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E G for systolic groups

Piotr Przytycki*

Abstract. We prove that if a group G 1is systolic, i.e., if it acts properly and cocompactly on

a systolic complex X, then an appropriate Rips complex constructed from X is a finite model
for £G.

Mathematics Subject Classification (2000). 20F67, 20F65.

Keywords. Systolic group, simplicial nonpositive curvature, classifying space for the family of
finite subgroups.

1. Introduction

Systolic complexes and systolic groups were introduced by T. Januszkiewicz and
J. Swiatkowski in [3] and independently by F. Haglund in [1]. Systolic complexes
are simply-connected simplicial complexes satisfying certain link conditions (which
will be recalled in Definition 2.2). Some of their properties are very similar to the
properties of CAT(0) metric spaces, therefore one calls them complexes of simplicial
nonpositive curvature. In particular it was shown in [3], Theorem 4.1 (1), that they
are contractible. Thus if a group G is systolic, which by definition means that it acts
properly and cocompactly on a systolic complex X, and if G 1s torsion free, then X
is a finite model for EG.

Similarly, if G acts properly on a CAT(0) space X and if G is torsion free, then
X 1s amodel for EG. If we do not assume that G 1s torsion free, then the stabilizer
of any point in X 1is finite and the fixed point set of any finite subgroup of G 1s
contractible (in particular nonempty). This means that X is the so called model for
FE G —the classifying space for finite subgroups [4].

There are other families of groups G, which admit nice models for EG. For
example, if G is word-hyperbolic, and if S is a finite generating set for G, then for
sufficiently large real number d the Rips complex Py (G, S) isamodel for EG. What

*Partially supported by MNiSW grant N201 003 32/0070, MNiSW grant N201 012 32/0718, and the Foun-
dation for Polish Science.
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makes this model attractive for applications is that it is a finife model, i.e. the action
of G on it is cocompact. See [4] for details.

In this paper we give an explicit finite model for £ G for a systolic group G. We
prove that an appropriate Rips complex of any systolic complex X on which G acts
properly 1s a model for £G. We define the Rips complex in our context as follows.

Definition 1.1. Let X be any simplicial complex. For any » > 1, the Rips complex
Xy 1s a simplicial complex with the same set of vertices as X and with a simplex
spanned on any subset S C X such that diam(S) < n in X (where edges have
length 1). If G acts on X properly (and cocompactly), then the natural extension of
this action to X, is also proper (and cocompact).

Our main result is the following.

Theorem 1.2. Let X be a finite dimensional systolic complex on which a group G
acts properly. Then for n > 5 the Rips complex X, is a finite dimensional model for
EG. If additionally G acts cocompactly on X then X, is a finite model for EG.

Theorem 1.2 extends and its proof is based on the following coarse fixed point
theorem for systolic complexes (which also explains the appearance of the constant 5
in the above formulation).

Theorem 1.3 ([5], Theorem 1.2). Let H be a finite group acting by simplicial auto-
morphisms on a systolic complex X. Then there exists a subcomplex Y C X which
is invariant under the action of H and whose diameter is < 5.

To apply Theorem 1.3, let H be a group acting by automorphisms on a simplicial
complex X. Then the fixed point set of the action of H on X is a subcomplex of
the barycentric subdivision X' of X. Denote this subcomplex by Fixy X’. Similarly
denote the fixed point set of the action of H on the Rips complex X, by Fixg X . It
is a subcomplex of X}. By Theorem 1.3, if X is systolic, H is finite and n > 5, then
Fixg X/, is nonempty.

Now the proof of Theorem 1.2 reduces to the following.

Proposition 1.4. Let H be any group acting by simplicial automorphisms on a systolic
complex X. Then for any n > 1 the complex Fixg X, is either empty or contractible.

