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Groups with finitely many conjugacy classes and their
automorphisms

Ashot Minasyan*

Abstract. We combine classical methods of combinatorial group theory with the theory of small
cancellation over relatively hyperbolic groups to construct finitely generated torsion-free groups
that have only finitely many classes of conjugate elements. Moreover, we present several results
concerning embeddings into such groups.

As another application of these techniques, we prove that every countable group C can be
realized as a group of outer automorphisms of a group N, where N is a finitely generated group
having Kazhdan’s property (T) and containing exactly two conjugacy classes.

Mathematics Subject Classification (2000). 20F65, 20E45, 20F28.

Keywords. Conjugacy classes, relatively hyperbolic groups, outer automorphism groups.

1. Introduction

We shall start with the following definition.

Definition. Suppose that » > 2 is an integer. We will say that a group M has the
property (nCC) if there are exactly » conjugacy classes of elements in M .

Note that a group M has (2CC) if and only if any two non-trivial elements are
: : : G .
conjugate in M. For two elements x, y of some group G, we shall write x ~ y if x

’ : G .
and y are conjugate in G, and x ~ vy if they are not.

For a group G, denote by 7 (G) the set of all finite orders of elements of G. A clas-
sical theorem of G. Higman, B. H. Neumann and H. Neumann ([8]) states that every
countable group G can be embedded into a countable (but infinitely generated) group
M , where any two elements of the same order are conjugate and n(M) = 7(G).

For any integer n > 2, take G = 7 /2" 27 and embed G into a countable group
M according to the theorem above. Then card(sw(M)) = card(7(G))} = n — 1.
Since, in addition, M will always contain an element of infinite order, the theorem
of Higman—Neumann—Neumann implies that & has (nCC).

*This work was supported by the Swiss National Science Foundation Grant §f PP002-68627.
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Another way to construct infinite groups with finitely many conjugacy classes was
suggested by S. Tvanov [15, Theorem 41.2], who showed that for every sufficiently
large prime p there is an infinite 2-generated group M, of exponent p possessing
exactly p conjugacy classes. The group M), is constructed as a direct limit of word
hyperbolic groups, and, as noted in [21], it is impossible to obtain an infinite group
with (2CC) 1n the same manner,

In the recent paper [21] D. Osin developed a theory of small cancellation over
relatively hyperbolic groups and used it to obtain the following remarkable result:

Theorem 1.1 ([21], Theorem 1.1). Any countable group G can be embedded into a
2-generated group M such that any two elements of the same order are conjugalte in
M and 7(M) = 7(G).

Applying this theorem to the group G = Z/2"~27 one can show that for each
integer n > 2 there exists a 2-generated group with (nCC). And when n = 2 we get
a 2-generated torsion-free group that has exactly two conjugacy classes.

The presence of elements of finite orders in the above constructions was important,
because if two elements have different orders, they can never be conjugate. So,
naturally, one can ask the following

Question 1. Do there exist torsion-free (finitely generated) groups with (nCC), for
any integer n > 37

Note that if G 1is the finitely generated group with (2CC) constructed by Osin, then
the m-th direct power G™ of G is also a finitely generated torsion-free group which
satisfies (2"CC). But what if we want to achieve a torsion-free group with (3CC)?
With this purpose one could come up with

Question 2. Suppose that G is a countable torsion-free group and x,y € G are
non-conjugate. Is it possible to embed G into a group M, which has (3CC), so that
x and y stay non-conjugate in M7

Unfortunately, the answer to Question 2 is negative as the following example
shows.

Example 1. Consider the group
Gy = {a.t|tat™ =a™ 1) (1.1)

which is isomorphic to the non-trivial semidirect product Z x Z. Note that Gy is
torsion-free, and 7 is not conjugated to r~! in G; because t ~ r~! in the infinite
cyclic group (r) which is canonically isomorphic to the quotient of G; by the normal
closure of . However, if Gy is embedded into a (3CC)-group M, it is easy to see
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that every element of M will be conjugated to its inverse (indeed, if y € M \ {1}
M

and y ~ y~! then y© Xoa™ a1 for some ¢ e {1,—1}, hence y¢ S y € —a

contradiction). In particular, r 2 ¢=1,

An analog of the above example can be given for each n > 3 —see Section 3. This
example shows that, in order to get a positive result, one would have to strengthen
the assumptions of Question 2,

Let G be a group. Two elements x, y € G are said to be commensurable if there

G
exist k, [ € Z \ {0} such that x* is conjugate to y*. We will use the notation x ~ y if

x and y are commensurable in G. In the case when x i8 not commensurable with y
G

we will write x % y. Observe that commensurability, as well as conjugacy, defines
an equivalence relation on the set of elements of G. It 1s somewhat surprising that
if one replaces the words “non-conjugate” with the words “non-commensurable” in
Question 2, the answer becomes positive:

Corollary 1.2. Assume that G is a countable torsion-free group, n € N, n > 2, and
X1,...,Xpn—1 € G\ {1} are pairwise non-commensurable. Then there exists a group
M and an injective homomorphism ¢ . G — M such that

1. M is torsion-free and generated by two elements;

2. M has (nCC),

3. M is 2-boundedly simple;

4. the elements p(x1), ..., p{x,—1) are pairwise non-commensurable in M.

Recall that a group G is said to be k-boundedly simple if for any x,y € G\
{1} there exist | < k, €1,...,¢; € {—1,1} and g1,...,g1 € G such that x =
gry<lgrt - giyigtinG.

A group is called boundedly simple if it is k-boundedly simple for some k € N,
Evidently every boundedly simple group is simple; the converse is not true in general.
For example, the infinite alternating group A 1s simple but not boundedly simple
because conjugation preserves the type of the decomposition of a permutation into a
product of cycles. First examples of torsion-free finitely generated boundedly simple
groups were constructed by A. Muranov (see [12, Theorem 2], [13, Theorem 1]).

Corollary 1.2 is an immediate consequence of a more general Theorem 3.5 that
will be proved in Section 3.

Applying Corollary 1.2 to the group G = F(xy,...,xs—1), which is free on the
set {x1,...,X,—1}, and its non-commensurable elements xq, ..., x,_1, we obtain a
positive answer to Question 1:

Corollary 1.3. For every integer n > 3 there exists a torsion-free 2-boundedly simple
group satisfving (nCC) and generated by two elements.
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(In the case when n = 2 the above statement was obtained by Osin in [21,
Corollary 1.3].) In fact, for any (finitely generated) torsion-free group H we can set
G = H % F(xy,...,x,_1), and then use Corollary 1.2 to embed G into a group
M enjoying the properties 1 — 4 from its claim. Since there is a continuum of pair-
wise non-isomorphic 2-generated torsion-free groups ([4]), and a finitely generated
group can contain at most countably many of different 2-generated subgroups, this
shows that there must be continually many pairwise non-isomorphic groups satisfying
properties 1-3 from Corollary 1.2.

Recall that the rank of a group G, rank(G), is the minimal number of elements
required to generate &. In Section 4 we show how classical theory of HNN-extensions
allows to construct different embeddings into (infinitely generated) groups that have
finitely many classes of conjugate elements, and in Section 5 we use Osin’s results
(from [21]) regarding quotients of relatively hyperbolic groups to prove

Theorem 1.4. Let H be a torsion-free countable group and let M <1 H be a non-
trivial normal subgroup. Then H can be isomorphically embedded into a torsion-free
group Q, possessing a normal subgroup N <1 Q, such that

s O=H -Nand HNN = M (hence Q/N =~ H/M);
* N has QCC),

e forallx,y € Q\{l}, x 2 yifandonlyif (x) O @(v), wherep: QO — Q/N
is the natural homomorphism;

o rank(N) = 2 and rank(Q) < rank(H/M} + 2.

This theorem implies thatif Q /N = H/M has exactly (n — 1) conjugacy classes
(e.g., if it s finite), then the group Q will have (nCC) and will not be simple (if n > 3).
Thus it may be used to build (nCC)-groups in a recursive manner. It also allows to
obtain embeddings of countable torsion-free groups into (nCC)-groups, which we
could not get by using Corollary 1.2. For instance, as we saw in Example 1, the
fundamental group of the Klein bottle G, given by (1.1), can not be embedded into

a (3CC)-group M so that ¢ : | t~1. However, with 4 conjugacy classes this is already
possible: see Corollary 5.5 in Section 5. The idea is as follows: the group G can
be mapped onto Z /37 in such a way that the images of the elements ¢ and ¢! are
distinct. Let M be the kernel of this homomorphism. One can apply Theorem 1.4 to
the pair (G1, M) to obtain the required embedding of G into a group @. And since
7./37 has exactly 3 conjugacy classes, the group Q will have (4CC).

An application of Theorem 1.4 to the case when H = Z and M = 27 < H also
provides an affirmative answer (o a question of A. 1zosov from [9, Question 11.42],
asking whether there exists a torsion-free (3CC)-group ¢ that contains a normal
subgroup N of index 2.
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The goal of the second part of this article is to show that every countable group
can be realized as a group of outer automorphisms of some finitely generated (2CC)-
group. This problem has some historical background: in [11] T. Matumoto proved
that every group is a group of outer automorphisms of some group (in contrast, there
are groups, e.g., Z, that are not full automorphism groups of any group); M. Droste,
M. Giraudet, R. Gobel (]7]) showed that for every group C there exists a simple group
S such that Out(S) = C; I. Bumagina and D. Wise in [3] proved that cach countable
group C is isomorphic to Out{N ) where N is a 2-generated subgroup of a countable
C’(1/6)-group, and if, in addition, C is finitely presented then one can choose N to
be residually finite.

In Section 6 we establish a few useful statements regarding paths in the Cayley
graph of a relatively hyperbolic group G, and apply them in Section 7 to obtain small
cancellation quotients of G satisfying certain conditions. Finally, in Section 8 we
prove the following

Theorem 1.5. Let C be an arbitrary countable group. Then for every non-elementary
torsion-free word hyperbolic group Fi there exists a torsion-free group N satisfying
the following properties:

» N isa2-generated quotient of Fy;
* N has 2CC),
s Out(N) = C.

The principal difference between this theorem and the result of [3] is that our
group N 1is torsion-free and simple. Moreover, if one applies Theorem 1.5 to the case
when F 18 a torsion-free hyperbolic group with Kazhdan’s property (T) (and recalls
that every quotient of a group with property (T) also has (1)), one will get

Corollary 1.6. For any countable group C there is a 2-generated group N such that
N has 2CC) and Kazhdan’s property (T), and Out(N) = C.

The reason why Kazhdan’s property ('T) is interesting in this context is the question
from [6, p. 134] which asked whether there exist groups that satisfy property (T)
and have infinite outer automorphism groups (it can be motivated by a theorem of
F. Paulin [22] which claims that the outer automorphism group is finite for any word
hyperbolic group with property (T)). Positive answers to this question were obtained
(using different methods) by Y. Ollivier and D. Wise [14], Y. de Cornulier [5], and
I. Belegradek and D. Osin [2]. Corollary 1.6 not only shows that the group of outer
automorphisms of a group N with property ('T') can be infinite, but also demonstrates
that there are no restrictions whatsoever on Out(N).

Acknowledgements. The author would like to thank D. Osin for fruitful discussions
and encouragement.
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2. Relatively hyperbolic groups

Assume that G is a group, { H; };ca 15 a fixed collection of subgroups of G (called
peripheral subgroups), and X is a subset of G. The subset X is called a relative
generating set of G with respect to { Hj } e if G is generated by X U, 4 Hi. In
this case G a quotient of the free product

F = (xpeaHy) * F(X),

where F(X) is the free group with basis X. Let R be a subset of F such that the
kernel of the natural epimorphism I — G is the normal closure of R in the group F;
then we will say that G has relative presentation

(X, {H;}ea | R =1, R € R). 2.1)

If the sets X and (R are finite, the relative presentation (2.1) is said to be finite.

