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Zero-in-the-spectrum conjecture on regular covers of compact
manifolds

Piotr W. Nowak

Abstract. We prove the zero-in-the-spectrum conjecture for large, regular covers associated
to amenable subgroups of fundamental group of a closed manifold A, provided that 71 (A) is
C *-exact.
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The zero-in-the-spectrum conjecture was first formulated by Gromov [6], [7] and asks
if the spectrum Laplace—Beltrami operator acting on the square-integrable p-forms on
the universal cover of a closed aspherical manifold contains zero. This fact is implied
by the Strong Novikov Conjecture and thus the interest in finding a counterexample.
A more general zero-in-the-spectrum conjecture on open complete manifolds was
stated by Lott and it is true if there is a positive answer to the following question:
does the spectrum of the Laplace—Beltrami operator A, acting on square-integrable
p-forms of a complete manifold M contain zero for some p = 0, 1,...7 The answer
is negative in general: Farber and Weinberger [4] showed that for every n > 6 there
exists a manifold & such that zero is not in the spectrum of A, forany p €0, 1,. ..
acting on the universal cover of N . Later Higson, Roe and Schick [12] extended this
result and gave a complete description of groups which can appear as fundamental
groups of manifolds whose universal covers do not have zero in the spectrum of the
Laplacian.

Because of the origins of the problem, various covering spaces ar¢ a natural
environment for considering zero-in-the-spectrum questions. An early result of this
type is a theorem of Brooks [1] stating that given a regular cover M of a compact
manifold &, 0 is in the spectrum of Ag on M if and only if the group of deck
transformations is amenable. The articles [14], [15] provide a comprehensive survey
of this topic.

The purpose of this article is to prove the zero-in-the-spectrum conjecture on
certain regular covers associated to normal, amenable subgroups of the fundamental
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group of a compact manifold N (we call such covers co-amenable) under the as-
sumption that 1 (N) is C*-exact, or in other words, has Yu’s Property A. This result
(Theorem 7) 1s stated and proved 1n the last section, since to formulate it we need a
few technical notions, which are explained in detail in the text.

Our main tool is coarse index theory. In order to apply such methods we need to
consider manifolds satisfying a certain largeness condition, which allows to translate
small scale geometric information to large scale. More precisely we call an open
n-manifold M large if the fundamental class in the locally finite homology group
HT(M ) survives the coarsening of this homology, giving a non-zero element in the
coarse homology group H X, (M ) (see Section 2 for a precise formulation). Roughly
speaking this means that the image of the fundamental class of the manifold M under
the classifying map to (appropriately constructed) locally finite homology of the
classifying space EG, where G is the group of deck transtformations of M, is non-
zero. This notion is essential for us since the examples of manifolds we are concerned
with, as regular covers associated to non-trivial subgroups of the fundamental groups
of compact manifolds, do not satisfy another widely used largeness condition, uniform
contractibility.

The paper is organized as follows. In Section 1 we discuss C*-exactness and
prove a permanence property for exact groups, in Section 2 we define in detail the
above-mentioned notion of largeness and the last section is devoted solely to proving
the main theorem of the paper.

1. C*-exact quotients

Property A was defined by Yu [22] as a geometric condition implying the Coarse
Baum—Connes Conjecture for discrete metric spaces. Soon after it was introduced it
turned out that Property A for finitely generated group G is equivalent to existence of
a topologically amenable action on a compact space [11] as well as to exactness of
the reduced group C *-algebra C*(G) [9], [18]. The latter is the reason why groups
with Property A are often called C*-exact, or simply exact, and we will use these
terms interchangeably.
We denote

LX)+ ={f X)) | IfI1=1 f=0}.

Definition 1 ([22]; in this form [11]). Let X be a discrete metric space with bounded
geometry. We say that X has Property A if for every R < oo and & > 0 there exists
amap&: X — £1(X)1,+ and S € R such that

(1) & — & lle,(x) < & whenever d(x, y) < R,
(2) supp&x € B(x,S) forevery x € X.
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Determining how large the class of groups possessing Property A is an active area
of research due to applications to various problems in geometry and topology, see for
example [19], [20], [21], [22], [23]. One of the most natural topics in this context are
permanence properties of exact groups. Such properties were studied most notably
by Kirchberg and Wasserman [13] using the C *-algebraic definition and Dadarlat and
Guentner in the context of coarse embeddability into the Hilbert space [3]. Among
such constructions are passing to a subgroup, direct limits and extensions thus in
many ways Property A indeed resembles amenability.

Unlike amenability however, Property A is preserved by free products [2] and,
more important, is not preserved under surjective homomorphisms. The latter is a
consequence of Gromov’s construction [8] of finitely presented groups which do not
coarsely embed into the Hilbert space together with exactness of free groups. Thus
we are interested in general conditions guaranteeing that in the exact sequence

l— H — G — G/H— 1 (1)

G/ H has Property A provided that G has it. If we exclude the trivial case and assume
that G/ H is infinite there are two other cases in which such a statement is obviously
true:

(i} If H is a finite group then G and G/H are quasi-isometric, so G is exact if and
only if G/H is exact.