The remaining part of this paper is devoted to the proof of Proposition 1.4.
This will be done without using the contractibility of systolic complexes [3], Theo-
rem4.1 (1). Infact, by applying Proposition 1.4 to the case of H trivialandn = 1, we
reprove the fact that systolic complexes are contractible (since X; = X by flagness
of systolic complexes). Our proof of this fact may seem more sophisticated than the
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original proof [3], but the reason for this is that we deal at the same time with con-
tractibility of the systolic complex X and with contractibility of its Rips complexes.
In fact, our proof 1s simpler than the original proof. By using the methods of Section 4
(not present in [3]), we are able to avoid writing down explicit homotopies.

Note that if Theorem 1.3 could be strengthened to guarantee a true fixed point
instead of an invariant subcomplex, then under the hypothesis of Theorem 1.2 we
would get a stronger assertion: Proposition 1.4 would imply that the original complex
X i1s a model for EG.

The paper is organized as follows. In Section 2 we recall the standard simplicial
nonpositive curvature notions and results from [3]. In Section 3 we introduce the key
notion of the paper, the expansion by projection, and establish its basic properties.
In Section 4 we present two abstract ways of producing homotopies in geometric
realizations of posets, which will be needed later. The proof of Proposition 1.4
occupies Section 5.

I would like to thank Jacek Swiatkowski for posing the problem and for advice,
Damian Osajda for discussions, and Jolanta Stominska for introducing to me the
methods of Section 4.

2. Systolic complexes

Let us recall (from [3]) the definition of a systolic complex and a systolic group.

Definition 2.1. A subcomplex K of a simplicial complex X is called full in X if any
simplex of X spanned by vertices of K is a simplex of K. The span of a subcomplex
K C X is the smallest full subcomplex of X containing K. We will denote it by
span(K}. A simplicial complex X is called flag if any set of vertices, which are
pairwise connected by edges of X, spans a simplex in X. A simplicial complex X is
called k-large, k > 4, if X is flag and there are no embedded cycles of length < k,
which are full subcomplexes of X (i.e., X is flag and every simplicial loop of length
< k and > 4 “has a diagonal”).

Definition 2.2. A simplicial complex X is called systolic if it is connected, simply
connected and links of all simplices in X are 6-large. A group I is called sysrolic if it
acts cocompactly and properly by simplicial automorphisms on a systolic complex X .
(Properly means X is locally finite and for each compact subcomplex K C X the set
of y € T such that y(K) N K # @ is finite.)

Recall [3], Proposition 1.4, that systolic complexes are themselves 6-large. In
particular they are flag.
Now we briefly treat the definitions and facts concerning convexity.
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Definition 2.3. For every pair of subcomplexes (usually vertices) A, B in a sim-
plicial complex X denote by |A, B| (|ab| for vertices a,b € X) the combinatorial
distance between A, B in X (he 1-skeleton of X. The diameter diam(A) is
the maximum of |ajasz| over vertices a1, a in A.

A subcomplex K of a simplicial complex X is called 3-convex if it is a full
subcomplex of X and for every pair of edges ab, bc such thata,c € K, |ac| = 2,
we have b € K. A subcomplex K of a systolic complex X is called convex if it is
connected and links of all simplices in K are 3-convex subcomplexes of links of those
simplices in X.

In Lemma 7.2 of [3] the authors conclude that nonempty convex subcomplexes
of a systolic complex X are contractible, full and 3-convex in X . For a subcomplex
Y C X, n = 0, the combinatorial ball B,(Y) of radius n around Y is the span of
{p € XO:|p, Y| < n}. (Similarly S,(Y) = span{p € X©: |p, Y| = n}) If
Y is convex (in particular, if ¥ is a simplex) then B, (Y ') is also convex, as proved
in [3], Corollary 7.5. The intersection of a family of convex subcomplexes 1s convex
and we can define the convex hull of any subcomplex ¥ C X as the intersection of
all convex subcomplexes of X containing Y. We denote the convex hull of Y by
conv(Y).

We include the proof of the following well-known lemma, since it does not appear
elsewhere.

Lemma 2.4. diam(conv(Y)) = diam(Y).

