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Kodaira dimension and symplectic sums

Michael Usher

Abstract. Modulo trivial exceptions, we show that symplectic sums of symplectic 4-manifolds
along surfaces of positive genus are never rational or ruled, and we enumerate each case in
which they have Kodaira dimension zero (i.e., are blowups of symplectic 4-manifolds with
torsion canonical class). In particular, a symplectic four-manifold of Kodaira dimension zero
arises by such a surgery only if it is diffeomorphic to a blowup either of the K3 surface, the
Enriques surface, or amember of a particular family of 72-bundles over 72 each having b; = 2.

Mathematics Subject Classification (2000). Primary 57R17; Secondary 53D35, 57R57.
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1. Introduction

Our understanding of the diversity of the world of symplectic four-manifolds has been
greatly enriched by the introduction in [7] and [18] of the symiplectic sum. Given sym-
plectic four-manifolds (X1, @1), (X2, @») containing embedded, two-dimensional
symplectic submanifolds F; C Xp, I C X> of equal area and genus and an
orientation-reversing isomorphism ®: Ny, Iy — Nx, I> of their normal bundles
(which of course exists if and only if F; and F> have opposite self-intersection), the
symplectic sum operation provides a natural isotopy class of symplectic structures
on the normal connect sum

Z = Xl #F1=F2 X2 = (Xl \Ul) U3U1~@3VQ (X2 \ Vz),

where the v; are tubular neighborhoods of F; and we use the restriction of @ to the
unit normal circle bundles of the F; to glue the boundaries of the manifolds X; \ v;.
Using the symplectic sum along surfaces of positive genus, various authors over the
years have constructed symplectic four-manifolds satisfying an impressive array of
properties; see for instance Theorem 6.2 of [7], which for any finitely presented group
G gives a number #(G) such that whenevera +b =0 mod 12and0 < a < 2(h —
r(G)) there is a symplectic 4-manifold M, j g with w1 (M, 4.6) = G, ci(Myp.6) =
a, and co(M, p.g) = b. While Gompf’s examples were distinguished by their
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classical topological invariants, the symplectic sum also gives rise to infinite families
of mutually homeomorphic but nondiffeomorphic symplectic four-manifolds, since
if K 18 a fibered knot the operation of knot surgery with K [3] amounts to a symplectic
sum.

The purpose of this note is to show that, notwithstanding the diversity of symplec-
tic four-manifolds that can be constructed via symplectic sum, there are significant
topological restrictions on the manifolds that can be obtained in this way. Our results
may perhaps best be understood in terms of the notion of (symplectic) Kodaira di-
mension, a notion which dates from [20] and 1s discussed in some detail in [14]. We
shall recall the definition of Kodaira dimension below. First, recall that a symplec-
tic four-manifold is called minimal if it does not contain any embedded symplectic
spheres of square —1, and that if (X, @) is any symplectic four-manifold one may
obtain a minimal symplectic four-manifold (X', ®") by blowing down a maximal
disjoint collection of symplectic (—1)-spheres in X ; (X', @) is then called a minimal
model for (X, w).

Definition 1.1. Let (X, ) be a symplectic four-manifold with minimal model
(X', "), and let kxr € H*(X’;Z) denote the canonical class of (X', ®"). Then
the Kodaira dimension of (X, w) is

—oo ifkys - [@'] <Oorky, <O,
(X, ) if iy - 0] = k3, = 0.

k(X,w) = .
if kxs - [@'] > 0and kg, = 0,

2 if kx - [0] > 0and kg, > 0.

In Section 2 of [14] and references therein it is shown that « (X, w) is well defined
for any symplectic four-manifold (in particular it is independent of the choice of
minimal model, and one of the four possibilities listed above always holds); coincides
with the classical notion of Kodaira dimension in cases when X happens to admit
the structure of a complex surface; is equal to —oo if and only if X is a rational or
ruled surface;' and is equal to zero if and only if the canonical class of the minimal
model X is torsion. Moreover Theorem 2.6 of [14] shows that the Kodaira dimension
k (M, w) depends only on the diffeomorphism type of M, and not on the symplectic
form.

A common feature of the numerous interesting new symplectic four-manifolds
that the symplectic sum operation has provided to us is that they have always had
Kodaira dimension 1 or 2. For instance, knot surgery on the K3 surface with a
nontrivial fibered knot as in [3] always yields a symplectic four-manifold of Kodaira

Here and below we adopt the convention that a ruled surface is a symplectic manifold obtained by (possibly)
blowing up the total space of an §2-bundle over some Riemann surface. When we want to assume that no
blowups have been carried out, we shall refer instead to an “S2-bundle.”
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dimension 1 (even though the result is homeomorphic to the K3 surface, which has
Kodaira dimension zero), and (at least aside from some very trivial cases) Gompf’s
manifolds M, 5 ¢ have Kodaira dimension 1 if @ = O and 2 if @ > 0. Our main
theorem below will demonstrate that this is not a coincidence. To state it, we make
the following definitions.

Definition 1.2. Let (X, w1), (X2, @) be symplectic four-manifolds with F; C X;
embedded symplectic submanifolds of equal area and genus and opposite square.

(1) The symplectic sum X; #p =F, X» 18 called smoothly trivial if, for some
i € {1,2}, X; the total space of an S 2-bundle of which F; is a section. Otherwise,
the symplectic sum is called smoothly nontrivial.

(2) The symplectic sum X #p, —f, X» 1s said to be of blowup rype if, for some
i € {1,2}, the pair (X;, F;) may be obtained from a pair (£, F') consisting of
the total space E of an S2-bundle of which F is a section by a sequence of zero
or more blowups at points not lying on F.

Remark 1.3. Ttis stated without proofin [7] thatif X; #F, —F, X»1isasmoothly trivial
symplectic sum, say with (X, F>) consisting of an S2-bundle and a section, then the
sum X; #p, —p, Xpisdiffeomorphicto X;. Itis notdifficult to prove this: simply note
that X5\ v4 will be diffeomorphic to aneighborhood of F1 in X1, so that for at least one
choice of the gluing map ®|5,, the sum will be diffeomorphic to X ; further, the gluing
maps ®|5,, 1 dv1 — Jv; that we are allowed to use in forming the symplectic sum are
precisely the restrictions of orientation reversing bundle isomorphisms, and so any
two of them differ by precomposing with an orientation preserving diffeomorphism
of dv; which extends over v, implying therefore that the diffeomorphism type of
X1 #Fr =F, X is independent of the gluing map and so is X; in any event. Of
course, this argument is dependent on the fact that the gluing map is required to
preserve the fibers of the normal circle bundles, an issue which seems to have caused
a certain amount of confusion in the literature, where one occasionally finds mistaken
claims that symplectic sums with S2-bundles along sections sometimes change the
diffeomorphism type.

Atany rate, the above fact justifies our use of the term “smoothly trivial” to describe
such symplectic sums, and by Theorem 2.6 of [14] implies that performing a smoothly
trivial symplectic sum leaves the Kodaira dimension unchanged. Incidentally, while
these sums are trivial from a smooth standpoint, they generally do alter the symplectic
structure in a manner equivalent to the “inflation” technique of [13], a fact which is
exploited 1n [16].

Definition 1.4. If (X, @), (X3, ®,) are symplectic four-manifolds with F; C X;
embedded symplectic submanifolds of equal area and genus and opposite square, the
symplectic sum X #p, —p, X» is called relatively minimal if for eachi¢ = 1, 2, there
are no embedded symplectic spheres of square —1 in X; \ F;.
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Remark 1.5. If asymplectic sum Z = X #r,—F, X isnotrelatively minimal, then
if we blow down maximal disjoint collections of spheres of square —1 in X \ F; and
X\ F, to obtain symplectic manifolds X7, X, then the F; survive in the blowdowns
and the areas, genera, and self-intersections of the F; are left unchanged. Hence we
may form a symplectic sum Z’ = X{ #r,—r, X%, and Z may be recovered from
Z' by a sequence of blowups. X| #r, —p, X} will be smoothly trivial if and only if
X1 #p,=F, X5 1s of blowup type. Thus any symplectic 4-manifold which arises as a
symplectic sum which is not of blowup type is a blowup of a symplectic 4-manifold
which arises as a smoothly nontrivial, relatively minimal symplectic sum. Moreover,
symplectic sums which are of blowup type are diffeomorphic to blowups of one of
their summands.

Remark 1.6. In this language, the main result of [27] may be rephrased as stating
that any symplectic 4-manifold arising as a smoothly nontrivial, relatively minimal
symplectic sum along surfaces of positive genus 1s minimal.

Our main result is the following:

Theorem 1.7. Suppose that (X1, wy), (X2, w,), F1, and Fy are such that the sym-
plectic sum £ = X1 #p,=F, X2 is smoothly nontrivial and relatively minimal and
the genus of the F; is positive. Then:

(a) Z does not have Kodaira dimension —oc.

