its image in R? can also
be interpreted as rational tropical curve. In this way we can show that the numbers
Etvop(d) satisfy the equation

d—1
Etrop(d) = ( ) ) 'Ntrop(d)s (1)

where Nyop(d) denotes the number of plane rational tropical curves of degree d
through 3d — 1 points, counted with multiplicities (see [6], Definition 4.15). Since
by G. Mikhalkin’s Correspondence Theorem (see Theorem 1 of [6]) the number of
rational tropical curves Nyop(d) coincides with its complex counterpart N(d), it
follows (using Pandharipande’s result) that Ey.,(d) = E(d, j) for j & {0,1728}.
Hence our result leads to a “correspondence theorem” for elliptic curves with fixed
J-invariant. It would be interesting to investigate whether there is also a direct
correspondence as in G. Mikhalkin’s theorem, that is, a bijection between the set
of tropical elliptic curves with fixed j-invariant (with multiplicity) and the set of
complex curves with fixed j-invariant (and which complex j-invariant corresponds
to which tropical j-invariant). Also, it would be interesting to see why there is no
such bijection in the cases where the complex j-invariantis j € {0, 1728}.

The methods of our computation of Fyop(d) using a very large j-invariant are
analogous to Pandharipande’s computation of the numbers E(d, j) — we use moduli
spaces of tropical elliptic curves and evaluation maps. But we can also compute
Ewop(d) as mentioned above in another way, using a very small j -invariant. Tropical
curves with a very small j-invariant can be related to rational curves, too. Thus we
can determine the number E,(d) with the aid of G. Mikhalkin’s lattice path count
(see Theorem 2 of [6]). The computation of Ey,(d) using the very small j -invariant
does not have a counterpart in complex algebraic geometry.
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We think that our computation of Eyqp(d) gives new insights in tropical geometry.

As the most important example, we want to mention here the construction of the
moduli space of tropical elliptic curves. This space contains cells which are equipped
with weights. For some cells these weights are not natural numbers but contain a
factor of % This happens due to the presence of “automorphisms”; we therefore think
that our moduli space might be an example of a “tropical orbifold”.
Furthermore, equating our two formulas to determine E.,(d ) — the one using a very
large j-invariant and the one using a very small j-invariant — we get a new formula
to enumerate tropical rational curves. Combined with G. Mikhalkin’s lattice path
algorithm to count tropical curves (see Theorem 2 of [6]), this leads to a new lattice
path count for tropical rational curves, which has the advantage that fewer paths have
to be taken 1nto account (see Corollary 7.2).

Note that, with some minor changes, many of our concepts can be carried over
to curves on toric surfaces other than the projective plane, as G. Mikhalkin’s corre-
spondence theorem holds for these surfaces as well. But not all of our results can be
generalized to these surfaces, as e.g. Corollary 7.2 has no counterpart for arbitrary
toric surfaces, because the notion of column-wise Newton subdivision is lost (see
Remark 3.10 of [3]).

The paper is organized as follows: in Section 2, we recall some basic defini-
tions concerning abstract and plane tropical curves and their moduli. After that, we
construct in Section 3 the moduli space of tropical elliptic curves as a (fractional)
weighted polyhedral complex. In Section 4, we define tropical evaluation maps and
use them to define multiplicities for elliptic curves with fixed j -invariant. Using these
multiplicities, we prove in Section 5 the independence of the numbers Eqp(d ) from
the configuration of the given gencral points and the given value of the j-invariant.
This independence is used in Section 6 to compute the numbers Eyqp(d ) and in Sec-
tion 7 to obtain our modified version of G. Mikhalkin’s algorithm to count rational
plane curves via lattice paths.

We would like to thank Andreas Gathmann for his inspiring ideas and for numerous
helpful discussions.

2. Tropical elliptic curves and their duals

We will define tropical curves almost in the same way as in [2], with the only difference
that we allow curves of higher genus. Let us first introduce some notions concerning
graphs and metric graphs that we will need. For more details on graphs, see Defini-
tion 2.1 of [2]. A graph can have bounded as well as unbounded edges. We denote the
set of vertices by 'Y and the set of edges by T'!. The subset of I'! of bounded edges
is denoted by F(}, and the subset of unbounded edges by rgo. Unbounded edges will
also be called ends. A flag F of T is a pair (V, ¢) of a vertex IV and an edge e starting
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at V. We will denote the edge e of aflag F = (V, e) by [F] = e, and the vertex V by
dF = V. We can think of a flag (V, ¢) as a “directed edge” pointing away from the
vertex V. For a bounded edge e there are two flags F and F’ with [F] = e, for an
unbounded edge e there is only one flag F with [F] = e. We denote the set of flags
of I' by I''. Now assume I is a metric graph, i.e. all bounded edges e are equipped
with a length /(¢) (they can be thought of as real intervals of length [ (¢)). Given a flag
F = (V, e) of abounded (respectively unbounded) edge, we can parametrize e (using
an affine map of slope £1, i.e. a map of the form ¢ > ¢ £ ¢) by an interval [0, [{e)]
(respectively, [0, o)), such that the vertex V is at 0. This parametrization will be
called the canonical paramerrization for F. The genus of a graph I' is defined to be
its first Betti number g(I') := 1 —#I'° +#I'} = 1 —dim Ho(T, Z) + dim H (T, Z).

Definition 2.1. An abstract tropical curve of genus g is a metric graph I' of genus
g whose vertices have valence at least 3. An abstract n-marked tropical curve of
genus g is a tuple (T, x1, ..., x,) where I" is an abstract tropical curve of genus g
and x1,...,x, € FC}O are distinct unbounded edges of I'. We will refer to the x; as
marked ends or marked points (a reason why we call them marked points is given
in Remark 2.7 of [2]). Two abstract n-marked tropical curves (I', x1,..., x,) and
(f‘, X1,...,Xp) are called isomorphic (and will from now on be identified) if there is
a homeomorphism T' — T mapping x; to X; for all i and preserving the lengths of
all bounded edges (i.e. every edge of I' is mapped bijectively onto an edge of r by
an affine map of slope £=1).

The set of all isomorphism classes of connected n-marked tropical curves with
exactly » unbounded edges and of genus g is called Myop, g.n-

Example 2.2. We want to determine the space Mop, 1,1. An element of Mqp, 1,1 18
an abstract tropical curve with one unbounded edge, and of genus 1. As no divalent
vertices are allowed, such an abstract tropical curve consists of one bounded edge
whose two endpoints are identified and glued to the unbounded edge.

O

These curves only differ in the length of their bounded edge, which has to be positive.
Therefore Mirop, 1,1 1S isomorphic to the open interval (0, oc). We define M yop, 1,1
to be the interval [0, oc). Following G. Mikhalkin, we call the length of the bounded
edge — which is an inner invariant of the tropical elliptic curve — its tropical j-invar-
iant, as it plays the role of the j-invariant of elliptic curves in algebraic geometry
(see Example 3.15 of [7], see also Remark 2.6 and Definition 4.2).

Definition 2.3. An n-marked plane tropical curve of genus g is a tuple

(T A, xq, ..., X0 ),
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where [ is an abstract tropical curve of genus g, x1,...,X, € Folo are distinct
unbounded edges of T', and #: T — R? is a continuous map satisfying:

(i) On each edge of T the map 4 is of the form A(t) = a + t - v for some a € R?
and v € Z?2 (i.e. “h is affine linear with rational slope”). The integral vector v
occurring in this equation if we pick for e the canonical parametrization with
respect to a chosen flag F of e will be denoted v(F') and called the direction
of F.

(i1) For every vertex V' of I we have the balancing condition

> w(F) =0

Fel'dF=V

(ii1) Each of the unbounded edges xq,...,x, € I‘;o is mapped to a point in R? by &
(i.e. v(F) = O for the corresponding flags).

Two n-marked plane tropical curves (T, xq,...,x,,/4) and (f‘,)%l,...,)"cn,ﬁ) are
called isomorphic (and will from now on be identified) if there is an isomorphism
¢: (I x1.....%,) — ([, %1,...,%,) of the underlying abstract curves such that
hiow=h.

The degree of an n-marked plane tropical curve is defined to be the multiset
A = {v(F); [F] e Féo\{xl, ..., Xn}} of directions of its non-marked unbounded
edges. If this degree consists of the vectors (—1,0), (0, —1), (1, 1) each 4 times then
we simply say that the degree of the curve is 4.

Remark 2.4. Note that the direction vector of a flag FF = (V,e) (if it is nonzero)
can uniquely be written as a product of a positive integer (called the weight w(e) of
the edge ¢) and a primitive integer vector called the primitive direction u(F') of the
flag I,

Definition 2.5. Forall » > 0 and d > 0, we define Myop, 1,0 (d) to be the set of all
isomorphism classes of connected plane tropical curves (I', &, x1, ..., x,) of degree
d and genus g < 1.

Remark 2.6. Note that for a connected graph I the genus satisfies
g = 1—dim Hy(I', Z) + dim H(T", Z) = dim H{ (T, Z).

Hence for a connected plane tropical curve of genus 1, we have dim H(I', Z) = 1,
so there is one cycle which generates H1 (I, Z). When we avoid to pass an edge twice
in both directions, there is a unique way to choose a chain of flags around this cycle
(up to direction - we can go two ways around the cycle; and up to starting point). In
the following, we will therefore speak of “the cycle” of an element of Mp, 1,2 (d)
of genus 1, meaning this chain of flags.
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The combinatorial type of an abstract n-marked tropical curve (I', xq, ..., x,) is
the homeomorphism class of T" relative xq, ..., x, (i.e. modulo homeomorphisms
that map x; to itself). We can think about it as the graph with the information of
the length of the bounded edges dropped. The combinatorial type of a plane tropical

curve (I', h, x1,...,x,) is the combinatorial type of (I", xy, ..., x,) together with
the directions v(F) for all flags F € T, Mitop, 1.n (d) 1s defined to be the subset of

Miop, 1,n(d) of tropical curves of combinatorial type «.

Definition 2.7. Let o be a combinatorial type in the space Miop, 1.n(d). The defi-
ciency def () is defined to be

2 if g = 1 and the cycle is mapped to a point in R2,
def(e) = { 1if g = 1 and the cycle is mapped to a line in R2,
0 otherwise.

We will also speak of the deficiency def (C') of a curve C.

Having defined elliptic tropical curves we now want to come to their dual Newton
subdivisions.