Set H = | |iea (Ha \ {1}). A finite relative presentation (2.1) is said to satisfy a
linear relative isoperimetric inequality if there exists C > 0 such that, for every word
w in the alphabet X' U # (for convenience, we will further assume that X -1 = X)
representing the identity in the group G, one has

k
F _
w:l_[fl-lRi:Hfi,

i=1

with equality in the group F, where R; € R, f; € F,fori = 1,...,k, and
k < C|wl|, where ||w]|| is the length of the word w.
The next definition is due to Osin (see [20]):

Definition. The group G is called hyperbolic relative to (the collection of peripheral
subgroups) { H; } 1ca ., if G admits a finite relative presentation (2.1) satisfying a linear
relative 1soperimetric inequality.

This definition is independent of the choice of the finite generating set X and the
finite set R in (2.1) (see [20]). We would also like to note that, in general, it does not
require the group G to be finitely generated, which will be important in this paper.
The definition immediately implies the following basic facts:

Remark 2.1 (]20]). (a) Let { H;} e be an arbitrary family of groups. Then the free
product G = x; H; will be hyperbolic relative to {Hj }jea-

(b) Any word hyperbolic group (in the sense of Gromov) is hyperbolic relative to
the family {{1}}, where {1} denotes the trivial subgroup.
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Recall that a group H is called elementary if it has a cyclic subgroup of finite
index. TFurther in this section we will assume that G is a non-elementary group
hyperbolic relative to a family of proper subgroups { H}1eca .

An element g € G is said to be parabolic if it is conjugated to an element of H
for some A € A. Otherwise g is said to be hyperbolic. Given a subgroup S < G, we
denote by S° the set of all hyperbolic elements of S of infinite order.

Lemma 2.2 ([17], Theorem 4.3, Corollary 1.7). For every g € G° the following
conditions hold.

1) The element g is contained in a unique maximal elementary subgroup Eg(g)
of G, where

Ec(g)={feG| fg"f' = g™ for somen € N}. (2.2)
2) The group G is hyperbolic relative to the collection { Hy}pep U {EG(2)}

Recall that a non-trivial subgroup H < G is called malnormal if for every g €
G\ H, HngHg ! = {1}. The next lemma is a special case of Theorem 1.4
from [20]:

Lemma 2.3. For any A € A and any g ¢ H;, the intersection H; N gH, g ' is

finite. If h € G, € A and p # A, then the intersection Hy N hH, h™1 is finite. In
particular, if G is torsion-free then H; is malnormal (provided that H; # {1}).

Lemma 2.4 ([20], Theorem 2.40). Suppose that a group G is hyperbolic relative
fo a collection of subgroups {Hj}rea Y {S1,-..,Sm}, where Sy, ..., Sy are word
hyperbolic (in the ordinary non-relative sense). Then G is hyperbolic relative to
{H)}ren.

Lemma 2.5 ([19], Corollary 1.4). Let G be a group which is hyperbolic relative to
a collection of subgroups { Hj }pen U {K}. Suppose that K is finitely generated and
there is a monomorphism «: K — H, for some v € A. Then the HNN-extension
(G,t | txt™! = a(x), x € K) is hyperbolic with respect to {H;}sen.

In [21] Osin introduced the following notion: a subgroup S < G 1s suitable it

G
there exist two elements g1, g» € S%suchthatg; # g-and Eg(g1)NEg(g2) = {1}.
For any S < G with S® # @, one sets

Eg(S) = () Ec(2) (2.3)
geso

which is obviously a subgroup of G normalized by S. Note that E¢ (S) = {1} if the
subgroup S is suitable in &¢. As shown in [1, Lemma 3.3], if .S is non-elementary and
SO = § then Eg(S) is the unique maximal finite subgroup of G normalized by S
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Lemma 2.6. Let {H};ca be a family of groups and let F be a torsion-free non-
elementary word hyperbolic group. Then the free product G = (xjecpaHy) % F is
hyperbolic relative to { Hy } e and F is a suitable subgroup of G.

Proof. Indeed, G is hyperbolic relative (o { I } e A by Remark 2.1 and Lemma 2.4,

Since F is non-clementary, there are elements of infinite order x, y € F such that
F
x #% y (see, for example, [16, Lemma 3.2]). Evidently, x and y are hyperbolic

elements of G that are not commensurable with each other, and the subgroups
Ecx)=Ep(x) < F, Eg(y) = Ep(y) < F are cyclic (as elementary subgroups
of a torsion-free group). Hence Eg(x) N Eg(y) = {1}, and thus F is suitable in G.

O

Lemma 2.7 (|21], Lemma 2.3). Suppose that G is a group hyperbolic relative to a
family of subgroups {H;},en and S < G is a suitable subgroup. Then one can find
infinitely many pairwise non-commensurable (in G) elements g1, g2, ... € SY such

that Eg(gi) N Eg(g;) = {1} foralli # j.

The following theorem was proved by Osin in [21] using the theory of small can-
cellation over relatively hyperbolic groups, and represents our main tool for obtaining
new quotients of such groups having a number of prescribed properties:

Theorem 2.8 ([21], Theorem 2.4). Let G be a torsion-free group hyperbolic relative
to a collection of subgroups {Hj }en, let S be a suitable subgroup of G, and let T,
U be arbitrary finite subsets of G. Then there exist a group Gy and an epimorphism
n: G — Gy such that:

(1) The restrictionof nto\J,cp Hy WU isinjective, and the group G is hyperbolic
relative to the collection {n(H )} rens

(i1} for everyt € T, we have n(t) € n(S),
(iii} n(S) is a suitable subgroup of Gy,
(iv) G is torsion-free;

(v) the kernel ker(n) of n is generated (as a normal subgroup of G) by a finite
collection of elements belonging ro T - S.

We have slightly changed the original formulation of the above theorem from
[21], demanding the injectivity on V' = | J; . Hi U U (instead of just | J; <o Hi)
and adding the last statement concermning the generators of the kernel. The latter
follows from the explicit form of the relations, imposed on G (see the proof of
Theorem 2.4 in [21]), and the former from part 2 of Lemma 5.1 in [21] and the
fact that any element from V has length (in the alphabet X U #€) at most N, where
N = max{|h|ngg | h e U+ 1.
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3. Groups with finitely many conjugacy classes

Lemma 3.1. Let G be a group and let x1, x2, x3, x4 € G be elements of infinite order
G
suchthat xq % x;,i = 2,3,4. Let H = (G, t | tx3t~' = x4) be the HNN-extension
H
of G with associated cvclic subgroups generated by x3 and x4. Then x1 %6 x».

Proof. Arguing by contradiction, assume that x!h=1x" = 1 for some h € H,
[,m e Z \ {0}. The element /i has a reduced presentation of the form

h = gotlg1r®2 .. 1k gy

where go,...,2x € G, €1,...,6x € Z \ {0}, and

gi ¢ (x3) ifl<j<k—lande; > 0,641 <O,
gj¢(X4) iflfjfk_landéj<0,€j+1>0.

G
By the assumptions, x; 5 x3 hence k& > 1, and in the group H we have

hxllh_lxg’ = gotlg1?. ..rekgkxllglzlt_ek L2 gT gy =1, (B.)

where gy = g5 'x4 € G. By Britton’s Lemma (see [10, IV.2]), the left-hand side in
(3.1) cannot be reduced, and this can happen only if gkx{ g;l belongs to either (x3) or
{x4) in G, which would coniradict the assumptions. Thus the lemma is proved. O

Definition. Suppose that G isa groupand X; C G, i € [, is a family of subsets. We
shall say that X;, 7 € I, are independent if no element of X; is commensurable with
an element of X; whenever? # j,i,j € 1.

Lemma 3.2. Assume that G is a countable torsion-free group, n € N, n > 2, and
non-empty subsets X; C G \{1},i = 1,...,n — 1, are independent in G. Then G
can be (isomorphically) embedded into a countable torsion-free group M in such a
way that M has (nCC) and the subsets X;, i = 1,...,n — 1, remain independent
in M.

Proof. Foreachi = 1,...,n — 1, fix an element x; € X;. First we embed G into a
countable torsion-free group G such that for each non-trivial element g € G there
exist j € {l,...,n— 1} and ¢ € G, satisfying gt~ = x; in G1, and the subsets
Xi, i =1,...,n — 1, stay independent in G .

Letgy, g2,... be an enumeration of all non-trivial elements of G. Set G(0) = G
and suppose that we have already constructed the group G(k), containing G, so that
foreach I € {1,...,k} thereis j € {1,...,n — 1} such that the element g; is
conjugated in G(k) to x;,and X;,7 = 1,...,n — 1, are independent in G (k).
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Suppose, at first, that g¢4+; is commensurable in G (k) with an element of X; for
Gk

some j. Then gp 4 (aé) h for every h € U;:ll’#j X;. Define G(k + 1) to be the
HNN-extension (G(k), tx11 | fk+1gk+1fk_i1 = x;). By Lemma 3.1 the subsets X,
i =1,...,n— 1, will remain independent in G(k + 1).

Thus we can assume that gx4+1 18 not commensurable with any element from
U;:ll X; in G(k). According to the induction hypotheses one can apply Lemma 3.1
to the HNN-extension

Gk +1) = (G(k).txy1 | ter18k41tgy = ¥1)

to sce that the subsets X; € G < G(k + 1),i = 1,...,n — 1, are independent in
Gk + 1).

Now, set G1 = | i, G(k). Evidently G; has the required properties. In the
same manner, one can embed G into a countable torsion-free group G2 so that each
non-trivial element of G will be conjugated to x; in Ga, forsome7 € {1,...,n—1},
and the subsets X;,7 = 1,...,n — 1, continue to be independent in G.

Proceeding like that we obtain the desired group M = | J;2; Gs. By the con-
struction, M is a torsion-free countable group which has exactly n conjugacy classes:
[1], [x1], - .., [*¥n—1]. Thesubsets X;,i = 1,...,n—1,areindependent in M because
they are independent in G for cach s € N, O

Corollary 3.3. In Lemma 3.2 one can add that the group M is 2-boundedly simple.

Proof. et a torsion-free countable group & and its non-empty independent subsets
X;,i=1,...,n—1,beasinLemma3.2. LetF = F(ay,...,an—1.b1,...,by—1)be
the free group with the free generating set {a1,...,a,—1, b1, ..., b,—1}, and consider
thegroupC_} =Gxx F.Foreachi =1,...,n— 1, define

)?i :Xi U{ai,ai_l}u{[aj,biﬂj = 1,...,n—1,j #I}CC_;,

where [a;, b;] = a; bl-aj_lbi_ !, Using the univErsal properties of free groups and free
products one can easily see that the subsets X;, i = 1,....n — 1, are independent
inG.

Now we apply Lemma 3.2 to find a countable torsion-free (nCC)-group M, con-
taining G, such that X;,7 = 1,...,n — 1, are independent in M ._Observe that this
implies that for any given/ = 1,...,n — 1, any two elements of X; are conjugate in

M . For arbitrary x,y € M \ {1} there exist/, j € {1,...,n — 1} such that x - a;
M : : M , M M M

and y ~ a;. If i = j then x ~ y. Otherwise, y ~ a; ~ a;* and x ~ [a;, b;]

which is a product of two conjugates of a;, and, hence, of y. Therefore the group M

is 2-boundedly simple, and since G < G < M, the corollary is proved. O
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Below is a particular (torsion-free) case of a theorem proved by Osin (21, Theo-
rem 2.6]):

Lemma 3.4. Any countable torsion-free group S can be embedded into a 2-generated
group M so that S is malnormal in M and every element of M is conjugated to an
element of S in M.

