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NKy and NK; of the groups C4 and D4

Addendum to “Lower algebraic K -theory of hyperbolic 3-simplex reflection
groups” by J.-F. Lafont and L. J. Ortiz

Charles Weibel

Abstract. In this addendum to [L.O] we explicitly compute the Bass Nil-groups NK; (Z[C4])
fori = 0,1 and NKo(Z[D4]). We also show that NK | (Z[D4]) is not trivial. Here C4 denotes
the cyclic group of order 4 and D4 is the dihedral group of order 8.

Mathematics Subject Classification (2000). 19A31, 19B28, 19D35, 18F25, 16E20.

Keywords. Lower algebraic K-theory, hyperbolic reflection group, Bass Nil-groups.

In [LO], Lafont and Ortiz computed the lower algebraic K-theory of the integral
group ring of all 32 hyperbolic 3-simplex reflection groups (see [1LO, Tables 6-7]).
For 25 of these integral group rings, their computation was completely explicit. For
the remaining 7 examples, the expression for some of the K-groups involved the Bass
Nil-groups N Ky and NK associated to D4 (the dihedral group of order 8).

In [LO5], Liick computed the lower algebraic K -theory of the integral group ring
of the semi-direct product of the three-dimensional discrete Heisenberg group by Cy
(the cyclic group of order 4). These computations involved the Bass Nil-groups N Ky
and N K associated to C4 (see [LO5, Corollary 3.9]).

In this addendum we compute the Bass Nil-groups

NKL(ZG) = ketl K (ZG[x]) 225 K, (ZG)Y,

where G is Dy, Cqor Dy, andn = 0, 1. We will use these calculations to complement
the calculations of [LO5] and [LO] 1n 1.5 and 2.9 below.

Our calculation will keep track of the additional structure on the groups NK,(A)
given by the Verschiebung and Frobenius operators, V3, and F,,, as well as the con-
tinuous module structure over the ring W(Z) of big Witt vectors; the additive group
of W(Z) is the abelian group (1 + xZ[[x]])*. (See [We80] for more details.) In fact,
it is a module over the slightly larger Cartier algebra consisting of row-and-column
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finite sums > ViplamnlFn. where V,, and F,, are the Verschiebung and Frobenius
operators, and the [a] are the homotheties operators for a € Z; see [DW93] as well
as Remarks 1.2.1 and 2.4 below. Some of the identities satisfied by these opera-
tors include: Vi Vi = Viun, FmFn = Fun, FaVie = m, [a]Vyy = Vip[a™] and
Fpla] = [a™] Fp.

It is convenient to write V' for the continuous W (IF,)-module x[F, [x], which, as an
abelian group, is just a countable direct sum of copies of ', = Z /2 on generators XL,
i > (. The module structure on V' is determined by: V,,,(x™) = x™"*; [a]x" = a"x";
Fp(x™ = 0if m.n) =1 (n > 1) and Fy(x") = d x4 when d |n.

1. The groups C2, D3 and Cy

For the cyclic group C» = {o) of order two, consider the Rim square:

7l — 2= L g Z[Cz]MZ %7
UH_ll lq or, equivalently, l quq (1)
A

q Fz IFz X IFZ

from which we immediately get NKo(Z[C3]) = NK{(Z[C;]) = 0 as in [Bas68,
XI1.10.6] and [Mi71, 6.4]. From Guin-Loday—Keune [GI1.80], [Keu81], the double
relative group N K, (Z[C3], 0 + 1,0 — 1) is isomorphic to V', with the Dennis—Stein
symbol (x" (o — 1), + 1) corresponding to x™ € V. We also have a diagram

NKyZ[Csl,0 + 1,6 — 1) =V

~

0 = NK3(Z) — NKa(Z[Ca],0 + 1) —=—> NK»(Z[C3]) — NK»(Z) = 0

|

NK(Z) = 0.

