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A Caporaso—Harris type formula for Welschinger invariants of
real toric Del Pezzo surfaces

[lia Itenberg, Viatcheslav Kharlamov and Eugenii Shustin™

Abstract. We define a series of relative tropical Welschinger-type invariants of real toric surfaces.
In the Del Pezzo case, these invariants can be seen as real tropical analogs of relative Gromov—
Witten invariants, and are subject to a recursive formula. As application we obtain new formulas
for Welschinger invariants of real toric Del Pezzo surfaces.

Mathematics Subject Classification (2000). Primary 14N10; Secondary 14P05, 14N35,
51N35.
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1. Introduction

Welschinger invariants of real rational symplectic four-manifolds [10], [11] represent
one of the most interesting and intriguing objects in real enumerative geometry. In
the case of a real unnodal (i.e., not containing any rational (—n)-curve, n > 2) Del
Pezzo surface X the Welschinger invariants count, with appropriate weights =1, the
real rational curves which belong to an ample linear system | D| and pass through a
given generic conjugation-invariant set of ¢;(X) - D — 1 points in 2. In this paper
we consider only the invariants corresponding to sets of real points.

Our goal is to provide recursive formulas which calculate the Welschinger invari-
ants of toric Del Pezzo surfaces equipped with the tautological real structure. The
formulas we obtain are similar to those proved by L. Caporaso and J. Harris [1] for
relative Gromov—Witten invariants of P2
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and the third author enjoyed a support from the Hermann-Minkowski-Minerva Center for Geometry at the Tel
Aviv University. The third author acknowledges a support from the grant no. 465/04 from the Isracl Science
Foundation.
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We use the technique of tropical geometry and follow ideas of A. Gathmann and
H. Markwig [2], [3] who suggested a tropical version of the Caporaso—Harris formula
and 1ts tropical proof. We suitably adapt the tropical count to the real setting and mn-
troduce tropical, multi-component and irreducible, Welschinger numbers for relative
constraints and arbitrary genus. We check their invariance (Theorem 1 in Section 3.1)
and prove that these tropical invariants satisfy Caporaso—Harris type formulas (The-
orem 3 for the multi-component invariants and Theorem 4 for irreducible invariants,
Section 3; a reformulation with generating functions is presented in Section 6.1). In
the case when the set of relative constraints is empty these invariants coincide with the
genuine Welschinger invariants. As a by-product, we establish some monotonicity
of the Welschinger invariants and give a new proof of their positivity (Corollaries 4
and 5, Section 3.3).

The paper 1s organized as follows. In Section 2 we remind definitions and basic
facts concerning Welschinger invariants and plane tropical curves. Section 3 contains
the definition of tropical relative Welschinger numbers, the statements of the main
results and few corollaries. We prove the invariance of tropical relative Welschinger
numbers in Section 4 and the recursive formulas in Section 5. Section 6 is devoted to
concluding remarks. Our main results are stated in terms of embedded plane tropical
curves, while the proofs go essentially through the parameterized incarnation of these
curves, and starting from Section 4 we put a special attention to be maximally possible
consistent with existing in the literature notions and statements concerning these two
different categories. In particular, a part of Section 4 is devoted to various types of
genericity conditions and their comparison.

To conclude this short introduction, we would like to emphasize a certain, chal-
lenging in our opinion, difference between the real and complex cases. Namely,
Gathmann-Markwig’s count of tropical curves in the tropical version of Caporaso—
Harris formula is in a strict correspondence (in the sense of modified Mikhalkin’s
correspondence theorem [7], see [2], [3]) with the count of complex algebraic curves
in the original Caporaso—Harris formula. In particular, the invariance of the terms
in Caporaso—Harris formula explains (and implies) the invariance of the terms in
the tropical version of Caporaso—Harris formula proposed by Gathmann and Mark-
wig. On the contrary, we do not know how to lift up invariantly the terms entering
the formulas suggested in the present paper (except those which lead to the genuine
Welschinger invariants). One of the difficulties is that such a lift, if it exists, can not
be formulated in purely topological terms, see Section 6.

Acknowledgements. A considerable part of this work was done during our visits to
the Max-Planck-Institut fiir Mathematik, Bonn, We thank MPIM for the hospitality
and excellent working conditions.
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2. Preliminaries

2.1. Welschinger invariants of Del Pezzo surfaces. We remind here the definition
of Welschinger invariants [10], [11] restricting ourselves to a particular situation.
Let X be a real unnodal (i.e., not containing any rational (—n)-curve, n > 2) Del
Pezzo surface with a connected real part RX, and let D C X be a real ample divisor.
Consider a generic set @ of ¢1(X) - D — 1 real points of X. The set R(D, @) of real
C € | D| passing through the points of @ is finite, and all these curves are nodal and
irreducible. (In fact, the listed properties of R{D, @) can be taken here as a definition
of the term ‘generic’.) Due to the Welschinger theorem [10], [11] (and the genericity
of the complex structure on ), the number

W(E,D,&)) — Z (_I)S(C)a

CeR(D,»)

where s(C) is the number of solitary nodes of C (i.e., real points, where a local
equation of the curve can be written over R in the form x% 4 y? = 0), does not depend
on the choice of a generic set . We denote this Welschinger invariant by W (X, D).

2.2. Divisors on toric Del Pezzo surfaces. There are five toric unnodal Del Pezzo
surfaces: the projective plane P2, the product P! x P! of projective lines, and P2
with & blown up generic points, & = 1, 2, or 3; the latter three surfaces are denoted
by PZ. Let E1... .. Ex be the exceptional divisors of P2 — P2 and L C P{ the pull
back of a generic straight line.

Let ¥ be one of these surfaces. An ample divisor on ¥ defines a linear sys-
tem, which in suitable toric coordinates is generated by monomials x?y/, where
(i, j) ranges over all the integer points of a polygon A{D) of the following form.
If ¥ =P?2and D = d P!, then A(D) is the triangle with vertices (0, 0), (d,0),
and (0,d). If ¥ = P! x P! and D is of bi-degree (dq,d>), then A(D) is the
rectangle with vertices (0, 0), (d1,0), (d1,d2), and (0,d»). f ¥ = ]P’,f, k=12,
or3,and D = dL — Zf.‘:l d; E;, then A(D) 1s respectively the trapeze with ver-
tices (0,0), (d — d1,0), (d — dy.d4), (0,d), or the pentagon with vertices {(d,, 0),
(d — di,0), (d — dy,dy1), (0,d), (0,d>), or the hexagon with vertices (d5, 0),
(d — dy,0), (d — dy,dy), (d3,d — d3z), (0,d — d3), (0,d>) (see Figure 1). The
slopes of the sides of A(D) are 0, —1, or oc.

2.3. Plane tropical curves. In Sections 2.3 and 2.4 we remind definitions and basic
facts concerning plane tropical curves (cf. [7], [3]), and fix the notation.

Let A € R? be a nondegenerate convex lattice polygon, i.e., a convex polygon
with integer vertices and non-empty interior. A convex piecewise-linear function

F:R? >R, F(x) = max ({t,x)+c¢), wherec, € R,
ANZ2

€
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d da d d

d> d>

d dq d —dj dy d—dy d» d-—d
Figure 1. Polygons associated with Del Pezzo surfaces.

is called a fropical polynomial with Newton polygon A. Consider the corner locus
Ap CR2?of F (i.e., the subset of R? where F is not smooth). The set Ay is naturally
stratified and defines a subdivision ®  of R?. The 0- and 1-dimensional elements of
the stratification of Ar are called, respectively, its verfices and edges.

The Legendre transform takes F to a convex piecewise-linear function g : A —
R, whose linearity domains Ay, ..., Ay are convex lattice subpolygons of A, and
whose graph is the lower part of the polytope conv{(t, —c,) € R3, t € AN Z?}. The
polygons A, ..., Axn give rise to a subdivision Sg of A. This subdivision is dual
to ®F in the following sense: there is a one-to-one correspondence & between the
elements of S and the elements of ® r such that

* D sends any vertex of Sg toa2-cell of @, any edge of Sy toan edge of O,
and any polygon of SF to a vertex of ®@f;

» for any edge e of S, the edge D{(e) is orthogonal to e;
» D reverses the incidence relation.

Each edge e of Ar can be equipped with a weight w{e) equal to the lattice length
(i.e., the number of integer points diminished by 1) of the dual edge in Sg. The
stratified set A F whose edges are equipped with the corresponding weights is called
the tropical curve associated with the tropical polynomial /. One says that AF is a
plane tropical curve with Newton polygon A. A plane tropical curve determines its
Newton polygon A and the dual subdivision of A uniquely up to translation.

Notice that the unbounded edges of Ar are dual to the edges of S lying on
the boundary dA of A. The unbounded edges of Ar are called ends of Ap. The
unbounded edges of Ar dual to the edges of SF which are contained in a side o of
A are called o-ends.

Any edge of a plane tropical curve Af has rational slope, and for any vertex v
of Ar one has the balancing condition

wlepu(v,er) + -+ wlepu(v,er) =0,

where ey, ..., e are the edges adjacent to v, and u (v, ¢;) is the primitive integer
vector starting at v and directed along e;.
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The sum Apay+---+ A gy of plane tropical curves A g, .. ., A g 18 the plane
tropical curve defined by the tropical polynomial W4 ... F®) The underlying
setof Apay + --- 4+ Apw 18 the union of underlying sets of Apy, ..., Apw, and
the weight of any edge of Ap) + --- + Ao 18 equal to the sum of the weights of
the corresponding edges of summands. A tropical curve in R? is reducible if it is the
sum of two proper tropical subcurves. A non-reducible tropical curve in R? is called
irreducible. A tropical curve A is nodal, it any polygon of the dual subdivision S g
is either triangle, or parallelogram. The number of double points of a nodal tropical
curve Ay with Newton polygon A is the sum of the number of parallelograms in Sz
and the number of integer points which belong to the interior of A and are not vertices
OfSF.

The multi-set of vectors {w(e)u(e)}, where e runs over the ends of a plane tropical
curve A r and each primitive integer vector u (e) is directed along e to infinity, is called
the degree of Af.

We extend the plane R? up to R2 =T xR, where T =R U {—o0} is equipped
with the topology making T homeomorphic to [0, 400} via a logarithmic map, and
correspondingly extend any tropical curve in R? by attaching a vertex on L_o, =
{—o0} x R to any horizontal negatively directed end of the curve.

2.4. Parameterizations of plane tropical curves. Let T be a finite connected graph
without divalent vertices, and 'V a collection of certain univalent vertices of I'. Put
' = T\'V. Denote by I'{ the set of non-univalent vertices of ', by I'! the set of
edges of T', and by T'L, the set of edges of T such that the corresponding edges of T
terminate at univalent vertices (we call such edges of I' the ends).

A parameterized plane tropical curve is a triple (I, w, k), where w: I'' — N is
a function (called weight function)yand h: I’ — R2 is a continuous proper map such
that

 forany E € T'!, the restriction of & to E is an embedding into a straight line
with a rational slope,

e if £ € F;o and F terminates at a univalent vertex V' € T, then 4 (F) lies in a
horizontal line and #(V) € L_,

« forany VV e "2, the union

L) m(E)

EcT!
V edE

is not contained in a line, and one has the balancing condition

> w(E)u(V.E) =0,

Eerl
VeoE
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where u(V, E) is the primitive integer vector starting at 2(1) and directed
along i (FE).

