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Lower algebraic K -theory of hyperbolic 3-simplex reflection
groups

Jean-Francois Lafont and Ivonne J. Ortiz

Abstract. A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in
07T (3, 1), with fundamental domain a geodesic simplex in H> (possibly with some ideal ver-
tices). The classification of these groups is known, and there are exactly 9 cocompact examples,
and 23 non-cocompact examples. We provide a complete computation of the lower algebraic
K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.

Mathematics Subject Classification (2000). 19A31, 19B28, 19D35, 18F25, 16E20.

Keywords. Classifying spaces, lower algebraic K-theory, Coxeter groups, hyperbolic manifold,
Farrell-Jones isomorphism conjecture, relative assembly map, Waldhausen Nil-groups, Farrell
Nil-groups, Bass Nil-groups.

1. Introduction

In this paper, we proceed to give a complete computation of the lower algebraic
K -theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.

We now proceed to outline the main steps of our approach. Since the groups ' we
are considering are lattices inside 071 (3, 1), fundamental results of Farrell and Jones
[FI93] imply that the lower algebraic K-theory of the integral group ring ZI" can be
computed by calculating H! (Eve (I'); KKZ ™), a specific generalized equivariant
homology theory for a model for the classifying space Eye (I') of I' with isotropy in
the family VC of virtually cyclic subgroups of T".

After introducing the groups we are interested in (see Section 2), we then com-
bine results from our previous paper [[LO0O7] with a recent construction of Liick and
Weiermann [LLW] to obtain the following explicit formula for the homology group
above:

k
Ko(ZT) = HY (Egzn(D):KZ™°) @ @D H) (Egzy (Vi) — ).

i=1

In the formula above, E ¢4 (I') is a model for the classifying space for proper actions
(i.e., with isotropy in the family ¥ I.N of finite subgroups), the collection { V; }le are
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a finite collection of virtually cyclic subgroups with specific geometric properties,
and HnV" (Ezin (Vi) — =*) are cokernels of certain relative assembly maps. This
explicit formula is obtained in Section 3.

In view of this explicit formula, our computation reduces to being able to

(1) identify, for each of our groups, the corresponding collection {V;} of virtually
cyclic subgroups (done in Section 4),

(2) to calculate the cokernels of the corresponding relative assembly maps (done in
Section 6), and

(3) to calculate the homology groups H (Egzx(T); KZ ™).

For the computation of the homology groups, we note that Quinn [Qu82] has de-
veloped a spectral sequence for computing the groups H (Egrx (T'); KZ ™). The
E?-terms in the spectral sequence can be computed in terms of the lower algebraic
K -theory of the stabilizers of cells in a CW-model for the classifying space E gz (T).

In Section 5, we proceed to give, for each of the finite subgroups appearing as
a cell stabilizer, a computation of the lower algebraic K-theory. We return to the
spectral sequence computation 1in Section 7, where we analyze some of the maps
appearing in the computation of the E2-terms for the Quinn speciral sequence. In
all 32 cases, the spectral sequence collapses at the £ stage, allowing us to complete
the computations. The reader who is merely interested in knowing the results of the
computations is invited to consult Table 7 (for the non-uniform lattices) and Table 8
(for the uniform lattices). Finally, in the Appendix, we provide a “walk through™ of
the computations for two of the 32 groups we consider.

Acknowledgments. The authors would like to thank Tom Farrell and lan Leary
for many helpful comments on this project. The graphics in this paper were kindly
produced by Dennis Burke. The authors are particularly grateful to Bruce Magurn for
his extensive help with the computations of the algebraic K-theory of finite groups
appearing in Section 5 of this paper, and for catching some errors in a preliminary
version of this work. This project was partially supported by the NST, under the
grants DMS-0606002 and DMS-0805605. The first author was partly supported by
an Alfred P. Sloan research fellowship.

2. The 3-dimensional groups

A hyperbolic Coxeter n-simplex A" is an n-dimensional geodesic simplex in H", all
of whose dihedral angles are integral submultiples of 7. We allow a simplex in H"
to be unbounded with ideal vertices on the sphere at infinity of H™. Tt is known that
such simplices exist only in dimensions # = 2,3,...,9, and that for n > 3, there
are exactly 72 hyperbolic Coxeter simplices up to congruence (see for instance the
discussion in [JKRT99] and [JKRTO02]).
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A hyperbolic Coxeter n-simplex reflection group [' is the group generated by
reflections in the sides of a Coxeter n-simplex in hyperbolic n-space H". We will
call such group a hyperbolic n-simplex group.

According to Vinberg [V67], the associated hyperbolic z-simplex groups of all
but eight of the 72 simplices are arithmetic. The nonarithmetic groups are the hyper-
bolic Coxeter tetrahedra groups [(3, 4,3, 5)] [5. 3, 6]. [5, 3], [(33, 6)], [(3. 4, 3, 6)],
[(3, 5,3, 6)], and the 5-dimensional hyperbolic Coxeter group [(3°, 4)].

In dimension 3, there are 32 hyperbolic Coxeter tetrahedra groups; 9 of them are
cocompact (see Figure 1), and 23 are noncocompact (see Figure 2). Let us briefly
recall how the algebra and geometry of these groups are encoded in the Coxeter
diagrams.

[4, 3, 5] [ & 8, F] [5, 301
L] e [
4 5
[(3°, 4] [5, 3, 5] [(3%, 5)]
[G. 4)[2]] [3.4.3.9)] [3, 5>[2]1

Figure 1. Cocompact hyperbolic Coxeter tetrahedral groups.

From the algebraic viewpoint, the Coxeter diagram encodes a presentation of the
associated group I' as follows: associate a generator x; to each vertex v; of the Coxeter
diagram (hence all of our groups will come equipped with four generators, as the
Coxeter diagrams have four vertices). For the relations in I", one has the following:

(1) for every vertex v;, one inserts the relation xl.2 = 1

(2) if two vertices v;, v; are not joined by an edge, one inserts the relation (x; x J)Z =
1 (so combined with the previous relation, one sees that x; and x; commute,
generating a Z /2 x Z./2);

(3) if two vertices v;, v; are joined by an unlabelled edge, one inserts the relation
(x;x;)* = 1 (and in particular, the two elements x;, x; generate a subgroup
isomorphic to the dihedral group Ds);
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[5, 3, 6] [6, 3, 6] [3, 3, 6] [4, 3, 6]
._<I . ‘i< ._.q
[3, 3031 [3, 6, 3] [6, 311] [4, 3[31]
] L
(5. 303 [& B9 [(32, 42)] [(3. 4%)]
. - 4 _ 4 4 4 4
44 o—§ & & ® ® . ® & @
(4141 [3, 411 [3, 4, 4] (4,4, 4]

i < | > A
4
[41,1,1] [3[3,3]] [3[]x[]]

Figure 2. Noncocompact hyperbolic Coxeter tetrahedral groups.

(4) 1f two vertices v;, v; are joined by an edge with label m;;, one inserts the
relation (x; x; )™ = 1 (and hence, the two elements x;, x; generate a subgroup
isomorphic to the dihedral group Dy ).

A special subgroup of I" will be a subgroup generated by a subset of the generating
set. Observe that such a subgroup will automatically be a Coxeter group, with a
presentation that can again be read off from the Coxeter diagram. Special subgroups
generated by a pair of generators will always be isomorphic to a (finite) dihedral
group. An important point for our purposes is that in our Coxeter groups, every
finite subgroup can be conjugated into a finite special subgroup. In particular, since



Vol. 84 (2009)  Lower algebraic K-theory of hyperbolic 3-simplex reflection groups 301

there are only finitely many special subgroups, one can quite easily classify up to
isomorphism all the finite subgroups appearing in any of our 32 Coxeter groups.

Now let us move to the geometric viewpoint. As we mentioned earlier, associated
to any of our 32 Coxeter groups, one has a simplex A? in hyperbolic 3-space H?.
Each of the four generators x; of the Coxeter group I is bijectively associated with
the hyperplane P; extending one of the four faces of the simplex A3, and the (interior)
angles between the respective hyperplanes can again be read off from the Coxeter
diagram:

(1) if two vertices v;, v; are not joined by an edge, then Z(P;, P;) = /2,
(2) if two vertices v;, v; are joined by an unlabelled edge, then Z(P;, P;) = 7/3,

(3) if two vertices v;, v, are joined by an edge with label mi;;, then Z(P;, Pj) =
T/mjj.

The resulting configuration of four hyperplanes exists, and is unique up to isometries
of H3. One can now define the map ' — O71(3,1) = Isom(H?) by sending each
generator x; to the isometry obtained by reflecting in the corresponding hyperplane P;.
The condition on the angles between the hyperplanes ensures that this map respects
the relations in ', and hence is actually a homomorphism. In fact this map is an
embedding of " as a discrete subgroup of O (3, 1), with fundamental domain for
the associated action on H? consisting precisely of the simplex A3,

Finally, to relate the geometric with the algebraic viewpoint, we remind the reader
of the following bijective identifications:

(1) Given an edge in the 3-simplex A3, lying on the intersection of two hyperplanes
P;, P;, the subgroup of I' that fixes the edge pointwise is precisely the special
subgroup {x;, x;) (and hence will be a dihedral group).

(2) Given a vertex in the 3-simplex A3, obtained as the intersection of three hyper-
planes P;, P;, P, the subgroup of I' that stabilizes the vertex is precisely the
special subgroup {(x;, x;, xg).

We point out that the stabilizer of a vertex of A? will either be a finite Coxeter group
(if the vertex lies inside H?), or will be a 2-dimensional crystallographic group (if the
vertex 1s an ideal vertex). Furthermore, one can readily determine whether a vertex
will be ideal or not, just by determining whether the associated special subgroup is
crystallographic or finite.

It is known that for all the groups listed above the Farrell and Jones I[somorphism
Conjecture in lower algebraic K-theory holds, that is H,{ (Epe(T), KZ =) =~
K, (ZT) for n < 2. This follows immediately from results in [FJ93] and [BFPPOO],
see the discussion in [Or04, pg.325]. Our plan 1s to use this result to explicitly
compute the lower algebraic K-theory of the integral group ring ZT", for all of the 32
groups listed above.
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3. A formula for the algebraic K -theory

In this section, we combine some recent work of Liick and Weiermann [LW] with
some previous work of the authors [LOO07] to establish the following:

Proposition 3.1. Let ¥ C F be a nested pair of families of subgroups of I', and
assume that the collection of subgroups { Hy}oey I8 adapted fo the pair (¥, F). Let
JC be a complete set of representatives of the conjugacy classes within {H,}, and
consider the cellular U-pushouts:

Uies T xu Ex (H) —2~ E4()

d
Hgew T xm Eg(H) — X .

Then X is a model for Ez(T'). In the above cellular T -pushout, we require either
(1) « is the disjoint union of cellular H-maps (H € J), B is an inclusion of I'-CW-
complexes, or (2) a is the disjoint union of inclusions of H-CW-complexes (H € J),
B is a cellular T-map.

Proof. Letus startby recalling thata collection { Hy }oes of subgroups of I is adapted
to the pair (¥, F), provided that the following holds:

(1) Forall Hy, H, € {Hy}yey,cither Hy = Hy,or HH N Hy € 7.

(2) Thecollection {Hy} ey is conjugacyclosedie.,if H € {Hy}yerthengHg™
{Hylaer forall g e ',

(3) Every H € {Hy}uer is self-normalizing, ie., Nr(H) = H.
(4) Forall G € F \ F, there exists H € {Hy}ger suchthat G < H,

Note that the subgroups in the collection { Hy }4e; are not assumed to lie within the
family 7.

Using the existence of the adapted family { Hy }per, One can now define an equiv-
alence relation on the subgroups in & — F as follows: we decree that G ~ G if
there exists an H € {Hy}qer such that G; < H and G, < H. Note that ~ is in-
deed an equivalence relation: the symmetric property is immediate, while reflexivity
follows from property (4) of adapted collection, and transitivity comes from property
(1) of adapted collection. Furthermore this equivalence relation has the following
two properties:

1 ¢

—

e if G1,Gy, € F —F satisfies Gy < Go, then G, ~ G, (immediate from the
definition of ~).