0 = NK2(Z,2)

Thus we obtain:
Theorem 1.1. NK,(Z[C,]) == V with (x" (¢ — 1), 0 + 1) corresponding to x" € V.

We now turn to the group D, = C5 x C,. First we need a calculation. Let &(17)
denote the subgroup (and Cartier submodule) x2F5[x2] of V, and write Q g for the
Kiihler differentials of R, so that Qp,[,) = Fao[x]dx. By abuse, we will write [F»[e]
for the 2-dimensional algebra [F[¢]/ (¢?).
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Lemma 1.2. The map q : Z[Cy] — F5[Cs] = Fs[e] in (1) induces an exact sequence
D
0 — ®(V) — NK2(Z[C2]) > NK>(Fale]) — Qp,p —> O.

Proof. Van der Kallen computed N K, (IF5[¢]) in [vdK71, Exemple 3]: there is a split
short exact sequence

0 —> V/OV) > NKy(Fafe]) —> Qg —> O, )

where F(x™) = (x"¢,e) and D({fe, g + g'¢)) = f dg. The map NK>(Z[C,]) Y
NK,(F;[e]) sends {(x"(o 4+ 1),0 — 1) to F(x") = (x"¢,¢). By Theorem 1.1 and
(2), this map has kernel ®(V') and image F(V/®(V)). O

Remark 1.2.1. Although Qp,[] is isomorphic to V' as an abelian group, it has a
different W(IF;)-module structure. This is determined by the formulas in Q, []:

xm=ldx  ifm |,

V(X" 1 dx) = mx™ Ydx, Fp(x" ldx) =
0 else.

Grunewald has pointed out that since (2, [,] is not finitely generated as a module
over the [F,-Cartier algebra (of row-and-column finite sums > Vy, [@mn] Fp), O Over
the subalgebra W(IF,)), neither are N K, (IF;[¢]) or (by 1.3 below) NK(Z[D>]).

Theorem 1.3. For D> = Cy x C2, NKo(Z[D3]) = V, NK1(Z[D3]) = QF,[x] and
the image of the map NK(Z[D3]) — NKy(Z[Ca])? = VZis ®(V) x V.

Proof. Wetensor (1)with Z[C5]. SinceF5[C5] = Fs[e],£? = 0,and NK{ (F[C5]) =
(14 xelF;[x])* = V, then the Mayer—Vietoris sequence in [Mi71, Theorem 6.4] for
the N K -functor,

NEK5(Z[D3]) — (NKy(Z[Co])? -5 NK(Fse]) — NK{(Z[D3]) 3)
s (NK(Z[C3])? — NK (F3]¢]) —> NKo(Z[D2]) — NKo(Z[Ca]),

quickly gives NKy(Z[D;]) = NK,(F,[¢]) = V. By Lemma 1.2, the initial
portion of (3) yields the calculation of NK{(Z[D,]) and the asserted surjection
NEKL(Z[D3]) = ®(V) x V, O

Remark. The kernel K of the map NK>(Z[D,]) — V? in Theorem 1.3 has a
subgroup generated by the double relative group N K> (Z[ D3], o1 + 1,01 — 1), which
is isomorphic to F»[e] ® V on the symbols (x" (a 4+ bo,)(o1 4+ 1), 0, — 1), where
o1, 05 are the generators of D, = €5 x C;. The quotient of K by this subgroup is
generated by the image of NK3([F»[¢]), a group which I do not know.
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The analysis for the cyclic group C4 of order 4 on generator o is similar, using
the Rim square

Z[Cy] — = Z]i]
U2H1J |i»1+e )
Z[Cz] ]Fz[&‘] .

Theorem 1.4. NK(Z[C4]) = Qp,[x] and NKo(Z[C4]) = V.
Proof. Since Z[f] is a regular ring, the Mayer—Vietoris sequence for (4) reduces to

NK(Z[C4]) == NK3(Z[C3]) = NK5(Fs[¢]) — NK{(Z[Ca])
— NK(Z[C3]) — NK:1(Fs[s]) —> NKo(Z[Ca]) — NKo(Z[C)).

