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Groups with finitely many conjugacy classes and their
automorphisms

Ashot Minasyan

Abstract. Wecombineclassical methodsof combinatorial group theory with the theoryof small
cancellation over relatively hyperbolic groups to construct finitely generated torsion-free groups
that have only finitely many classesof conjugateelements. Moreover, we present several results
concerning embeddings into such groups.

As another application of these techniques, we prove that every countable group C can be
realized as a group of outer automorphisms of a group N, where N is a finitely generated group
having Kazhdan’s property T) and containing exactly two conjugacy classes.

Mathematics Subject Classification 2000). 20F65, 20E45, 20F28.

Keywords. Conjugacy classes, relatively hyperbolic groups, outer automorphism groups.

1. Introduction

We shall start with the following definition.

Definition. Suppose that n 2 is an integer. We will say that a group M has the
property nCC) if there are exactly n conjugacy classes of elements in M.

Note that a group M has 2CC) if and only if any two non-trivial elements are

conjugate in M. For two elements x; y of some group G, we shall write x G
y if x

and y are conjugate in G, and x Goe y if they are not.
For a group G, denote by G/ the set of all finite orders of elements of G. A classical

theorem of G. Higman, B. H. Neumann and H. Neumann ([8]) states that every
countable group G can be embedded into a countable but infinitely generated) group

M, where any two elements of the same order are conjugate and M/ D G/.
For any integer n 2, take G D Z=2n 2Z and embed G into a countable group

M according to the theorem above. Then card. M// D card. G// D n 1.
Since, in addition, M will always contain an element of infinite order, the theorem

of Higman–Neumann–Neumann implies that G has nCC).

This work was supported by the SwissNational Science Foundation Grant ] PP002-68627.



260 A. Minasyan CMH

Another way to construct infinite groups with finitely many conjugacy classes was

suggested by S. Ivanov [15, Theorem 41.2], who showed that for every sufficiently
large prime p there is an infinite 2-generated group Mp of exponent p possessing
exactly p conjugacy classes. The group Mp is constructed as a direct limit of word
hyperbolic groups, and, as noted in [21], it is impossible to obtain an infinite group
with 2CC) in the same manner.

In the recent paper [21] D. Osin developed a theory of small cancellation over
relatively hyperbolic groups and used it to obtain the following remarkable result:

Theorem 1.1 ([21], Theorem 1.1). Any countable group G can be embedded into a

2-generated groupM such that any two elements of the same order are conjugate in
M and M/ D G/.

Applying this theorem to the group G D Z=2n 2Z one can show that for each

integer n 2 there exists a 2-generated group with nCC/. And when n D 2 we get
a 2-generated torsion-free group that has exactly two conjugacy classes.

The presenceof elements of finite orders in the aboveconstructionswas important,
because if two elements have different orders, they can never be conjugate. So,
naturally, one can ask the following

Question 1. Do there exist torsion-free finitely generated) groups with nCC), for
any integer n 3?

Note that ifG is the finitely generated group with 2CC) constructed by Osin, then
the m-th direct power Gm of G is also a finitely generated torsion-free group which
satisfies 2mCC). But what if we want to achieve a torsion-free group with 3CC)?
With this purpose one could come up with

Question 2. Suppose that G is a countable torsion-free group and x; y 2 G are

non-conjugate. Is it possible to embed G into a group M, which has 3CC), so that

x and y stay non-conjugate in M?

Unfortunately, the answer to Question 2 is negative as the following example
shows.

Example 1. Consider the group

G1 D ha;t j tat 1
D a 1

i 1.1)

which is isomorphic to the non-trivial semidirect product Z Ì Z. Note that G1 is
torsion-free, and t is not conjugated to t 1 in G1 because t oe t 1 in the infinite
cyclic group hti which is canonically isomorphic to the quotient of G1 by the normal
closure of a. However, if G1 is embedded into a 3CC)-group M, it is easy to see
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that every element of M will be conjugated to its inverse indeed, if y 2 M n f1g
and y

M
oe y 1 then y M

a
M

a 1, for some 2 f1; 1g, hence y M y – a

contradiction). In particular, t M t 1.

An analog of the above example can be given for each n 3 – see Section 3. This
example shows that, in order to get a positive result, one would have to strengthen
the assumptions of Question 2.

Let G be a group. Two elements x; y 2 G are said to be commensurable if there

exist k; l 2 Znf0g such that xk is conjugate to yl We will use the notation x
G

y if
x and y are commensurable in G. In the case when x is not commensurable with y

we will write x
G

6

y. Observe that commensurability, as well as conjugacy, defines
an equivalence relation on the set of elements of G. It is somewhat surprising that
if one replaces the words “non-conjugate” with the words “non-commensurable” in
Question 2, the answer becomes positive:

Corollary 1.2. Assume that G is a countable torsion-free group, n 2 N, n 2, and
x1; : :: ; xn 1 2 G n f1g are pairwise non-commensurable. Then there exists a group

M and an injective homomorphism ' W G M such that

1. M is torsion-free and generated by two elements;

2. M has nCC);

3. M is 2-boundedly simple;

4. the elements '.x1/;: : : ; '.xn 1/ are pairwise non-commensurable in M.

Recall that a group G is said to be k-boundedly simple if for any x; y 2 G n

f1g there exist l k, 1; : : : ; l 2 f 1;1g and g1; : : : ;gl 2 G such that x D
g1y 1g 1

1 gly l g 1
l in G.

A group is called boundedly simple if it is k-boundedly simple for some k 2 N.
Evidently every boundedly simple group is simple; the converse is not true in general.
For example, the infinite alternating group A1 is simple but not boundedly simple
because conjugation preserves the type of the decomposition of a permutation into a

product of cycles. First examples of torsion-free finitely generated boundedly simple
groups were constructed by A. Muranov see [12, Theorem 2], [13, Theorem 1]).

Corollary 1.2 is an immediate consequence of a more general Theorem 3.5 that
will be proved in Section 3.

Applying Corollary 1.2 to the group G D F.x1;: : : ; xn 1/, which is free on the
set fx1; : :: ; xn 1g, and its non-commensurable elements x1; : : :; xn 1, we obtain a

positive answer to Question 1:

Corollary 1.3. Forevery integer n 3 there existsa torsion-free 2-boundedly simple
group satisfying nCC) and generated by two elements.
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In the case when n D 2 the above statement was obtained by Osin in [21,
Corollary 1.3].) In fact, for any finitely generated) torsion-free group H we can set

G D H F.x1; : : : ; xn 1/, and then use Corollary 1.2 to embed G into a group

M enjoying the properties 1 4 from its claim. Since there is a continuum of pairwise

non-isomorphic 2-generated torsion-free groups ([4]), and a finitely generated
group can contain at most countably many of different 2-generated subgroups, this
shows that there mustbe continuallymanypairwise non-isomorphic groups satisfying
properties 1–3 from Corollary 1.2.

Recall that the rank of a group G, rank.G/, is the minimal number of elements
required to generateG. InSection 4weshowhowclassical theory ofHNN-extensions
allows to construct different embeddings into infinitely generated) groups that have

finitely many classes of conjugate elements, and in Section 5 we use Osin’s results

from [21]) regarding quotients of relatively hyperbolic groups to prove

Theorem 1.4. Let H be a torsion-free countable group and let M C H be a
nontrivial normal subgroup. ThenH can be isomorphically embedded into a torsion-free
group Q, possessing a normal subgroup N C Q, such that

Q D H N and H \ N D M hence Q=N Š H=M);

N has 2CC);

for allx;y 2 Qnf1g, x
Q

y if andonly if'.x/
Q=N ' y/,where' W Q Q=N

is the natural homomorphism;

rank.N/ D 2 and rank.Q/ rank.H=M/ C 2.

This theorem implies that if Q=N Š H=M has exactly n 1/ conjugacy classes

e.g., if it is finite), then the groupQwill have nCC) and will not be simple if n 3).
Thus it may be used to build nCC)-groups in a recursive manner. It also allows to
obtain embeddings of countable torsion-free groups into nCC)-groups, which we
could not get by using Corollary 1.2. For instance, as we saw in Example 1, the
fundamental group of the Klein bottle G1, given by 1.1), can not be embedded into

a 3CC)-groupM so that t
M
oe t 1. However, with 4 conjugacy classes this is already

possible: see Corollary 5.5 in Section 5. The idea is as follows: the group G1 can
be mapped onto Z=3Z in such a way that the images of the elements t and t 1 are

distinct. LetM be the kernel of this homomorphism. One can apply Theorem 1.4 to
the pair G1; M/ to obtain the required embedding of G1 into a group Q. And since

Z=3Z has exactly 3 conjugacy classes, the group Q will have 4CC).
An application of Theorem 1.4 to the case when H D Z andM D 2Z C H also

provides an affirmative answer to a question of A. Izosov from [9, Question 11.42],
asking whether there exists a torsion-free 3CC)-group Q that contains a normal
subgroup N of index 2.
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The goal of the second part of this article is to show that every countable group
can be realized as a group of outer automorphisms of some finitely generated 2CC)-
group. This problem has some historical background: in [11] T. Matumoto proved
that every group is a group of outer automorphisms of some group in contrast, there
are groups, e.g., Z, that are not full automorphism groups of any group); M. Droste,
M. Giraudet, R. Göbel ([7]) showed that for every group C there exists asimple group

S such that Out.S/ Š C; I. Bumagina and D. Wise in [3] proved that each countable
group C is isomorphic to Out.N / where N is a 2-generated subgroup of a countable
C0.1=6/-group, and if, in addition, C is finitely presented then one can choose N to
be residually finite.

In Section 6 we establish a few useful statements regarding paths in the Cayley
graph of a relatively hyperbolic group G, and apply them in Section 7 to obtain small
cancellation quotients of G satisfying certain conditions. Finally, in Section 8 we
prove the following

Theorem 1.5. LetC be an arbitrarycountable group. Then forevery non-elementary
torsion-free word hyperbolic group F1 there exists a torsion-free group N satisfying
the following properties:

N is a 2-generated quotient of F1;

N has 2CC);

Out.N/ Š C.

The principal difference between this theorem and the result of [3] is that our
group N is torsion-free and simple. Moreover, if one applies Theorem 1.5 to the case

when F1 is a torsion-free hyperbolic group with Kazhdan’s property T) and recalls
that every quotient of a group with property T) also has T)), one will get

Corollary 1.6. For any countable group C there is a 2-generated group N such that

N has 2CC) and Kazhdan’s property T), and Out.N / Š C.

The reason why Kazhdan’s property T) is interesting in thiscontext is thequestion
from [6, p. 134] which asked whether there exist groups that satisfy property T)
and have infinite outer automorphism groups it can be motivated by a theorem of
F. Paulin [22] which claims that the outer automorphism group is finite for any word
hyperbolic group with property T)). Positive answers to this question were obtained
using different methods) by Y. Ollivier and D. Wise [14], Y. de Cornulier [5], and

I. Belegradek and D. Osin [2]. Corollary 1.6 not only shows that the group of outer
automorphisms of a group N with property T) can be infinite, but also demonstrates
that there are no restrictions whatsoever on Out.N /.

Acknowledgements. The author would like to thank D. Osin for fruitful discussions
and encouragement.
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2. Relatively hyperbolic groups

Assume that G is a group, fH g 2ƒ
is a fixed collection of subgroups of G called

peripheral subgroups), and X is a subset of G. The subset X is called a relative
generating set of G with respect to fH g 2ƒ if G is generated by X[S 2ƒ H In
this case G a quotient of the free product

F D 2ƒH / F.X/;

where F.X/ is the free group with basis X. Let R be a subset of F such that the
kernel of the natural epimorphism F G is the normal closure ofRin the group F ;
then we will say that G has relative presentation

hX; fH g 2ƒ j R D 1; R 2 Ri: 2.1)

If the sets X and R are finite, the relative presentation 2.1) is said to be finite.
Set H D F 2ƒ.H n f1g/. A finite relative presentation 2.1) is said to satisfy a

linear relative isoperimetric inequality if there existsC > 0such that, for every word

w in the alphabet X [H for convenience, we will further assume that X 1
D X)

representing the identity in the group G, one has

w FD kY
iD1

f 1
i R 1

i fi ;

with equality in the group F where Ri 2 R, fi 2 F for i D 1; : : : ;k, and

k Ckwk, where kwk is the length of the word w.
The next definition is due to Osin see [20]):

Definition. The group G is called hyperbolic relative to the collection of peripheral
subgroups) fH g 2ƒ, ifG admits a finite relative presentation 2.1) satisfying a linear
relative isoperimetric inequality.

