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Diameter pinching in almost positive Ricci curvature

Erwann Aubry

Abstract. In this paper we prove a diameter sphere theorem and its corresponding A1 sphere
theorem under L# control of the curvature. They are generalizations of some results due to
S. Ilias [8].

Mathematics Subject Classification (2000). 53C20.

Keywords. Ricci curvature, comparison theorems, integral bounds on the curvature, sphere
theorems.

1. Introduction

Let (M™, g} be a complete manifold with Ricci curvature Ric > n— 1. Then (M", g)
satisfies the following classical results (the proofs can be found in [13] for instance):

* Diam(M",g) < = (S. Myers)with equality ift (M ", g) = (S", can) (S. Cheng),

e A(M",g) > n (A. Lichnerowicz) with equality iff (M",g) = (S", can)
(M. Obata),

where Diam is the diameter and A is the first positive eigenvalue.
Studying the properties of the sphere kept by manifolds with Ric > » — 1 and
almost extremal diameter or A1, S. Ilias proved in [8] the following results:

Theorem 1.1 (S. Tlias). Forany A > O, there exists (A, n) > O such that any n-mani-
foldwith Ric > n — 1, sectional curvature ¢ < A and A1 < n + € is homeomorphic
to S™.

Theorem 1.2 (S. Tlias). For any A > 0, there exists €(A,n) > 0 such that any
n-manifoldwithRic > n—1, ¢ < A and Diam(M ) > m — ¢ is homeomorphic to S™.

Remark 1.3. C. Croke proves in [7] that for n-manifolds with Ric > n — 1, A1 (M)
close to n implies Diam (M ) close to . The converse is proved in [ 8] (using a spectral
inequality due to S. Cheng [6]).
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Remark 1.4. For n > 4, M. Anderson [1] and Y. Otsu [10] construct sequences of
complete metrics g; with Ric(g;) = n — 1, A1(g;) — »n and Diam(g;) — = on
manifolds that are not homotope to S” (more precisely, Otsu shows that if n > 5,
these manifolds can have infinitely many different fundamental groups).

Remark 1.5. The two results of S. Ilias have been improved by G. Perelman in [11],
where the assumption o < A is replaced by o > —A (note that under the Ilias’s
assumptions ¢ < A and Ric > n — 1 we have |o| < (n —2)A).

Subsequently, we denote Ric(x) the lowest eigenvalue of the Riccitensor and o (x)
the maximal sectional curvature ar x. In [4], we prove the following generalization
of the theorems of Myers and Lichnerowicz:

Theorem 1.6. For any p > n/2, there exists C(p,n) such that if (M",g) is a

complete manifold with [, (Ric— (n —1))” < g((’;% then M is compact, has finite

fundamental group and satisfies

1

Diam(M) < [ 1+ C(p,n)(v(fﬁ)m}

Ai(M) = n[ 1 - C(P’”)(v(ﬁpM)%}

where pp = [3,(Ric — (n — 1)) and x— = max(0, —x).

Remark 1.7. It follows from [4] that the constant C(p, n) is computable, that if
Jar (Ric — (n — 1))” is finite (for p > #/2), then Vol M is finite, and that we cannot

bound the diameter or the first non zero eigenvalue under the assumption p, < ﬁ
or pxu small (see [4]).

In this paper we prove the following extensions of [lias’s stability results.

Theorem 1.8. Letn > 2 be an integer, A > O and p > n be some reals. There exists
a positive constant C{(p, n, A) such that any complete n-manifold which satisfies

f(@—(n—l))‘_’<€(p,n,A)VolM, f5£<AV01M
M M

and
Diam(M) > (1 — C(p,n, A))

is homeomorphic to S™ (where x4 = max(0, x)).

Theorem 1.9. Letn > 2 be an integer, A > O and p > n be some reals. There exists
a positive constant C{(p, n, A) such that any complete n-manifold which satisfies

[(R_ic—(n—l))"_’<C(p,n,A)VolM, f5f<AV01M
M M
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and
A(M) <n(l+ C(p.n, A))

is homeomorphic to S".

Remark 1.10. By the Holder inequality, the two curvature assumptions of Theo-
rem 1.9 can be replaced by

f(@—(n—l))_<C(p,n,A)VolM and [op<AV01M,
M M

where o (x) is an upper bound for the absolute value of the sectional curvatures at x.

