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Kodaira dimension and symplectic sums

Michael Usher

Abstract. Modulo trivial exceptions, we show that symplectic sums of symplectic 4-manifolds
along surfaces of positive genus are never rational or ruled, and we enumerate each case in
which they have Kodaira dimension zero i.e., are blowups of symplectic 4-manifolds with
torsion canonical class). In particular, a symplectic four-manifold of Kodaira dimension zero
arises by such a surgery only if it is diffeomorphic to a blowup either of the K3 surface, the
Enriques surface, or a memberof a particular familyof T 2-bundlesoverT2 each having b1 D 2.

Mathematics Subject Classification 2000). Primary 57R17; Secondary 53D35, 57R57.
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1. Introduction

Our understanding of the diversityof theworld of symplectic four-manifolds has been

greatly enriched by the introduction in [7] and [18] of the symplectic sum. Given
symplectic four-manifolds X1; 1/; X2; 2/ containing embedded, two-dimensional
symplectic submanifolds F1 X1, F2 X2 of equal area and genus and an

orientation-reversing isomorphism ˆ W NX1F1 NX2F2 of their normal bundles

which of course exists if and only if F1 and F2 have opposite self-intersection), the
symplectic sum operation provides a natural isotopy class of symplectic structures
on the normal connect sum

Z D X1 #
F1DF2 X2 D X1 n 1/ [@ 1 ˆ@ 2 X2 n 2/;

where the i are tubular neighborhoods of Fi and we use the restriction of ˆ to the
unit normal circle bundles of the Fi to glue the boundaries of the manifolds Xi n i
Using the symplectic sum along surfaces of positive genus, various authors over the
years have constructed symplectic four-manifolds satisfying an impressive array of
properties; see for instance Theorem 6.2 of [7], which for any finitely presented group

G gives a number r.G/ such that whenever a Cb 0 mod 12 and 0 a 2.b
r.G// there is asymplectic 4-manifoldMa;b;G with 1.Ma;b;G/ D G, c21 Ma;b;G/ D
a, and c2.Ma;b;G/ D b. While Gompf’s examples were distinguished by their
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classical topological invariants, the symplectic sum also gives rise to infinite families
of mutually homeomorphic but nondiffeomorphic symplectic four-manifolds, since

ifK is a fibered knot theoperation of knot surgery withK [3] amounts to a symplectic
sum.

The purpose of this note is to show that, notwithstanding the diversity of symplectic

four-manifolds that can be constructed via symplectic sum, there are significant
topological restrictions on the manifolds that can be obtained in this way. Our results
may perhaps best be understood in terms of the notion of symplectic) Kodaira
dimension, a notion which dates from [20] and is discussed in some detail in [14]. We
shall recall the definition of Kodaira dimension below. First, recall that a symplectic

four-manifold is called minimal if it does not contain any embedded symplectic
spheres of square 1, and that if X; !/ is any symplectic four-manifold one may
obtain a minimal symplectic four-manifold X0; 0/ by blowing down a maximal
disjoint collection of symplectic 1/-spheres in X; X0; 0/ is then called a minimal
model for X; !/.
Definition 1.1. Let X; !/ be a symplectic four-manifold with minimal model
X0; 0/, and let X0 2 H2.X0IZ/ denote the canonical class of X0; 0/. Then

the Kodaira dimension of X; !/ is

X; !/ D

8ˆ̂<
ˆ̂:

1 if X0 OE! 0 < 0 or 2
X0 < 0;

0 if X0 OE! 0 D
2
X0 D 0;

1 if X0 OE! 0 > 0 and 2
X0 D 0;

2 if X0 OE! 0 > 0 and 2
X0 > 0:

In Section 2 of [14] and references therein it is shown that X; !/ is well defined
for any symplectic four-manifold in particular it is independent of the choice of
minimal model, and oneof the four possibilities listed above always holds); coincides
with the classical notion of Kodaira dimension in cases when X happens to admit
the structure of a complex surface; is equal to 1 if and only if X is a rational or
ruled surface;1 and is equal to zero if and only if the canonical class of the minimal
modelX0 is torsion. Moreover Theorem 2.6 of [14] shows that theKodaira dimension

M; !/ depends only on the diffeomorphism type of M, and not on the symplectic
form.

A common feature of the numerous interesting new symplectic four-manifolds
that the symplectic sum operation has provided to us is that they have always had

Kodaira dimension 1 or 2. For instance, knot surgery on the K3 surface with a

nontrivial fibered knot as in [3] always yields a symplectic four-manifold of Kodaira

1Here and below we adopt the convention thata ruledsurface is a symplectic manifold obtained by possibly)
blowing up the total space of an S2-bundle over some Riemann surface. When we want to assume that no
blowups have been carried out, we shall refer instead to an “S2-bundle.”
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dimension 1 even though the result is homeomorphic to the K3 surface, which has

Kodaira dimension zero), and at least aside from some very trivial cases) Gompf’s
manifolds Ma;b;G have Kodaira dimension 1 if a D 0 and 2 if a > 0. Our main
theorem below will demonstrate that this is not a coincidence. To state it, we make
the following definitions.

Definition 1.2. Let X1; 1/, X2; 2/ be symplectic four-manifolds with Fi Xi
embedded symplectic submanifolds of equal area and genus and opposite square.

1) The symplectic sum X1 #
F1DF2 X2 is called smoothly trivial if, for some

i 2 f1; 2g, Xi the total space ofanS2-bundleof whichFi is asection. Otherwise,
the symplectic sum is called smoothly nontrivial.

2) The symplectic sum X1 #F1DF2 X2 is said to be of blowup type if, for some

i 2 f1; 2g, the pair Xi; Fi / may be obtained from a pair E; F / consisting of
the total space E of an S2-bundle of which F is a section by a sequence of zero
or more blowups at points not lying on F

Remark1.3. It is stated without proof in [7] that ifX1 #
F1DF2 X2 isasmoothlytrivial

symplectic sum, say with X2; F2/ consisting of an S2-bundle and a section, then the
sumX1 #F1DF2 X2 is diffeomorphic toX1. It isnot difficult to prove this: simply note

thatX2n 2 will bediffeomorphic to aneighborhoodofF1 inX1, so that for at least one
choice of the gluingmapˆj@ 1

thesumwillbe diffeomorphic toX1; further, thegluing
mapsˆj@ 1 W

@ 1 @ 2 that we are allowed to use in forming the symplectic sum are

precisely the restrictions of orientation reversing bundle isomorphisms, and so any
two of them differ by precomposing with an orientation preserving diffeomorphism
of @ 1 which extends over 1, implying therefore that the diffeomorphism type of
X1 #

F1DF2 X2 is independent of the gluing map and so is X1 in any event. Of
course, this argument is dependent on the fact that the gluing map is required to
preserve the fibers of the normal circle bundles, an issue which seems to have caused
a certain amount of confusion in the literature, where one occasionally finds mistaken
claims that symplectic sums with S2-bundles along sections sometimes change the
diffeomorphism type.

Atany rate, the above fact justifies ouruse of the term“smoothly trivial” to describe
such symplecticsums, and by Theorem 2.6 of[14] implies that performinga smoothly
trivial symplectic sum leaves the Kodaira dimension unchanged. Incidentally, while
thesesums are trivial from a smooth standpoint, they generallydo alter the symplectic
structure in a manner equivalent to the “inflation” technique of [13], a fact which is
exploited in [16].