(i1} If the exact sequence (1) splits then G/H is embedded in G, and inherits exact-
ness from the ambient group.

Our first step in proving Theorem 7 is the following

Theorem 2. Lef G be a finitely generated group satisfying Property A and let H be
an amenable subgroup of G. Then the quotient G/ H has Property A.

This condition is sharp: as soon as we drop the amenability condition on H, we
can take G 1n (1) to be a free group and get all finitely generated groups as quotients.
Let G be a finitely generated group and H its subgroup. Then the action of H
on G by translations induces an isometric action of H on £ (G ). We denote this
actionby (h - f)(x) = f(h™'x),forevery f € loo(G),x e Gandh € H. If G is
amenable then given f € £,,(G) we will denote the value of the invariant mean of

f by
f 1) de.
G

We will treat the cosets of H as orbits of its action on G and denote the orbitof x € G
by Hx. The quotient G/H is a metric space with the metric

d(Hx, Hy) = hr}?ienH d(hx,h'y).
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This in particular means that the quotient map G — G/H is a contraction.
In [16], [17] an averaging procedure for Property A was obtained and the next
statement also makes use of it.

Proposition 3. Let G be a group with Property A and let H be an amenable subgroup
of G. Then for every € > O Property A can be realized by amap §: G — £1(G)1 +
such that & is equivariant under the action of H, i.e.,

Enx = h - & (2)
foreveryh € H and x € G.

Proof. Assume that G satsfies conditions of Definition 1 for R < o¢, € > 0 with
S > Orealized by a function {: G — £1(G )1 4. Forevery x € G define

£.(y) = [H e hy) dh.

Since 0 < {,(v) < 1forall x,y € G we get a well-defined function &,.: G — R
satisfying 0 < &.(y) < 1 for all x,y € G. Observe that if d(x,y) > S then
Cx(y) = 0. Since H acts by isometries, d(fix,hy) = d(x, y) and it follows that
£x(y) =01f d(x, y) > S. This allows to compute the norm of &,:

el = Y &)= 3 [H o hy)

YEB(x,S) yEB(x,8)

~[ (T tutn)an=[ van
H yeB(x,S) H

= 1

1

which shows that &, is an element of £,(G); + forevery x € G.
Let now x1, x2 € G satisty d{x1,x2) = 1. Then

1€x, — Exslles@) = D & () — £, ()]

yeG

=J§ [H Ch, () i — fH Ehns (1) dh‘ N

< [ (3 [8hy (1) = By )] )

yeX

ffsdhze,
H
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since the sum is in fact finite and the metric is left-invariant.
Finally we need to show that (2) holds. Indeed, if y € H and x € G then by the
invariance of the mean on H we obtain

£x(y) = fH Epya () d

= [ Gy di =607
= )/ ) éx (y)’
after substituting h = hy. This ends the proof. O

Proof of Theorem 2. By Proposition 3, the function £;: G — £1(G) can be chosen to
be equivariant on cosets of H. We define the map n: G/H — £1(G/H )1+ by

nx(Hy) = > Ex(hy).

heH

We need to show that 7 is well defined. Solet Hx = Hx"and Hy = Hy’ as elements
of G/H. Then there are elements y, g € H such that yx = x" and gy = y'.

e (Hy') = Y v (hy) = Y Eyulhgy)

heH heH

=) &yTThgy) = D Elhy)
heH he H

= nuax(HYy),

after using Lemma 3 and substituting y ~'hg for g.

Now note that since the quotient map G — G/H is a contraction, if the elements
H x and H y are more than distance S away from each other, &, vanishes on the coset
Hy and we have

nx(Hy) = ) &x(hy) =0,

heH

thus supp ngx € B(Hx, S) and we also have

el = Y nax(Hy)
HyeG/H

= Z Z Ec(hy)

HyeG/H heH

= lénlle, 6/my = 1.
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Suppose now that elements H x and H x” are of distance 1 from each other. This
means that the elements x and x’ can be assumed to satisfy d(x, x’) < 1. Thus

Inms —nmw ey = ) [nEs(Hy) —naw(Hy)|

HyeG/H
= Y | X atn-Y &)
HyeG/H heH heH
< 3 S lhy) —Evhy) |
HyeG/H heH
= ||& — Exlleyo) < & =

Remark 4. Note that taking quotients by amenable subgroups not only preserves
Property A, but also preserves a coarse invariant associated to an exact group. In [17]
an invariant Ay for metric spaces with Property A was defined and one can extract
from the proof of Theorem 2 that for an amenable subgroup 7 of a group G satisfying
Property A we have

Ag/H = Ag-

We end this section with a question. It is a very interesting and so far unsolved
problem whether Thompson’s group F has Property A. One strategy to obtain a
positive answer could use Theorem 2 and it becomes natural to ask: is it possible
to write Thompson’s group F in the form G/H, where G has Property A and H is
amenable? It would be sufficient to embed F into such G/H coarsely, e.g. as a
subgroup.