(b) If Z has Kodaira dimension 0, then the diffeomorphism tyvpes of Xy, Xz, and Z
are given by one of the rows in the following table, where the notation M(A, B; ¥)
denotes a T?-bundle over T? as described below or in [24]. Moreover, each
entry in the third column of this table can in fact be constructed as a smoothly
nontrivial, relatively minimal symplectic sum along a forus.

X Xs possible diffeomorphism types
Ole #F1=F2 X2

CP2# (18 —k)C P2 CP2# kCP2 K3 surface

B % 52 CP2#17CP2 K3 surface

CP2# (9—k)YCP2 | (S2xT?) #kCP2 | Enriques surface

S§% % 82 (S% x T?) # 8C P2 | Enrigues surface

CPZ2#9CP2 S2%T? Enriques surface
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X1 X, possible diffeomorphism types of X1 #p, =, X2
—1 0
s2xT2 | s2x72 | M1, “ .
| 0
1 2 0
m(-1.| )
0 1 0
1 2 0
M| 71
0 —1 ]
1 2y 0
M| I, : (y.z€Z)
0 1 ]
1 2y+1 0
s2x72 | s2xT2 | M-I Y :
0 ] 0
1 2y+1 0
M| -1, ¥ : (y € Z)
0 ] ]
—1 ]
stxT|sexre | M| “ .
0 —1 0
1 2 ]
ml-r.[ ).
0 1 0
1 2y 41 0
M I, y b (vaEZ)
0 -1

Here S% X T2 refers to the smoothly nontrivial S 2-bundle over the torus. The K3
surface 1s, of course, the smooth four-manifold underlying a quartic hypersurface of
C P3, while the Enriques surface can be realized either as the quotient of a K 3 surface
by a free involution which is holomorphic for an appropriate complex structure, or,
equivalently, as the result of performing logarithmic transformations of multiplicity 2
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on two fibers of the rational elliptic surface E(1); pp. 590-599 of [9] provide a concise
description of the complex geometry of these manifolds. The notation M(A, B v)
(A, B €SL(2;Z),0 € Z?, AB = BA)aboveis asin [24]: identifying T2 = R?/Z?
and writing the coset of (x, y) € R? as [ |, we define

) ) L)

H

(et D) = G2 C))

and let M (A, B; (m, n)) be obtained from M (A, B; (0, 0)) by removing a neighbor-
hood of a torus fiber of the projection [s,7,x, vy] +— [s,¢] and regluing it by the
map

aD? x T? — aD? x T?,
@™ [x, y]) > (> [x + m0], [y + nb]).

Since manifolds obtained by general symplectic sums are blowups of those ob-
tained by relatively minimal ones, and since Kodaira dimension is preserved under
blowups, Theorem 1.7 has the following corollary:

Corollary 1.8. No symplectic 4-manifold of Kodaira dimension —oc arises as a
symplectic sum along surfaces of positive genus which is not of blowup type, and
the only symplectic 4-manifolds of Kodaira dimension O which arise as symplectic
sums which are not of blowup type along surfaces of positive genus are blowups of
symplectic manifolds diffeomorphic to either the K3 surface, the Enriques surface,
or a T*-bundle over T? having the form M (I, (3! %) :0) or M (—1.(}%):7),
where z € Z, and v € {(0,0),(0, 1), (1,0)}.

Symplectic 4-manifolds of Kodaira dimension —oc are of course well understood
since they are all rational or ruled. In light of Gompf’s manifolds M, ; ¢ mentioned
above, the classes of symplectic 4-manifolds of Kodaira dimension either 1 or 2 are
each at least as complicated as the class of all finitely presented groups, which have
been known to be unclassifiable since the 1950s. The classification of symplectic
4-manifolds of Kodaira dimension zero, meanwhile, 1s a very interesting open prob-
lem. The only presently-known such manifolds are blowups of the K3 surface, the
Enriques surface, or an orientable 7'2-bundle over T2 (all of the latter were proven (o
admit symplectic structures in [5]), and a recent striking result independently proven
in [1] and [15] implies that any minimal symplectic 4-manifold of Kodaira dimension
zero necessarily has the same rational homology as one of the known minimal ex-
amples. Theorem 1.7 thus shows that (up to diffeomorphism) if any new symplectic
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4-manifolds of Kodaira dimension zero do exist, then they cannot be found by per-
forming symplectic sums along surfaces of positive genus. Note that since blowing
down a (—1)-sphere amounts to performing a symplectic sum with C P2 along a line,
any symplectic 4-manifold arises (in a somewhat trivial fashion) as a smoothly non-
trivial symplectic sum along spheres. It would be interesting to know whether or not
new symplectic 4-manifolds of Kodaira dimension zero can arise by symplectic sum
with C P2 along a quadric (i.e., by blowing down a (—4)-sphere), or more generally
whether or not new symplectic 4-manifolds of Kodaira dimension zero can arise via
the rational blowdown procedure of [2].

Theorem 1.7 pins down the diffecomorphism type of the symplectic sums in ques-
tion; it would be somewhat preferable to have a result specifying the symplectic
deformation type (though it is worth noting that this may be a moot point, since any
two symplectic structures on any of the manifolds in the last column of the table in
Theorem 1.7 have the same canonical class, and there are not currently any known
examples of smooth four-manifolds admitting deformation inequivalent symplectic
structures that have the same canonical class). In the case that the symplectic sum 1s
a T2-bundle over T2, our proof can be seen to imply that the symplectic form will
be positive on the fibers, and so will be deformation equivalent to a form obtained by
the Thurston trick. When the sum is diffeomorphic to the K3 surface or the Enriques
surface, the situation is perhaps more subtle, since in our proofs we use, among other
things, the fact that any orientation-preserving diffeomorphism of the boundary of
the complement of a tubular neighborhood of a fiber in the rational elliptic surface
E (1) extends to the whole complement, and so since such a diffeomorphism cannot
always be made symplectic we lose control of the symplectic form.

We should mention that, as in Remark 1.3, although the conclusion of Theorem 1.7
only concerns diffeomorphism types the result is sensitive to the fact that the sum
operation is symplectic and so the gluing map $: dv; — Jdv, is required to be the re-
striction of an anti-isomorphism of complex line bundles (rather than just an arbitrary
diffeomorphism). Of course, if ® were replaced by an arbitrary diffeomorphism, the
sum might not admit a symplectic structure; for instance for n > 2 a degree-zero
logarithmic transformation of a fiber of the elliptic surface £ (n) (which results from
an appropriate gluing of the complement of the symplectic torus fiber of £ (n) to the
complement of a symplectic torus in 72 x S?) is diffeomorphic to the non-symplectic
manifold 2n— 1)C P2 # (10n—1)C P2 (Theorem 6.1 of [6]). In other cases, though,
a more general gluing map gives rise to a manifold that happens to admit a symplec-
tic structure, which may even have Kodaira dimension zero: for instance, any of
the T2-bundles over T'? given in our notation above as M (I, I'; (m,n)) may be ob-
tained by an appropriate gluing of the complement of a symplectic torus in 74 to the
complement of a symplectic torus in T2 x S2; these all admit symplectic structures
by [5] (or indeed by earlier work; the case (712, n) = (0, 1} is the Kodaira—Thurston
manifold) with trivial canonical class and so Kodaira dimension zero. However, for
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(m,n) # (0,0), by(M(I,I;(m,n))) = 3, whereas all of the 72-bundles over 72
appearing in Theorem 1.7 have b1 = 2, so none of the manifolds M (7, I;(m, n))
occur as smoothly nontrivial symplectic sums,

In the next section, we prove part (a) of Theorem 1.7, which might best be seen
as a corollary of the arguments of [27]. The rest of the paper consists of the proof
of part (b), which relies on a result describing the behavior of the canonical class of
a symplectic sum in order to reduce the result to a small number of cases which can
be dispensed with in turn. A useful tool in two of the cases is Lemma 3.3, which
states that if F is a symplectic torus in C P2 # 9C P2 Poincaré dual to the first Chern
class, then there is a diffeomorphism of pairs taking (C P2 # 9C P2, F) to the pair
consisting of a rational elliptic surface together with one of its regular fibers. This
should be contrasted with various non-isotopy results for symplectic tori Poincaré
dual to multiples of the first Chern class, e.g., in [4].

Acknowledgement. [ am grateful for the referee’s corrections and suggestions. This
work was partially supported by an NSF Postdoctoral Fellowship.

2. Rational and ruled surfaces

Part (a) of Theorem 1.7 1s an easy consequence of two results proven in [27]. On
the one hand, from Section 2 of that paper, we find (based largely on [12]), that if
Z = X1 #p,=F, X> is a symplectic sum, and if A € H>(Z;Z) is any nonzero
homology class having a nontrivial Gromov—Witten invariant counting genus-zero
holomorphic curves, then there are classes A1 € H2(X1:Z), A> € Hy(X3;Z}, each
represented by a union of genus zero stable maps which are pseudoholomorphic for
some almost complex structure J; on X; ( = 1,2) which preserves T'F; such that

(icx, + PD[F], A1) + (ix, + PD[Fa], A3) = {icz, A) <0, (1)

where the final inequality results from the fact that the expected dimension of genus-
zero pseudoholomorphic representatives of A, namely —1 — {kz, A), must be non-
negative in order for the corresponding Gromov—Witten invariant to be nonvanishing.