. ifGl,Gz S f—?andg € F,thenG1 2 G2 < gGlg_l ~ ngg_l (fOHOWS
from property (2) of adapted collection).
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We denote by [F — F] the set of equivalence classes of elements in F — % under
the above equivalence relation, and for G € ¥ — F, we will write [G] for the cor-
responding equivalence class. Note that by the second property above, the I"-action
by conjugation on ¥ — F preserves equivalence classes, and hence descends to a I'-
action on [F — F|. We let I be a complete set of representatives [G] of the T"-orbits
in[¥ —F]. For G € ¥ — ¥, define the subgroup

Nr[G]:={g €T | [gGg™"'] = [G]}.

which is precisely the isotropy group of [G] € [F — F] under the I'-action induced
by conjugation. Finally, define a family of subgroups ¥ [G] of the group Nr[G] by

FIG]:={K C Nr[G] | KeF-%.,[K] =[G} U{K C Nr[G] | K € F}.

Observe that the notioni defined above (introduced in [LW]) make sense for any
equivalence relation on & — ¥ satisfying the two properties mentioned above.

Now [LW, Theorem 2.3] states that for any equivalence relation ~ on the clements
in F — F satisfying the two properties above (and with the notation used in the pre-
vious paragraph), the I'-CW-complex X defined by the cellular I"-pushout depicted
below 1s a model for E z(T).

Uimer U ety E7 ave a1 (NrlH]) L~ E#(I')

.

]_[[H]el I XNr[H] Eﬁ“[H](NF[H])

X.

In the above cellular I'-pushout, Liick—Weiermann require either (1) « 1s the dis-
jointunion of cellular N[ H |-maps ([H] € 1), § is aninclusion of I'-CW-complexes,
or (2) « is the disjoint union of inclusions of Np[H]-CW-complexes ([H] € ), B is
a cellular I'-map.

We now proceed to verify that, for the equivalence relation we have defined using
the adapted family { Hy }ye 71, the left hand terms in the cellular I'-pushout given above
reduce to precisely the left hand terms appearing in the statement of our proposition.
This boils down to two claims:

Claim 1: For any G € ¥ — F, we have the equality Np[G] = H where H is the
unique element in { Hy },e7 satisfying G < H.

To see this, we first note that there indeed is a unique A € {Hy}yes satisfying
G < H, for if there were two such groups H; # H,, then we would immediately
seethat H{ N Hy > G € ¥—F, contradicting the property (1) of an adapted
collection. Next we observe thatif # € H, then h/Gh—! < hHh™! = H, and hence
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that [:Gh~!] = [G], which implies the containment H < Nr[G]. Conversely,
if & € Nr[G], then we have that [G] = [ka‘l] and so from the definition of
the equlvalence relation there must exist some H € {Hytuer with G < H and
kGk—! < H. Since we already know that G < H, the uniqueness forces H H,
and thus that k«Gk—! < H. Thisinturn tellsus that H Nk~ 1Hk > G e F — F,
and property (1) of an adapted collection now forces H = k~! Hk, which implies
that k € Nr(H ). But property (3) of an adapted collection forces the group H to be
self-normalizing, giving & € H, and completing the proof of the reverse inclusion.

Claim 2; Forany G € ¥ F —F, the family F F [G] on the group Nr[G] = H (see the
previous claim) coincides with the restriction ¥ NH of the family ¥ to the subgroup
H (i.e., consisting of all elements in & that liec within H).

Note that the containment % [G] C ?iﬂH is obvious from the definition of FIG).
For the opposite containment, let K € ¥ NH C ¥, and observe that K < H and
either K € F,or K € F-F. In the first case, we have K € F NH C SE[G],
while in the second case, we have that [K] = [G] by the definition of the equivalence
relation, and hence againwe have K € #[G]. This gives us the containment ¥ NH C
F|G], giving us the claim.

Having established our two claims, we can now substitute the expressions from
the claims for the corresponding ones in the Liick—Weiermann diagram. Finally,
we comment on the indices in the disjoint sums appearing in the right hand of the
diagrams. In the expression of Liick—Weiermann, the disjoint sum is taken over /,
a complete systemn of representatives [G] of the T-orbits in [ — F]. But observe
that from the definition of the equivalence relation we are using, classes in [F — 7]
can be bijectively identified with groups H € {Hy }oes (by associating each class in
[F — F] with the unique element in { Hy } o containing all the elements in the class).
Since it is clear that the I'-action on [F — ¥] coincides (under the bijection above)
with the I"-action on the set { Hy }oe 1, we can replace the system of representatives /
by the system of representatives J€. This completes the proof of the proposition. [

We now specialize to the case where ¥ = FIN and F = VC, and obtain the
following:

Corollary 3.2. Given the group U, assume that the collection of subgroups { Hy}aer
is adapted to the pair (FIN ,VC). If ¥ be a complete set of representatives of the
conjugacy classes within { Hy}, then we have a splitting

HE (Eve(D);KZ™)

~ H (Ezzn (D) KZ™°) & €D H (Egiy(H) — Eve(H)).
He#
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Proof. Letuswork with the explicit model X for Eve (I') constructed via the previous
proposition. Since X is obtained as a double mapping cylinder, there exists an obvious
map p: X — [0, 1], which further has the property that every point pre-image is I'-
invariant. In particular, corresponding to the splitting of [0, 1] into [0,2/3) U (1/3, 1],
we geta [-invariant splitting of X. If welet A = p~1[0,2/3), B = p~1(1/3, 1], then
from the Mayer—Vietoris sequence in equivariant homology (and omitting coefficients
to simplify notation), we have that

co—> H'ANB)— H (W& HY(B) — HI' (X) — --- |

But now observe that we have obvious ['-equivariant homotopy equivalences:
» A=p7'0,2/3) ~ p70) = |l gen T xu Eve(H),
e« B=p"Y1/3,1] ~ p~ Y1) = Egzw (),
s ANB =p711/3,2/3) ~ p7 (1/2) = | |gese T xu Ezzy (H).
Now combining the fact that our equivariant generalized homology theory turns dis-

joint unions into direct sums, along with the induction structure, this allows us to
evaluate the terms in the Mayer—Vietoris sequence

o — P H (EgawH) — H, (EzzxT) & @ H, (Eve H)
HeX Hedt

—s HY (Eyel) — -+ .

But recall that Bartels [Bar0O3] has established that for any group G, the relative
assembly map

HE (Ezin(G); KZ™®) — HE (Eve(G); KZ ™)

is split injective. In particular, for each integer », the above portion of the Mayer—
Vietoris long exact sequence breaks off as a short exact sequence (since the initial term
injects). Since the map from the HI (EzzxT) — HI (EpeT) is also split injective
(from Bartels result), we immediately obtain an identification of the cokernel of this
map with the cokerel of the map

D B (EsanH) — € HF (EveH).
Hed HeX

But from the definition of the map « in Proposition 3.1, we see that the latter map
splits as a direct sum (over H € J) of the relative assembly maps H (Ezyy H) —
HH(Eype H). This immediately yields a corresponding splitting of the cokernel,
completing the proof of the corollary. O

Next we recall that the authors established in [LOO07, Theorem 2.6] that in the
case where I' is hyperbolic relative to a collection of subgroups {Hi}i.‘:l (assumed
to be pairwise non-conjugate), then the collection of subgroups consisting of
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(1) all conjugates of H; (these will be called peripheral subgroups),

(2) all maximal infinite virtually cyclic subgroups V such that V & gH; g™}, for
alli =1,---k,andforallg € I,

is adapted to the pair of families (FIN, VC). Applying the previous corollary to
this special case, we get:

Corollary 3.3. Assume that the group U is hyperbolic relative to the collection of
subgroups {Hi}‘le (assumed to be pairwise nonconjugate). Let 'V be a complete
set of representatives of the conjugacy classes of maximal infinite virtually cyclic
subgroups inside I which cannot be conjugated within any of the H;. Then we have
a splitting

H (Eve(T);KZ™%°) = H{ (Ezzx(T); KZ ™)

k
® P H (Egin (H) — Eve(H,))
i=1
& P H (Ezin(V) — %).
Vey

The primary example of relatively hyperbolic groups are groups I' acting with
cofinite volume (but not cocompactly) on a complete, simply connected, Riemannian
manifold whose sectional curvature satisfies —h% < K < —a? < 0. These groups
are hyperbolic relative to the “cusp groups”, which one can take to be the infinite
subgroups arising as stabilizers of ideal points in the boundary at infinity of the Rie-
mannian manifold. We note that non-uniform lattices in O™ (n, 1) = Isom(H") are
examples of relatively hyperbolic groups, and for this class of groups, the cusp groups
are automatically (n — 1)-dimensional crystallographic groups (this is due to the fact
that the horospheres have intrinsic geometry homothetic to R”~!). Observe that 23 of
the groups we are considering (see Figure 2) are non-uniform lattices in O (3, 1), and
hence are relatively hyperbolic groups, relative to a collection of subgroups, each of
which is isomorphic to a 2-dimensional crystallographic group. For these 23 groups,
the situation is even further simplified by the following observations:

» Pearson [Pe98] showed that for any 2-dimensional crystallographic group H,
the relative assembly map is an isomorphism for » < 1, and hence that

HE(Ezzn(H) — Eve(H)) =0

forn < 1.

» The authors in [LOO7, Section 3] gave a general procedure for classifying the
maximal virtually cyclic subgroups of Coxeter groups acting on H?>. The groups
fall into three types, with infinitely many conjugacy classes of type Il and type 111,
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and only finitely many conjugacy classes of type I subgroups. Furthermore, the
relative assembly map is an isomorphism (for » < 1) for all groups of type II
and II1, This is discussed in more detail in Section 4,

» Work of Farrell and Jones [F]J93] and Berkove, Farrell, Juan-Pineda, and Pearson
[BFPPOO] implies that the Farrell-Jones isomorphism conjecture holds for all
lattices I" in hyperbolic space (and & < 1), and hence that one has isomorphisms

Kn(ZT) = H, (Eve(T);KZ™™)

foralln < 1.

Combining these observations with the previous corollary yields the following:

Corollary 3.4. Ler ' < O1 (3, 1) be any Coxeter group arising as a lattice (uniform
or non-uniform), and let {Vi}f:l be a complete set of representatives for conjugacy
classes of type I maximal virtually infinite cyclic subgroups of I'. Then we have, for
all n <1, isomorphisms

k
Ko(ZT) = Hy (Eggn (T KZ™°) & @) H) (Egw (Vi) — ).

i=1

In the next sections, we will implement this corollary to compute the lower al-
gebraic K-theory of the integral group rings of all 32 of the 3-simplex hyperbolic
reflection groups.

4. Maximal infinite VC o, subgroups

In this section, we proceed to classify the maximal infinite virtually cyclic (VC )
subgroups arising in our groups. Let us start by briefly recalling some of the results
from Section 3 of [LOO7]. First of all, for a lattice T in Ot (n, 1), infinite 'VC
subgroups are of two types: those that fix a single point in the boundary at infinity,
and those that fix a pair of points in the boundary at infinity. We call subgroups of the
first type parabolic, and those of second type hyperbolic. Note that every parabolic
subgroup can be conjugated into a cusp group; for the purpose of our classification,
we will ignore these subgroups. The subgroups of hyperbolic type automatically
stabilize the geodesic joining the pair of fixed points in the boundary at infinity.
Furthermore the geodesic they stabilize will project to a periodic curve in the quotient
space H"/I". Note that conversely, stabilizers of periodic geodesics are infinite VC
subgroups of T". This implies that the maximal hyperbolic type infinite VC subgroups
of I" are in bijective correspondence with stabilizers of periodic geodesics.

We now specialize to the case where n = 3, and I' is a Coxeter group. In this
situation, we can subdivide the family of periodic geodesics into three types.



308 I.-F. Lafont and I. J. Ortiz CMH

» A geodesic whose projection has non-trivial intersection with the interior of the
polyhedron H?/T", which we call type IIL

* A geodesic whose projection lies in the boundary of the polyhedron H?/ T, but
does not lie inside the 1-skeleton of H?/ ", which we call type II.

» A geodesic whose projection lies in the 1-skeleton of the polyhedron H?3/T,
which we call type .

For geodesics of type 11, 1t 1s easy to see that the stabilizer of the geodesic must
be isomorphic to either Z or D. For geodesics of type 11, the stabilizer is always
isomorphic to either Zy x Z or Zs X Dy. The main purpose of this section will be
to classify stabilizers of type [ geodesics for all 32 groups which occur as hyperbolic
3-simplex reflection groups.