This definition is independent of the choice of the finite generating set X and the
finite set R in 2.1) see [20]). We would also like to note that, in general, it does not
require the group G to be finitely generated, which will be important in this paper.

The definition immediately implies the following basic facts:

Remark 2.1 ([20]). a) Let fH g 2ƒ be an arbitrary family of groups. Then the free
product G D 2ƒH will be hyperbolic relative to fH g 2ƒ.

b) Any word hyperbolic group in the sense of Gromov) is hyperbolic relative to
the family ff1gg, where f1g denotes the trivial subgroup.
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Recall that a group H is called elementary if it has a cyclic subgroup of finite
index. Further in this section we will assume that G is a non-elementary group
hyperbolic relative to a family of proper subgroups fH g 2ƒ.

An element g 2 G is said to be parabolic if it is conjugated to an element of H
for some 2 ƒ. Otherwise g is said to be hyperbolic. Given a subgroup S G, we
denote by S0 the set of all hyperbolic elements of S of infinite order.

Lemma 2.2 ([17], Theorem 4.3, Corollary 1.7). For every g 2 G0 the following
conditions hold.

1) The element g is contained in a unique maximal elementary subgroup EG.g/
of G, where

EG.g/ D ff 2 G j fgnf 1
D g n for some n 2 Ng: 2.2)

2) The group G is hyperbolic relative to the collection fH g 2ƒ [ fEG.g/g.

Recall that a non-trivial subgroup H G is called malnormal if for every g 2
G n H, H \ gHg 1 D f1g. The next lemma is a special case of Theorem 1.4
from [20]:

Lemma 2.3. For any 2 ƒ and any g … H the intersection H \ gH g 1 is
finite. If h 2 G, 2 ƒ and ¤ then the intersection H \ hH h 1 is finite. In
particular, if G is torsion-free then H is malnormal provided that H ¤ f1g).

Lemma 2.4 ([20], Theorem 2.40). Suppose that a group G is hyperbolic relative
to a collection of subgroups fH g 2ƒ [ fS1; :: : ;Smg, where S1; : :: ; Sm are word
hyperbolic in the ordinary non-relative sense). Then G is hyperbolic relative to

fH g 2ƒ.

Lemma 2.5 ([19], Corollary 1.4). Let G be a group which is hyperbolic relative to
a collection of subgroups fH g 2ƒ [ fKg. Suppose that K is finitely generated and
there is a monomorphism

W K H for some 2 ƒ. Then the HNN-extension

hG; t j txt 1
D x/; x 2 Ki is hyperbolic with respect to fH g 2ƒ.

In [21] Osin introduced the following notion: a subgroup S G is suitable if

there exist two elements g1;g2 2 S0 such that g1
G

6 g2 andEG.g1/\EG.g2/ D f1g.
For any S G with S0 ¤;, one sets

EG.S/ D \g2S0

EG.g/ 2.3)

which is obviously a subgroup of G normalized by S. Note that EG.S/ D f1g if the
subgroup S is suitable in G. As shown in [1, Lemma 3.3], if S is non-elementary and

S0 ¤ ; then EG.S/ is the unique maximal finite subgroup of G normalized by S.
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Lemma 2.6. Let fHg 2ƒ
be a family of groups and let F be a torsion-free

nonelementary word hyperbolic group. Then the free product G D 2ƒH / F is
hyperbolic relative to fH g 2ƒ and F is a suitable subgroup of G.

Proof. Indeed, G is hyperbolic relative to fH g 2ƒ by Remark 2.1 and Lemma 2.4.
Since F is non-elementary, there are elements of infinite order x; y 2 F such that

x
F

6 y see, for example, [16, Lemma 3.2]). Evidently, x and y are hyperbolic
elements of G that are not commensurable with each other, and the subgroups

EG.x/ D EF x/ F EG.y/ D EF y/ F are cyclic as elementary subgroups
of a torsion-free group). Hence EG.x/\EG.y/ D f1g, and thus F is suitable in G.

Lemma 2.7 ([21], Lemma 2.3). Suppose that G is a group hyperbolic relative to a

family of subgroups fH g 2ƒ
and S G is a suitable subgroup. Then one can find

infinitely many pairwise non-commensurable in G) elements g1; g2; : : : 2 S0 such
that EG.gi / \ EG.gj/ D f1g for all i ¤ j

The following theorem was proved by Osin in [21] using the theory of small
cancellation over relatively hyperbolic groups, and representsour main tool for obtaining
new quotients of such groups having a number of prescribed properties:

Theorem 2.8 ([21], Theorem 2.4). Let G be a torsion-free group hyperbolic relative
to a collection of subgroups fH g 2ƒ, let S be a suitable subgroup of G, and let T
U be arbitrary finite subsets of G. Then there exist a group G1 and an epimorphism

W G G1 such that:

i) The restriction of to S 2ƒ H [U is injective, and thegroupG1 is hyperbolic
relative to the collection f H /g 2ƒ;

ii) for every t 2 T we have t/ 2 S/;
iii) S/ is a suitable subgroup of G1;

iv) G1 is torsion-free;

v) the kernel ker. / of is generated as a normal subgroup of G) by a finite
collection of elements belonging to T S.

We have slightly changed the original formulation of the above theorem from
[21], demanding the injectivity on V D S 2ƒ H [ U instead of just

S 2ƒ H
and adding the last statement concerning the generators of the kernel. The latter
follows from the explicit form of the relations, imposed on G see the proof of
Theorem 2.4 in [21]), and the former from part 2 of Lemma 5.1 in [21] and the
fact that any element from V has length in the alphabet X [ H) at most N, where

N D maxfjhjX[H j h 2 Ug C 1.
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3. Groups with finitely many conjugacy classes

Lemma 3.1. LetG be a group and let x1;x2; x3; x4 2 G be elements of infinite order

such that x1
G

6 xi i D 2; 3; 4. LetH D hG; t j tx3t 1
D x4i be the HNN-extension

of G with associated cyclic subgroups generated by x3 and x4. Then x1
H
6

x2.

Proof. Arguing by contradiction, assume that hxl1h 1xm2 D 1 for some h 2 H,
l; m 2 Z n f0g. The element h has a reduced presentation of the form

h D g0t 1g1t 2 : :: t kgk

where g0; : : : ;gk 2 G, 1; : :: ; k 2 Z n f0g, and

´gj … hx3i if 1 j k 1 and j > 0; jC1 < 0;

gj … hx4i if 1 j k 1 and j < 0; jC1 > 0:

By the assumptions, x1
G

6 x2 hence k 1, and in the group H we have

hxl1h 1xm
2 D g0t 1g1t 2 : : : t kgkxl1g 1

k t k : : : t 2g 1
1 t 1

gQ0 D 1; 3.1)

where
gQ0 D g 1

0 xm2 2 G. By Britton’s Lemma see [10, IV.2]), the left-hand side in
3.1) can notbe reduced, and this canhappen only if gkxl1g 1

k
belongs toeither hx3ior

hx4i in G, which would contradict the assumptions. Thus the lemma is proved.

Definition. Suppose that G is a group and Xi G, i 2 I is a family of subsets. We
shall say that Xi i 2 I are independent if no element of Xi is commensurable with
an element of Xj whenever i ¤ j i; j 2 I
Lemma 3.2. Assume that G is a countable torsion-free group, n 2 N, n 2, and
non-empty subsets Xi G n f1g, i D 1; : : :; n 1, are independent in G. Then G
can be isomorphically) embedded into a countable torsion-free group M in such a

way that M has nCC) and the subsets Xi i D 1; : : : ; n 1, remain independent
in M.

Proof. For each i D 1; : : : ;n 1, fix an element xi 2 Xi First we embed G into a

countable torsion-free group G1 such that for each non-trivial element g 2 G there
exist j 2 f1; :: : ;n 1g and t 2 G1 satisfying tgt 1

D xj in G1, and the subsets

Xi i D 1; : : : ;n 1, stay independent in G1.
Let g1; g2; : : : be an enumeration of all non-trivial elements of G. Set G.0/ D G

and suppose that we have already constructed the group G.k/, containing G, so that
for each l 2 f1; : : :; kg there is j 2 f1; : : : ; n 1g such that the element gl is
conjugated in G.k/ to xj and Xi ; i D 1; : : : ; n 1, are independent in G.k/.
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Suppose, at first, that gkC1 is commensurable in G.k/ with an element of Xj for

some j Then gkC1
G.k/

6 h for every h 2 S
n 1

iD1;i¤j Xi Define G.k C 1/ to be the

HNN-extension hG.k/; tkC1 j tkC1gkC1t
1

kC1 D xj i. By Lemma 3.1 the subsets Xi
i D 1; : : : ;n 1, will remain independent in G.k C 1/.

Thus we can assume that gkC1 is not commensurable with any element from

S
n 1
iD1 Xi in G.k/. According to the induction hypotheses one can apply Lemma 3.1

to the HNN-extension

G.k C 1/ D hG.k/; tkC1 j tkC1gkC1t
1

kC1 D x1i

to see that the subsets Xi G G.k C 1/, i D 1; : : :; n 1, are independent in
G.k C 1/.

Now, set G1 D S
1k

D0
G.k/. Evidently G1 has the required properties. In the

same manner, one can embed G1 into a countable torsion-free group G2 so that each

non-trivial element of G1 will be conjugated to xi in G2, for some i 2 f1; : :: ; n 1g,
and the subsets Xi ; i D 1; : : : ;n 1, continue to be independent in G2.

Proceeding like that we obtain the desired group M D S
1s
D1

Gs. By the
construction, M is a torsion-free countable group which has exactly n conjugacy classes:
OE1 ; OEx1 ; : : : ; OExn 1 The subsetsXi; i D 1; : : : ; n 1, are independent inM because

they are independent in Gs for each s 2 N.

Corollary 3.3. In Lemma 3.2 one can add that the group M is 2-boundedly simple.

Proof. Let a torsion-free countable group G and its non-empty independent subsets

Xi i D 1; : : : ; n 1, be as in Lemma 3.2. LetF D F.a1; : : : ; an 1;b1; : : : ; bn 1/ be

the free group with the free generating set fa1; : : : ; an 1; b1; :: : ;bn 1g, and consider
the group xG D G F For each i D 1; : : : ;n 1, define

Xxi D Xi [ fai; a 1
i g[ fOEaj; bi j j D 1; : : : ; n 1;j ¤ ig xG;

where OEaj; bi D aj bia 1
j b 1

i Using the universal properties of free groups and free

products one can easily see that the subsets Xxi i D 1; : : : ; n 1, are independent
in xG.

Now we apply Lemma 3.2 to find a countable torsion-free nCC)-group M,
containing Gx, such that Xxi i D 1;: : : ; n 1, are independent in M. Observe that this
implies that for any given i D 1; : : : ;n 1, any two elements of Xxi are conjugate in

M. For arbitrary 2 n f1g there exist 2 f1;
Mx; y M i; j :: : ;n 1g such that x ai

and y M aj. If i D j then x M y. Otherwise, y M
aj

M a 1

j and x M
OEaj; bi

which is a product of two conjugates of aj and, hence, of y. Therefore the groupM
is 2-boundedly simple, and since G xG M, the corollary is proved.
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Below is a particular torsion-free) case of a theorem proved by Osin ([21, Theorem

2.6]):

Lemma 3.4. Any countable torsion-free group S can be embedded intoa2-generated
group M so that S is malnormal in M and every element of M is conjugated to an

element of S in M.