Definition 1.4. If X1; 1/, X2; 2/ are symplectic four-manifolds with Fi Xi
embedded symplectic submanifolds of equal area and genus and opposite square, the
symplectic sum X1 #F1DF2 X2 is called relatively minimal if for each i D 1; 2, there
are no embedded symplectic spheres of square 1 in Xi n Fi
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Remark 1.5. If asymplectic sumZ D X1 #
F1DF2 X2 is not relatively minimal, then

if we blow down maximal disjoint collections of spheres of square 1 in X1 nF1 and

X2 nF2 to obtain symplectic manifolds X01;X02 then the Fi survive in the blowdowns
and the areas, genera, and self-intersections of the Fi are left unchanged. Hence we
may form a symplectic sum Z0 D X01 #F1DF2 X02 and Z may be recovered from
Z0 by a sequence of blowups. X01 #

F1DF2 X02 will be smoothly trivial if and only if
X1 #

F1DF2 X2 is of blowup type. Thus any symplectic 4-manifold which arises as a

symplectic sum which is not of blowup type is a blowup of a symplectic 4-manifold
which arises as a smoothly nontrivial, relatively minimal symplectic sum. Moreover,
symplectic sums which are of blowup type are diffeomorphic to blowups of one of
their summands.

Remark 1.6. In this language, the main result of [27] may be rephrased as stating
that any symplectic 4-manifold arising as a smoothly nontrivial, relatively minimal
symplectic sum along surfaces of positive genus is minimal.

Our main result is the following:

Theorem 1.7. Suppose that X1; 1/, X2; 2/, F1, and F2 are such that the
symplectic sum Z D X1 #

F1DF2 X2 is smoothly nontrivial and relatively minimal and
the genus of the Fi is positive. Then:

a) Z does not have Kodaira dimension 1.
b) If Z has Kodaira dimension 0, then the diffeomorphism types of X1, X2, and Z

are givenby one of the rows in the following table,where the notationM.A;BI Ev/

denotes a T 2-bundle over T 2 as described below or in [24]. Moreover, each
entry in the third column of this table can in fact be constructed as a smoothly
nontrivial, relatively minimal symplectic sum along a torus.

X1 X2 possible diffeomorphism types

of X1 #
F1DF2 X2

CP2 # .18 k/CP2 CP2 # kCP2 K3 surface

S2 S2 CP2 # 17CP2 K3 surface

CP2 # .9 k/CP2 S2 T 2/ # kCP2 Enriques surface

S2 S2 S2 T 2/ # 8CP2 Enriques surface

CP2 # 9CP2 S2 z T 2 Enriques surface
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X1 X2 possible diffeomorphism types ofX1 #
F1DF2 X2

S2 T 2 S2 T 2 M 0@I; 0@

1 z

0 1
1A I 0@

0

0
1A1A

M 0@ I; 0@

1 2y

0 1
1AI 0@

0

0
1A1A

M 0@I; 0@

1 2y

0 1
1A I 0@

0

1
1A1A

M 0@ I; 0@

1 2y

0 1
1AI 0@

0

1
1A1A y; z 2 Z/

S2 T 2 S2 z T 2 M 0@ I; 0@

1 2yC 1

0 1
1A I 0@

0

0
1A1A

M 0@ I; 0@

1 2yC 1

0 1
1A I 0@

0

1
1A1A y 2 Z/

S2 z T 2 S2 z T 2 M 0@I; 0@

1 z

0 1
1A I 0@

1

0
1A1A

M 0@ I; 0@

1 2y

0 1
1AI 0@

1

0
1A1A

M 0@I; 0@

1 2yC 1

0 1
1A I 0@

0

1
1A1A y; z 2 Z/

Here S2 z T 2 refers to the smoothly nontrivial S2-bundle over the torus. The K3
surface is, of course, the smooth four-manifold underlying a quartic hypersurface of
CP3, while the Enriques surfacecan be realized either as the quotient of aK3surface
by a free involution which is holomorphic for an appropriate complex structure, or,
equivalently, as the result of performing logarithmic transformations of multiplicity 2
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on two fibers of the rational elliptic surfaceE.1/; pp.590–599 of [9]provide aconcise
description of the complex geometry of these manifolds. The notation M.A;BI Ev/

A; B 2 SL.2IZ/; Ev 2 Z2; AB D BA) above is as in [24]: identifying T 2
D R2=Z2

and writing the coset of x; y/ 2 R2 as x
y we define

0 DM A; BI
0 R2 T 2

s C 1; t; x
y

s; t; A
x
y

;

y s; t; B
x

s; t C 1;
x

y

;

and let M.A; BI m;n// be obtained from M.A; BI .0; 0// by removing a neighborhood

of a torus fiber of the projection OEs; t; x; y 7! OEs; t and regluing it by the
map

@D2 T2 @D2 T 2 ;

e2 i ; OEx; y / 7! e2 i ; OEx C m ; OEy C n /:

Since manifolds obtained by general symplectic sums are blowups of those
obtained by relatively minimal ones, and since Kodaira dimension is preserved under
blowups, Theorem 1.7 has the following corollary:

Corollary 1.8. No symplectic 4-manifold of Kodaira dimension 1 arises as a

symplectic sum along surfaces of positive genus which is not of blowup type, and
the only symplectic 4-manifolds of Kodaira dimension 0 which arise as symplectic
sums which are not of blowup type along surfaces of positive genus are blowups of
symplectic manifolds diffeomorphic to either the K3 surface, the Enriques surface,
or a T2-bundle over T 2 having the form M I; 1 z

0 1 I Ev
or M I; 1 z

0 1 I Ev

where z 2 Z and Ev 2 f.0; 0/; .0; 1/; .1; 0/g.

Symplectic 4-manifolds of Kodaira dimension 1are of course well understood
since they are all rational or ruled. In light of Gompf’s manifoldsMa;b;G mentioned
above, the classes of symplectic 4-manifolds of Kodaira dimension either 1 or 2 are
each at least as complicated as the class of all finitely presented groups, which have
been known to be unclassifiable since the 1950s. The classification of symplectic
4-manifolds of Kodaira dimension zero, meanwhile, is a very interesting open problem.

The only presently-known such manifolds are blowups of the K3 surface, the
Enriques surface, or an orientable T 2-bundle over T2 all of the latter were proven to
admit symplectic structures in [5]), and a recent striking result independently proven
in [1] and [15] implies that any minimal symplectic 4-manifold of Kodaira dimension
zero necessarily has the same rational homology as one of the known minimal
examples. Theorem 1.7 thus shows that up to diffeomorphism) if any new symplectic
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4-manifolds of Kodaira dimension zero do exist, then they cannot be found by
performing symplectic sums along surfaces of positive genus. Note that since blowing
down a 1/-sphere amounts to performing a symplectic sum with CP2 along a line,
any symplectic 4-manifold arises in a somewhat trivial fashion) as a smoothly
nontrivial symplectic sum along spheres. It would be interesting to know whether or not
new symplectic 4-manifolds of Kodaira dimension zero can arise by symplectic sum

with CP2 along a quadric i.e., by blowing down a 4/-sphere), or more generally
whether or not new symplectic 4-manifolds of Kodaira dimension zero can arise via
the rational blowdown procedure of [2].

Theorem 1.7 pins down the diffeomorphism type of the symplectic sums in question;

it would be somewhat preferable to have a result specifying the symplectic
deformation type though it is worth noting that this may be a moot point, since any
two symplectic structures on any of the manifolds in the last column of the table in
Theorem 1.7 have the same canonical class, and there are not currently any known
examples of smooth four-manifolds admitting deformation inequivalent symplectic
structures that have the same canonical class). In the case that the symplectic sum is
a T 2-bundle over T 2, our proof can be seen to imply that the symplectic form will
be positive on the fibers, and so will be deformation equivalent to a form obtained by
the Thurston trick. When the sum is diffeomorphic to the K3 surface or the Enriques
surface, the situation is perhaps more subtle, since in our proofs we use, among other
things, the fact that any orientation-preserving diffeomorphism of the boundary of
the complement of a tubular neighborhood of a fiber in the rational elliptic surface

E.1/ extends to the whole complement, and so since such a diffeomorphism cannot
always be made symplectic we lose control of the symplectic form.