We start by outlining our approach: all the groups we are considering have fun-
damental domain consisting of a 3-dimensional simplex in H? (possibly with some
ideal vertices). So up to conjugacy, for each of the groups we are considering, we
can have ar most six distinct stabilizers of type I geodesic (one for each edge in the
fundamental domain, fewer in the presence of ideal vertices). But this is actually
an overcount, as one could potentially have a type I geodesic whose projection into
the fundamental domain passes through several of the edges. So the first step is to
understand how many distinct stabilizers (up to conjugacy) one obtains.

Let us explain how one can find out the number of distinct stabilizers. Note that,
at every (non-ideal) vertex v of our fundamental domain 3-simplex in H?, we can
consider a small e-sphere S,, centered at v. Now the tessellation of H> by copies of
the fundamental domain induces a tessellation of S, by isometric spherical triangles.
In fact, the tessellation of .Sy 1s the one naturally associated with the special subgroup
of the Coxeter group I' that stabilizes the vertex v. Now note that, if we were to label
the three edges of the 3-simplex incident to v, we get a corresponding label of the
three vertices of a spherical triangle in the tessellation of S,,. One can extend this
labeling via reflections, both for the tessellation of H* and the tessellation of S,,.

Now given a periodic geodesic of type I, with a portion of the geodesic projecting
to the edge e in the 3-simplex, with e adjacent to the vertex v, one can easily “read
oft” from the labeled tessellation of S, which edge extends the geodesic. Indeed, this
will be picked up by the label of the vertex in the tessellation of S, which is antipodal
to the labeled vertex corresponding o e. In this manner, one can easily decide the
number of distinct stabilizers of type I geodesics that arise for the 32 groups we are
considering.

To recognize the tessellations arising for the various S,;, one now notes that the
isometry group of each of these tessellations can be obtained by looking at the stabi-
lizer '), of the vertex v in the group I'. These stabilizers are finite special subgroups
of the Coxeter group I', generated by three of the four canonical generators of I'.
From the classification of the 32 hyperbolic 3-simplex groups, it is easy to list out all
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such finite special subgroups: there are eight of these, namely Z, x D, Z, x D3,
Zz X Dy, Zz X Ds, Z2 X Dg, [3, 3] & B, [3, 4] = Z2 X S4, and [3, 5] = Zz X As.

The next step is to identify the stabilizers of the corresponding geodesics. In the
situation we are considering, all the type I geodesics 7 that appear have stabilizer
Stabr () acting with fundamental domain an interval. In fact, the interval can be
identified with the quotient space 5/ Stabr(n) C H?/T", which will be a union of
edges in the 1-skeleton of the 3-simplex H?*/T. Hence the group Stabr(z) can be
identified using Bass—Serre theory: it will be the fundamental group of a graph of
groups, where the graph of groups consists of a single edge joining two vertices, with
edge/vertex groups which can be explicitly found from the tessellations. We will say
that the geodesic (or sometimes the edge in the 1-skeleton) reflects at the two endpoint
vertices.

Indeed, the edge group G, will be precisely the stabilizer of one of the edges in
n/ Stabr(n) C H3/T. On the other hand, the vertex groups G,, G, can be found
by looking at each of the two endpoint vertices v, w for 7/ Stabr(n), and studying
the spherical tessellations of S, S,,. Note that we are trying to identify elements in
I', which stabilize the vertex v (respectively w), and additionally map the geodesic
n through v to itself. In particular, it must map the pair of antipodal vertices 7~
(corresponding to the incoming/outgoing n-directions) in the tessellation of S, to
themselves. The subgroup G, C G, can be identified with the index 2 subgroup
consisting of elements G, which fix both of the points ni. Now there 18 an obvious
map which permutes the two points nt and 5, namely the reflection in the equator
equidistant from these two points. But it is not clear that this reflection preserves
the tessellation of S,,; in some cases, one will need to reflect in the equator, and then
rotate by a certain angle along the 5T axis, in order to obtain an element in T',,. Note
that if the reflection in the equator preserves the tessellation, then we immediately
obtain that G, = G, x Z». If the reflection in the equator does not preserve the
tessellation, then we obtain that G, =~ G, x Z». One can perform the same analysis
at the vertex w, and hence find an expression for Stabr () as an amalgamation of the
groups G, Gy, over the index 2 subgroups G..

We make two observations: first of all, the stabilizer of an edge will always be a
special subgroup of ', generated by a pair of canonical generators in I'. In particular,
the group G, will always be a dihedral group Dy for some k. Now the vertex groups
are of two types: (1) if the reflection in the equator preserves the tessellation, we
obtain Gy == Z» x Dy, or (2) if the reflection in the equator does not preserve the
tessellation, then one can explicitly read off the semi-direct product structure from
the tessellation, and in fact it is easy to see that G, 22 Dyg. In Table 1 below, we list
out, for each of the finite special subgroups we need to consider, the edges that reflect,
as well as the corresponding G,,. Let us explain the notation used in the table: the
first column gives the various finite special subgroups that occur, the second column
lists the angles that appear in the spherical triangles of the corresponding tessellation
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of S;. The remaining three columns are ordered from smallest angle to largest, and
expresses whether (1) the corresponding edge extends (i.e., does not reflect) at v, and

(2) if 1t reflects, the corresponding subgroup G,,.

Table 1. Finite special subgroups & local behavior of edges.

Tio X Dy | /2, 7/2,7[2 | g X Dy | Zig X Dy | Zp X Dy
Zio x Dy | w/3,m/2,m/2 | Zo x D3 | extends | extends
TZiax Dy | /4, 7/2,7/2 | o X Dy | Zia X Dy | Zp X Dy
Zyx Ds | w/5,7/2,7n/2 | Zy x D5 | extends | extends
Zio x Dg | m/6,w/2, /2 | Zip X Dg | Zig X Dy | Zp X Dy
Sy 7/3,7/3,7/2 | extends | extends Dy
Ziox Sy | w/d,m/3,7w/2 | Zp x Dy Dg Zy x Do
Zox As | /5. 7/3, /2 Do Dg Za x D>

From the Coxeter diagrams of the 32 groups we are considering, we can now read
off quite easily the number (up to conjugacy) of stabilizers of type I geodesics. We
now proceed to summarize the results of this procedure, which we list out in Tables
2, 3, and 4. We remind the reader that, in addition to these subgroups, there will also
be (up to conjugacy) countably infinitely many maximal VC subgroup of hyperbolic
type isomorphic to one of Z, Dy, Zy X Z,Z7 X Dy (coming from stabilizers of
type IT and type 11T geodesics). The list below can be thought of as the “exceptional”
maximal VC subgroups of hyperbolic type. Indeed, as we will see in the subsequent
sections, these will be the only maximal 'VC subgroups of hyperbolic type that will
actually contribute to the algebraic K-theory of the ambient groups.

4.1. The uniform lattices. There are 9 hyperbolic 3-simplex groups with funda-
mental domain a compact 3-simplex in H3. The number and type of stabilizers of
type I geodesics are listed in the following table:

Table 2. Structure of VC subgroups of cocompact groups.

I Stabr
[(33,5)] D3 X Do, D5 X Dog, (D2 X Ziz) %p, D4 (twice)
(5,3, 5] D3 X Doo, D3 X Do, D5 X Do (twice)
[(33, 4)] D3 X Do, Dy X Dog, (D2 X Z3) %p, Dy (twice)
[34:35 3] Dy x Dy, D3 X Dy (twice), Ds X Do
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r Stabr
[5,301] | Dy x Dy (twice), D3 X Do, Ds X Doo, (D3 X Zs) %p, Dy

[4,3,5] Dy x Dy (twice), D3 X Do, Dy X Do, D5 X Do
[(3, 5)12]] D3 x Dy (twice), D3 x Do (twice), D5 x Do (twice)
[(3,4.3,5)] | D3 x Dy (twice), D3 x Dy (twice), Dy X Do, Ds X Do
[(3, 4)[2]] D3 X Do (twice), D3 X Do (twice), D4 X Do (twice)

4.2. One ideal vertex. We have nine such Coxeter groups, namely the groups
[5,383]), [5.3, 6], [32, 42], [4,3[3]], [3,3030], [3,4%1], [4.3,6], [3,3,6], and [3, 4, 4].
The number and type of (non-finite) stabilizers of type I geodesics, as well as the cusp
subgroups are listed in the following table:

Table 3. Structure of VC subgroups of 1-ideal vertex groups.

r Stabr Cusp
13,301 | 1edge Dy xp, Dy [383]]
[3,3.6] | 1edge (D3 X Z3) *p, Dy [3, 6]
[5,301] | 2 edges Dy X Doo, Ds x Da [303]]
[5,3,6] | 2 edges Dy x Dy, Dsx Dy [3, 6]

[(32,42)] | 2 edges Dy x Dso, Dz x Dy [4, 4]
[4,381] | 2 edges Dy X Doo, Dy x Dy [303]
[3,4,4] | 2 edges Dy x Dy, D3 x Dy [4, 4]
[3,41:1] | 3 edges | Dy X Do (twice), Dz x Do | [4,4]
[4,3,6] | 3edges | Dy X Do (twice), Dy x Dy | [3,6]

4.3. Two ideal vertices. We have nine such Coxeter groups, namely the groups
[(3,5,3,6)], [(3.4%)], [(3,4,3,6)], [(3%,6)], 3], [6,3"1], [3,6, 3], [6,3,6], and
[4, 4, 4]. Note that for these groups, we have only one edge segment in the fundamental
domain to consider.

For the groups [(33, 6)] and [3, 6, 3], the edge extends to one of the non-compact
edges, and hence we again have that there are no periodic geodesics of type 1. So
in both of these cases, we have that the maximal virtually infinite 'VC subgroups of
hyperbolic type are isomorphic 0 Z, Doy, Ziy X Z, 0t Zg X Dog.
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In the remaining cases, the edge reflects at both of its endpoints. The stabilizers
we obtain, as well as the two cusp subgroups, are listed out in the following table:

Table 4. Structure of VC subgroups of 2-ideal vertex groups.

r Stabr Cusp
[(3,5,3,6)] Ds x Do [3, 6] (twice)
[(3,4%)] D3 x Do [4,4] (twice)
[(3.4,3,6)] D4 x Doo [3. 6] (twice)
[303:3]] Dy #p, Dy [303]] (twice)
6,31] | (Dy x Zs) xp, Dy | [3.6] (twice)
[6, 3. 6] D3 X Doo [3. 6] (twice)
[4,4,4] Dy x Dy [4, 4] (twice)

4.4. Three ideal vertices. We have two such Coxeter group: [6, 3] and [411+1].
Again, there will be no periodic geodesics of type 1. So we obtain that the maximal
virtually infinite VC subgroups of hyperbolic type are isomorphic to Z, Do, Zio X Z,
or Zz X Doo-

4.5. Four ideal vertices. There are three such Coxeter groups, namely the groups
[301<01], [414]] and [(3, 6)[21]. Tt is clear that these groups have no periodic geodesics
of type I, and hence the only maximal virtually infinite 'VC subgroups of hyperbolic
type in both of these groups are isomorphic to Z, Do, Zia X Z, 0t Zia X D .

5. The algebraic K -theory of cell stabilizers in E g7 4

In this section, we focus on finding the algebraic K-theory of the finite subgroups that
occur as cell stabilizers for the '-action on H?, when I ranges over the 32 groups we
are studying. Recall from the discussion in Section 2 that these cell stabilizers will be
(up to conjugacy) precisely the finite special subgroups. Since these can be read off
from the Coxeter diagrams of the groups, one can easily see that, up to isomorphism,
these groups are the following:

Finite special subgroups. 1, Z/2, D, forn = 2,3,4,5,6, 10 (here D, denotes the
dihedral group of order 2n), Dy X Z/2, Dy x Z./2, Dg x Z./2, S4, S4 x Z:/2, and
A5 X Z/2

In the spectral sequence computing the homology HI (E gz (T); KZ %), the
E?-term is computed from the algebraic K-groups of the various cell stabilizers.
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So we need the algebraic K-groups for all of the finite groups appearing in the list
above. TFor the convenience of the reader, we provide in Table 5 below the results of
the computations in this section. Table 5 provides a list of all the non-frivial K -groups
that occur amongst the finite groups we are considering.