Proof. Following Osin’s proof of Theorem 2.6 from [21], we see that the required
group M can be constructed as an inductive limit of relatively hyperbolic groups
G(i), i € N. More precisely, one sets G(0) = S % I,, where F> is a free group of
rank 2, & = idg(o): G(0) — G(0), and for each i € N one constructs a group G (#)
and an epimorphism & : G(0) — G(7) so that & is injective on S, G (i) is torsion-
free and hyperbolic relative to {&;(S)}, and §&; factors through &,_1. The group M
is defined to be the direct limit of (G(7),&;) as i — o0, ie., @ = G(0)/N where
N = ey ker(&;). By Lemma 2.3, & (S) is malnormal in G (i), hence the image
of .S will also be malnormal in M . ]

Theorem 3.5. Let G be a torsion-free countable group, n € N, n > 2, and non-
empty subsets X; C G\ {1}, i = 1,...,n — 1, be independent in G. Then G can
be embedded into a 2-generated forsion-free group M which has (nCC), so that the
subsets X;,i = 1,...,n — 1, stay independent in M. Moreover, one can choose M
fo be 2-boundedly simple.

Proof. First, according to Corollary 3.3, we can embed the group G into a countable
torsion-free group S such that S has (nCC) and is 2-boundedly simple, and X;,
i = Lius — 1, are independent in S. Second, we apply Lemma 3.4 to find the
Z—generated group M from its claim. Choose any 7,j € {l,...,n — 1}, i # J,
and x € X;, y € X;. If x and y were commensurable in M, the malnormality of S
wouldimply that x and y must be commensurable in .S, contradicting the construction.

Hence X;,7 = 1,...,n — 1, are independent in M. Since each element of M 1s
conjugated to an element of S, it is evident that M has (nCC), is torsion-free and
2-boundedly simple. ]

Remark 3.6. A more direct proof of Theorem 3.5, not using Lemma 3.4, can be
extracted from the proof of Theorem 5.1 (see Section 5), applied to the case when
=M.

It is easy to see that Theorem 3.5 immediately implies Corollary 1.2 that was
formulated in the Introduction. As promised, we now give a counterexample to
Question 2 (formulated in the Introduction) for any n > 3.

Example 2. Let Gy = {a,t | tat~! = a?) be the Baumslag—Solitar BS(1, 2)-group.
Then G+ is torsion-free, and the elements £2, ¢4, . ... 12" ' are pairwise non-conjugate
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in G, (since this holds in the quotient of G, by the normal closure of @ ). Suppose that
G, is embedded into a group M having (nCC) so that 12,4, ... ,tzn_l are pairwise
non-conjugatein M. Then¢2,...,¢2" ' is the list of representatives of all non-trivial
conjugacy classes of M. Therefore there exist k,/ € {1,...,n— 1} suchthatt M 1 2°
and a X 12, Consequently

M ok+1 IM M o M i+l
2 St and 2 ~a~at~r,

hence k = [ = n — 1 according to the assumptions. But this yields

M »—1M M M >

r~1 ~ d ~ d f\./[’

: : s M 4 . . :
implying that r= ~ ¢*, which contradicts our assumptions.
Thus G, can not be embedded into a (nCC)-group M in such a way that the

2 Zn—l . . . . .
elements ¢2, ..., t%  remain pairwise non-conjugate in M.

4. Normal subgroups with (nCC)

If M 1s a normal subgroup of a group H, then H naturally acts on M by conjugation.
We shall say that this action preserves the conjugacy classes of M if forany h € H
and a € M there exists b € M such that hah™' = bab™!.

Lemma 4.1. Let G be a torsion-free group, N <1 G and x1,...,x; € N\ {1} be
pairwise non-commensurable (in G ) elements. Then there exists a partition N\{1} =
|_|§(=1 Xy of N\{1} into a (disjoint) union of G-independent subsets X1, ..., Xy such
that xx € Xy for every k € {1,...,1}. Moreover, each subset Xy will be invariant
under conjugation by elements of G.

G
Proof. Since ~ is an equivalence relation on G \ {1}, one can find the corresponding
decomposition: G \ {1} = || jer Yj, where Y; is an equivalence class for each
JjeJ.Foreachk =1,...,1, there exists j(k) € J such that xx € Y;x). Note that

Jj(k) # jOm) if k # m since xg f»e Kz
Denote J' = J \ {j(1),...,j(l— 1)},

X\ =Yy NN..... X1 1 =Yg pNN. and X; = ] ¥, NA.
JEJ’

Evidently N \ {1} = |_|,’;€=1 Xy, X1,..., Xy are independent subsets of G and xp €
Xy foreach & = 1,..., /. The final property follows from the construction since for
anya € Gand j € J wehave aY;a™! =Y, andaNa™! = N. O
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Lemma 4.2. For every countable group C and each n € N, n > 2, there exists a
countable torsion-free group H having a normal subgroup M <1 H such rhat

(1) M satisfies (nCC),

(i) M is 2-boundedly simple;
(i11) the natural action of H on M preserves the conjugacy classes of M;
(ivy H/M = C.

Proof. 1et H/ be the free group of infinite countable rank. Choose Nj <1 H|, so that
H{/Nj = C. Let F = F(x1,...,xp—1) denote the free group freely generated by
X1,...,Xp—1. Define Hy = H| % I and let N; be the normal closure of Nj U F in
Hy. Evidently, Hy/Ny = H)/N} = C and the elements x,....x,—1 € Np \ {1}
are pairwise non-commensurable in Hy.

By Lemma 4.1, one can choose a partition of Ny \ {1} into the union of Hjy-
independent subsets:

n—1
No\ (13 = || Xox,
k=1
sothat x; € Xor foreachk =1,...,n— 1.

By Corollary 3.3 there exists a countable torsion-free 2-boundedly simple group
M, with the property (nCC) containing a copy of Ny, such that the subsets X,
k = 1,2,...,n — 1, are independent in M. Denote by H; = Hy xy, M; the
amalgamated product of Hy and M, along Ny, and let N1 be the normal closure of
M in H;. Note that H is torsion-free as an amalgamated product of two torsion-free
groups ([10, IV.2.7]).

We need to verify that the elements x 1, . . . , x,—1 are pairwise non-commensurable
in Hy. Indeed, if a € Xy and b € Xy, k # [, are conjugate in H then there must
exist Vi,---, Vs € M1 \No aIIle,. ey 2y E H() \ N(), Zg,2Zy € H() such that

5 ~1,—1,-1 1 el AL
0L+ o B VaBplE, Wy By q =¥ dg .

Suppose that 7 is minimal possible with this property. As conjugation by elements of
H preserves X and Xy, we can assume that zg, z; = 1. Hence

1

—1 1;—1 Hi
ViZ1..-Zi—1VeQY, Z,_ b= = 1.

eI T
By the properties of amalgamated products (see [10, Chapter 1V]), the left-hand side
in this equality can not be reduced, consequently y,ay; ' € Np \ {1} = 2;11 Xok.

But then y,ay; ! € Xy by the properties of My, contradicting the minimality of ¢.
H,
Thus, we have shown that x; % x; whenever k # [.



272 A. Minasyan CMH

Assume that the group H;, = H;_1xy, | M;,i > 1, has already been constructed,
so that

0) H; is countable and torsion-free;

1) Ni—1 < Hi—1;

2) Hi—1 = Hyp-N;—1and Hy N N;—1 = Ny;

3y M, satisfies (nCC);

4) x1,...,Xp—1 are pairwise non-commensurable in ;.

Let N; be the normal closure of M; in H;. Because of the condition 4) and
Lemma 4.1, one can find a partition of N; \ {1} into a union of H;-independent

subsets:
n—1

NAL = | X
k=1
so that x; € X;x foreach k = 1,...,n — 1. By Lemma 3.2 there is a countable
group a M; 4, with (nCC), containing a copy of N;, in which the subsets Xz,
i = 1,...,n— 1, remain independent. Set H; 1 = H; *n; M; 1. Now, it is easy to
verify that the analogs of the conditions 0)-3) hold for H; 4 and

Ni—1 = M; < Ni £ Miyy. 4.1)

The analog of the condition 4) is true in ;4 by the same considerations as before
(in the case of Hy).

Define the group H = |J;72, H; and its subgroup M = | Jo, N;. Observe
that the condition 0) implies that A is torsion-free, condition 1) implies that M
is normal in H, and 2) implies that H = Hy - M and Hy N M = Ny. Hence
H/M =~ Hy/(HyN M) = C. Applying (4.1) we get M = | J72, M;, and thus,
by the conditions 3), 4) it enjoys the property (nCC): each element of M will be a
conjugate of x forsomek € {1,...,n—1}. Sincexy,...,x,—1 € My < M and M,

H
is 2-boundedly simple, then so will be M. Finally, 4) implies that xz ~ x; whenever
k # [, and, consequently, the natural action of H on M preserves its conjugacy
classes. [

Lemma 4.3. Suppose that G is a group, N < G, A, B < Gandyp: A — B is
an isomorphism such that ¢(a) € aN (i.e., the canonical images of a and g(a) in
G/ N coincide) foreacha € A. Let L = (Gt | tat™! = ¢(a) for all a € A) be the
HNN-extension of G with associated subgroups A and B, and let K be the normal
closure of (N,t)inL . Then GN K = N,

Proof. 'This statement easily follows from the universal property of HNN-extensions
and is left as an exercise for the reader. O
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The next lemma will allow us to construct (nCC)-groups that are not simple:

Lemma 4.4. Assume that H is a torsion-free countable group and M <1 H is a non-
trivial normal subgroup. Then H can be isomorphically embedded into a countable
forsion-free group G possessing a normal subgroup K <1 G such that

HYG=HKand HNK =M,

2) forallx, vy € G\{1}, ¢(x) = w(v)ifand onlyifthere exists an h € K such that
x = hyh™!, where ¢: G — G/K is the natural homomorphism; in particular,
K will have (2CC),

3) x £ y if and only if p(x) . e(y) forall x,y € G\ {1};

Proof. Choose a set of representatives Z C H of cosets of H modulo M, in such a
way that each coset is represented by a unique element from Z and 1 ¢ Z.

Define G(0) = H and K(0) = M. Enumerate the elements of G(0) \ {1}:
21,42, -- .. First we embed the group G(0) into a countable torsion-free group G,
having a normal subgroup K7 <1 G, suchthat G, = HK;, H N K; = M and for
every i > Othere are 1; € Ky and z; € Z satisfying 1; g;1;7' = z;.

Suppose that the (countable torsion-free) group G(7), j = 0,and K(j) < G(j),
have already been constructed sothat H < G(j),G(j) = HK(j), HNK(j)=M
and, if j > 1, then 7;g;1;" = z; for some 1; € K(j) and z; € Z. The group
G(j + 1), containing G{( ), is defined as the following HNN-extension:

GG+ 1) = (GU) 41 | g1t = Zj+1),s

where z; 1 € Z C H is the unique representative satisfying g, 11 € z;11K(J)
in G(j). Denote by K(j + 1) <« G(j + 1) the normal closure of {K(j),t;+1) in
G(j + 1). Evidently the group G(j + 1) is countable and torsion-free, H < G(j) <
G(j+1),6(j+1)=HK(j+lDand HNK(j +1) = HNK(j) = M by
Lemma 4.3.