The ends of I which are adjacent to univalent vertices of I' are called lefr. Due to
the properness of /, the non-left ends of I' are mapped onto half-lines which are not
horizontal negatively directed.

The multi-set of vectors {w(E)u(E) : E € T'L}, where each primitive integer
vector u(E) is directed along 2 (E) to infinity, is called the degree of (I', w, h).

A parameterized plane tropical curve (I, w, i) is a parameterization of a plane
tropical curve T if

* the image under % of any vertex of I" is a vertex of T,

» the closure of the image under 4 of any edge of I is the closure of a union of
edges of 7',

 the weightofanyedgee of T isequal to w(E)+---+w(E,),where Eq,. .., E,
are the edges of I' whose images under /2 contain e,

Any parameterized plane tropical curve is a parameterization of a unique plane tropical
curve. Notice that if (I, w, /) is a parameterization of a plane tropical curve T, the
curve T might have vertices that are not images under / of vertices of I,

The genus of a parameterized plane tropical curve (I, w, £} is the first Betti number
b1{I") of I'. If a plane tropical curve T is irreducible, the minimal genus of its
parameterizations is called the genus of 7" and is denoted by g(7T').

The degree of an irreducible nodal plane tropical curve T coincides with the
degree of any parameterization of 7. If 7' is an irreducible nodal plane tropical
curve, then any minimal genus parameterization (I, w, k) of T is simple, that is,
any vertex of I' has valency either 3, or 1. For any two simple parameterizations
(T, w, k) and (I, w’, /') of a given irreducible nodal plane tropical curve, there
exists a homeomorphism ¢: T' — T such that iz = &' o ¢ and w(E) = w'(p(E))
forany £ € I'!,

If 7" is a nodal plane tropical curve, then each edge of 7' is contained in a unique
irreducible subcurve of 7. In particular, a nodal plane tropical curve is uniquely
represented as a sum of its irreducible subcurves. (Notice that this statement is not
true without the nodality assumption.) Furthermore, any irreducible subcurve of a
nodal plane tropical curve is nodal. The genus g(7') of a nodal plane tropical curve T
is g(TWy + - 4+ g(TWYy —n + 1, where TW ..., T™ are all the irreducible
subcurves of 7'. If 7" is a nodal plane tropical curve with Newton polygon A, then
the genus of 7' 1s equal to the difference between the number of vertices of the dual
subdivision S7 which belong to the interior of A and the number of parallelograms
in S7. In particular, the sum of the genus of 7" and the number of double points of T’
is equal to the number of interior integer points of A.
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3. Tropical Welschinger invariants

3.1. Tropical Welschinger invariants of toric surfaces. Denote by € the semi-
group of sequences ¢ = (o1, x2,...) € Z° with nonnegative terms and finite
[y-norm [ja|| = Y, ;. Each element of € contains only finitely many non-zero
terms, so in the description of concrete sequences we omit zero terms after the last
non-zero one. The only exception concerns the zero element of € (the sequence
with all the terms equal to zero). This element is denoted by (0). For an element o
in €, put Jo = 3 72 ,(2i — 1)ey. Define in € the following natural partial order:
if each term of a sequence « is greater than or equal to the corresponding term of a
sequence f3, then we say that « is greater than or equal to 8 and write « > . For
two elements o = (oy,02,...) and § = (B1, f2,...) of € such that o > f, the
sequence @ — S = {(ay — B1. 02 — fB2,...) is an element of €.

Let A C R? be a nondegenerate convex lattice polygon, and o the intersection
of A with its left vertical supporting line. Assume that ¢ is a not a point. In this
case, we say that A is left-nondegenerate. Pick two elements o« and 8 in € such that
Joa + JB = |o|, where |o| is the lattice length of o. Fix an integer g, and put

r=[0A] = |o| + llefl + I8 + & — 1, (1)

where |dA| is the lattice length of the boundary of A. Assume that » > ||¢||.

Consider the space Q(A, «, 8. g) = (L_so)l®l x (R2y Il formed by the (or-
dered) configurations p = (p*, p*) of r points in R2 guch that P’ =(p1,.... Pllee)l)
is a sequence of ||| points on L_n, and p* = (Pllal|+1-- - - » Pr) 18 @ sequence of
|0A| — |o| + ||B]l + g — 1 points in R2, For any p € $2(A,«, f, g), introduce the
set 7 (A, «, B, g, p) of nodal plane tropical curves T C R? satisfying the following
conditions:

» T has A as Newton polygon and is of genus g;
* all the o/-ends of T', where ¢’ # ¢, have weight 1;

 the number of o-ends of T is equal to ||« + S|, and precisely «; + f8; of them
have weight 27 — 1,7 > 1;

* any irreducible subcurve of T has a o-end;

» T passes through all the points of p, and any point pr € p’ is contained in
a o-end of weight 2/ — 1, where the positive integer iz 1s determined by the
inequalities ) ;. o; <k <3} . o
The first three conditions completely describe the degree of 7', and further on we
denote this degree by A%# . Forany T € T (A, «, B, g, p) one has

r=#End(T) + g — 1,
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where #End(T') is the number of ends of 7. For a generic p € Q(A, «, B, g), the set
T(A,w, B, g, p)isfinite. This assertion can be proved similarly to the corresponding
one 1n [7]. A more precise statement and a proof 1s found in Section 4.8.

LetT beacurvein 7 (A, «, 8, g, p). If T does not have edges of even weight, put
W(T) = (—1)*, where s is the total number of integer points lying in the interior of the
triangles of the subdivision S7 of A. Otherwise, put W(T ) = 0. The number W (7')
1s called the Welschinger multipliciry of T. Note that for a reducible tropical curve
T € T(A,a, B, g, p), its Welschinger multiplicity is the product of the Welschinger
multiplicities of all the irreducible subcurves of T,

The Welschinger multiplicity can be also defined for any simply parameterized
plane tropical curve (T, w, k). Namely, let V bea vertex inT'J. If the weights of all the
edges of I" thatare adjacent to V' are odd, denote by s (V') the number of interior integer
points in the triangle built on the vectors w (£ ) u(V, E1) and w(E2)u(V, E;), where
E1. E, is a pair of edges of T" adjacent to V, and put W(V) = (—1)*Y). Otherwise,
put W(V') = 0. The number [, er? W (V') is called the Welschinger multiplicity of
(I, w, k) and is denoted by W(T', w, #). If (', w, ) is a simple parameterization of
a nodal plane tropical curve T, then W (T, w, k) = W(T).

Denote by 7™ (A, , B, g, p) the set of irreducible curves in T (A, o, B, g, p).
and put

WA wBgp= ) W,

TeT(Aa.B.2.p)

and

Wi e = Y W
TeTim(Aa,B,2.p)

Theorem 1. The numbers W(A, ., B, g. p) and W™(A, «, B, g, p) do not depend
on the choice of a generic configuration p € Q(A, «, B, g).

The word ‘generic’ in the statement of Theorem 1 means that the configurations
are taken in an open dense subset of Q(A, ¢, B, g). This subset is explicitly described
in Section 4.8 (see the definition of multi-tropically generic configurations).

Due to Theorem 1, one can skip p in the notation of the above numbers. The
numbers W(A, o, 8, g) (resp., W™ (A, «, B, g)) are called multi-component (resp.,
irreducible) relative tropical Welschinger invariants.

The following statement is a corollary of Mikhalkin’s correspondence theorem [7].
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Theorem 2 (see [6], Theorem 6, and [8], Proposition 6.1). Let X be a toric unnodal
Del Pezzo surface equipped with its tautological real structure, D C X an ample
divisor, and A\ is a polygon SL2, Z)-and-translation equivalent to the polygon A(D)
defined in Section 2.2. Assume that A is left-nondegenerate. Then

W'T(A, (0). (| o]).0) = W(Z, D).

o

where o is the intersection of A with its left vertical supporting line.

The proof of Theorem 1 is given in Section 4. It mainly follows the argument of [2],
[3], where a description of the first order degenerations and respective bifurcations of
simple parameterizations of tropical curves in count are given. Notice that Theorem 1
can also be proved via the study of non-parameterized plane tropical curves in the
spirit of [8].

3.2. Recursive formula for multi-component invariants. Denote by 6 the ele-
ment in € whose k-th term is equal to 1 and all the other terms are equal to 0. For

o, 0 € €, a <o, put
o l—[ ol
— i .
(06) : 1(061')
f=

Extend the definition of the multi-component relative tropical Welschinger invariants
to the degenerate case A = o in the following way. If A 1s a point, then put

1, ifg=0,
0, otherwise.

W(A.(0).(0).8) = {

If A is a vertical segment, thenput W(A, o, ,g) = lfora+ = (lo|), g = 1—|o]|,
and put W(A, , 8,g) = 0, in all other cases. A number W(A, «, 8, g) such that
A = o will be referred to as an initial value.

In addition, put W(A, «, 8, g) = 0 whenever A is nondegenerate and r < |||].

Given a convex lattice polygon A and a cooriented straight line 5 of slope 0, —1
or 0o, take the supporting straight line L; of A such that L; is parallel to s, and A is
contained in the half-plane defined by the coorientation.

Then the s-peeling l;(A) of A is the convex hull of (A N Z2)\L;.

Introduce the set £ formed by the empty set, the lattice points, the lattice vertical
segments, and the convex lattice left-nondegenerate polygons A such that a primitive
integer normal vector of any face of A belongs to the set

{(15 O)= (_13 0)7 (Os l)v (05 _1)= (15 1)5 (_15 _1)}

Remark 1. Any nondegenerate polygon in E defines a toric unnodal Del Pezzo sur-
face and an ample divisor onit. The set E is closed with respect to the Minkowski sum
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and any s-peeling A > [3(A), where § is a cooriented straight vertical line. Further-
more, if the Minkowski sum of several convex lattice left-nondegenerate polygons is
a polygon in E, then all the summands are in E.

- —>
Let A € E be a nondegenerate polygon. Denote by % (respectively, 0, —1) a
vertical line (respectively, a horizontal line, a line of slope —1) cooriented by the vector
(1,0} (respectively, (0, —1), (1,1}). Denote by Lj (respectively, L—) the support
- —
straight line of A such that Ly (respectively, L— ) is parallel to O (respectively, —1),
and A 1s contained in the half-plane defined by the coorientation. We say that A is
ﬁ-nondegenerate (respectively, j-nand@genemte), if the intersection 4 of A with L
(respectively, L—)is nota vertex, and one of the edges neighboring to the edge d is of
- —>
slope —1 (respectively, 0). Consider a subset 7 of {0, —1}. The T-peeling [5(A) of A
is the result of the consecutive 5-peelings of /; (A), where § runs over the elements
- —>
of T (note that in the case 7 = {0, —1}, one has l—_I (l5(Iz(A)) = I3 (lj (I (A)))
since [ (A) is left-nondegenerate). The set 7 is called A-admissible if for any s € 7

the polygon A is s-nondegenerate, and the polygon /= (A) is either left-nondegenerate
or a point. Note that if 7 is A-admissible, then [5(A) € E.