We should mention that, as in Remark 1.3, although theconclusion ofTheorem 1.7
only concerns diffeomorphism types the result is sensitive to the fact that the sum
operation is symplectic and so the gluing mapˆ W

@ 1 @ 2 is required to be the
restriction of an anti-isomorphism of complex line bundles rather than just an arbitrary
diffeomorphism). Of course, if ˆwere replaced by an arbitrary diffeomorphism, the
sum might not admit a symplectic structure; for instance for n 2 a degree-zero
logarithmic transformation of a fiber of the elliptic surface E.n/ which results from
an appropriate gluing of the complement of the symplectic torus fiber of E.n/ to the
complement of a symplectic torus in T 2 S2) is diffeomorphic to the non-symplectic
manifold .2n 1/CP2 # .10n 1/CP2 Theorem 6.1 of [6]). In other cases, though,
a more general gluing map gives rise to a manifold that happens to admit a symplectic

structure, which may even have Kodaira dimension zero: for instance, any of
the T 2-bundles over T 2 given in our notation above as M.I; II m;n// may be
obtained by an appropriate gluing of the complement of a symplectic torus in T 4 to the
complement of a symplectic torus in T 2 S2; these all admit symplectic structures
by [5] or indeed by earlier work; the case m; n/ D .0; 1/ is the Kodaira–Thurston
manifold) with trivial canonical class and so Kodaira dimension zero. However, for
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m; n/ ¤ .0; 0/, b1.M.I;I I m; n/// D 3, whereas all of the T 2-bundles over T 2

appearing in Theorem 1.7 have b1 D 2, so none of the manifolds M.I; II m;n//
occur as smoothly nontrivial symplectic sums.

In the next section, we prove part a) of Theorem 1.7, which might best be seen
as a corollary of the arguments of [27]. The rest of the paper consists of the proof
of part b), which relies on a result describing the behavior of the canonical class of
a symplectic sum in order to reduce the result to a small number of cases which can
be dispensed with in turn. A useful tool in two of the cases is Lemma 3.3, which
states that if F is a symplectic torus in CP2 # 9CP2 Poincaré dual to the first Chern

class, then there is a diffeomorphism of pairs taking CP2 # 9CP2;F / to the pair
consisting of a rational elliptic surface together with one of its regular fibers. This
should be contrasted with various non-isotopy results for symplectic tori Poincaré
dual to multiples of the first Chern class, e.g., in [4].

Acknowledgement. I am grateful for the referee’s corrections and suggestions. This
work was partially supported by an NSF Postdoctoral Fellowship.

2. Rational and ruled surfaces

Part a) of Theorem 1.7 is an easy consequence of two results proven in [27]. On
the one hand, from Section 2 of that paper, we find based largely on [12]), that if
Z D X1 #

F1DF2 X2 is a symplectic sum, and if A 2 H2.ZIZ/ is any nonzero
homology class having a nontrivial Gromov–Witten invariant counting genus-zero

holomorphic curves, then there are classes A1 2 H2.X1IZ/, A2 2 H2.X2IZ/, each
represented by a union of genus zero stable maps which are pseudoholomorphic for
some almost complex structure Ji on Xi i D 1;2) which preserves TFi such that

h X1 C PDOEF1 ; A1i C h X2 C PDOEF2 ; A2i D h Z; Ai < 0; 1)

where the final inequality results from the fact that the expected dimension of genuszero

pseudoholomorphic representatives of A, namely 1 h Z; Ai, must be
nonnegative in order for the corresponding Gromov–Witten invariant to be nonvanishing.

On the other hand, Proposition 3.9 of [27], translated into the terminology of
the introduction, states that if the symplectic sum Z D X1 #F1DF2 X2 is smoothly
nontrivial and relatively minimal, and if the Fi have positive genus, then the Fi are

“rationally K-nef,” which is to say, for i D 1;2, if A 2 H2.Xi IZ/ is represented by
a Ji -holomorphic sphere for some almost complex structure Ji preserving TFi then
we necessarily have h Xi C PDOEFi ; Ai 0.

As such, if the symplectic sum is smoothly nontrivial and relatively minimal,
and if the genus of the surfaces involved is positive, then 1) cannot hold, and so Z
cannot admit any nonvanishing genus zero Gromov–Witten invariants in any
nontrivial homology classes. In [27] this was used to conclude that Z is minimal; in
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our present case, we simply note that any rational or ruled surface does admit a

nonvanishing genus-zero Gromov–Witten invariant in a nontrivial homology class the
proper transform of the hyperplane class for blowups of CP2, or the class of the fiber
of a ruling for ruled surfaces; see, e.g., [19]). Thus rational and ruled surfaces i.e.,

symplectic 4-manifolds of Kodaira dimension 1) cannot arise as smoothly
nontrivial, relatively minimal symplectic sums along surfaces of positive genus, proving
part a) of Theorem 1.7.

3. 4-manifolds of Kodaira dimension zero

The proof of part b) of Theorem 1.7 depends on the following result.

Theorem 3.1. Let X1; 1/; X2; 2/ be symplectic 4-manifolds, Fi Xi i D 1;2)
embedded symplectic submanifolds of equal positive genus, equal area, and opposite
self-intersection, and Z D X1 #

F1DF2 X2;!/ the symplectic sum of the Xi along
the Fi Assume that the symplectic sum is smoothly nontrivial and that Z; !/ has
Kodaira dimension zero and is minimal. Then the Fi are both tori, and are Poincaré
dual to Xi

Proof. According to Theorem 2.1 of [12], there is a symplectic 6-manifold

Z; / equipped with a projection W Z D2 with the property that, for ¤ 0,
1. /; j 1. // is isotopic to the symplectic sum Z, while 1.0/; j 1.0//

is the singular symplectic manifold obtained by directly gluing the Xi along the

Fi so that the two pieces intersect in a copy F of the Fi As seen in the proof of
Lemma 2.2 of [12], one has for ¤ 0) Zj 1. / D 1. / while for i D 1; 2

c1.TZjXi / D c1.Xi / PDXi OEFi

We claim now that, where i W
1. / Z, ij W Xj Z j D 1; 2) are the

inclusions, i OE 1. / is equal to i1 OEX1 C i2 OEX2 in H4.ZIZ/. This essentially
follows from the description of Z in Section 2 of [12]. Namely, as seen there,

1. / for 0 < 1 may up to isotopy) be obtained from 1.0/ D X1 [F X2
as follows: a neighborhood of F Z is diffeomorphic to a neighborhood U of the
zero section in L ° L F where L F is a complex line bundle of degree
OEF1 2 and L is its dual; putting a Hermitian metric j j on L which then induces
one on L and arranging that U D f. ; v;x/ 2 L ° L j j j; jvj 1g, up to
smooth isotopy 1. / coincides with 1.0/ outside U and its intersection with U
is given by f. ; v; x/ 2 L°L j h ; vi D j j C jvj/ g where

W
OE0; 1 OE0; 1

is a bump function supported in OE0; 2 1=4 and equal to 1 on OE0;
1=4 Observe

that X1 is homologous to the chain obtained by replacing X1 \U by in hopefully
self-explanatory notation)

f. Nv; v; x/ j jvj
1=2

g C f. ; v; x/ 2
1 / j

1= 2
jvj 1g
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and likewise X2 is homologous to the chain obtained by replacing X2\U by

f. ; N ; x/ j j j
1=2

g C f. ; v;x/ 2
1 / j

1=2
j j 1g:

But adding these two chains together and passing to homology just recovers i OEZ

as the first terms in the two expressions above now cancel), verifying that indeed

i OE 1. / D i1 OEX1 C i2 OEX2 2 H4.ZIZ/.
As such, we have

h Z [ OE! ; OEZ i D hi Z [ OE /; OE
1 / iD h Z [ OE ; i OE

1 / i
D h Z [ OE ; i1 OEX1 i C h Z [ OE ; i2 OEX2 i
D h ZjX1 [ OE jX1;OEX1 i C h ZjX2 [ OE jX2; OEX2 i
D h. X1 C PDX1OEF1 /[ OE!1 ; OEX1 i