Now, it is easy to verify that the group G; = Uj'io G(j ) and its normal subgroup
K, = Uj’;o K(j) enjoy the required properties.

In the same way we can embed G into a countable torsion-free group G, that has
a normal subgroup K> <1 Ga,sothat G = HK>, H N K> = M and each element
of G\ {1} is conjugated in G to a corresponding element of Z. Performing such
a procedure infinitely many times we achieve the group G = | J{2 | G; and a normal
subgroup K = | J;2, K; < G that satisty the claims 1) and 2) of the lemma. It is
easy to see that the claim 2) implies 3), thus the proof is finished. O
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5. Adding finite generation

Theorem 5.1. Assume that H is a countable torsion-free group and M is a non-
trivial normal subgroup of H. Let I’ be an arbitrary non-elementary forsion-free
word hyperbolic group. Then there exist a countable torsion-free group Q, containing
H, and a normal subgroup N <1 Q with the following properiies:

1. H is malnormal in Q;

2. 0=H-NandNNH =M,

3. N isaquotient of F;

4. the centralizer Co(N) of N in Q is trivial,

. forevery g € O thereis z € H such that g 4 Z

N

Proof. The group @ will be constructed as a direct limit of relatively hyperbolic
groups.

Step 0. Set G(0) = H = F and F(0) = F; then G(0) is hyperbolic relative
to its subgroup H and F(0) is a suitable subgroup of G(0) by Lemma 2.6. Let
N(0) < G(0) be the normal closure of the subgroup (M, F) in G(0). Evidently
G(0) = H - N(O) and H N N(O) = M. Enumerate all the elements of N(0):
{g0,21.2,...},and of G(0): {q0,91.92, ...}, insuch a way that gop = g = 1.

Steps 0—i. Assume the groups G(j), j = 0,...,i, i > 0, have been already
constructed, so that

1°. foreach 1 < j < i there is an epimorphism v;_;: G(j — 1) — G(j) which is
injective on (the image of) H in G(j — 1). Denote F(j) = ¥;—1(F(j — 1)),
N(j) =1 (N(j — 1);

2°, G(j) is torsion-free and hyperbolic relative to (the image of) H, and F(j) <
G(j ) is a suitable subgroup, j = 0,...,7;

3. G(j)=H-N()LN(G)<G(Had HNN(j)=M,j=0.....0;

4°. the natural image g; of g; in G(j) belongsto F(j), j =0,...,i;

5°. there exists z; € H such that g; & zj, J = 0,...,i, where g; is the image
of g; in G(j).

Stepi + 1. Let §i+1 € G(i), gi+1 € N(i) be the images of g;+1 and g;41 in
G(i). First we construct the group G(i + 1/2), its normal subgroup K;; and its
element #; 11 as follows.

If for some f € G(i), fgiv1 /! = z € H, then set G(i + 1/2) = G(i),
Ky = N(l) < G(i + 1/2) and t; +1 = 1.

Otherwise, ¢; 11 is a hyperbolic element of infinite order in G(i). Since G(i)
is torsion-free, the elementary subgroup Eg(;)(gi+1) is cyclic, thus Egy(gi+1) =
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{hx) for some h € H and x € N(7) (by 3°), and §;+1 = (hx)™ for some m € Z.
Now, by Lemma 2.2, G (i) is hyperbolic relative to {H, {(hx)}. Choose y € M so
that zy # 1 and let G{i + 1/2) be the following HNN-extension of G(7):

GG+ 1/2) = (G (). tig1 | tiv1(hx) ) = hy).

The group G(i 4 1/2) is torsion-free and hyperbolic relative to H by Lemma 2.5,

Let us now verify that the subgroup F (i) is suitable in G(i + 1/2). Indeed,

according to Lemma 2.7, there are two hyperbolic elements 71, f> € F(i) of infinite
G(i) GG) G (i)
order in G(i) such that f; % hx, fi % hy,l = 1,2, and f; % f5. Then
GGi+1/2)
fi % />, by Lemma 3.1. It remains to check that f; is a hyperbolic element

of G(i + 1/2) foreach! = 1,2. Choose an arbitrary element w € H and observe
G(i)

that f; % w (since H is malnormal in G(7) by Lemma 2.3, a non-trivial power of

/1 1s conjugated to an element of H if and only if f; is conjugated to an element of

H in G(7), but the latter is impossible because f; is hyperbolic in G (7)). Applying
GG+1/2)
Lemma 3.1 again, wegetthat f; %  wforanyw € H. Hence f1, f» € F(i)are

hyperbolic elements of infinite order in G(i +1/2). The intersection Eg ¢ +1/2)(f1) N
EG@+1/2)(f2) must be finite, since these groups are virtually cyclic (by Lemma 2.2),
and /1 is not commensurable with /> in G(i + 1/2). But G(i + 1/2) is torsion-free,
therefore Eg(i+1/2)(f1) N Egi+1/2)(f2) = {1}. Thus F(7) is a suitable subgroup
of G(i + 1/2).

Lemma 4.3 assures that H N K, 1 = M where K; 1 <1 G(i +1/2)is the normal
closure of (N(i), t;+1) in G(i + 1/2). Finally, note that

ti+1@i+1ti_+11 = [1'+1(hx)mli_+11 = (hy)m =zeH inG({ + 1/2).

Now, that the group G (¢ + 1/2) has been constructed, set 7; +1 = {gi+1.ti+1} C
K, 1 anddefine G(i +1) as follows. Since T; 41 - F (i) C K; 41 < G(i+1/2), wecan
apply Theorem 2.8 to find a group G(i + 1) and an epimorphism ¢; : G(7 4+ 1/2) —
G(i + 1) such that g; is injective on H, G{7 + 1) is torsion-free and hyperbolic
relative to (the image of) H, {@; (8i+1). wi(ti+1)} C @i (F(i)), ¢; (F{¢)) is a suitable
subgroupof G(i +1),andker(g;) < K;+1. Denote by y; the restriction of ¢; on G (7).
Then ¥; (G(7)) = ¢; (G(i)) = G(i + 1) because G(7 + 1/2) was generated by G(7)
and 7; +1, and according to the construction, ;11 € ¢; (F(i)) < ¢;(G(i}). Now, after
defining F(/ +1) = ¢ (F(i)), NG +1) = i (N()), 8i+1 = @i(8i+1) € F(i +1)
and z; 1 = @; (z) € H, we see that the conditions 1°, 2°, 4° and 5° hold in the case
when j =i+ 1. The properties G( +1) = H-N(i+ Dand NG+ 1) < G + 1)
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are immediate consequences of their analogs for G(7) and N (7). Finally, observe that

o W(H NN + 1) = H -ker(p;) N N(i) - ker(g;)
= (H N N(@) - ker(g;)) - ker(g;)
C (H NKjy1) -ker(p;)) = M -ker(g;).

Therefore H N N(i + 1) = M and the condition 3° holds for G(7 + 1).

Let O = G(o0) be the direct limit of the sequence (G (i), ¥;) as i — oo, and
let F(o0) and N = N(o0) be the limits of the corresponding subgroups. Then Q is
torsion-free by 2°, N <« 0, 0 = H-Nand HNN = M by 3°. N < F(o0) by
4°, and 57 implies the condition 5 from the claim.

Since F(0) < N(0) we get F(oo) < N. Thus N = F(o0) is a homomorphic
image of F(0) = F.

Forany i, j € N U {oo}, i < j, we have a natural epimorphism ;;: G(i) —
G(j)such thatif i < j < k then jx o §;; = . Take any g € G(0). Since
F = F(0) is finitely generated, using the properties of direct limits one can show
that if w = {oac(g) € Cp(F(00)) in @, then {oj(g) € Cgj(F(j)) for some
J € N. But Cg(h(F(j)) < Eqg»(F(j)) = {1} (by formulas (2.2) and (2.3))
because F(j) is a suitable subgroup of G(j), hence w = &;00(C0;(g)) = 1, that is,
Co(F(o0)) = Co(N) = {1}. This concludes the proof. O

The next statement is well known.

Lemma 5.2, Assume G is a group and N < G is a normal subgroup such that
Cg(N) © N, where Cq(N) is the centralizer of N in G. Then the quotient-group
G/ N embeds into the outer automorphism group Out(N ).

Proof. The action of &G on N by conjugation induces a natural homomorphism ¢
from G to the automorphism group Aut(N ) of N. Since ¢(N ) is exactly the group of
inner automorphisms Inn(N ) of N, one can define a new homomorphismg: G/N —
Out(N) = Aut(N)/Inn(N} in the natural way: @(g/N)} = @(g)Inn(N) for every
gN € G/N. Itremains to check that ¢ is injective, i.e.,if g € G\ N thenp(gN) # 1
in Out(N); or, equivalently, ¢(g) ¢ Inn(N). Indeed, otherwise there would exist
a € N such that ghg™! = aha™! forevery h € N, thus N ¥ a~lg € C4(N),
contradicting the assumptions. 0

Note that for an arbitrary group N, any subgroup C' < Out(/N) naturally acts on
the set of conjugacy classes €(N) of the group N.

Theorem 5.3. Foranyn € N, n > 2, and an arbitrary countable group C, C can
be isomorphically embedded into the outer automorphism group Out(N ) of a group
N satrisfying the following conditions:
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» N s torsion-free;
» N is generated by two elements;
* N has (nCC) and the natural action of C on C(N) is trivial;

» N is2-boundedly simple.

Proof. By Lemma 4.2 we can find a countable torsion-free group A and its normal
subgroup M enjoying the properties (1)-(iv) from its claim. Now, if F denotes the
free group of rank 2, we can obtain a countable torsion-free group Q together with its
normal subgroup N that satisfy the conditions 1-5 from the statement of Theorem 5.1.

Then N is torsion-free and generated by two elements (as a quotient of /7). Con-
dition 2 implies that Q /N = H/M = C and, by 4 and Lemma 5.2, C embeds into
the group Out(V }.

Using property 5, for each g € N we can find u € Q and z € H such that
ugu ! =z ¢ NNH = M. Since Q = HN,thereare h € H and x € N
such that ¥ = hx. Since z,h™1zh € M and the action of H on M preserves
the conjugacy classes of M, there is r € M such that rh~'zhr~' = z, hence
z = rhlugu Y rh )™t = rxgx1r7!, where v = rx € N. Thus for every
g € N thereis v € N such that vgv™! € M. Evidently, this implies that N is also
2-boundedly simple. Since M has (nCC), the number of conjugacy classes in N will
be at most #.

M H
Suppose x1,x2 € M and x; + x5. Then x; » x5 (by the property (iii) from
the claim of Lemma 4.2), and since H is malnormal in Q we get x; f% x>. Hence

N . .
X1 w Xz, 1.e., N also enjoys (nCC).

The fact that the natural action of C on €(N) is trivial follows from the same
property for the action of H on €(M ) and the malnormality of H in Q. O

Now, let us proceed with the

Proof of Theorem 1.4. First we apply Lemma 4.4 to construct a group G and a normal
subgroup K <1 G according to its claim. Now, by Theorem 5.1, there is a group O,
having a normal subgroup N < @ such that G is malnormal in @, Q9 = GN,
G NN = K, rank(N) < 2 (if one takes the free group of rank 2 as F') and every
elementg € Q isconjugated (in @) to anelement of G. By claim 2) of Lemma 4.4, K
has (2CC), and an argument, similar to the one used in the proof of Theorem 5.3, shows
that N will also have (2CC). Consequently, rank (N ) > 1 because N is torsion-free,
hence rank(N) = 2.