Theorem 3. Let A € B be anondegenerate polygon, and o the intersection of A with
its left vertical supporting line. Then, for any «, 8 € € such that Jo + Jp = |o|,
and any integer g, one has

W(A,Ol,ﬁ,g) = Z W(A,O( + Hkvﬁ - Hk,g)

k=1
ﬁk>0

D D (] () R LGS

T’ B.g7

(2)

where the latter sum in (2) runs over the quadruples 7, o, B/, g’ satisfving the
following conditions.

7 {0, j} is A-admissible, o, €€, g e€Z, o <a B=<p,
(o, ) # (&, B), Jo'+JIB =o', g—g'=|Bp—-Bl-L

o’ being the intersection of I5(A) with its left vertical supporting line.

(3)

The proof of Theorem 3 basically follows the lines of the proof of Theorem 4.3
from [3], and is presented in Section 5.

Remark 2. The initial values for W(A, «, 8, g) (i.e., the numbers W(A, «, 8,g)
in the case A = o) and the recursive formula given in (2) determine all the numbers
W({A,a, B,2),A € E.
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Formula (2) can be seen as a real analogue of the Caporaso—Harris formula [1],
Theorem 1.1, and of its generalizations proposed by R.Vakil [9]. The Caporaso—
Harris formula contains extra coefficients and extra terms with respect to formula (2).
Comparing two formulas, one should take into account that a term indexed by («, )
in formula (2) is an analog of the term indexed by (j(x), j(f)) of the Caporaso—
Harris formula, where j: € — € is the injection associating to a sequence ¢ =
(01, 002, 03,...) € € the sequence (1,0, 2,0, x3,0,...). In other words, in for-
mula (2) we do not consider the tropical analogs of curves which have even order
intersections with the fixed straight line. Notice also that the Caporaso—Harris for-
mula contains as a parameter the number of double points instead of the genus. This
difference is not essential, since the genus determines the number of double points
and vice versa.

3.3. Recursive formula for irreducible invariants. For o, V... . a® e €,
o> (X(l) + e+ a(s),put

o0
o oyl
1 = .
(a( )"_.,a(s)) 1_[ C((l)! . ----ai(S)!(ai _Zk al(k))!

i=19%;
Introduce the set § of the 4-tuples (A, «, B, g) formed by a polygon A € E, ele-

ments @ and f in € such that Jo + J§ = |o|, where o is the intersection of A with
its left vertical supporting line, and an integer g. Define in & the following operation:

(Ao, B.g)+ (A a.Bg)=(A+Aa+aB+pB.g+g—1)

We extend the definition of the irreducible relative tropical Welschinger invariants
to the degenerate case A = o in the following way. If A = o, put W™ (A, a, B.g) =
lforg =0,a+ B = (|o]), and |o| < 1, and put W (A, «, B, g) = 0, in all other
cases. A number W™ (A, «, B, g) such that A = o will be referred to as an initial
value.

In addition, put W' (A «, B, g) = 0 whenever g < 0.

The irreducible relative tropical Welschinger invariants satisfy a recursive formula
which is similar to the Caporaso—Harris formula for irreducible relative Gromov—
Witten invariants (see [1], Section 1.4).

Theorem 4. Let A € B and o be as in Theorem 3. Then, for any «, B € € such that
Jo + JB = |o|, and any integer g > 0, one has

WM(A,C{,ﬂ,g) = Z Wirr(Ava_l_ kaﬁ - Qk’g) (4)

k=1
B >0

o n (B i A @) gQ) O
X (o, ) i L (o) w0, 59.6).
i=1
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where

n = |0A|—|o 2, n; = [0AD|—|gW @) W1, j=1,....m
|0A[=|o|+||pll+g—2. n; = | |=le® [+ +g ; piwe g

and the latter sum in (4) is taken

» over all A-admissible sets T C {6, j},

» gver all splittings

(l‘[(A),Ol,, ﬁ/, g/) — Z(A(i),a(f)’ﬁ(f)’g(i))

i=1
in &, where
o, p € gecl, o<a B=<Pp.
Jo'+Ip =o', g—g =B -Bl-1,

o’ being the intersection of [5(A) with its left vertical supporting line,
» over all splittings

F43
Br=p+3 FD JFD)>0i=1....m,

=1

satisfying the restriction B > ,é(f), I = Lowsx s B
and factorized by simultaneous permutations in the both splittings.

Remark 3. Inthe case g = 0, the right-hand side of formula (4) reduces to the terms
with g = 0 and ||| = 1.

The proof of Theorem 4 is a slight modification of the proof of Theorem 3, and
we indicate this modification at the end of Section 5.

The initial values for W™ (A, «, B, g) and formula (4) determine all the numbers
W™(A,a, B, g).

Corollary 4. Let Ay and Ay be two nondegenerate polygons in B such that Ay C
Ay. Denote by X; and D;, 1 = 1,2, the toric Del Pezzo surface equipped with its
tautological real structure and the ample divisor on X; which are defined by A;.
Then

W(X1. D1) = W(Z2, D). (3)

If, in addition, the number of interior integer points of Ay is greater than the number
of interior integer points of Ao (i.e., the genus of a generic member of the linear
system |Dy| is greater than the genus of a generic member of | D»|), then

W(X1, D) > W(X,, D). (6)
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Corollary 5 (cf. [5], Theorem 1.3). Let ¥ be a toric unnodal Del Pezzo surface
equipped with its tautological real structure, and D C X an ample divisor. Then
W, D) > 0. O

Proof of Corollaries 4 and 5. Since A C Ay, the polygon A can be obtained from
Ay by a sequence of peelings. Thus, it is sufficient to treat the case when A, is
the result of an 5-peeling of A;. Without loss of generality, we can assume that 5
is the left vertical supporting line of A, cooriented so that A, is contained in the
half-plane defined by the coorientation. Denote by ¢’ the intersection of 5 with A,
and by o the intersection of Ay with its left vertical supporting line. If o 1s a point,
then W(X1, D1) = W(X,, Dy). Assume that o is a nondegenerate segment. One
has

W(Z1, D1) = W(A1,0,(|0]).0),  W(Z2, D2) = W"(A2,0, (o)), 0).
The absolute value of the difference |o|—|o’| isat most 1. According to Theorem 4,
o if |0 = |o| + 1, then
WH(A1,0, (o), 0) > |o'] - W (A3,0,(|o"]). 0);
* if [o/| = |o|, then
WAL, 0, (o)), 0) = W™ (A, (1), (Jo| — 1),0)

> |o’| - W™ (A5, 0, (|¢"]), 0);

e if |0/ = |o| — 1, then
Wirr(Alﬂ 07 (|U|)’O) £ WiH(AI’ (1)’ (|G| - 1)70)
> W™(A1, (2). (Jo| —2).0)
> [o'] - W'(A2,0, (Jo"]), 0).

OJ

Thus, in all the three cases,
W (A1,0, (o), 0) = |0 - W (A3,0, (|o”]), 0). (7)

This proves the inequality W(X, D1) > W(X3, D3). Since, in addition, we have
W(Zs, D2) = 1 whenever A, does not have interior integer points, we obtain posi-
tivity of the invariants W (X, D).

If the number of interior integer points of A is greater than the number of interior
integer points of A,, then |¢’| > 2, and inequality (7) implies that W(Z{, D) >
W(Z,, D3). O

Corollary 6. The first six terms of the sequence W(P2, dP1) are as follows:
W(P2, Pl = wW(P? 2P =1, W(P23PYH =8 W(P2 4P!) = 240,
W(P2, 5Py = 18264, W(P2, 6P!) = 2845440, O
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4. Invariance of tropical Welschinger numbers

4.1. Moduli spaces of parameterized marked tropical curves. Let A, «, 8, g,
and r be as in Section 3.1. A parameterized marked tropical curve (I',w, h, P) of
degree A%P is a parameterized plane tropical curve (T, w, #) of degree A%# equipped
with a sequence P of r distinct points in I" such that

« P = P"U P¥ starts with a sequence P of some univalent vertices of I" and
terminates with a sequence P¥ whose points are not univalent vertices of I',

» the number of points in P'is equal to ||« ||,

 the weight of the ends of I' merging to the points

PkEPb, Z(XJ <kfzaj,

J=<i J=i

182i — 1,1 > 1,

» those points of P* that coincide with vertices of T can be pushed inside the
adjacent edges in order to transform P to a set P such that the components of
f\f’ have no loops and each of them contains at most one univalent vertex (in
particular, the components of I'\ P have no loops and each of them contains at
most one univalent vertex).

We sometimes call such a sequence P a configuration. The elements of P are called
marked points.

Lemma 7. Let (I, w, h, P) be a parameterized marked tropical curve such that no
point of P coincides with anon-univalentvertexof I'. Thenany connected component
of '\ P contains exactly one univalent vertex.

Proof. Identifying all the points of V C T, we obtain a graph whose first Betti
number is equal to ¥ — ||¢||. The complement of P¥ in this graph 1s a tree, and the
statement follows. O

Two parameterized marked tropical curves (I', w, h, P)and (I, w’, h’, P”) of the
same degree A%# are called isomorphic if there is a homeomorphism ¢: ' — T
such that ¢(P) = P’, and w(E) = w'(¢(E)) for any E € T''. Two parameterized
marked tropical curves (T, w, h, P)and (T, w', k', P’) of the same degree A%# have
the same combinatorial type, if there is a homeomorphism ¢ : I' — I' such that

 for any V € T and any edge E adjacent to V, the vectors u(V, E) and
u(p(V), ¢(E)) coincide, where u(V, E) (respectively, u(p(V), 9(E))) is the
primitive integer vector starting at ~2(1'} (respectively, 72'(¢(V))) and directed
along h(E) (respectively, ' (p(E))),
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o w(E) = w'(¢(E)) forany E € T'!,

» ifapoint P; € P belongs to an edge E (respectively, coincides with a vertex 1)
of T, then the point P/ belongs to the edge ¢(E) (respectively, coincides with
the vertex ¢(V)).

Let AA o p,g be the set of all the combinatorial types of parameterized marked
tropical curves (I, w, k, P) of degree A%# such that »1(I") < g and P* contains at

least g — b1 (I") points coinciding with vertices of I'. Forany A € A o g, ¢ denote by
Mﬁ w.B.g the set of the 1somorphism classes of parameterized marked tropical curves

of combinatorial type A. One can encode the elements (I', w, i, P) of Mﬁ,a, B by
(i) the lengths of images under / of all the edges E € T\T'L,
(ii) the position of 2(V') € R2 for some vertex V € I'?,

(i11) the coordinates of the points of h(P") on L_u, and

(iv) the distances of the points of h(P*) 1o the images under £ of certain chosen
vertices of the edges of I which contain the points of P¥,

These parameters are called graphic coordinates. The graphic coordinates described
in the item (iv) are called marked. For a given A, graphic coordinates are subject to
finitely many linear equalities and inequalities and identify M)Ahyag bz with the relative
interior of a convex polyhedron in an affine space. We call M g - the moduli space
of parameterized marked tropical curves of combinatorial type A.