2. Comparison results in almost positive Ricci curvature

Subsequently we denote B{x, r) (resp. S(x, r)) the geodesic ball (resp. sphere) with
center x and radius r and L (r) (resp. Ax(r)) the volume of a geodesic sphere (resp.
ball) of radius r in (S", % g). Besides Theorem 1.6, we will need the following
comparison results for manifolds of almost positive Ricci curvature (see [4] for a
proof).

Proposition 2.1. For anyn = 2 and p > n/2 (p > 1ifn = 2) there exists a

constant C(p,n) such that for any complete Riemannian n-manifold (M™, g) with

10 _ _pp 1
N = onr = com Ve have

1

(Voln_l S(%s R)) T (Voln_l S(x,r)
Ly »(R) Ly _y(r)

fng ) 2p—n
)7 = R 3,

Vol B(x, r) > (1= C(p.m)n) Aq(r)

Vol B(x. R) ~ AL(R)’
Vol,—1 S(x, R) < (1 + 77) L1y (R),
Vol B(x, R) < (1 + n)Al(R)
forallx ¢ M and all radii 0 <r < R.

Foranyn > 2 and p > n/2 there exists a constant C(p,n) such thatif (M™, g) is
a complete n-manifold with p, < ﬁ, then ||ul| an < Diam(M)C(p,n)||du|2+

l2]|2, foranyu € H¥2(M). Inthecasen = 2, we have |u||s < Diam(M)C ||du||2+
lullz if p1 < &

Similar estimates are proved in [12] under the assumption that M is compact and

- 2p P 1
Dlam(M) pVolpM = C(p.n)"
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3. Theorem 1.9 implies Theorem 1.8

Proposition 3.1. Letn > 2 and p > n/2. There exists C(p,n) > O such that
if (M",g) is a complete n-manifold with n'° = p, < ﬁ and Diam(M) >

T — ﬁ, then we have
A(M) < n+ C(p.n)[n+ (Diam(M) —7)_].
The main tool to prove this proposition is the following lemma:

Lemma 3.2. Letn >2and p > n/2(p = 1ifn = 2)and Xy € S". There exists
a constant C(p,n) such that if (M", g) is a complete n-manifold with n'° = p, <
ﬁ, then there exists xo € M such that for any C'-function u: [0,27] — R we
have

|
Vol §*

1
Vol M

/uOdM(xo,.)dvg— f u odgn(xy,.)dvgn
M s
< |4/ [|oc C(p. n}[n + (Diam(M) — 7) _].

Proof. Let (xo, vo) € M? such that d = Diam(M) = d(x¢, yo). The functions A,
L, A1 and L are defined in Proposition 2.1 and prolonged by 0 to R (note that the
diameter of M can be greater than 7). The function r — u(r)A(r) is continuous
and has right differential on R equal to u’A + u L. We infer the equalitics

d d
u(d)VolM:fo u(r)L(r)dr—l—/(; w' (NA(r)dr,

u(m) Vol 8™ :[0 u(r)Ll(r)dr—l—/(; u' (rYA(r)dr

which imply
1 1 _
o7 oo 0oy~ e [ o dn o s

P u)Lm Tu(r)Lq(r)
_fo Vol M dr_fo Vol §”

T wA, d A
— | wtdy— _
e} ”(ano Vol S” fo Vol M

fd, Al A [”, Aq
= u = + u —1
0 Vol S* Vol M d Vol §*#
d
Ay
s||u’||oo([
0

A
Vol §7 VOIM‘ s |”_d|)'
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By Proposition 2.1 we have, forall r < d:

(1 Cip.m) ) Aq(r) < A(r) <1 Vol B(yy,d —r)
Vol S* — Vol M Vol M
A(d —r)
<l1-(1-C i A
<1-(1-Clp.mn)—s
Ai(r+ 7 —d)
< C(p, .
voist T (p.n)n
Hence ‘\fﬂ(’j‘} — é;lg% < C(p.n)n + (Al(r)_éél(éjﬂ_d))*. An easy computation
gives | Ll - Hoo < C(n)(—h)_, and by Proposition 2.1 we get:
1 _
ol [M u o dp(xo,x)dvg — VoISE fSn u o dgn(Xg,x) dvgn

< W'l C(p.m)[n + (d — 7)-].

We now finish the proof of Proposition 3.1.

Proof. Lemma 3.2 applied to u = sin?, u = cos? and u = cos gives

sin dyy (xo. . )

I .