On the other hand, Proposition 3.9 of [27], translated into the terminology of
the introduction, states that if the symplectic sum Z = X #p,—p, X is smoothly
nontrivial and relatively minimal, and if the F; have positive genus, then the F; are
“rationally K-nef,” which is to say, fori = 1,2, if A € H>(X;;Z) is represented by
a J;-holomorphic sphere for some almost complex structure J; preserving 7°F;, then
we necessarily have (kx, + PD[F;]. A) > 0.

As such, if the symplectic sum is smoothly nontrivial and relatively minimal,
and if the genus of the surfaces involved is positive, then (1) cannot hold, and so Z
cannot admit any nonvanishing genus zero Gromov—Witten invariants in any non-
trivial homology classes. In [27] this was used to conclude that Z is minimal; in
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our present case, we simply note that any rational or ruled surface does admit a non-
vanishing genus-zero Gromov—Witten invariant in a nontrivial homology class (the
proper (ransform of the hyperplane class for blowups of C P2, or the class of the fiber
of a ruling for ruled surfaces; see, e.g., [19]). Thus rational and ruled surfaces (i.e.,
symplectic 4-manifolds of Kodaira dimension —oc) cannot arise as smoothly non-
trivial, relatively minimal symplectic sums along surfaces of positive genus, proving
part (a) of Theorem 1.7.

3. 4-manifolds of Kodaira dimension zero
The proof of part (b) of Theorem 1.7 depends on the following result.

Theorem 3.1. Let (X1, w1), (X2, @2) be symplectic 4-manifolds, F; € X; (i = 1,2)
embedded symplectic submanifolds of equal positive genus, equal area, and opposite
self-intersection, and (Z = X1 #r,=F, X2, w) the symplectic sum of the X; along
the F;. Assume that the symplectic sum is smoothly nontrivial and that (Z, ®) has
Kodaira dimension zero and is minimal. Then the F; are both tori, and are Poincaré
dual 1o —kx,.

Proof. According to Theorem 2.1 of [12], there is a symplectic 6-manifold
(Z, 2) equipped with a projection 7: Z — D? with the property that, for A # 0,
(7 1A). Q| 1)) s isotopic to the symplectic sum Z, while (1 (0), 2|, -1(g))
is the singular symplectic manifold obtained by directly gluing the X; along the
I, so that the two pieces intersect in a copy I of the F;. As seen in the proof of
Lemma 2.2 of [12], one has (for A # 0) kz|, 17,y = &, -1(y, while for i = 1,2
ci(TZ|x;) = c1(X;) — PDx; [Fi].

We claim now that, where i3: 77 '(A) — Z,i;: X; — Z (j = 1,2) are the
inclusions, ;. [7 1 (A)] is equal to i1«[X1] + i2+[X2] in H4(Z; Z). This essentially
follows from the description of Z in Section 2 of [12]. Namely, as seen there,
77 1(A) for 0 < A < 1 may (up to isotopy) be obtained from 7~1(0) = X; U X,
as follows: a neighborhood of F C Z is diffeomorphic to a neighborhood U of the
zero section in L @ L* — F where L — F is a complex line bundle of degree
[F1]? and L* is its dual; putting a Hermitian metric | - | on L (which then induces
one on L*) and arranging that U = {(x,v,x) € L & L* | |«|,|v] < 1}, up to
smooth isotopy 7~ (1) coincides with 7~ (0) outside U and its intersection with U
is given by {(«,v,x) e L & L* | (o, v) = x(|e| + |v])A} where y: [0, 1] — [0, 1]
is a bump function supported in [0,21'/4] and equal to 1 on [0, A1/4]. Observe
that X; 1s homologous to the chain obtained by replacing X; N U by (in hopefully
self-explanatory notation)

(@,0.0) ] o] A+ {lev,x) ex " W) | A2 < o] = 1
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and likewise X5 is homologous to the chain obtained by replacing X, N U by
{@.ax) | el < A% + {(@v.x) e x 1 Q) | A2 < | < 1.

But adding these two chains together and passing to homology just recovers ;[ Z ;]
(as the first terms in the two expressions above now cancel), verifying that indeed
Dl TN = i1 [X1] + i24[X2] € Hi(Z: Z).

As such, we have

(kz U[o].[Z]) = (if (kz U [QD. [ W)]) = (kz U[Q]. izl (D))

= (kz U [Q]. i1+[X1]) + (kz U [Q], i24[X2])

= {kzlx, UI[Qx,. [X1]) + {kzlx, U [2]]x,. [X2])

= {(kx, + PDy [F1]) U [w1]. [X1]) (2)
+ {(kx, + PDx, [F2]) U [w2], [X2])

= {kx, U o], [X]) + (i, U [wa]. [Xa]) + [F o1 + fF o

Note that nothing that we have done so far makes any use of the assumption that
(Z,w) is minimal with Kodaira dimension zero. However, when we do implement
that assumption, the left hand side of (2) becomes zero. Hence

(('Q(l U [w1], [X1]) +fF 601) + ((’fxz U [w2], [X2]) +/}; 0)2) = 0.

We claim now that each «x; is proportional to PD[F;] in H 2(X;:R). Indeed, suppose
that this were not the case, say for i = 1. Then we could find an element § €
H?(X1;R) such that (kx, U 8,[X1]) = 1 but {8, [F1]) = 0. Moreover, since small
closed perturbations of symplectic forms are still symplectic, for any sufficiently
small ¢ > 0 the cohomology class [@1] 4+ ¢8 would admit a symplectic form, say
w{, which (assuming ¢ is small enough) would continue to make 7 symplectic, and
would induce the same canonical class ky, as does w; by virtue of being deformation
equivalent to w;. We would then have

fF o = [F o (e, U] [Xa]) = (kx, Ulan] [Xa]) +e.

But then we could apply the symplectic sum operation to the symplectic manifolds
(X1, w]), (X5, w,) along the F; to obtain a new symplectic manifold (Z¢, »®), dif-
feomorphic (indeed deformation equivalent) to (Z, @), and by (2) we would have

(kze Uw],[Z°]) = ¢ > 0.
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So (Z°, w®) is not a minimal symplectic manifold of Kodaira dimension zero. But
by Theorem 2.6 of [14], the Kodaira dimension of a symplectic four-manifold is a
diffeomorphism invariant, so since Z ¢ is diffeomorphic to Z (and since the minimality
or nonminimality of Z is also a diffeomorphism invariant; see, e.g., Proposition 2.1
of [14]) this is impossible. This contradiction shows that, for some g, 12 € R, we
have PD(kyx,) = p;[F;] € H2(X;R) fori = 1,2.

Evidently, since {kz U [w], [Z]) = 0, we must have

QH+pr+p2) | o= ((KX1 U [en], [X1]) +[F 601)

Fr

T ((m Ufoal. LoD + [ wz) o,

so since | #, @1 > 0 we have
M1+ po = —2.

In particular, at least one of the y;, say w1, is negative. Then (kx, U [@1], [X1]) =
pf F, @1 < 0,80 by Theorem B of [17] and results of [26] (X1, ;) must be either
a rational surface or an irrational ruled surface.

Nowif X; = C P? # kC P2, then where H isthehyperplaneclassand E1, ..., Ey
are the classes of the exceptional spheres of the blowups, we have PD(ky, ) = —3H +

Zf;l E;. Since PD(kx,) is primitive and the embedded surface F; represents
- PD(kx,), we have -- € Z and 50 p1 > —1. Similarly if X; = S? x S? then
PD(kx,) = —2[S? x {pt}] — 2[{pt} x S2], and again our assumptions on F; force
1 > —1 (g = —2 1s ruled out both by the assumption that f; has positive genus
and by the assumption that the sum is smoothly nontrivial, so that F; is not a section
of an S2-bundle). Thus if X is rational then pq > —1.

Suppose now that X is an irrational ruled surface; say X1 = (S?x X;,) # kC P2
(h = 1,k = 0). Then where o is the homology class of the proper transform of a
section of S%x X, — X and f is the class of the proper transform of a generic fiber,
we have PD(kx,) = 204+ (2h—2)f + Zle e;. If k > 0, then in order for [F;] to
be an integral class we necessarily have 1 > —1. It & = 0, we have either £ > —1
or i1 = —2,butif @y = —2 then by Proposition 3.3 of [27] there is a ruling on X of
which F; is a section, which is forbidden by the assumption that the sum is smoothly
nontrivial. Finally, if X; is a nontrivial S2-bundle S? X X over a surface of genus
h > 0, then where s, s are sections of square +1 and —1 respectively, we have
PD(kx) = 2h—3)[sT]—(2h—1)[s7], sothatsince [F] = MLIPD(KX) e Hy(X1:7Z),
we get || > 1,50 g > —1.