Table 5. Lower algebraic K -theory of cell stabilizers in E g4

FeFIN |Why #0,g<—1|Ko#0|Wh#0
Dy xZ/2 Z]2
Ds 7
Ds K, >=7Z
Dy xZ/2 Z/4
Dio Ki1>=Z &
DexZ/2 K =73 (Z./2)?
Sy x7,/2 K, =7 Z./4
AsxZ/2 K_ =72 Z./2 72

We now proceed to justify the results summarized in Table 5. Tt is well known
that for G a finite group K, (ZG) is trivial for all g < —2 (see [C80a]), so we will
focus exclusively on the functors K_;, Ko, and Wh. Next we point out that, for all
but four of the finite groups in our list, their lower algebraic K -theory is well known.
The relevant references are listed below for each of these groups.

» 7Z/2: For the negative K-groups, we refer the reader to [C80a]; the fact that
K_1(Z[Z/2]) = 0 can also be found in [Bas68, Theorem 10.6, pg. 695]. The
vanishing of K~o can be found in [CuR87, Corollary 5.17]. For information
about the vanishing of Wh we refer the reader to [O89].

Dy x Z/2: For the negative K-groups, we refer the reader to [C80a]. The
tormula in Bass [Bas68, Chapter 12] shows also that K_1(Z[D, x Z/2]) = 0.
For the information concerning Wh we refer the reader to [Ma78], [Mag&0],
[O89]. For the EO see Remark 5.1.

* Dy,n = 2,3, 4: For the vanishing of the negative K-groups, we refer the reader
to [980a]. For the Ky we refer the reader to [Re76]. In particular, the vanishing
of Ko(ZG) is proven for G = D3 in [Re76, Theorem 8.2] and for G = Dy in
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[Re76, Theorem 6.4]. For information about Wh we refer the reader to [Ma78],
[Ma&0] and [O&9].

» Ds: As far as we know the only K-groups found in the literature are
Ko(Z.Ds) = 0 (see [RU74, (2.6), pg. 506]) and K, (ZDs) = 0 for all g < —2
(see [C80a]). To compute K_1{(Z Ds), we used results that can be found in
[C80a], and [C80b], and to compute Wh( D5 ), we used results that can be found
in [Ma78], [Ma&80] and [O89] (see the details in the Section 5.2).

* Djo: As far as we know the only K-groups found in the literature are
Ko(ZD1p) = 0 (by a straightforward modification of the argument in [RU74,
Theorem 2.9]) and K (Z Do) = 0 for all ¢ < —2 (see [C80a]). For the
K_{(Z Dyyp), weused the results found in [C80a], and [C8Ob], and for Wh(Dg),
we used results that can be found in [Ma78], [Ma80] and [O89] (sec the details
i the Section 5.3).

* Dg: See the discussion in Section 5.1. The whitechead groups Why (Ds) for
g < 1 can also be found in [Pe98, Section 3], and [Or04, Section 5].

* DyxZ/2: Ortizin |[Or04, Section 5] using results from [C80a] [C80bl, [CuR&7],
[O89] and [Ma06] showed that K,(Z[D4 x Z/2]) = 0,9 < —1, Ko(Z[D4 x
Z./2]) == Z /4, and that Wh(D,4 x Z/2) is trivial.

* S4: Reiner and Ullom in [RU74, Theorem 3.2]) proved Ky (Z:S4) is trivial. By
[O89, Theorem 14.1], it Eollows that Wh(Sy) is trivial. By [C80b, Remark on
pg. 606], it follows that K_1(Z.S4) is trivial.

o SyxZ/2: By [C80al,itfollows K (Z[SsxZ/2]])istrivial forallg < —2. Ortiz
in [Or04, Section 5] showed K_1(Z[S4xZ./2]|) = Z., Ko(Z[S4 xZ[2]) = 7./ 4,
and Wh(S4 x Z/2) is trivial.

For the remaining groups in our list, we detail the computations in the next few
subsections.

5.1. Thelower algebraic K -theory of DgxZ /2. Tocalculate K_(Z[Dg x 7Z/2]),

we use the following formula due to Carter [C80b, Theorem 3]. Let & be a group of
order n, let p denote a prime number, let Z denote the p-adic integers and let Q p
denote the p-adic numbers. Then the followmg sequence 18 exact:

0 — Ko(Z) — Ko(QG)DEP Ko(ZpG) — @D Ko(QpG) — K_1(ZG) — 0.
pln pln

Since the group algebra Q Dg =2 Q* x (M>(Q))? (see [0r04, pg. 350]), it follows
that the group algebra Q[Dg x Z /2] is isomorphic to Q% x (M,(Q))*, and the same
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statement is true if Q is replaced by Qz and Q:,' Hence Ko(Q[Dg x Z/2]) =
KO(QZ[D6 x 7.)2]) = Ko(Qs[De x Z./2]) = Z'2. The integral p-adic terms are
K()(Zz[@ﬁ XZ/Z]) o= K()(]Fz[D6XZ/2] K()(]Fz[D6]) = Z2 (SGG [Or04, pPE. 350])
and Ko(Z3[De x Z/2]) = Ko(F3[Ds x Z/2]) =~ Ko(F3[(Z/2)]) =~ Z8. Carter
also shows in [C80a] that K_; (Z[Dg x Z,/2]) is torsion free, so counting ranks in the
exact sequence, we have that K (Z[Ds x Z/2]) = Z>.

To compute Ko(Z[De x Z./2]), consider the following Cartesian square

ZIZ/2][Dg] — Z| Ds]

|

Z|D¢] F>[Ds),

which yields the Mayer—Vietories sequence (see [CuR87, Theorem 49.271)

K1(Z[Ds x Z./2]) — K1(ZD¢) @ K1(ZDs) —— K1(F2[Ds])
— Ko(Z[Z/)2][Ds]}) — Ko(ZDg) ® Ky(Z Dg) —> O.

We now proceed (o compute the various terms appearing in this sequence.

We start by looking at the terms involving Z Dg. In [Re76] Reiner shows that
Ko(Z Dg) is trivial. K1(Z D) can be computed as follows: since Wh(G) equals
K\(ZG)/{£G??}, therank of K (Z G) is equal to the rank of Wh(G). But the rank of
Wh(G)is y = r—gq, where r denotes the number of irreducible real representations of
G, and g denotes the number of irreducible rational representations of G. In [Bas65]
Bass shows that r is equal to the number of conjugacy classes of sets {x,x 7!}, x € G,
and g is the number of conjugacy classes of cyclic subgroups of G (see also [Mi66]).
For G = Dg, a direct calculations shows that » = ¢, and hence that Wh(G ) is purely
torsion. Next note that the torsion part of K1(ZG)is {1} ® G** & SK{(ZG) (see
[W74]), and hence we have that Wh(Dgs) = SK1(Z D¢). Since Magurn [Ma78] has
shown that SK1(Z D) is trivial, we see that Wh{Ds) is trivial. Since (Dg)*® =
(7./2)%, we obtain that K{(Z[D¢]) = (Z/2)3.

Next we consider the remaining terms in the Mayer—Vietoris sequence. For G =
DgxZ /2, Magurn in [Ma80, Corollary 11] shows that Wh{ D¢ x Z/2) = 0 (note that
the rank of Wh(G x Z/2) is twice the rank of Wh(G) since r and g get doubled, see
Sections 5.2 and 5.3). Since (Dgx7Z/2)%? = (Z,/2)3, this yields K (Z[DexZ/2]) =
(Z/2)*. Finally, Magurn in [Ma06, Example 9]) shows that K;(F»[Dg]) = (Z /2)*.
Substituting all the known terms into the exact sequence in (1) yields the following
exact sequence:

(1)

Z/2* > (Z)2) & (Z/2)° = (Z/2)* — Ro(Z[Z/2][Ds]) — 0. ()

Next, we study the image of ¢: K\(ZDs) & K{(ZDg) — K (F2[Dg]). We
claim that im(¢) = (Z/2)?>. This can be seen as follows: first im(¢) = im(y)
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where vy : K1(Z Dg) — K,(IF3[Dg])is induced by the canonical ring homomorphism
Z — IF5. Note the K{(Z) is a direct summand of K;(Z D) isomorphic to Z/2; but
this summand goes to zero in K, (IF;[Dg]) since it factors through the following
commutative square:

L]2 = K\(Z)

K(F,) =0

K1(ZDg) — K1 (F2[Ds]).

Since K1(ZDg) = (Z/2)3, this forces dimp, (im(g)) < 2. Now from the exact
sequences given in (1) and (2), we have that

dimg, (im(¢)) = 2dimp, (K, (Z[De])) — dimp, (ker(p)) = 6 — dimg, (im(0)).

Since dimy, (im(c)) < 4, we see that dimp, (im(p)) > 2, which forces im(yp) =~
(Z,/2)*. The exact sequence now yields Ko(Z[Z/2][De]) == (Z./2).

Remark. In a preliminary version of this paper, the authors incorrectly stated that
Ko(Z[ Dy x Z/2]) vanished. The second author realized, while working on a new
project (see [FOJ), that this group is 1n fact non-trivial, as is proved in [EH79, pg.
161]. Using the same argument as in the case of D¢ x Z /2 above, one can show that
Ko(Z|Dy x Z.)2]) = 7./2.

In one of our earlier papers (see [LOO7, pg. 542]), the incorrect vanishing of
Ko(Z[D, x Z/2]) was used, leading to an incorrect computation for the Ko of
Q = (D3 xZ/2) %p, (D2 x Z/2). We would like to use this opportunity to state
the correct computation of this group: Ko(Z Q) = (Z/2)* & NKo(ZD3; B, B>),
where B; = Z[(Dy x Z/2)\ D3] is the Z D,-bimodule generated by (D, x Z/2) \
D, fori = 1,2. However, as was shown in [LOO7, Theorem 5.2], the Nil-group
NKy(Z Dy; By, By) is isomorphic to a countably infinite direct sum €5 Z/2 of
cyclic groups of order two, and hence the abstract isomorphism type of the group
Ko(Z Q) is correct as stated in [LO07]. In particular, the computation presented in
the main theorem [LLO0O7, Theorem 1.1] remains correct as stated.

5.2. The computation of the K -groups K_1(ZDs), and Wh(Ds). To compute
K_1(ZDs), we need Carter’s formula for K_;, [C80b, Theorem 3], the reader is
referred to Section 5.1.

0 — Ko(Z) — Ko(QDs) ® P Ko(Z,Ds)
pln

— P Ko(QyDs) — K_{(ZDs) — 0.
pln
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The group algebra Q D5 is isomorphic to Q2 x MZ(Q[«/_ 5]) (see [Se77, pgs. 36—
38]), and the same statement is true if @ is replaced by @2 (recall that \/_ 5¢ Qz)
For p =5, the group algebra Qst is isomorphic to (Q5)2 X MZ(QS) Hence
KO(QZ[DS]) ~ Ko(Q[Ds]) = KO(QS[DS]) >~ 73. By using techniques described
in [CuR8&1, Section 5], we have that KO(Z5[D5]) >~ Ko(F5[Ds5]) = Ko(lF5[Z/2]) =
KOGFS X]F5) Z2 Slﬂ']llaﬂy, we have that KO(ZZ[D5]) = K()GFz[D5]) = K0C|F2X
M,(F5)) = Z2. Carter also shows in [C80a] that K_1(Z[Ds]) is torsion free, so
counting ranks as before, we obtain K_;(Z Ds) = 0.

Next, we compute Wh(Ds). Recall that Wh(G) = Z7 & SK,(ZG). Magurn
in [Ma78] proves that SK; vanishes for all finite dihedral groups. The rank of the
torsion free partis y = r —g (see Section 5.1). For the group D5, a direct calculation
shows that » = 4 and ¢ = 3, yielding Wh(Ds) = 7779 = 7.

5.3. The computation of the K -groups K_1(Z D1¢), and Wh(D1y). To calculate
K_1(Z D), again using Carter’s formula for K_; [C80b, Theorem 3], we have (see
Sections 5.1 and 5.2)

0 — Ko(Z) — Ko(QD1p) ® @ Ko(Zleo)
pln
— @ Ko(QpD19) —> K_1(ZD1g) —> 0.
pln

The group algebra Q[ D5 x Z /2] is isomorphic to Q% x (Mz (Q[+/3]))? (see Sec-
tion 5.2) and the same statement 1s true if Q is replaced by Qz For p = 5, we
have isomorphisms of algebras Qs[DS x Z/2] = (Q5)4 X (MZ(QS))2 Hence
Ko(Q[DsxZ/2]) = Ko(@z[DSXZ/2]) =~ Ko(Qs[DsxZ/2]) = Z°. The integral
p-adicterms are Ko(Zz[DSXZ/z]) = Ko(F2[DsxZ/2]) = Ko(F2[Ds]) = Z? (sce
Section 5.2), and Ko(Zs[Ds x Z/2]) = Ko(Fs[Ds x Z./2]) = Ko (F5[(Z/2)?]) =~
Z*. Carter also shows in [C80a] that K_; (Z[D14]) is torsion free, so counting ranks
in the exact sequence, we have that K_(7Z Dqy) = Z

Next, we compute Wh(D ). Magurn in [Ma78] proves that SK; vanishes for all
finite dihedral groups, then as before Wh{D,() =~ Z”. Since tk(Wh(G x Z/2)) =
21k(Wh(G)) and Wh(Ds) = Z, it follows that Wh(D ) = Z2.