SinceG = HKand H N K = M wehave Q = HKN = HNand H N N =
HNK =M. Since Q/N = H/M and N can be generated by two elements, we
can conclude that rank(Q) < rank(H/M) + 2.
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Consider arbitrary x, y € @ \ {1} and suppose that ¢(x) = b ¢(v). By The-
orem 5.1, there are w,z € G \ {1} such that x £ w and y 2 z. Therefore
o(w) S @(z), hence the images of w and z in G/K are also conjugate. By
claim 3) of Lemma 4.4, w % z, implying x & y. O

Theorem 1.4 provides an alternative way of obtaining torsion-free groups that
have finitely many conjugacy classes: for any countable group C we can choose
a frec group H of countable rank and a normal subgroup {1} # M <1 H so that
H/M =~ C, and then apply Theorem 1.4 to the pair (H, M) to get

Corollary 5.4. Assume thatn € N, n > 2, and C is a countable group that contains
exactly (n — 1) distinct conjugacy classes. Then there exists a torsion-free group Q
and N <1 Q such that

s O/N =(C;
* N has 2CC) and Q has (nCC),
* rank(N) = 2 and rank(Q) < rank(C) + 2.

Corollary 5.5. The group G1, given by presentation (1.1), can be isomorphically
embedded into a 2-generated torsion-free group Q satisfying (4CC) in such a way

0
thatt ~ 1.

Proof. Denote by K the kemel of the homomorphism ¢: G; — Zs3, for which
p(a) = 0and ¢(r) = 1, where Z3 is the group of integers modulo 3. Now, apply
Theorem 1.4 to the pair (G1, K) to find the group Q, containing G4, and the normal
subgroup N <1 Q from its claim. Since Q /N = G1/K = Z3 has (3CC), the group

O will have (4CC). We also have ¢ r% t~! because the images of ¢ and ! are not
conjugate in Q /N .

Choose an element g1 € Q¢ \ N. Then g» = ¢; € N\ {1} and since N is
2-generated and has (2CC), there is g3 € N such that N = (g2,¢93)in Q. As Q/N
is generated by the image of ¢, the group O will be generated by {g1, g2, ¢3}, and,
consequently, by {g1,q3}. O

6. Combinatorics of paths in relatively hyperbolic groups

Let G be a group hyperbolic relative to a family of proper subgroups {Hj}ica,
and let X be a finite symmetrized relative generating set of G. Denote # =

Ujsea (HA\{1D).
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For a combinatorial path p in the Cayley graph I'(G, X U #) (of G with respect
to X U ) p—, p+,L(p), and Lab(p) will denote the initial point, the ending point,
the length (that is, the number of edges) and the label of p respectively. p~! will
be the path obtained from p by following it in the reverse direction. Further, if €2 is
a subset of G and g € () < G, then |g|q will be used to denote the length of a
shortest word in Q*! representing g.

We will be using the following terminology from [20]. Suppose ¢ is a path in
I'(G, X U J). A subpath p of g is called an Hj-component for some A € A (or
simply a component) of g, if the label of p is a word in the alphabet H; \ {1} and p
is not contained in a bigger subpath of ¢ with this property.

Two components pi, p> of apath g in ['(G, X U J#) are called connected if they
are H;-components for the same A € A and there exists a path ¢ in I'(G, X U )
connecting a vertex of pj to a vertex of p» such that Lab(c} entirely consists of letters
from Hj. In algebraic terms this means that all vertices of p; and p, belong to the
same coset gh; for a certain g € G. We can always assume ¢ to have length at
most 1, as every nontrivial element of H; 1s included in the set of generators. An
Hj-component p of a path g is called isolared if no other Hj;-component of ¢ is
connected to p.

The next statement 1s a particular case of Lemma 2.27 from [20]; we shall formu-
late it in a slightly more general form, as it appears in [18, Lemma 2.7]:

Lemma 6.1. Suppose that a group G is hyperbolic relative to a family of subgroups
{Hjytren. Then there exists a finite subset Q@ € G and a constant K € N such
that the following holds. Let q be a cycle in T'(G, X U #), p1,.... px be a col-
lection of isolated components of q and gy, ...,gr be the elements of G repre-
sented by Lab(p), ..., Lab(py) respectively. Then g1,...,gr belong to the sub-
group {2) < G and the word lengths of g;’s with respect to 2 satisfy

k
> lgile < KL(g).

i=1

Definition. Suppose that m € N and €2 is a finite subset of G. Define 'W(2,m) to
be the set of all words W over the alphabet X U J€ that have the following form:

W = )Cohoxlhl .. -xlhlxl-l—l:
where! € Z,1 > =2 (if | = —2 then W is the empty word; if /| = —1 then W = xy),

h; and x; are considered as single letters and

1) x; e XU{1},i =0,..., [+ 1,andforeachi = 0,...,[, thereexists A({}) € A
such that /#; € H)l(i);

2) it A({) = A + 1) then x; 4 & H; ;) foreachi =0,..., [ —1;
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3 b g the(Q) ] |hlg <m)i=0,....1[

Choose the finite subset €2 C G and the constant K > 0 according to the claim
of Lemma 6.1.

Recall that a path ¢ in I'(G, X U #) is said to be without backtracking if all of
its components are isolated.

Lemma 6.2. Let g be a path in the Cavley graph T'(G, X U #) with Lab(q) €
W(Q,m) and m > 5K. Then q is without backtracking.

Proof. Assume the contrary to the claim. Then one can choose a path g providing
a counterexample of the smallest possible length. Thus if py,..., p; is the (con-
secutive) list of all components of ¢ then! > 2, p; and p; must be connected H), -
components, for some A" € A, the components ps, ..., p;_; must be isolated, and ¢
starts with p; and ends with p;. Since Lab(g) € W(Q,m) we have L{g) < 2] — 1.

If / = 2 then the (X U {1})-letter between p; and p, would belong to Hy/
contradicting the property 2) from the definition of ' W(2,m).

Therefore [ > 3. Since p; and p; are connected, there exists apath v in I'(G, X U
J€)between (p;)— and ( p1)+ withLab(v) € Hj (thus we canassume thatL(v) < 1).
Denote by ¢ the subpath of ¢ starting with (p1)4+ and ending with ( p;)—. Note that
L(g) =L(g)—2 <2[-3,and p,, . .., p;— is the listof components of 4, all of which
are 1solated. If one of them were connected to v it would imply that it is connected
to p; contradicting with the minimality of ¢. Hence the cycle 0 = gv possesses
k =1 —2 = 1 isolated components, which represent elements fiy,...,hx € H.
Consequently, applying Lemma 6.1 one obtains that z;, € {(Q),7 = 1,...,k, and

k
> lhile < KL(0) < K(L(G) + 1) < K2 —2).

=1

By the condition 3) from the definition of ‘W (2, m) one has |h;|q > m > 5K for
eachi = 1,...,k. Hence

u 20 -2
k-5K < hilg < KQI —2), 5< ,
_lg ilo < K@ -2), or 5=
which contradicts the inequality k > [ — 2. O

Definition. Consider an arbitrary cycle 0 = rgr’q’ in I'(G, X U J), where Lab(g)
and Lab(g’) belong to 'W(2,m). Let p be a component of ¢ (or g’). We will say
that p is regular if it is not an isolated component of o. If m > 5K, and hence ¢ and
g’ are without backtracking by Lemma 6.2, this means that p is either connected to
some component of ¢’ (respectively ¢ ), or to a component of r or r’.
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Lemma 6.3. In the above notations, suppose that m > TK and denote C =
max{L(r), L(r")}. Then

(@) if C < 1 then every component of q or q' is regular;

(b) if C > 2 then each of q and q" can have at most 4C components which are not
regular.

(c) ifl is the number of components of q, then at least (I — 6C) of components of
g are connected to components of q'; and two distinct components of g can not
be connected to the same component of q'. Similarly for q'.

Proof. Assume the contrary to (a). Then one can choose a cycle 0 = rqr’q’ with
L{r),L(r') < I, having at least one isolated component on ¢ or ¢’, and such that
L{g)+L(g") is minimal. Clearly the latter condition implies that each component of
g or ¢’ is an isolated component of 0. Therefore ¢ and ¢’ together contain k distinct
isolated components of o, representing elements /i1, ..., h; € #, where k > 1 and
k > (L(g) — 1)}/2 + (L(g") — 1)/2. Applying Lemma 6.1 we obtain #; € (),
i=1,...,k,and

k
> |hile < KL(0) < K(L(g) + L(g) +2).

i=1

Recall that |2;|q > m > 7K by the property 3) from the definition of 'W(Q,m).
Therefore Zle \hilg = k - 7K, implying

P

_%(L(q) L(q’)+1) Z(L(q)—l +L(q’)—1

<
* 2 2

2) <6
2 ) — k +)—’

which yields a contradiction.

Let us prove (b). Suppose that C > 2 and ¢ contains more than 4C isolated
components of o. We shall consider two cases:

Case 1. No component of g is connected to a component of ¢’. Then a component
of g or ¢’ can be regular only if it is connected to a component of r or /. Since,
by Lemma 6.2, ¢ and ¢’ are without backtracking, two distinct components of ¢
or ¢’ can not be connected to the same component of r (or r’). Hence ¢ and ¢’
together can contain at most 2C regular components. Thus the cycle o has & isolated
components, representing elements 4y, ...,k € J, where k > 4C > 4and k >
(L{g)—1)/2+(L.(g")—1)/2—2C. ByLemma 6.1, &; € () foreachi = 1,...,k,
and Zle lhi|lq < K(L(g) + 1.(¢") + 2C). Once again we can use the property 3)
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from the definition of ‘W (2, m) to achieve

_2(Ll@ L) 20y _2(L@-1  Lg)-1
7—E(2 T +_7)—k( > T2
_2(L@-1 LEg)-1
—E( 2 T 2

yielding a contradiction.

—2C—|—1—|—3C)

x0+2+6c<2+1+3—4
kK kK — 2 2

Case 2. The path g has atleast one component which 1s connected to a component
of ¢’. Let p1,..., p; denote the sequence of all components of g. By part (a), if p;
and p;, 1 <s <1t <[, are connected to components of ¢’, then forany j,s < j <1,
p; is connected to some component of g’ (because g is without backtracking by
Lemma 6.2). We can take s (respectively 7) to be minimal (respectively maximal)
possible. Consequently p1, ..., ps—1. Pr+1.- - -, p1 Will contain the set of all isolated
components of o that belong to g, and none of these components will be connected
to a component of ¢’.

Without loss of generality we may assume that s — 1 > 4C/2 = 2C. Since
ps is connected to some component p’ of ¢’, there exists a path v in ['(G, X U #)
satisfying v = (ps)—, vy = pl,Lab(v) € # U {1}, L(v) < L. Let g (respectively
g') denote the subpath of g (respectively ¢”) from g_ to (py)_ (respectively from p/,
to ¢/, ). Consider a new cycle 0 = rgvg’. Reasoning as before, one can show that
o possesses k isolated components, where k& > 2C > 4and k > (L(g) — 1)/2 +
(L(g") — 1)/2 — C — 1. Now, an application of Lemma 6.1 to the cycle o together
with the property 3) from the definition of ‘W(£2,m) will lead to a contradiction as
before.

By the symmetry, the statement (b) of the lemma also holds for ¢'.