Let V be an r-valent vertex of a plane tropical curve (T, /) (without markings)
andleteq, ..., e, be the counterclockwise enumerated edges adjacent to V. Draw in
the Z2-lattice an orthogonal line L(e;) of integer length w(e;) (where w(e) denotes
the weight of e, see Remark 2.4) to hi(e;), where L(eq) starts at any lattice point
and L(e; ) starts at the endpoint of L(e;—1), and where by “integer length” we mean
#(Z2 N L(e;)) — 1. The balancing condition tells us that we end up with a closed
r-gon. If we do this for every vertex we end up with a polygon in Z? that is divided
into smaller polygons. The polygon is called the Newrton polygon of the tropical
curve, and the division the corresponding Newron subdivision. Note that the ends of
the curve correspond to line segments on the boundary of the Newton polygon. The
Newton polygon of a curve of degree d is the triangle Ay with vertices (0, 0), (0, d)
and (d, 0). For more details on the dual Newton subdivision of a tropical curve, see
[6], Section 3.4.

Some properties of plane tropical curves can be read off from their dual picture.
Here are some examples:

(a) A plane tropical curve is called simple if its dual subdivision contains only
triangles and parallelograms (see Definition 4.2 of [6]). (This property can also
be defined without using the dual language.)

(b} The genus of a simple plane tropical curve (T, /) is equal to the number of lattice
points of the subdivision contained in the interior of the Newton polytope minus
the number of parallelograms (see Lemma 4.6 of [6]).
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(¢) Let V be a trivalent vertex of I" and ey, e;, e3 the edges adjacent to V. The
multiplicity of V' is defined to be the area of the parallelogram spanned by the
two directions of ey and ;. (Due to the balancing condition this 1s independent
of the choice of e; and e».) It is equal to 2 times the area of the dual triangle
(see Definition 2.16 of [6]).

(d) The multiplicity mult(C ) of a 3-valent tropical plane curve is the product over all
multiplicities of the vertices. In the dual language, the multiplicity of a simple
curve is the product over all double areas of triangles of the dual subdivision
(see Definition 4.15 of [6]).

For more details on dual Newton subdivisions, see for example [5], Section 5.

3. The moduli space of tropical elliptic curves

Let us study the space Mirop, 1., (d ). There are only finitely many combinatorial types
in the space Myp, 1,,(d) (analogously to 2.10 of [2]).

Lemma 3.1. For every combinatorial type o occurring in Myep, 1,n(d) the space
M (d) is naturally an (unbounded) open convex polyhedron in a real vector

trop, 1,7
space of dimension 2 + #T'3, that is a subset of a real vector space given by finitely
many linear equations and finitely many linear strict inequalities. The dimension of
Mop, 1,2(d) is equal to
MMy 1,(d) =3d +n+g—1- > (valV - 3) + def(a)
Vero

Proof. Tixing a combinatorial type means we fix the homeomorphism class of I’
and the directions of all flags. We do not fix the lengths /{e) of the bounded edges.
(Note that the length of an image h(e) C R? is determined by /(e) and the di-
rection.) Also, we can move an image /2(I") in the whole plane. Choose a root
vertex V' of ['. Two coordinates are given by the position of the image / (V') in the
plane. #FO1 coordinates are given by the lengths of the bounded edges (which have

to be positive). Hence we can embed M, | ,(d) in R2#T5, Note that a graph
with 3d + n unbounded edges and of genus 1 has 3d + n — >y cro{val V — 3)
bounded edges, whereas a rational graph with 34 + » unbounded edges has 3d —+
n—3—3 yero(val vV — 3) bounded edges (see for example [6], proof of 2.13). For
a genus | curve C, the lengths of the bounded edges are not independent however,
as some are contained in the cycle. So these lengths satisfy two conditions, namely
that their images have to close up a cycle in R2, These conditions are only inde-
pendent if def(C) = 0. If def(C) = 1 there is one independent equation, and if

def(C) = 2 there is none. Hence the dimension of the polyhedron M (d) in

trop, 1,n
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R2H4T0 ig 2 4 #T} — 24 def(C) = 3d +n — Y pepo(val V — 3) + def (C). Note
that the polyhedron 1s unbounded, because we can for example move the image of the
root vertex in the whole plane. For rational curves, no equations have to be fulfilled
and we have dim M} (d)y=3d+n—-1-3 ycro(valV —3). O

trop, 1,n

Proposition 3.2. Let o be a combinatorial type occurring in Myop, 1,n(d). Then

. . g ¢ i 1
every point in M zop’ 1.2 (d) (where the closure is taken in R2H16 | see Lemma 3.1)

can naturally be thought of as an element in Myop, 1,n(d ). The corresponding map
i M o, 1.0(@) = Misop, 1.0(d)

maps the boundary Mg, 1 ,(d) 10 a union of strata Mg;p, 1.n(d) such that ' is a

combinatorial type with fewer internal edges than a. Moreover, the restriction of iy
i i / .

to any inverse image of such a stratum Mg, 1 , (d) is an affine map.

Proof. Note that by the proof of 3.1 a point in the boundary of the open polyhedron

o, 1 ) R2#T5 corresponds to a tuple (T, 7, X1, . . . , X») where some edges
have length /(e) = 0. Such a curve is of a different combinatorial type then, because
the homeomorphism class of the graph has changed. For all edges e with length
[(e) = 0 the vertices oF and dF’ of the two flags F and F’ with [F] = [F'] = e are
identified. We can as well remove the edges of length O then. Note that the balancing
condition will be fulfilled at the new vertices. Two examples what this can look like
are shown in the following picture. The edges which tend to have length zero when we

move towards the boundary of the open polyhedron Mg ,,(d) are drawn in bold.

St N

Let I'1 be the graph which is obtained by removing the edges of length 0. Note that
I'; has fewer bounded edges than I'. The tuple (I'y, 2|1, x1,...,X5,) is a tropical
curve again, possibly of a smaller genus than (T, /2, x1,. . ., x,). This shows that the

points in the boundary d M, | ,(d) can naturally be thought of as parametrized

tropical curves in Mcp, 1,,(d) themselves. The combinatorial types o that can
occur in the boundary of MY (d), that is, in the image iy (3 MY (d)), have

trop, 1,n trop, 1,n
by construction fewer bounded edges than «. Finally, it is clear that the restriction of
i 4 / ¢ 3
lo to the inverse image of any stratum Mg, ; ,(d)} is an affine map since the affine
structure on any stratum 18 given by the position of the curve in the plane and the

lengths of the bounded edges. Ll
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Definition 3.3. We will say that a type «' appears in the boundary of another type «,
if there is a point in dMy ; ,(d) that is identified with a curve of type o’ (as in the

proof of Proposition 3.2).

Our aim is to de fine a slightly different moduli space M{, ; ,(d), where the
strata of dimension bigger than 3d 4+ »n are excluded and where we add a weight for
each stratum. In fact, our moduli space should be something similar to an abstract

tropical variety, a weighted polyhedral complex:

Definition 3.4. Let X;,..., Xn be (possibly unbounded) open convex polyhedra in
real vector spaces. A polvhedral complex with cells Xq,..., Xy 1s a topological
space X together with continuous inclusion maps ix: Xy — X such that X is the
disjoint union of the sets ix (Xy) and the “coordinate changing maps” i, Loip are
linear (where defined) for all & # /. We will usually drop the inclusion maps 7 in
the notation and say that the cells X are contained in X .

The dimension dim X of a polyhedral complex X is the maximum of the dimen-
sions of its cells. We say that X is of pure dimension dim X if every cell is contained
in the closure of a cell of dimension dim X. A point of X is said to be in general
position if it is contained in a cell of dimension dim X. For a point P in general
position, we denote the cell of dimension dim X in which it is contained by Xp.

Aweighted polyhedral complex 1s a polyhedral complex such that there is a weight
w(X;) € Q associated to each cell X; of highest dimension,

!/

We are now ready to define the moduli space Mtrop’ i

our methods:

(d ), which is important for

Definition 3.5. Remove the strata of dimension bigger than 3d 47 from Miop, 1,2 (d).
Also, remove the strata of rational curves which are not contained in the boundary of
a genus 1 curve as in 3.3. Let o be a type such that dim My, (d) = 3d +n. We
associate the following weights to the strata of dimension 3d + n:

(a) Assumedef () = 0, and the curves of type « are of genus 1. As we have already
seen, the condition that the image of the cycle closes up in R? is given by two
independent linear equations a1 and a» on the lengths of the bounded edges.
We associate as weight the index of the map

aq 1
( ) « 230 5 72,
da

(For more details on lattices, maps between vector spaces and lattices and their
indices, see [9].)

(b) Assume def(e) = 1. Assume first that the 4-valent vertex is adjacent to the
cycle, that is, locally the curves look like the following picture:
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v
neu
-
\
m-u

In the notations above, »n - u, m - u and v denote the direction vectors of the
corresponding edges (n and m are chosen such that their greatest common divisor
is1). If n # m,orifn = m = 1 and the cycle is formed by three edges due to the
presence of a marked point, we associate the weight |det(u, v)|. If n =m =1
and no point is on the flat cycle, then we associate %|det(u, v)|. (Due to the
balancing condition this definition is not dependent of the choice of v.)

In case the 4-valent vertex is not adjacent to the cycle, we associate the weight 0.

(c) Assume def(o) = 2. Assume first that the 5-valent vertex is adjacent to the
cycle, that is, locally the curves look like this:

.

where v and v denote the direction vectors of the corresponding edges. We
associate the weight %(|det(u, v)|—1). (Note that due to the balancing condition
this definition is independent of the choice of v and v.) In the case that there
are two 4-valent vertices or that the 5-valent vertex 18 not adjacent to the cycle,
we associate the weight 0.

The strata of dimension 3d + n or less together with these weights for the strata of top
dimension form the space My, | ,{(d), called the moduli space of (relevant) elliptic
tropical curves.

The reason to drop the cells of dimension bigger than 34 + » is that we want to
construct later on a morphism to a polyhedral complex of the same dimension 3d +n.
The strata of dimension bigger than 3d + » would not be mapped injectively to the
image. We will only be interested in strata which are mapped injectively, therefore
the strata of dimension higher than 3d + » are not important to us and we can drop
them.
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Remark 3.6. Note that the definitions of weight do not depend on the choice of
coordinates for the cell Mg ; (d). This is clear for each case except the first one.
In the first case, the two equations given by the cycle do not depend on the choice

of a root vertex, they depend only on the choice of an order for the bounded edges.
But this corresponds to an isomorphism on R2+#T6 of determinant = 1, therefore the
index of (3!) does no depend on this choice.