5.4. The lower algebraic K -theory of A5 xZ /2. To compute Wh,(As x Z/2) for
g < 1, we first claim that

Z, g=1,

Why(4s) = {0 g <0

This can be seen as follows. By [O89, Theorem 14.6], we have that SK(Z As) = 0.
The group As has precisely five (mutually nonisomorphic) irreducible real represen-
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tation, giving r = 5. In A5 the conjugacy classes of cyclic subgroups are represented
by the trivial subgroup {e}, ((12)(34)), {(123)}, {(12345)) giving us thatg = 4. This
forces Wh(As) = Z"~¢ = Z. By [RU74, Theorem 3.2], we have that EO(ZAS) =
Dress induction as used in [O89, Theorem 11.2] shows that K_1(Z As) = 0, and by
[C80a] we have that K,(ZAs) = 0forg < —2.

Now let us compute Wh(As x Z/2). Magurn in [Ma07, Example 5] shows that
SK{(Z[AsxZ/2]) = 0. Since rk(Wh{(G xZ/2)} = 2rk(Wh(G)) and Wh{A45) =~ Z
we get Wh(As x Z/2) =~ Z2.

Next, we claim Ko (Z[As x Z./2]) = Z/2. To see this, let H be a subgroup of G.
For any locally free Z G -module M its restriction to H (denoted by Mg ) is a locally
free Z H -module. The mapping defined by [M] — [Mg] gives a homomorphism of
Ko(ZG) — Ko(ZH).

A group H is hyper-elementary if H is a semidirect product N x P of a cyclic
normal subgroup N and a subgroup P of prime order, where (|N|,|P|) = 1. Let
J€(G) consist of one representative from each conjugacy class of hyper-elementary
subgroups of G. We shall need the following result presented by Reiner and Ullom
in [RU74, Theorem 3.1]: for every finite group G, the map

Ko(zG)— [] KozH) 3)
He¥#(G)

is a monomorphism. Observe that #(As) consists of subgroups of As isomorphic
to one of D3, D3 and Ds. Note that the hyper-elementary subgroups of G x Z/2
are of the form H or H x Z /2 for H € #(G). In particular, the hyper-elementary
subgroups of As x Z /2 are all isomorphic to one of: D,, D3 and Ds, D, x Z/2,
D3 x Z/2 =~ Dg, and D5 x Z/2 =~ Djg. By the results already mentioned in
Sections 5.2, 5.3, and the remark at the end of Section 5.1, we have Ky(ZH) = 0
forall H € #(As xZ/2) exceptfor H = D, xZ./2, where Ko(ZH) =~ Z/2. This
implies that the target of the map given in (3) is isomorphic to Z/2, and injectivity
of the map now gives us an injection Ko(Z[As x Z /2]) < Z/2. Since it is known
that Ko(Z[As x Z/2)]) is non trivial (see [EH79, Theorem on pg. 161]), it follows
that Ko(Z[As x Z /2]) =~ Z /2, as desired.

Finally, using results from [C80a], Magurn showed that K_, (Z[As xZ/2]) == Z>2.
The explicit computation of this K-group can be found in [LMO, Section 3.2].

6. Cokernels of relative assembly maps for maximal infinite virtually cyclic
subgroups

In view of Corollary 3.4, we will need for our computations the cokernels of the
relative assembly maps for the various maximal infinite virtually cyclic subgroups
of type 1. From the tables 2, 3, 4 computed in Section 4, we have the following list
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containing al/l/ the maximal infinite virtually cyclic subgroups that appear in the 32
groups we are interested in:

Maximal infinite virtually cyclic subgroups. Z, Do, Z X Z /2, Do X Z /2, Dy *p,
Dy, (DyxZ)2)%p, Dy,and Dy x Do forn =2,3,4,5.

We first note that, for the groups in our list, the cokernels are known to be trivial
in the following cases:

» 7Z: by work of Bass [Bas68].
* D by work of Waldhausen [Wd78§].
» 7 xZ/2,and Dy, x Z/2: by work of Pearson [Pe98, Section 2].

» D3 x D4 by work of the authors [LO07, Section 4]

Finally, the authors have also shown in [LLO0O7, Section 4] that for the group
D5 x Dy, the cokernels of the relative assembly map for » = 0,1 are countably
infinite direct sums of Z /2. The remaining four groups in our list will be discussed
in the following subsections.

Observe that by a result of Farrell and Jones [F]95], the cokernels of the relative
assembly maps HnV(E w74 (V) — ) that we are interested in are automatically
trivial for n < —1 (in fact, both the source and target groups vanish in this case). In
the same paper, they establish that for the case » = —1, these cokernels are finitely
generated, which by results of Farrell [F77], Ramos [Ra07], and Grunewald [GO7],
implies that the cokernel is actually trivial. In particular, we only need to focus
on the cases n = 0, and n = 1. These cokernels are precisely the elusive Bass,
Farrell, and Waldhausen Nil-groups. We are able to identify these cokernels exactly,
with the exception of the case D4 x D,. For this group, we content ourselves with
summarizing what we were able to obtain in Subsection 6.4, We summarize the
non-trivial cokernels in Table 6.

Table 6. Cokernels of relative assembly map for maximal infinite V' € VC.

Ve ve HY (Egzn(V) = %) #£0 | HY (Ezzn (V) — %) #0
Dy x Dy DB Z/2 D, Z/2
Dy, *p, Dy D Z/2 D 7Z/2
(Dy x Z/2) %p, Dy P Z/2 P, Z/2
D4 x Do Nilg Nil;
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6.1. The lower algebraic K -theory of Ds x D_,. First, note that D5 x Dy, =
Do *pg D1o. As mentioned earlier K, (Z Q) is zero for n < —1 (see [FJ95]). Since
K_1(ZDs) = 0 (see Section 5.2), and K_1{Z Dy) = Z (see Section 5.3), we see
that for Q = D1 *p; D1g, wehave K_1(ZQ) =Z & Z.

For the remaining K-groups, we make use of [CP02, Lemma 3.8]. This gives
us that Ko(ZQ) = NKy(ZDs:;Cy,C,), where C; = Z[Dqy — Ds] is the Z Ds-
bimodule generated by D19 — D5 fori = 1,2, (see Sections 5.2 and 5.3 for the
Ko(ZDy) forn = 5,10), and Wh(Q) = Z3 @ NK(Z Ds; Cy, C3), with C; and C»
as before, (see Sections 5.2 and 5.3 for the Wh(D,) for n = 5, 10). The Nil-groups
appearing in these computations are the Waldhausen Nil-groups.

Now by [LOO0S], we know that NK;(Z Ds; C1,Cy) = O for i = 0, 1, vanishes
if and only if the corresponding Farrell Nil-group vanishes for the canonical index
two subgroup Ds X Z < D5 X D. Note that in this case, the Farrell Nil-group is
untwisted, and hence is just the Bass Nil-group N K; (Z Ds). But Harmon [Ha87] has
shown that for finite groups G of square-free order (such as Ds), the Bass Nil group
NK;(ZG) vanishes for i = 0, 1. We summarize our computations in the following:

73, q=1,
0, q =0,
Wh, (D5 x D =
Q( 5 OO) Zz’ g = _1’
0, q < —2.

and both the cokernels of the relative assembly map vanish for this group.

6.2. The lower algebraic K -theory of (D2 x Z/2) #p, D4. As before K, (ZQ)
is zero for n < —1 (see [FJ95]). Since K_1(Z D) = 0, K_1(Z[Dy x Z/2]) = 0,
and K_1(ZD4) = 0, we see that for @ = (D2 x Z/2) xp, D4, we have that
K_((ZQ) =0.

For the remaining K -groups, using [CP02, Lemma 3.8], we have that Ko (Z Q) =
Z/2@® NKo(ZDy; Ay, Az), where A1 = Z[(Dy xZ/2)— D] is the Z D5-bimodule
generated by (DaxZ/2)— Dy, and Ay = Z[D4— D3] is the Z D,-bimodule generated
by D4 — D,. Similarly, we have that Wh(Q) = NK(ZD,; A, A;), where Ay, A,
are the bimodules defined above.

Recall that in [LOO7, Theorem 5.2], the authors established that (1) K, (Z[ D3 x
D)) =2 @, Z/2 and (2) Wh(D3 x Do) = @ Z/2. The computation reduced
to showing that the Waldhausen Nil-groups NK;(Z D;; A5, A) is isomorphic o an
infinite countable sum of 7 /2 (where the bimodule A, is defined in the previous
paragraph). This was achieved by establishing (1) the existence of an injection, and
(2) the existence of a (different) surjection, from the Bass Nil-group NK; (Z D,) ==
@D, Z/2 into the corresponding Waldhausen Nil-group NK; (ZD5; A5, A>). But
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the reader can verify that the argument given in [LLO0O7] applies verbatim to the
Waldhausen Nil-groups NK;(Z D,: A1, Ay) appearing in our present computation.

We conclude that the lower algebraic K-theory of (Ds x Z/2) *p, D4 is given
by

@OO Z/z’ q = 13
Wh, (D2 x Z/2) %p, D4} = { D Z/2, q =0,
07 q S _17

and that the cokernels of the relative assembly map are both isomorphic to B, Z /2.

6.3. The lower algebraic K -theory of D4 xp, D4. Asbefore K,,(Z Q) is zero for
n < —1 (see [FJ95]). Since K _1(ZD,) = 0 and K_(Z D,) = 0, we see that for
Q = D4 *p, D4, we have that K_1(ZQ) = 0.

For the remaining K-groups, using [CP0O2, Lemma 3.8], we have that Ko (Z.Q) =~
NKy(Z Ds; Fy, F»), where fori = 1,2, F; = Z[D4 — D5] is the Z D,-bimodule
generated by D4 — D,. Similarly, we have that Wh(Q) = NK(Z D»; F1, F»), with
Fy and F; as before.

Now using [LOO07, Theorem 5.2], we conclude that for @ = Dy *p, Dy

P Z/2, g=1,
th(Q) = @oo Z/zv q = 0,
07 Q' S _15

and that the cokernels of the relative assembly map are both isomorphic to B, Z /2.

6.4. The lower algebraic K -theory of D4 x D,. The authors were unable to ob-
tain an explicit computation for this group. In this case, we have that Dy x Dy =
(D4 xZ/2) %p, (D4 x Z/2), and we are interested in the Waldhausen Nil-groups
associated to this splitting. A special case of recent independent work of several au-
thors (including Davis [D], Davis—Khan—Ranicki [DKR], and Davis—Quinn—Reich
[DQR]) is that this Waldhausen Nil-group is isomorphic to the Bass Nil-group asso-
ciated to the canonical index two subgroup D, x Z inside D4 X D, (a considerable
strengthening of the result of the authors in [1.O08]). In our tables, we denote these
groups by Nilg = NKy(ZD,) and Nil; = NK(Z D) (the lower Nil groups van-
ish by work of Farrell-Jones [FJ95]). These abelian groups are known to have the
following properties:

(1) Nil; 1s either trivial or infinitely generated [F77],
(2) Nilp is infinitely generated (see below),

(3) in both of these groups, the order of every element divides 8 [GO7, Corollary 5].
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It 1s very likely that the group Nil; is also non-trivial, but we were unable to
establish this result. In order to see that Nilg is non-trivial, consider the following
Cartesian square:

Zla]/{a* —1 l 0 = Z[Z/4] — Z[Z]2] =~ Z[al]/(a2 —1=0)
Zla]/{a® + 1 =0) @ Z[i]| ——=TF1[Z/2] = Fz[a]/{a® — 1 = 0)
which yields the Cartesian square for Z[Dy]| = Z[Z /4 x4 Z./2] = Z[Z/4]4[Z /2],
Z[Z/T [Z2/2] — Z[Z/ZI][Z/Z]
Z[il[Z /2] —— F2[Z/2][Z/2],

where in Z[i]4[Z/2], the automorphism « acts via «(i) = —i. Writing Dy =
7.2 x Z/2 and A = Z[i]lg[Z/2], and applying the N K-functor, this Cartesian
square yields the Mayer—Vietoris sequence

NK>([F2[Ds]) Nil; NK(Z]D3]) @ NK{(A) — NK;(IF2[D3])

Several of the groups appearing in this Mayer—Vietoris sequence are known: the group
N K (F2[D>]) vanishes by [Bas68], while the authors have previously shown [LOO07]
that the groups NK(Z[D]) and NKy(Z[D3]) are likewise countable infinite sums
of Z/2.