A combinatorial type A € Aa o.p, is a degeneration of A € A 4 g if graphic
coordinates on Mﬁ,a, 5. and M,)&l,a, 5.¢ can be chosen in such a way that CM)AL:O[’ B

becomes the intersection of M”A 0.z with some coordinate hyperplanes in the fol-
lowing sense: the non-zero coordinates of any point of this intersection are the chosen

graphic coordinates of the corresponding point of MX -

For each combinatorial type A contained in A A o g, choose graphic coordinates
on M‘)&’a’ g.o- enote by P* the corresponding polyhedron and by P* its relative
interior. If A" is a degeneration of A, then for any choice of graphic coordinates on

Mﬁga, 4.¢ there exists a unique choice of graphic coordinates on :Mg“:a’ p.¢ Such that
! . . . .

Mi“’a, 4. Decomes the intersection of Mi’a, 4.¢ With some coordinate hyperplanes.

Denote by f ; the atfine map identifying this intersection with P,

Proposition 8. For any combinatorial type A € A oo and any face F of the
polyhedron P*, there exists a degeneration M’ € A Aa,B.g Such that f[,}l (P*y=F.

Proof. Pick a parameterized marked tropical curve (I, w, k, P) of combinatorial
type A. The map / induces a metric on I', and thus, an affine structure on it. Any
point in Mg“ BAp has a representative (I", w, &2, P) such that / is affine-linear on



102 I. Itenberg, V. Kharlamov and E. Shustin CMH

any segment that contains no marked point and no vertex of I'. Let p € F be
the limit of a sequence of points in #*. The sequence of corresponding maps h
converges toamap I’ — R2 whichis a composition of a quotient map ¥ fromI' to a
certain graph I’ and an embedding /": I'" — R2. The sequence of configurations P
converges (o a configuration P of points of I'. Descending w and P to T, one obtains
a parameterized marked tropical curve (T, woyr =1, i/, 4 (P)) together with graphical
coordinates identifying it with p. The combinatorial type of (I, w o ¥~ 1, k', ¥ (P))
is a degeneration of A. N

Forany A € A(A, «, 3, g), denote by @Q* the projection of P on the coordinate
subspace spanned by the non-marked graphical coordinate axes.

Lemma 9 (see [7], Proposition 2.23). For any A € A(A, «, B, g), the dimension of
Q% is at most r. Moreover, @* is of dimension r if and only if the curves in A are
simply parameterized. O

If (T, w, &, P) is a simply parameterized marked tropical curve of degree A%#
such that no point in P* s a vertex of ", then the combinatorial type of (I', w, &, P)
is called o-generic.

Consider the disjoint union | |, P*, where A runs over all the o-generic combi-
natorial types in Aa o g.¢. Let Ma 4 g0 be the quotient space of [ [, P* defined by
the gluing maps f);,lxz o fir.a, for all the triples (A1, A2, A”) of combinatorial types
such that A, and A, are o-generic, and A’ is a degeneration of A; and A,. We identify
the sets M4 w.p.g With J P+ and consider them as subspaces in Ma o .-

In the case ¢ = = (0), the moduli space Ma g p.¢ coincides with a moduli space
introduced by Gathmann and Markwig [2] (in [2] this space 18 denoted by Mg A,
where A = A©-8),

4.2. Collar. For a combinatorial type A € A g,8.¢ Of parameterized marked tropi-

cal curves (I, w, &, P) denote by J the combinatorial type of parameterized marked
tropical curves (I, w, &, P) of degree A(®-2+8 guch that the configuration P is ob-
tained from P by pushing the points of P" inside the adjacent edges of I'. If A is
o -generic, so is i, and vice versa.

v . }’L
Denote bvy MAaap.g the union (Jyep, o MR g 6, Cv EMA,(OV),,Q,g. Define
amap I1: Ma (0) 8¢ — Ma.xp.e associating to (I, w,h, P) € Ma (0),5.¢ the
element (I, w, 7, P) in Mp o g, such that the configuration P is obtained from P

by moving each of the first ||t || points of P (all these points belong to left ends of I')
to the closest univalent vertex of I'.
Consider the spaces

QA B.8) = (o)™l x R W C (Lol @2  (R2y,
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the map pr: (R2)" = (L_o)lel x (R2)yr=lel replacing the first ||« || abscissaes by
—0o0, and the evaluation map

ev: Ma g pg — (Looo)®l 5 R2Y I oy(T w, b, P) = h(P).

Lemma 10. For any A € Ap 4 p.4 the restriction of I1 to P* 1 J\ZA,a,ﬁ,g is an
affine surjective map to P*, and its fibers are relative interiors of convex polvhedra
of dimension ||ct||. Furthermore, the restrictions of the evaluation maps to P* and

P* are affine, and ev o TI = pr o ev.

Proof. The restriction of IT to $* is an affine map to £#. Furthermore, IT is contin-
uous (cf. proof of Proposition 8). Repeating the construction of A out of A one can

show that the restriction of IT to $* is surjective onto *, and each of its fibers is the
product of ||| open rays. The last statement of the lemma is straightforward. O

4.3. Zero and one

Lemma 11. For any combinatorial type A € Ap o g.g. the dimension of Mf& w.f.g

is at most 2r — ||«|| (recall that v = |dA| — |o| + ||| + Bl + g — 1), and
dim Mﬁ,a,ﬁ,g = 2r — ||| if and only if A is c-generic.

Proof. The statement immediately follows from Lemma 9. 0

Lemma 12. For any o-generic combinatorial type A,

(1) the evaluation map ev restricts to a bijection between Mi u and the interior
of a full dimensional convex polyhedron in (L_ )1®1 x (R2)y =l gag

(ii) any two parameterized marked tropical curves of combinatorial type A have the
same Welschinger multiplicity.

Proof. Pick a o-generic combinatorial type A € A ¢.8.¢. Due to Lemma 10, the
restriction ev* of ev to J’V)“ is affine. Furthermore, according to [2], Proposition 4.2,
(cf. [7]) the restriction ev* of ev to J’v)“ is injective. The equality evo Il = proev (see
Lemma 10) and the injectivity of ev* imply the injectivity of ev*, since if a point in
ev(P*) has two distinct inverse images (I'y, w1, b1, P1) and (I, w, f15, P5) under
ev o I1, then modifying /1 and /5 (alternatively moving some points of Py and P»)
one gets two distinct points in P* with the same image under ev.

The second statement of the lemma immediately follows from the definition of
the Welschinger multiplicity. O
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The Welschinger multiplicity of the parameterized marked tropical curves of o -
generic combinatorial type A is denoted by W(A).

Our goal is to study the complement in (L_s)1*1 x (R2) =l of the union
U; eV(Mg «.p.¢)» Where A runs over all the combinatorial types in Aaq,p.¢ such

that the codimension of ev(M% wpg) i (Lo s el s (R2yr—llell jg ag least 2. A

combinatorial type A € A 4 p.¢ is called injective codimension 1 if M is of

Ao B.g
codimension 1 in Mp 4 g,¢» and the restriction of ev o M Aofog 1s injective. The

set of combinatorial types A € Aa 4.4,¢ such that the codimension of ev(M% .8.g)
in (L_oo)1ol 5 (R2y el i at most 1 consists of

* all o-generic combinatorial types in A a 4,0 (see Lemmas 11 and 12) and

* all the injective codimension 1 combinatorial types in Aa ¢,8,¢-

Lemma 13. Let A € Aa o p.¢ be injective codimension 1. Then A is injective codi-
mension 1. Furthermore, any element in M w.f.g IS represented by a parameterized
marked tropical curve (I, w, h, P) such rhar bl(F) = g and

(1) either T is trivalent, and exactly one point o PYisavertex of T,
y p

(i1) or one of the vertices of T is four-valent, the other non-univalent vertices of T’
are trivalent, and the points of P" are not vertices of I,

(i) or I' has two four-valent vertices joined by two edges E| and E,, the other
non-univalent vertices of T are trivalent, and the points of P¥ are not vertices
of T.

Proof. Since all the fibers of IT have the same dimension (see Lemma 10), the codi-
mension of MA wpg © Maap.g is equal to 1. The fibers of pr have the same

dimension as the fibers of I1. Hence, due to ev o [1 = pr o ev, the injectivity of
the restriction of ev to Mg“ 0Bz implies the injectivity of the restriction of ev to

CMJL . B, . The second statement of the lemma follows now from [2], Proposition 3.9
and Remark 3.6. Ll

4.4. First bifurcation, Let A € Ap 4 g . be an injective codimension 1 combina-
torial type, and (T, w, &, P) a parameterized marked tropical curve of combinatorial
type A. Assume that T" is trivalent, and exactly one point of P%is a vertex of T.
Denote this vertex by V. The last property in the definition of parameterized marked
tropical curves implies that exactly two edges adjacent to V' are allowed in the fol-
lowing sense: pushing the point which coincides with V' to any of these edges creates
neither a loop in '\ P nor a component of '\ P with more than one univalent vertex.
Denote the two resulting o-generic combinatorial types by A4 and A_. The combi-
natorial type A is a degeneration of A+ and A_, and no other o -generic combinatorial
type has A as degeneration.
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Lemma 14. Let A, Ay, and A_ be as above. Then eV(MA 2. g) and eV(MA wf g)
are on opposite sides OfeV(MA @.f g)

Proof. According to Lemma 13, the combinatorial type dis injective codimension 1.

As is shown in [2], case (c) in the proof of Theorem 4.8, the images ev(gMnga 4 d)

and eV(M e g) of M A p.g A0d M)A“*a p., under the evaluation map are on op-

posite sides of eV(M Aaif 4)- Thus, the statement of the lemma follows from the
relation ev o I1 = pr o ev and the fact that pr is affine. O

Lemma 15. Let A, Ay, and A_ be as above. Then the Welschinger multiplicities
W(AL) and W(A_) are equal. O

4.5. Third bifurcation. Let A € Aa o,p,¢ be an injective codimension 1 combina-
torial type, and (I, w, /i, P) a parameterized marked tropical curve of combinatorial
type A. Assume that I" has two four-valent vertices V and V' joined by two edges E;
and F», the other non-univalent vertices of I' are trivalent, and the points of ph
are not vertices of I'. A o-generic combinatorial type Aisa permrbatmn of A if A
is represented by a parameterized marked tropical curve (T, w, h, P) such that the
graph T is obtained from T replacing each four-valent vertex by two trivalent ones
connected by an edge (denote these edges by Ey and Ey-, respectively), and there
exists a continuous map ¢: I — I satisfying the following properties:

» the image of any vertex of T" under @ 1s a vertex of I,

« if E is anedge of " different from Ey and Ey- and a vertex W is adjacent to E,
then the image ¢(F) is an edge of T, the vectors u(W, E) and u{@p(W), ¢(E))
coincide,

* o(Ey) =V and p(Ey') =V,

« if E is an edge of T different from Ey and Ey, then w(E) = w(p(E)),

- ¢(P)="P

Lemma 16. Let A € Ap o p.o be as above. Then there are exactly two o-generic
combinatorial types which admit A as a degeneration. These combinatorial types A+
and A— are perturbations of A. The perturbations Ay and A— are not equivalent in the
following sense: there is no homeomorphism of their underlying graphs I'y and r_
which respect the maps ¢ and go (fragments of the graphs F+ and T_ are shown

in Figure 2(a)). Moreover, ev(cMA 2. g) and ev(Mg*a P g) are on opposite sides of
ev(M~ Awf, g)
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(b)

Figure 2. Third bifurcation.