C h. X2 C PDX2 OEF2 /[ OE!2 ;OEX2 i
D h X1 [ OE!1 ; OEX1 i C h X2 [ OE!2 ; OEX2 iC Z

F1
1 C Z

F2
2:

2)

Note that nothing that we have done so far makes any use of the assumption that

Z; !/ is minimal with Kodaira dimension zero. However, when we do implement
that assumption, the left hand side of 2) becomes zero. Hence

h X1 [ OE!1 ; OEX1 iC Z
F1

1 C h X2 [ OE!2 ; OEX2 i C Z
F2

2 D 0:

We claim now that each Xi is proportional to PDOEFi inH2.Xi IR/. Indeed, suppose

that this were not the case, say for i D 1. Then we could find an element 2
H2.X1IR/ such that h X1 [ ; OEX1 i D 1 but h ; OEF1 i D 0. Moreover, since small
closed perturbations of symplectic forms are still symplectic, for any sufficiently
small " > 0 the cohomology class OE!1 C " would admit a symplectic form, say

!"1 which assuming " is small enough) would continue to make F1 symplectic, and

would induce the same canonical class X1 as does 1 by virtue of being deformation
equivalent to 1. We would then have

Z !"1 D Z 1; h X1 [ OE!"1 ; OEX1 iD h X1 [ OE!1 ; OEX1 i C ":
F1 F1

But then we could apply the symplectic sum operation to the symplectic manifolds

X1;!"1/, X2; 2/ along the Fi to obtain a new symplectic manifold Z"; !"/,
diffeomorphic indeed deformation equivalent) to Z;!/, and by 2) we would have

h Z" [ OE! ;OEZ" i D " > 0:
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So Z"; !"/ is not a minimal symplectic manifold of Kodaira dimension zero. But
by Theorem 2.6 of [14], the Kodaira dimension of a symplectic four-manifold is a

diffeomorphism invariant,sosinceZ" is diffeomorphic toZ and since the minimality
or nonminimality of Z is also a diffeomorphism invariant; see, e.g., Proposition 2.1
of [14]) this is impossible. This contradiction shows that, for some 1; 2 2 R, we
have PD. Xi/ D iOEFi 2 H2.XIR/ for i D 1; 2.

Evidently, since h Z [ OE! ; OEZ i D 0, we must have

.2 C 1 C 2/ Z
F1

1 D h X1 [ OE!1 ; OEX1 iC Z
F1

1

C h X2 [ OE!2 ; OEX2 iC Z
F2

2 D 0;

so since
RF1 1 > 0 we have

1 C 2 D 2:

In particular, at least one of the i say 1, is negative. Then h X1 [ OE!1 ; OEX1 i D
1 RF1 1 < 0, so by Theorem B of [17] and results of [26] X1; 1/ must be either

a rational surface or an irrational ruled surface.

NowifX1 DCP2 # kCP2, then whereH is the hyperplaneclassandE1;: : : ; Ek
are the classes of theexceptional spheres of theblowups, we have PD. /

P
X1 D 3HC

k
iD1 Ei Since PD. X1/ is primitive and the embedded surface F1 represents

1 PD. /, we have 1
X11 1 2 Z and so 1 1. Similarly if X1 D S2 S2 then

PD. X1/ D 2 S2 fptg 2 fptg S2 and again our assumptions on F1 force

1 1 1 D 2 is ruled out both by the assumption that F1 has positive genus

and by the assumption that the sum is smoothly nontrivial, so that F1 is not a section
of an S2-bundle). Thus if X1 is rational then 1 1.

Suppose now that X1 is an irrational ruled surface; say X1 D S2 †h/ # kCP2
h 1;k 0). Then where is the homology class of the proper transform of a

section of S2 †h †h and f is the class of the proper transform of a generic fiber,

we have PD. X1/ D 2 C.2h 2/f CP
k
iD1

ei. Ifk > 0, then in order for OEF1 to
be an integral class we necessarily have 1 1. If k D 0, we have either 1 1

or 1 D 2, but if 1 D 2 then by Proposition 3.3 of [27] there is a ruling on X1 of
which F1 is a section, which is forbidden by the assumption that the sum is smoothly
nontrivial. Finally, if X1 is a nontrivial S2-bundle S2 z †h over a surface of genus

h > 0, then where sC, s are sections of square C1 and 1 respectively, we have

PD. X/ D .2h 3/OEsC .2h 1/OEs so that since OEF1 D
1 PD. X/ H2.2 X1IZ/,1

we get j
1
1 j 1, so 1 1.

Summing up, we have shown that since 1 < 0, X1 is rational or ruled, and that
because X1 is rational or ruled) by the hypothesis of the theorem we have 1 1.

But then since 1 C 2 D 2, we must have 2 < 0, which then forces X2 to be
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rational or ruled, and so by the same arguments 2 1. So since 1 C 2 D 2
and 1; 2 1, we in fact have 1 D 2 D 1, i.e., OEFi D PD. Xi / for

i D 1; 2.
To see that the Fi are tori, simply note that the adjunction formula gives

2g.Fi/ 2 D OEFi
2

C h Xi ;OEFi i D
2

Xi D 0:Xi
2

Theorem 3.1 and its proof show that, in order for a smoothly nontrivial symplectic
sum X1 #

F1DF2 X2 along a surface of positive genus to be minimal and of Kodaira
dimension zero, the Xi necessarily are rational or ruled, and the Fi are tori Poincaré
dual to Xi The main theorem of [27] shows that the sum will automatically be

minimal provided that the Xi and Fi satisfy the hypotheses of Theorem 1.7. The
problem of determining the diffeomorphism types of such sums now naturally splits
into 3 cases, which we address in turn.

3.1. Case 1: X1 and X2 are rational. Note that, since the Fi are tori, we have
2
X1# D 3 X1 #F1DF2 X2/ C 2 X1 #

F1DF2 X2/ D
2

C
2 Now the

F1DF2 X2 X1 X2
rational surfaces have 2

CP2#kCP2 D 9 k and 2
S2 S2 D 8, in light of which, in

order for 2
X1#F1DF2X2 to be zero, the unordered pair fX1; X2g mustbe either fCP2 #

kCP2; CP2 # .18 k/CP2g 0 k 9) or fS2 S2; CP2 # 17CP2g. Note that
since OEFi D PD. Xi /, Fi has intersectionnumber1 witheachembeddedsymplectic

1/-sphere in Xi Choosing an almost complex structure Ji on Xi generic among
those making Fi pseudoholomorphic, each homology class in Xi that is represented
by an embedded symplectic 1/-sphere will be represented by a Ji -holomorphic

1/-sphere, which will then intersect Fi transversely and once. Blowing down such
a 1/-sphere will then result in a symplectic manifoldX0i together with an embedded

torus F 0i with OEF 0
i

2
D OEFi

2
C 1.

Now according to Lemma 5.1 of [7] respectively, Proposition 1.6 of [22]), if
M1; 1/; M2; 2/ are symplectic 4-manifolds containing surfaces †1;†2 of equal

genus and area such that OE† 2
COE†

2
1 2 D 1, and if Mzi;†zi/denotes thepairconsisting

of a symplectic 4-manifold and symplectic surface that results from blowing up Mi
at a point of †i then Mz1 #†z1D† M2 is diffeomorphic respectively, symplectic

2
deformation equivalent) to M1 #†1Dz†2

Mz2.