Focusing on the tail end of the Mayer—Vietoris sequence, and substituting in the
expressions we already know, we see that

- —> Nily — NKy(4) ® P Z/2 — 0,
o0

and non-triviality of Nilg follows from the surjectivity onto the countable infinite sum
of Z /2. In contrast, focusing on the head of the Mayer—Vietoris sequence, we see
that

NK>(F>[Ds]) Nil, NKl(A)EBGBZ/2—>NKlGFZ[DzD—> e

Hence to establish that Nil; is non-trivial from this sequence, one would need to
either
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» establish that the first map is non-zero, i.e., understand the map

NKz(Fz[Dz]) — NKl (ZD4),
or

» cstablish that the second map is non-zero by showing that the third map has
a non-trivial kernel, for instance by understanding the map NK(Z[D;]) —
NK;(F,[Da]).

The authors have some partial results concerning some of the terms showing up
in the head of the Mayer—Vietoris sequence, but so far have been unsuccessful in
establishing non-triviality of Nil;.

7. The spectral sequences and final computations

We now proceed to apply Corollary 3.4 to compute the lower algebraic K-theory of
Z.T, for I' one of the 32 possible 3-simplex hyperbolic reflection groups. Letus recall
that Corollary 3.4 tells us that for such groups I we have for n < 1 an isomorphism

k
Kn(ZT) 2 HY (Bye(T:KZ™) @ @D HY (Ezzw (Vi) — %),

i=1

where {Vi}f=1 are a complete set of representatives for the conjugacy classes of
maximal infinite virtually cyclic subgroups of type I.
We first note that for all 32 of our groups, we have

» obtained in Section 4 a complete list of the type I maximal infinite virtually
cyclic subgroups (listed out in Tables 2, 3, and 4),

» explicitly computed in Section 6 the groups
H) (Egzn (V) — %)
for all the type I maximal infinite virtually cyclic subgroups that occur, with the

exception of the case V' = Dy x D (see Table 6).

In particular, this allows us to determine the expression

k
B H, (Egrn (Vi) — %)

i=1

occurring in the formula above for all 32 of our groups.
Hence we are left with computing A (E gz (I'); KKZ~>°) for each of our 32
groups. In order to do this, we recall that Quinn [Qu&2] established the existence of
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a spectral sequence which converges to this homology group, with E2-terms given
by

E} = Hy(Egrn(T)/ T {Why(Te)}) = H,) (Egzn (D) KZ ™).

The complex that gives the homology of Egzu(T")/T" with local coefficients
{Wh,(I's)} has the form

e @ th(FUPJFl) — @th(rmﬁ)

gPt+1 ol
— P Why(T,o-1) — -+ — P Why(T,0).
ap—1 o0

where o? denotes the cells in dimension p, and the sum is over all p-dimensional
cells in Exzy (T')/T. The p® homology group of this complex will give us the
entries for the £ 1%, g-term of the spectral sequence. Let us recall that

Wh(F), q=1,
Why(F) = ¢ Ko(ZF), q=0,
K ZF), q<-1.

Observe that for the groups we are interested in it is particularly easy to obtain a model
for Egzu(I"): indeed, it is well known that for a lattice in Isom(H"™) the action on
H" is a model for E¢zx. A cocompact model H? can be obtained by equivariantly
removing a suitable collection of horoballs from H?. In our specific situation, we
obtain a model for Eg 7 (") having a very explicit fundamental domain: the original
hyperbolic 3-simplex, with the ideal vertices truncated.

Now note that for this fundamental domain A3 = H3 /T, it is particularly easy
to 1dentify the stabilizers of each cell. Indeed, there will always be a single 3-dimen-
sional cell, with trivial isotropy. There will be four 2-dimensional cells, each of
which will have stabilizer Z/2. Additionally, there might be some 2-dimensional
cells with trivial stabilizer (from the truncated vertices). Note that since Why (1) and
Wh,(Z/2) vanish for all ¢ < 1, this in particular implies that there will never be
any contribution to the E*-terms from the 3-dimensional and 2-dimensional cells. In
other words, Eﬁ,q = 0 except possibly for p = 0, 1.

Now let us focus on the 1-dimensional and 0-dimensional cells in the fundamental
domain A3. We will have exactly six 1-dimensional cells, each of which will have
stabilizer a dihedral group D, (n = 2,3, 4,5, or 6). In addition, there might be some
1-dimensional cells with stabilizer Z /2 (three such cells for each truncated vertex).
Note that amongst these groups, the only ones that have some non-trivial Wh,, are
the groups D5 (for ¢ = 1) and D¢ (for g = —1).
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Next, we observe that there are at most four O-dimensional cells in A3 coming from
the non-ideal vertices of A3, Furthermore, each of these vertices will have stabilizer
a spherical Coxeter group, isomorphic to the special subgroup of the Coxeter group I'
which corresponds to the vertex (up to isomorphism, these are the groups occurring
in Table 1). The remaining vertices of A3 (coming from the truncated vertices in A3)
will have stabilizers of the form D, (n = 2,3,4,5 or 6). For all these groups, the
non-vanishing Wh, can be found in Table 5.

Finally, we observe that since the only 1-cells with non-trivial Wh,, are the groups
Ds and D, most of the morphisms in the chain complex for the E2-terms will either
be zero (or in a few cases, will clearly be isomorphisms). The three morphisms one
needs to take care with are the following:

* K_1(ZDs) - K_1(Z[Ds x Z/2]),
® Wh(Ds) — Wh(Dlo),
» Wh(Ds5) — Wh(As; x Z/2).
We proceed to analyze each of these three morphisms in the next three sections.

7.1. The map K_1(ZDs) — K_1(Z|De¢ x Z[2]). We start by observing that
K_((ZDg) = Zand K_|(Z[Dg x Z]2]) = Z? (see Table 5). We claim that the map
induced by the natural inclusion Dg <— Dg x Z./2 is injective, and the quotient group
is isomorphic to Z2. In order to see this, we merely note that there is a retraction
from Dg x Z/2 to the subgroup Dg, and hence we must have that K_1(Z Dg) =~ Z
is a summand inside K_; (Z[Dg x Z/2]) = Z3, which immediately gives our claim.

7.2. The map Wh(Ds) — Wh(Dyp). We start by observing that Wh{Ds) =~ Z
and Wh(D o) = Z? (see Table 5). We claim that the map induced by the natural
inclusion Ds — Dy == D5 x Z/2 is injective, and the quotient group is isomorphic
to Z. But again, we see that there is a retraction from Ds x Z/2 to the subgroup
Ds, and hence Wh(Ds) = Z is a summand inside Wh(D1¢) 2 Z?2, which gives us
our claim. Note that this map was used implicitly in Section 6.1 (in the argument
mentioned in the second paragraph).

7.3. The map Wh(Ds) — Wh(A45xZ/2). We start by observing that Wh(Ds5) =
7 and Wh(As x Z/2) = Z? (see Table 5). We claim that the map induced by the
natural inclusion D5 — A5 x Z /2 is injective, and the quotient group is isomorphic
to Z. Note that in this case we do not have a retraction from the group As x Z/2 to
the subgroup Ds (since As 1s simple, the only possible non-trivial quotients would
be isomorphic Z /2, As, or A5 x Z./2).

Let us start by observing that, from the inclusion D5 < A5, we obtain that the
inclusion D5 < A5 x 7,/2 factors through

D5;>D5XZ/2§D10(—>A5XZ/2
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which implies the map on Whitehead groups likewise factors through
Wh(Ds) — Wh(Dlo) — Wh(A5 X Z/z)

Observe that the first map in the above sequence was analyzed in the previous Sec-
tion 7.2, Furthermore the last two groups in this sequence are abstractly isomorphic
to Z2. So in order to obtain our claim, all we need to do is establish that the inclusion
Dy — As x Z/2 induces an isomorphism on Whitehead groups.

In order to do this, we recall that Dress induction provides us with an isomorphism
(see [O89, Chapter 11]):

Wh(ds x Z/2) = limp e(4sxz/2Wh(H).

Here #(As x Z/2) consists of all hyperelementary subgroups of As x Z/2, the
limit is over all maps induced by inclusion and conjugation, and the isomorphism is
naturally induced by the inclusions. Now recall (Section 5.4 ) that the hyperelementary
subgroups of A5 x Z/2 are, up to isomorphism, Dy, Dy x 7./2, D3, Ds, Dg, and
D1o. Amongst these groups (see Table 5), the only groups with non-trivial Wh are
the groups Ds and D1g, with Wh(Ds) 2= Z and Wh(D1o) = Z2. Furthermore,
inside the group As x Z/2, it is easy to see that

(1) every subgroup isomorphic to Ds lies inside a subgroup isomorphic to D1p;
(2) all the subgroups isomorphic to Dy are pairwise conjugate.

This immediately implies that the direct limit to the right is canonically isomorphic
to Wh(D1y), which gives us our desired claim.

7.4. The spectral sequences. By this point of the paper we have

* described a simple model for £ ¢z (I') for our groups, and identified the stabi-
lizers of cells (in this section),

» computed (in Section 5) the lower algebraic K-groups of the stabilizers of the
cells, and

* 1identified (in this section) the non-trivial morphisms appearing in the computa-
tion of the E?-terms of the Quinn spectral sequence.

Furthermore, as explained earlier, the only possible non-zero terms in the spectral
sequence are the £, , with p = 0, 1. This boils down to understanding the homology
of the complex

0 — P Why (1) — G Why(Th0) — 0.

ol a9

But we have seen (Sections 7.1, 7.2, and 7.3) that the middle map is always injective,
hence the Eq 4 terms will also vanish. This gives us that in all 32 cases the spectral
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sequence collapses at the E*-term. In fact, in all 32 cases, the only possible non-zero
E*-terms are E§ _, E§ o, E¢ ;. In particular the K; (ZT') vanish for i < —2.

The results obtained for K_;, Ky, and Wh for all 32 hyperbolic 3-simplex groups
are listed out in Table 7 and Table 8 (on the next two pages). For ease of notation,
we have only entered the non-zero terms in the tables; all the blank squares represent
eniries where the corresponding group vanishes.

Table 7. Lower algebraic K -theory of non-cocompact hyperbolic 3-simplex groups.

r K_| #0 Ko # 0 Wh # 0
[3[]><[]]
[4141]

[(3,6)1] z?
6, 313]] 72
[41-1:1] Z/2

[(3,5,3,6)] z> (Z/2)> z3
[(3,47)] 7? (Z/4)?

[(3,4,3,6)] i (Z/4)? & Nilg Nil;
(37, 6)] Z
[35:=1] Do Z2/2 B 2/2
[6,31:1] Z P Z/2 Poo Z/2
[3,6,3] 73
[6,3, 6] Z° (Z/2)%
[4,4,4] (Z/4? & D, Z/2 D 7/2
[5,303]] z4 D Z/2 3 oP,Z/2
[5,3,6] Z° P Z/2 Z2OPZ/2
[(3%,4%)] 7? (Z/4 @ Do Z/2 Do Z/2
[4,303]] 7> (7/4? & P, 7/2@Nily | P, 7Z/2 & Nily
[3,303]] D 7/2 P Z/2
[3,411] 7? (Z/4Y @ Do /2 Do Z/2
[4,3. 6] 74 (2|4 &P, 7/2@ Nilg | B, Z/2® Nily
[3,3, 6] Vi P Z/2 P Z/2
[3,4,4] 7> (Z]4? P, Z/2 DB Z/2
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Table 8. Lower algebraic K-theory of cocompact hyperbolic 3-simplex groups.

r K_1#0 Ko#0 Wh # 0
[3.5,3] 75 DB 7Z/2 3P 7/2
[5,3,5] Z° P Z/2 2P 7/2
[(32, 4)] 7? (7/4)? & B, 7/2 & Nilp D 7/2 ® Nil
[5,31:1] z* D Z/2 P o P, Z/2
[4,3,5] Z* (Z/4)? & P, Z/2@Nily | Z3 & P, 7/2 & Nily
[(33,5)] Z4 D 7/2 VAR-Y 2 YY)
[(3.5)1] z® Do Z/2 2°® Do /2
(EX 74 | @/ e P 7/2® (2 Nilp) | Bo Z/2® (2-Nily)
[(3.4.3,5)] Tt (Z/9? 0P Z/2@®Nily | Z3© P, Z/2@ Nily

Note that several of the group appearing in Tables 7 and 8 involve copies of the
Bass Nil-groups NKo(Z D4) and NK(Z D) (see Section 5.5). In order to simplify
the notation in the tables, we used Nily and Nil; to denote these two Nil-groups.
Recall that we know that the groups Nilp, Nil; are torsion groups, where the order of
every element divides 8, and furthermore the group Nilg is infinitely generated (see
Section 5.5). In the entries for the group [(3, 4)!4], the expression 2 - Nil; denotes
two copies of the Bass Nil-group Nil;.