2. Large Riemannian manifolds

2.1. Largeness. There are several notions of largeness of open manifolds, see e.g.
[6]. One of them is uniform contractibility, which means that for every R < oo there
exists an Sg < oo such that for any point x € M the ball B(x, R) is contractible
inside B(x, Sg). We will need a less restrictive criterion.

Let X be a metric space. An anti-Cech system is a sequence {Uy }ren Of covers
such that:

(i) there exist numbers Rg, Kk = 1,2,..., such that diam(U) < Ry for every
Ue Uk;

(ii) the Lebesque numbers Ag of Uy satisfy Ax > Rp_q;

(iii) A — ocask — oc.
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Let H be the locally finite homology theory. The coarse homology H X+ (X)
[19] is defined by setting

HX.(X) = lim H}'(Ui])

where {Uy} is an anti-Cech system for X and |Uy| denotes the nerve space of the
cover Uy; see also [10]. There is a character map c,: HI(X) — HX,(X) induced
by the map ¢: X — |U;| defined by the formula

c{x) = Z ou ()[U],

Uel

where {¢y }y, 1s a partition of unity subordinate to the cover U;. The character map
¢« 18 an isomorphism provided that X is uniformly contractible [19], see also [10].

Definition 5 ([5]). Let M be a complete, oriented n-dimensional manifold. Let
[M] € HE(M) be the fundamental class of M. We call M large if

cx([M]) # 0.

In [5] the above condition was called macroscopical largeness. Note that the
above notion of largeness for equivalent metrics depends only on the quasi-isometry
class of these metrics. More precisely, take a manifold M which 1s equipped with
two equivalent, quasi-isometric metrics, d; and d> and the corresponding character
maps by ¢! and ¢2 respectively. Then for any » the diagram

Hy (M)
HX, (M, d) — HX, (M, d2)

is commutative, so in particular (M, d1) is large if and only if (M, d2) is.

Remark 6. Note also that largeness is the same as asking whether e ([M]) # 0 where
e: M — EG is the classifying map of the cover M and e is the map induced on
appropriately constructed homology. One has to be careful and define this homology
as an appropriate direct limit over compact subsets, as £ G might not be locally
compact. We skip the details.
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3. The main theorem

Let (M, d 4¢) be an open complete Riemannian manifold and let G be a group acting
freely, properly on M by isometries with a compact quotient &' = M/G. We have
the following exact sequence:

1 — my(M) — 7(N) — G — 1.

In the above setting we will say that M is a co-amenable cover if 71 (M) is amenable
(M is often called an amenable cover when G is amenable). Obviously if 71 (M) is
non-trivial, the manifold M is not uniformly contractible.

Theorem 7. Let (N, d ) be a closed Riemannian manifold such that 7wy (N) is C™-
exact. Let (M, dy) be a co-amenable cover of N which is large and has bounded
geometry (i.e. bounded sectional curvature and positive injectivity radius). Then
the zero-in-the-spectrum conjecture holds for M with any bounded geometry meltric
which is quasi-isometric and topologically equivalent to d .

Proof of Theorem 1. Let M, N and G be as above. By assumptions and Theorem 2
we have that G has Property A. By the Svarc—Milnor lemma, G and M are quasi-
isometric due to the fact that N = M /G is compact. Since G has Property A and
Property A is a coarse invariant, M equipped with any metric in the quasi-isometry
class of d 4 has Property A.

The index map is defined as the following composition:

Ko(M) — 5 KXo(M) —2s K (CHM))

where K. (M } is the K-homology group of M, K X.(M ) is the coarsening of this
K-homology group, C* (.M ) is the Roe algebra, u is the coarse assembly map and ¢«
1s the character map (see [10], [19], [20], [22] for details on the Coarse Baum—Connes
Conjecture).

Let O be the de Rham operatoron M. Since M is large, we have that ¢, (D) # Oin
the coarse K-homology group K X.(M). By Theorems 2.2 and 1.1 in [22], Property
A for M implies that the Coarse Baum—Connes Conjecture is true for M, i.e. p is
an isomorphism and consequently pt o ¢4 (D) # 0 in K.(C*(M)). This ends the
proof. O]

In the case 1 (M) = {1} (i.c. the cover is universal), Theorem 7 is due to Yu [22].

The assumption of largeness cannot be dropped as the example of Farber and
Weinberger [4] shows (see also [12]), since in their construction the fundamental
group of the manifold  is a direct product of free groups, which is exact.
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