Applying this to the cases under consideration enables us to replace the pair

fCP2 # kCP2; CP2 # .18 k/CP2g.0 k 9)byfCP2 # kC1/CP2; CP2 #

.18 k 1/CP2g since if X2 D CP2 # .18 k/ where k 9, X2 contains 1/-
spheres meeting F2 transversely once, any one of which may be blown down to give
a torus of square one larger in CP2 # .18 k 1/CP2, and we may then apply
Gompf’s and McDuff–Symington’s results mentioned above). Repeatedly “trading
blowups” in this fashion enables us to reduce to the case that k D 18 k D 9.
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Similarly, if X1 D S2 S2, then X2 D CP2 # 17CP2, so “trading blowups”
once reduces us to the case that X1 D S2 S2/ # CP2 D CP2 # 2CP2 and

X2 D CP2 # 16CP2, and then doing so seven more times reduces to the case that

X1 D X2 D CP2 # 9CP2.
So we assume for the rest of this subsection that X1 D X2 D CP2 # 9CP2.

The Xi are then both diffeomorphic to the total space of a rational elliptic surface

E.1/, and the Fi are homologous to a fiber of E.1/. In fact, we can make a stronger
statement about the Fi ; we begin with the following lemma.

Lemma 3.2. Let B C2 be a closed ball around the origin, and let
W B

C2 be an orientation preserving diffeomorphism onto a closed subset of C2 which
maps f.w; z/ 2 B j z D 0g orientation-preservingly to C f0g. Then there is a

diffeomorphism 0
W B B/ which is isotopic to by an isotopy which is the

identity on a neighborhood of @B, such that 0 maps f.w; z/ 2 B j z D 0g to C f0g
and is holomorphic on a neighborhood of the origin.

Proof. With respect to the splitting R4 D C2 D R2 R2, the Jacobian J of at

the origin has the 2 2 block form A M
0 C The orientation-preserving conditions

ensure that A and J both have positive determinant, in light of which C also has

positive determinant. Let
W B OE0; 1 be a smooth function which is equal to 1 on

a neighborhood of the origin and to 0 on a neighborhood of @B. Let V1 be the vector

field on B R4 whose value at v 2 B is v/ logA 0
0 logC v; by composing

with the time-1 map of V1 we reduce to the case where the Jacobian at the origin
has form I A 1M

0 I Then where V2.v/ D v/ 0 A 1M
0 0 v composing with the

time-1 map of V2 reduces us to the case that the Jacobian of at the origin is the
identity. Note that both V1 and V2 are tangent to C f0g, so the condition that this
set be preserved is not disturbed). But in this case there is a constant C depending on

the second derivatives of such we have j w; z/ w; z/j C.jwj
2
C jzj2/ and

j.D / w;z/ Ij C.jwj
2
Cjzj2/1=2. Let W

OE0; 1/ OE0; 1 be a smooth, monotone
function such that r/ D 0 for r 1=3, r/ D 1 for r 1, and 0.r/ 2. Then
if i > 0 defining

0.w; z/ D w; z/ C jwj
2

C jzj
2/1=2 i/. w; z/ w; z//

yields a smooth map which coincides with outside the ball of radius i around the
origin, is holomorphic in the ball of radius i=3 around the origin, and differs from
in C1 norm by at most .3 C i/Ci and therefore is a diffeomorphism as long as i is
taken small enough. Also, since preserves fz D 0g,

0 evidently does as well, and
0 is isotopic to by the isotopy C t. 0 /

Lemma 3.3. Let M; !/ be a symplectic manifold obtained by blowing up

CP2; FS/ at nine distinct points, and let F M be an embedded symplectic

submanifold Poincaré dual to the anticanonical class M. Then there exists
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an elliptic fibration W E.1/ S2 with no multiple fibers and a diffeomorphism

ˆW M E.1/ with the property that ˆ F / is a fiber of

Proof. Let JQ0 be an almost complex structure which makes F pseudoholomorphic.
Provided that JQ0 is chosen generically from among such almost complex structures,

there are unique, embedded JQ0-holomorphic representatives E1; :: : ;E9,
respectively, of the homology classes of the nine exceptional divisors of the blowup

M CP2. Each of theEi has a tubular neighborhoodNi modeled symplectically)
on a neighborhood of the zero section of the holomorphic line bundle O. 1/ over

CP1; we may shrink the Ni if necessary to make them pairwise disjoint. Now, for
each i the JQ0-holomorphic curves F andEi havehomological intersection number 1,
so they meet transversely, positively, and in just one point. Hence as in Lemma 2.3
of [7], we may isotope F relM n[Ni by symplectomorphisms to a surface F 0 such
that, for some smaller neighborhoods N0i of Ei F 0 \ N0i coincides with a fiber of
the bundle projection O. 1/ Ei Further, during this isotopy, we can change the
almost complex structure JQ0 to an almost complex structure JQ which agrees with JQ0

outside Ni makes F 0 holomorphic, and coincides on N0i with the standard integrable
complex structure on the tautological line bundle O. 1/.

We now symplectically blow down the Ei see Section 7.1 of [21] for a detailed
descriptionof this process); doingsoamounts to symplectically identifying anannular
neighborhood Li D D.i1;i/ n D.i2;i / N0i O. 1/ of the zero section Ei with
a spherical shell B.r1;i / n B.r2;i/ in C2, and filling in this shell by a standard ball
centered at a point pi with radius r2;i to replace the i2;i-neighborhood of Ei This

process is compatible with the complex blowdown in the sense that the annulus fibers
of Li are taken to annuli in the complex lines that they correspond to under the
identification of O. 1/ with the tautological line bundle of C2, so in the blowdown
these annuli may be filled in to form discs by adding in the disc of radius r2;i in
the corresponding complex line. So since F 0 meets each Li in one of these annulus
fibers, filling these annuli in as above gives rise to a compact symplectic surface S
whose intersection with each B.r1;i/ coincides with a complex line.

As a result of all this, blowing down theEi results inCP2 equipped withan almost
complex structure J which is integrable near each of the points pi and coincides
with JQ outside the blow-up neighborhoods), a J-holomorphic curve S CP2 which
coincides with F 0 outside the blow-up neighborhoods, and a symplectic form 0

induced by and the blowdown procedure) which is compatible with J 0 is easily
seen tobe cohomologous to the Fubini–Study form for instance, the proper transform
of the hyperplane class under the original blowups that were done to obtain M from
CP2 has a nonvanishing Gromov–Witten invariant, and so may be represented by
a symplectic surface Hz which we can arrange to miss the Li and so gives rise to a

symplectic surface in CP2; 0/ with the same area as Hz has in M; !/). Hence
by a result of [10] 0 is symplectomorphic to the Fubini–Study form. Also, for
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a similar reason as above, S CP2 has degree 3. So by Theorem 3 of [25], S
is symplectically isotopic to some complex cubic curve C. The isotopy extension
theorem then ensures that there is an ambient isotopy t W CP2 CP2 such that

1.S/ D C. Our intention now is to modify 1 to some other diffeomorphism 2
so that i) 2.S/ D C, ii) CP2 carries an elliptic pencil with fiber C and base

locus f 2.p1/; : : : ; 2.p9/g, and iii) 2 lifts to a diffeomorphism of the appropriate
blowups which takes F 0 to the proper transform of C.

To achieve this, first note that since the sheaf of sections of the holomorphic
normal bundle to C which vanish at the eight points 1.p1/; : : : ; 1.p8/ has
degree 1, it admits global nonvanishing sections by Riemann–Roch; perturbing 1 by
composing with a small diffeomorphism which preserves C we can arrange that

1.p1/; : : : ; 1.p8/ are generic in the sense that none of these sections vanishes to
order 2. Such asection results in another smoothcubicC0 which meetsC transversely
at the eight points 1.p1/; : : : ; 1.p8/, and also at some other point q9. Now let v be
a vector field on C which vanishes on neighborhoods of the 1.pi/ for 1 i 8 and

whose time-1 flow maps 1.p9/ to q9. Using a partition of unity subordinate to a set

of local trivializations of the normal bundle to C and a bump function supported on a

tubular neighborhood of C, extend v to a vector field V on CP2 whose restriction to
C is v; let be the time-1 flow of V and let 0 D B 1. Then 0 W CP2 CP2
is a diffeomorphism which maps S to C and p1; : : : ; p9 2 S to the 9 intersection
points between C and another smooth cubic C0.