The claim (c) follows from (b) and the estimate L(r) + L(r’) < 2C because if
two different components p and p of g were connected to the same component of
some path in I' (G, X U #), then p and p would also be connected with each other,
which would contradict Lemma 6.2. O

Lemma 6.4. In the previous notations, let m > TK, C = max{L(r),L(r")}, and
let p1,...,pi1, pLs---, Py be the consecutive lists of the components of q and g1
respectively. If | > 12max{C, 1} + 2, then there are indices s,t,s" € N such that
l<s<6CH+ 1,1 —6max{C.,1} <t <[ andforevervi € {0,1,....t — s}, the
component psy; of q is connected to the component p’, 4 of v

Proof. By part (¢) of Lemma 6.3, there exists s < 6C + 1 such that the component
s is connected to a component p!, for some s € {1,...,/’}. Thus there is a path
r1 between (p), )1 and (pg)4 with L(r1) < 1. Consider a new cycle o1 = r1q17'q]
where ¢, is the segment of ¢ from (ps)+ to g+ = r_ and g is the segment of g’
fromgq” = r to (pl)4.
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Observe that pgyq,..., p; is the list of all components of g; and ] —s > [ —
6C — 1 > 6max{1, C} + 1, hence, according to part (c) of Lemma 6.3 applied to
01, thereis 1 > [ —6max{l,C} > s such that p, is connected to p), by means of
apath r{,wheres" + 1 <t <I', (r{)- = (pe)+, rD+ = (p;)+ and L(r]) < 1.
Consider the cycle 02 = r1g2r1g5 in which g2 and ¢ are the segments of g1 and g}

from (ps)+ = (r1)+ to (ps)+ and from (p), )+ to (p, )+ = (r1)- respectively (see
Figure 1).

Ps
Ps+i
r 1 ré
14
P Ps/tiv
Figure 1
Note that ps+1, ..., py is the list of all components of g> and pg, . |, - - ., p, is the
list of all components of q’z_l. The cycle o, sausfies the assumptions of part (a) of
Lemma 6.3, therefore for everyi € {1,...,tr—s}thereexistsi’ € {1,...,t'—s’} such

that p,4,; is connected to p/, +ir (Ps+i can not be connected (o ry [r1] because in this
case it would be connected to ps [ p:], but g 1s without backtracking by Lemma 6.2).

It remains to show that i’ = 7 for every such /. Indeed, if i’ < ¢ for some
i € {l,...,t—s}thenone can consider the cycle o3 = r1q3riq5, where g3 and ¢ are
segments of ¢ and g5 from (g2)— = (r1)+ 10 (ps+)+ andfrom (p, | )+ 0 (g5)+ =
(r1)— respectively, and (75)— = (g3)+, (r})+ = (g5)—. L(#5) < 1. According to part
(a) of Lemma 6.3, each of the components pgy1,..., ps+; Of g3 must be connected
tooneof pi,. ,,..., py,,. Hence, since i" < i, two distinct components of g3 will

be connected to the same component of qg_l, which is 1mpossible by part (¢) of
Lemma 6.3.

The inequality i" > 7 would lead to a contradiction after an application of a
symmetric argument to ¢5. Therefore i” = i/ and the lemma is proved. O

Lemma 6.5. In the above notations, let m > 7K and C = max{L(r), L(+"}}. For
any positive integer d there exists a constant L = L(C,d) € N suchtharif L(q) > L
then there are d consecutive COmponents ps.. .., psxd—1 ofq and pi,, . .., p;,+d_1

of ", s0 that ps+; is connected to Py, foreachi =0,....d — 1.
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Proof. Choose the constant L so that (L — 1)/2 > 12max{C,1} +2 4+ d. Let
P1,---, p; be the consecutive list all components of g. Since Lab(g) € W(Q,m),
we have [ > (L — 1)/2 (due to the form of any word from ‘W(2, m)). Thus we can
apply Lemma 6.4 to find indices s, ¢ from its claim. By the choice of s and 7, and the
estimate on /, we have t — s > d + 1, yielding the statement of the lemma. O

Corollary 6.6. Let G be a group hyperbolic relative to a family of proper subgroups
{Hj}ren. Suppose that a € Hj,, for some Ay € A, is an element of infinite order,
and x1,x2 € G\ Hy,. Then there exists k € N such that g = akixiaf2x, is a

Proof. Without loss of generality we can assume that x1,x, € X, since relative
hyperbolicity does not depend on the choice of the finite relative generating set ([20,
Theorem 2.34]). Choose the finite subset 2 C G and the constant K € N according
to the claim of Lemma 6.1, and set m = 7K. As the order of a is infinite, there is
k e N such that a¥’ ¢ {h € (Q) | |h|q < m} whenever |k’| > k. Assume that
k1], k2| > k.

Suppose, first, that g' = 1 for some / € N. Consider the cycle 0 = rgr'q’ in
[(G, X UJ) where g_ = g, = 1, Lab(g) = (a®1x1a%2x5)' € W(Q,m) (a¥/ are
considered as single letters from the alphabet XX U #) and r,r’, ¢’ are trivial paths
(consisting of a single point). Then, by part (a) of Lemma 6.3, every component of g
must be regular in o, which is impossible since g is without backtracking according
to Lemma 6.2. Hence g has infinite order in G.

Suppose, now, that there exists A’ € A,u € Hy and y € G suchthat ygy™! = u.
Denote C = |y|xuge. Sinceelement € G has infinite order, there exists / € N such
that 21 > 6C + 2 and u’ ¢ {h € (Q) | |h|q < m}. The equality yg'ylu= =1
givesrisetothecycleo = rqr’q’in (G, X UJ), where r and v’ are paths of length C
whose labels represent y in G, r— = 1, g_ = ry = y, Lab(g) = (a¥1x,a%2x,) €
W Q,m), rL = gy, q. = rl = y(a®1xa%2x,) y™1 and Lab(g’) = u~! €
W(2,m), L.(g’) = 1. By part (¢) of Lemma 6.3, at least 2/ — 6C > 2 distinct
components of ¢ must be connected to distinct components of ¢’, which is impossible
as ¢’ has only one component. The contradiction shows that ¢ must be a hyperbolic
element of G. [

Lemma 6.7. Let G be a torsion-free group hyperbolic relative to a family of proper
subgroups {H;L};LGA, a € Hy \ {1}, forsome Ao € A, andt,u € G\ H;LO Suppme

that there exists k € N such that for every k > k the element g1 = akra¥kt1
is commensurable with g» = a¥ua*Xu= in G. Then there are B.y € H;, and

e, & e f{—1,1} such thatu = ytéﬁ, gag—t =45 v gy =45

Proof. Changing the finite relative generating set X of G, if necessary, we can assume
that r,u, =1, u~! € X. Let the finite subset @ C G and the constant K € N be
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chosen according to Lemma 6.1. Define n = 7K and suppose that k is large enough
to satisfy a* ¢ {h € (Q) | |h|q < m}.

Since g1 and g, are commensurable, there exist [,[” € Z \ {0} and y € G such
that ygly™ = gl Tet C = |y|xuz, d = 8 and L = L(C,d) be the constant
from Lemma 6.5. Without loss of generality, assume that 4/ > L. Consider the cycle
o =rqr'q"in (G, X U H) such that r and r’ are paths of length C whose labels
represent y in G, r— = 1, g = ry = y, Lab(g) = (@ ua*u=1) e W(Q.m),
Lig) = 41,7 =q1.q" =r| = yghy ', Lab(g)) = (a*1aF ™))" € W(Q,m),
L{(g")y = 4l'.

Now, by Lemma 6.5, there are subpaths § = py1s1 pasap3saps of ¢ and ¢° =
P8 phsh pishpl of ¢! such that Lab(p;) = g%, Lab(p)) = as®,i =1,2,3,4,
for some € € {—1, 1} (which depends on the sign of [”), Lab(s;) = Lab(s3) = u,
Lab(s,) = u~ !, Lab(s]) = Lab(s}) = té,Lab(s’z) = r~¢ forsome& € {—1, 1},and
pi is connected in I'(G, X U #) to p] for eachi = 1,2, 3, 4. Therefore there exist
paths p1, p2. p3, p4 whose labels represent the elements «, 8, 7,8 € Hj, respec-
tively, such that (51)— = (p1)+ (F1)+ = (74 (52)= = (Ph)a (F2)+ = (p2)+
(P3)— = (p3)—, (P3)+ = (P3)—, (Pa)— = (pi)—, (Pa)+ = (pa)— (see Figure 2).

P1 81 5 52 3 83 Pa q
* a* ; * ak u ] af * L-; ak * >
pi|a Blp2 p3|V 8§ |Pa
. aek lf . aek t—é aek. If aek' -
rnoost Py S, Py sy p g
Figure 2.

The cycles s p18) phpapy ' s2pashy ' paand 531 p3 ' pa plysh ba give rise to the
following equalities in the group G:

u=ar*a*Ba™* u=yi*B and u = aFya*s*s.

Consequently, recalling that H;,, is malnormal (Lemma 2.3) and that ¥ ¢ H;,, we
get

Ba*plak = —Ey st € Hj, N I_SH)LOIE =il
and

aky~laky = 15581~ & Hy N it ot = (13,

Thus
Ba*p! =a* and ylaFy = acF (6.1)
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for some f = B(k).y = y(k) € Hy,and e = ¢(k),& = &£(k) € {—1. 1}. Note that
the proof works for any sufficiently large &, therefore we can find two mutually prime
positive integers k,k’ with the above properties such that e(k) = e(k’) = € and
E(k) = £(k') = &. Denote ' = B(k'y and y’ = y (k') then y1* = u = y'r*f/,
implying

y 7y =8 T e Hy, Nt Hy i E = (10

Hence p' = B,y =y,
Ba¥ B~ = a*" and )/_lak,y = a¥ (6.2)

It remains to observe that since k and k&’ are mutually prime, the formulas (6.1)
and (6.2) together yield

Bap™' =a¢ and ylay = af, O

7. Small cancellation over relatively hyperbolic groups

Let G be a group generated by a subset A € G and let @ be the set of all words in
the alphabet 4!, that are trivial in G. Then G has a presentation of the following
form:;

G = {A|O). (7.1)

Given a symmetrized set of words R over the alphabet A, consider the group G
defined by
Gy ={A|OUR) = (G| R). (7.2)

During the proof of the main result of this section we use presentations (7.2)
(or, equivalently, the sets of additional relators &) that satisfy the generalized small
cancellation condition Ci{(e, u, A, c, p). In the case of word hyperbolic groups this
condition was suggested by Ol’shanskii in [16], and was afterwards generalized to
relatively hyperbolic groups by Osin in [21]. For the definition and detailed theory
we refer the reader to the paper [21], as we will only use the properties, that were
already established there. The following observation is an immediate consequence
of the definition:

Remark 7.1. Let the constants €;, ;. A, c.p;, j = 1.2, satisfy0 < A < 1,0 <
€1 <&3,¢> 0,0 < g < pu1, p2 = p1 > 0. If the presentation (7.2) enjoys the
condition Cy (g3, it2, A, ¢, p2) then it also enjoys the condition Cy (g1, ti1, A, ¢, p1).

We will also assume that the reader 1s familiar with the notion of a van Kampen
diagram over the group presentation (7.2) (see [10, Chapter V] or [15, Chapter 4]).
Let A be such a diagram. A cell IT of A is called an R-cell if the label of its
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boundary contour oIT (i.e., the word written on it starting with some vertex in the
counter-clockwise direction) belongs to R.

Consider a simple closed path 0 = rqr’q’ in a diagram A over the presentation
(7.2), such that ¢ is a subpath of the boundary cycle of an R-cell [T and ¢’ is a subpath
of dA. Let T" denote the subdiagram of A bounded by 0. Assuming that I' has no
holes, no R-cells and L(r), L.(¥") < &, it will be called an e-contiguity subdiagram
of IT to dA. The ratio L(g)/L{9IT) will be called the contiguity degree of I1 to dA
and denoted (I1, I, dA).