The definition of the weights for the different strata seems somewhat unnatural.
However, we will see that the weights are just the right ones for our proofs later
on. The idea behind this definition is that we think of elliptic tropical curves as
rational tropical curves with two additional marked points, whose images we require
to coincide.

The space of rational curves with two additional marked points is of course bigger
than the space of elliptic curves, but it contains the space of elliptic curves as the
kernel of the map a; X a,. Note that the index of a; X a3 is equal to

ged(ay) - ged(az) - x(ker(ay), ker(az)),

where )(( ker{a), ker(a 2)) denotes the index of the sublattice generated by ker (a1 )+
ker(as) in Z2T#T10 (see example 1.5 of [9]).

If def(C) = 1, the weight we choose is derived in the same way: we compute
the multiplicity of a rational curve with two additional marked points.

Sometimes we included a factor of % in our weights. It seems maybe unnatural to
allow weights which are not natural numbers. But the factors of % ar¢ only necessary
when the cycle of the elliptic curve “allows automorphisms™: when it is a loop
consisting of one edge with two non distinguishable orientations, or when it consists
of two non distinguishable edges. Due to these factors we believe that the moduli
space we construct here can be thought of as a “tropical orbifold”.
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Lemma 3.7. The space M (d) (defined in 3.5) is a weighted polyhedral com-

trop, 1,n
plex of pure dimension 3d + n.

Proof. 'The cells are obviously the strata M, | ,, (d) corresponding to relevant types.
By 3.1 they are open convex polyhedra. By Proposition 3.2, their boundary is also
containedin M, , ,(d), and the coordinate changing maps are linear. By definition,
the highest dimension of a relevant cell is 3d + n. Furthermore, by definition each
rational type which s contained in Mg, 4 () is in the boundary of a type of genus 1.
Each higher-valent vertex can be resolved to 3-valent vertices. Therefore each type
is contained in the boundary of a type of codimension 0. By definition, the strata of

top dimension are equipped with weights as required. 0

4. The multiplicity of an elliptic tropical curve
We also want to define morphisms between weighted polyhedral complexes.

Definition 4.1. A morphism between two weighted polyhedral complexes X and Y
is a continuous map f: X — Y such that for cach cell X; C X the image f(X;) is
contained in only one cell of Y, and f'|x, is a linear map (of polyhedra).

Assume f: X — Y is a morphism of weighted polyhedral complexes of the
same pure dimension, and P € X is a point such that both P and f(P) are in general
position (in X resp. ¥'). Then locally around P the map f is a linear map between
vector spaces of the same dimension. We define the multiplicity multy (P) of f at
P 1o be the absolute value of the determinant of this linear map times the weight of
the cell Xp. Note that the multiplicity depends only on the cell Xp of X in which P
lies. We will therefore also call it the multiplicity of f in this cell.

A point Q € Y is said to be in f-general position if Q is in general position
in ¥ and all points of £~1(Q) are in general position in X. Note that the set of
points in f-general position in ¥ is the complement of a subset of ¥ of dimension
at most dim Y — 1; in particular it is a dense open subset. Now if Q € Y is a point
in f-general position we define the degree of f at Q to be

deg,(Q) := Z multy (P).
Pef~HO)

Note that this sum is indeed finite: first of all there are only finitely many cells in X.
Moreover, in each cell (of maximal dimension) of X where f is not injective (i.e.
where there might be infinitely many inverse image points of @) the determinant of
£ 1s zero and hence so is the multiplicity for all points in this cell.

Moreover, since X and Y are of the same pure dimension, the cones of X on
which f is not injective are mapped to a locus of codimension at least 1 in Y. Thus
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the set of points in f -general position away from this locus is also a dense open subset
of ¥, and for all points in this locus we have that not only the sum above but indeed
the fiber of @ is finite.

Note that the definition of multiplicity mults (P) in general depends on the co-
ordinates we choose for the cells. However, we will use this definition only for
the morphism ev xj (see 4.2) for which the absolute value of the determinant does
not depend on the chosen coordinates, if they are chosen in a natural way (in our
case this means we choose a lattice basis of the space My, 1 ,(d) C R0 see
Remark 4.7).

The following maps will be important to count elliptic curves:

Definition 4.2. Let

ev; 1 M/ (d) = R?, (T, h,x1,...,xn) = h(x;)

trop, 1,

denote the 7 -th evaluation map. By ev = ev; X --- X ev, we denote the combination
of all n evaluation maps.

If C is an elliptic curve, let I'; be the minimal connected subgraph of genus 1
of I' that contains the unbounded edge x;. Note that Iy cannot contain vertices of
valence 1. Soif we “straighten” the graph I'; atall 2-valent vertices (thatis we replace
the two adjacent edges and the vertex by one edge whose length is the sum of the
lengths of the original edges) then we obtain an element of M ¢qp, 1,1 = [0, o) that
we denote by j(C). (For an elliptic curve, j(C) # 0.) If C is rational, we define
j(Cy=0eM wop, 1,1 = [0, 00). We call j(C) the tropical j-invariant of C.

A combination of these maps yields

evxj i Myg, 1.,(d) — R2" X M trop, 1.1-
Example 4.3. The following picture shows an elliptic curve C. The marked points
are drawn as dotted lines. The subgraph I'; is indicated with a bold dotted line. The
image j(C) is an abstract tropical curve where the cycle has length [y + /5 + -+ [g.
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o

Lemma 4.4. The map ev xj restricted to a stratum thp, 1Ln

(d) is a linear map.
Proof. The coordinates on Mg, ;1 ,(d) are by 3.1 given by a root vertex V' and
an order on the bounded edges. Of course, these coordinates do not need to be
independent, but if they are not, they fulfill a linear condition themselves. As I is
connected, we can reach x; from the root vertex V' by a chain of flags F°, such that
[F] is a bounded edge. Then the position of /1 (x;) is given as a sum

h(V)+ 3 o (F) - 1(F).
F

where the summation goes over all flags F in the chain. Hence the position A(x;) is
given by two linear expressions in the coordinates of My ,,(d). The length of the

bounded edge of j(C) is by definition given as the sum of the lengths of all bounded
edges contained in the cycle of 'y that we straightened to get j(C). O

Lemma 4.5, Letn = 3d — 1. Then the map ev Xj is a morphism of weighted
polyhedral complexes of the same dimension.

Proof. The space M/ (d) 1s a weighted polyhedral complex of dimension 3d +

trop, 1,7
n =3d+3d —1=6d —1by3.7. The space R>" XM trop, 1,1 is by 2.2 isomorphic
to R?" x [0, o0). This is obviously a polyhedral complex with only one cell, and
we can make it weighted by associating the weight 1 to this cell. Its dimension is
2n+1=23d — 1)+ 1 = 6d — 1, too. The map ev xj restricted to a cell of the
weighted polyhedral complex M/ (d) is linear by 4.4. Furthermore, it maps

trop, 1, -
each cell into the one cell of the space R*" XM yop, 1,1. O

We will from now on assume that n = 3d — 1, in order to have a morphism
between polyhedral complexes of the same dimension.

Remark 4.6. Fix n points pi,..., p, and a j-invariant / in ev X j -general posi-
tion (see Definition 4.1). Then determine the set of tropical elliptic curves
(evxj) Y(pi1...., pn,1) which pass through the points and have j -invariant /. We
count each such elliptic curve with its ev xj-multiplicity, that is, we determine
dege,; ({p1,-.-, pn.1)). Define Enop(d) = deg.,x;((p1,..., pn,1}) to be the
number of tropical elliptic curves through 3d — 1 points in general position and
with fixed j-invariant. Our aim is to show that this definition does not depend on the
choice of (p1,..., pu.1). This statement will be shown in Theorem 5.1.

Remark 4.7. Givenastratum Mg ,

. - . . | |
of the space M, ; ,(d) inR>**T0, which contains the lattice Z>*To. (For R**#To,

we choose natural coordinates given by a root vertex and an order of the bounded

(d) of top dimension we choose a lattice basis
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edges.) With this choice, we can compute a matrix representation of ev x j and hence
compute its determinant. We claim that the absolute value of this determinant (and
thus, the ev x j-multiplicity) does not depend on the choices we made. To see this,
note first that a different choice of the root vertex or the order of the bounded edges
corresponds to a basis change of determinant + 1 (see Remark 3.2 of [2]). If we choose
a different lattice basis for M, 1 ,(d), then we have to multiply the matrix of ev x j
with the basis change matrix. But as this is a basis change of lattice bases, it is of
determinant £ 1 and does therefore not change the absolute value of the determinant

of ev xJ.
The following remark helps us to determine multc (ev X j } in some cases:

Remark 4.8. Let ¢ be a type of 3-valent genus 1 curves with def (o) = 0. We want
to determine the multiplicity of ev xj in the stratum My 4 ,(d). By definition, it
1s equal to the absolute value of the determinant of ev xj times the weight of the cell
Meop, 1.,(d). The weight of the cell is defined to be the index of the lattice map (3!),
where a1 and a» denote the two equations given by the cycle (see 3.5). To compute the
ev x j -multiplicity, we need to compute this weight, and then a matrix representation

of ev xj restricted to ker{a;) N ker(az). To get this matrix representation, we need

: : 1 : .
a lattice basis of the subspace Mg, 1 ,(d) C R2+#T0 . However, lattice bases are in
general not easy to determine. We can instead use example 1.7 of [9]. It states that
|det(ev x j )| times the lattice index is equal to the absolute value of the determinant

of the map
* 1 G Y
evXj Xap X ag: RF#o 5 ROZ 5 ff 01 | x R?

(where ev and j denote here matrix representations of ev respectively j in the co-
ordinates given by the root vertex and the lengths of all bounded edges). This

map goes from the space R2+#T6 which surrounds Mitop, 1.2(d). More precisely,

top. 1. (@) is equal to ker(ar) N ker(az) C R2HT5 . The bigger space R2HTo
does not parametrize tropical curves, as the length coordinates of a general vector of
R2+#T6 do not need to fulfill the conditions given by the cycle. But (after choosing
coordinates and chains of flags from the root vertex to each marked point) we can still
write down the matrix of ev xj X a; X a,. Note that while the matrix does depend
on the choices we make, the absolute value of the determinant does not (see Remark
4.65 of [5]). That is, to compute the multiplicity of ev xj in My ,(d), we can
write down a maltrix representation for the map ev xj x a; x as and compute its
determinant. In the following, we will denote the map by evxj X a; X aa, even
though it is not uniquely determined by this term. It depends on the chosen matrix
representation, that 1s, on the chosen chains of flags. We will keep in mind that
|det(ev xj x aj x a»}| is uniquely determined, though.
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Example 4.9. Compute |det(ev xXj x a; X a,)| for the following (local) picture of
an elliptic curve.