Proof. Following Osin’s proof of Theorem 2.6 from [21], we see that the required
group M can be constructed as an inductive limit of relatively hyperbolic groups

G.i /, i 2 N. More precisely, one sets G.0/ D S F2, where F2 is a free group of
rank 2, 0 D idG.0/ W G.0/ G.0/, and for each i 2 N one constructs a group G.i/
and an epimorphism i W G.0/ G.i/ so that i is injective on S, G.i/ is torsionfree

and hyperbolic relative to f i.S/g, and i factors through i 1. The group M
is defined to be the direct limit of G.i/; i/ as i 1, i.e., Q D G.0/=N where

N D Si2N
ker. i/. By Lemma 2.3, i.S/ is malnormal in G.i /, hence the image

of S will also be malnormal in M.

Theorem 3.5. Let G be a torsion-free countable group, n 2 N, n 2, and
nonempty subsets Xi G n f1g, i D 1; :: : ;n 1, be independent in G. Then G can
be embedded into a 2-generated torsion-free group M which has nCC), so that the
subsets Xi ;i D 1; :: : ;n 1, stay independent in M. Moreover, one can choose M
to be 2-boundedly simple.

Proof. First, according to Corollary 3.3, we can embed the group G into a countable
torsion-free group S such that S has nCC) and is 2-boundedly simple, and Xi
i D 1; : : : ; n 1, are independent in S. Second, we apply Lemma 3.4 to find the
2-generated group M from its claim. Choose any i; j 2 f1; : : : ;n 1g, i ¤ j
and x 2 Xi y 2 Xj. If x and y were commensurable in M, the malnormality of S
would imply thatx and y mustbe commensurable inS, contradicting theconstruction.
Hence Xi i D 1; : :: ; n 1, are independent in M. Since each element of M is
conjugated to an element of S, it is evident that M has nCC), is torsion-free and

2-boundedly simple.

Remark 3.6. A more direct proof of Theorem 3.5, not using Lemma 3.4, can be

extracted from the proof of Theorem 5.1 see Section 5), applied to the case when

H D M.

It is easy to see that Theorem 3.5 immediately implies Corollary 1.2 that was

formulated in the Introduction. As promised, we now give a counterexample to
Question 2 formulated in the Introduction) for any n 3.

Example 2. Let G2 D ha; t j tat 1
D a2i be the Baumslag–Solitar BS.1; 2/-group.

ThenG2 is torsion-free, and the elements t2; t4; : : : ; t2n 1
arepairwise non-conjugate
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in G2 since this holds in the quotient of G2 by the normal closure of a). Suppose that

G2 is embedded into a group M having nCC) so that t2; t4; : : : ; t2n 1 are pairwise
non-conjugate inM. Then t2; t2n 1

: : : ; is the list of representatives of all non-trivial

conjugacy classes ofM. Therefore there exist k; l 2 f1;
M

: : : ; n 1g such that t t2k

and a
M t2l Consequently

t2 M
t2kC1

and t2l M
a

M
a2 M

t2lC1
;

hence k D l D n 1 according to the assumptions. But this yields

t M t2n 1 M a M a2 M t2;

implying that t2 M t4, which contradicts our assumptions.
Thus G2 can not be embedded into a nCC)-group M in such a way that the

elements t2; : : : ; t2n 1 remain pairwise non-conjugate in M.

4. Normal subgroups with nCC)

IfM is a normal subgroup of a groupH, thenH naturally acts onM by conjugation.
We shall say that this action preserves the conjugacy classes of M if for any h 2 H
and a 2 M there exists b 2 M such that hah 1

D bab 1.

Lemma 4.1. Let G be a torsion-free group, N C G and x1; : : :; xl 2 N n f1g be

pairwise non-commensurable inG) elements. Then there exists a partitionN nf1g D

F
l
kD1 Xk ofN nf1g into a disjoint) unionofG-independent subsetsX1; :: : ;Xl such

that xk 2 Xk for every k 2 f1; : : :; lg. Moreover, each subset Xk will be invariant
under conjugation by elements of G.

Proof. Since
G

is an equivalence relation on G n f1g, one can find the corresponding
decomposition: G n f1g D Fj2J Yj where Yj is an equivalence class for each

j 2 J For each k D 1; : : : ;l, there exists j.k/ 2 J such that xk 2 Yj.k/. Note that
G

j.k/ ¤ j.m/ if k ¤ m since xk 6 xm.
Denote J0 D J n fj.1/; : : : ; j.l 1/g,

X1 D Yj.1/\N;: : : ; Xl 1 D Yj.l 1/ \ N; and Xl D [j2J0

Yj \ N:

Evidently N n f1g D F
l
kD1

Xk, X1; : : :; Xl are independent subsets of G and xk 2
Xk for each k D 1; : : : ; l. The final property follows from the construction since for
any a 2 G and j 2 J we have aYj a 1

D Yj and aNa 1
D N.
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Lemma 4.2. For every countable group C and each n 2 N, n 2, there exists a

countable torsion-free group H having a normal subgroup M C H such that

i) M satisfies nCC);

ii) M is 2-boundedly simple;

iii) the natural action of H on M preserves the conjugacy classes of M;
iv) H=M Š C.

Proof. Let H00 be the free group of infinite countable rank. Choose N00 C H00 so that

H00 N00 Š C. Let F D F.x1; : : : ; xn 1/ denote the free group freely generated by

x1; : :: ; xn 1. Define H0 D H00 F and let N0 be the normal closure of N00 [ F in
H0. Evidently, H0=N0 Š H00 N00 Š C and the elements x1; : : : ;xn 1 2 N0 n f1g
are pairwise non-commensurable in H0.

By Lemma 4.1, one can choose a partition of N0 n f1g into the union of H0-
independent subsets:

N0 n f1g D
n 1

G
kD1

X0k;

so that xk 2 X0k for each k D 1; : :: ; n 1.
By Corollary 3.3 there exists a countable torsion-free 2-boundedly simple group

M1 with the property nCC) containing a copy of N0, such that the subsets X0k,
k D 1; 2; : : : ; n 1, are independent in M1. Denote by H1 D H0 N0 M1 the
amalgamated product of H0 and M1 along N0, and let N1 be the normal closure of
M1 inH1. Note thatH1 is torsion-free as anamalgamated product of two torsion-free
groups ([10, IV.2.7]).

We needtoverify that the elementsx1; : : : ; xn 1 are pairwise non-commensurable
in H1. Indeed, if a 2 X0k and b 2 X0l k ¤ l are conjugate in H1 then there must
exist y1; : : : ; yt 2 M1 n N0 and z1; : : :; zt 1 2 H0 n N0, z0;zt 2 H0 such that

z0y1 : : :zt 1yt ztaz 1
t y 1

t z 1
t 1 :: : y 1

1 z 1
0

H1
D b:

Suppose that t is minimal possible with this property. As conjugation by elements of
H0 preserves X0k and X0l we can assume that z0; zt D 1. Hence

y1z1 : : : zt 1ytay 1
1 y 1

1 b 1 H1
D 1:t z 1

t 1 :: : z 1

By the properties of amalgamated products see [10, Chapter IV]), the left-hand side
in this equality can not be reduced, consequently ytay 1

t 2 N0 n f1g D F
n 1
kD1

X0k.
But then ytay 1

t 2 X0k by the properties of M1, contradicting the minimality of t

Thus, we have shown that xk
H1

6 xl whenever k ¤ l
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Assume that thegroupHi D Hi 1 Ni 1 Mi i 1, has already been constructed,
so that

0) Hi is countable and torsion-free;

1) Ni 1 C Hi 1;

2) Hi 1 D H0 Ni 1 and H0 \ Ni 1 D N0;

3) Mi satisfies nCC);

4) x1; : : : ; xn 1 are pairwise non-commensurable in Hi
Let Ni be the normal closure of Mi in Hi Because of the condition 4) and

Lemma 4.1, one can find a partition of Ni n f1g into a union of Hi-independent
subsets:

Ni n f1g D
n 1

G
kD1

Xik;

so that xk 2 Xik for each k D 1; : :: ; n 1. By Lemma 3.2 there is a countable
group a MiC1, with nCC), containing a copy of Ni in which the subsets Xik,
i D 1; : : : ;n 1, remain independent. Set HiC1 D Hi Ni MiC1. Now, it is easy to
verify that the analogs of the conditions 0)-3) hold for HiC1 and

Ni 1 Mi Ni MiC1: 4.1)

The analog of the condition 4) is true in HiC1 by the same considerations as before
in the case of H1).

Define the group H D S
1i
D1 Hi and its subgroup M D S

1i
D1 Ni Observe

1i

that the condition 0/ implies that H is torsion-free, condition 1) implies that M
is normal in H, and 2) implies that H D H0 M and H0 \ M D N0. Hence

H=M Š H0=.H0 \ M/ Š C. Applying 4.1) we get M D S D1Mi and thus,
by the conditions 3), 4) it enjoys the property nCC): each element of M will be a

conjugate ofxk for some k 2 f1; :: : ;n 1g. Since x1; : : : ; xn 1 2 M1 M andM1

is 2-boundedly simple, then so will beM. Finally, 4) implies that xk Hoe xl whenever

k ¤ l and, consequently, the natural action of H on M preserves its conjugacy
classes.

Lemma 4.3. Suppose that G is a group, N C G, A; B G and ' W A B is
an isomorphism such that '.a/ 2 aN i.e., the canonical images of a and '.a/ in
G=N coincide) for each a 2 A. Let L D hG; t j tat 1

D '.a/ for all a 2 Ai be the
HNN-extension of G with associated subgroups A and B, and let K be the normal
closure of hN; ti in L Then G \K D N.

Proof. This statement easily follows from the universal property of HNN-extensions
and is left as an exercise for the reader.
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The next lemma will allow us to construct nCC)-groups that are not simple:

Lemma 4.4. Assume thatH is a torsion-free countable group andM C H is a
nontrivial normal subgroup. Then H can be isomorphically embedded into a countable
torsion-free group G possessing a normal subgroup K C G such that

1) G D HK and H \K D M;
2) for all x; y 2 Gnf1g, '.x/ D '.y/ if and only if there exists an h 2 K such that

x D hyh 1, where ' W G G=K is the natural homomorphism; in particular,
K will have 2CC);

3) x
G

y if and only if '.x/
G=K ' y/ for all x; y 2 G n f1g;

Proof. Choose a set of representatives Z H of cosets of H modulo M, in such a

way that each coset is represented by a unique element from Z and 1 … Z.
Define G.0/ D H and K.0/ D M. Enumerate the elements of G.0/ n f1g:

g1;g2; : : : First we embed the group G.0/ into a countable torsion-free group G1,
having a normal subgroup K1 C G1, such that G1 D HK1, H \ K1 D M and for
every i 0 there are ti 2 K1 and zi 2 Z satisfying tigi t 1

i D zi
Suppose that the countable torsion-free) group G.j /, j 0, and K.j / C G.j /,

have already been constructed so thatH G.j /, G.j / D HK.j /, H \K.j / D M
and, if j 1, then tjgj t 1

j D zj for some tj 2 K.j/ and zj 2 Z. The group

G.j C 1/, containing G.j /, is defined as the following HNN-extension:

G.j C 1/ D hG.j /; tjC1 j tjC1gjC1t
1

jC1 D zjC1i;

where zjC1 2 Z H is the unique representative satisfying gjC1 2 zjC1K.j/
in G.j /. Denote by K.j C 1/ C G.j C 1/ the normal closure of hK.j /; tjC1i in
G.j C1/. Evidently the group G.j C1/ is countable and torsion-free, H G.j/
G.j C 1/, G.j C 1/ D HK.j C 1/ and H \ K.j C 1/ D H \ K.j / D M by
Lemma 4.3.

