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Transcendental submanifolds of projective space

Wojciech Kucharz

Abstract. Given integersmandcsatisfyingm 2 c 2, we explicitly construct a nonsingular
m-dimensional algebraic subset of P mCc R/ that is not isotopic to the set of real points of any
nonsingular complex algebraic subset of PmCc C/ defined over R. The first examples of this
type were obtained by Akbulut and King in a more complicated and nonconstructive way, and
only for certain large integers m and c.

Mathematics Subject Classification 2000). 57R55,14P25.
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1. Introduction

Denote by Pn.R/ and Pn.C/ real and complex projective n-spaces. We regard

Pn.R/ as a subset of Pn.C/. A smooth of class C1) submanifold M of Pn.R/ is
said to be of algebraic type if it is isotopic in Pn.R/ to the set of real points of a

nonsingular complex algebraic subset of Pn.C/ defined over R; otherwiseM is said
to be transcendental. It is not at all obvious that transcendental submanifolds exist.
However, Akbulut and King [2] proved the existence of transcendental submanifolds

M of Pn.R/ which can even be realized as nonsingular algebraic subsets of Pn.R/.
Their examples are obtained in a nonconstructive way, by a method which requires
both m D dimM and n m to be large integers satisfying 2m n 2. In the
present paper we explicitly construct such examples, assuming only n m 2 and

2m n 2. Moreover, we verify that M is a transcendental submanifold of Pn.R/
using only the Barth–Larsen theorem [6, Corollary 6.5] and completely avoiding all
results of [1], [2]. More precisely, denote by Sk the unit k-sphere,

Sk
D f.y1; : : : ;ykC1/ 2 RkC1 j y

2
1 C Cy

2
kC1 D 1g:

In Section 3 we prove the following:

The paperwas completed at the Max-Planck-Institut fürMathematik in Bonn, whose supportandhospitality
are gratefully acknowledged.
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Theorem 1.1. Letmand n be positive integers satisfying n m 2 and 2m n 2.
Let

' W P2 R/ Sm 2 Pn R/
be defined by

'..x1 W x2 W x3/; y1; : : : ; ym 1//

D x2
1 C x2

2 C x2
3 W x1x2 W x1x3 W x2x3 W y1 W : : : W ym 1 W

0
W :: : W 0/;

where 0 is repeated n m 2 times and D x21 C 2x22 C 3x23 Then:

i) The imageM D '.P2.R/ Sm 2/ is an m-dimensional nonsingular algebraic
subset of Pn.R/.

ii) ' W P2.R/ Sm 2 M is a biregular isomorphism.

iii) M is a transcendental submanifold of Pn.R/.

It follows directly from Theorem 1.1 that for any integers m and c satisfying
m 2 c 2, there is a nonsingular algebraic set M in PmCc.R/ such that
dimM D m and M is a transcendental submanifold. In particular, there are
transcendental submanifolds of arbitrary dimension m 4. The existence of transcendental

submanifolds of dimension 2 or 3 remains unsettled at this time. There are no
transcendental submanifolds of dimension 1 or of codimension 1. The last assertion
is a special case of the following well known fact.

Remark 1.2. Let M be a smooth m-dimensional submanifold of Pn.R/. If either

n m D 1 or 2m C 1 n, then there exists a smooth embedding e W M Pn.R/,
arbitrarily close in the C1 topology to the inclusion map M Pn.R/, such that

e.M/ is the set of real points of a nonsingular complex algebraic subset of Pn.C/
defined over R.

If n m D 1, the claim is explicitly established for example in [3, Theorem 7.1].
For the second case, consider Pn.R/ as a subset of Pk.R/, where k is a large

integer. By [8], thereexists a smoothembedding j W M Pk.R/, arbitrarilyclose in
the C1 topology to the inclusion mapM Pk.R/, such that j.M/ is a nonsingular
algebraic subset of Pk.R/. Increasing k if necessary and making use of Hironaka’s
resolution of singularities theorem [7], we may assume that the Zariski complex
closure of j.M/ in Pk.C/ is nonsingular. If 2m C 1 n, we obtain an embedding

e W M Pn.R/ with the required properties by composing j with an appropriate
generic projection onto Pn.R/.
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2. A criterion for transcendence

First we need some results related to the Picard group. Following the current custom,
we state them in the language of schemes.