Proof. According to Lemma 13, the combinatorial type A is injective codimension 1.

Asis shownin [2], case (d) in the proof of Theorem 4.8, there are exactly two o -generic
combinatorial types A+ and A_ which admit X as a degeneration. The underlying
graphs of parameterized marked tropical curves representing l+ and A_ are obtained
from T" replacing each four-valent vertex by two trivalent ones as shown on Fig-

ure 2 (a), and eV(M s 4) and eV(MA A, 4) are on opposite sides of ev(a\/(A B 4)-

Thus, the statements of the lemma follow from the relation ev o I1 = pr o ev and the
fact that pr is affine. O

Lemma 17. Let A, Ay, and A— be as in Lemma 16. Then W(A+) = W{A_).

Proof. Consider parameterized marked tropical curves Ty, Wy, by, PL) and
(T_,w_, h_, P_) of combinatorial types A+ and A_. The dual subdivisions of plane
tropical curves Ty and T_ defined by (T4, W, ho, P yand(T_, w_, h_, P_)differ
by the fragments shown in Figure 2 (b).

The lattice lengths | BF| and | F> D| are equal to w(E1), and the lattice lengths
| F1.D|and | BF,| are equal to w( E2). If at least one of the lattice lengths |AB|, | BC|,
|CD|, |DA|, |BF,| = |F2D|, |F1D| = |BF;|, is even, then W(T,) = W(T_) = 0.
Assume that all these lengths are odd. Then | F; I| is even, and therefore |AFy| =
|AF>| mod 2and |F;C| = |F>C| mod 2. If atleastone of the lattice lengths | A F1 |
and |F1C| is even, then W(7}) = W(T_-) = 0. If |AF;| and | F,C| are odd, then
the total number sy of interior integer points in the triangles ABF,, Al D, BCFy,
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F1C D has the same parity as the number s_ of interior integer points in the triangles
ABF,, AF;D, BCF,, F,CD. Hence, W(T3) = (—1)*+7% W(T-) = W(T-).
O]

4.6. Second bifurcation

4.6.1. Preliminaries. Let A € Ap 4 g, be an injective codimension 1 combinato-
rial type, and let (I, w, i, P) be a parameterized marked tropical curve of combina-
torial type A. Assume that one of the vertices of ' is four-valent (denote this vertex
by V), the other non-univalent vertices of I' are trivalent, and the points of P¥ are
not vertices of I'. Denote by £, E2, E3, and E4 the edges of I' which are adjacent
to V, and denote by Ly, L,, L3, and L, the lines containing /i(E1), h(E3), h(E3),
and h{ E,), respectively.

A o-generic combinatorial type Ads a perturbation of A if A is represented by a
parameterized marked tropical curve (T, @, i, P) such that the graph T is obtained
from I replacing the vertex V' by two trivalent ones connected by an edge (denote this
edge by Ey ), and there exists a continuous map ¢: I — I satisfying the following
properties:

* the image of any vertex of I under ¢ is a vertex of T,

» if I is an edge of [ different from Ey and a vertex W is adjacent to [,
then the image ¢(F) is an edge of I', and the vector u(W, F) coincides with

u(p(W), p(E)),
* p(Ey) =
o if E is an edge of T different from Ey, then w(E) = w(p(E)),
* ¢(P)=P

4.6.2. Non-degenerate case

Lemma 18. Let A € Ap o p¢ be as in Section 4.6.1. Assume that the lines Ly, Lo,
L, and L4 are pairwise distinct. Then there are exactly three o-generic combina-
forial types which admir A as a degeneration. These combinatorial types Ax, A,
and A_ are perturbations of A and have the following properties:

* among the edges ¢ (E1), 93" (E2), X" (E3), and g5 '(Ea), there are two
edges, p; '(E;) and o (E;), such that the images under hy of their interiors
have a common point,

o the edges 9  (E;) and 7 (E;) have a common vertex,

o the edges =" (E;) and =" (E;) do not have a common vertex.
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Fragments of the graphs Tw, T4, and T_ are shown in Figure 3 (a). The perturba-
tons A, A+, and A_ are not equzvalent in the same sense as in Lemma 16. Further-

more, eV(MA w.p. g) and eV(MA wpg ) are on the same side of eV(MA e g) and
ev(M* A.B, g) is on the opposite side.

Proof. The same arguments as 1n the proofs of Lemmas 14 and 16 allow one to deduce
all the statements of the lemma from [2], case (a) in the proof of Theorem 4.8. To
complete the proof of the last statement, consider the dual subdivisions of the tropi-

cal curves defined by (Tx, Wy s, Px), Ty, 04, hy, Py),and (T, @&_.h_, P_)
(see Figure 3 (b)), and notice that

Area(BCF) - Area(CDF) + Area(ABD) - Area(BCD)

= Arca(ABC) - Arca(ACD). ®
L]
El/
2 i E2
FX
(a)
B B B B
A A A A
cC — i ¢ ; >c o
D D D D
(b)

Figure 3. Non-degenerate second bifurcation.

Lemma 19. Let the combinatorial tvpes A, Ax, Ay, and A_ be as in Lemma 18. Then
W{Ax)}+ W(As) = W(A_).

Proof. Let us consider parameterized marked tropical curves (Ty, W, hy, T’X),
(4, Wy, hy, Py),and (', w_, i, P_) of combinatorial types Ay, A4, and A_,
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respectlvely The dual subdivisions of plane troplcal curves TX, T, and T_ defined
by (Fx, Wy, N, ><) (F+, W4, h+, P+) and (F_, w_, P _) differ by fragments
shown in Figure 3 (b). Denote by Wy, W, and W_ the (multiplicative) contri-
butions of these fragments to W(7Tx), W(T), and W(7-). We have to check that
Wi +Wi=W_,

If either at least one of the lengths |AB|, |BC|, |CD|, |AD]| is even, or all the
lengths |[AC|, |BD|, | FC| are even, then Wy, = W, = W_ = (. So, assume that
|AB|, |BC|, |CD|, |AD| are odd, and |AC|, |BD|, | FC| are not all even. The first
assumption yields

Area(BCF) = Area(CDF) = |CF| mod 2,
Area(ABD) = Area(BCD) = |BD| mod 2,
Area(ABC) = Area(ACD) = |AC| mod 2.

Therefore, (8) and the second assumption imply that two of the lengths |AC|, | BD|,
| FFC | are odd and the third one is even. Denote by Nx (respectively, N4, N_) the
total number of integer points lying in the interior of the triangles BCF and CDF
(respectively, ABD and BCD, ABC and ACD), and denote by N (respectively,
N’) the number of integer points lying in the interior of the quadrilateral ABCD
(respectively, the triangle ABD). Then Ny = N —|BD|+ 1, N =N —|AC|+ 1
and Ny = N —-2N'—|BD|+1—|BF|—|FD|—|CF|+ 2.

If |AC| is even, while |BD| and |FC| are odd, then Wy, = (—1)¥x, W, =
(—1)N+, and W_ = 0. Furthermore, inthiscase, Ny = N mod 2and N, = N +1
mod 2, which yields Wy + W, =0 =W_,

If |BD)| is even, while |AC| and | FC| are odd, then Wy = (— 1)<, W, = 0,
and W_ = (—1)"-. Furthermore, in this case, N = N mod 2 and Nx = N
mod 2, which yields Wy + W, = (-1)V = W_.

If |FC| is even, while |AC| and |BD| are odd, then W, = 0, W, = (—D"V+,
and W_ = (—1)¥-. Furthermore, in this case, Ny = N mod 2 and N_ = N
mod 2, which yields W, + W, = (-1)V = W_, O

4.6.3. Degenerate case

Lemma 20. Let A € Ap o 8 ¢ be as in Section 4.6.1. Assume that some of the four
lines Ly, Ly, L, and L4 coincide. Then there are exactly two o-generic combinato-
rial types which admit A as a degeneration. These combinatorial types A and A_ are
perturbations of A. Fragments of the graphs Ty and T'_ and their i images under h+
and h— are shown in Figure 4(a), (b), (c) (in the cases (a), (b) and (c), the poly-
gon corresponding to V in the subdivision dual to the plane fropical curve defined
by (T, w,h) is a triangle, trapeze, and parallelogram, respectively). The perturba-
tions )L+, and A_ are not equivalent in the same sense as in Lemma 16. Furthermore,

ev(!MA w.p. g) and ev(MA i ) are on the opposite sides C)fev(d\/(A sl g)
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Proof. Let (I',w, h, P) be a parameterized marked tropical curve of combinatorial
type A. According to Lemma 7 any connected component of T" \ P contains exactly
one univalent vertex. Assume that the edges Iy, E,, E3, and F4 arec numbered in
such a way that the simple path y in T \ P connecting V with a univalent vertex
contains the edge Fjy.

Consider a parameterized marked tropical curve (I'., w., ho, P.), where T, is
obtained from I' by removing the vertex V', the map /. is obtained by a modification
of 4 on the edges adjacent to V' in such a way that directions of the images of these
edges do not change, w. is inherited from I", all the points of P, but one are inherited
from I", and the additional point P,q of P. belongs to E4. The combinatorial
type of (I's, ws, ho, P} is o-generic. Denote this combinatorial type by A.. Put
p = ho(P\{Paq}) and paga = ho(Paq). According to Lemma 12, any two-

parameter small perturbation (p(t), paaa(7)) of (p(0), p.aa(0)) = (p, paaa) lifts to
a unique continuous family F** = (%%, w’*, A%%, P©7) in the moduli space of
parameterized marked tropical curves of combinatorial type A.. For any fixed ¢, the
one parameter family F* has the following property: all the edges of 4% (I'!") that
are not contained in y* preserve their supporting lines.

Among the lines L, L,, and L3 choose a line L; such that the two other lines
are distinct, and L; either coincides with one of these two lines or coincides with
L4. Change, if necessary, the numbering of lines L1, L2, and L3 in order to have
i = 3 and the lines L, and L3 non coinciding. The position of the lines L’ft,
L5T, and L%" does not depend on v, and if p(¢) & ev(M*(A,a, B, g)), then these
lines do not have a common point. Thus, if the perturbation (p(7), paaa(7)) is linear,
p(t) & ev(M*(A,a,B,g)) for t # 0, and paa(r) & Ly for © # 0, then L5°
transports with a non-zero velocity vector relative to LF U L5", while L5 (which
depends only on ) performs another, independent, parallel transport movement with
a non-zero velocity vector relative to L} U L5*.

For a certain sign of ¢ (assume that this sign is —) and sufficiently small absolute
value of ¢, the ray starting at the point LJ"Z’r N Lg’f and going in the direction deter-
mined by the balancing condition intersects the ray of F©7 = (T4T, wi®, k4T, PLT)
supported by L77. Selecting © = (¢) in such a way that L}® goes through the
above intersection point, gives rise to a tropical curve whose combinatorial type is a
perturbation of A.