Summing up, we have shown that since g1 < 0, X7 1s rational or ruled, and that
(because X is rational or ruled) by the hypothesis of the theorem we have ;1 > —1.
But then since p{ + 12 = —2, we must have p, < 0, which then forces X5 to be




68 M. Usher CMH

rational or ruled, and so by the same arguments @, > —1. Sosince @) + py = —2
and fi1, ;2 > —1, we in fact have 1 = o, = —1, ie, [F;] = —PD(ky;) for
1= 1,2

To see that the F; are tori, simply note that the adjunction formula gives
2¢(F))—2=[F]*+ (kx;, [Fi]) = Ic)zfi — KJZ(I. =1 O

Theorem 3.1 and its proof show that, in order for a smoothly nontrivial symplectic
sum X; #p —F, X5 along a surface of positive genus to be minimal and of Kodaira
dimension zero, the X; necessarily are rational or ruled, and the F; are tori Poincaré
dual to —xy;. The main theorem of [27] shows that the sum will automatically be
minimal provided that the X; and F; satisfy the hypotheses of Theorem 1.7. The
problem of determining the diffeomorphism types of such sums now naturally splits
into 3 cases, which we address in turn.

3.1. Case 1: X1 and X, are rational. Note that, since the F; are tori, we have
K)2(1#F1:F2X2 = 30(X1 #r7,=F, X2) +20(X1 #F=F, X2) = kg, + kg, Now the

rational surfaces have 2 ___=9—kand«x2, ., = 8, in light of which, in
CP2gkC P2 S=x§

order for K}zﬁ iy Xy O be zero, the unordered pair { X, X, } must be either {C P2 #
kCP2,CP2# (18—k)CP2} (0 <k <9 or{S2xS2, CP2#17C P2}. Note that
since [F;] = —PD(kyx, ), F; has intersectionnumber 1 with each embedded symplectic
(—1)-sphere in X;. Choosing an almost complex structure .J; on X; generic among
those making F; pseudoholomorphic, each homology class in X; that is represented
by an embedded symplectic (—1)-sphere will be represented by a J;-holomorphic
(—1)-sphere, which will then intersect F; transversely and once. Blowing down such
a (—1)-sphere will thenresult in a symplectic manifold X/ together with an embedded
torus F/, with [F/]* = [F;]* + 1.

Now according to Lemma 5.1 of [7] (respectively, Proposition 1.6 of [22]), if
(M1, w1), (M3, ;) are symplectic 4-manifolds containing surfaces X1, 35 of equal
genus and area such that[21]2+[2,]? = 1, andif (M, ;) denotes the pair consisting
of a symplectic 4-manifold and symplectic surface that results from blowing up M;
at a point of %;, then M, #§1=22 M, 1s diffeomorphic (respectively, symplectic
deformation equivalent) to M #21=§2 M.

Applying this to the cases under consideration enables us to replace the pair
{CP2#kCP2,CP2# (18—k)CP2} (0 <k < 9by{CP2# (k+1)CP2,CP2#
(18 —k — 1)C P2} (since if X, = CP? # (18 — k) where k < 9, X, contains (—1)-
spheres meeting F> transversely once, any one of which may be blown down to give
a torus of square one larger in C P2 # (18 — k — 1)C P2, and we may then apply
Gompt’s and McDuff—Symington’s results mentioned above). Repeatedly “trading
blowups™ in this fashion enables us to reduce to the case that k = 18 — k = 0.
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Similarly, if X; = S2 x S2, then X, = CP2 # 17C P2, so “wrading blowups”
once reduces us to the case that X; = (S x S2) # CP2 = CP? # 2CP2 and
X, = CP? # 16C P2, and then doing so seven more times reduces to the case that
X, =X, =CP2#9CP2, L

So we assume for the rest of this subsection that X; = X, = CP2 # 9C P2
The X; are then both diffeomorphic to the total space of a rational elliptic surface
E(1), and the F; are homologous to a fiber of £(1). In fact, we can make a stronger
statement about the F;; we begin with the following lemma.

Lemma 3.2. Let B C C? be a closed ball around the origin, and let ¢: B —
C? be an orientation preserving diffeomorphism onto a closed subset of C? which
maps {{(w,z) € B | z = 0} orientation-preservingly to C x {0}. Then there is a
diffeomorphism ¢': B — ¢(B) which is isotopic to ¢ by an isotopy which is the
identity on a neighborhood of 9B, such that ¢ maps {(w,z) € B | z = 0} to C x {0}
and is holomorphic on a neighborhood of the origin.

Proof. With respect to the splitting R* = €2 = R? x R?, the Jacobian J of ¢ at
the origin has the 2 x 2 block form (61 ]‘C"' ) The orientation-preserving conditions
ensure that 4 and J both have positive determinant, in light of which C also has
positive determinant. Let y: B — [0, 1] be a smooth function which is equal to 1 on

a neighborhood of the origin and to 0 on a neighborhood of dB. Let V7 be the vector

field on B C R* whose value at v € B is y(v) (_lggA —lc?gC ) v; by composing ¢

with the time-1 map of V; we reduce to the case where the Jacobian at the origin
has form ( A*;M). Then where V3 (v) = x(v) (8 ~4,'M ) v composing with the
time-1 map of 15 reduces us to the case that the Jacobian of ¢ at the origin 1s the
identity. (Note that both V; and V5 are tangent to C x {0}, so the condition that this
set be preserved is not disturbed). But in this case there 1s a constant C (depending on
the second derivatives of ¢) such we have |¢(w, z) — (w, z)| < C(|w|? + |z|?) and
(D) w.y—1| < C(lw|?+|2[*)/2. Let B: [0. 00) — [0, 1] be a smooth, monotone
function such that S(r) = Oforr < 1/3, B(r) = 1forr > 1,and f'(r) < 2. Then
if § > 0 defining

#'(w,2) = (w,2) + B(([w]* + |2 ?/8)(p(w,2) — (w,2))

yields a smooth map which coincides with ¢ outside the ball of radius é around the
origin, is holomorphic in the ball of radius /3 around the origin, and differs from ¢
in C'! norm by at most (3 4+ §)C§ and therefore is a diffeomorphism as long as § is
taken small enough. Also, since ¢ preserves {z = 0}, ¢’ evidently does as well, and
@’ is isotopic to ¢ by the isotopy ¢ + 1 (¢" — @). O

Lemma 3.3. Let (M,®) be a symplectic manifold obtained by blowing up
(CP2, wrs) at nine distinct points, and let F C M be an embedded symplec-
tic submanifold Poincaré dual to the anticanonical class —kpr. Then there exists
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an elliptic fibration 7w: E(1) — S? with no multiple fibers and a diffeomorphism
&: M — E(1) with the property that ®(F} is a fiber of 7.

Proof. Let Jy be an almost complex structure which makes F pseudoholomorphic.
Provided that J, is chosen generically from among such almost complex struc-
tures, there are unique, embedded fo-holomorphic representatives £y, ..., Fg, re-
spectively, of the homology classes of the nine exceptional divisors of the blowup
M — C P2. Eachof the E; has a tubular neighborhood ; modeled (symplectically)
on a neighborhood of the zero section of the holomorphic line bundle @ (—1) over
CP'; we may shrink the N; if necessary to make them pairwise disjoint. Now, for
eachi, the Jy-holomorphic curves I and E; have homological intersection number 1,
so they meet transversely, positively, and in just one point. Hence as in Lemma 2.3
of [7], we may isotope F rel M \ UN; by symplectomorphisms to a surface F’ such
that, for some smaller neighborhoods N/ of E;, F' N N/ coincides with a fiber of
the bundle projection @(—1) — E;. Further, during this isotopy, we can change the
almost complex structure Jg to an almost complex structure J which agrees with Jo
outside N;, makes F’ holomorphic, and coincides on N/ with the standard integrable
complex structure on the tautological line bundle @ (—1).

We now symplectically blow down the E; (see Section 7.1 of [21] for a detailed
description of this process); doing so amounts to symplectically identifying an annular
neighborhood L; = D(81;) \ D(82,;) C N/ C O(—1) of the zero section FE; with
a spherical shell B(r1;) \ B(rz,;) in C2, and filling in this shell by a standard ball
(centered at a point p; with radius r» ;) to replace the é2 ; -neighborhood of E;. This
process is compatible with the complex blowdown in the sense that the annulus fibers
of L; are taken to annuli in the complex lines that they correspond to under the
identification of @ (—1) with the tautological line bundle of C2, so in the blowdown
these annuli may be filled in to form discs by adding in the disc of radius r»; in
the corresponding complex line. So since F’ meets each L; in one of these annulus
fibers, filling these annuli 1n as above gives rise to a compact symplectic surface S
whose intersection with each B(r,;) coincides with a complex line.