Remark. In an Addendum to the present paper [We], C. Weibel has obtained some
additional information on the Bass Nil-groups Nilg, Nil;. Specifically, he shows that
Nily is the direct sum of a countably infinite free Z /2-module with a countably infinite
free Z/4-module. He also shows that Nil; is a countably infinite torsion group of
exponent 2 or 4.

8. Appendix: two specific examples

In this Appendix we work through the entire procedure for two specific examples (one
cocompact, and one non-cocompact), with a view of helping the reader understand
the layout of the paper.
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8.1. The group [(3, 5)[2]]. The Coxeter diagram for this group I" can be found in
Figure 1, from which the following presentation can be read off (see Section 2):

(w,x,v,z|wr=x2=y2=22=1,

(wx)’ = (x)° = (y2)° = (zw)* = (wy)? = (x2)* = 1).

This group acts on H? cocompacily, with fundamental domain a 3-simplex A3, After
labeling the hyperplanes extending the four faces by the four generators of I, the
angles between these hyperplanes satisfy the following relationships (see Section 2):

* A(Pw’Py):A(Px,PZ):T[/Za
* A(Pw,Px):L(PyaPZ):ﬂ/?’a
e L(Py, Py) = Z(Py, P,) = n/5.

In particular, the action of I" on H?® gives a cocompact model for Egzzu (I'),
and the splitting formula (see Corollary 3.4) tells us that we have, for all n < 1,
isomorphisms

k

K,(ZT) = H, (Egzn(T):KZ™®) & @ H, (Egrw (Vi) — ).
i=1

Let us now identify the (finitely many) groups {V;} that appear in the above
formula. As explained in Section 4, these groups will arise as stabilizers of type 1
gcodesics, which are precisely (up to the I'-action) one of the six geodesics Py, N Py,
Py NPy, Py NPy, Py Py, PyN Py, and Py N P;. To identify the stabilizers of
these geodesics, we first need to identify the vertex stabilizers for the simplex A3,
Recall that these will be the special subgroups generated by triples of generators.
But from the Coxeter diagram for I', one immediately sees that any triple of vertices
spans out a subdiagram corresponding to the Coxeter group [3, 5]. This implies that
every vertex has stabilizer isomorphic to the (finite) Coxeter group [3, 5], which is
well known to be isomorphic to the group As x Z/2. Now for each of the six type 1
geodesics we have, one can consider the projection to the fundamental domain A3,
From Table 1, looking up the vertex stabilizers As x Z/2, we see that every one of
the six geodesics projects to precisely the associated edge in A3, Now to find the
stabilizers of the geodesics, one applies Bass—Serre theory. The stabilizer acts on
each of the geodesics with quotient a segment, so one can write each of the stabilizers
as a generalized free product. Furthermore, Table 1 allows us to identify the vertex
groups in the Bass—Serre graph of groups.

Let us see how this works, for instance in the case of the geodesic Py N P).
The two associated hyperplanes P, and P, intersect at an angle of /5, hence the
edge group in the Bass—Serre graph of groups will be D5. For the vertex groups,
we see that the corresponding segment in A* joins a pair of vertices with stabilizer
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As x Z/2, and correspond to the angle of 7r/5 at both the vertices. The last row in
Table 1 tells us that both the vertex groups in the Bass—Serre graph of groups will be
Dyp. This tells us that the stabilizer of the geodesic Py N P, 1is precisely the group
Dio*ps Do = Ds x Dy. Carrying this procedure out for each of the six geodesics,
one finds that the stabilizers one obtains are as follows:

* two copies of Do *xp- Dqg, corresponding to the two geodesics P, N P, and
p 5 p g g ¥y

P NPy,

* two copies of Dg *p, Dg, corresponding to the two geodesics P, N P, and
Py N Py,

* two copies of Dy X Dy, corresponding to the two geodesics Py, N P, and
P A1 P,

Note that these are precisely the groups that are listed out in Table 4. Finally, amongst
these six subgroups, one needs to know which ones have a non-trivial cokernel for the
relative assembly map. But from the work in Section 6, all the non-trivial cokernels
are listed out in Table 6. Looking up Table 6, one sees that out of these six groups, the
only ones with non-trivial cokernels are the two copies of Dy X D, each of whom
contributes € Z/2 to the Ko(ZI") and Wh(T").

So we are finally left with computing the homology coming from the finite sub-
groups, i.e., the term HI (E g7 (I'); KZ~°°). As we mentioned earlier, a cocompact
fundamental domain for H3/T is given by A3. The stabilizers of cells in the funda-
mental domain can be read off from the Coxeter diagram, as they will precisely be
the special subgroups (see the discussion in Section 7). We see that

« there is one 3-dimensional cell (the interior of A?), with trivial stabilizer,
« there are four 2-dimensional cells (the faces of A?), with stabilizer Z /2,

« there are six 1-dimensional cells (the edges of A?), two of which have stabilizer
D5, two of which have stabilizer D3, and two of which have stabilizer D5,

« there are four O-dimensional cells (the vertices of A?), each of which has stabi-
lizer As x Z./2.

Now to obtain the E2-terms in the Quinn spectral sequence, we need the homology
of the complex

e —> @ th(ro—p+1) — @th(rcﬂ”)

gbt+l1 ol

— @ Why(Tgp-1) —> - —> G Why(T0).

ob—1 o9

where o are the p-dimensional cells (which we identified above). But from the
work in Section 5, we know explicitly all the groups appearing in the above complex.
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Indeed, looking up the non-zero K -groups in Table 5, we see thatforg < —1, the entire
complex is identically zero. We now consider the remaining values ¢ = —1, 0, 1.

g = —1: The complex degenerates to
0 — 4K_(Z]|A5s x Z./2]) — O,

where the four copies of K_1(Z[As x Z /2]) come from the four vertices of A3. Since
we know (see Table 5) that K (Z[As x Z/2]) = Z?, we immediately get that £,

all vanish, with the exception of Ef _, = Z°.
g = 0: The complex degenerates to
0 — 4Ky (Z[As x Z/2]) — 0,
where the four copies of Ko (Z[As x Z./2]) come from the four vertices of A3, Since

we know (see Table 5) that Ko(Z[As5 x Z/2]) = Z /2, we immediately get that £ }%,0
all vanish, with the exception of £7 , = (Z/2)*.

g = 1: The complex degenerates to
0 — 2Wh(Ds) — 4Wh(As5 x Z/2) — 0.

Note that the first copy of Wh(Ds) comes from the edge Py N P, N A?, while the
second copy of Wh(Ds) comes from the edge P, N P, N A3. The four copies of
Wh(As x Z/2) come from the four vertices of A3.

Since the two edges P, N P, N A3 and P, N P, N A3 are disjoint, the complex
splits as a sum of two subcomplexes, one for each of the two edges. Focusing on the
first edge, we see that we have

0 — Wh(Ds) — 2Wh(A5; x Z/2) — 0.
We know that Wh(Ds) =~ Z and Wh(A4s x Z/2) =~ Z? (see Table 5), and that
the map Wh(Ds) < Wh(A4s x Z/2) induced by inclusion is split injective (see
Section 7.3). This immediately tells us that in the chain complex above, we have that

2Wh(As x Z/2)/Wh(Ds) = Z3. An identical analysis for the other edge gives us
that the homology of the original complex yields £7 ; = O and EJ , =~ Z°.

Combining everything we have said so far, we see that for the Quinn spectral
sequence, the only non-zero E*-terms are E5 _, 2 Z® and EJ ; = Z°. This implies
that the spectral sequence immediately collapses, giving us that

HYN (Egipy(T):KZ™®°) =0, forn < —1,
and

AL (Egzw (T); KZ™) = 7,

Hy (Egzw (TH:KZ ™) = (Z/2)°,

H{ (Egzy(T): KZ™%) =~ Z°.
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We now have both the terms appearing in the splitting formula, and we conclude
that the lower algebraic K-theory of the group I' is given by

WhD) = Z° & P Z/2, n=1,

Wh,(T') = Ko(ZT) = P, Z/2, n=0,
" K_(ZT) =~ Z8, n=-—1,
K, (ZT) = 0, n<-—l.

Looking up Table 8, one finds that these are precisely the values reported.

8.2. The group [3,411]. The Coxeter diagram for this group T' can be found in
Figure 2, from which the following presentation can be read off (see Section 2):

(w,x,y,z|wr=x>=y2 =22 =1,

(wx)’ = (xp)* = (y2)* = w)* = (wy)* = (x2)* = 1).

This group acts on H?* with cofinite volume, with fundamental domain a (non-
compact) 3-simplex A? with one ideal vertex. After labeling the hyperplanes extend-
ing the four faces by the four generators of I', the angles between these hyperplanes
satisty the following relationships (see Section 2):

o L(Py, Py) = L(Py, Pz) = L(Py, Pz) = 7/2,
¥ L P P) = B3,
o L(Py, Pp) = L(Pyx, Py) = 7/4.

The ideal vertex arises as the intersection (at infinity) of the three hyperplanes Py N
Py N P, and has stabilizer the 2-dimensional crystallographic group [4, 4].

Now as discussed in Section 7, the action of T on H3 provides us with a model
for Egra (I'). Furthermore, the splitting formula (see Corollary 3.4) tells us that we
have, for all » < 1, isomorphisms

k
K,(ZT) = H, (Egpx (D) KZ™°) & @5 H, (Egzx (Vi) — ).
i=1

Let us now identify the (finitely many) groups {V;} that appear in the above
formula. As explained in Section 4, these groups will arise as stabilizers of type I
geodesics, which are precisely (up to the I'-action) one of the six geodesics Py, N Py,
Py, NPy, Pyn P, PyN Py, PN Py and Py N P;. Nolte that since the geodesic
segments Py N Py, P, N P, and P, N P, project to non-compact segments in the
fundamental domain (they give rise to edges joined to the ideal vertex), these geodesics
will never have an infinite stabilizer, and we can hence safely ignore them.
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To identify the stabilizers of the remaining three geodesics, we follow the proce-
dure from Section 4. We first need to identify the (non-ideal) vertex stabilizers for
the simplex A*. Recall that these will be the special subgroups generated by triples
of generators. But from the Coxeter diagram for I', and the subdiagram spanned out
by the triple of vertices, we obtain that:

 the Coxeter group [3, 4] = S4 x Z/2 will be the stabilizer of the vertices Py, N
P, N P; and of the vertex P, N P, N Py,

» the group (Z/2)* will be the stabilizer of the vertex Py, N Py N Py,

Now for each of the three (potentially cocompact) type I geodesics that we have
(Py N Py, Py NPy, and Py, N P, ) one can consider the projection to the fundamental
domain A®. From Table 1, looking up the vertex stabilizers S4 x Z/2, we see that
every one of the three geodesics projects to precisely the associated edge in A3.

To find the stabilizers of these geodesics, we now use Bass—Serre theory as ex-
plained in Section 4. To find the vertex groups, one uses Table 1, while the edge
group will be precisely the dihedral group given by the special subgroup associated
to the geodesic. This immediately gives us the stabilizers:

» one copy of Dg xp, Dg, corresponding to the geodesic P, N Py,

* two copies of (Z/2 x Dy) xp, (Z/2 x D3) = D3 X Dy, corresponding to the
two geodesics Py, N Py and Py, N Py,

which are precisely the groups reported in Table 3. Finally, amongst these three
subgroups, one needs to decide which ones have a non-trivial cokernel for the relative
assembly map. These cokernels are listed out in Table 6, and one sees that the only
non-trivial contribution will come from the two copies of D, x D, each of which
will contribute @, Z/2 to the Ko(ZT") and Wh(T').