Let V' be the root vertex. We choose the following chains of flags: for xq, we pass
v1. For xa, we pass vp and viz. For a; X as, we pass va, vgq and vs. Then the matrix

reads:
Ez [25] 0 0 0 0

E2 0 Va2 Us 0 0
0 0 vy O wvg vs
O ¢ 1 0 1 1

Each row except the last represent two rows, the first column represents two columns.
E» stands for the 2 x 2 unit matrix.

We add four other statements that help to determine the ev x j -multiplicity in
some cases:

Lemma 4.10. Let def(C) = 2, that is, C contains a contracted loop. C' denotes
the rational curve which arises from C if we remove the loop.
If the vertex V' to which the loop is adjacent is 5-valent, then

1
Multey x; (C) = 5(mult(V) — 1) - mult(C"),

where mult(V') denotes the multiplicity of the vertex V of C' from which the loop was
removed and mult(C") denotes the multiplicity of the tropical curve C’.
Else the ev x j-multiplicity of C is O.

Proof. To determine a matrix representation for ev xj, we do not have to consider
equations given by the cycle and lattice bases — the lengths of the bounded edges
are independent. That 1s, we can choose a root vertex and an order of the bounded
edges and write down the matrix of ev xj with respect to this basis. Note that in the
J -row there 1s just one unit at the coordinate of the contracted edge, as no other edge is
contained in the cycle. To compute the determinant, we can therefore remove this last
line and the column of the coordinate of the contracted edge which forms the cycle.
The remaining matrix consists of the evaluation maps in the 34 — 1 marked points,
and it does not take the contracted edge into account. That is, this matrix describes
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the evaluation in the marked points of the rational curve C’ which arises when we
remove the contracted edge. Proposition 3.8 of [2] tells us that the determinant of
this matrix is equal to the multiplicity of the rational curve C’. To determine the
ev x j-multiplicity, we also have to multiply with the weight of the stratum in which
C lies. The only case where the weight is non-zero is 3.5(c), s0 we can assume
that the contracted loop is adjacent to a 5-valent vertex 1, and denote the direction
vectors of two of the other adjacent edges by v and v. Then the weight of the stratum
is %(|det(u, v)| — 1) by definition. If we remove the loop and consider the rational
curve C’, then this weight is equal to %(mult(V) — 1), where mult(V') denotes the
multiplicity of the vertex V' to which the contracted loop was adjacent. O]

Lemmad.11. Ler C be a (3-valent) curve with a contracted bounded edge e, which is
not a loop. Let C' denote the rational curve that arises if we remove e and straighten
the two 2-valent vertices Vi and V, emerging like this. Let u denote the direction of
a remaining edge adjacent to Vi, and let v denote the direction of a remaining edge
adjacent to 5.

If e is part of the cycle, then

multe, »; (C) = |det(u, v)| - mult(C”).
Else the ev x j-multiplicity of C is O.

Proof. We assumed that the contracted bounded edge e is adjacent to two different
3-valent vertices. (These vertices have to be 3-valent, as we only compute the ev X -
multiplicity in strata of top dimension.)

The balancing condition implies that at each of these two vertices the two other
adjacent edges are mapped to opposite directions:

We are going (o use Remark 4.8 to compute the ev x j -multplicity, that 1S, we use a
matrix representation of ev X j X a1 X a», where a1 and a» denote the two equations
of the cycle. If e is not part of the cycle its length is a coordinate which is needed
neither for the evaluations nor for the map j, so we get determinant 0. Assume now
that e is part of the cycle. Then ¢ is only needed for the map j, as it is contracted by
h it is not needed to describe a position of the image of a marked point. That is, in
the column for e, we have a 1 at the row of the map j and O in every other row. In the
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matrix of ev Xj X a; X a, we can choose a chain of flags to each marked point which
avoids the edge e. This is possible, as e is contained in the cycle. In the two equations
a1 and a,, exactly one of the edges e; and e, will take part, and also exactly one of
the edges e3 and e4. Assume without loss of generality that e; and e are part of the
cycle. If e 1s used in a chain of flags to a marked point, then also e», and if e3, then
also e4. Let /; denote the length of ¢;, and ! denote the length of e. Assume that the
directions are as labelled in the picture. Then the ev xXj X a1 X az-matrix looks like
this:

h(V)y Iy 1 13 14 [ other edges
marked points using neither of thee; | EF2 O 0 0 *
marked point using ¢ Ey, u wu 0 *
marked points using e £y 0 0 v v O *
ai,dz u 0 v 0 %
coordinate of M trap, 1,1 0 1 0 1 | *

We perform the following operations which do not change the absolute value of
the determinant: we delete the last row and the /-column. We subtract the /5-column
from the /; -column and we change the place of the /;-column: it shall appear as first
column. Then, we subtract the /4-column from the /3-column and move the /5-column
to the second place. At last, we put the two rows a1 and a3 to the beginning. After
these operations the matrix looks like this:

Iy Is| (V) [y [ otheredges
ai,az U v 0 0 *
marked points using neither of thee; | 0 0| £, 0 0 *
marked point using e 0 0| E, 0 %
marked points using e3 0 0| E2 0 v *

Note that this matrix is now a block matrix with a 2 x 2 block on the top left, and
a block that we will denote by A on the bottom right. That is, its determinant is equal
todet(u, v)-det A. Now A is the matrix of the evaluation map in the 3d — 1 marked
points of the rational curve C’ which arises from C when we remove the contracted
bounded edge ¢ and straighten the two bounded edges e; and e; as well as the two
bounded edges e5 and ¢4 to one edge. As before, Proposition 3.8 of [2] tells us that
|detA| = mult{C"). That is, the ev xj -multiplicity of C is equal to |det(u, v)| times
the multiplicity of the rational curve C’ which arises after removing the contracted
edge and straightening the adjacent edges. Our argument here assumes that the edges
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ey, ...,eq are all bounded. However, we can prove the same if some of these edges
are not bounded. Their lengths do not appear as coordinates then, but also there
cannot be marked points behind unbounded edges. O]

Lemma 4.12. Let C be a curve with a flat cycle (that is, det (C) = 1) which is not
adjacent to a marked point. If there is no 4-valent vertex adjacent to the flat cycle,
then multey » ; (C) = 0. Else, with the notations as in the picture below, we have

(m + n) - |det(u, v)| - mult(C") if m # n

mMultey x ; (C) =
< (€) |det(x, v)| - mult(C"y if m =n =1

where C' denotes the rational curve that arises if we glue the two edges that form the
cycle to one edge of direction (m + n) -u and straighten the 2-valent vertex emerging
like this.

Proof. The following picture shows the flat cycle of the curve C. We choose m and
n such that ged(m, n) = 1.
v

\m-u (m+n)-u

——
n-u
To determine the matrix of ev xj, we need a lattice basis of Mg, ; ,(d). As the

equations of the cycle are given by [y - m - u — [> - n - u, we can choose unit vectors
for all coordinates except /; and /5, plus the vector with n at the /;-coordinate and m
at the />-coordinate. As gcd(m,n) = 1, this is a lattice basis. The j-invariant of C
is given by [1 4+ [,. That is, in the j -row of the matrix, we have only zeros except for
the column which belongs to the vector with # at /; and m at [,, there we have the
entry m + n. But then we can delete the j-row and this column. The determinant we
want to compute is equal to (m + n) times the determinant of the matrix which arises
after deleting. This matrix can easily be seen to be the matrix of evaluating the points
of the rational curve C’ which arises after identifying the two edges which form the
cycle. Due to [2], Proposition 3.8, its determinant is equal to mult(C’). The factor
of |det(u, v)| (respectively, % - |det(u, v)| if n = m = 1) has to be included, because
this is by Definition 3.5 (b) the weight of the stratum M (d). O

trop, 1,n

Lemma 4.13. Let C be a curve with def (C) = 0 and such that the cycle is formed
by 3 edges.

Then multey s ; (C) = mult(V) - mult(C”), where C” is the rational curve which
arises when we shrink the cvcle to a vertex V.
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Proof. We compute the ev xj-multiplicity of C using Remark 4.8. That is, we
compute the determinant of the matrix ev Xj X a; X a,, where a; and a, denote the
two equations of the cycle. The following picture shows the curve locally around the
cycle and fixes a labeling of the adjacent edges:

A\ — L

— 14
U3

G G

Note that the matrix ev X j X a1 X az has a block form with a 0 block on the bottom
left, because the equations of the cycle and the j-invariant only need the three length
coordinates of vy, vo and vs. The block on the top left is just the evaluation of the
rational curve C” at the marked points — hence by [2], Proposition 3.8, its determinant
is equal to mult(C’). So multey, ; (C) is equal to mult(C’) times the absolute value
of the determinant of the matrix
11 1
(UI ) U3)

where the last row stands for the two rows given by the equation of the cycle. The
absolute value of this determinant can be computed to be

|det(vy, v2)| + |det(vy, v3)| + |det{va, v3)]

which is — using the dual picture, for example — easily seen to be equal to mult V.

The sum of the three determinants is equal to the double areas of the three small
triangles, mult V' is equal to the double area of the big triangle. O

5. The number of tropical elliptic curves with fixed j-invariant

A string in a tropical curve C is a subgraph of I' homeomorphic either to R or to
S (that is, a “path” starting and ending with an unbounded edge, or a path around
a loop) that does not intersect the closures x; of the marked points (see also [5],
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Definition 4.47). If the number of marked points on C is less than 3d + g — 1, then
C has a string. This follows from Lemma 3.50 of [5]. We will need the notion of a
string 1n the following proof of the main theorem of this section:

Theorem 5.1. Letn = 3d — 1. The degrees deg.,  ; (P} do not depend on P. (Here

P = (p1,.... p3a—1.1) € R2"xM wop, 1,1 denotes a configuration in ev x j -general
position consisting of 3d — 1 points in R? and a length [ for the j-invariant.)