As aresultof all this, blowing down the E; results in C P? equipped with an almost
complex structure J which is integrable near each of the points p; (and coincides
with J outside the blow-up neighborhoods), a J -holomorphic curve S < C P2 which
coincides with F’ outside the blow-up neighborhoods, and a symplectic form o’
(induced by w and the blowdown procedure) which is compatible with J. «’ is easily
seen to be cohomologous to the Fubini—Study form (for instance, the proper transform
of the hyperplane class under the original blowups that were done to obtain M from
C P? has a nonvanishing Gromov-Wiltten invariant, and so may be represented by
a symplectic surface I which we can arrange to miss the L; and so gives rise to a
symplectic surface in (C P2, w’) with the same area as A has in (M, »)). Hence
by a result of [10] &’ is symplectomorphic to the Fubini-Study form. Also, for
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a similar reason as above, S C C P? has degree 3. So by Theorem 3 of [25], S
is symplectically isotopic to some complex cubic curve C. The isotopy extension
theorem then ensures that there is an ambient isotopy ¢; : C P? — C P2 such that
$1(S) = C. Our intention now is to modify ¢; to some other diffeomorphism ¢»
so that (i) ¢2(S) = C, (ii) C P? carries an elliptic pencil with fiber C and base
locus {g2(p1),-- ., P2(po)}, and (iii) ¢ lifts to a diffcomorphism of the appropriate
blowups which takes F' to the proper transform of C.

To achieve this, first note that since the sheafl of sections of the holomorphic
normal bundle to C which vanish at the eight points ¢(p1),...,¢1(pg) has de-
gree 1, it admits global nonvanishing sections by Riemann—Roch; perturbing ¢; by
composing with a small diffeomorphism which preserves C we can arrange that
d1(p1), --.,¢1(ps) are generic in the sense that none of these sections vanishes to
order 2. Such a section results in another smooth cubic C’ which meets C transversely
at the eight points ¢1 (p1), ..., ¢1(ps), and also at some other point go. Now let v be
a vector field on C which vanishes on neighborhoods of the ¢ (p; ) for 1 <7 < 8and
whose time-1 flow maps ¢ (po) t0 g9. Using a partition of unity subordinate to a set
of local trivializations of the normal bundle to C and a bump function supported on a
tubular neighborhood of C, extend v to a vector field V on C P2 whose restriction to
C is v; let ¥ be the time-1 flow of V, and let g = ¥ o ¢p1. Then ¢pg: CP? — C P2
1s a diffeomorphism which maps S to C and py,..., po € S to the 9 intersection
points between C and another smooth cubic C”.

Now ¢ will not lift to a diffeomorphism on blowups, because it is not holomorphic
near the points being blown up and so does not map complex lines to complex lines.
However, around each p; there are complex coordinates (w, z) in which S is given
by {z = 0} and likewise near cach ¢y (p;) there are complex coordinates in which
C is given by {z = 0}. Hence, in terms of these local holomorphic coordinates, ¢
is given in these neighborhoods by a diffeomorphism which satisfies the hypothesis
of Lemma 3.2. So ¢o may be modified by an isotopy supported in the union of
these neighborhoods to an orientation-preserving diffeomorphism ¢, : C P2 — C P2
which maps S to C and is holomorphic on (smaller) neighborhoods of pq,..., ps.
Consequently, if ¥ is the (complex) blowup of (C P2, J) at the 9 points py, ..., po
(which makes sense because J is integrable near the p;), and if £(1) is the complex
blowup of (C P2, Jyq) at ¢2(p1).-...P2(pe), ¢ lifts to a diffeomorphism ¥ —
F£(1) taking the proper transform of S to the proper transform of C. If f and f’
are homogeneous cubic polynomials with vanishing loci C and C' respectively, the
vanishing loci Cpiyg of Af + pf” ([A : ] € CP) provide an elliptic pencil on
C P? with base locus {¢(p1),-..,d{(p9)}. Blowing up the base locus to form E(1)
thus gives an elliptic fibration with the proper transform of C as a fiber.

To compare Y to X, note that in order to put a symplectic form on the complex
blowup Y in such a way that the map ¢, lifts to ¥ we need to cut out balls B/
around p; that are smaller than the balls B(r; ;) that were created by the blowdown
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X — CP2. X and Y hence cannot be symplectomorphic. However, there is an
obvious diffeomorphism between the blowups corresponding to balls of different
size which simply changes the radius of the disc bundle involved; in particular this
diffeomorphism has a restriction to the neighborhood of the exceptional sphere which
preserves the fibers of the normal bundle @(—1). Recalling that F’ coincided with
a fiber of the normal bundle on the neighborhood N it then follows that the natural
diffeomorphism X — Y takes F’ to the proper transform of S in Y.

We hence have a diffeomorphism X — E(1) which takes F’ to the proper trans-
form of C; precomposing this with a symplectomorphism of X which isotopes F
to F’ gives us the promised map ®: X — E(1) taking F to a fiber of an elliptic
fibration. O

Corollary 3.4. If the symplectic sum Z of two rational surfaces along a positive
genus surface is a minimal symplectic four-manifold of Kodaira dimension zero, then
Z is diffeomorphic to the K3 surface.

Proof. Denote the two summands by X; ( = 1, 2) and the surfaces in question by F;.
We have shown that we may assume that X; = CP? # 9C P2 and that the F; are tori
Poincaré dual to —PD(ky, ). Hence by Lemma 3.3, we have X; \ vF; = E(1) \vF
where E (1) is the total space of a rational elliptic fibration having fiber F (and where
“=~” denotes diffeomorphism). Hence

Z = (E(D\vF) Ug (E(1) \ vF)

for some orientation-reversing diffeomorphism @ of the boundary J(E(1) \ vF) =
T3. But according to Proposition 1 of Appendice 4 of [11], every orientation preserv-
ing diffeomorphism of d(E(1) \ vF) extends to E(1) \ vF, so the diffeomorphism
type of (E(1) \ vF) Ug (E(1) \ vF) is independent of . So since one choice
of @ (namely the one corresponding to taking the standard fiber sum of £ (1} with
itself) gives rise to the K3 surface, Z is evidently diffeomorphic to the K3 surface
independently of . O

3.2. Case 2: X, is rational and X is irrational and ruled. Assume that X, is
a ruled surface over a curve C of positive genus; we’ll show shortly that C is a
torus in the cases of interest. Then X, is symplectomorphic either to the nontrivial
S2-bundle over C, which we denote S? X C, orelse Xo = (S2 x C) # kC P2 for
some k > 0. Suppose that X is rational and F; C X; (i = 1,2) are embedded
symplectic submanifolds with the property that the smoothly nontrivial symplectic
sum X; #p,—r, X5 1s minimal and of Kodaira dimension zero. Then Theorem 3.1
shows that the F; are tori Poincaré dual to —« g, . In particular, if X5 1s nonminimal and
J5 is an almost complex structure preserving 7'F5, then each member of a maximal
disjoint collection of embedded J,-holomorphic (—1)-spheres meets F, transversely
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and once; hence the results of [7] and [22] alluded to in the previous subsection
show that, up to deformation equivalence, the symplectic sum is left unchanged if we
simultaneously blow down each member of this maximal collection and blow up X,
at a corresponding number of points on F;. This reduces us to the case that X is
minimal, and so is either S? x C or $% X C.

Lemma 3.5. Let w: E — C be an S*-bundle over a positive-genus surface C with
symplectic form w € Q3(E), and let & C E be an embedded, connected, symplectic
representative of —PD(kg) € Hy(E; Z), with tubular neighborhood vX. Then C is
a torus and there is another bundle map =': E — C whose fibers are symplectic
spheres such that 7’| p\px defines a fiber bundle with fibers diffeomorphic to the
annulus S x 1.

Proof. First, note that if J is an almost complex structure compatible with « with
respect to which X is pseudoholomorphic, and if M is the moduli space of un-
parametrized pseudoholomorphic spheres representing the class of the fiber of
then results of [19] show that the map =’ : £ — M which takes ¢ € E to the point of
M representing the unique J-holomorphic representative of the fiber class on which
e lies is an S2-bundle with fibers homologous to the fibers of 7; fundamental group
considerations then imply that M has the same genus as C. By construction the fibers
of =’ are J-holomorphic and hence symplectic.