Proof. 1f Y is unbounded then there is nothing to prove. Otherwise, denote d =
diam(Y). The inequality diam(conv(Y)) > d is obvious. For the other direction, let
v1, ¥2 be any two vertices in conv(Y ). We want to prove that |y; y2| < d. Observe
that for any vertex y € ¥ © the ball B4(y) is convex and contains Y, hence by the
definition of the convex hull we have conv(Y') C By4(y). This means that |yyq| < d.
Thus Y is contained in B (y,) and by convexity of balls we have conv(Y) C Bg(v1).
We get |y yv2| < d, as desired. O

The paper [2] of E. Haglund and J. Swiatkowski contains a proof of the following
proposition (Proposition 4.9 in [2]), which will be used throughout the present paper.

Proposition 2.5. A full subcomplex Y of a svstolic complex X is convex if and only
if Y iy geodesically convex in XV (i.e., if all geodesics in XV joining vertices
of Y lie in YD),

We will need a crucial projection lemma ([3], Lemma 7.7). The residue of a sim-
plex o in X is the union of all simplices in X, which contain o.
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Lemma 2.6. Let Y be a convex subcomplex of a systolic complex X and let o be
a simplex in B1(Y') disjoint with Y. Then the intersection of the residue of o and of
the complex Y is a simplex (in particular it is nonempty).

Definition 2.7. The simplex as in Lemma 2.6 is called the projection of o onto Y .

3. Expansion by projection

The proof of contracuibility of systolic complexes given by T. Januszkiewicz and
J. Swiatkowski in [3] uses Lemma 2.6 and the notion of projection (Definition 2.7).
To be able to deal with the Rips complex we need to extend this notion: we need to
be able to project not only simplices, but all convex subcomplexes. In this section we
give the corresponding definitions and establish the basic properties of the extended
projection.

Definition 3.1. TLet Y be a convex subcomplex of a systolic complex X and let o
be a simplex in B(Y). The expansion by projection of o (denoted by ey (o)) is a
simplex in B1(Y) defined in the following way. If ¢ C Y theney (o) = o. Otherwise
ey (o) is the join of o N S1(Y) (which is nonempty) and its projection onto Y (cf.
Definition 2.7).

Remark 3.2. Observe that ¢ C ey (o). Morcover, by Lemma 2.6, ey (o) N Y is
nonempty.

Definition 3.3. Let ¥ be a convex subcomplex of a systolic complex X and let Z
be a convex subcomplex in Bi(Y). The expansion by projection of Z (denoted
by ey (Z)) is the subcomplex of B1(Y) spanned by the union of ey (¢) over all
maximal (with respect to inclusion) simplices o C Z. Clearly this definition extends
Definition 3.1.

Remark 3.4. Observe that Z C ey (Z). Moreover ey (Z) N Y is nonempty. Note
that ey (Z) does not have to be convex.

Remark 3.5. Let g be an automorphismof X which leaves Y and Z invariant. Then g
leaves also ey (Z) invariant.

The following property of the expansion by projection is not at all obvious.

Lemma 3.6. diam(ey(Z)) < max{diam(Z), 1}.
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In fact, since by Remark 3.4 we have Z C ey (Z), this is an equality unless Z is
a single vertex of Y.

Before giving the proof we need to establish some facts about the distance between
maximal simplices in convex subcomplexes.

Lemma 3.7. Let Z be a convex subcomplex in a systolic complex X. Let d be the
diameter of Z. Assume d > 2. Let o, t be any maximal simplices of Z and let v be
any vertex of Z. Then

(1) losv| =d -1,
(2) o] <d—2.

Proof. First we prove assertion (1). We do this by contradiction. Assume |o, v| = d.
This means that o C Sgz(v), s0 ep, ,»(0o) (the expansion by projection onto
Bj_1(v), cf. Definition 3.1 and Remark 3.2) is a simplex strictly greater than o.
All vertices in e, | ) (o) lie on some 1-skeleton geodesics from v to vertices in o.
Hence by Proposition 2.5 and by convexity of Z we have ep, ()(0) C Z. Thus o
1s not maximal in Z, contradiction.