Proof. Analogously to the proof of 4.4 of [2], we have that the degree of ev x J is lo-
cally constant on the subset of R 2 x.M wop, 1,1 Of points in ev x j -general position
since at any curve that counts for deg. . ; (#) with a non-zero multiplicity the map
ev xj is a local isomorphism. The points in ev X j -general position are the comple-
ment of a polyhedral complex of codimension 1, that 1s they form a finite number of
top-dimensional regions separated by “walls” that are polyhedra of codimension 1.
Hence it remains to show that deg,, , ; is locally constant at these points, too. Such
a general point on a wall 1s the image under ev xj of a general tropical curve C of a
type o such that M, | ,(d) is of codimension 1. So we have to check that deg, . ;
is locally constant around such a point C € M ,(d). More precisely, if P is
such a point on a wall, and C is a curve through &, we want (o show that the sum
of the ev x j -multiplicities of the curves through £’ near & and close to C does not
depend on P’. Let us determine what types « are of codimension 1, using 3.1.

(a) def(x) = 0, « is of genus 1 and has one 4-valent vertex (besides the 3-valent
vertices);

(b) def{(x) = 1 and « has two 4-valent vertices;

(¢) def(ex) = 1 and « has one 5-valent vertex;

(d) def(e) = 2 and « has three 4-valent vertices;

(e) def(e) = 2 and « has one 5-valent and one 4-valent vertex;
(f) def(¢) = 2 and « has one 6-valent vertex.

Note that the codimension 1 case that « is the type of a rational curve is missing here:
the reason is that we do not “cross” such a wall consisting of rational curves, we can
only enlarge the j-invariant if j = 0, not make it smaller. More precisely, the curves
which pass through a configuration #’ in the neighborhood of a point configuration
through which a rational curve passes, are always of the same types; the types (and
with them, the multiplicities with which we count) do not depend on &',

For each of the cases in the list, we have to prove separately that deg, , ; 1s locally
constant around a curve C of type «. The proof for (a) 1s similar to the proof of 4.4
in [2]. There are three types which have « in their boundary. The following is a local
picture:
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+ 4

(04 0 (045) [0

To compute the ev x j -multiplicity of a curve of each type, we use Remark 4.8, that is,
we compute a matrix representation of ev Xj X a; X as, where a1, @, denote the two
equations of the cycle. We can choose the coordinates in such a way that these three
matrices only differ in one column - in the column corresponding to the new edge e.
Then we can use the same operations as in 4.4 of [2] to prove that the sum of the three
determinants is 0. The matrices we use here differ from the ones in 4.4 of [2] because
they contain the two lines corresponding to a; and a;, and the line corresponding
to the j-invariant. However, the argument does not change in the presence of these
other lines. Also, with the same argument as in 4.4 of [2], the question whether there
is a curve of type «; through a given configuration P’ close to & depends on the
sign of the determinant. So we can conclude that we either get the types where the
determinant has positive sign or the types where it has negative sign. But as the sum
is O, the sum of the absolute values of those determinants, for which a curve exists,
stays constant and does not depend on .

Soletus now come to (b). Firstnote that if none of the 4-valent vertices is adjacent
to the flat cycle, then we count all curves of a type which has « in its boundary
with the weight 0, so we do not have to consider this case. So at least one of the
4-valent vertices is adjacent to the flat cycle. If exactly one of the 4-valent vertices
1s adjacent to the flat cycle, then the only curves which have « in their boundary
and which do not count with weight O are the curves where the other 4-valent vertex
is resolved, as in case (a). The proof is then analogous to the proof of case (a),
only using the matrices of ev xj instead of the big matrices of ev Xj X a1 X as.
So we can assume now that both 4-valent vertices are adjacent to the flat cycle.
Assume first that none of the edges adjacent to a 4-valent vertex in the flat cycle is
a marked point. We claim that C has a string. Consider the connected components
of "\ |U; Xi. As in the proof of 3.50 of [5], remove the closures of the marked
points Xxi,...,X, from I" one after the other. We only remove edges at 3-valent
vertices. Therefore each removal can either separate one more component, or break a
cycle. Assume that all connected components are rational (else C' contains a string).
Then one of our removals must have broken the cycle. As C is marked by 3d — 1
points, we end up with 3d — 1 connected components. But then there has to be
one connected component which contains two unbounded edges, hence C contains
a string,.

If C has at least two strings then C moves in an at least 2-dimensional family
with the images of the marked points fixed. As Mgqp, 1,1 18 one-dimensional this
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means that C moves in an at least 1-dimensional family with the image point under
J fixed. But then also the curves close to C are not fixed, hence they count 0. So we
do not have to consider this case. Also, if for all curves C” which contain C in their
boundary the string does not involve an edge of the cycle, then C (and all curves C”)
move in an at least 1-dimensional family with the image point under j fixed. So we
do not have to consider this case either.

So we assume now that C lies in the boundary of a type which has exactly one
string that involves (at least) one of the edges of the flat cycle.

There are (up to symmetry) five possibilities for the string. We will show them in
the following local picture.

Assume now that there is a marked point adjacent to a 4-valent vertex of the flat
cycle. Then the removal of this marked point both breaks a cycle and separates two
components. So we cannot conclude that C has a string. However, we can conclude
that there is no other marked point adjacent to the cycle, as else two marked points
would map to the same line. Hence in this case the curve looks locally like our sixth
picture below.

(1) 2)
3)

75

As the cycle 1s not a string in the cases (1)-(3) and (5), there must be a marked
point adjacent to it. Two marked points adjacent to the flat cycle are only possible if
the string does not involve any edge of the flat cycle (as in (3) and (5)).

In each of the six cases, there are four types which contain « in their boundary
(see 3.2). The following picture shows the four types o1, ..., a4 for case (1). We
will give our argument only for case (1), it is analogous in all other five cases.
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Our first aim is to show that we can choose bases of the corresponding strata
M op, 1,,(d) such that the matrices ev xj (and the matrices ev X j x ay X az for the
types «3 and o4) contain a block which involves only the edges locally around the
flat cycle. We can then make statements about the ev x j -multiplicity (with the aid
of 4.8) using these smaller blocks.

Choose the root vertex for the four types to be V as indicated in the picture above.
Also choose the labeling for the edges around the cycle as above. Let v; be the
directions of the ¢; (as indicated in the picture). We then have vs = vg. As es, €6 and
e are mapped (o the same line in R2, we can choose n and m with vs = vg = n - u
and v7 = m -u such that gcd(n, m) = 1. We will consider a matrix representation A;
(i = 1,2)of ev xj for the types a1 and a5 and a matrix representation B; (I = 3,4)
of ev xj x aj x ap for vz and a4. The ev xj -multiplicity for «; is then given by
|det(u, v2)-det Aq], the ev x j-multiplicity for ¢» is |det(u, v1)-det A»| due to 3.5(b).
For a3, it is due to Remark 4.8 given by |det B3| and for «4 by |det B4|. Later on, we
will also need to consider matrix representations Az and A4 of ev xj for the types a3
and «4. We will however not choose a lattice bases for those, so they are not useful
for the computation of the ev x j -multiplicity. We will specify later on what bases
we choose for A3 and A4.

. - 0L -
We choose a basis of the subspace M, |, (d) € R*T*1i1 fori = 1,2 consisting

of two unit vectors for the root vectors and unit vectors for all bounded edges except
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es, ¢g and eg. In addition, we take two vectors with es, eg and e7-coordinates as
follows: (1,—1,0) and (0, m, n). In fact, this is a lattice basis: As ged(n,m) = 1,
we can find integer numbers such thatam 4+ bn = 1. Then we can complete our basis
with the vector (0, b, @) (at es, eg, e) and get a lattice basis of Z2T#Ti1 . Fori = 3. 4,
we choose a basis of M), (d) € RZT# ! consisting of only unit vectors except
three vectors involving the coordinates of es, . . ., €g.

Because the bases we choose for the A; and for the B; differ only by a few vectors,
there will be a block in which the matrices A; and B; ( = 3,4) do not differ. The
following argumentation works therefore analogously for all six matrices A4, ..., A4,
B 3 and B4.

Assume that d; unbounded (nonmarked) edges can be reached from V via e,
d, via ey and so on. As the only string passes via ¢4 and e3, there must be d;
marked points which can be reached from V via e, d; marked points via e;, dz — 1
marked points via ez and d4 — 1 via e4. Note that the marked points which can be
reached via e; and e do not need any of the length coordinates of edges via e3 or
e4. As there are 2 - (d3 — 1 4+ dy — 1) rows for the marked points via e3 and e4 and
2d3— 14 1—34 14 2d4 — 2 bounded edges via e3 and e4, all six matrices have a
0 block on the top right. For Bz and B4, we also put the equations @ and a5 of the
cycle 1n the first block of rows.

‘ h(V') ‘ other edges ‘ edges via e3 and ey
E2 * 0

x1, pts behind ¢ and ¢, and j -coord

E> * *

pts behind ez and ¢4

The block on the bottom right is the same for all six matrices. So we can disregard
itand only consider the top left block given by the marked points which can be reached
via e and e,, the j-coordinate, a1 and a» for B3 and B4 and the length coordinates of
ey, €2, es,...eg/eq plus the length coordinates of bounded edges via ¢, respectively
es. Choose a marked point x, which can be reached via e; and a marked point x3
which can be reached via e;. Choose the following order for the rows: begin with the
marked points xq, . . ., x3, then take the j-coordinate (and for the matrices B3 and By
the equations a1, a, of the cycle). Then take the remaining marked points. Choose
the following order for the columns: begin with 4#(V'), e; and e,. For the types o

and o5, take the two basis vectors involving es, . .., ¢7 and then eg. For the types a3
and oy, take the three basis vectors involving es, ..., eq9. For B3 and By, take the
length coordinates of es, . .., eg. Then take the remaining length coordinates. Note

that each marked point which can be reached via e; has the same entries in the first
7 (respectively, 9 for Bs and By,) columns as x». Each marked point which can be
reached via e, has the same entries in the first 7 (respectively, 9) columns as x3. That
is, we can subtract the x,-rows from all rows of marked points via e; and the x3-rows
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from all rows of marked points via e;. Then we have a 0 block on the bottom left.
Note that the bottom right block is equal for all six matrices. That is, we can now
go on with the four 7 x 7-matrices and the two 9 x 9 matrices. The determinants of
the original six matrices only differ by the factor which is equal to the determinants
of the corresponding 7 x 7-matrices (respectively, 9 x 9) matrices. Let us call these
blocks A’, respectively B]. Here are the four blocks A7, A}, B} and B and their
determinants:

Ey 0 0 n-u 0 (n+m)-u

A/_ EZ U1 0 0 0 0
V" 1E; 0 vso O nom-u mdm)-ul’
0 0 O 0 m—+n 0

det(A}) = —n - (n +m)* - det(u, vq) - det(u, va);