Now 0 willnot lift to adiffeomorphism on blowups, because it is notholomorphic
near the points being blown up and so does not map complex lines to complex lines.
However, around each pi there are complex coordinates w; z/ in which S is given
by fz D 0g and likewise near each 0.pi/ there are complex coordinates in which
C is given by fz D 0g. Hence, in terms of these local holomorphic coordinates, 0
is given in these neighborhoods by a diffeomorphism which satisfies the hypothesis
of Lemma 3.2. So 0 may be modified by an isotopy supported in the union of
theseneighborhoods to anorientation-preserving diffeomorphism 2 W CP2 CP2
which maps S to C and is holomorphic on smaller) neighborhoods of p1; : : :; p9.
Consequently, if Y is the complex) blowup of CP2; J / at the 9 points p1; : :: ; p9
which makes sense because J is integrable near the pi and if E.1/ is the complex

blowup of CP2;Jstd/ at 2.p1/; : : :; 2.p9/, 2 lifts to a diffeomorphism Y

E.1/ taking the proper transform of S to the proper transform of C. If f and f 0

are homogeneous cubic polynomials with vanishing loci C and C0 respectively, the
vanishing loci COE

W
of f C f 0 OE

W 2 CP1) provide an elliptic pencil on

CP2 with base locus f p1/; : : : ; p9/g. Blowing up the base locus to form E.1/
thus gives an elliptic fibration with the proper transform of C as a fiber.

To compare Y to X, note that in order to put a symplectic form on the complex
blowup Y in such a way that the map 2 lifts to Y we need to cut out balls B0i
around pi that are smaller than the balls B.r2;i/ that were created by the blowdown
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X CP2. X and Y hence cannot be symplectomorphic. However, there is an

obvious diffeomorphism between the blowups corresponding to balls of different
size which simply changes the radius of the disc bundle involved; in particular this
diffeomorphism has a restriction to the neighborhood of the exceptional sphere which
preserves the fibers of the normal bundle O. 1/. Recalling that F 0 coincided with
a fiber of the normal bundle on the neighborhood N0i it then follows that the natural
diffeomorphism X Y takes F 0 to the proper transform of S in Y

We hence have a diffeomorphism X E.1/ which takes F 0 to the proper transform

of C; precomposing this with a symplectomorphism of X which isotopes F
to F 0 gives us the promised map ˆ W X E.1/ taking F to a fiber of an elliptic
fibration.

Corollary 3.4. If the symplectic sum Z of two rational surfaces along a positive
genus surface is a minimal symplectic four-manifold of Kodaira dimension zero, then

Z is diffeomorphic to the K3 surface.

Proof. Denote the two summands byXi i D 1; 2)and the surfaces in questionby Fi
We have shown that we may assume that Xi D CP2 # 9CP2 and that the Fi are tori
Poincaré dual to PD. Xi /. Hence by Lemma 3.3, we have Xi n Fi Š E.1/ n F
where E.1/ is the total space of a rational elliptic fibration having fiber F and where

“Š” denotes diffeomorphism). Hence

Z Š E.1/ n F /[ˆ E.1/ n F /
for some orientation-reversing diffeomorphism ˆ of the boundary @.E.1/ n F / D
T 3. But according to Proposition 1 ofAppendice 4 of [11], every orientation preserving

diffeomorphism of @.E.1/ n F / extends to E.1/ n F so the diffeomorphism
type of E.1/ n F / [ˆ E.1/ n F / is independent of ˆ So since one choice
of ˆ namely the one corresponding to taking the standard fiber sum of E.1/ with
itself) gives rise to the K3 surface, Z is evidently diffeomorphic to the K3 surface
independently of ˆ
3.2. Case 2: X1 is rational and X2 is irrational and ruled. Assume that X2 is
a ruled surface over a curve C of positive genus; we’ll show shortly that C is a

torus in the cases of interest. Then X2 is symplectomorphic either to the nontrivial
S2-bundle over C, which we denote S2 z C, or else X2 D S2 C/ # kCP2 for
some k 0. Suppose that X1 is rational and Fi Xi i D 1; 2) are embedded

symplectic submanifolds with the property that the smoothly nontrivial symplectic
sum X1 #F1DF2 X2 is minimal and of Kodaira dimension zero. Then Theorem 3.1
shows that theFi are tori Poincaré dualto Fi Inparticular, ifX2 is nonminimal and

J2 is an almost complex structure preserving TF2, then each member of a maximal
disjoint collection of embedded J2-holomorphic 1/-spheres meets F2 transversely
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and once; hence the results of [7] and [22] alluded to in the previous subsection
show that, up to deformation equivalence, the symplectic sum is left unchanged if we
simultaneously blow down each member of this maximal collection and blow up X1
at a corresponding number of points on F1. This reduces us to the case that X2 is
minimal, and so is either S2 C or S2 z C.

Lemma 3.5. Let
W E C be an S2-bundle over a positive-genus surface C with

symplectic form 2 2.E/, and let † E be an embedded, connected, symplectic
representative of PD. E/ 2 H2.EIZ/, with tubular neighborhood † Then C is
a torus and there is another bundle map 0

W E C whose fibers are symplectic
spheres such that 0jEn † defines a fiber bundle with fibers diffeomorphic to the
annulus S1 I:
Proof. First, note that if J is an almost complex structure compatible with with
respect to which † is pseudoholomorphic, and if M is the moduli space of
unparametrized pseudoholomorphic spheres representing the class of the fiber of
then results of [19] show that the map 0

W E Mwhich takes e 2 E to the point of
M representing the unique J-holomorphic representative of the fiber class on which
e lies is an S2-bundle with fibers homologous to the fibers of ; fundamental group
considerations then imply thatMhas the same genus as C. By construction the fibers
of 0 are J -holomorphic and hence symplectic.

We now claim that † is isotopic to some surface †0 E such that there is an

almost complex structure J 0 which makes †0 pseudoholomorphic and with respect
to which 0

W E M is a pseudoholomorphic map with respect to some almost
complex structure on M). Indeed, as in the proof of Lemma 3.2 of [16], using the
parametrized Riemann mapping theorem we can find complex coordinates z; w/ on

a suitable open set Ui of E centered around any critical point pi of 0j† in terms

of which the projection 0
W E M is given by z; w/ 7! w and @

Nz
lies in the J -

antiholomorphic tangent space T 0;1
J The intersection of † with this neighborhood

will then be given by†\Ui D fw D gi z/g where gi z/ D ci zki CO.jzjkiC1/ and

ci ¤ 0; that 0j† has a critical point at .0;0/ amounts to the statement that ki > 1.
Note that since † has intersection number 2 with the fibers of 0 as OE† D E
and the fibers are square-zero spheres), we in fact have ki D 2, and moreover there
can only be one critical point of 0j† in any given fiber of 0; accordingly we can
and do choose the Ui so that the 0.Ui/ are disjoint as i varies. We can then use a

cutoff functionsupported inUi andequal to 1 on some smaller neighborhoodU0i of the
critical pointpi to isotope† relEnUi tosome newsurface†0 whose intersectionwith
U0i is given by†0\U0i D fw D cizki g; further, using the same cutoff, we can isotope

J rel E nUi to a new almost complex structure J 0 which coincides with the standard
integrable complex structure with holomorphic coordinates z; w/ on U0i and with
respect to which both †0 and the fibers of 0 are J0-holomorphic. Repeating this
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near every critical point of 0j†, †0 and the fibers of 0 are now J0-holomorphic and
0

W E Mrestricts to a pseudoholomorphic map on a neighborhood of Crit. 0j†0/
with respect to J 0 on E and a suitable complex structure on[i 0.U 0/ M. But theni
extending this complex structure to all ofM, since 0j†n[iU0 is an unbranched cover

i
a simple patching argument may be used to further modify J 0 so that it continues to
make †0 pseudoholomorphic and now also makes the whole projection 0

W E M
pseudoholomorphic. This proves the claim at the start of this paragraph.