Now we prove assertion (2). We do this again by contradiction. Assume |o, 7| >
d — 2. By (1) this implies that |o,v| = d — 1 forallv € 7. Thus v C Sy_1(o).
As before, by Proposition 2.5 and by convexity of Z we get ep, (o)(t) C Z.
Since ep, ,(¢)(7) is strictly greater than 7, we obtain contradiction with maximality
of 7. O

Proof of Lemma 3.6. Denote by d the diameter of Z. Suppose d > 2 (otherwise the
lemma is obvious). Take any vertices v, w € ey (Z). We must prove that |vw| < d.
If v,w € Z then there is nothing to prove. Now assume thatv € Z,w ¢ Z. Thus
there exists a maximal simplex ¢ C Z such that w € ey (o). By Lemma 3.7 (1) we
have |0, v| < d — 1, hence there exists a vertex s € o such that |vs| < d — 1. Since
|sw| = 1, we are done.

Now assume that both v, w ¢ Z. Thus there exist maximal simplices o, 7 C Z
such that v € ey (o), w € ey (7). By Lemma 3.7 (2) there exist vertices s € 0,t € T
such that |st| < d — 2. Since |vs| = 1 and |wt| = 1, we are done. O

We end this section with a lemma which though seems technical, nevertheless
lies at the heart of the proof of Proposition 1.4, which will be presented in Section 5.
This lemma states, roughly speaking, that expanding by projection has not too bad
monotonicity properties (although usually it is not true that Z C Z’ implies ey (Z) C
ey(Z) orey(Z) O ey(Z')).
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Lemma 38. Let Zy C Z, C --- C Z, C B1(Y) be an increasing sequence of
convex subcomplexes of By(Y). Then the intersection

(ﬁ ey(Z,_-)) ny

i=1

is nonempry.

Proof. If Z1 N'Y is nonempty then any vertex v € Z; N Y belongs to the required
intersection. Otherwise take any maximal (in Z;) simplex o1 C Z;. We define
inductively an increasing sequence of simplices o; C Z; fori = 2,...,n. Namely
choose o; to be any maximal simplex in Z; containing ;.

Take any vertex v € ey(o,) NY. Since o; do not lie entirely in ¥, we have
by definition of ey (o;) that v € ey{o;) for all . Since each o; is maximal in the
corresponding Z;, this implies that v € ey (Z;) for all 7, hence v belongs to the
required intersection. O

4. Homotopies

Recall the following notions. A partially ordered set (or a poser) is a set with a binary
relation (called the partial order or shortly the order, denoted here by <), which i1s
reflexive, antisymmetric and transitive. The elements of (the underlying set of) a
poset are called objects. For two different objects cp, ¢2 satisfying ¢; < ¢ we write
c1 < ca. Afunctor is a mapping from one poset into another, which respects the order.
The flag poset €’ of a poset € is a poset, whose underlying set is the set of chains
c1 < -+ < ¢y of objects of €, with the order inverse to the inclusion of chains. The
geomelric realization of a poset € 1s the simplicial complex, whose set of vertices is
the set of objects of € and a simplex is spanned on each subset which forms a chain.
The geometric realization of a functor F (or a mapping induced by F) is a simplicial
mapping between the geometric realizations of the corresponding posets, determined
by the values of F on the set of vertices.

We will use the following well-known results. The proof of the first proposition
can be found, for example, in the paper of G. Segal [6]. However, for completeness,
we give an indication of an argument.

Proposition 4.1 ([6], Proposition 1.2). If €, D are posets and Fy, F1: € — D are
functors such that for each object ¢ of € we have Fy(c) < Fi(c), then the maps
induced by Fy, F1 on geometric realizations of €, D are homotopic. Moreover this
homotopy can be chosen to be constant on the geometric realization of the subposer
of € of objects on which Fy and Fy agree.
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Proof. We need to extend the natural homotopy on vertices of geometric realizations
to higher skeleta. This is done by performing the so called prism subdivision of the
cells of the homotopy. Then the homotopy can be realized simplicially, 1t can be
explicitly written down. O

In the next proposition we will consider the functor Fy: € — € from the flag
poset € of a poset € into the poset €, assigning to each object of €', which is
a chain of objects of €, its minimal element. Geomeltric realizations of €, €’ are
homeomorphic in a canonical way (one is the barycentric subdivision of the other),
which allows us to identify them.