Vol M
cos? dy (xp..)
U Vol M _[Sn
cos dy (x0, . )
U Vol M _/n

SiII2 dSn ()_Co, . )
Vol &7 <C(p.m)(n+d—-m))<1

cos? dgn (Xy, . )
L5 <C(p.nm)(n+d—-m)_) <1

cos dgn (xp, . )
volsn | = Clp.m(n+(d—m)-) <1

Hence, if we set f = cos dyr(xg, . ), we get

1915
2_7

IB-—

VOIM]M

which readily implies that

——| = Cle.mn+(d—m)-) <1

=t d—mn)-) <1

fl<Clp.n)n+d—-m)-) <1

A (M

||f f

where we have set f_ =

VG =DI3 n(1+ C(p.m)n+ (d — 7)),

2

VolM fM
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Remark 3.3. The same technique as in [5] can be used to prove that manifolds
with almost positive Ricci curvature and A is close to n have a diameter close to
(see [12]).

4. Proof of Theorem 1.9

4.1. Fiber bundle E. Let E be the fiber bundle TM & R ¢ — M endowed with the
following scalar product and linear connection:

(X 4+ fe,Y + he)p = g(X,Y)+ fh,
DE(X + fe)=DYX + fZ + (df(Z)—g(Z.X)) e,

where DM is the Levi-Civita connection of the metric g on M. We denote by p
the orthogonal projection of E on TM, Ri¢'(S) = Ricy, (p(S)) — (n — 1) p(S) and
Asph = AE + Ric'.

The following lemma is proved in [3]:

Lemma 4.1. If f: M — R satisfies Af = Af, then Sy = V f + fe satisfies
Asn(Sr) = (A —n)(V f — fe)and (D Sy, X) = DAF (X, X) + fg(X, X).

Note also that we have

R (X + fo) =RM(Z. V)X — (g(Y. X)Z — g(Z. X)Y).

4.2. Bound on the Hessian of the first eigenfunction. To prove Theorem 1.9 we
need an L* bound on the Hessian of the first eigenfunction. For that purpose, we will
modify the proof of Theorem 2.4 in [2] (whose proof would give us only a bound on
| DSf||nte/ IS |loo for a given € = e(p, n)). In our case we really need to perform
a Moser iteration.

Proposition 4.2, Letn > 2 and oo > p > n/2. There exists a constant C(p,n)
such that if (M", g) is any manifold with p, < ﬁ and A1 < n -+ m, then for
f: M — Rsuchthatr A f = A [ we have

1D Stlloo

1
< C(p.n)(A1 + ||R||;,.dp)”(|)t1 —n| + pp) T,
157 e

where Sy =V f+ feandy = zlffn.

To prove Proposition 4.2 we need a commutation lemma (see [2]):
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Lemma 4.3. For any section S € I'(E) we have
1
A (IDS*) +|D*S|?
< (D*R®S. DS) + Ric™|DS|* + (DAS, DS) + |R®| - | DS|?,

where |RE || is the norm of the linear map R¥ : /\2 TuM — /\2 EZ defined by
RE(u AT, S) = (RE(u, )T, S).

Remark 4.4, This lemma is valid for any Riemannian fiber bundle (E, D, {-,-}).

We now give the proof of Proposition 4.2.

Proof of Proposition 4.2. We setu = /| DS|? + €2. We have

|(D2S,DS)|?
|DS|? + €2

1 1
ulu = EA(uz) + |du|* = EA(uz) +

A

1
5A(|DS|2) + | D2S|2.
Hence, by Lemma 4.3

2 1
[ 1dHP = [ (SAIDSP 4 D2 Jurt
" %k —1Jy \2

kz

f R_ic_u2k+[ (DAS, DS)u>*—D
2k —1 M M

+[ (D*RE S, DS)u2(k—1>+f ||RE||u2k).
M M

=

We now apply the divergence theorem to the form u2*~V(AS, D,S), and get for
any k > 1:

f(DAS,DS)uW‘—U
M
:[ |AS|2u2(k—1)—2(k—1)Ef (AS, DS())du(i) - u?*—3
M i M
gf |AS|2u2(k—1>+2(k—1)[ |AS||dulu?*=D
M M

k—1 _
< —/ |du P2 D + 2k — 1)f |AS Py2®=D,
2 M M
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We do the same with the form uz(k_l)(trm((Rﬁ’.)S, D.S))) and get
[(D*RES, DSy 21
M
1
:/ —|RES|2u2(k_1)—|—2(k—1)Z[ (REG, )S, D; SYdu(iHu*3
M2 7 IM