Ey 0 0 n-u 0 0
A,_ E2 v 0 0 0 0
27 lEy 0 vo2 O n-m-u (m+m)-u
0O 0 O 0 m—+n 0

det(AS) = —n - (n + m)? - det(u, v1) - det(u, v2);

Ey 0 O n-u 0 0 0 0

Es vy O 0 0 0 0 0
Bi=|E> O vy n-u n-u 0 0 0 ,

0 0 O nu n-u —m-u vi+n-u —va+n-u

0 0 O | 1 | | 1
det(B%) = —det(u,vy) - det(u, v2) - 1 - ((n2 + nm)(det{u, vy)

+ det(u, v2)) + ndet(vy, v2));

EFry 0 O n-u 0] 0 —V| — MU O

E, vy O 0 0 0 0 0
B,=|FE2 0 vy n-u n-u 0 —vi—Mm-U Va—m-Uu|,

0O 0 O nu n-u —m-u —vl—m-u vy—m-u

0O 0 0 1 1 1 1 1

det(B}) = det(u, v1) - det(u, v2) - n - ((m* + nm)(det(u, v1)
+ det(u, v2)) — ndet(vy, vz)).
A computation shows that

det(u, v,) - det A + det(u, vy) - det A5 — det B3 + det By = 0. (2)
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Note that in the cases (4) and (6) without marked points adjacent to the flar cycle
we have to make a difference if n = m = 1. In this case, Definition 3.5 (b) tells us
that we have to multiply the types analogous to «; and o« (which stll contain a flat
cycle) with the factor % -det(u, v1) respectively % -det(u, v2), instead of det(u, v1) and
det(u, v2). However, the types o3 and o4 are not different in these cases, so we count
them only once. Altogether, the weighted sum of determinants as above is sull 0.

We still need to check which types occur for a given point configuration #” near
P Let P’ C R x M wop, 1,1 be a configuration. If there exists a curve C of type
¢; through P, then 47! - P” gives us the coordinates of C in M. |, (d) in the

i | ! trop, 1,n
basis {vi 1,.... Vi 2,—1}. Thatit, the first two coordinates of the vector

D AT P vy C M (D)

J

denote the position of the root vertex, and all other coordinates the lengths of the
bounded edges of C. A curve of type «; exists if and only if all coordinates of the
vector )i (A7 P7); v © Myl 1 ,(d) which correspond to lengths are positive.
Choose P” close to the configuration #’, through which a curve of type o exists. By
continuity of A7", all coordinates of )_; (A7 - P"); -v;,; C Ml 1 ,(d) except the
length of eg (i = 1, 2), respectively of eg and eg (i = 3, 4), are positive.

Note that there is a curve of type «; (i = 1,2) through P” if and only if the
eg-coordinate of 471 - P is positive.

Now we specify which bases we choose for the types a3 and «4. For o3, begin
again with the two unit vectors for the position of the root vertex. Take unit vectors

for all bounded edges which are not contained in the cycle. Let

My ;= —det(vy, v2) + n - det{vy, u) — n - det{u, v,),
My := —n -det{(u,vy) and M3 :=n-det(u, vy).

Take the three vectors with entries
(—1,1,0,0,0), (O,m,n,0,0) and (0,M1,0,—M2,M3)

at the coordinates of es, . .., eq. (Let the vector with the entries (0, My, 0, —M,, M3)
be the last basis vector.) These three vectors are linearly independent and satisfy the
conditions given by the cycle. However, we cannot say whether this basis is a lattice
basis of Mfﬁg’p’ 1.2 (d). So we do not know whether the determinant of the matrix 43
is equal to the ev xj multiplicity of «3. But we are not interested in the determinant
of A3 here, we just want to use A3 to check whether there is a curve of type o3
through #” or not. Note that the last basis vector is the only one which involves
the lengths of eg and eg. As due to the balancing condition we have det(u, v1) > 0
and det(u, vo) > 0, the two entries of this vector corresponding to these two lengths
are positive. That is, there is a curve of type «3 through P if and only if the last
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coordinate of A3' - £ (that is, the coordinate with which we have to multiply our
last basis vector to get the lengths) is positive.
For a4, choose besides the unit vectors the three vectors with entries

(—1,1,0,0,0), (0,m,n.0,0) and (0, M{,0, My, —M3)
at the coordinates of es, ..., eg, where
M/ .= —det(vy,v2) — m - det(u, v1) —m - det(u, va).

The two entries of (0, M7,0, My, —M3) corresponding to the lengths of eg and eg
are negative. Hence there is a curve of type oy through P if and only if the last
coordinate of A7 - P (that is, the coordinate with which we have to multiply our
last basis vector to get the lengths) is negative.

For all four types, we are interested in the last coordinate of A; -, By Cramer’s
rule, this last coordinate is equal to det fL- / det A;, where A ; denotes the matrix where
the last column of A; is cancelled and replaced by #”. Note that the four matrices
Ay, ..., Ay only differ in the last column. Hence the matrices 4; do not depend on 7,
and we can decide whether there is a curve of type ¢; through £ by determining the
sign of det A;. (This argument is analogous to the proof of Proposition 4.4 in [2].)

Recall that |det A; | is a product of a factor which does not differ for all four types
and a factor which is equal to the determinant of a 7 x 7-matrix A} which describes
a curve of type «; “locally around the cycle”.

Here are the two matrices A’ and A/, and their determinants:

Ey 0 O n-u 0 0

A,_ E2 V1 0 0 0 0

37 1E, 0 vy, 0 nem-u —My-(—vi—n-u)+Mz-(va—n-u)l|
0 0 0 0 m+n Ml—M2+M3

det(A%) = det(u, vy) - det(u, va) - n? - ((n2 + nm){det(u, vy)
+ det(u, v2)) + ndet(vy, Ug));

Eya 0 0 n-u 0 My - (—vy —m-u)
E2 U1 0 0 0 0

Ey, 0 vy 0O n-m-u 0 ’
0 0 0 0 m -+ n M{+M2—M3

Ay =

det(A,) = —det(u, v1) - det(u, va) - n? - ((m2 + nm)(det(u, v1)
~+ det(u, v2)) — n det(vy, Uz)).

We know that det(u,vy) > 0, det(u, vo) > 0 and det(vq, v2) > 0. So there are now
two cases to distinguish:
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« ((m*> + nm)(det(u,v1) + det(u, v2)) — ndet(vy.v2)) = 0 — then det A is
negative. As we have seen, a curve of type o4 exists if and only if the last
coordinate of A1+ P is negative, hence if and only if det A; (a matrix which
depend only on P”, not on 7) is positive. Both det A}, det A} are negative, a
curve of one of these types exists if the last coordinate of Ag_l P =1,2)is
positive, hence if det A; is negative. det A’ is positive, and a curve of this type
exists if the last coordinate of A5 - P” is positive, hence if det A; is positive.
Hence a1 and o4 are on one side of the “wall”, a3 and a4 on the other. But as
in this case equation 2 from above reads

—|det(u, vp) - det A}| — |det(u, vy) - det A5| + |det B3| + |detBy| = 0

we have that the sum of the ev x j-multiplicities of the curves through a config-
uration near the wall stays constant.

« ((m* + nm)(det(u,v1) + det(u, v2)) — ndet(vy.v2)) < 0 — then det A is
positive. A curve of type o4 exists if and only if det 4; is negative. So in this

case o, ap and a4 are on one side of the “wall” and o3 on the other. But equation
2 from above reads

—|det(u, v} - det A} | — |det(u, vy) - det AL| + |detB;3| — |detBy| = 0

and we have again that the sum of the ev x j -multiplicities of the curves through
a configuration near the wall stays constant.

Let us now come to case (¢). As before we can argue that only those curves count,
where the 5-valent vertex is adjacent to the flat cycle. Then the following curves
contain ¢ in the boundary and do not count 0:

The proof is here again analogous to case (a), only using the “small” matrices of
evxj.

In case (d), all curves which have o in their boundary count 0. In case (e), there is
only one possibility with curves that do not count O: those where the cycle is adjacent
to the 5-valent vertex. Then the curves which have « in their boundary are the curves
where the 4-valent vertex is resolved, as in (a). The proof is analogous to case (a),
except that we use the “small” matrices for ev x .
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In case (1), the 6-valent vertex has to be adjacent to the cycle, because otherwise
every curve which has « in its boundary would count 0. So we can now assume that
there 1s a 6-valent vertex, where two of the adjacent edges are of direction 0 and form
a loop. To resolve this 6-valent vertex, we can either form a 5-valent vertex with a
loop and a 3-valent vertex (these curves are contained in strata of top dimension then),
or we can resolve 1t to four 3-valent vertices. (We cannot form a flat cycle from the
given 6 edges: the contracted edge must be part of the cycle, and it can either be the
whole cycle itself, or it forces the cycle to span R?.) In the second case, two of the
four 3-valent vertices are connected by the contracted edge and therefore mapped to
the same image point in R2. Now we want to use the statement that the number of
rational curves through given points does not depend on the position of the points for
our case here (see [4], respectively use the analogous proof as for Proposition 4.4 of
[2]). More precisely, if there is a point configuration through which a curve with a
4-valent vertex passes, and we disturb the point configuration slightly, then we always
get the same number of tropical curves (counted with multiplicity) passing through
the new point configuration.

The image of the 6-valent vertex (and its adjacent edges) in R? looks like a 4-
valent vertex. The types with one 5-valent and one 3-valent vertex are mapped to two
3-valent vertices, and the type with four 3-valent vertices 1s mapped to two 3-valent
vertices and a crossing of two line segments. That is, the images of the 6-valent
vertex as well as of all types which contain it in their boundary look like the possible
resolutions of a 4-valent vertex. We know that there are three types which contain a 4-
valent vertex in their boundary, and we only have to check how we can add contracted
bounded edges to these 3 types, and with which multiplicity they are counted. The
following picture shows the seven possible ways to add contracted bounded edges to

the three types:
A
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Note that we can vary the length of the contracted bounded edge in each type, so the
curves of these types can have any possible j-invariant. The question whether there
is a curve of type «; through a configuration P = (p1...., pu.l) € R?" xM trop, 1,1
depends therefore only on the question whether the image of the curve passes through
(p1,---, pn). Ifacurve of type ) passes through &, then also a curve of type oz and
vice versa. The same holds for a3 and o4, and for os, ag and a7. So we only have to
see that the sum of the ev x j -multiplicities of the types whose images are equal can
be written as a factor times the multiplicity of the rational curve which arises after
removing the contracted bounded edge (and straightening the other edges). Then
the statement follows from the statement that the number of rational curves through
given points does not depend on the position of the points (see [4], respectively
Proposition 4.4 of [2]). To see this, we pass to the dual pictures. The 4-valent
vertex is dual to a quadrangle. The images of curves of type o1 and oy are dual to
a subdivision of this quadrangle in two triangles. The same holds for the images of
curves of type o3 and oy, however the two triangles arise here by adding the other
diagonal. Images of curves of type o5, «g and a7 are dual to a subdivision consisting
of one parallelogram and two triangles.