Proposition 4.2. The map induced by Fy on geometric realizations of €', € is ho-
motopic (o identiry.

Proof. We give only a sketch. Take any simplex in the geometric realization of €',
suppose it corresponds to a chain ¢] C --- C ¢, (¢} are chains of objects of €).
This simplex and its image under the map induced by Fyp both lie in the simplex of
the image, which corresponds to the chain ¢),. Thus the homotopy can be realized
affinely on each simplex. 0

5. Nonempty fixed point sets are contractible

As observed in the Introduction, Theorem 1.2 is implied by Theorem 1.3 and Propo-
sition 1.4. Thus to prove Theorem 1.2 it is enough to prove Proposition 1.4, which
we do in this section.

Letus give an outline of the proof. Suppose the fixed point set we are considering
is nonempty. We define an increasing sequence of subcomplexes exhausting the
Rips complex, with an invariant simplex as the first subcomplex. We then prove
that the intersection of the fixed point set with a subcomplex from our family is
homotopy equivalent to the intersection of the fixed point set with the subsequent
subcomplex. Since we know that the first of those intersections is contractible, it
follows by induction that any of the intersections is contractible. Since we choose an
exhausting family, this means that the whole fixed point set is contractible.

We define now this exhausting family.

Definition 5.1. Let X be any simplicial complex. Let o C X, be any simplex in the
Rips complex of X forsomen > 1. Let A C X,go) = X be the set of vertices
of o. Recall that B;(A) is the combinatorial ball of radius i/ around A in X. Now
define an increasing sequence of full subcomplexes D; (o) C X, where i > 0, in
the following way. Let Dj; (o) be the span of all vertices in X, corresponding to
simplices in X, which have all their vertices in B;(A) (i.e., D,; (o) is equal to the
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barycentric subdivision of the span in X, of vertices in B;(A) C X). Let D,;41(0)
be the span of those vertices in X, which correspond to those simplices in X, that
have all their vertices in B; 1 1(A) and at least one vertex in B; (A) (where the balls
are taken in X ).

In case of a flag complex X for n» = 1 we have X; = X and the subcomplexes
D; (o) are combinatorial balls in X’ around the barycentric subdivision of o.

Remark 5.2. Notice that | J72, D;(¢) = X},. Moreover, any compact subcomplex
of X/ is contained in some D; (o).

Proof of Proposition 1.4. Assume that Fixg X, is nonempty. Leto C X, be a maxi-

mal H -invariant simplex in X,. Denote the set of vertices of o in X, ,SO) = X©
by A. We claim that the span of A in X is convex. Otherwise, by Lemma 2.4, the
vertices of conv(A) in X span a simplex in X, which is also H -invariant and strictly
greater than o, contradiction. Let D; {0} C X, be as in Definition 5.1. In the further
discussion we will use an abbreviated notation D; = D; (o).

We will prove the following three assertions.

(i} Do N Fixg X, is contractible,
(i) the inclusion Dy; N Fixg X], C Da; 41 N Fixg X, is a homotopy equivalence,
(iii} the identity on D,;4+, N Fixg X,, is homotopic to a mapping with image in
Dy N FiXHX,; C Dajyno N FiXHX,;.
Suppose for a moment that (i)—(iii) hold. We will show how this implies the
theorem. We will prove by induction on & the following.

Claim. Dy N Fixg X, is contractible.

For k = 0 this is stated in assertion (i}. Suppose we have proved the claim for
some k > 0. If k is even, £k = 2/ = 0, then assertion (ii) implies the claim for
k =2i+ 1. If kisodd, k = 2i + 1, then the identity mapping from assertion (iii) is
homotopic to the mapping with image in a contractible subspace, hence the identity
mapping is homotopically trivial. This proves the claim for k = 2/ + 2. We have
thus completed the induction step.