Let V be a smooth projective scheme over R. Assume that the set V.R/ of
Rrational points of V is nonempty. We regard V.R/ as a compact smooth manifold.
Every invertible sheaf L on V determines a real line bundle on V.R/, denoted L.R/.
The correspondence which assigns to each invertible sheaf L on V the first Stiefel–
Whitney class w1.L.R// of L.R/ gives rise to a canonical homomorphism

w1 W
Pic.V / H1 V R/;Z=2/;

defined on the Picard group Pic.V / of isomorphism classes of invertible sheaves
on V We set

H 1alg.V R/; Z=2/ D w1.Pic.V //:
It will be convenient to recall another description of Pic.V /. Consider the scheme

VC D V R C over C and its Picard group Pic.VC/. The Galois group G D
Gal.C=R/ of C over R acts on Pic.VC/. We denote by Pic.VC/G the subgroup of
Pic.VC/ consisting of the elements fixed by G. Given an invertible sheaf L on V we
write LC for the corresponding sheaf on VC. The correspondence L LC defines
a canonical group homomorphism

W Pic.V / Pic.VC/G :

It follows from the general theory of descent [4] that is an isomorphism a simple
treatment of the case under consideration can also be found in [5]).

As usual, we set PnR D Proj.ROET0; : : : ; Tn / and identify PnR R/ with Pn.R/.
Thus if V is a subscheme of PnR then V.R/ is a subset of Pn.R/.

Proposition 2.1. Let V be a closed smooth m-dimensional subscheme of PnR If
2m n 2, then

H 1
alg.V R/; Z=2/ D i H1 P n R/;Z=2//;

where i W V.R/ Pn.R/ is the inclusion map.

Proof. Let j W V PnR and jC W VC PnC D PnR RC be the inclusion morphisms.
By the Barth–Larsen theorem [6, Corollary 6.5], the induced homomorphism

jC W
Pic.PnC/ Pic.VC/

is an isomorphism. Since jC is G-equivariant, the restriction

jC W Pic.PnC/G Pic.VC/G
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is an isomorphism. We have the following commutative diagram:

Pic.PnC/G jC Pic.VC/G

Pic.PnR/ j

w1

Pic.V /

w1

H1.Pn.R/;Z=2/
i H1.V R/; Z=2/.

Since the homomorphisms are isomorphisms and

H 1 Pn R/; Z=2/ D H 1alg.Pn R/;Z=2/;

it follows that

H 1alg.V R/; Z=2/ D i H1 P n R/;Z=2//;
as required.

Note that a smooth submanifold of Pn.R/ is of algebraic type if and only if it
is isotopic in Pn.R/ to V.R/ for some closed smooth subscheme V of PnR Hence
Proposition 2.1 yields the following criterion for transcendence.

Proposition 2.2. LetM be a compact smoothm-dimensional submanifold of Pn.R/.
Assume that the inclusion map e W M Pn.R/ induces a trivial homomorphism

e W H 1 Pn R/; Z=2/ H 1 M;Z=2/;

that is, e D 0. If M is nonorientable and 2m n 2, then M is a transcendental
submanifold of Pn.R/.

Proof. Suppose to the contrary thatM is of algebraic type. Let V be a closed smooth
subscheme of PnR with V.R/ isotopic to M in Pn.R/. Then the homomorphism

i W H1 Pn R/; Z=2/ H1 V R/; Z=2/;

induced by the inclusion map i W V.R/ Pn.R/, is trivial. Since dim V D m and

2m n 2, Proposition 2.1 implies

H1alg.V R/; Z=2/ D 0:

On the other hand, the first Stiefel–Whitney class w1.V R// of V.R/ is nonzero,

V.R/ being a nonorientable manifold. Moreover, w1.V R// D w1.K.R//, where

K is the canonical invertible sheaf ofV andhence, w1.V R// is inH1alg.V R/; Z=2/.
In view of this contradiction, the proof is complete.
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3. Transcendental submanifolds

We begin with some preliminary observations. Identify Rn with its image under the
map

Rn Pn R/; x1; :: : ; xn/ 7 .1 W x1 W : :: W xn/I
thus Rn Pn.R/. An algebraic subset X of Rn is said to be projectively closed if
X is also an algebraic subset of Pn.R/. One readily checks that X is projectively
closed if and only if it can be defined by a real polynomial equation

f x1; : : : ; xn/ D 0;

where the homogeneous form of top degree in f vanishes only at 0 in Rn.