The isomorphism marked in this sequence follows from Theorem 1.1. By Lemma 1.2,
the image of the first map p» is ®(V') and the cokernel of the map g is Qp,[]. 0

Remark. The proof provides a surjection N K, (7Z[C4]) LA ®(V). The kemel of
p» contains the image E of the double relative group NK»(Z[C4], 02 + 1,02 — 1),
which is isomorphic to F2[e] ® V on symbols (o2 + 1, x"(a? — 1)), The quotient
ker( p»)/ E is generated by the image of N K3(IF»[e]), which I do not know.

Here 1s an application of this calculation. Let Hei denote the three-dimensional
discrete Heisenberg group, which is the subgroup of GL (3, Z) consisting of upper
triangular integral matrices with ones along the diagonal. Consider the action of the
cyclic group Cy4 given by

I x vy l —z yp—xz
01 z || 0 1 X ;
0 0 1 0 0 1

Combining Theorem 1.4 with [L03, 3.9], the lower K-theory of the group Hei x Cy
is given in the following proposition.

Proposition 1.5. We have

D.Z/2, n=0,1,
0, n<-—1.

Whn(HEi A C4) = {
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2. The dihedral group D4

Before moving on to the group ring of D4, we need some facts about the double relative
groups K1(A, B, I) when A — B is an injection. These groups were described in
[GW&3, 0.2] as follows:

Ki{(A, B, I) = (B/A)RU /I /{p®cz+c®zb—bc®z} (b,c € B,z e I). (5)

Morecover, by [GWS83, 3.12 and 4.1], the map K;(A4, B, I} — K;(A, I) sends the

; 1—zb =z
class of b ® z to the class of the matrix e 1erz).

Lemma 2.1. Suppose that A — B is a ring homomorphism mapping an ideal I of A
isomorphically onto an ideal of B. Then the double relative group satisfies

K (Alx]. B[x], I[x]) = K1(A, B, 1) ® Z[x],
and
NK (A, B,1)= K (A, B, I} ® xZ[x].

Proof. Because x is central in B[x], the formulas are immediate from (5). O

We will be specifically interested in the twisted group ring A = Z[i] x Ca, where
Cy = {r) acts on Z[i] by rit~! = —i. Itinjects into the matrix ring B = M, (Z)
by the map ¢: A — B defined by ¢(!) = (% }) and ¢(z) = (§ % ). The ideal
I = 2,1+ 7)A maps isomorphically to 2B, and A/I = F,[e1], whereg; = 1 + i
and 8% = (). Hence we have the following cartesian square:

A—2 o M7

mod[l Jmod2B (6)
Fale1] —= M1 (F>).

To calculate N K;{A), we use the following double relative calculation.

Lemma 2.2, The double relative group K((A, B,2B) of (6) is isomorphic to s, and
NKi(A,B,2BY = V. ThemapV = NK (A, B,2B) — NK(A) sends x" € V to
the class of the unit 1 + x"i(1 + t) of A[x].

Proof. Since dim(B/A) = 2 and dim(//I?) = 4, the group (B/A) ® (I/1?) has 8
generators and 64 relations; a basis of B/A is {e11, ¢12} and the 2¢;; span FiIZ, By
inspection of the relations in (5) we see that the map B/I ® I/1? — F, sending
e;j ® 2exy 1085 + 8 sends A/1 ® 1/1? and all the relations in (5) to zero, and
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sends e;; ® 2e1, to 1. Thus it induces a surjection K{(A, B, 1) — F,. We claim
that this is an isomorphism.

The relations for (b, ¢, z) = (e11, e11,2¢€11), (€11, €11, 2€22), (€11, €12, 2e12) and
(e11,€21,2e21) in (5) yield the relations

0=e11 ®2e11 =e11 ®2e = e12 ®2e12 = €31 ® 2eay.