So we are finally left with computing the homology coming from the finite sub-
groups, i.e., the term HI (E gy (I'); KZ ™). As we mentioned earlier, a fundamen-
tal domain for H? /T is given by the original hyperbolic 3-simplex A® with the ideal
vertex Py N P, N P, truncated. The stabilizers of cells in the fundamental domain can
be read off from the Coxeter diagram, as they will precisely be the special subgroups
(see the discussion in Section 7). We see that

« there is one 3-dimensional cell (the interior of A?), with trivial stabilizer;

* there are four 2-dimensional cells with stabilizer Z /2 (for the faces of the orig-
inal A?), and one 2-dimensional cell with trivial stabilizer (from the truncated
vertex);

 there are nine 1-dimensional cells: three of these have stabilizer D, (from the
edges corresponding to P, N P;, Py, N Py, and Py, N P;), two have stabilizer
D, (from the edges corresponding to P, N Py and P, N P;), one has stabilizer
D3 (from the edge corresponding to P, N P,), and three have stabilizer Z /2
(from the truncation of Py, P, P;),
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» there are six O-dimensional cells: two have stabilizer S4 x Z/2 (from two of
the non-ideal vertices), one has stabilizer D5 x Z /2 (from the third non-ideal
vertex), two have stabilizer D, (from the truncation of the edges P, N P, and
Py N P;), and one has stabilizer D5 (from the truncation of the edge P, N P;).

Now to obtain the E2-terms in the Quinn spectral sequence, we need the homology
of the complex

e —> @ th(ro-p+1) — @th(rcﬂp)

gb+1 o?
— @ Why(Iyp—1) — +++ —> @th(f‘go),
aP—1 a0

where o are the p-dimensional cells (which we identified above). But from the
work in Section 5, we know explicitly all the groups appearing in the above complex.
Indeed, looking up the non-zero K-groups in Table 5, we see that the only two of the
cell stabilizers that have non-trivial K-theory are the groups Dy X Z /2 and Sy x Z.] 2.
There are two copies of the group S4 x Z /2, arising as stabilizers of 0-cells, and we
have that K_ (Z[Ss x Z./2]) = Z and Ko(Z[Ss x Z/2]) = Z /4. There is only one
copy of the group D, x Z/2 , arising as the stabilizer of one single O-cell, and we
have that Ko(Z[D, x Z/2]) = Z /2. This immediately tells us that non-zero terms
in the Quinn spectral sequence will be Ej _, = Z? and E§ , = (Z/4)* ® Z/2. This
implies that the spectral sequence immediately collapses, giving us that

H, (Egzy(T):KZ™®) =~ 0
forn < —1,n =1, and
HY (Egzn (T); KZ™°) =~ 772,
Hy (Eg1x(T);KZ™™) = (Z/4) ® Z/2.

We now have both the terms appearing in the splitting formula, and we conclude
that the lower algebraic K-theory of the group I' is given by

Wh(I") = P, Z/2, n=1

Wi (T) = Ko(ZT) = (Z/4* & P, Z/2, n =0,
g K_{(ZT) =~ 72, n=-1,

K, (ZT) = 0, n<-—1

Looking up Table 7, one finds that these are precisely the values reported.



Vol. 84 (2009)  Lower algebraic K-theory of hyperbolic 3-simplex reflection groups 335

References

[Bar03]

[Bas65]

[Bas68]

[BEPPOO]

[C80a]

[CS0b]

[CPO2]

[CuR81]

[CuR87]

[D]

[DKR]

[DQR]

[EH79]

[EM76]

[EMS0]

[FO]

[E77]

[F193]

[FI95]

A. Bartels, On the domain of the assembly map in algebraic K-theory. Algebr. Geom.
Topol. 3 (2003), 1037-1050. Zbl 1038.19001 MR 2012963

H. Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of
finite groups. Topology 4 (1965), 391-410. Zbl 0166.02401 MR 0193120

H. Bass, Algebraic K-theory. W. A. Benjamin, New York 1968. Zbl 0174.30302
MR 0249491

E.Berkove, F. T. Farrell, D. J. Pineda, and K. Pearson, The Farrell-JTones isomorphism
conjecture for finite covolume hyperbolic actions and the algebraic K-theory of
Bianchi groups. Trans. Amer. Math. Soc. 352 (2000), 5689-5702. Zbl 0954.19001
MR 1694279

D. Carter, Lower K-theory of finite groups. Comm. Algebra 8 (20) (1980),
1927-1937. Zbl 0448.16017 MR 0590500

D. Carter, Localization in lower algebraic K-theory. Comm. Algebra 8 (1980),
603—622. Zbl 0429.16019 MR 0561543

F. X. Connolly and S. Prassidis, On the exponent of the cokernel of the forget-control
map on Kg-groups. Fund. Math. 172 (2002),201-216.7bl 0992.57022 MR 1898685

C. Curtis and 1. Reiner, Methods of representation theory. Vol. 1, Wiley, New York
1981. 7Zbl 0469.20001 MR 0632548

C. Curtis and 1. Reiner, Methods of representation theory. Vol. 11, Wiley, New York
1987. Zbl 0616.20001 MR 0892316

J. Davis, Some remarks on Nil groups in algebraic K-theory. Preprint;
arXiv:0803.1641v2.

J. Davis, Q. Khan, and A. Ranicki, Algebraic K-theory over the infinite dihedral
group. Preprint; arXiv:0803.1639v2.

I. Davis, F. Quinn, and H. Reich, Algebraic K-Theory of virtually cyclic groups. In
preparation.

S. Endo and Y. Hironaka, Finite groups with trivial class group. J. Math. Soc. Japan
31 (1979), 161-174. Zbl 0396.20004 MR 0519042

S. Endo and T. Miyata, On the projective class group of finite groups. Osaka J. Math.
13 (1976), 109-122. Zbl 0364.20009 MR 0409561

S. Endo and T. Miyata, On the class group of dihedral groups. J. Algebra 63 (1980),
548-573. Zbl 0436.16006 MR 0570730

D. Farley and I. J. Ortiz, Three-dimensional crystallographic groups and algebraic
K-theory. In preparation.

F. T. Farrell, The nonfiniteness of Nil. Proc. Amer. Math. Soc. 65 (1977), 215-216.
7bl 0365.18021 MR 0450328

F. T. Farrell and L. Jones, [somorphism conjectures in algebraic K-theory. J. Amer.
Math. Soc. 6 (1993), 249-297. 7bl 0798.57018 MR 1179537

F. T. Farrell and L.. Jones, The lower algebraic K-theory of virtually infinite cyclic
groups. K-theory 9 (1995), 13-30. Zbl 0829.19002 MR 1340838



336

[GO7]

[Ha87]

[JKRT99]

[TKRTO2]

[LOO7]

[LOOS]

[LMO]

[LW]

[Ma78]

[Ma80]

[Ma06]

[Ma07]

[Mi66]

[O89]

[Or04]

[Pe98]

[Qu82]

[Ra07]

[Re76]

J.-F. Lafont and 1. J. Ortiz CMH

J. Grunewald, Non-finiteness results for nil-groups. Algebr. Geom. Topol. T (2007),
1979-1986. Zbl 1127.19004 MR 2366184

D. R. Harmon, N K of finite groups. Proc. Amer. Math. Soc. 100 (1987), 229-232.
Zbl 0625.18003 MR 0884456

N. W. Johnson, J. G. Ratcliffe, R. Kellerhals, and S. T. Tschantz, The size of a
hyperbolic Coxeter simplex. Transform. Groups 4 (1999), 329-353.7bl 0953.20041
MR 1726696

N. W. Johnson, I. G. Ratcliffe, R. Kellerhals, and S. T. Tschantz, Commensurability
classes of hyperbolic Coxeter groups. Linear Algebra Appl. 345 (2002), 119-147.
Zbl 1033.20037 MR 1883270

J.-F. Lafont and I. J. Ortiz, Relative hyperbolicity, classifying spaces, and lower
algebraic K-theory. Topology 46 (2007), 527-553. Zbl 1132.19001 MR 2363244

J.-F. Lafont and I. J. Ortiz, Relating the Farrell Nil-groups to the Waldhausen Nil-
groups. Forum Math. 20 (2008), 445-455. 7Zbl 1147.19005 MR 2418200

I.-F. Lafont, B. Magurn, andI. J. Ortiz, .ower algebraic K-theory of certain reflection
groups. In preparation.

W. Liick and M. Weiermann, On the classifying space of the family of virtually cyclic
subgroups. Pure Appl. Math. (., to appear.

B. Magurn, $ K of dihedral groups. J. Algebra 51 (1978),399-415. 7Zbl 0376.16026
MR 0498804

B. Magurn, Whitehead groups of some hyperelementary groups. J. London Math.
Soc. (2) 21 (1980), 176-188. Zbl 0418.16015 MR 0576195

B. Magurn, Explicit K1 of some modular groups rings. J. Pure Appl. Algebra 206
(2006), 3-20. Zbl 1093.19001 MR 2220078

B. Magurn, Explicit K» of some finite groups rings. J. Pure Appl. Algebra 209 (2007),
801-811.7bl 1120.19002 MR 2298858

J. Milnor, Whitehead torsion. Bull. Amer. Soc. 72 (1966), 358-426. Zbl 0147.23104
MR 0196736

R. Oliver, Whitehead groups of finite groups. L.ondon Math. Soc. Lecture Notes Ser.
132, Cambridge University Press, Cambridge 1989. Zbl 0636.18001 MR 0933091

I. J. Ortiz, The lower algebraic K-theory of I'3. K-theory 32 (2004), 331-355.
7bl 1068.19004 MR 2112901

K. Pearson, Algebraic K-theory of two dimensional crystallographic groups. K-
theory 14 (1998), 265-280. Zbl 0907.19001 MR 1633509

F. Quinn, Ends of maps II. Inveni. Math. 68 (1982), 353-424. /bl 0533.57008
MR 0669423

R. Ramos, Non finiteness of twisted Nils. Bol. Soc. Mat. Mexicana (3) 13 (2007),
55-64. MR 2468022

L. Reiner, Class groups and Picard groups of group rings and orders. Conference
Board of the Mathematical Sciences, Regional Conference Ser. Math. 26, Amer.
Math. Soc., Providence, RI, 1976. Zbl 0326.16025 MR 0404410



Vol. 84 (2009)  Lower algebraic K-theory of hyperbolic 3-simplex reflection groups 337

[RU74]

[Se77]

[Sw60]

[V67]

[Wd78]

[W74]

[We]

I. Reiner, and S. Ullom, Remarks on class groups of integral group rings. Symposia
Math. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972),
Academic Press, London 1974, 501-516. Zbl 0305.20007 MR 0367043

I. P. Serre, Linear representations of finite groups Grad. Texts in Math. 42, Springer-
Verlag, New York 1977. Zbl 0355.20006 MR 0450380

R. G. Swan, Induced representations and projective modules. Ann. of Math. (2) 71
(1960), 552-578. 7Zbl 0104.25102 MR 0138688

E. B. Vinberg, Discrete groups generated by reflections in Lobachevskii spaces.
Math. USSR-Sb. 1 (1967), 429-444. Zbl 0166.16303 MR 0207853

F. Waldhausen, Algebraic K-theory of generalized free product I, II. Ann. of Math.
108 (1978), 135-256. Zbl 0397.18012 MR 0498807

C. T. C. Wall, Norms of units in group rings. Proc. London Math. Soc. 29 (1974),
593-632. Zbl 0302.16013 MR 0376746

C. Weibel, NKg and NK; of the groups C4 and D4. Comment. Math. Helv. 84
(2009), 339-349.

Received May 6, 2007

Jean-Frangois Lafont, Department of Mathematics, Ohio State University, Columbus,
OH 43210, U.S.A.

E-mail: jlafont@math.ohio-state.edu

Ivonne J. Ortiz, Department of Mathematics and Statistics, Miami University, Oxford,
OH 45056, U.S.A.

E-mail: ortizi@muohio.edu



	Lower algebraic K-theory of hyperbolic 3-simplex reflection groups