We now claim that X is isotopic to some surface ¥’ C F such that there is an
almost complex structure J' which makes ¥’ pseudoholomorphic and with respect
to which n’; E — M is a pseudoholomorphic map (with respect to some almost
complex structure on M). Indeed, as in the proof of Lemma 3.2 of [16], using the
parametrized Riemann mapping theorem we can find complex coordinates (z, w) on
a suitable open set U; of E centered around any critical point p; of 7’|z in terms
of which the projection n’: E — M is given by (z, w) — w and 9; lies in the J -
antiholomorphic tangent space TJ9’1. The intersection of X with this neighborhood
will then be given by ZNU; = {w = g,;(z)} where g; (z) = ¢;z5 + O(|z|¥ 1) and
¢; # 0; that 7’| ¢ has a critical point at (0, 0) amounts to the statement that k; > 1.
Note that since X has intersection number 2 with the fibers of 7/ (as [¥] = —«f
and the fibers are square-zero spheres), we in fact have k; = 2, and moreover there
can only be one critical point of /|5 in any given fiber of 7’; accordingly we can
and do choose the U; so that the =/ (U; ) are disjoint as i varies. We can then use a
cutoff function supported in U; and equal to 1 on some smaller neighborhood U/ of the
critical point p; toisotope X rel £\ U; to some new surface X’ whose intersection with
Ulisgivenby X' NU/ = {w = ¢ zKiy; further, using the same cutoff, we can isotope
J rel E\ U; to anew almost complex structure J’ which coincides with the standard
integrable complex structure with holomorphic coordinates (z, w) on U/, and with
respect to which both X" and the fibers of 7’ are J'-holomorphic. Repeating this
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near every critical point of 7’|x, ¥’ and the fibers of =’ are now J’-holomorphic and
7't E — M restricts to a pseudoholomorphic map on a neighborhood of Crit(z’|x)
with respect to J” on E and a suitable complex structure on U; 7' (U/) C M. Butthen
extending this complex structure to all of M, since 7’| 5\, uy is an unbranched cover
a simple patching argument may be used to further modify J’ so that it continues to
make X/ pseudoholomorphic and now also makes the whole projection 7”: E — M
pseudoholomorphic. This proves the claim at the start of this paragraph.

Butnow 7’|z : £/ — M is a holomorphic map from a torus to M with degree 2;
we know that .M has the same positive genus as C, so it follows that that genus
is one. Hurwitz’s formula then implies that 7’|z, has no critical points; since the
critical points of 7/|x were constructed to be just the same as those of 7’|y it then
follows that 7’|z has no critical points. Thus X meets every fiber of 7’ transversely,
and hence exactly twice by the positivity of intersections of J-holomorphic curves.
Hence

7| pws: E\VE - T?

is a fibration with fiber given by the complement of two discs in S2, i.e., by S x I.
O

Consequently, in all cases of interest, we have X5 = S2x T2 or X5 = S? X T?;
these both have ¢ = 0, and so if X; #p,—p, X is to be minimal of Kodaira
dimension zero then c% (X1) = 0. Since the only rational surface with cl2 = 0is
C P24 9C P2, evidently X; = CP2#9C P2,

The above lemma makes the diffeomorphism classification of annulus bundles
over T2 relevant to us; specifically we are interested in those annulus bundles with
orientable total space and having just one boundary component. Identify S* x I with
A =D(2)\ D(1/2) ¢ C. Any annulus bundle over T2 is isomorphic to one of the
form M(f, g;{h,}) where f, g € mo(Ditf (A)) commute, {h,}, g1 € 71 (Diff(A)),

R?x A
(x+1,y,2) ~(x,¥, f(2),(x,y + 1,2) ~ (x,3,8(2))

and M( f, g; {h,}) is obtained from M { f, g; {1}) by removing a trivial neighborhood
D? x A from M(f, g;{1}) and gluing it back by the map

M(f g:{l1}) =

D% x A — dD? x A,
(t,2) = (t, hi(2)).

Since changing the choice of basis {u, v} of H{(T?;Z) to, respectively, {u + v, v}
or {v, u} corresponds to replacing (f, g) by (f o g, g)or (g, f), we can assume that
f maps cach respective boundary component of A to itself (if f* does not initially,
then either g or f o g does). Now mo(Dift (4}) = Z, & Z,, with generators given
byzrsz landz — Z.
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We are interested in orientable annulus bundles over T2 having just one boundary
component. The orientability condition restricts us to the case that the monodromies
f and g preserve the orientation of A = D(2) \ D(1/2). f is assumed to map each
boundary component to itself, so this forces f to be isotopic to the identity. But
then in order for the bundle to have just one boundary component g must swap the
boundary components of A, forcing g to be isotopic o z > z~ 1,

Now as explained after the statement of Theorem 2.3 in [28], it follows from a
theorem of Smale that the identity component of Diff (A) retracts to S! (and indeed
the map Diff;(A4) — Diff(S') given by restriction to one boundary component is a
homotopy equivalence), so 71 (Diff (4)) is generated by the loop of diffeomorphisms
re: A — A where fort € S! r, is given by rotation through the angle ¢. Thus, any

orientable annulus bundle over 72 with one boundary component has form

Yo =M,z 2_1;{rf})

In fact, arguing exactly as in Lemma 7 of Section 8 of [23], where [, m € 71 (dD?x A)
are, respectively, the generators of the images of the inclusion-induced maps 71 (A) —
71(3D? x A) and 71 (dD?) — m(dD? x A), one finds that for any n € Z there is
a fiber preserving diffeomorphism Y, \ D? x A — Y, \ D? x A whose restriction
to the boundary dD? x A takes a representative of m to a representative of m + 2n/
(an explicit formula for such a diffeomorphism may easily be found by adapting the
proof of Proposition 2(3) of [24] to the case where the fibers of the bundles involved
are annuli rather than tori). Thus, every orientable annulus bundle over the torus
having just one boundary component is isomorphic as a smooth fiber bundle to either
Yo orYy.
By definition, we have

Yo = ST x LLE 3)
0= (x+1,2) ~ (x,z7H)
Meanwhile, we see easily that
RxS!xA
Y, “4)

(x4 Let ) ~ (x,eib,eifz1)’

since the right hand side above obviously admits the structure of an annulus bundle
and so by our earlier remarks is isomorphic either to ¥y or to ¥1; computation of the
fundamental group then shows that it 1s distinct from Y.

Lemma 3.6. Let w: E — T2 be an S*-bundle with symplectic form o € Q2(E),
and let X C E be an embedded, connected, symplectic representative of —PD{kfg) €
Hy(E; Z), with tubular neighborhood vX. Then E \ vX is diffeomorphic to Yy if
and only if E is symplectomorphic to S? x T? (with some split symplectic form).
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Proof. By Lemma 3.5, possibly after redefining = we may assume that = has sym-
plectic fibers and that 7 |5\, 5 defines an annulus bundle over I=

For the forward implication, simply note that the annulus bundle Y, admits a
section (A, x) — [0, x, 1]; if E \ vX is diffeomorphic to ¥y this section includes into
E as a torus which intersects the fibers of £ — T2 once transversely and which
misses 2. Now the total space of F 1s, by results of [19], symplectomorphic by a
fiber-preserving map to the projectivization a complex line bundle over T2 of degree
either O or 1; however, in the projectivization of a line bundle of degree 1 over the
torus there are no homology classes having intersection number 1 with the fibers and
0 with the anticanonical class. Hence E must be the projectivization of the trivial
complex line bundle over 72, i.e. S? x T2,

Conversely, suppose that E is symplectomorphic to S? x T2, As in Lemma 3.5,
we can assume that ¥ meets each fiber of 7: E — T2 transversely twice. Now let
p: M — S?beanontrivial S%-bundle over S2, andlet F C M be the disjoint union
of a section of square —1 and a section of square 1 of p, each of which is symplectic
with respect to some symplectic form on F* which restricts nondegenerately to the
fibers of . Then by the pairwise sum construction in [7], the fiber sum £’ of M and
E carries a symplectic form and admits a symplectic torus ¥’ obtained by gluing X
to the section of square —1 in F at one of its intersection points with the fiber and to
the section of square 1in F at the other. Now the induced S2-fibration7’: E’ — T2
on the fiber sum is easily seen to admit sections of odd square (glue a section of even
square in F (o a section of odd square in M ), so E’ is diffeomorphic to the nontrivial
S2-bundle over T2. Hence by the previous paragraph £’ \ vX’ is not diffeomorphic
to ¥y, so it is diffeomorphic to Y.

Now M is diffeomorphic to C P2 # C P2; the complement M \ vF of a neigh-
borhood of the disjoint union F of a section of square 1 and a section of square —1
is then diffeomorphic to the complement of a neighborhood of the union of a point
and a line in C P2, j.e. (0 aregion {(z,w) € C? | r < |z|? + |w|? < R} in C2,
In these terms, 7 |p\pF: M \ vF — CP! is the Hopf map (z, w) + [z : w]. This
shows that the annulus fibration p|ay\,p: M \vF — § 2 is obtained from the trivial
annulus fibration over S2 by removing the neighborhood of a fiber and regluing it by
the diffeomorphism (¢?, z) > (%, ¢'%z) of 9D? x A.

But the annulus fibration 7”; E’\ vX’ — T2 is obtained by taking the fiber sum
of 7: E\vE — T2 with p;: M \vF — S2,so this implies that 7’: E'\ vy — T2
may be constructed from 7: E \ vE — T? by removing the neighborhood of a
fiber and regluing it by the diffeomorphism (¢??,z) > (¢%%,¢z) of aD2 x A.
Now performing this operation on the annulus bundle Yy yields Yy, while performing
it on Yy yields ¥, = Yy, So since we have already established that E' \ vX’ is
diffeomorphic to Y7, it must be that £ \ vX is diffeomorphic to Y. 0
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Theorem 3.7. Let X be an S2-bundle over T2, let F C X be an embedded symplectic
representative of —PD(kx ), and let F' C E(1) be an embedded symplectic represen-
tative of —PD(xg(1)). Then the symplectic sum E(1) #p—p X is diffeomorphic o
the Enriques surface.