Now, it is easy to verify that the group G1 D S1
jD0 G.j / and its normal subgroup

K1 D S1
jD0 K.j/ enjoy the required properties.

In the same way we can embedG1 into a countable torsion-free groupG2, that has

a normal subgroup K2 C G2, so that G2 D HK2, H \K2 D M and each element
of G1 n f1g is conjugated in G2 to a corresponding element of Z. Performing such
a procedure infinitely many times we achieve the group G D S

1i
D1 Gi and a normal

subgroup K D S
1i
D1 Ki C G that satisfy the claims 1) and 2) of the lemma. It is

easy to see that the claim 2) implies 3), thus the proof is finished.
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5. Adding finite generation

Theorem 5.1. Assume that H is a countable torsion-free group and M is a
nontrivial normal subgroup of H. Let F be an arbitrary non-elementary torsion-free
word hyperbolic group. Thenthereexist a countable torsion-free groupQ, containing
H, and a normal subgroup N C Q with the following properties:

1. H is malnormal in Q;
2. Q D H N and N \H D M;
3. N is a quotient of F;
4. the centralizer CQ.N / of N in Q is trivial;

5. for every q 2 Q there is z 2 H such that q
Q z.

Proof. The group Q will be constructed as a direct limit of relatively hyperbolic
groups.

Step 0. Set G.0/ D H F and F.0/ D F ; then G.0/ is hyperbolic relative
to its subgroup H and F.0/ is a suitable subgroup of G.0/ by Lemma 2.6. Let

N.0/ C G.0/ be the normal closure of the subgroup hM; Fi in G.0/. Evidently
G.0/ D H N.0/ and H \ N.0/ D M. Enumerate all the elements of N.0/:

fg0; g1; g2; : : :g, and of G.0/: fq0; q1;q2;: : : g, in such a way that g0 D q0 D 1.
Steps 0–i Assume the groups G.j /, j D 0; : :: ; i, i 0, have been already

constructed, so that

1B. for each 1 j i there is an epimorphism j 1 W G.j 1/ G.j / which is
injective on the image of) H in G.j 1/. Denote F.j/ D j 1.F j 1//,
N.j / D j 1.N.j 1//;

2B. G.j/ is torsion-free and hyperbolic relative to the image of) H, and F.j/
G.j/ is a suitable subgroup, j D 0; : : : ; i;

3B. G.j/ D H N.j /, N.j/ C G.j/ and H \N.j / D M, j D 0;: : : ; i;
4B. the natural image gNj of gj in G.j / belongs to F.j/, j D 0; : :: ; i;

5B. there exists zj 2 H such that
Nqj

G.j/ zj j D 0; : : : ; i, where
Nqj

is the image
of qj in G.j /.

Step i C 1. Let qOiC1 2 G.i /, gOiC1 2 N.i/ be the images of qiC1 and giC1 in
G.i /. First we construct the group G.i C 1=2/, its normal subgroup KiC1 and its
element tiC1 as follows.

If for some f 2 G.i /, f OqiC1f
1

D z 2 H, then set G.i C 1=2/ D G.i/,

KiC1 D N.i/ C G.i C 1=2/ and tiC1 D 1.
Otherwise, OqiC1 is a hyperbolic element of infinite order in G.i/. Since G.i/

is torsion-free, the elementary subgroup EG.i/. OqiC1/ is cyclic, thus EG.i/.OqiC1/ D
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hhxi for some h 2 H and x 2 N.i/ by 3B), and OqiC1 D hx/m for some m 2 Z.
Now, by Lemma 2.2, G.i/ is hyperbolic relative to fH; hhxig. Choose y 2 M so

that hy ¤ 1 and let G.i C 1=2/ be the following HNN-extension of G.i/:

G.i C 1=2/ D hG.i/; tiC1 j tiC1.hx/t 1
iC1 D hyi:

The group G.i C 1=2/ is torsion-free and hyperbolic relative to H by Lemma 2.5.

Let us now verify that the subgroup F.i/ is suitable in G.i C 1=2/. Indeed,
according to Lemma 2.7, there are two hyperbolic elements f1; f2 2 F.i/ of infinite

order in G.i/ such that fl
G.i/

6

hx, fl
G.i/

6

hy, l D 1; 2, and f1
G.i/

6 f2. Then

f1
G.iC1=2/

6 f2 by Lemma 3.1. It remains to check that fl is a hyperbolic element

of G.i C 1=2/ for each l D 1;2. Choose an arbitrary element w 2 H and observe

that fl
G.i/

6 w since H is malnormal in G.i/ by Lemma 2.3, a non-trivial power of

fl is conjugated to an element of H if and only if fl is conjugated to an element of
H in G.i/, but the latter is impossible because fl is hyperbolic in G.i /). Applying

Lemma 3.1 again, weget that fl
G.iC1=2/

6

w for anyw 2 H. Hencef1; f2 2 F.i/ are

hyperbolic elements of infiniteorder inG.iC1=2/. The intersectionEG.iC1=2/.f1/\
EG.iC1=2/.f2/ must be finite, since these groups are virtually cyclic by Lemma 2.2),
and f1 is not commensurable with f2 in G.i C1=2/. But G.i C1=2/ is torsion-free,
therefore EG.iC1=2/.f1/\ EG.iC1=2/.f2/ D f1g. Thus F.i/ is a suitable subgroup

of G.i C 1=2/.
Lemma 4.3 assures thatH \KiC1 D M whereKiC1 C G.iC1=2/ is the normal

closure of hN.i/; tiC1i in G.i C 1=2/. Finally, note that

tiC1 OqiC1t
1

iC1 D tiC1.hx/mt 1

iC1 D hy/m D z 2 H in G.i C 1=2/:

Now, that the group G.iC1=2/ has been constructed, set TiC1 D fOgiC1; tiC1g

KiC1 and defineG.iC1/as follows. Since TiC1 F.i/ KiC1 C G.iC1=2/,wecan

apply Theorem 2.8 to find a group G.i C1/ and an epimorphism 'i W G.i C1=2/
G.i C 1/ such that 'i is injective on H, G.i C 1/ is torsion-free and hyperbolic
relative to the image of) H, f'i gOiC1/; 'i tiC1/g 'i.F i//, 'i.F i// is a suitable

subgroup of G.iC1/,andker.'i/ KiC1. Denote by i the restrictionof 'i onG.i/.
Then i.G.i// D 'i.G.i// D G.i C1/ because G.iC1=2/ was generated by G.i/
and tiC1, and according to the construction, tiC1 2 'i.F i// 'i.G.i //. Now, after
defining F.i C1/ D i.F i //, N.i C1/ D i.N.i//, gNiC1 D 'i gOiC1/ 2 F.i C1/
and ziC1 D 'i z/ 2 H, we see that the conditions 1B, 2B, 4B and 5B hold in the case

when j D i C1. The properties G.i C1/ D H N.i C1/ and N.i C1/ C G.i C1/
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are immediate consequences of their analogs for G.i/ and N.i/. Finally, observe that

' 1
i H \ N.i C 1// D H ker.'i/\N.i/ ker.'i/

D H \N.i/ ker.'i / ker.'i/
H \ KiC1 ker.'i / D M ker.'i/:

Therefore H \ N.i C 1/ D M and the condition 3B holds for G.i C 1/.
Let Q D G.1/ be the direct limit of the sequence G.i/; i/ as i 1, and

let F.1/ and N D N.1/ be the limits of the corresponding subgroups. Then Q is
torsion-free by 2B, N C Q, Q D H N and H \ N D M by 3B. N F.1/ by
4B, and 5B implies the condition 5 from the claim.

Since F.0/ N.0/ we get F.1/ N. Thus N D F.1/ is a homomorphic
image of F.0/ D F

For any i;j 2 N [ f1g, i < j, we have a natural epimorphism ij W G.i/
G.j / such that if i < j < k then jk B ij D ik. Take any g 2 G.0/. Since

F D F.0/ is finitely generated, using the properties of direct limits one can show
that if w D 01.g/ 2 CQ.F .1// in Q, then 0j g/ 2 CG.j/.F j // for some

j 2 N. But CG.j/.F j// EG.j/.F j // D f1g by formulas 2.2) and 2.3))
because F.j/ is a suitable subgroup of G.j /, hence w D j1 0j g/ D 1, that is,
CQ.F.1// D CQ.N / D f1g. This concludes the proof.

The next statement is well known.

Lemma 5.2. Assume G is a group and N C G is a normal subgroup such that

CG.N / N, where CG.N / is the centralizer of N in G. Then the quotient-group
G=N embeds into the outer automorphism group Out.N /.

Proof. The action of G on N by conjugation induces a natural homomorphism 'from G to the automorphism group Aut.N / of N. Since '.N/ is exactly the group of
innerautomorphisms Inn.N / ofN, onecan define a newhomomorphism x' W G=N
Out.N / D Aut.N /=Inn.N / in the natural way: x'.gN/ D '.g/Inn.N / for every

gN 2 G=N. It remainstocheck that x' is injective, i.e., if g 2 GnN then x'.gN/ ¤ 1

in Out.N/; or, equivalently, '.g/ … Inn.N /. Indeed, otherwise there would exist
a 2 N such that ghg 1

D aha 1 for every h 2 N, thus N 63 a 1g 2 CG.N /,
contradicting the assumptions.

Note that for an arbitrary group N, any subgroup C Out.N / naturally acts on
the set of conjugacy classes C.N/ of the group N.

Theorem 5.3. For any n 2 N, n 2, and an arbitrary countable group C, C can
be isomorphically embedded into the outer automorphism group Out.N/ of a group

N satisfying the following conditions:
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N is torsion-free;

N is generated by two elements;

N has nCC) and the natural action of C on C.N / is trivial;

N is 2-boundedly simple.

Proof. By Lemma 4.2 we can find a countable torsion-free group H and its normal
subgroup M enjoying the properties i)–(iv) from its claim. Now, if F denotes the
free group of rank 2, we can obtain a countable torsion-free groupQ together with its
normalsubgroupN that satisfy the conditions1–5 from the statement ofTheorem5.1.

Then N is torsion-free and generated by two elements as a quotient of F
Condition 2 implies that Q=N Š H=M Š C and, by 4 and Lemma 5.2, C embeds into
the group Out.N/.

Using property 5, for each g 2 N we can find u 2 Q and z 2 H such that

ugu 1
D z 2 N \ H D M. Since Q D HN, there are h 2 H and x 2 N

such that u D hx. Since z; h 1zh 2 M and the action of H on M preserves
the conjugacy classes of M, there is r 2 M such that rh 1zhr 1

D z, hence

z D rh 1ugu 1.rh 1/ 1
D rxgx 1r 1, where v D rx 2 N. Thus for every

g 2 N there is v 2 N such that vgv 1
2 M. Evidently, this implies that N is also

2-boundedly simple. SinceM has nCC), the number of conjugacy classes in N will
be at most n.

Suppose x1; x2 2 M and x1
M
oe x2. Then x1 Hoe x2 by the property iii) from

the claim of Lemma 4.2), and since H is malnormal in Q we get x1 Qoe x2. Hence

x1 Noe x2, i.e., N also enjoys nCC).
The fact that the natural action of C on C.N / is trivial follows from the same

property for the action of H on C.M/ and the malnormality of H in Q.

Now, let us proceed with the

Proof of Theorem 1.4. First we applyLemma4.4 to construct a groupG and a normal
subgroup K C G according to its claim. Now, by Theorem 5.1, there is a group Q,
having a normal subgroup N C Q such that G is malnormal in Q, Q D GN,
G \ N D K, rank.N/ 2 if one takes the free group of rank 2 as F and every
element q 2 Qis conjugated inQ) to an element ofG. By claim 2)of Lemma 4.4, K
has 2CC),and an argument, similar to the one used in the proofof Theorem5.3, shows
that N will also have 2CC). Consequently, rank.N/ > 1 because N is torsion-free,
hence rank.N / D 2.