If L3 does not coincide with L1, then for positive and sufficiently small values
of ¢, the ray starting at the point L7* N L5 and going in the direction determined
by the balancing condition intersects the ray of F&% = (I't%, wh%, k%7, PYT) sup-
ported by Ltz’r, and a construction as above gives rise to a tropical curve whose
combinatorial type is a perturbation of A. If L3 coincides with L, then for posi-
tive and sufficiently small values of 7, the ray starting at the point L7 N L5 and
going in the direction determined by the balancing condition intersects the ray of
F&T = (I4T, whT, h%T, PYT) supported by LT, and again a construction as above

o »The
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gives rise to a tropical curve whose combinatorial type is a perturbation of A.

Since some of the lines Ly, L,, L3, and L, coincide, there are at most two
combinatorial types that can be perturbations of A. On the other hand, we constructed
two distinct perturbations of )L (denote the first one by A_ and the second one by A ).

Moreover, the images eV(M Aw.p, g) and ev(gMg*a P g) are on the opposite sides of

eV(MA b, g) O

Lemma 21. Lef A, Ay, and A_ be as in Lemma 20. Then W{A+) = W(A_).

Proof. Consider parameterized marked tropical curves (F+, W4, h+, P+) and
(T_,w_, h_, P_) of combinatorial Lypes A+ and A_. The dual subdivisions of plane
tropical curves T and 7 defined by (T4, . hy, Poyand (T_,w_,h_, P_) dif-
fer by fragments shown in Figure 4 (d), 4 (¢), or 4 (f). These fragments correspond
to two splittings of the polygon dual to /(V'), and their (multiplicative) contributions
W4 and W_ to W (T ) and W(T_), respectively, are equal in ecach of the cases 4 (d),
(e), (). Indeed, W1 and W_ both vanish if

* in the case 4(d), at least one of the lengths |AB|, |AC]|, |BD;| = |CD;|,
|CD1| = |BD3| in Figure 4 (d) is even,

» in the cases 4 (e), (I), at least one of the lengths |AB|, |BC|, |CD|, |AD| is
eVeIL.

If the aforementioned lengths are odd then, in the case 4 (d) one has |AD;| = |AD;|
mod 2, and in the cases 4 (¢) and 4 (f), one has |AC| = |BD| mod 2. This yields
W_|_ = W_. L]

4.7. Tropically generic configurations. A configuration p € Q(A,e,f,g) is
called (A, «, B, g)-generic (resp., almost (A, a, B, g)-generic) if the inverse image
(ev)~!(p) of p under the evaluation map ev: Ma 4 8, — Q(A, e, B, g) consists of
parameterized marked tropical curves of o-generic (resp., of o-generic or injective
codimension 1) combinatorial types.

We say that a parameterized plane tropical curve (T, w, k) of degree A%# and
genus g matches a configuration p = p® U p¥ € Q(A, «, . g)if p C h(I"), and any
point pg € p’ is contained in the image of a left end of weight 2ix — 1, where the
positive integer i is determined by the inequalities » iy & < k < Zj <i ¥ A
(A, a, B, g)-generic configuration p = p* U p* € Q(A, «, B, g) is called tropically
generic if any parameterized plane tropical curve matching p and having the degree
A%# and the genus g defines a plane tropical curve 7" which satisfies the following
properties: T is nodal, and no point in p* coincides with a vertex of T

Lemma 22. The complement in Q(A, o, B, g) of the subset formed by the tropically
generic configurations Is a finite closed polyvhedral complex of positive codimension.



112 I. Itenberg, V. Kharlamov and E. Shustin CMH

=

!

U

s
T
Lol

A A A D,
— i

¢ c c
(d)
B c B c B c
LN TN, N
(e)
P c B c B c
Ly T LR NS
(f)

Figure 4. Degenerate second bifurcations.
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Proof. The subset formed by the non-tropically generic configurations in the space
Q(A,a, B, g) is a projection of U;LeAA,a_B,gJB;“, where 8%  P* is described by a
disjunction of a finite collection of systems of linear equations and linear inequalities
in graphic coordinates. Since the set Aa ¢ . 18 finite, it remains to prove that the
tropically generic configurations form an open dense subset in (A, o, B, g).

As it immediately follows from Lemma 11 (and finiteness of A .g,¢), the
(A, «, B, g)-generic configurations form an open dense subset in Q(A, «, £, g). De-
note by O the set of the (A, «, 8, g)-generic configurations p € Q(A, «, £, g) such
that any parameterized plane tropical curve which matches p and has the degree A%B
and the genus g 18 simply parameterized. Since for any parameterized plane tropical
curve one can always choose a configuration P C T' of marked points to obtain a
parameterized marked tropical curve (I', w, i, P), Lemma 9 implies that O is an open
dense subset in Q(A, «, B, g).

Denote by C the set of the configurations p = pPupteo admitting a simply
parameterized plane tropical curve (I', w, #) which matches p, has the degree A%E
and the genus g, and satisfies the following property: the plane tropical curve defined
by (I'. w, k) has a vertex at one of the points of p*. Clearly, C; is a closed nowhere
dense subset of O.

Denote by C5 the set of the configurations p € O admitting a simply param-
eterized plane tropical curve (I", w, i) which matches p, has the degree A%F and
the genus g, and satisfies the following property: the plane tropical curve defined
by (I, w, k) is not nodal. For a combinatorial type A € A(A,«, 8, g) of simply
parameterized marked tropical curves, consider the image in @* of the points of
#* corresponding to parameterized marked tropical curves defining non-nodal plane
tropical curves. This image is a closed nowhere dense subset of @* as can be shown
using the same arguments as in the proof of [7], Proposition 2.23. Hence, C, is a
closed nowhere dense subset of O. Thus, the tropically generic configurations form
an open dense subset in Q(A, «, 8, g). O

Lemma 23. Let p € Q(A, «, B, g) be a tropically generic configuration. Then any
curve in T" (A, «, B, g, p) can be parameterized by an element of the inverse image
(ev)"Y(p) of p under the evaluation map Ma opqe — QA @, B, 8).

Proof. Pick an element T in T (A, «, B, g, p), and consider a simple parameteri-
zation (I", w, k) of T'. The configuration p lifts to a configuration P C I". Assume
that "\ P has a component containing either a loop, or two univalent vertices. Then
there exists a one-dimensional family of simply parameterized plane tropical curves
(I',w, k) such that i, (P) = p for any ¢, and the coordinates of the images of ver-
tices of I depend linearly on . Hence, this family degenerates either to a situation
of collision of two vertices of I', or o a situation of collision of a point in P and a
vertex of I'. The both cases contradict the fact that p is tropically generic. Ll
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Lemma 24. For any tropically generic configuration p € QA a, f,g). the set
T™(A,a, B, g, p)is finite.

Proof. The lemma follows from Lemma 12, Lemma 23, and finiteness of the set
AA,(Z,B,g ‘ I:‘

4.8. Multi-tropically generic configurations. Let §. be the set of the 4-tuples
(A, ax, PBx, g«) formed by a left-nondegenerate convex lattice polygon A, elements
oy and By in € such that Jo,. + J B« = |o«| (Where o, is the intersection of A, with
its left vertical supporting line), and an integer g.. Define an addition operation in
&, in the same way as in § (see Section 3.3).

A partition | |_, pO) of p € QUA, e, B, g) is called compatible with a splitting
j=1

¢
(A0, B.8) =Y (AV, oD, gD gL
i=1
in 8, if p) e QAWD o) I gy forany j = 1,...,£. A configuration
p € QA w, B, g)is called multi-tropically generic if for any splitting
‘
(Ao, B, g) = Z(A(])’ 01(1), lg(])’ g(J))
j=1
in 8, and any partition p = |_|€-=1 pY) compatible with this splitting the following
holds:

» cach configuration pY)is tropically generic,

* anysum Z€-=1 T ) is anodal plane tropical curve whenever T¢) is a plane trop-
ical curve defined by a parameterized tropical curve which belongs to the inverse
image (ev) 1 (p) of pU) under the evaluation mapev: MAG o, g g5 —>
QAW o) g g0y,

Lemma 25. The complement in Q(A,w, B,g) of the subset formed by the mulfi-
fropically generic configurations is a finite closed polyhedral complex of positive
codimension.

Proof. Consider the subset U C Q(A, «, B, g) formed by the configurations p such
that, for any splitting (A, e, B,g) = Zﬁ-:l(AU),aU),ﬁ(j),g(j)) in 8, and any
partition p = |_|‘;=1 pY) compatible with the given splitting, all the configurations
p. ., p® are tropically generic. Lemma 22 implies that U is an open dense
subset of 2(A, «, B, g). Now the statement of the lemma follows from the fact that

the sum of several nodal plane tropical curves can be always made nodal by arbitrarily
small parallel shifts of summands. O
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Lemma 26. For any multi-tropically generic configuration p € Q(A, o, B, g), the
set T(A,w, B,g, p) s finite.

Proof. The statement is an immediate consequence of Lemma 24, 0

Lemma 27, Let p € Q(A, «, B, g) be a multi-tropically generic configuration. Then

£

WA, fog p) = 3 [ WHAW, o), g0 g0 pliy, ©)
i=1

where the sum is taken over all unordered splittings

£
(Ao, B, g) = Z(A(j),a(j),ﬁ(j),g(j))
j=1

in 8« and all compatible partitions of p.

Proof. Straightforward. O

4.9. Proof of Theorem 1. Notice that it is enough to establish the invariance of
the numbers W™ (A, «, B, g), since the invariance of W(A, o, B, g) will then follow
from (9).
Pick two tropically generic configurations p and ¢ in (L_. )12 x (R2) el and
connect them by a path & C (L_o)lol x (R2) Nl sych that
» & consists of (A, «, i, g)-generic configurations and finitely many almost
(A, «, B, g)-generic configurations,
 for any almost (A, «, B, g)-generic configuration z € £ and any injective codi-
mension 1 combinatorial type of parameterized marked tropical curves in
(ev)™1(z) C Ma 4.p.¢- the path € intersects ev(zMg’a, 3 g) transversally.

According to Lemmas 15, 17, 19, and 21, the value of } _; .15y W(A) is the same

for all (A, «, B, g)-generic configurations z € £. In particular, W™ (A, o, B. g, p) =
W™ (A, o, B,2.9). O

S. Proof of the recursive formulas
5.1. Auxiliary lemmas

Lemma 28 (cf. 3], proof of Theorem4.3). Let A, «, B, and g be as in Theorem 3. Fix
positive real numbers € and N, and consider a multi-fropically generic configuration
p = (" phH € QA a, B, g) such that
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o the second coordinates of all the points in p belong to the interval (—e, e),

* the first coordinate of one point in pt is smaller than —N, while the first coor-
dinates of all other points in p¥ belong to the interval (—e, ).

Then for any tropical curve T € T(A,«, B, g, p), the second coordinates of all
trivalent vertices of T belong to the interval (—e, ). Furthermore, if N is sufficiently
large with respect to ¢, there exist real numbers a and b satisfying the inequalities
—N < a < b < —& and satisfving the following condition: for any tropical curve
T € T(A,a,B. g, p) the intersection of T with the rectangle {(x,y) € R? : a <
x <band —e <y < &} does not contain vertices of T and consists of horizontal
segments.