The relations for (e12, e11,2e11), (b, c,z) = (e11,e21,2e11) and (e12, €12, 2€21) in
(5) yield the relations

O0=e11 ®2e12—€12®2e1] = e21 ®2e11—e11 ®2e3 = €128 2e—e12®2eq.

This verifies the claim, proving that K1(A, B,2B) = [F,.
Finally, the map NK(A4, B,2B) — NK; (A, I) sends the class of x"e1; ® 2¢12

: 1-2x"ej0e11 2xMers {1 x"i(1+7) . .
to the class of the matrix (—x2”611€12€11 lt2xeriers ) = Lo 14xmi(147) ) which is

the class of 1 + x"™i(1 + 7)in NK{(A). O]

Remark. The elements u =/ +tand v = i (1 + 1) of A satisfy u?> = v? = 0, and
are distinctin A/2A = Fsi, r]. Hence the units (14 x™u)(14x"v) of A[x] generate
a subgroup of NK;(A) isomorphic to V2, which injects into NK; (F,[i, t]) = V3.
(Since F1[i, 1] = Fafu, v]/(u?,v?), the other copy of V in NK{(F,[i, ]) is the
subgroup generated by all (1 + x"uv).)

Proposition2.3. NKy(A) = 0 and NK{(A) = V2 on the units (1+x"u)(1 +x"v).

§
The maps A — Fyli, t] = Faleq, &2] and Qp,x) — NK2(Fz[e1,€3]) sending
x" to (x"le1e4, x) induce a surjection NK->(A) x Qr,[x] = NK2(Faler, €2]).

Proof. Consider the Mayer—Vietoris sequence of the square (6). Since B = M»(7Z)
and B/l = M,(IF,) are regular rings, NK,(B) = NK,(B/I) = 0 and hence
NK,(B,I) = 0 for all n. We immediately get that NK,, (A, B, 1) =~ NK,(A, 1),
that the Mayer—Vietoris sequence reduces to NKy(A) = NKy(A/I) = 0, and that
there is an exact sequence

NKz(A) — NKz(]Fz[Sl]) — NKl(A, B, 1) — NKl(A) — NKl(]Fz[Sl]) — 0.

By Lemma 2.2 and the remark preceding it, this yields the calculation of NK;(A).

Now 7: A — [Fsfeq,8,] satisfies m(u) = &1 + €2, m(v) = &1 + €162 and
m(uv) = £1&2, 50 we may write Fs[s1, £2] = Fa[it, v]/(%?, v2). By [vdK71], the
group NK,>(F»[u, v]) is isomorphic to the direct sum of NK»(Fa[u]), NK>(F2[v])
and a group with the following generators:

(x"u,v), (x"uv,u), (x"uv,0) and (x"7uv,x).
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Since u? = v2 = 0in A, all these symbols lift to Dennis—Stein symbols in N K5 (A)
except possibly the symbols (x" i, x). But these symbols are hit by the image of
Q]F2 [x] under 4. L]

Remark. §: Qp,[;] — NKy(IFz[eq, £2]) 1s a homomorphism by the Dennis—Stein
identity { f,x){g.x) = {f + g — fgx,x) with fg = 0; see [GL8O, p. 184]. It is
a morphism of F5-Cartier modules since Vi, (x" " le162. x) = m{x™" lg1ey, x) =
(Vi (x")) and (by [St80, 2.1])

Fm(x”_lslsz,x)

. {(xn/m18182,x), m|n

F{x" Neea)™, x) — s{x"(e162)" L, e182) = 0, rm +sn = 1.
Our analysis of D4 will involve the units of the ring Z /4[x][C3].