But now 0j†0 W †0 Mis a holomorphic map from a torus toMwith degree 2;
we know that M has the same positive genus as C, so it follows that that genus
is one. Hurwitz’s formula then implies that 0j†0

has no critical points; since the
critical points of 0j†0

were constructed to be just the same as those of 0j† it then

follows that 0j† has no critical points. Thus † meets every fiber of 0 transversely,
and hence exactly twice by the positivity of intersections of J -holomorphic curves.
Hence

0jEn † W E n † T 2

is a fibration with fiber given by the complement of two discs in S2, i.e., by S1 I

Consequently, in all cases of interest, we have X2 D S2 T 2 or X2 D S2 z T 2;
these both have c21 D 0, and so if X1 #

F1DF2 X2 is to be minimal of Kodaira
dimension zero then c21 X1/ D 0. Since the only rational surface with c21 D 0 is

CP2 # 9CP2, evidently X1 D CP2 # 9CP2.
The above lemma makes the diffeomorphism classification of annulus bundles

over T 2 relevant to us; specifically we are interested in those annulus bundles with
orientable total space and having just one boundary component. Identify S1 I with
A D D.2/ n D.1=2/ C. Any annulus bundle over T 2 is isomorphic to one of the
form M.f; gI fhtg/ where f; g 2 0.Diff.A// commute, fhtgt2S1 2 1.Diff.A//,

M.f; gI f1g/ D
R2 A

x C 1; y; z/ x; y; f z//; x; y C 1; z/ x; y; g.z//

and M.f;gIfhtg/ is obtained from M.f;gIf1g/ by removing a trivial neighborhood
D2 A from M.f; gI f1g/ and gluing it back by the map

@D2 A @D2 A;
t; z/ t; ht z//:

Since changing the choice of basis fu; vg of H1.T 2IZ/ to, respectively, fu C v; vg
or fv; ug corresponds to replacing f; g/ by f B g; g/ or g;f /, we can assume that

f maps each respective boundary component of A to itself if f does not initially,
then either g or f B g does). Now 0.Diff.A// D Z2 °Z2, with generators given
by z 7! z 1 and z 7! Nz.



Vol. 84 2009) Kodaira dimension and symplectic sums 75

We are interested in orientable annulus bundles over T 2 having just one boundary
component. The orientability condition restricts us to the case that the monodromies

f and g preserve the orientation of A D D.2/ nD.1=2/. f is assumed to map each

boundary component to itself, so this forces f to be isotopic to the identity. But
then in order for the bundle to have just one boundary component g must swap the
boundary components of A, forcing g to be isotopic to z 7! z 1.

Now as explained after the statement of Theorem 2.3 in [28], it follows from a

theorem of Smale that the identity component of Diff.A/ retracts to S1 and indeed
the map Diff0.A/ Diff0.S1/ given by restriction to one boundary component is a

homotopy equivalence), so 1.Diff.A// is generated by the loop of diffeomorphisms

rt W A A where for t 2 S1 rt is given by rotation through the angle t Thus, any
orientable annulus bundle over T2 with one boundary component has form

Yn D M.I;z 7! z 1
I fr

n
t g/

In fact, arguing exactly as inLemma 7 of Section 8 of[23], where l; m 2 1.@D2 A/
are, respectively, the generatorsof the images of the inclusion-inducedmaps 1.A/

1.@D2 A/ and 1.@D2/ 1.@D2 A/, one finds that for any n 2 Z there is
a fiber preserving diffeomorphism Y0 n D2 A Y0 n D2 A whose restriction
to the boundary @D2 A takes a representative of m to a representative of m C 2nl
an explicit formula for such a diffeomorphism may easily be found by adapting the

proof of Proposition 2(3) of [24] to the case where the fibers of the bundles involved
are annuli rather than tori). Thus, every orientable annulus bundle over the torus
having just one boundary component is isomorphic as a smooth fiber bundle to either

Y0 or Y1.

By definition, we have

Y0 D S1 R A
x C 1;z/ x; z 1/

3)

Meanwhile, we see easily that

Y1 D
R S1 A

x C 1; ei ; z/ x; ei ; ei z 1/
; 4)

since the right hand side above obviously admits the structure of an annulus bundle
and so by our earlier remarks is isomorphic either to Y0 or to Y1; computation of the
fundamental group then shows that it is distinct from Y0.

Lemma 3.6. Let
W E T 2 be an S2-bundle with symplectic form 2 2.E/,

and let † E be an embedded, connected, symplectic representative of PD. E/ 2
H2.EIZ/, with tubular neighborhood † Then E n † is diffeomorphic to Y0 if
and only if E is symplectomorphic to S2 T 2 with some split symplectic form).
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Proof. By Lemma 3.5, possibly after redefining we may assume that has
symplectic fibers and that j†n † defines an annulus bundle over T 2.

For the forward implication, simply note that the annulus bundle Y0 admits a

section ; x/ 7! OE ; x; 1 ; if E n † is diffeomorphic to Y0 this section includes into

E as a torus which intersects the fibers of E T 2 once transversely and which
misses †. Now the total space of E is, by results of [19], symplectomorphic by a

fiber-preserving map to the projectivization a complex line bundle over T 2 of degree
either 0 or 1; however, in the projectivization of a line bundle of degree 1 over the
torus there are no homology classes having intersection number 1 with the fibers and

0 with the anticanonical class. Hence E must be the projectivization of the trivial
complex line bundle over T 2, i.e. S2 T 2.

Conversely, suppose that E is symplectomorphic to S2 T 2. As in Lemma 3.5,
we can assume that † meets each fiber of

W E T 2 transversely twice. Now let

pW M S2 be a nontrivial S2-bundle over S2, and let F M be the disjoint union
of a section of square 1 and a section of square 1 of p, each of which is symplectic
with respect to some symplectic form on F which restricts nondegenerately to the
fibers of Then by the pairwise sum construction in [7], the fiber sum E0 ofM and

E carries a symplectic form and admits a symplectic torus †0 obtained by gluing †
to the section of square 1 in F at one of its intersection points with the fiber and to
the section of square 1 in F at the other. Now the induced S2-fibration 0

W
E0 T 2

on the fiber sum is easily seen to admit sections of odd square glue a section of even

square in E to a section of odd square inM), so E0 is diffeomorphic to the nontrivial
S2-bundle over T 2. Hence by the previous paragraph E0 n †0 is not diffeomorphic
to Y0, so it is diffeomorphic to Y1.

Now M is diffeomorphic to CP2 # CP2; the complement M n F of a

neighborhood of the disjoint union F of a section of square 1 and a section of square 1
is then diffeomorphic to the complement of a neighborhood of the union of a point
and a line in CP2, i.e. to a region f.z; w/ 2 C2 j r jzj

2
C jwj

2
Rg in C2.

In these terms, jMn F W M n F CP1 is the Hopf map z; w/ 7! OEz
W w This

shows that the annulus fibration pjMn F W M n F S2 is obtained from the trivial
annulus fibration over S2 by removing the neighborhood of a fiber and regluing it by
the diffeomorphism ei ; z/ 7! ei ;ei z/ of @D2 A.

But the annulus fibration 0
W

E0 n †0 T 2 is obtained by taking the fiber sum

of
W E n † T 2 with pW M n F S2, so this implies that 0

W
E0 n †0 T 2

may be constructed from W E n † T 2 by removing the neighborhood of a

fiber and regluing it by the diffeomorphism ei ; z/ 7! ei ; ei z/ of @D2 A.
Now performing this operation on the annulus bundle Y0 yields Y1, while performing
it on Y1 yields Y2 Š Y0. So since we have already established that E0 n †0 is
diffeomorphic to Y1, it must be that E n † is diffeomorphic to Y0.
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Theorem3.7. LetX be an S2-bundle over T 2, letF X be an embedded symplectic
representative of PD. X/, and let F 0 E.1/ be an embedded symplectic representative

of PD. E.1//. Then the symplectic sum E.1/ #F 0DF X is diffeomorphic to
the Enriques surface.