Proof. Consider a tropical curve T € T(A, «, B, g, p). Among the trivalent vertices
of T choose a vertex v = (v, v2) having the maximal second coordinate. The
curve T has an end starting at v and pointing upwards. This end is orthogonal to one
of the upper sides of A, and thus, is of weight 1 and of direction either (0, 1) or (1, 1).
Hence, T should have another edge which starts at v and does not point downwards.
Consider a simple parameterization (I', w, 2) of the irreducible subcurve T° of T
such that v € TY, and denote by P the lifting of p to I'. If v2 > &, the connected
component of T'\ P containing 2! (v) has at least two ends, and thus, (I", w, &, P) is
not a parameterized marked tropical curve. This contradicts Lemma 23. In the same
way one can show that the curve 7' does not have vertices below the line y = —e.
This proves the first statement of the lemma.

Denote by R the rectangle {(x,y) € R?: —N < x < —gand —¢ < y < g},
Let 7! be an irreducible subcurve of T such that the intersection of 7'! with the
interior of R is non-empty, and let (I'!, w!, h!) be a simple parameterization of 7!,
As follows from Lemma 23 and the first statement of the current lemma, the image
under i of any path y C T'\ P does not intersect one of the two horizontal edges of R.
Thus, for any point (x1, y1) belonging to the interior of R and to a non-horizontal
edge of T'!, there exists a path y C T\ P such that 4 (y) contains (x{, y;) and is the
graph of a strictly monotone function f defined cither on the interval [—N, x1], or on
the interval [x; — ¢]. Since there are only finitely many slopes that can be realized
by the edges of a tropical curve with Newton polygon A, the length of the definition
interval of f is bounded from above by a constant depending only on A. This proves
the second statement of the lemma. O

Lemma 29. Consider a non-degenerate lattice polygon & whose projection to the
horizontal coordinate axis coincides with the segment [0, 1]. Put o1 = § N {x = 0},
oy = 6 N {x = 1}, and introduce the vectors uy = (—1,0), uy = (1,0). Fixa
point p € R? ¢ R? and an ordered splitting |o1| = nyq + - + nym, (respec-
fively, |oa| = na1 + -+« + nam ) of |o1| (respectively, of |o2|) into positive integer
summands. Fix also two non-increasing sequences of real numbers yi1...., Yi,m;
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and y2,1....,Y2.m.- (In the case |o;| = 0, the sequences nj,...,n;m and
Yid----.Yiom; are empty.) Then there exists a parameterized plane tropical curve
(T, w, h) satisfving the following conditions:
(1) T has genus 0 and degree (ny Uy, ..., R m Ui, 02 142, ... 02 m U2, U3, Ug),
where us and w4 are primitive integer outward normal vectors of the two non-
vertical sides of 6,

(2) I hasmy ends Ev1,..., E1m, suchthat, foranyk = 1,...,m, the end Eq
is of weight ny g, and h(E1 k) is a horizontal negatively directed ray which is
contained in the line y = y1 .,

(3) T hasmy ends Es 1, ..., Ea m, such that, foranyk = 1,...,my, the end Ey i
is of weight ny x, and h(E ) is a horizontal positively directed ray which is
contained in the line y = ya g,

4 peh(T).
Furthermore, if all the numbers y1,1,-..,Yi,my> Y2,1+---» Y2.m, differ from the sec-
ond coordinate of p, then all parameterized plane tropical curves having the above

properties define the same plane tropical curve, and p belongs to the interior of a
non-horizontal edge of this curve.

Yo 54

Yo, j =Ya,5+1

Figure 5. Curve (I', w, 1} in Lemma 29.

Proof. Any plane tropical curve having a parameterization with the described prop-
erties can be constructed in the following way. Take the union 2 of all the lines
Y= DVYi1:--2¥ = Vim ¥V = ¥2.1,---, YV = Y2.m,, and consider a broken line £
such that

» any vertex of £ belongs to 2,
» any edge of &£ has a rational nonzero slope,

+ the two unbounded edges of £ have directions determined by the vectors u3
and 4,
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» for any vertex v of £, the two primitive integer vectors e; and e, starting at v
and directed along the adjacent edges of &£ satisfy the relation

erteat > mugur+ Y. npgus =0,

V1.,k=Vy Y2 k=Vy

where y = v, is the line containing v.

Make a horizontal shift of £ in order to obtain a broken line containing p, and
extend the result (in a unique possible way) to a plane tropical curve which admits
a parameterization satisfying the properties (1)—(3). This proves the existence. The
second statement of the lemma immediately follows from the construction. O

Consider the subset X C Q(A, o, 8, g) formed by the multi-tropically generic
configurations p = pPuU pt satisfying the following property: for any point p € pH,
there exists a number M such that any configuration p € Q(A,«, f, g) obtained
from p by a horizontal shift of p to a point whose first coordinate is smaller than M
and different from —o¢ 1s multi-tropically generic.

Lemma 30. The subset X is open dense in QA «, B, g).
Proof. Straightforward from Lemma 25. O

Lemma31. Let A, o, §, and g be as in Theorem 3. Choose 7, o', ', and g’ satisfving
the conditions (3), a configuration p = pb U pIi e X, and a point p € pﬁ. Then
any subconfiguration ¢ C p such that g € Qs(A), o', B, g") and ¢* = pP\{p} is
multi-tropically generic.

Proof. Consider a splitting (I5(A), o', . g") = Y7L (AD ¢@ gD ¢@yin §,,
and a partition |_[IL, q® of ¢ compatible with this splitting. All the polygons
AD AT grein E (it follows from Remark 1 and the fact that /5(A) € B).
For each i = 1,...,m, pick a parameterized plane tropical curve ([0, w(® /@)
matching ¢ and having the degree (A@)"8" and the genus g@.

We say thataleftend of T’ @) i3 marked if this end terminates at a marked univalent
vertex of '), Among the non-marked left ends of [ [/, T'®) choose || 8" — || ends
whose weights fit the sequence 8° — 8, and denote the chosen set by €. Consider a
polygon & such that

» the projection of § to the horizontal axis coincides with the segment [0, 1],
* thesideso; =8N {x =0} and o, = 6 N {x = 1} satisty |o1| = J(a) — J(&),
loa| = J(B") — J(B),

» the two non-vertical sides of § are respectively parallel to the sides T (A, 7) and
L (A, 7) of A which are defined as follows: the side T(A, 7) is of slope —1 and
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not a neighbor of o if 0 € J,and T(A, 7) is the non-vertical side adjacent to the
upper vertex of o otherwise; the side L(A, 7) is of slope 0 and not a neighbor

—_—
of o if—1 € T, and 1 (A, 7) is the non-vertical side adjacent to the lower vertex
of o otherwise.

The conditions (3) imply that § is nondegenerate. Putm; = |« —«’||, consider a non-
increasing sequence yi,1,..., ¥Vi,m; of second coordinates of points in P\ ¢°, and
denote by ny 1....,7n1,,, the weights prescribed to the points of P’ \ q" by the se-
quence «. Furthermore, put my = ||’ — B, consider a non-increasing sequence
¥2,1, ..., ¥Y2,m, Of second coordinates of the images of terminal univalent vertices
of left ends belonging to &, and denote by n2 1. ..., 12 m, the weights of the corre-
sponding left ends. Take a parameterized plane tropical curve (T, w, /) satisfying the
conditions (1)—-(4) of Lemma 29. Due to a possibility to make a negative horizontal
shift of p and simultaneously compose / with this shift (see the definition of X7), we
can assume that there exists a vertical line x = ¢ such that the images of vertices
of I' lie in the left half-plane delimited by this line, and the images of non-univalent
vertices of | [; I'® lie in the right half-plane. In particular, the line x = ¢ crosses the
images of all left ends belonging to & and the horizontal positively directed images
of ends of I

Cut along the preimages of x = ¢ the left ends belonging to & and the ends
of I' whose images are horizontal and positively directed, and remove the trivial
pieces of the edges cut. The natural gluing of remaining pieces of T and [ [, r@

gives tise (o a collection of parameterized plane tropical curves (TU), v, 4(1)y,
j = 1.....4, asplitting (A,a,B.g) = Zizl(AU),&(j),ﬂ(f),g(j)) in &, and a
partition U§=1 f)(j ) of p which satisfy the following properties:
« cach curve (TU?, w9, h)) matches the configuration p*/” and has the degree
(AUNETBY and the genus §9,
+ the partition | |%_, p*/’ is compatible with the splitting

£

(A,a,B.g) = Z(A(J)’&(j),ﬁ(j)’g(j))_
i=1

Since the configuration p is multi-tropically generic, each configuration pa, j =
I,..., £ is wopically generic. This implies, that for any j = 1,...,£ the curve
(T, W) hD) defines a nodal plane tropical curve T such that no point in
(pUNY¥ is a vertex of T, Moreover, according to Lemma 23, the lift pv of pi)
to W) producgs a parametegzed marked tropical curve (f‘(f ), wl ), B ), f’(‘])), and
thus, the sum 7 + ... 4+ T® is a nodal plane tropical curve. Hence, the configu-
ration ¢ is multi-tropically generic. 0
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5.2. Proof of Theorem 3. Choose positive real numbers ¢ and N satisfying the
inequality ¢ < N, and consider a configuration p = (p®, p*) € X € Q(A, . B.g)
such that the second coordinates of all the points in p belong to the interval (—e¢, €), the
first coordinate of one point p € p‘* 1s smaller than — /N, and the first coordinates of
the other points in p* belong to the interval (—e, £). Assume that the numbers & and N
are chosen in such a way that, for some numbers a and b satisfying the inequalitics
—N < a < b < —¢, the intersection of any tropical curve in 7 (A, «, B, g, p) with
the rectangle Rg = {(x,y) € R? :a < x < bhand —& < y < &} consists of
horizontal segments (the existence of such € and N is guaranteed by Lemma 28).
Consider a tropical curve T € T(A, «, 8, g, p) without edges of even weight.

Suppose that p belongs to a o-end e of T'. Since the configuration p is multi-
tropically generic, Lemma 7 implies that the end e 1s not marked, i.e., terminates
at a point g € L_ different from any point of p. Consider the configuration
P =" p" e QA + Bk, B — 6k, g), where k = w(e) is the weight of e, the
configuration p’ is obtained from p* by insertion of g in the k-th group of points,
and p* = p¥\ {p}. Since p € X, the configuration p is multi-tropically generic.