A diagram is said to be reduced if it has a minimal number of R-cells among all
the diagrams with the same boundary label.

If G is a group hyperbolic relative to a family of proper subgroups { H; }; s, with
a finite relative generating set X, then G is generated by the set A = X U, o (H; \
{1}), and the Cayley graph I' (G, #) is a hyperbolic metric space [20, Corollary 2.54].

As for every condition of small cancellation, the main statement of the theory is
the following analogue of Greendlinger’s Lemma, claiming the existence of a cell,
large part of whose contour lies on the boundary of the van Kampen diagram.

Lemma 7.2 ([21], Corollary 4.4). Suppose that the group G is generated by a subset
oA such that the Cayley graph T'(G, 4A) is hyperbolic. Then for any 0 < A < 1 there
is jto > O such that for any € (0, ug] and ¢ > 0 there are g9 = 0 and po > 0O with
the following property.

Let the symmetrized presentation (7.2) satisfy the Ci{eo, i, A, ¢, po)-condition.
Further, let A be a reduced van Kampen diagram over Gy whose boundary contour
is (A, c)-quasigeodesic in G. Then, provided A has an R-cell, there exists an R-cell
[T in A and an ey-contiguity subdiagram I' of T to 0A, such that

(IT, T, 0A) > 1 — 23 .
The main application of this particular small cancellation condition is

Lemma 7.3 ([21], Lemmas 5.1 and 6.3). Forany0 < A < 1, ¢ > 0and N > 0
there exist puy > 0, &1 > O and p1 > 0 such that for any symmetrized set of words R
satisfying Ci(e1, p1. A, ¢, p1)-condition the following hold.

1. The group G defined by (7.2) is hyperbolic relative to the collection of images
{n(H;)}ies under the natural homomorphism n: G — Gy.

2. The restriction of n fo the subset of elements having length at most N with
respect to A is injective.

3. Any element that has a finite order in Gy is an image of an element of finite order
inG.

Below is the principal lemma of this section that will later be used to prove
Theorem 1.5.
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Lemma 7.4. Assume that G is a torsion-free group hyperbolic relative to a family of
proper subgroups { H; }iep, X is a finite relative generating set of G, S is a suitable
subgroup of G and U C G is a finite subset. Suppose that iy € I, a € H;, \ {1}
and v1,v2 € G are hyperbolic elements which are not commensurable to each other.
Then there exists a word W(x, y) over the alphabet {x, y} such that the following is
Irue.

Denote w1 = W(a,v1) € G, wy = W(a,vz) € G, and let {{w,)) be the normal
closure of wa in G, Gy = G/{{w3)) and n: G — G be the natural epimorphism.
Then

» 5 is injective on {Hjy}tiea U U and Gy is hyperbolic relative to the family
{n(H)}rens

o n(S) is a suitable subgroup of Gy,

» G is torsion-free;

* n(wy) # L

G
Proof. By Lemma 2.7 there are hyperbolic elements vs, v4 € S such that v; % v; if

1 <7 < j < 4. Then by Lemma 2.2, the group G is hyperbolic relative to the finite
collection of subgroups {H;}ie; U szl{EG (v;)}, and generated by the set

A=x0 (s U Eew))\ .
ji=1

iel

Let 2 C G and K € N denote the finite subset and the constant achieved after an
application of Lemma 6.1 to this new collection of peripheral subgroups.

Definem = 7K, A = 1/3,¢c =2and N = max{|u|4 | v € U} 4+ 1. Choose
pj > 0,¢& > 0and p; > 0, j = 0,1, according to the claims of Lemmas 7.2
and 7.3. Let ¢ = max{eg, &1}, and let L = L(C,d) > 0 be the constant given by
Lemma 6.5 where C = gy and d = 2. Evidently there exists » € N such that, for
i = (3¢ + 11)/n, one has

0 < p < minfpug, i1}, 2n(l —23u) > L, and 2r > max{pg, p1}-

Set
F(ey ={h € (Q) | |h] < max{K(32¢e + 70).m}}.

Since the subset F (¢} is finite, we can find & € N such that ak', v’f/, v‘;" ¢ F(e)
whenever k' > k. Consider the word

k _k+1, k+1 N 'xk+n—1

W(X,y) — )Cky X y k+n—l'

Y

Let w; € G be the element represented by the word W(a,v;)in G, j = 1,2, and
let R be the set of all cyclic shifts of W(a, v,) and their inverses. By Lemma 2.3,
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Hi, N Eg(v2) = {1} because G is torsion-free, hence by [21, Theorem 7.5] the
presentation (7.2) satisfies the condition Cy (g, i, 1/3,2,2n}, and therefore, by Re-
mark 7.1, it satisfics the conditions Cy (g9, i, 1/3,2, pg) and Cy(ey, 1, 1/3,2, p1).

Observe that w; # 1 in G because, otherwise, there would have existed a closed
path g in I'(G, A) labelled by the word W(a, v1), and, by part (a) of Lemma 6.3, all
components of ¢ would have been regular in the cycle o = rgr’q’ (where r, #’, ¢’ are
trivial paths), which is obviously impossible.

Denote Gy = G/{{w3)) and let : G — G be the natural epimorphism. Then,
according to Lemma 7.3, the group G, is torsion-free, hyperbolic relative to

n(HiYyier UUJj =1 {n(Ec (v;)}

and 7 is injective on the set
User Hi U7, Ec ) LU

(because the length in A of any element from this set is at most N). Since any
elementary group is word hyperbolic, G is also hyperbolic relative to {7(H;)}ier
(by Lemma 2.4) and n{v3),n(v4) € n(S) become hyperbolic elements of infinite
order in G 1, that are not commensurable with each other (by Lemma 2.3). Therefore
Eq,(n(v3))NEg,(n(vs)) = {1} (recall that these subgroups are cyclic by Lemma 2.2
and because G is torsion-free), and, consequently, 7(S) is a suitable subgroup of G 1.

Suppose that n{w;) = 1. By van Kampen’s LLemma there exists a reduced

planar diagram A over the presentation (7.2) with the word W{a, v1) written on its
G
boundary. Since W{a, v1) # 1, A possesses at least one R-cell. It was provedin [21,

Lemma 7.1] that any path in I'(G, #4) labelled by W(a, v1) is (1/3, 2)-quasigeodesic,
hence we can apply Lemma 7.2 to find an R-cell TT of A and an eg-contiguity
subdiagram I'" (containing no R-cells) between IT and dA such that (TT, T, 0A) >
1 —23. Thus there exists acycle 0 = rgr'q’ in ' (G, 4A) such that ¢ is labelled by a
subword of (a cyclic shift of} W(a, v2), ¢’ is labelled by a subword of (a cyclic shift
of) W(a,v)*!, L(r),L(+') < &y = C and

L(g) > (1 —23u)-L(AI1) = (1 —23u) - 2n > L.

In particular, Lab(g), Lab(g") € W(S2,m). Therefore we can apply Lemma 6.5
to find two consecutive components of g that are connected to some components
of ¢’. Due to the form of the word W{a, v3), one of the formers will have to be an
E ¢ (va)-component, but ¢’ can have only E¢ (v;)- or H;,-components. This yields
a contradiction because Eg (v2) # Eg(vi) and Eg(vy) # H;,. Hence n(wq) # 1
in G, and the proof is complete. [
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8. Every group is a group of outer automorphisms of a (2CC)-group

Lemma 8.1. There exists aword R(x, v) over the two-letter alphabet {x, y} such that
every non-elementary torsion-free word hyperbolic group Fy has a non-elementary
forsion-free word hyperbolic quotient F that is generated by two elements a,b € F
sarisfying

£ { ,_i\ F F 4 _{ F
R(a,b)# 1, R@a L, by =1, Rb,a)=1, R La ) =1. (8.1)

Proof. Consider the word

101 .2 102 o xlOO

Rx,y)=xy xy 200,

M

Denote by F(a, b) the free group with the free generators a, b. Let
Ri={R(a,b),Ra b1, RMb,a), R, a1,

and R be the set of all cyclic permutations of words from leﬂ. It is easy to see
that the set R satisfies the classical small cancellation condition C’(1/8) (see [10,
Chapter V]). Denote by N the normal closure of the set

Rz ={Ra b7, Rb,a). R(b~ a7}

in F(a,b). Since the symmetrization of R3 also satisfies C’(1/8), the group F =
F(a,b)/N isatorsion-free ([10, Theorem V.10.1]) word hyperbolic group (because it
has a finite presentation for which the Dehn function is linear by [10, Theorem V.4.4])
such that

F i s -
Ra.h) #1 but R@ L HWERGB.a)ERGP a7 £ 1.

Indeed, if the word R (a, b) were trivialin F then, by Greendlinger’s Lemma [10, The-
orem V.4.4], it would contain more than a half of a relator from (the symmetrization of)
R 3 as a subword, which would contradict the fact that R, enjoys C’(1/8). The group
Fis non-elementary because every torsion-free elementary group is cyclic, hence,
abelian, but in any abelian group the relation R(a~!,»™") = 1 implies R(a,b) = 1.

Now, the free product G = F x Iy 1s a torsion-free hyperbolic group. Its sub-
groups F and F; are non-elementary, hence, according to a theorem of Ol’shanskii
[16, Theorem 2], there exists a non-elementary torsion-free word hyperbolic group F
and ahomomorphism¢: G — F suchthat¢(F) = ¢(Fy) = Fand¢(R(a, b)) # 1
in F. Therefore F is a quotient of F1, the (¢-images of the) elements a, b generate
F and enjoy the required relations. O

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. The argument will be similar to the one used to prove Theo-
rem 5.1.

First, setn = 2 and apply Lemma 4.2 to find a countable torsion-free group H and
anormal subgroup M <1 H,where H/M =~ C and M has (2CC) (alternatively, one
could start with a free group H' and M’ <1 H' such that H'/ M’ = C, and then apply
Lemma 4.4 to the pair (H', M") to obtain H and M with these properties). Consider
the word R(x, y) and the torsion-free hyperbolic group F, generated by the elements
a,b € F which satisfy (8.1), given by Lemma 8.1. Denote G(—2) = H * F and let
N(=2) be the normal closure of (M, F) in G(=2), F(—2) = F,R(=2) = {R(a, b)}}
— a finite subset of F(—2). By Lemma 2.6, G(—2) will be hyperbolic relative to the
subgroup H, G(—2) = H - N(—2), H N N(—=2) = M and F(—2) will be a suitable
subgroup of G(—2).

The element @ € F(—2) will be hyperbolic in G(—2) and since the group G(—2)
is torsion-free, the maximal elementary subgroup £¢(—2)(a) will be cyclic generated
by some element #_»x_5, where h_» € H, x_5 € N(=2).

Choose y_» € M sothath_>y_» # 1. By Lemmas 2.2 and 2.5, the HNN-exten-
sion

G(=3/2) = (G(=2), 11 | tmyhax_o1T] = h_3y_5)

is hyperbolic relative to . As in proof of Theorem 5.1, one can verify that F(—3)
is a suitable subgroup of G(—3/2), and apply Theorem 2.8 to find an epimorphism
N—2: G(—3/2) — G{—1)suchthat G{(—1} is a torsion-free group hyperbolic relative
to n—2(H), n—y isinjective on H U R (—2) and n_»(r—;) € F(—1) where F(—1) =
—2(F(—2)) is a suitable subgroup of G{—1). Hence n_»(G(-2)) = G(—1) as
G(—3/2) was generated by G(—2) and 7_;.