Example 2.4. Consider the modular group ring B = Z./4[C,] = Z/4[e]/(e? —2e),
withe = 1—1. Theideals2eB of BandeB/2eB of B/2eB are isomorphic to IF,, so
both NK((B,2e)and NK((B/2e,e)areisomorphictoV and the group NK,(B, ¢),
identified with the abelian group (1 4+ xe B[x])™, is a nontrivial extension:

00—V —> NKi(B,e) >V — 0.

As an abelian group, NK(B,e) is the direct sum of a countably infinite free
Z}&-module on the (1 + ex™) (m = 1,2,...) and a countably infinite free Z./2-
module on the (1 + 2ex* 1) (i = 1,2,...). As a module over the Z/4-Cartier
algebra (generated by the operators Vi, Fy, and homothety [2]), NK1(B, e) is cyclic
on generatoru = 1 + ex; Vip(u) = 1 + ex™ and Vi [2](1) = 1 + 2ex™,

Finally, we are in position to analyze N Ko{(Z[D4]). The sharp exponent 4 for
NKy(Z[D4)]) in Theorem 2.5 is a slight improvement on the bound in [CP02]. Tt is
convenient to write D4 as the semidirect product of C4 (on o) with the cyclic group

C, = {1, 7}, with relation tot = o~ !,

Theorem 2.5. The group NKo(Z[D4]) is isomorphic fo the cyclic Cartier module
NK((Z/4[C,], 1 — 1), described in Example 2.4. As a group, it is the direct sum of
a countably infinite free 7./ 4-module and a countably infinite free Z./2-module.

Proof. We can map Z[D4] to the twisted ring A = Z[i] x C; occurring in (6) above,
sending o to 7. Combining this with the natural surjection onto the subring Z[D;]
of Z[C3] x Z[C3], we get a ring map Z[D4] — A x Z[C5] x Z[C3]. The ideal
I = (4,2 —20,0% — 1)Z[D4]) has By = Z[D4]/1 = Z/4[D5]/(2 — 20), and is
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isomorphic to the ideal 24 x (4) x (4) of A x Z[C,] x Z[C,]. Consider the following
cartesian square:

o—>(i,1,—1)

Z[D4] A X Z[Cy] x Z[ (]

m (7)

—>(1.1,7)

Bo = Z/4[Da]/ (2 — 20) T290447) byl x B x B.

The kernel of the split surjection g4 : By — B = Z/4[C;] is the 2-dimensional
ideal /7 = (1 — 0)By. This implies that NK{(By)} = NK{(B) ® NK{(By, J).
Because NK | (Z[C,]) = NKy(Z[C,]) = NKo(A) = 0(by 2.3), the Mayer—Vietoris
sequence associated to (7) ends

NK1(4) x NK1(By, T) > NK1(F2[D3]) x NK1(B) — NKo(Z[D4]) — 0. (8)

The displayed map # is given by the matrix ( %6 q‘l ) [tis casy to see that NK (B, J)
is isomorphic to V2 on the terms (1 + (1 — o)x™) and (1 + (1 — o)rx"). An
elementary calculation using the isomorphism NK(A) = V2 of 2.3 shows that 7
is an injection, sending the module NK{A4) x NK(By, J) = V* isomorphically
onto the subgroup NK;(F2[D2]) x NK1(Z/4). Since NK1(B) = NK 1(Z/4) &
NKi(B,eB),e = 1—rt,itfollows that the induced map NK (B, e) — NKo(Z[D4])
1s an 1somorphism. O

To begin the calculation of N K1 (Z[D,]), we extend the Mayer—Vietoris sequence
(8) associated to (7) to the left. This is possible by the following observation: since
B, maps onto each of the three ring factors on the lower right of (7), the presentation
(5) shows that the double relative K obstruction vanishes. Because 7 1s an injection
in (8), the continuation of the Mayer—Vietoris sequence yields the exact sequence

T 0
(+) M NK»(F2[Ds]) x NK2(B) — NK{(Z[Da]) — 0, ©)

where (%) denotes NK2(A) x NK2(Z[C2])* x NK2(By, J).