Since G D HK and H \ K D M we have Q D HKN D HN and H \ N D
H \ K D M. Since Q=N Š H=M and N can be generated by two elements, we
can conclude that rank.Q/ rank.H=M/ C 2.
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Consider arbitrary x; y 2 Q n f1g and suppose that '.x/
Q=N ' y/. By

Theorem 5.1, there are w;z 2 G n f1g such that x
Q

w and y
Q z. Therefore

'.w/
Q=N ' z/, hence the images of w and z in G=K are also conjugate. By

claim 3) of Lemma 4.4, w
G z, implying x

Q y.

Theorem 1.4 provides an alternative way of obtaining torsion-free groups that
have finitely many conjugacy classes: for any countable group C we can choose
a free group H of countable rank and a normal subgroup f1g ¤ M C H so that

H=M Š C, and then apply Theorem 1.4 to the pair H; M/ to get

Corollary 5.4. Assume that n 2 N, n 2, and C is a countable group that contains
exactly n 1/ distinct conjugacy classes. Then there exists a torsion-free group Q
and N C Q such that

Q=N Š C;

N has 2CC) and Q has nCC);

rank.N/ D 2 and rank.Q/ rank.C/ C 2.

Corollary 5.5. The group G1, given by presentation 1.1), can be isomorphically
embedded into a 2-generated torsion-free group Q satisfying 4CC) in such a way

that t Qoe t 1.

Proof. Denote by K the kernel of the homomorphism ' W G1 Z3, for which

'.a/ D 0 and '.t/ D 1, where Z3 is the group of integers modulo 3. Now, apply
Theorem 1.4 to the pair G1; K/ to find the group Q, containing G1, and the normal
subgroup N C Q from its claim. Since Q=N Š G1=K Š Z3 has 3CC), the group

Q will have 4CC). We also have t Qoe t 1 because the images of t and t 1 are not
conjugate in Q=N.

Choose an element q1 2 Q n N. Then q2 D q31 2 N n f1g and since N is
2-generated and has 2CC), there is q3 2 N such that N D hq2; q3i in Q. As Q=N
is generated by the image of q1, the group Q will be generated by fq1; q2;q3g, and,
consequently, by fq1;q3g.

6. Combinatorics of paths in relatively hyperbolic groups

Let G be a group hyperbolic relative to a family of proper subgroups fH g 2ƒ,
and let X be a finite symmetrized relative generating set of G. Denote H D
S 2ƒ H n f1g/.
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For a combinatorial path p in the Cayley graph G; X [H/ of G with respect

to X[H) p pC, L.p/, and Lab.p/ will denote the initial point, the ending point,
the length that is, the number of edges) and the label of p respectively. p 1 will
be the path obtained from p by following it in the reverse direction. Further, if is
a subset of G and g 2 h i G, then jgj will be used to denote the length of a

shortest word in 1 representing g.
We will be using the following terminology from [20]. Suppose q is a path in

G; X [ H/. A subpath p of q is called an H -component for some 2 ƒ or
simply a component) of q, if the label of p is a word in the alphabet H n f1g and p
is not contained in a bigger subpath of q with this property.

Two components p1; p2 of a path q in G; X [H/ are called connected if they
are H -components for the same 2 ƒ and there exists a path c in G; X [ H/
connecting a vertex of p1 to a vertex of p2 such that Lab.c/ entirely consists of letters
from H In algebraic terms this means that all vertices of p1 and p2 belong to the
same coset gH for a certain g 2 G. We can always assume c to have length at

most 1, as every nontrivial element of H is included in the set of generators. An
H -component p of a path q is called isolated if no other H -component of q is
connected to p.

The next statement is a particular case of Lemma 2.27 from [20]; we shall formulate

it in a slightly more general form, as it appears in [18, Lemma 2.7]:

Lemma 6.1. Suppose that a group G is hyperbolic relative to a family of subgroups

fH g 2ƒ. Then there exists a finite subset G and a constant K 2 N such
that the following holds. Let q be a cycle in G; X [ H/, p1; : : :; pk be a
collection of isolated components of q and g1; : : : ; gk be the elements of G
represented by Lab.p1/; : : :; Lab.pk/ respectively. Then g1; :: : ;gk belong to the
subgroup h i G and the word lengths of gi ’s with respect to satisfy

kX
iD1

jgij KL.q/:

Definition. Suppose that m 2 N and is a finite subset of G. Define W. ; m/ to
be the set of all words W over the alphabet X [H that have the following form:

W x0h0x1h1 : : : xlhlxlC1;

where l 2 Z, l 2 if l D 2 thenW is the empty word; if l D 1 thenW x0),
hi and xi are considered as single letters and

1) xi 2 X[ f1g, i D 0; : : : ; l C1, and for each i D 0; : : : ; l, there exists i/ 2 ƒ
such that hi 2 H i/;

2) if i/ D i C 1/ then xiC1 … H i/ for each i D 0; :: : ;l 1;
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3) hi … fh 2 h i j jhj mg, i D 0; :: : ; l.

Choose the finite subset G and the constantK > 0 according to the claim
of Lemma 6.1.

Recall that a path q in G;X [H/ is said to be without backtracking if all of
its components are isolated.

Lemma 6.2. Let q be a path in the Cayley graph G; X [ H/ with Lab.q/ 2
W. ;m/ and m 5K. Then q is without backtracking.

Proof. Assume the contrary to the claim. Then one can choose a path q providing
a counterexample of the smallest possible length. Thus if p1; :: : ;pl is the
consecutive) list of all components of q then l 2, p1 and pl must be connected H 0

-

components, for some 0 2 ƒ, the components p2; : : :; pl 1 must be isolated, and q
starts with p1 and ends with pl Since Lab.q/ 2 W. ; m/ we have L.q/ 2l 1.

If l D 2 then the X [ f1g/-letter between p1 and p2 would belong to H 0

contradicting the property 2) from the definition of W. ;m/.
Therefore l 3. Since p1 andpl are connected, there exists a path v in G;X[H/ between pl/ and p1/C withLab.v/ 2 H 0

thuswecanassume that L.v/ 1).
Denote by

Oq
the subpath of q starting with p1/C and ending with pl/ Note that

L. Oq/ D L.q/ 2 2l 3, andp2; : : : ; pl 1 is the list ofcomponents of Oq, all ofwhich
are isolated. If one of them were connected to v it would imply that it is connected
to p1 contradicting with the minimality of q. Hence the cycle o D Oqv possesses

k D l 2 1 isolated components, which represent elements h1;: : :; hk 2 H.
Consequently, applying Lemma 6.1 one obtains that hi 2 h i, i D 1;: : :; k, and

kX
iD1

jhi j KL.o/ K.L.Oq/ C 1/ K.2l 2/:

By the condition 3) from the definition of W. ;m/ one has jhi j > m 5K for
each i D 1; :: : ;k. Hence

k 5K kX
iD1

jhij K.2l 2/; or 5
2l 2

k
;

which contradicts the inequality k l 2.

Definition. Consider an arbitrary cycle o D rqr0q0 in G; X [H/, where Lab.q/
and Lab.q0/ belong to W. ; m/. Let p be a component of q or q0). We will say
that p is regular if it is not an isolated component of o. If m 5K, and hence q and
q0 are without backtracking by Lemma 6.2, this means that p is either connected to
some component of q0 respectively q), or to a component of r or r0.



Vol. 84 2009) Groups with finitely many conjugacy classes 281

Lemma 6.3. In the above notations, suppose that m 7K and denote C D
maxfL.r/; L.r0/g. Then

a) if C 1 then every component of q or q0 is regular;

b) if C 2 then each of q and q0 can have at most 4C components which are not
regular.

c) if l is the number of components of q, then at least l 6C/ of components of

q are connected to components of q0; and two distinct components of q can not
be connected to the same component of q0. Similarly for q0.

Proof. Assume the contrary to a). Then one can choose a cycle o D rqr0q0 with
L.r/;L.r0/ 1, having at least one isolated component on q or q0, and such that
L.q/ CL.q0/ is minimal. Clearly the latter condition implies that each component of
q or q0 is an isolated component of o. Therefore q and q0 together contain k distinct
isolated components of o, representing elements h1; :: : ; hk 2 H, where k 1 and

k L.q/ 1/=2 C L.q0/ 1/=2. Applying Lemma 6.1 we obtain hi 2 h i,
i D 1; : : : ;k, and

kX
iD1

jhij KL.o/ K.L.q/ C L.q0/ C 2/:

Recall that jhij > m 7K by the property 3) from the definition of W. ; m/.
Therefore

P
k
iD1 jhi j k 7K, implying

7
2

k
L.q/

2 C
L.q0/

2 C 1
2
k

L.q/ 1

2 C 2 C 2 6;
L.q0/ 1

which yields a contradiction.

Let us prove b). Suppose that C 2 and q contains more than 4C isolated
components of o. We shall consider two cases:

Case 1. No component of q is connected to a component of q0. Then a component
of q or q0 can be regular only if it is connected to a component of r or r0. Since,
by Lemma 6.2, q and q0 are without backtracking, two distinct components of q
or q0 can not be connected to the same component of r or r0). Hence q and q0

together can contain at most 2C regular components. Thus the cycle o has k isolated
components, representing elements h1;: : : ; hk 2 H, where k 4C > 4 and k
L.q/ 1/=2C.L.q0/ 1/=2 2C. By Lemma 6.1, hi 2 h i for each i D 1; :: : ;k,

and P
k
iD1 jhi j K.L.q/ C L.q0/ C 2C/. Once again we can use the property 3)
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from the definition of W. ; m/ to achieve

7
2
k

L.q/
2 C

L.q0/

2 C
2C

2

2

k

L.q/ 1

2 C 2
2C C 1 C 3C

L.q0/ 1

2
k

L.q/ 1

2 C 2
2C C

L.q0/ 1 2
k C

6C

k
2 C

1
2 C

3

2 D 4;

yielding a contradiction.

Case 2. The path q has at least one component which is connected to a component
of q0. Let p1; :: : ;pl denote the sequence of all components of q. By part a), if ps
and pt 1 s t l are connected to components of q0, then for any j s j t
pj is connected to some component of q0 because q is without backtracking by
Lemma 6.2). We can take s respectively t to be minimal respectively maximal)
possible. Consequently p1; :: : ;ps 1; ptC1; : : :; pl will contain the set of all isolated
components of o that belong to q, and none of these components will be connected
to a component of q0.

Without loss of generality we may assume that s 1 4C=2 D 2C. Since

C

ps is connected to some component p0 of q0, there exists a path v in G; X [ H/
satisfying v D ps/ vC D p0 Lab.v/ 2 H [ f1g, L.v/ 1. Let

Nq
respectively

Nq0) denote the subpath of q respectively q0) from q to ps/ respectively from p0
C

to q0
C

Consider a new cycle No D r Nqv Nq0. Reasoning as before, one can show that

No
possesses k isolated components, where k 2C 4 and k L.Nq/ 1/=2 C

L. Nq0/ 1/=2 C 1. Now, an application of Lemma 6.1 to the cycle
No

together

with the property 3) from the definition of W. ; m/ will lead to a contradiction as

before.
By the symmetry, the statement b) of the lemma also holds for q0.

The claim c) follows from b) and the estimate L.r/ C L.r0/ 2C because if
two different components p and

pN of q were connected to the same component of
some path in G; X [ H/, then p and pN would also be connected with each other,
which would contradict Lemma 6.2.

Lemma 6.4. In the previous notations, let m 7K, C D maxfL.r/;L.r0/g, and
let p1; : : :; pl p01 ; : : : ; p0l

0
be the consecutive lists of the components of q and q0 1

respectively. If l 12 maxfC; 1g C 2, then there are indices s; t; s0 2 N such that

1 s 6C C 1, l 6 maxfC; 1g t l and for every i 2 f0; 1; : : : ; t sg, the
component psCi of q is connected to the component p0s

0Ci
of q0.