Denote N(—1) = 7-2(N(=2)), f(—1) = 72 (M(=2)) and V> = 72| :
G(—=2) = G(—1). One can show that G(—1) = H - N(—1) and H N N(—1) =
M using the same arguments as in the proof of Theorem 5.1. According to the
construction, we have

Nn-a(t-)n-a(@no(t2}) = ntyarZ}) e N)NH = M

in G{—1), therefore, since the conjugation by n_,(z_1 ) is an inner automorphism of
F(—1), we can assume that F'(—1) is generated by a—; and b_, where a_1 ¢ M
and R(a_q,b_1) # 1 in F(—1) (because n—»(R(a,b)) # 1in F(—1)).

Now, if b_; is not a hyperbolic element of G(—1), i.e., if h_y G(Ql) ¢ for some
c € H,thenc € N(—1)NH = M, andsince M has (2CC) we canfinds_; € G(—1)
such that b_y = s_ja_;s~{. In this case we define G(0) = G(—1), N(0) = N(-1),
F(O) = F(—l), EH(O) = EH(—I), dg — d—1,80 — §—1 and 1”—1 = idG(—1)~

Otherwise, if b_; 1s hyperbolic in G{—1}, then we construct the group G(0), and
an epimorphism ¢ _; : G(—1) — G(0) in an analogous way, to make sure that 7_;
is injective on H U JR(—1), G(0) torsion-free and hyperbolic relative to (the image
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ofy H, F(0) = y¥_1(F(—1)) is a suitable subgroup of G(0), G(0) = H - N(0) and
H N N() = M where N(0) = y_1(N(—1)), and by = spagsy ' in G(0) where
by = ¥_1(b_1), ap = P—1{a—y) for some sy € G(0)

Enumerate all elements of N(0): {go, g1, &2, .-}, and of G(0): {g0.91,92,---},
sothat gg = gp = 1.

The groups G(j) together with N(j) <1 G(j), F(j) < G(j), finite subsets
NR(j) C G(j), and elements a;j,s; € G(j), j = 1,2,..., that we will construct
shall satisfy the following properties:

1°. for each j € N there is an epimorphism v;,_;: G(j — 1) — G(j) which is
injectiveon HUR(j —1). F(j) = vj—1(F(—1), N(j) = ¢, -1 (NG = 1)),
aj =Yj—1laj—1) € M,s; = ¥j1(s;-1) € G(j );

2°. G(j) is torsion-free and hyperbolic relative to (the image of) H, and F(j) <

G(j ) is a suitable subgroup generated by a; and s;a; SJ-_l;

3. G6(j)=H-N(j),N(j) < G(j)and H N N(j) = M;
4°. the natural image g; of g; in G () belongs to F(j);

: _ G _ . : : ,
5°. there exists z; € H such that g; ! zj, where g; is the image of g; in G(j);

6. if j > 1,31 € G(j — 1)\ H and for each k € N there is k > k
GG-D
such that af_lsj_laf_ls;_ll # af_lq_j_laf_lcjf_ll, then where w;_; =
Rj_l(aj_l,sj_laj_ls;_ll) n G(] = 1), for some there is a word Rj_l(x,y)
over the two-letter alphabet {x, vy} which satisfies

R() 2 vy (Rj—1(aj_1.57—1a;-15711)) # 1 and

Vo1 (Rj—1(aj—1.G;-1a;-1372)) =1 in G(j).

Suppose that the groups G(0), ..., G(7) have alrcady been defined. The group
G (i + 1) will be constructed in three steps.
First, assume that §; € G(i) \ H and for each k¥ € N there is &k > k such that

G(i
afsiafsi_ ! ;é) afél—aqu 1. Observe that s; ¢ H because, otherwise, one would
have F(i) < H, which is impossible as F(7) is suitable in G (7). Therefore, by
Corollary 6.6, we can suppose that & is so large that the elements v; = a¥s;aks;!
and vy, = al’.‘ qiaf g; ' are hyperbolic in G (7). Applying Lemma 7.4 we can find a
word W(x, y) over {x, y} such that the group G(i + 1/3) = G(i)/{{W(a;,v3)})
and the natural epimorphism n: G(i) — G(i 4+ 1/3) satisfy the following: 7 is
injective on H U R(F), G + 1/3) is torsion-free and hyperbolic relative to (the
image of) H, n(F (i)} < G(i + 1/3) is a suitable subgroup, and n(W(a;,v,)) # 1.
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Define the word R;(x,y) = W{x,xXy¥). Then R;(a;,sia;s5;71) = W(a;,vy),
Ri(a;, gia;g; ") = W(a;,v2) in G(i), hence

n(Ria;, siais; )y # 1 and 5(R;(a;.q;a;4; ")) =1 inG(i + 1/3).

If, on the other hand, g; € H or there is k € N such that for every k > k one
pace
has afsial’.‘si_l g) af“qial’.‘qjl, then we define G(i + 1/3) = G(i), n: G({i) —

G (i + 1/3) to be the identical homomorphism and R; (x, y) to be the empty word.

Let g;41 and g; 41 denote the images of g; 1 and g;+1 n G + 1/3), N(G) =
N(N(@)), F(i) = n(F(@i)) and K@) = n(RG) U {Ri(a;,5;a;57")}). Then, us-
ing 3°, we gel G(i +1/3) = H-N(i)and H N N (i) = M because ker(n) < N(i)
(as ai,qiaiéi_l e N()).

Now we construct the group G(i 4+ 2/3) in exactly the same way as the group
G (i + 1/2) was constructed in during the proof of Theorem 5.1.

If forsome f € GG+ 1/3), fGiv1 /! =z € H,thenset G(i +2/3) = G(i),
Kivi=N@G) <Gl +2/3)andr, 1 = 1.

Otherwise, ¢;+1 is a hyperbolic element of infinite order in G(f + 1/3). Since
G(i + 1/3) is torsion-free, one has Eg(i+1/3)(¢i+1) = {(hx) for some 2 € H and
x € N(i), and there is m € 7Z such that §;41 = (hx)™. Now, by Lemma 2.2,
G(i + 1/3) is hyperbolic relative to {H, (hx)}}. Choose v € M so that iy # 1 and
let G(i + 2/3) be the following HNN-extension of G(i + 1/3):

G(i +2/3) ={G( + 1/3). i1 | ig1(hx)1y = hy).

The group G(i + 2/3) is torsion-free and hyperbolic relative to H by Lemma 2.5.
One can show that F (7) is a suitable subgroup of G(i 4+ 2/3) in the same way as
during the proof of Theorem 5.1. Lemma 4.3 assures that N K; +; = M where
Kiy1 < G(i + 2/3) is the normal closure of (N (i), f;41) in G@ + 2/3). Finally,
note that

tir1git1tign = (W)™ = (hy)" =z € H in G(i 42/3).

Define T; 41 = {gi+1,ti+1} € K;41. The group G(i + 1) is constructed from
G(i + 2/3) as follows. Since Tj41 - F(i) C Kiy1 < G(i + 2/3), we can apply
Theorem 2.8 to find a group G (J + 1) and an epimorphisme; : G(i +2/3) — G(i+1)
such that ¢; is injective on H UMR (7 ), G(i + 1) is Lorsion-free and hyperbolic relative to
(the image of) H, {@; (gi+1), ¢i (ti+1)} C @; (F(i}), ¢; (F(i}) is a suitable subgroup
of G(i + 1), and ker(¢;} < K;+1. Denote by ¥, : G(i) — G{(i + 1) the composition
@;on. Theny; (G(1)) = ¢; (G(i)) = G(i + 1) because G(i +2/3) was generated by
G (i) and t; 1 1, and according to the construction, #; 41 € ; (F (i) < ¢ (G(i )). Now,
after defining F (7 + 1) = ¢; (F(@)), NI + 1) = ; (N(G@)), R 4+ 1) = ¢; (R{)),
Ziv1 = @i (gi+1) € F(i + 1)and z;41 = ¢;(z) € H, we see that the conditions
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1°-5° hold in the case when j = 7 + 1, as in the proof of Theorem 5.1. The last
property 6° follows from the way we constructed the group G{i + 1/3).

Let O = G(o¢) be the direct limit of the sequence (G (i), ¥;) asi — oo, and let
F(oo) and N = N(o0) be the limits of the corresponding subgroups. Let doo, b
and s be the images of ag, by and s in Q respectively. Then boo = SoolooS s
is torsion-free by 2°. N <« @, @ = H-Nand HNN = M by 3", N < F(0)
by 4°. Hence Q/N = H/M = C.

Since F(0) < N(0) we get F(oo) < N. Thus N = F(o0) is a homomorphic
image of F(0) = F, and, consequently, it is a quotient of F;. By 5°, forany ¢ € N
there are z € H and p € Q such that pgp~' = z. Consequentlyz € HNN = M.
Choose x € N and h € H so that p = hx. Since M has (2CC) and h~'zh e M,
there is y € M such that yh~!zhy~! = z, therefore (yx)g(yx)™! = z € M and
yx € MN = N. Hence each element g of N will be conjugated (in N ) to an element
of M, and since M has (2CC), therefore the group N will also have (2CC).

The property that Cp(N) = {1} can be established in the same way as in Theo-
rem 5.1. Therefore the natural homomorphism ¢ — Aut(N ) is injective. It remains
to show that it is surjective, that is for every ¢ € Aut(N) there is g € @ such
that ¢(x) = gxg~ ! for every x € N. Since all non-trivial elements of N are
conjugated, after composing ¢ with an inner automorphism of N, we can assume
that ¢p(ase) = dse. On the other hand, there exist goo € N and i € N such that
®(hoo) = Goolooq o and g is the image of ¢; in Q. Note that so, ¢ H because
s; € G(i)\ H for every i € N. This implies that H is a proper subgroup of N,
thus goo ¢ H since N = F(00) = {doo,doolood ) < 0, and ase € H. Hence
gi € GG)\ H.

Now we have to consider two possibilities.

Cuase 1. For each k € N there is k > k such that

k k IG(i) k k 1
a;sia;s; % a;qia;q; -

Then there is a word R; (x, y) such that the property 6° holds for j =7 + 1. And,
since each ¥; is injective on {1} U R; (by 2°), we conclude that

Ri(aooysooaooso_ol) # 1 and Ri(“oo:@ooaooqgol) =1in Q,

which contradicts the injectivity of ¢p. Hence Case 1 1s impossible.

Case 2. 'The assumptions of Case 1 fail. Then we can use Lemma 6.7 to find
B,y € Hande, & € {—1, 1} suchthatg; = ysfﬁ,ﬁaiﬁ_l =afandy 'a;y = afin
G (7). Denote by y theimage y in @, andforany y € @ let C,, be the automorphism
of N defined by C,(x) = yxy ! forallx € N.

1

Ifé = —1 then Vo_olaoo)/oo — ago and ¢p(bog) = Q'ooaooqo_ol = Voos(;olagosooyo_o »
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hence
Py 15 Bl &0 = BE
1

J— — €
Bog = Seollsalog ¥ G5 o

Aut(N) 3 Cooyzl ©P: {
But N has no such automorphisms because R(ds.bo) 7 1 and R(bS,.as,) = lin
N (since N is a quotient of F' and 1 # R(ag, by) € J(0) in G(0)).

Therefore £ = 1. Similarly, € = 1, as otherwise we would obtain a contradiction
with the fact that R(a_!, b ') = 1in N. Thus

o0l

Aut(N) > Co10¢: {

By = Sooaooso_ol — Sooaooso_O1 = Begs.

And since ao and b, generate N we conclude that for all x € N, ¢(x) = gxg™ !,
where g = v € Q. Thus the natural homomorphism from Q to Aut{/ ) is bijective,
implying that Out(N) = Aut(N)/Inn(N) = Q/N = C. O
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