—1
7[ |du|2u2(k_1)+(2k—1)[ IRE §|2,20=D),
M M

where we have used Y, RES(z j).D2SG. j)) = JRES|2
Since [y, [du|?u?*= D _ = & [y |d@¥)?, the three last inequalities give, for any
k=1,

[EICa)E: Ek(f Ric™u?k +f IIREHuz"‘)
M M
+ k(2k — 1)([ ||RES||2u2k_2+[ ||£S||2u2k—2)

2(k—1
< 4k2(Bl||u|| 2kep + Bz||S||oo|| ||2((k 1))p)
where we have set

- ||AS||2p ||RES||2p o ||A5ph ||2p
15113 ISI% = ISI%
< Cm(A2 + IRM|3,) = B~

By = |Ric™ ||, + IR"[l, < Con(IRM|I3, + A7) = B,

: E
+ || Ric’[I3, + [R¥I3,

By the Sobolev inequality given by Proposition 2.1 we get

2(k—1
||DS||2kn < || DSl + C(p, n)Bk\/HDSII 2k, +ISIZIDSI3Gs, -

p—1 p—1

k k
and by || DS |2 < || DS |26z < [| DS][ ||DS||(;<R S 11y we have

2kn
| DS 26 \ "2
|1DS o
2k— 1)p

1512, \ 7722 (I1PSlzepe \ 27
< |14 BkC , R (1_|_ i| — ,
_[ v ||DS||§O) IDS [
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n(p—1)
2p(n—2)

defined by ag = % and an41 = va, + 2. Then we get

Api41
(”DSHan-H ) gl
DS [|oc

2n ap
2 n—2)vhtl vt
§|:l—|—anC(p,n)B(l—|— 15l ”( I (W) .

| DS]I3, | DSoo
DS g\ ¥
o (1DS],
n—>+o00 \ || DS||sc
2n

o0 2. 7 a0
ISI2 Y\ & 2 ([1DS e

< 1+ C{(p, Bl1 .

—II( + Cp.ma ( T IDsIZ 1DS s

i=1

> 1. Wesetk = %})—1) -+ 1, where (a, ), is the sequence

where v =

Hence

1

11 1
The Holder inequality | DS |4, < ||[DS|, 7 ||DS||&. gives

= ISIZ, \\ o
1951 =< [T (14 Comarn(1+ 0= )" st e
2 iDSIZ,

If | DS|lso = ||S]eo» then inequality (x) gives

o0
IDS|loe = [ ] (1 + C(p.n)a; By»—27" || DS

i=1

yiRis
< Cp.n)(Ar + IR [2p) 7" | DS 2.

If |DS|loc < [|S|loo, then inequality (x) gives
2ph
HMM<(MM)M"”

[10+Cpna;Byaa

D5, ~\Ipsle) Ll

hence -
DS _pn DS 2p—n+2pn
[[S oo 15 {|oo

At this stage note that, by Lemma 4.1 we have
IDS[5 = (Agn(S), S)z2 — (Ric/(S), S)2

Ric— (n — 1)) N
<|A—n||S|? (Ric SI? < (JA — S|1%.
<Da=alSI3+ [ SR ISP < (=l + 7 ISIEs
Since we have prﬁ—:;pn < 1, we get the result. O
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4.3. Critical points of the first eigenfunction. By Proposition 4.2, the section

1
Sy =V f + feof E satisties | D S¢lloc < C(p,n, A)(|A1— 1]+ 7p) 7 [1Sf loc-
Since we can suppose the pinching on |A; — r| and p, small enough to have

1
Cp,n, A)(|A1 —n|+pp) 77 = 1/4,

the previous inequality and Theorem 1.6 give

_1
inf |Sy| > [1— C(p.n, AY(|A1 — 1|+ 5p) 7 ][157 [l
1
> C(p,n, A(|A1—n|+8p) T 1Srlloe = 1DF 57 oo

We infer that if x is a critical point of f, then by Lemma 4.1 we have

|Ddfyo (X, X) + f(xo) = (DESr, X)E| < IDE St oo < 1S5 (x0)| = | £(x0)]

for any unit vector X of Ty, M. Hence we have —| f(xo)|— f(x0) < Ddf,, (X, X) <
| f(x0)|— f(xg) for any critical point xy of f. So the only critical points of f are non
degenerate global extrema, which implies that M is homeomorphic to S by Reeb’s
theorem.
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