B AR N

Ts

Lemma 4.10 tells us that the ev x j-multplicity of a curve of type ¢4 18 equal to
(Area(T7)— %) times the multiplicity of the rational curve which arises after removing
the contracted bounded edge. (Recall that the multiplicity of a vertex 1s by definition
equal to 2 - Area(7'), where T denotes the dual triangle.} Analogously the ev xj -
multiplicity of a curve of type o> is equal to (Area(T3) — %) times the multiplicity
of the same rational curve. The sum is equal to (Area(Q ) — 1) times the multiplicity
of the rational curve, where Q denotes the quadrangle. We get the same for curves
of type a3 and «4. The sum of the ev x j -multiplicities of «s, ag and o7 is again by
Lemma4.10 and Lemma4.11 equal to (Area(T5)—%)+(Area(Tg)—%)JrArea(Pl) =
(Area(Q) — 1) times the multiplicity of the corresponding rational curve. Hence the
statement follows. O

6. Curves with a very large j -invariant

Now we want to use the independence of deg,, « ; (#) from & to compute deg, » ; ()
with the aid of a special configuration # = (py, ..., pn.l) — a configuration where
the j-invariant / is very large.
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Proposition 6.1. Letn = 3d — 1 and # = (p1...., pn.1) € R?" me,p, 1,1 be
a point in ev x j-general position whose j-invariant is very large (that is, whose
image j(C) € M wop, 1,1 18 @ curve with a bounded edge of a very large length).
Then everytropical curve C € (ev xj) NP ) withmultey «; (C) # 0has a contracted
bounded edge.

Proof. The proof is similar to that of Proposition 5.1 of [2]. We have to show that
the set of all points j(C) € M yop, 1,1 is bounded in M yop, 1,1, Where C runs over
all curves in My, 1 ,(d) with non-zero ev x j -multiplicity that have no contracted
bounded edge and satisfy the given incidence conditions at the marked points. As
there are only finitely many combinatorial types (analogously to 2.10 of [2]) we can
restrict ourselves to curves of a fixed (but arbitrary) combinatorial type «. Since P
is in ev xj -general position we can assume that the curves are 3-valent, respectively
contain a flat cycle adjacent to a 4-valent vertex (it cannot contain a contracted cycle,
as we assume that 1s contains no contracted bounded edges at all).

Assume first that C is 3-valent. As C is marked by 3d — 1 points we can conclude
with 3.50 of [5] that C has a string. Analogously to the proof of Theorem 5.1 above,
we get that there 1s precisely one string.

So let IV be the unique string in C. Assume first that I'" =2 R. Then analogously
to the proof of 5.1 of [2], we can see that the movement of the string 1s bounded
by the adjacent bounded edges, except if the string consists of only two neighboring
unbounded edges. But in this case the only length which is not bounded cannot
contribute to the j-invariant. Soin any case j(C) is bounded. Assume now I'' ~ S
As this is the only string, there have to be bounded edges adjacent to the cycle. These
bounded edges restrict the movement of the cycle, too. Again j(C) is bounded.
Now assume C has a flat cycle and a 4-valent vertex adjacent to it, and assume no
marked point is adjacent to that 4-valent vertex. Then all marked points are adjacent
to a 3-valent vertex, and hence we can analogously to 3.50 of [5] see that the curve
contains a string. As above, there is exactly one string and its movement is bounded.
Now assume that there is a marked point adjacent to the flat cycle. Then we cannot
use 3.50 of [5] to conclude that C has a string. However, the image of the cycle can
still not grow arbitrary large:

€1 €

The edge ¢, has to be bounded: its direction is not a primitive integer vector, as it is
equal to the sum of the directions of the two edges of the flat cycle, and therefore it
cannot be an unbounded edge. But then the cycle cannot grow arbitrary large. O
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As we know that the number of curves C € (ev x;j)~ () (counted with mul-
tiplicity) does not depend on & by 5.1, we can now choose a special configuration
P = (p1,.-., Pn,1) where the j-invariant / is very large. Then by 6.1 we can con-
clude that all curves C € (ev xj )~} (#) contain a contracted bounded edge, which is
contained in the cycle. As in Lemma 4.10 and Lemma 4.11, this contracted bounded
edge can either be a loop itself (which 1s then adjacent to a 5-valent vertex), or the
contracted bounded edge is adjacent to two 3-valent vertices. In both cases, we know
that we can form a rational curve C’ of C by removing the contracted edge and
straightening other edges, and we can compute the ev x j-multiplicity in terms of the
multiplicity of this rational curve. Note that a rational curve which appears like this is
3-valent, as we take an elliptic curve of codimension 0. The following lemma shows
that we can also “go back”: we can form elliptic curves out of a given rational curve
which passes through (p1,..., pn).

Define tropical general position of the points (p1,..., pn)} as in [6], Defini-
tion 4.7. Then only simple tropical curves pass through (p1, ..., p,). In particular,
there are only triangles and parallelograms in the dual Newton configurations of these
curves.

Lemma 6.2. Ler n = 3d — 1. Take the configuration P = (p1,..., pa, 1) where
the j-invariant | is very large, and such that (py,..., pn) are in tropical general
position. Let C' a rational curve which passes through the points (p1, ..., Pn).
Then there are several ways to built an elliptic curve C with j-invariant | out
of C’, and the sum of the ev x j-multiplicities of these elliptic curves is equal to

(dgl) -mult(C’).

Proof. Let V be a 3-valent vertex of C’. Then we can make an elliptic curve C
out of C’ by adding a contracted loop at V. There is only one possibility for the
length of this loop, as we want to reach that j(C) = /. The ev xj-multiplicity
of C is by 4.10 equal to 3 (mult(V) — 1) - mult(C’) = (Area(T) — 1) - mult(C”),
where T denotes the triangle dual to V. Assume that there is a crossing of two
edges ey and e, of C’, that is, the images /A (eq) and h(ey) intersect in one point.
Then we can add a contracted bounded edge and split e and ¢, into two edges each.
The length of these edges are uniquely determined by the 1mage. The length of the
new contracted edge is uniquely determined by the prescribed j-invariant /. The
multiplicity of the elliptic curve C we built like this 1s due to Lemma 4.11 equal to
|det(u, v)}| -mult(C’y = Area(P)-mult(C"), where u and v denote the two directions
of e; and e5 and P denotes the parallelogram dual to the crossing of ey and e;. So it
remains to show that 3" (Area(T)—3)+ > p Area(P) = (dgl), where T goes over
all triangles in the dual Newton subdivision of C’ and P goes over all parallelograms.
To see this, we use the theorem of Pick (see [1], Section 5.3). Denote the number of
interior lattice points of a polygon Q by i (Q) and the number of lattice points on the
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boundary which are not vertices by (Q). Then Pick’s formula states that

Arca(T) = i(T) + —— b(T) -

for a lattice triangle 7" and

Area(P) = i(P) + (—) 2|

for a parallelogram P. So we can rewrite the sum from above as

Z (Area(T) — %) + ZArea(P)

T

—Z((T)—I—@—i———%) Z((P)+(—)+1)

P

-2+ 7R) Do+ 77

P
+ #{ P| P parallelogram in the subdiv}

— Z ( (T) + b(T)) i Z ( (P) + b(P )) + #{lattice points of the subdiv},

CMH

where the last equality holds, because C' 1s rational and the genus of a simple tropical
curve is equal to the number of points of the subdivision minus the number of paral-
lelograms. Now we know that the interior lattice points of the big triangle A 4 (which
is the Newton polygon of curves of degree d ) that are not contained in the subdivision
must either be interior points of a triangle or a parallelogram or on the boundary of
a triangle or parallelogram. In the first case, they are counted in i (T') respectively
i(P) of a polygon. In the latter case, as they are interior points of Ay, they are part
of the boundary of exactly two polygons. That is, in our above sum, they are counted
as h(T)/2 respectively b(P)/2 for two polygons. Hence the first part of the sum

counts all interior points which are not part of the subdivision. So we have

Z ( (T)+ b(T)) + Z ( (P)+ b(P )) + #{lattice points of the subdiv}

T

= #{lattice points not contamed in the subdiv} + #{lattice points of the subdiv}

d—1
= #{interior points of Ay} = ( 5 )

0l
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We can now sum up our results to prove our main theorem:

Theorem 6.3. The number Ewop(d) of tropical elliptic curves passing through 3d — 1
points and with a fixed j-invariant, counted with ev X j-multiplicity, is equal to
(d;) -Nyop(d ), where Nyop(d ) denotes the number of rational curves through 3d — 1
points (counted with multiplicity).

Proof. The number of tropical elliptic curves passing through 3d — 1 points and
with a fixed j-invariant is equal to deg., . ; (), where we can choose any general
configuration # = (p1,..., pn.l)dueto 5.1. We choose a configuration with a very
large length [ as in 6.1, and conclude that every elliptic curve passing through this
configuration has a contracted bounded edge. From each such elliptic curve with a
contracted bounded edge we can form a rational curve by removing the contracted
edge and straightening divalent vertices, if necessary. Also, 6.2 tells us that we can go
“backwards” and form an elliptic curve with j-invariant / from each rational curve
through (p1, ..., pn), and that each rational curve contributes with the factor (dgl)

to our sum of elliptic curves. Altogether, we have (dgl) - Nuop(d) elliptic curves with
J-invariant [ through {p1!, ..., pa). O

Corollary 6.4. The numbers Eyop(d) and E(d, ) coincide, if j ¢ {0, 1728},

Proof. Theorem 6.3 tells us that Egq,(d) = (dgl)Ntrop(d ). The latter is equal to

(dgl)N (d ) by G. Mikhalkin’s Correspondence Theorem (see Theorem 1 of [6]) and
due to Pandharipande’s count ([8]), this is equal to E{d, j). O

7. Curves with a very small j-invariant

In the last section, we interpreted a set of rational curves through a given point
configuration as elliptic curves with a very large j -invariant (and a contracted bounded
edge). Now, we want to interpret the same set of rational curves as elliptic curves
with j-invariant 0. Section 4 helps us to express the multiplicity with which we count
the elliptic curves in terms of the rational curves we started with. We will see that
we have to count these rational curves with completely different factors than in the
previous chapter.