Lemma 3.1. Let X be an algebraic subset of Rk contained in the open half-space

H D f.x1; : : : ; xk/ 2 Rk
j xk > 0g:

Then the map
W X S` RkC` defined by

x1; : : : ; xk/; y1; : : : ;y`C1// D x1;: : : ; xk 1; xky1; : : :; xky`C1/

is an algebraic embedding, that is, the image Y D X S`/ is an algebraic subset of
RkC` and

W X S` Y is a biregular isomorphism. Moreover, ifX is projectively
closed in Rk, then Y is projectively closed in RkC`.

Proof. Let

f u;v/ D 0

be a real polynomial equation defining X, where u D x1; : : : ; xk 1/ and v D xk.
Since

X H; 1)

the subset Y of RkC` is defined by the equation

f u; / D 0; 2)

where

D x2
k C x2

kC1 C Cx
2
kC`/

1
2:

We will now show that 2) can be replaced by a polynomial equation in x1; : : : ; xk 1;
xk; : : : ; xkC`. To this end we write

f u; v/ D g.u; v2/ C vh.u; v2/; 3)



132 W. Kucharz CMH

where g and h are real polynomials in u; v/. Then 2) is equivalent to

g.u; 2/ C h.u; 2/ D 0; 4)

and in view of 1) also to

g.u; 2//2 2 h.u; 2//2 D 0; 5)

which is a polynomial equation, as required. Consequently, Y is an algebraic subset

of RkC`.
It is clear that is injective and

W Y X,

x1; : : : ; xk 1; xk; :: : ;xkC`/ D x1; : : : ;xk 1;
xk

; : : : ; xkC` ;

is the inverse of
W X Y By 4),

D
g.x1; : :: ; xk 1; x2

k C Cx2kC`/
h.x1; : : : ;xk 1; x2k C Cx2kC`/

for x1; : : : ;xk 1; xk;: : : ; xkC`/ inY andhence isa regular map. Thus
W X Y

is a biregular isomorphism.
Assume now that X is projectively closed in Rk. We may also assume that the

homogeneous form of top degree in f denoted F vanishes only at 0 in Rk. Note
that F.u; 2/F u; 2/ is the homogeneous form of top degree in equation 5). This
form vanishes only at 0 in RkC`, and hence Y is projectively closed in RkC`.

Lemma 3.2. The map g W P2.C/ P4.C/,

g..x1 W x2 W x3// D x2
1 C x2

2 C x2
3 W x1x2 W x1x3 W x2x3 W x2

1 C 2x2
2 C 3x2

3/;

is an algebraic embedding. In particular, the restriction f W P2.R/ P4.R/ of g
is an algebraic embedding.

Proof. One readily checks that g is injective. Moreover, the complex) differential
of g at each point of P2.C/ is of rank 2. It follows that g is an algebraic embedding,
and hence f is an algebraic embedding.

Proof of Theorem 1.1. Let f W P2.R/ P4.R/ be the algebraic embedding of
Lemma 3.2. Note that the image X D f P2.R// is a projectively closed algebraic
subset of R4 P4.R/, contained in the open half-space

f.u1; u2; u3;u4/ 2 R4
j u4 > 0g:

Let
W X Sm 2 R4C.m 2/

D RmC2 PmC2 R/
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be the algebraic embedding of Lemma 3.1 with k D 4 and ` D m 2). Note that

X Sm 2/ is projectively closed in RmC2, and hence is an algebraic subset of
PmC2.R/.

Clearly, if i W
Sm 2 Sm 2 is the identity map, then

f i W P2 R/ Sm 2 X Sm 2

is a biregular isomorphism. Denoting by j W
PmC2.R/ Pn.R/ the standard

embedding,

j..v0 W : : : W vmC2// D v0 W : :: W vmC2 W 0 W : : : W 0/;

we obtain

' D j B B f i/;
which implies that ' is an algebraic embedding. In other words, conditions i) and

ii) are satisfied. Moreover, M Rn Pn.R/. Since M is nonorientable and

2m n 2, condition iii) follows from Proposition 2.2.
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