By Remark 5.2, the image of any sphere mapped into Fixg X, is contained in
some D; NFixg X, which is contractible. Thus all homotopy groups of Fixg X, are
trivial and since Fixg X, is a simplicial complex, it is contractible, by Whitehead’s
Theorem, as desired. To complete the proof we must now prove assertions (1)—(111).

Assertion (1). Since Dy 1s the barycentric subdivision of the simplex o C X, and
the barycenter of o belongs to Fixg X, we have that Dy N Fixg X, is a cone over
the barycenter of o, hence it i8 contractible.

Assertion (ii). Let € be the poset of H -invariant simplices in X, with vertices
in B;+1(A4) (ball in X) and at least one vertex in B;{A). Its geomelric realization
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is Dy;41 N Fixg X;,. Consider a functor F: € — € assigning to each object of
€, i.e. a simplex in X, its subsimplex spanned by vertices in B;(A). Notice that
this subsimplex is H -invariant (i.¢., it is an object of €) since A and hence B;(A4)
are H -invariant. By Proposition 4.1 the geometric realization of /' is homotopic to
identity (which 1s the geometric realization of the identity functor). Moreover this
homotopy is constant on D»; N Fixgy X/,. The image of the geometric realization of
F is contained in D,; N Fixg X;. Hence Dy; N Fixgy X, is a deformation retract of
D;4+1 N Fixg X7, as desired.

Assertion (iii). Let € be the poset of H -invariant simplices in X, with vertices
in B;+1(A) and let €’ be its flag poset, with the partial order inverse to the inclusion.
Let Fyy: € — € be the functor (from Proposition 4.2) assigning to each object of €/,
which is a chain of objects of €, its minimal element. The geometric realization of
both € and €’ is equal to D,;4+»> N Fixg X, and by Proposition 4.2 the geometric
realization of Fy 1s homotopic to identity.

Now we define another functor F;: € — €. This is the heart of the proof.
First notice that since span{A) is convex in X, we have that the ball B;(A) is also
convex. Hence for any convex subcomplex Z C B; 1 1(A) there exists its expansion
by projection (cf. Definition 3.3) ep, (4)(Z). Now we define F;. For any object
¢’ of €, which is a chain of objects ¢; < ¢ < -+ < ¢ of €, recall that ¢;
(where 1 < j < k) are some H -invariant simplices in X,, with vertices in B; 4+1(A4).
Denote the set of vertices of ¢; by S; and treat it as a subset of X®. Notice that
the subcomplexes conv(S;) C X are of diameter < » (by Lemma 2.4), they form
an increasing sequence and they are all contained in B; 1 1(A) by monotonicity of
taking the convex hull and by convexity of balls. Thus if we define .S J’ to be the set of

vertices in ep. (4)(conv(S;)), then by Lemma 3.8 the intersection ﬂle 5 ]’ contains
at least one vertex in B; (A). Also note that this intersection is contained in B; 41 (A4).
Moreover, by Lemma 3.6, all the sets S’, and hence their intersection, have diameter

< pn. Thus we can treat the set ﬂf 1S J’ as a simplex in X, with vertices in B; 1 (A).
By Remark 3.5 this simplex is H -invariant, hence it is an object of €. We define
F1(¢’) tobe this object. In geometric realization of €, whichis Dj; 4, NFixg X, the
object F(¢’} corresponds to a vertex in Dy; 1 N Fixg X, by our previous remarks.
It is obvious that Fy preserves the partial order (inverse o the inclusion on €’), since
the greater the chain, the more sets S J’ we have to intersect.

Now notice that by Remark 3.4 for any object ¢’ of € we have Fy(c'y C Fi(c'),
hence by Proposition 4.1 the geometric realizations of I and £ are homotopic. But
as observed at the beginning, Fy 1s homotopic to the identity. On the other hand, F;
has image in D,; 41 N Fixg X;,. Thus we are done. O
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