Clearly, the curve T belongs to T (A, «+ 6, B — 6. g, p). Onthe other hand, we
can assume that N is chosenso that T (A,a + 6, — 6,2, p) CT(A,a, B, g, p).
Thus, the contribution to W(A, «, 8, g) of the curves T € T(A,«, B, g, p) such
that p belongs to a o-end of T is equal to

> WALe+ 6B bh.g)

k=1, Bi =0

Suppose now that p does not belong to any o-end of 7. Since T is nodal, it can be
represented in a unique way as a sum of its irreducible subcurves 7W ... T®),
Forany j = 1,...,£, consider a simple parameterization (I'V), w() h{)y of TU),
Pick anumber ¢ such thata < ¢ < b. Forany curve (T'Y), w11 consider the lift
1) < T of the intersection points of T with the vertical segment x = ¢, —¢ <
y < ¢. Lemma 28 implies that no connected component of ro \ T has an image
intersecting the both halves R N{x < cyand RN {x > c}of R2. 1f T #£ &, then
T cuts TY) in two parts: the image of any connected component in the right part
I‘g‘?’) mtersects RZ N {x > c}, and the image of any connected component of the left
part Fg) intersects R% N {x < c}. Any connected component Fg’”), e L ..dy,

gives rise (0 a parameterized plane tropical curve (Fg’”), wg’”), hg’")), where the
weight function wg’”) is induced by w?, and hgg’”) is given by a modification of A/)
on the edges cut (without changing the directions of the images of these edges). The
image of Fo(t/’”) under hg’”) is obtained from 7 (Fgg’”)) by the extension of the edges
cut by the segment x = ¢, —& < vy < g up to horizontal positively directed rays.

For any connected component F_;{’“ ), w=1,..., /Z’j of Ff,{), denote by f;{”" ) the

graph obtained from Fg’“ ) by adding a vertex to each cutedge. The graph f‘g’“ ) gives
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f(j .u) (J i)

rise to a parameterized plane tropical curve ( wg h(j * )) where again the

weight function w g (-1 i induced by w9, the restriction of h(J 3 onlg (:44) s oiven by

a modification of h(f ) on the edges cut (without changing the dlrectlons of the images
of these edges), and the image under hg’“ ) of any added vertex belongs (0 L _. The

image of f‘g’” ) under hf(;é’“ ) is obtained from /¥ )(Fg’” ") by the extension of the
edges cutby the segment x = ¢, —¢ < y < g uptohorizontal negatively directed rays.
Denote by T’ the plane tropical curve defined by the collection of all parameterized
plane tropical curves (fé{’“) Geit) h(J NG = =1, 4. We say
that 7" is the derivation of T .

In the case that Y4 is empty, then AU)(I'7)) < {x < ¢}, and we use the notation
TV, wPP K ) for the parameterized plane tropical curve (T0), w@, By,

Since the half-plane x < ¢ contains only one point of p*, Lemma 23 implies that

. allthecurves(F(J v) g’”) h(j’”)) j=1....4v=1,...,¢;,areof genus 0,

« among the curves (Fg’” (J’”) h(J’”)) j=1...,6,v =1,...4;, there
exists a curve (I', w, /) such that I" has exactly one end whose image under A
points upwards (i.e., has the direction either (0, 1) or (1, 1)), and exactly one
end whose image points downwards (i.e., has the direction either (0, —1) or

(_17 _1))7

« the image under / of any left end of I" terminates at a point of p”,

« for any curve (F;(ﬂj’v) (ov) h(J ")) which is different from (F w, h) the image

hg’”)(Fg’”)) is a h0r1zontal straight line; such curves (Fg’ (J ) pY ’”)) are
called horizontal.

In particular, the Newton polygon A" of T’ is the T-pecling /5(A) of A for certain

3 C {6, j}. Denote by ¢’ the vertical left-most side of A,
Let (p')" C p® be the subconfiguration formed by the images of marked terminal
points of horizontal curves, and let ¢’ < « be the corresponding sequence in €.

Since T 1s nodal, the images of terminal points of left ends of graphs Fg) arc disjoint

from the images of terminal points of left ends of I'. Among the left ends of graphs
I‘é‘{) consider the edges whose images terminate at points different from the points
of p°, and denote by B’ the sequence determined by the weights of the edges consid-
ered. Since the image under £ of any left end of I terminates at a point of p’, we
have 8’ > B. Furthermore, Jo'+ JB" = |o’|. Counting the edges cut by the segment
x =¢,—¢ < y < g, we obtain that the genus ¢’ of 77" isequalto g — || — B| + 1.
The curve 77 belongs to T (A, &', B/, &', p'), where p’ = ((p")". (p')"), and (p")* is
obtained from p* by removing the point p, and all the edges of T are of odd weights.

Describe now the inverse procedure. Fix two elements «’, f/ € € such that
& <o, pf > B,and J&' + JB = |o'|. Put g’ = g —||B" — B| + 1. Choose
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Figure 6. Cut in the proof of Theorem 3.
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a subconfiguration (p’)" < p® such that (p')" corresponds to the sequence ¢’ (the
number of such subconfigurations (p’ )b 18 ( o‘j‘,)). Consider the configuration p’ =
(p"* U (p")F, where (p')?, as before, is obtained from p* by removing the point p.
By Lemma 31, the configuration p’ is multi-tropically generic. Furthermore, by
Lemma 26 the set T(A’, o, 8, g’, p/) is finite, and we can assume that the first
coordinate of p is much less than the first coordinates of the vertices of all the curves
n T (AN,a, 8, ¢, p).

Pick a curve 77 € T(A', o/, ', g’, p’) without edges of even weight. Let
(f‘(i), we(‘;'e), he(%)), i =1,...,m,be simple parameterizations of irreducible subcurves
of T”. Among the non-marked left ends of | [[_, IA“G(R” choose ||8" — B]| ends whose

weights fit the sequence ' — B (the number of such choices is (%/ )), and denote the

chosen set by &. Lemma 29 provides a parameterized plane tropical curve (I', w, /1)
such that

» (I',w, h) is of genus 0 and has exactly two ends whose images under / are not
horizontal; these ends are of weight 1, and their images point in the directions of
outward normal vectors of the sides T(A,7) and L(A, 7T) of A (see the proof
of Lemma 31 for notation),

» the images of left ends of I' terminate at the points of pb\( p)P, and the weights
of these left ends are given by the sequence o — ¢/,

» the ends of I' whose images are horizontal positively directed fit the ends be-
longing to & and have the corresponding weights,

e peh(l).

In the same way as in the proof of Lemma 31, we can glue (I', w, k) with the curves
(fe%), w(ﬁl), hf,,;)), i = 1,...,m,and obtain a collection of parameterizations of plane
tropical curves T, ..., T® whose sum T belongs to 7 (A, «, B. g. p). Since p
is multi-tropically generic, Lemma 29 implies that the curve (I', w, /) is defined by
the above properties uniquely. Furthermore, the initial curve T’ is the derivation
of 7'. The multiplicative contribution of the trivalent vertices of I" to the Welschinger
multiplicity of T is 1, and we finally conclude that, for given ¢” and 8/, the contribution
to W(A, o, 8,g)of the curves T € T(A, , B, g, p) such that p does not belong to

any o-end of T is equal to (J) (%/)W(A’,a’, £.g'). ]

5.3. Proof of Theorem 4. The proof goes in the same way as for Theorem 3.
The only modification concerns the second sum in the right-hand side of (4): as-
suming that a plane tropical curve T/ € T(A', ¢/, B, ¢’, p’) is the derivation of
T € T7(A,a, B.g. p), we have to describe possible irreducible subcurves of T
and their contribution to the formula. The first (respectively, second) coefficient in
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the second sum of the formula reflects the distribution of the points of ( p’ )b (respec-
tively, (p’ )y among the irreducible subcurves of T’. The conditions on the numbers
o, p g and @, O ¢@ i =1, ... m,come from the conditions in Theorem 3,
and the inequalities || B @ > 0 mean that, for each irreducible subcurve T, its
simple parameterization (1’“\%), w(ﬂl), h(;,t)) must glue with the curve (I, w, ) (in the
notation of the proof of Theorem 3). O

6. Concluding remarks

6.1. Generating functions. Let A be one of the polygons shown in Figure 1, and X
the real toric Del Pezzo surface defined by A. We say that a convex lattice polygon
A" has the same shape as A, if A and A° have the same number of sides, and any
side of A® is parallel to a side of A. Let Ex be the set which consists of all convex
lattice polygons (considered up to parallel translation) having the same shape as A
and their J-peelings (7 C {6, j} being A-admissible). The set = x 1S a commutative
semigroup with respect to the Minkowsky sum.
Following [4], [9] introduce two generating functions

A g_l xa ﬁ Zr
Zy(w,x,y,z) = E WA, o, B, gv"w — ¥,
gEZ, AcEy: ! L
a,BeC, Jat+JB=lo(A)|
irr _ irr A g—1 x” 8 z’
Zy(w,x,y,z) = E WA, a, B, g)v-w Jy pr

g=0, A€EBE¥y
o, Be€, Ja+Jp=|c(A)|

where o (A) is the intersection of A with its left vertical supporting line, x and y are
infinite sequences of variables, and r is defined by (1). These generating functions can
be seen as formal series in variables w, z and multi-variables x, y with coefficients
in the Novikov ring of the semigroup Ex. Using the same arguments as in [9],
Section 6.4, and [4], Section 5.3, one can check that these generating functions are
related by the identity Zx = exp Z'¥ and satisfy the differential equations

E vl (i — OOE yki)ZE = i “1€8;=( EXP OOE (t_kxk + wtki)ZE
oz oxy w =0 vk ’
TC(0,~1} k=1 k=1
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where ig\ykﬁyk ek Stands for Z3 with yy replaced by yi + wt*, and

v ) if T is A — admissible,
ol —
0, otherwise.

6.2. Non-invariance in the classical setting. The absence of invariants of topolog-
ical nature as mentioned in Introduction can be illustrated by the following examples.

Real irreducible plane curves of degree d and genus g passing through a generic
configuration of 3d + g — 1 real points form a finite set. If g > 0, then under variation
of the point configuration, this set is subject to codimension one events in which a
pair of real curves with the same embedded topology disappears turning into a pair
of imaginary conjugate curves, or vice versa. In the case of elliptic quartics (d = 4,
g = 1), it is shown in [5], Theorem 3.1. Gluing elliptic quartics with one or several
lines, it 1s not difficult to construct examples of higher degree and genus. The example
with elliptic quartics shows also that the number W(A(5P1), (0), (5), 0) does not lift
up to the classical setting as an invariant formulated in purely topological terms.

Another example, demonstrating the same phenomenon, is as follows. Consider
plane rational curves of degree d which pass through 34 + 1 — b; — by generic
points outside a line P! < P2 and have two non-fixed tangency points with P!, one
of intersection order »; and the other of intersection order b5, where b, and b, are
distinct, odd, and satisfy the inequality b1 + b2 < d. Under variation of the point
configuration, the collision of the two tangency points into one tangency point of order
b1 + b5 is an event of codimension one. Crossing such a wall leads to appearance,
or disappearance, of two real curves which have the same embedded topology (even
with respect to P1).

One more phenomenon is the change of the Welschinger multiplicity of precisely
one member of the set of curves. Consider real plane rational curves of degree d > 5
passing through @ > 3 fixed generic real points on P! € P2 and 3d — 1 — a generic
real points in P2 \ P!. Here we observe the following codimension one event:
precisely one of the curves splits into D + P!, where D is tangent to P! at one point
and transversal to it at d — 3 other points. On one side of such a wall the tangency
point turns into a solitary node, and on the other side into a crossing point, whereas
the other singularities do not change.

The above arguments do not exclude the existence of relative real algebraic enu-
merative mvariants in other situations. For example, such invariants were introduced
by Welschinger [12] in the case of one simple tangency constraint with respect to a
smooth null-homologous curve.
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