Proof. Tirst, we notice that we can reduce to the case that X 1s symplectomorphic to
S2 x T? (with some split symplectic form). Indeed, if X is instead diffeomorphic
to the nontrivial S2-bundle over T2, we shall twice apply the result of [7] and [22]
which allows us to “trade blowups” as discussed in Case 1. First, if (M, Fy) is
the result of blowing down a (—1)-sphere passing once positively and transversely
through F’ (to find such a sphere, use an almost complex structure preserving TF' to
evaluate the Gromov—Wiltten invariant of one of the classes of the exceptional spheres
of E(1) = CP2#9CP%)andif (M5, F») = (X, F),wesee that E(1) #p/—p X is
deformation equivalentto M, #, _ 5 M. Now the ruling X — T2 induces a genus-
0 (not relatively minimal) Lefschetz fibration 7 : M, — T? each of whose fibers
meets the symplectic square-(—1) torus F twice; 7 has just one singular fiber, whose
components C; and C; are two embedded (—1)-spheres (one of which, say Cy, is the
exceptional sphere of the blowup, and the other of which is the proper transform of
the fiber of X — S? that passes through the blown-up point), each of which intersects
F> once. Now blowing down C, produces a manifold symplectomorphic to S2 x T2,
and F, C M, is isotopic to the proper transform of a symplectic representative
F" of —PD(kg2,72). Hence My #5 _ 5 M, is in turn deformation equivalent to

M # Fl—Fv (S2 x T?). Since (M;. F;) is obtained by first blowing down a sphere
passing once positively and transversely through F/ C E(1) and then blowing up
a point on the image of F’ under the blowdown, it follows that M, is deformation
equivalent to £ (1) and F; represents —PD(k A ). This allows us to hereinafter assume
that X = §2 x T2,

By Lemma 3.3, £(1) \ vF’ is diffeomorphic to the manifold with boundary N
obtained by deleting a neighborhood of a regular fiber of an elliptic fibration on £(1),
while X \ vF is, by Lemma 3.6 and our reduction to the case that X = S? x T2,
diffeomorphic to Y.

So the symplectic sum in question is diffeomorphic to

Xo = N Uy Yy;

note that since by Proposition 1 of Appendice 4 of [11] every orientation preserving
diffeomorphism of dN extends to N, the diffeomorphism type of X is determined
independently of the boundary gluing maps.

We claim now that X is diffeomorphic to the Enriques surface. In fact, this is
essentially a remark on p. 50 of [11]; for a direct proof, recall that ¥, = S! x Z,
where Zg = R x A/(x + 1,z) ~ (x,z7!). Now projecting Z, onto its sec-
ond factor gives Z the structure of a Seifert fibration over D? with two multiple
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fibers each having multiplicity 2; hence Yy = S! x Z; is the result of performing
two multiplicity two logarithmic transformations on the trivial elliptic fibration
T2 x D? Thus X, = N Uy, Y, is obtained from E(1) by deleting a neighborhood
of a smooth fiber and replacing that neighborhood with the result of two multiplicity
two logarithmic transformations on T2 x D?, j.e., X, is obtained from E (1) by per-
forming two multiplicity-two logarithmic transformations. But this is precisely the
definition of the Enriques surface. 0

3.3. Case 3: Xy and X, are irrational and ruled. Since a k-fold blowup of an
S2-bundle over a surface of genus /& has ¢ = 8 — 8h — k, in order for the symplectic
sum of irrational ruled surfaces X; and X, along a torus to have c% = 0, both X,
and X, must be S2-bundles over T2, By Theorem 3.1, the surfaces F; are embedded
symplectic tori representing —PD(ky; ). As in the proof of Lemma 3.5, results of [19]
imply that there are projections 7; : X; — T2 such that 7r; | , is an unramified double
cover of T2 by F;; the deck transformation of this cover is then a free orientation-
preserving involution r; : F; — F;. By considering these involutions, we shall realize
any symplectic sum of the X; along the F; as the total space of some torus bundle
over T2,

Lemma 3.8. Let 11, 72: T2 — T2 be free orientation-preserving involutions, and
let ¢: T? — T2 be any diffeomorphism. Then ¢ is isotopic to a diffeomorphism
¢’ T? — T? with the property that

¢V o1y 09" o1y is either the identity or a free involution.

Proof. TFirst of all, note that any two free orientation-preserving involutions r and
7/ from T2 to T? are conjugate. Indeed, letting £ be the quotient of 72 by 7, E’
the quotient of T2 by ¢/, and n: T? — E, n’: T? — E’ the projections, £ and
E’ are both tori, so that there exists a diffeomorphism ¢ : £ — E’. The images of
m1(T?)in 7, (E’) by 7’ and ¥ o 7 are both index 2 lattices in 7, (E’) = Z2, so there
is an element A of SL(2; Z) taking one to the other; hence by composing i with a
diffeomorphism of £’ that induces A on 7y we can assume that the maps induced
on m; by 7" and by ¥ o 7 have the same image. Hence ¢ o r: T? — E'lifts to a
diffeomorphism f: T2 — T2 such that 7' o f = 4 o . Since 7 (resp. 7’) takes
x € T? to the unique other point in 7~ (7 (x)) (resp. 7’71 (x/(x))) it follows that
"o f = f or,s0 ¢’ and 7 are indeed conjugate.

In light of this, identifying 72 = R2/Z? and conjugating 1, 72, ¢ by some
diffeomorphism, we can assume that t; ([x, y]) = [x + 1/2, ¥] (where [x, y] € T?
is the equivalence class of (x, y) € R? under the relations (x 4+ 1, y) ~ (x, y + 1) ~
(x, ¥)). By the previous paragraph, since ¢~ oy 0¢ and 1y are free involutions, there
is some « € Diff (72) suchthat¢p lor,0¢p = o~ Lot 0. Now ¢ is isotopic to some
linear diffeomorphism A = (9 5) € SL(2;Z); say A = « o f; where { f; };e[0,1] i
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a smooth family of diffeomorphisms such that f, = 1. Then where ¢’ = ¢ o f1, ¢
is isotopic to ¢’ and we have ¢' Lo 09’ = AL o 1y 0 A.
Now since 71 ([x, v]) = [x + 1/2., y], one easily computes

d+1
A_l o1 oAOtl([x’y]) = |:X + ;7}} - £i|:
2 2
which defines the identity if ¢ is even (forcing d to be odd since A € SL(2; Z)) and

a free involution if ¢ is odd. O

Theorem 3.9. Let 70 X; — T2 (i = 1,2) be S*-bundles over T?, F, C X;
embedded tori with the property that w;|F; is an unramified double cover. Let v; be
tubular neighborhoods of F; (each identified with D?* x F), and let ®: dv; — dv,
be a diffeomorphism which (viewing dv; as an S'-bundle over F;) covers some
diffeomorphism ¢ . F1 — F5. Then the normal connect sum

(X1 \ V1) Uy, ~gav, (X2\v2)

is diffeomorphic to the total space of a T*-bundle over T?2.

Proof. Tirst, note that (after performing isotopies which do not change the diffeo-
morphism type of the normal connect sum), we can assume that, fori = 1,2, the S2-
bundle projection 7; is constant on each fiber of the disc bundle projection v; — F;,
and that (using Lemma 3.8) ¢! o 15 o ¢ o 77 is either the identity or a free involu-
tion, where ; : F; — F; is the deck transformation induced by the cover 7; |, . Let
Z = (X1 \ V1) Uy ~gvs, (X2 \ v2).

Suppose that ¢~ o 1y 0 o 71 is the identity. We define abundle map 7: Z — T2
asfollows. If x € X \vy; C Z,putm(x) = m1(x). Ifx € X;\v, C Z,thenthere are
tWO Points Xz, 72 (X2} € F> Ny ({72 (x)}), and since ¢! 0 15 0 p o 71 is the identity
we have 71(¢7 1 (x2)) = ¢ (za(x2)), so that 71 (¢~ (x2)) = 71 (¢~ (r2(x2))) and
we set

m(x) = m(p~ (x2)) = m(p™ (12 (x2))).