Lemma 7.1. The number of elliptic curves with a fixed (very small) j -invariant and
passing through 3d — 1 points in tropical general position is equal fo

> (Z (2 Area(T)? — %) - mult c)

C T
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where C goes over all rational curves through the 3d — 1 points and T goes over all
triangles in the Newton subdivision dual to C.

Proof. Given a rational curve C, how can we interpret it as an elliptic curve with
J-invariant 0?7 To answer this question, we have to determine how the elliptic curves
C’ with a very small j-invariant which have C in their boundary look like. There
are three possibilities for C’:

Let def(C’) = 0. Then the cycle has to disappear to a (3-valent) vertex of C,
hence it must be formed by three edges. Due to Lemma 4.13 the ev x j -multiplicity
is mult V' -mult C then. For each vertex V of the rational curve C, there are i (A(V))
possibilities that a non degenerate cycle disappears to V, where A(V') denotes the
triangle dual to V and i (A())) the number of interior points of this triangle. Hence,
to count the elliptic curves with a non degenerate cycle we have to count each rational
curve C with the factor Y i(T') - 2 Area(T') where T goes over all triangles in the
Newton subdivision dual to C.

Let def(C”) = 1. If e is an edge of C with weight bigger 1, then there can be a
small flat cycle at both sides of e. The edge ¢ is dual to an edge with interior points
in the dual Newton subdivision, and it is in the boundary of two triangles 7; and 75,
dual to the two end vertices V7 and 15 of e. Assume the flat cycle is adjacent to the
vertex V7, and assume that it is formed by two edges with directions n - v and m - u,
with ged(n,m) = 1 and (n + m) - u = v, where v denotes the direction of e. Then
by 4.12 the ev xj -multiplicity of this curve 18

(n + m)-det(u, vy) -mult C = det((n + m)u,vy) -mult C
= det(v, v1) -mult C = 2 Area(77) - mult C,

where v; denotes the direction of another edge adjacent to ;. Respectively, if
n=m=11tis

1
det(u, vy) - mult C = det (EU vl) -mult C = Area(77) - mult C.

Assume w(e) is even. Then there are ‘”ge) — 1 possibilities to separate e to two

edges with different directions (that is, with n # m). Each counts with the factor
2 Arca(Ty). Also, there is one possibility to separate it to two edges with the same
direction, which counts Area(77). Altogether, we have to count the rational curve
with the factor

w(e)—1

Assume w(e) is odd. Then there are =5— possibilities to split e to two edges with
different direction, and each counts with the factor 2 Area(77). In any case, we have

a)ge) _ 1) 2 Area(Ty) + Area(T1) = (w(e) — 1) - Area(T).
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to count with the factor (w(e) — 1) - Area(T7). Note that w(e) — 1 is equal to the
number of lattice points on the side of the boundary of 7} which is dual to e. But as
we have to count these possibilities for all edges of higher weight, we have to add it
for all three sides of 71, that is, altogether, we get (77 ) - Area(T7). Hence, to count
the elliptic curves with a flat cycle we have to count each rational curve C with the
factor Y "7 b(T) - Area(T ) where T goes over all triangles in the Newton subdivision
dual to C.

Let def(C’) = 2. By 4.10 we have to count it with the factor Area(T) — %
Hence, to count the elliptic curves with a contracted cycle we have to count each
rational curve C with the factor ), Area(T) — % where T goes over all triangles in
the Newton subdivision dual to C.

Let us sum up:

(Zi(T) -2 Area(T) + Zb(T) - Area(T) + Z (Area(T) — %)) -mult C
T 3 ¥
= (Z ((2i(T) +b(T)+ 1) Area(T) — %)) -mult C
3

= (; (2 Area(T)* — %)) -mult C

where T goes over all triangles in the Newton subdivision dual to C. O

At last, we want to apply Lemma 7.1 to a set of rational curves passing through a
certain point configuration, namely the point configuration which is used in [6], The-
orem 2, to prove that marked tropical curves are dual to lattice paths. Our application
results in a faster way to count lattice paths dual to rational curves.

Let A(x,y) = x — ey with a very small ¢ > 0. Due to [6] Theorem 2 we know
that the number of A-increasing paths in the triangle Ay is equal to the number of
tropical curves through a certain point configuration £;.

Use the notations of Chapter 3 of [3]. The tropical curves through #; are dual to
a set of Newton subdivisions. In Proposition 3.8 and Remark 3.9 of [3] we have seen
that we can count instead of these Newton subdivisions the column-wise Newton
subdivisions for a path. Note that the set of Newton subdivisions which really appear
as dual subdivisions of a tropical curve through £; and the column-wise Newton
subdivisions only differ in the location of some parallelograms, the size and locations
of the triangles coincide. As for our sum from 7.1 we only count the triangles, we
can therefore use the column-wise Newton subdivisions as well. In Remark 3.7 of
[3] we have seen that a path can only have steps which move one column to the right
(with a simultaneous up or down movement), or steps which stay in the same column
and move down. The following picture shows such a path and recalls the notations.
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For the path in the picture, we have ¢ = 5, ! = (1, 1), a? = 1,® = 1, a* = 2,
> =0and «® = 0; and k(1) = 4, h(2) = 3, h(3) = 2, h(4) = 2, h(5) = 0. The
only possibilities for the sequences " are: f'* =1, 82 = 1,p7% =1, p"* = 0,
B = 1. The only possibilities for the sequences B are: g% = 1, B! = 1, g2 = 2,
p3=1,8*=0,8 =0.

Proposition 3.8 of [3] then gives us a formula to compute the number of column-
wise Newton subdivisions times the multiplicity for a path. To get the number we
want, we only have to multiply with the factor (2 Area(T)* — %) for each triangle.
But note that as in Remark 3.9 of [3] the position of the triangles below a path are
such that they lie in one column and point to the left. That is, they do not have any
interior lattice points, and their area is equal to % times the length of their right side:

There is an analogous statement for triangles above the path, of course. So, including
this factor, we get the following formula:

Corollary 7.2. The following formula holds for all d > 3:
1 C‘i—i-l —|—}8H—1 Oti —I—ﬁ“
Nd) = - Z Z i ' fi+1
(2) P P

¥ (BO,...B9)(87,... .09}
) Iai+1+ﬁi+1—ﬁi .Iai_Hgli_ﬁrH»l

2 _ R " ; 2 _ . ; ;
: (% : (al+1 + ﬂz+1 _ﬂz) x 1 > 1 .(O[l —|—/3” _ﬂr1+1))

where the first sum goes over all paths y and the second sum goes over all sequences
(B°,....8Nand (B, ..., %) suchthat B° = (d—a®,0...,0), [ai +1B" = h(i),
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B =0andd —i — IB" = h(i), and where for a sequence « = (a1, 2,3, ...)
=1 denotes the sum XL - qy + 31

g 2 2+ ezt
Proof. Using G. Mikhalkin’s Correspondence Theorem (see Theorem 2 of [6]) we

conclude that N(d) = Nyep(d). Furthermore,

d—1
( 9 )Ntrop(d) = Etrop(d) - degevxj(?)v

where we can choose any point configuration 7 by Theorem 6.3 and Theorem 5.1.
So N(d) = ﬁEtmp(d ) and it remains to argue why the right hand side of the
2
formula above (times (d;)) is equal to Eyop(d). We can choose a point P =
(p1s---, Pn, 1) with a very small last coordinate / for the cycle length, and such that
(p1,---, pn) are in the position described in [6], Theorem 2. We apply Lemma 7.1
that tells us that Ewep(d) = Y ¢ (Y7 (2 Area(T)? — 3) - mult C'), where C goes
over all rational curves through the 3d — 1 points and T goes over all triangles
in the Newton subdivision dual to €. The Newton subdivision dual to the ra-
tional curves through (pi,..., p,) differ from the column-wise Newton subdivi-
sions (as defined in Remark 3.9 of [3]) only in the location of some parallelograms.
Size and location of the triangles coincide. Therefore the above sum is equal to
Yon (X7 (2 Area(T)* — 1) - mult(N)), where N goes over all column-wise New-
ton subdivisions arising from Newton subdivisions dual to rational tropical curves
through (p1,. .., pn). Proposition 3.8 of [3] gives us a formula to compute the num-
ber of column-wise Newton subdivisions times their multiplicity. We only have to
multiply this formula with the factor (2 Area(T)? — %) for each triangle. As in Re-
mark 3.9 of [3] the position of the triangles in a column-wise Newton subdivision are
such that they lie in one column and point to the left. That is, they do not have any
interior lattice points, and their area is equal to % times the length of their right side.

The factor (alﬂ;iﬁ l+1) : (O‘ﬁI i 1”) counts the possibilities to arrange parallelograms
below and above the path (hence the number of Newton subdivisions). The factor
Je BB e B =B" L sounts the double areas of the triangles - hence the
multiplicity of the curves dual to the path. (See also Remark 3.9 of [3]). The factor
% (od Tl gitl_giy 4 % (af + B — BT 1) is the factor (2 Area(T)? — 1)
for each triangle. [

Note that even though this sum looks at the first glance more complicated than
the sum from Proposition 3.8 of [3], 1t 1s easier to compute, because we count a lot
of paths with the factor O — all paths with only steps of size 1.

Example 7.3. For d = 3, there is only one lattice path with a step of size bigger than
one.



426 M. Kerber and H. Markwig CMH

There is only one possible Newton subdivision for this path, as indicated in the picture.
There are two triangles of area 1. Both contribute 5 -mult C = 2 -4 = 6. Aliogether,
we get6 4+ 6 = 12 = N(3), as expected.

Example 7.4. For d = 4, we only have to consider the paths below, because all other
paths have only steps of size 1.

48 48 96 72

There are three numbers in the first row below each path: the first number is the number
of possible Newton subdivisions. The second number is the multiplicity of the tropical
curves dual to these Newton subdivisions. (Hence the product of the first two numbers
is the multiplicity of the path.) The third number is the factor Y, (2 Area(7)* — 1)
with which we have to count here. The fourth number, in the second row, is the
product of the three numbers above, so we have to count each path with that number.
The sum of the numbers in the second row is 1860 = 3 - 620 = 3- N(d ), as claimed.
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