Proof. By part c) of Lemma 6.3, there exists s 6C C 1 such that the component
ps is connected to a component p0s

0
for some s0 2 f1; : : : ; l0g. Thus there is a path

r1 between p0s
0/C and ps/C with L.r1/ 1. Consider a new cycle o1 D r1q1r0q01

where q1 is the segment of q from ps/C to qC D r0 and q01 is the segment of q0

from q0 D r0C
to p0s

0/C.
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Observe that psC1; : :: ; pl is the list of all components of q1 and l s l
6C 1 6 maxf1; Cg C 1, hence, according to part c) of Lemma 6.3 applied to
o1, there is t l 6 maxf1;Cg > s such that pt is connected to p0t

0
by means of

a path r01 where s0 C 1 t 0 l0, r01/ D pt /C, r01/C D p0t
0/C and L.r01/ 1.

Consider the cycle o2 D r1q2r01q02 in which q2 and q02 are the segments of q1 and q01

from ps/C D r1/C to pt/C
and from p0t

0/C to p0s
0/C D r1/ respectively see

Figure 1).

q

r0
r03 r01r1

q0 1

ps

psCi
pt

r

p0s 0

p0s
0Ci 0 p0t 0

Figure 1

Note that psC1; : : : ;pt is the list of all components of q2 and p0s
0C1

; : :: ; p0t
0
is the

list of all components of q02
1 The cycle o2 satisfies the assumptions of part a) of

Lemma 6.3, therefore for every i 2 f1; : : : ;t sg there exists i0 2 f1; : : : ; t0 s0g such
that psCi is connected to p0s

0Ci0 psCi can not be connected to r1 [r01 ] because in this
case it would be connected to ps [pt], but q is without backtracking by Lemma 6.2).

It remains to show that i 0

D i for every such i Indeed, if i0 < i for some

i 2 f1; : : : ;t sg then one can consider the cycle o3 D r1q3r03q03 where q3 and q03 are
segments of q2 and q02 from q2/ D r1/C to psCi/C and from p0s

0Ci 0
/C to q02/C D

r1/ respectively, and r03/ D q3/C, r03/C D q03/ L.r03/ 1. According to part

a) of Lemma 6.3, each of the components psC1; : : : ;psCi of q3 must be connected
to one of p0s

0C1
; : : : ; p0s

0Ci 0
Hence, since i 0 < i, two distinct components of q3 will

be connected to the same component of q03
1 which is impossible by part c) of

Lemma 6.3.
The inequality i 0 > i would lead to a contradiction after an application of a

symmetric argument to q03 Therefore i 0 D i and the lemma is proved.

Lemma 6.5. In the above notations, let m 7K and C D maxfL.r/; L.r0/g. For
any positive integerd there exists a constantL D L.C; d/ 2 N such that if L.q/ L
then there are d consecutive components ps; : :: ; psCd 1 of q and p0s0; : : : ;p0s

0Cd 1
of q0 1, so that psCi is connected to p0s

0Ci
for each i D 0; : : :; d 1.
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Proof. Choose the constant L so that L 1/=2 12 maxfC; 1g C 2 C d. Let

p1; : : : ; pl be the consecutive list all components of q. Since Lab.q/ 2 W. ; m/,
we have l L 1/=2 due to the form of any word from W. ;m/). Thus we can
apply Lemma 6.4 to find indices s; t from its claim. By the choice of s and t and the
estimate on l, we have t s d C 1, yielding the statement of the lemma.

Corollary 6.6. Let G be a group hyperbolic relative to a family of proper subgroups

fH g 2ƒ. Suppose that a 2 H 0 for some 0 2 ƒ, is an element of infinite order,
and x1;x2 2 G n H 0 Then there exists k 2 N such that g D ak1x1ak2x2 is a

hyperbolic element of infinite order in G whenever jk1j; jk2j k.

Proof. Without loss of generality we can assume that x1; x2 2 X, since relative
hyperbolicity does not depend on the choice of the finite relative generating set ([20,
Theorem 2.34]). Choose the finite subset G and the constant K 2 N according
to the claim of Lemma 6.1, and set m D 7K. As the order of a is infinite, there is
k 2 N such that ak0

… fh 2 h i j jhj mg whenever jk0j k. Assume that

jk1j; jk2j k.
Suppose, first, that gl D 1 for some l 2 N. Consider the cycle o D rqr0q0 in

G; X [H/ where q D qC D 1, Lab.q/ ak1x1ak2x2/l 2 W. ; m/ akj are
considered as single letters from the alphabet X [H) and r;r0; q0 are trivial paths
consisting of a single point). Then, by part a) of Lemma 6.3, every component of q

must be regular in o, which is impossible since q is without backtracking according
to Lemma 6.2. Hence g has infinite order in G.

Suppose, now, that there exists 0 2 ƒ, u 2 H 0
and y 2 G such that ygy 1

D u.
DenoteC D jyjX[H. Sinceelementu 2 G has infinite order, there existsl 2 N such

that 2l 6C C 2 and ul … fh 2 h i j jhj mg. The equality ygly 1u l D 1
gives rise to thecycleo D rqr0q0 in G;X[H/, where r andr0 arepaths of lengthC
whose labels represent y in G, r D 1, q D rC D y, Lab.q/ ak1x1ak2x2/l 2
W. ;m/, r0 D qC, q0 D r0

C D y.ak1x1ak2x2/ly 1 and Lab.q0/ u l
2

W. ;m/, L.q0/ D 1. By part c) of Lemma 6.3, at least 2l 6C 2 distinct
components of q must be connected to distinct components of q0, which is impossible
as q0 has only one component. The contradiction shows that g must be a hyperbolic
element of G.

Lemma 6.7. Let G be a torsion-free group hyperbolic relative to a family of proper
subgroups fH g 2ƒ, a 2 H 0 n f1g, for some 0 2 ƒ, and t; u 2 G nH 0 Suppose

that there exists kO 2 N such that for every k kO the element g1 D aktakt 1

is commensurable with g2 D akuaku 1 in G. Then there are ; 2 H 0
and

; 2 f 1;1g such that u D t a 1
D a 1a D a

Proof. Changing the finite relative generatingsetX ofG, if necessary, we can assume

that t; u;t 1; u 1
2 X. Let the finite subset G and the constant K 2 N be
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chosen according to Lemma 6.1. Define m D 7K and suppose that k is large enough
to satisfy ak … fh 2 h i j jhj mg.

Since g1 and g2 are commensurable, there exist l; l0 2 Z n f0g and y 2 G such

that ygl2y 1
D gl 0

1 Let C D jyjX[H, d D 8 and L D L.C; d/ be the constant
from Lemma 6.5. Without loss of generality, assume that 4l L. Consider the cycle
o D rqr0q0 in G; X [ H/ such that r and r0 are paths of length C whose labels
represent y in G, r D 1, q lD rC D y, Lab.q/ akuaku 1/ 2 W. ; m/,
L.q/ D 4l, r0 D qC, q0 D r0

C D ygl2y 1, Lab.q0/ aktakt 1/l 0

2 W. ; m/,
L.q0/ D 4l0.

Now, by Lemma 6.5, there are subpaths Qq D p1s1p2s2p3s3p4 of q and Qq0 D
p01s01p02 s02 p03s03p04 of q0 1 such that Lab.pi/ ak, Lab.p0i/ a k, i D 1; 2; 3; 4,
for some 2 f 1;1g which depends on the sign of l0), Lab.s1/ Lab.s3/ u,
Lab.s2/ u 1, Lab.s01/ Lab.s03/ t Lab.s02/ t for some 2 f 1; 1g, and

pi is connected in G; X [H/ to p0
i for each i D 1; 2; 3; 4. Therefore there exist

paths pQ1; pQ2; pQ3; pQ4 whose labels represent the elements ; ; ;i 2 H 0
respectively,

such that
Qp1/ D p1/C, Qp1/C D p01/C, Qp2/ D p02/C, pQ2/C D p2/C,

Qp3/ D p3/ Qp3/C D p03/ Qp4/ D p04/ pQ4/C D p4/ see Figure 2).

p1 s1 p2 s2 p3 s3 p4

ak u ak u 1 ak u

pQ1 pQ2 pQ3 pQ4

t t t
p01 s01 p02 s02 p03 p04s03

q

q0 1

ak

a k
i

a k a k a k

Figure 2.

The cycles s 1
1 Qp1s01p02pQ2p

1
2 s2 Qp3s02

1
pQ2 and s 1

3 p 1
3 Qp3p03 s03 pQ4 give rise to the

following equalities in the group G:

u D t a k a k ; u D t and u D a k a k t i:
Consequently, recalling that H 0 is malnormal Lemma 2.3) and that t … H 0

we
get

ak 1 a k
D t 1 t 2 H 0 \ t H 0 t D f1g;

and

a k 1ak
D t i 1t 2 H 0 \ t H 0 t D f1g:

Thus

ak 1
D a k and 1

ak
D a k 6.1)
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for some D k/; D k/ 2 H 0
and D k/; D k/ 2 f 1; 1g. Note that

the proof works for any sufficiently large k, therefore we can find two mutually prime
positive integers k; k0 with the above properties such that k/ D k0/ D and

k/ D k0/ D Denote 0 D k0/ and 0 D k0/, then t D u D 0t 0,

implying
1 0

D t 0
1t 2 H 0 \ t H 0t D f1g:

Hence 0 D 0 D

ak0 1
D a k0 and 1ak0

D a k0 : 6.2)

It remains to observe that since k and k0 are mutually prime, the formulas 6.1)
and 6.2) together yield

a 1
D a and 1 a D a ;

7. Small cancellation over relatively hyperbolic groups

Let G be a group generated by a subset A G and let O be the set of all words in
the alphabet A 1, that are trivial in G. Then G has a presentation of the following
form:

G D hA j Oi: 7.1)

Given a symmetrized set of words R over the alphabet A, consider the group G1
defined by

G1 D hA j O [Ri D hG j Ri: 7.2)

During the proof of the main result of this section we use presentations 7.2)
or, equivalently, the sets of additional relators R) that satisfy the generalized small

cancellation condition C1."; ; ; c; / In the case of word hyperbolic groups this
condition was suggested by Ol’shanskii in [16], and was afterwards generalized to
relatively hyperbolic groups by Osin in [21]. For the definition and detailed theory
we refer the reader to the paper [21], as we will only use the properties, that were
already established there. The following observation is an immediate consequence

of the definition:

Remark 7.1. Let the constants "j; j; ; c; j j D 1;2, satisfy 0 < 1, 0

"1 "2, c 0, 0 < 2 1, 2 1 > 0. If the presentation 7.2) enjoys the
condition C1."2; 2; ; c; 2/ then it also enjoys the condition C1."1; 1; ; c; 1/.

We will also assume that the reader is familiar with the notion of a van Kampen
diagram over the group presentation 7.2) see [10, Chapter V] or [15, Chapter 4]).
Let be such a diagram. A cell … of is called an R-cell if the label of its
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boundary contour @… i.e., the word written on it starting with some vertex in the
counter-clockwise direction) belongs to R.

Consider a simple closed path o D rqr0q0 in a diagram over the presentation
7.2), such that q is a subpath of the boundary cycle ofanR-cell… and q0 is a subpath

of @ Let denote the subdiagram of bounded by o. Assuming that has no

holes, no R-cells and L.r/; L.r0/ " it will be called an "-contiguity subdiagram
of … to @ The ratio L.q/=L.@…/ will be called the contiguity degree of … to @

and denoted .…; ; @ /
A diagram is said to be reduced if it has a minimal number of R-cells among all

the diagrams with the same boundary label.
If G is a group hyperbolic relative to a family of proper subgroups fHigi2I with

a finite relative generating setX, then G is generated by the setA D X[Si2I.Hi n

f1g/, and the Cayley graph G;A/ is a hyperbolic metric space [20, Corollary 2.54].
As for every condition of small cancellation, the main statement of the theory is

the following analogue of Greendlinger’s Lemma, claiming the existence of a cell,
large part of whose contour lies on the boundary of the van Kampen diagram.