Definition 2.6. The map U[x]: NKo(Z[D4]) — NK(Z][D,]) is obtained by com-
posing the isomorphism NK (B, ¢) == NK(Z[D,]) of Theorem 2.5 with the canon-
ical map NK,(B,e) — NK2(B) — NKi(Z[D4]) of (9).

Remark. There is also a canonical map NK(B,e¢) — NK,(B, ¢) sending the unit
1 — aex to {ae, x); the composition with NK»(B,e) C K>(B[x,x"!].e) is given
by | —aex > {1 —aex, x} (multiplication by the class of x in K{(Z[x, x~])).
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The analogous maps from V == NK(B.,2¢) and V =~ NK(B/2eB,e) to
Qp,[x] = NKs(B.2e) and Qp,[x] = NK>(B/2eB,e) are compatible with the
divided power map [d]: V — Qp,[y] sending x” to x" ! dx. Note that [d] is an
isomorphism of abelian groups but is not a morphism of F»>-Cartier modules.

Theorem 2.7. The map U[x]: NKo(Z[D4]) — NK((Z[D,)]) in Definition 2.6 is
a surjection. Hence the group NK{(Z[D4]) has exponent 2 or 4, and there is a
commultative diagram whose rows are exact.

0 |4 NKo(Z[D4]) |4 0

Zl[d]

QR [x] —= NK{(Z[D4]) — QF,[x] — 0.

Ulx] :|[d]

Proof. A diagram chase on (9) shows that NK{(Z[D4]) is an extension of the co-
kernel of NK,(Z[C,]) x NK»(By,J) — NK,(B) by a quotient of the cokernel of
NK>(A) — NK,(IF»[D5]). These cokernels are both Qp,[y], by Proposition 2.3
and Lemma 2.8 below, yielding the bottom row of the theorem. The map U[x] sends
the element corresponding to 1 — x"ae € NK{(B, e) to the element corresponding
to (x""lae,x) € NK,y(B,e), so the diagram in the theorem commutes by inspec-
tion. O

Lemma 2.8. The cokernel of the map NK>(Z[C3]) x NK2(By, J) — NK>(B) in
(9) is Qp,[x], on symbols {x" e, x).

Proof. Thekernel of the mapg_: By — Bistheideal /' = (14 0)By. Because J N
J' = 0in By, the double relative group NK,(By, J, J') is isomorphic to F5[C5][x]
on symbols (x™"(1 + o), (1 — o)) and {x™z(1 + o}, (1 — o)) by [GL80O], [Keu81].
Since J = 2B, we have an exact sequence

Fo[C][x] — NKa(Bo, J) ~— NK,(B,2B) — 0. (10)

Combining this with the ideal sequence for 2B C B shows that the cokernel of
NK>(By,J) — NK>(B)is NK>(B/2B). Since B/2B == F5[C3], the lemma now
follows from Lemma 1.2. [

Inserting the calculations of Theorems 2.5 and 2.7 into Tables 67 in [LO], we
obtain the following result.

Theorem 2.9, Let T" be one of the following hyperbolic 3-simplex reflection groups:
[(3,4,3,6)], [4.30], [4,3,6], [(3%.4)], [4.3.5], [(3. 9], [(3.4,3,5)]. Then the
lower algebraic K-theory of the groups U is given by the following table:
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r K4 #£0 Ky #0 Wh # 0
[(3,4,3,6)] Z? (Z/4)? & Nily Nil;
[4,303]] Z3 (Z/4)* ®Nily ® P, Z/2 Nil; & P, Z/2
4,3, 6] z* (Z/4)* @ Nilp & D, Z/2 Nil; & P, Z/2
[(33, 4)] 72 (Z/4)* ®Nily & P, Z/2 Nil, & P, Z/2
[4,3, 5] Z* (Z/4)* @Nilyo P Z/2 | Z°®Nily P Z/2
[(3,4)12]] Z* (Z/4)* @ 2Nily & P, Z/2 | 2Nil; & P Z/2
[(3.4,3.5)] Ze (Z/4)? @ Nily @ P Z/2 | Z3 @ Nil; & P Z/2

In this table, Nily = NKo(Z[D4)) is the direct sum of a countably infinite free
7./ 4-module and a countably infinite free 7./ 2-module, and Nily = NK(Z[D4]) is
a countably infinite torsion group of exponent 2 or 4.