Since, for each p € F;, the fiber of the circle bundle dv; — F; over p is mapped by
7t; to 7; { p), our map 7 is defined consistently on the identified boundary components
Ay, Ova in Z = (X1 \ v1) Ugp ~pivs (X2 \ v2). One easily sees that w: Z — T2
is a T2-fibration; the point here is that since ¢ ' oy opory = 1, ¢p: F; — F
descends to a map f: T? — T2 such that ma|p, o = f o my|F,; the fiber of 7
over t € T? is formed by gluing the annulus 7, ' ({¢}) N (X1 \ v1) to the annulus
75 (£ N (X2 \ v2),

It remains to consider the case that ¢~! o 7, 0 ¢ o 17 is a free involution. Then
¢~ Loty 0¢ o) commutes with 7; and their composition (namely ¢ ' or,0¢) is alsoa
free involution. Let £ = Fy /{1y, ¢ toryopor;)andlet p: F; — E be the projection
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(which is an unramified quadruple covering of a torus by a torus). We shall define a
torus fibration w: Z — F rather similarly to the previous case, except that here the
fibers will be formed by gluing four annuli rather than two. If x € X; \ v; C Z, set
m(x) = p(x1) where x; € F; N x ' ({m1(x)}); this is a coherent definition since
the two elements of 771 ({71(x)}) are intertwined by 71. If x € Xo \ va C Z, we
intend to set w(x) = p(p~1(x2)) where x2 € Fo N 3 ({m2(x)}); we need to see
that the two possible choices of x5 (either of which is taken to the other by 77) give
the same value for p(x). In other words, we need to check that if x, € F, then

(@7 H(x2))) = p(¢p~ ' (r2(x2))). Now since ¢! o 75 0 ¢ o 7y has order 2,

¢ 2 (p(r1(d™ (x2))) = 11(d™ " (12(x2)))

so since E is the quotient of F; by 7; and ¢! o 75 o ¢ o 17 it is indeed the case
that p(¢~1(x2))) = p(dp~'(1a(x2))) for each x, € F,. We have thus defined
. Z — [ 1t 1s again ¢asily seen to be a torus bundle, with its fibers of the shape

Ao [TA1]TA2]] 43
8+Al’ ~ B_AI-H (l € Z/4Z)

where Ag and A, are annulus fibers of 72 |x,\,, and 4 and A3 are annulus fibers of
71|x,\»; (the fact that ¢ o1y 0¢ o1y is free serves to ensure that, in each of these
torus fibers, Ay and A, are distinct, as are A; and A3). ]

This shows that any symplectic 4-manifold obtained as the symplectic sum of two
S2-bundles over T2 along a pair of bi-sections is diffeomorphic to a T2-bundle over
T2. In fact, we can be quite specific about which 7'2-bundles over T2 are obtained
in this fashion. 72-bundles over T2 were classified in [24]; in particular, Theorem 5
of that paper shows that the total spaces of such bundles are distinguished from one
another up to diffeomorphism by their fundamental groups. As such, finding the
diffeomorphism type of the manifold (X \ vi) Uy, ~gav, (X2 \ v2) in Theorem 3.9
is just a matter of applying van Kampen’s theorem.

We know that, for i = 1, 2, the manifold X; \ v; is diffeomorphic to one of the
manifolds Y, or ¥; of (3), (4); more specifically, if X; is diffeomorphic to S? x T2
then X; \ v; = Yy, and otherwise X; \ v; = ¥;. Note that

(o, B, m)

a Yma =m=1, Bm =mpB, afa"1871 =m/

T (Y]) =~ (] = 0’ 1)’ (5)

with dY; being spanned by the subgroup generated by a2, 8, m. m here is the gen-
erator of the fundamental group of the annulus fiber of the bundle map Y; — T2
Where F denotes the torus F7 or /5 whose neighborhood we have removed from X,
or X to get Y;, we have a trivial circle bundle p; : 9Y; — F whose action on 7} has
kernel {m). There is, of course, some flexibility in the choice of the generators: first,
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we get the same presentation if we replace 8 by Bmi/ and then m by m™!; secondly,
if (£9) e SL(2,7Z) and g is even (so that p and s are odd; say s = 2¢ 4 1), then we
gel the same presentation by replacing « with o’ = a? A7 and B with 8/ = a4 p5m’*.

One convenient consequence of this is that if y € 71(dY;) is any element with
the property that (p; ).y is primitive in Z? = 1 (F) then the generators «, § in the
presentation (5) may be chosen so that y takes one of the forms

¥ o= azﬂzcme or y= azaﬂme.

We now consider the manifold resulting from gluing two of these manifolds Y, Yy
(J, k € {0, 1}) together along their boundaries in a way consistent with the symplectic
sum operation. Now in terms of bases {a?, B1,m1}, {a3, B2, ma} for the fundamental
groups of the boundaries 9Y; and 0Yy respectively, since the gluing map P is required
to cover an isomorphism of the normal bundles it will identify #2; with mi» (possibly
after replacing one of the m; with its inverse, which as mentioned earlier can be done
without affecting the presentation (5) at the cost of possibly multiplying f8; by m;);
also a%, since it projects via p; to a primitive element in 73 ('), will be taken to some
element in the fundamental group of dY; which likewise projects via pg to a primitive
element. Hence by the remark at the end of the previous paragraph, possibly after
renaming the generators s, 2, and m» in the presentation of 71 (Y% ), the action of
the gluing map on the fundamental groups of the boundaries in terms of the bases
{o?, Bi,m;} takes one of the forms

1 b
2¢ d
f

€

(ad —b = 1).

— o O

a b
(d—2bc=1) or 1 d
f

e

— o o

Hence van Kampen’s theorem gives the fundamental group of the glued manifold
Y; Ug Yy as either

(g, B, oz, Ba, m)

m(¥; Us Yi) = (6)
/ oy Yoy = oy Ymay, =m™Y, Bym = mpBy, Bam = mpP,,
alﬂlallﬁl —mJ, agﬂgaz_lﬂz_ — mk,
O‘1 = O‘zﬁ “ b= O‘zbﬁsz
or
ar, fr.aa, fa.m
7 (Y Ue Vi) = — ( ) (7)

o Moy —Oézlmaz:m ! , Bim =mpBy, Bam = mps,

arfra it = m, agﬁzazlﬁz = mk,
af = a3“Bam®, 1 = a3’ pgm/

The reader may verify that the group on the right hand side of (6) may be rewritten,
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by identifying y = o] ' 5, as

{1, Ba,m, y)
ny = mG: afray Bl = mi T2 —be) ay oy k: m_lz ’
al—lyal = m C—ey—l’ ﬁz_lmﬂz = m, ﬂz_l)fﬂz — k20— e)y

1

which we recognize as the fundamental group of the 7'2-bundle over T2 given in the
notation of the introduction as

M((—l kc—e) (1 j—k+2(f—be)),(j+2(f—be)))
0o -1 J'\o 1 : 0 '

Similarly, the group on the right hand side of (7) may be identified, by taking o =

041052051_105_1 and then using the relations alag = a%oalmj+2(f_de) and aza% =

ot oym? (o obtain commutation relations between the ¢; and o, as

(a1, 02,m,0)

moe = om, alazal_lozz_l = 0, ozl_lmocl = m_l,
ol loa; = mk—2e5—1 aylmoy, =m™! ayloa, = mJ T2 —de) =1

which is precisely the fundamental group of the T2-bundle over T2

()6 )

Now by changing the basis for the homology of the base by (£ 9) € S1.(2; Z), a
T2-bundle over T? of form M(A, B;¥) may be equated with M(A? B", A?B*;7);
also, the bundles M(A, B;v) and M(A, B;v") are equivalent if v/ — v lies in the
submodule of Z? spanned by the columns of A — I and B — I (where I is the
identity; these statements are proven in Proposition 2 of [24]). As such, given a

bundle of form
-1 & 1 ¢\ (j+2x
(o 8o 1))

by letting z = ged(4, ), p = ¢/z, r = é/z, and (since p and r are then relatively
prime) g and s be such that ps — gr = 1, so that —¢é + s{ = z, we obtain

(0 2)- () = (e (o 9):(6)

(note also that p and g cannot both be even since ps — gr = 1, and if p is odd then
a further basis change for the homology of the base identifies M{(—1,—A; ¥) with
M (—1, A;¥)). This gives rise to the following list of possibilities for the diffeomor-
phism type of ¥; Ug Y; when its fundamental group is given by (6):
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J | k | possible diffeomorphism types of ¥; Ug Yi

00| M 1,(_01 _Zl);(g)),M(—I,((l) 213’);(8)) (y.z € Z)
0|1 | Mm —1,((1) 2y1+1);(8)) (v € 7)

-1 1 1 29\ (1
TG DO (60 vees

Similarly, a bundle of form

()05 0)
e ()

(where z = ged(4,8), p = {/z,r = —=6/z,and ps—qgr = 1). From this, we deduce
the following list of possibilities for the diffeomorphism type of Y; Ug Y; when its
fundamental group is given by (7):

is equivalent to

J | k | possible diffeomorphism types of ¥; Ug Yi

Z1 2y {0 1 29\ {0
Wb 2 0) * e D) oo
o1 | Mm(=-I ((1) 23’;”);(?)) (v € 7)
11| ML (_01 23’: 1);((1))) (y € Z)

In both of the above tables, it is easy to see that any of the indicated diffeomorphism
types can in fact be realized by means of an appropriate choice of the gluing map @.
Since if X is a ruled surface over T2 and F C X is an embedded representative of
—PD(kx), we have seen that X \ vF =~ Yy if X = S?x T? and X \ vF >~ Y,
if X = S? X T2, this completes the proof that the diffeomorphism types of the
symplectic sums in question are as claimed in the introduction.
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