Lemma 7.2 ([21], Corollary 4.4). Suppose that the group G is generated by a subset

A such that the Cayley graph G; A/ is hyperbolic. Then for any 0 < 1 there
is 0 > 0 such that for any 2 .0; 0 and c 0 there are "0 0 and 0 > 0 with
the following property.

Let the symmetrized presentation 7.2) satisfy the C1."0; ; ; c; 0/-condition.
Further, let be a reduced van Kampen diagram over G1 whose boundary contour
is ; c/-quasigeodesic in G. Then, provided has anR-cell, there exists anR-cell
… in and an "0-contiguity subdiagram of … to @ such that

.…; ; @ / > 1 23 :

The main application of this particular small cancellation condition is

Lemma 7.3 ([21], Lemmas 5.1 and 6.3). For any 0 < 1, c 0 andN > 0
there exist 1 > 0, "1 0 and 1 > 0 such that for any symmetrized set of words R
satisfying C1."1; 1; ; c; 1/-condition the following hold.

1. The group G1 defined by 7.2) is hyperbolic relative to the collection of images

f Hi/gi2I under the natural homomorphism
W G G1.

2. The restriction of to the subset of elements having length at most N with
respect to A is injective.

3. Any element that has a finite order in G1 is an image of an element of finite order
in G.

Below is the principal lemma of this section that will later be used to prove
Theorem 1.5.
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Lemma 7.4. Assume that G is a torsion-free group hyperbolic relative to a family of
proper subgroups fHigi2I X is a finite relative generating set of G, S is a suitable
subgroup of G and U G is a finite subset. Suppose that i0 2 I a 2 Hi0 n f1g
and v1; v2 2 G are hyperbolic elements which are not commensurable to each other.
Then there exists a word W.x; y/ over the alphabet fx; yg such that the following is
true.

Denote w1 D W.a; v1/ 2 G, w2 D W.a; v2/ 2 G, and let hhw2ii be the normal
closure of w2 in G, G1 D G=hhw2ii and W G G1 be the natural epimorphism.
Then

is injective on fH g 2ƒ [ U and G1 is hyperbolic relative to the family

f H /g 2ƒ;
S/ is a suitable subgroup of G1;

G1 is torsion-free;

w1/ ¤ 1.

Proof. By Lemma 2.7 there are hyperbolic elements v3; v4 2 S such that vi
G

6 vj if
1 i < j 4. Then by Lemma 2.2, the group G is hyperbolic relative to the finite
collection of subgroups fHi gi2I [SjD1fEG.

4 vj /g, and generated by the set

A D X [ [i2I
Hi [

4

[jD1
EG.vj/ n f1g:

Let G and K 2 N denote the finite subset and the constant achieved after an

application of Lemma 6.1 to this new collection of peripheral subgroups.
Define m D 7K, D 1=3, c D 2 and N D maxfjujA j u 2 Ug C 1. Choose

j > 0, "j 0 and j > 0, j D 0; 1, according to the claims of Lemmas 7.2
and 7.3. Let " D maxf"0; "1g, and let L D L.C; d/ > 0 be the constant given by
Lemma 6.5 where C D "0 and d D 2. Evidently there exists n 2 N such that, for

D .3" C 11/=n, one has

0 < minf 0; 1g; 2n.1 23 / > L; and 2n > maxf 0; 1g:

Set

F ."/ D °h 2 h i j jhj maxfK.32" C 70/;mg :

Since the subset F ."/ is finite, we can find k 2 N such that ak0; vk0
1 ; vk0

2 … F ."/
whenever k0 k. Consider the word

W.x; y/ xkykxkC1ykC1 : : : xkCn 1ykCn 1:

Let wj 2 G be the element represented by the word W.a; vj / in G, j D 1; 2, and

let R be the set of all cyclic shifts of W.a; v2/ and their inverses. By Lemma 2.3,
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Hi0 \ EG.v2/ D f1g because G is torsion-free, hence by [21, Theorem 7.5] the
presentation 7.2) satisfies the condition C1."; ; 1=3; 2; 2n/, and therefore, by
Remark 7.1, it satisfies the conditions C1."0; ; 1=3;2; 0/ and C1."1; 1; 1=3;2; 1/.

Observe that w1 ¤ 1 in G because, otherwise, there would have existed a closed
path q in G; A/ labelled by the word W.a; v1/, and, by part a) of Lemma 6.3, all
components of q would have been regular in the cycle o D rqr0q0 where r; r0;q0 are

trivial paths), which is obviously impossible.
Denote G1 D G=hhw2ii and let

W G G1 be the natural epimorphism. Then,
according to Lemma 7.3, the group G1 is torsion-free, hyperbolic relative to

f Hi/gi2I [S
4
jD1f EG.vj//g

and is injective on the set

Si2I Hi [S
4
jD1 EG.vj /[U

because the length in A of any element from this set is at most N). Since any
elementary group is word hyperbolic, G1 is also hyperbolic relative to f Hi/gi2I
by Lemma 2.4) and v3/; v4/ 2 S/ become hyperbolic elements of infinite

order in G1, that are not commensurable with each other by Lemma 2.3). Therefore

EG1 v3//\EG2 v4// D f1g recall that these subgroups arecyclic by Lemma 2.2
and becauseG1 is torsion-free), and, consequently, S/ is a suitable subgroup ofG1.

Suppose that w1/ D 1. By van Kampen’s Lemma there exists a reduced
planar diagram over the presentation 7.2) with the word W.a; v1/ written on its

boundary. Since W.a; v1/ G¤ 1, possesses at least oneR-cell. It was proved in [21,
Lemma 7.1] that any path in G;A/ labelled by W.a; v1/ is .1=3; 2/-quasigeodesic,
hence we can apply Lemma 7.2 to find an R-cell … of and an "0-contiguity
subdiagram containing no R-cells) between … and @ such that .…; ; @ / >
1 23 Thus there exists a cycle o D rqr0q0 in G; A/ such that q is labelled by a

subword of a cyclic shift of) W.a; v2/, q0 is labelled by a subword of a cyclic shift
of) W.a;v1/ 1, L.r/; L.r0/ "0 D C and

L.q/ > .1 23 / L.@…/ D .1 23 / 2n > L:

In particular, Lab.q/; Lab.q0/ 2 W. ;m/. Therefore we can apply Lemma 6.5
to find two consecutive components of q that are connected to some components
of q0. Due to the form of the word W.a; v2/, one of the formers will have to be an

EG.v2/-component, but q0 can have only EG.v1/- or Hi0-components. This yields
a contradiction because EG.v2/ ¤ EG.v1/ and EG.v2/ ¤ Hi0 Hence w1/ ¤ 1
in G1, and the proof is complete.
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8. Every group is a group of outer automorphisms of a 2CC)-group

Lemma 8.1. There exists a word R.x; y/over the two-letteralphabet fx; yg such that
every non-elementary torsion-free word hyperbolic group F1 has a non-elementary
torsion-free word hyperbolic quotient F that is generated by two elements a; b 2 F
satisfying

R.a; b/ F¤ 1; R.a 1;b 1/ FD 1; R.b; a/ FD 1; R.b 1; a 1 / FD 1: 8.1)

Proof. Consider the word

R.x;y/ xy101x2y102 : : : x100y200 :

Denote by F.a; b/ the free group with the free generators a;b. Let

R1 D fR.a;b/; R.a 1 ; b 1 /;R.b; a/; R.b 1 ;a 1/g;

and R2 be the set of all cyclic permutations of words from R 1
1 It is easy to see

that the set R2 satisfies the classical small cancellation condition C0.1=8/ see [10,
Chapter V]). Denote by NQ the normal closure of the set

R3 D fR.a
1; b 1 /;R.b; a/; R.b 1 ;a 1/g

in F.a; b/. Since the symmetrization of R3 also satisfies C0.1=8/, the group FQ D
F.a; b/=NQ is a torsion-free([10,TheoremV.10.1]) word hyperbolic group because it
has a finite presentation for which the Dehn function is linear by [10, TheoremV.4.4])
such that

R.a; b/
Q

F¤ 1 but R.a 1 ;b 1/
Q

FD R.b; a/
Q

FD R.b 1; a 1/
Q

FD 1:

Indeed, if theword R.a; b/ were trivial inFQ then, byGreendlinger’s Lemma [10,
TheoremV.4.4], itwould contain more than ahalfof a relator from thesymmetrization of)
R3 as a subword, which would contradict the fact thatR2 enjoys C0.1=8/. The group
FQ is non-elementary because every torsion-free elementary group is cyclic, hence,
abelian, but in any abelian group the relation R.a 1; b 1/ D 1 implies R.a; b/ D 1.

Now, the free product GQ D FQ F1 is a torsion-free hyperbolic group. Its
subgroups FQ and F1 are non-elementary, hence, according to a theorem of Ol’shanskii
[16, Theorem 2], there exists a non-elementary torsion-free word hyperbolic group F
and a homomorphism

W GQ F such that FQ/ D F1/ D F and R.a; b// ¤ 1
in F Therefore F is a quotient of F1, the -images of the) elements a; b generate

F and enjoy the required relations.

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. The argument will be similar to the one used to prove Theorem

5.1.
First, set n D 2 and applyLemma4.2 to find a countable torsion-free groupH and

a normal subgroupM C H, where H=M Š C andM has 2CC) alternatively, one
could start with a free groupH0 andM0 C H0 such thatH0=M0 Š C, and then apply
Lemma 4.4 to the pair H0; M0/ to obtain H andM with these properties). Consider
the word R.x; y/ and the torsion-free hyperbolic group F generated by the elements

a;b 2 F which satisfy 8.1), given by Lemma 8.1. Denote G. 2/ D H F and let

N. 2/ be the normal closure of hM; Fi in G. 2/, F. 2/ D F R. 2/ D fR.a; b/g
– a finite subset of F. 2/. By Lemma 2.6, G. 2/ will be hyperbolic relative to the
subgroup H, G. 2/ D H N. 2/, H \N. 2/ D M and F. 2/ will be a suitable
subgroup of G. 2/.

The element a 2 F. 2/ will be hyperbolic in G. 2/ and since the group G. 2/
is torsion-free, the maximal elementary subgroup EG. 2/.a/ will be cyclic generated

by some element h 2x 2, where h 2 2 H, x 2 2 N. 2/.
Choose y 2 2 M so that h 2y 2 ¤ 1. By Lemmas 2.2 and 2.5, the HNN-extension

G. 3=2/ D hG. 2/; t 1 j t 1h 2x 2t 1
1 D h 2y 2i

is hyperbolic relative to H. As in proof of Theorem 5.1, one can verify that F. 3/
is a suitable subgroup of G. 3=2/, and apply Theorem 2.8 to find an epimorphism

2W G. 3=2/ G. 1/ such that G. 1/ is a torsion-free group hyperbolic relative
to 2.H/, 2 is injective on H [ R. 2/ and 2.t 1/ 2 F. 1/ where F. 1/ D

2.F 2// is a suitable subgroup of G. 1/. Hence 2.G. 2// D G. 1/ as

G. 3=2/ was generated by G. 2/ and t 1.

Denote N. 1/ D 2.N. 2//, R. 1/ D 2.R. 2// and 2 D 2jG. 2/ W

G. 2/ G. 1/. One can show that G. 1/ D H N. 1/ and H \ N. 1/ D
M using the same arguments as in the proof of Theorem 5.1. According to the
construction, we have

2.t 1/ 2.a/ 2.t 1
1/ D t 1at 1

1/ 2 N. 1/\ H D M

in G. 1/, therefore, since the conjugation by 2.t 1/ is an inner automorphism of
F. 1/, we can assume that F. 1/ is generated by a 1 and b 1, where a 1 2 M
and R.a 1; b 1/ ¤ 1 in F. 1/ because 2.R.a;b// ¤ 1 in F. 1/).