References

[Bas68]

[CPO2]

[DWO3]

[F87]

[GW83]

[GL.80]

[Keu81]

[LO]

H. Bass, Algebraic K-theory. W. A. Benjamin, New York 1968. Zbl 0174.30302
MR 0249491

F. Connolly and S. Parasidis, On the exponent of the cokernel of the forget-control
map on Kg-groups. Fund. Math. 172 (2002), 201-216. Zbl 0992.57022 MR 1898685

B. Dayton and C. Weibel, Module structures on the Hochschild and Cyclic Homology
of Graded Rings. In Algebraic K-theory and Algebraic Topology, NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci. 407, Kluwer, Dordrecht 1993, 63—90. Zbl 0900.16015
MR 1367293

F. T. Farrell, A remark on Kq of crystallographic groups. Topology Appl. 26 (1987),
97-99. Zbl 0624.18004 MR 0893807

S. Geller and C. Weibel, K (A, B, I}. J. Reine Angew. Math. 342 (1983), 12-34.
Zbl 0503.18009 MR 0703484

D. Guin-Waléry, and J-L.. Loday, Obstruction a1’excision en K-théorie algébrique. In
Algebraic K-theory (Evanston 1980), Lecture Notes in Math. 854, Springer-Verlag,
Berlin 1981, 179-216. Zbl 0461.18007 MR 0618305

F. Keune, Doubly relative K-theory and the relative Ks. J. Pure Appl. Algebra 20
(1981), 39-53. 7Zbl 0473.18009 MR 0596152

I. E Lafont, and I. J. Ortiz, Lower algebraic K-theory of hyperbolic 3-simplex reflec-
tion groups. Comment. Math. Helv. 84 (2009), 297-337.



Vol. 84 (2009) NKoand NK of the groups Ca and D4 349

[L.O5]

[Mi71]

[St80]

[vdK71]

[WeB0]

W. Liick, K- and L-theory of the semi-direct product of the discrete 3-dimensional
Heisenberg group by Z./4. Geom. Topol. 9 (2005), 1639-1676 Zbl 1073.19004
MR 2175154

I. Milnor, Introduction to algebraic K-theory. Ann. of Math. Stud. 72, Princeton
University Press, Princeton, N.I., 1971. Zbl 0237.18005 MR 0349811

I. Stienstra, On K> and K3 of truncated polynomial rings. In Algebraic K-theory,
Evanston 1980, Lecture Notes in Math. 854, Springer-Verlag, Berlin 1981, 409-455.
Zbl 0463.13007 MR 0618315

W. van der Kallen, Le K» des nombres duaux. C. R. Acad. Sci. Paris Sér. A-B 273
(1971), 1204-1207. Zbl1 0225.13006 MR 0291158

C. A. Weibel, Mayer-Vietoris sequences and module structures on NK ... In Algebraic
K-theory, Evansion 1980, Lecture Notes in Math. 854, Springer-Verlag, Berlin 1981,
466—493. Zbl 0487.18012 MR 0618317

Received February 17, 2008

Charles Weibel, Department of Mathematics, Rutgers University, Piscataway, NJ 08854,

U.5A,

E-mail: weibel@math.rutgers.edu



	NK0 and NK1 of the groups C4 and D4 : addendum to “Lower algebraic K-theory of hyperbolic 3-simplex reflection groups” by J.-F. Lafont and I. J. Ortiz