Now, if b 1 is not a hyperbolic element of G. 1/, i.e., if b 1
G. 1/ c for some

c 2 H, then c 2 N. 1/\H D M, and sinceM has 2CC) we can find s 1 2 G. 1/
such that b 1 D s 1a 1s 1

1 In this case we define G.0/ D G. 1/, N.0/ D N. 1/,
F.0/ D F. 1/, R.0/ D R. 1/, a0 D a 1, s0 D s 1 and 1 D idG. 1/.

Otherwise, if b 1 is hyperbolic in G. 1/, then we construct the group G.0/, and

an epimorphism 1 W G. 1/ G.0/ in an analogous way, to make sure that 1
is injective on H [R. 1/, G.0/ torsion-free and hyperbolic relative to the image
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of) H, F.0/ D 1.F 1// is a suitable subgroup of G.0/, G.0/ D H N.0/ and

H \N.0/ D M where N.0/ D 1.N. 1//, and b0 D s0a0s 1 in G.0/ where0
b0 D 1.b 1/, a0 D 1.a 1/ for some s0 2 G.0/

Enumerate all elements of N.0/: fg0; g1; g2; : :: g, and of G.0/: fq0; q1;q2;: : : g,
so that g0 D q0 D 1.

The groups G.j/ together with N.j / C G.j /, F.j/ G.j /, finite subsets

R.j/ G.j /, and elements aj ;sj 2 G.j /, j D 1; 2; : : : that we will construct
shall satisfy the following properties:

1B. for each j 2 N there is an epimorphism j 1 W G.j 1/ G.j / which is
injectiveonH[R.j 1/. F.j/ D j 1.F j 1//, N.j / D j 1.N.j 1//,
aj D j 1.aj 1/ 2 M, sj D j 1.sj 1/ 2 G.j /;

2B. G.j/ is torsion-free and hyperbolic relative to the image of) H, and F.j/
G.j/ is a suitable subgroup generated by aj and sj aj s 1

j ;

3B. G.j/ D H N.j /, N.j/ C G.j/ and H \N.j / D M;
4B. the natural image

gNj
of gj in G.j / belongs to F.j/;

5B. there exists zj 2 H such that Nqj

G.j/ zj where Nqj is the image of qj in G.j/;
6B. if j 1, qNj 1 2 G.j 1/ n H and for each kO 2 N there is k kO

such that ak j 1 s 1j 1sj 1ak j 1

G.j 1/
6

ak j 1 Nq

1j 1 Nqj 1ak j 1 then where wj 1 D
Rj 1.aj 1;sj 1aj 1s 1j 1/ in G.j 1/, for some there is a word Rj 1.x; y/
over the two-letter alphabet fx; yg which satisfies

j 1/ ¤ 1 andR.j/ 3 j 1 Rj 1.aj 1; sj 1aj 1s
1

j 1 Rj 1.aj 1; Nqj 1aj 1 Nq

1
j 1/ D1 in G.j/:

Suppose that the groups G.0/; : : :; G.i/ have already been defined. The group

G.i C 1/ will be constructed in three steps.

First, assume that qNi 2 G.i/ n H and for each kO 2 N there is k kO such that

aki siaki s 1
i

G.i/
6

ak i Nq

1
i Nqiak i Observe that si … H because, otherwise, one would

have F.i/ H, which is impossible as F.i/ is suitable in G.i/. Therefore, by
Corollary 6.6, we can suppose that k is so large that the elements v1 D aksiaks 1

i i i
and v2 D ak i Nq

1
i Nqiak i are hyperbolic in G.i/. Applying Lemma 7.4 we can find a

word W.x; y/ over fx; yg such that the group G.i C 1=3/ D G.i /=hhW.ai; v2/ii
and the natural epimorphism

W G.i/ G.i C 1=3/ satisfy the following: is
injective on H [ R.i /, G.i C 1=3/ is torsion-free and hyperbolic relative to the
image of) H, F.i// G.i C 1=3/ is a suitable subgroup, and W.ai; v1// ¤ 1.
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Define the word Ri x; y/ W.x; xkyk/. Then Ri ai; siais 1
i / D W.ai;v1/,

Ri ai ; Nqiai Nq

1
i / D W.ai; v2/ in G.i/, hence

Ri ai; siais 1
i / ¤ 1 and Ri ai; Nqiai Nq

1
i / D 1 in G.i C 1=3/:

If, on the other hand,
qNi 2 H or there is kO 2 N such that for every k kO one

i siaki s 1
ihas ak

G.i/
ak i Nq

1
i Nqiak i then we define G.i C 1=3/ D G.i/, W G.i/

G.i C 1=3/ to be the identical homomorphism and Ri x;y/ to be the empty word.
Let gOiC1 and qOiC1

denote the images of giC1 and qiC1 in G.i C 1=3/, Ny.i/ D
i /g Then,

using

N.i //, Fy.i/ D F.i// and Ry i/ D R.i/ [ fRi ai;siais 1

3B, we get G.i C1=3/ D H Ny.i/ and H \ Ny.i/ D M because ker. / N.i/
as ai; Nqiai Nq

1
i 2 N.i/).

Now we construct the group G.i C 2=3/ in exactly the same way as the group

G.i C 1=2/ was constructed in during the proof of Theorem 5.1.

If for some f 2 G.iC1=3/, f OqiC1f
1

D z 2 H, then set G.i C2=3/ D G.i/,

KiC1 D Ny.i/ C G.i C 2=3/ and tiC1 D 1.
Otherwise, OqiC1 is a hyperbolic element of infinite order in G.i C 1=3/. Since

G.i C 1=3/ is torsion-free, one has EG.iC1=3/. OqiC1/ D hhxi for some h 2 H and

x 2 Ny.i/, and there is m 2 Z such that qOiC1 D hx/m. Now, by Lemma 2.2,

G.i C 1=3/ is hyperbolic relative to fH; hhxig. Choose y 2 M so that hy ¤ 1 and

let G.i C 2=3/ be the following HNN-extension of G.i C 1=3/:

G.i C 2=3/ D hG.i C 1=3/; tiC1 j tiC1.hx/t 1
iC1 D hyi:

The group G.i C 2=3/ is torsion-free and hyperbolic relative to H by Lemma 2.5.
One can show that Fy.i/ is a suitable subgroup of G.i C 2=3/ in the same way as

during the proof of Theorem 5.1. Lemma 4.3 assures that H \ KiC1 D M where

KiC1 C G.i C 2=3/ is the normal closure of hNy.i/; tiC1i in G.i C 2=3/. Finally,
note that

tiC1 OqiC1t
1

iC1 D tiC1.hx/mt 1

iC1 D hy/m D z 2 H in G.i C 2=3/:

Define TiC1 D fOgiC1; tiC1g KiC1. The group G.i C 1/ is constructed from

G.i C 2=3/ as follows. Since TiC1 Fy.i/ KiC1 C G.i C 2=3/, we can apply
Theorem2.8 tofinda group G.iC1/and an epimorphism'i W G.iC2=3/ G.iC1/
such that'i is injective onH[ yR.i/, G.iC1/ is torsion-freeandhyperbolic relative to
the image of) H, f'i gOiC1/; 'i tiC1/g 'i Fy.i//, 'i Fy.i// is a suitable subgroup

of G.i C1/, and ker.'i/ KiC1. Denote by i W G.i/ G.i C1/ the composition

'i B Then i.G.i// D 'i.G.i// D G.iC1/ because G.iC2=3/ was generated by

G.i/ and tiC1, and according to the construction, tiC1 2 'i Fy.i// 'i.G.i//. Now,
after defining F.i C 1/ D i.F i //, N.i C 1/ D i.N.i //, R.i C 1/ D 'i yR.i //,
gNiC1 D 'i gOiC1/ 2 F.i C 1/ and ziC1 D 'i z/ 2 H, we see that the conditions
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1B–5B hold in the case when j D i C 1, as in the proof of Theorem 5.1. The last
property 6B follows from the way we constructed the group G.i C 1=3/.

Let Q D G.1/ be the direct limit of the sequence G.i /; i / as i 1, and let

F.1/ and N D N.1/ be the limits of the corresponding subgroups. Let a1, b1
and s1 be the images of a0, b0 and s0 in Q respectively. Then b1 D s1a1s

1

1 Q
is torsion-free by 2B, N C Q, Q D H N and H \ N D M by 3B, N F.1/
by 4B. Hence Q=N Š H=M Š C.

Since F.0/ N.0/ we get F.1/ N. Thus N D F.1/ is a homomorphic
image of F.0/ D F and, consequently, it is a quotient of F1. By 5B, for any q 2 N
there are z 2 H and p 2 Q such that pqp 1

D z. Consequently z 2 H \N D M.
Choose x 2 N and h 2 H so that p D hx. Since M has 2CC) and h 1zh 2 M,
there is y 2 M such that yh 1zhy 1

D z, therefore yx/q.yx/ 1
D z 2 M and

yx 2 MN D N. Hence each element q ofN will be conjugated inN) to an element
of M, and since M has 2CC), therefore the group N will also have 2CC).

The property that CQ.N/ D f1g can be established in the same way as in Theorem

5.1. Therefore the natural homomorphism Q Aut.N / is injective. It remains
to show that it is surjective, that is for every 2 Aut.N / there is g 2 Q such
that x/ D gxg 1 for every x 2 N. Since all non-trivial elements of N are

conjugated, after composing with an inner automorphism of N, we can assume

that a1/ D a1. On the other hand, there exist q1 2 N and i 2 N such that

b1/ D q1a1q
1

1
and q1 is the image of qi in Q. Note that s1 … H because

si 2 G.i/ n H for every i 2 N. This implies that H is a proper subgroup of N,
thus q1 … H since N D F.1/ D ha1; q1a1q

1
1 i Q, and a1 2 H. Hence

Nqi 2 G.i/ n H.
Now we have to consider two possibilities.

Case 1. For each kO 2 N there is k kO such that

ak
i siak

i s
1

i
G.i/

6 ak
i Nq

1
i Nqia

k
i :

Then there is a word Ri x;y/ such that the property 6B holds for j D i C 1. And,
since each j is injective on f1g[Rj by 2B), we conclude that

Ri a1; s1a1s
1

1 / ¤ 1 and Ri a1; q1a1q
1

1 / D 1 in Q;

which contradicts the injectivity of Hence Case 1 is impossible.

Case 2. The assumptions of Case 1 fail. Then we can use Lemma 6.7 to find

i ai 1
D a; 2 H and ; 2 f 1;1g such that Nqi D s i and 1ai D ai in

G.i /. Denote by 1 the image inQ, and for any y 2 QletCy be the automorphism
of N defined by Cy.x/ D yxy 1 for all x 2 N.

If D 1 then 1

1 a1 1 D a1 and b1/ D q1a1q
1

1 D 1s
1

1 a1s1
1

1
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hence

1 B W ´a1 7! s1a1Aut.N/ 3 Cs1
1

s 1

1 D b1
;

b1 D s1a1s
1

1 7! a1 :

But N has no such automorphisms because R.a1; b1/ ¤ 1 and R.b1; a1/ D 1 in
N since N is a quotient of F and 1 ¤ R.a0;b0/ 2 R.0/ in G.0/).

Therefore D 1. Similarly, D 1, as otherwise we would obtain a contradiction
with the fact that R.a 1

1 ; b 1

1 / D 1 in N. Thus

1 B W ´a1 7! a1;Aut.N / 3 C 1

b1 D s1a1s
1

1 7! s1a1s
1

1 D b1:

And since a1 and b1 generate N we conclude that for all x 2 N, x/ D gxg 1,

whereg D 1 2 Q. Thus the natural homomorphism fromQto Aut.N / is bijective,
implying that Out.N / D Aut.N /=Inn.N/ Š Q=N Š C.
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