Proof. First, we notice that we can reduce to the case that X is symplectomorphic to
S2 T 2 with some split symplectic form). Indeed, if X is instead diffeomorphic
to the nontrivial S2-bundle over T 2, we shall twice apply the result of [7] and [22]
which allows us to “trade blowups” as discussed in Case 1. First, if M1; F1/ is
the result of blowing down a 1/-sphere passing once positively and transversely
through F 0 to find such a sphere, use an almost complex structure preserving TF 0 to
evaluate the Gromov–Witten invariant of one of the classes of the exceptional spheres

of E.1/ D CP2 # 9CP2) and if M2; F2/ D X;F /, we see that E.1/ #F 0DF X is
deformation equivalenttoM1 #

F1DFz2 Mz2. NowtherulingX T 2 induces a genus-

0 not relatively minimal) Lefschetz fibration
W Mz2 T 2 each of whose fibers

meets the symplectic square-. 1/ torus Fz2 twice; has just one singular fiber, whose
components C1 and C2 are two embedded 1/-spheres one of which, say C1, is the
exceptional sphere of the blowup, and the other of which is the proper transform of
the fiber ofX S2 that passes through the blown-up point), each of which intersects

Fz2 once. Now blowing down C2 produces a manifold symplectomorphic to S2 T 2,

and Fz2 M2 is isotopic to the proper transform of a symplectic representative

F 00 of PD. S2 T2 /. Hence M1 #
F1DFz2

Mz2 is in turn deformation equivalent to

Mz1 #
Fz1DF 00

S2 T 2/. Since Mz1; Fz1/ is obtained by first blowing down a sphere

passing once positively and transversely through F 0 E.1/ and then blowing up

a point on the image of F 0 under the blowdown, it follows that Mz1 is deformation
equivalent toE.1/ andFz1 represents PD.

Mz1
/. This allows us to hereinafter assume

that X D S2 T 2.
By Lemma 3.3, E.1/ n F 0 is diffeomorphic to the manifold with boundary N

obtained by deleting a neighborhood of a regular fiber of an elliptic fibration on E.1/,
while X n F is, by Lemma 3.6 and our reduction to the case that X D S2 T 2,

diffeomorphic to Y0.
So the symplectic sum in question is diffeomorphic to

X0 D N [@ Y0I
note that since by Proposition 1 of Appendice 4 of [11] every orientation preserving
diffeomorphism of @N extends to N, the diffeomorphism type of X0 is determined
independently of the boundary gluing maps.

We claim now that X0 is diffeomorphic to the Enriques surface. In fact, this is
essentially a remark on p. 50 of [11]; for a direct proof, recall that Y0 D S1 Z0
where Z0 D R A=.x C 1; z/ x; z 1/. Now projecting Z0 onto its second

factor gives Z0 the structure of a Seifert fibration over D2 with two multiple
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fibers each having multiplicity 2; hence Y0 D S1 Z0 is the result of performing
two multiplicity two logarithmic transformations on the trivial elliptic fibration
T 2 D2. Thus X0 D N [@ Y0 is obtained from E.1/ by deleting a neighborhood
of a smooth fiber and replacing that neighborhood with the result of two multiplicity
two logarithmic transformations on T 2 D2, i.e., X0 is obtained from E.1/ by
performing two multiplicity-two logarithmic transformations. But this is precisely the
definition of the Enriques surface.

3.3. Case 3: X1 and X2 are irrational and ruled. Since a k-fold blowup of an
S2-bundle over a surface of genus h has c2

1 D 8 8h k, in order for the symplectic
sum of irrational ruled surfaces X1 and X2 along a torus to have c21 D 0, both X1
and X2 must be S2-bundles over T 2. By Theorem 3.1, the surfaces Fi are embedded

symplectic tori representing PD. Xi /. As in the proof of Lemma 3.5, results of [19]
imply that there are projections i W Xi T 2 such that i jFi is an unramified double
cover of T 2 by Fi ; the deck transformation of this cover is then a free orientationpreserving

involution i W Fi Fi By considering these involutions,weshall realize
any symplectic sum of the Xi along the Fi as the total space of some torus bundle
over T 2.

Lemma 3.8. Let 1; 2W T 2 T 2 be free orientation-preserving involutions, and
let W T 2 T 2 be any diffeomorphism. Then is isotopic to a diffeomorphism

0
W T 2 T 2 with the property that

0 1
B 2 B

0

B 1 is either the identity or a free involution.

Proof. First of all, note that any two free orientation-preserving involutions and
0 from T 2 to T 2 are conjugate. Indeed, letting E be the quotient of T 2 by E0

the quotient of T 2 by 0, and
W T 2 E, 0

W T 2 E0 the projections, E and

E0 are both tori, so that there exists a diffeomorphism W E E0. The images of
1.T 2/ in 1.E0/ by 0 and B are both index 2 lattices in 1.E0/ Š Z2, so there

is an element A of SL.2IZ/ taking one to the other; hence by composing with a

diffeomorphism of E0 that induces A on 1 we can assume that the maps induced
on 1 by 0 and by B have the same image. Hence B W T 2 E0 lifts to a

diffeomorphism f W T 2 T2 such that 0
B f D B Since resp. 0) takes

x 2 T 2 to the unique other point in 1. x// resp. 0 1. 0.x//) it follows that
0

B f D f B so 0 and are indeed conjugate.
In light of this, identifying T 2

D R2=Z2 and conjugating 1; 2; by some

diffeomorphism, we can assume that 1.OEx; y / D OEx C 1=2; y where OEx;y 2 T 2

is the equivalence class of x;y/ 2 R2 under the relations xC1; y/ x; y C1/
x; y/). By the previous paragraph, since 1

B 2B and 1 are free involutions, there
is some 2 Diff.T 2/ such that 1

B 2 B D
1

B 1 B Now is isotopic to some

linear diffeomorphism A D a b
c d 2 SL.2IZ/; say A D B f1 where fft gt2OE0;1 is
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a smooth family of diffeomorphisms such that f0 D 1. Then where 0 D B f1,
is isotopic to 0 and we have 0 1

B 2 B
0

D A 1
B 1 B A.

Now since 1.OEx;y / D OEx C 1=2; y one easily computes

A 1
B 1 B A B 1.OEx; y / D x C

d C 1

2
;y

c

2
;

which defines the identity if c is even forcing d to be odd since A 2 SL.2IZ/) and
a free involution if c is odd.

Theorem 3.9. Let i W Xi T 2 i D 1;2/ be S2-bundles over T 2, Fi Xi
embedded tori with the property that i jFi is an unramified double cover. Let i be

tubular neighborhoods of Fi each identified with D2 Fi and let ˆ W
@ 1 @ 2

be a diffeomorphism which viewing @ i as an S1-bundle over Fi covers some
diffeomorphism

W F1 F2. Then the normal connect sum

X1 n 1/ [@ 1 ˆ@ 2 X2 n 2/

is diffeomorphic to the total space of a T 2-bundle over T 2.

Proof. First, note that after performing isotopies which do not change the
diffeomorphism type of the normal connect sum), we can assume that, for i D 1; 2, the S2-
bundle projection i is constant on each fiber of the disc bundle projection i Fi
and that using Lemma 3.8) 1

B 2 B B 1 is either the identity or a free involution,

where i W Fi Fi is the deck transformation induced by the cover i jFi Let

Z D X1 n 1/ [@ 1 ˆ@ 2 X2 n 2/.
Suppose that 1

B 2 B B 1 is the identity. We define a bundle map
W Z T 2

as follows. If x 2 X1n 1 Z, put x/ D 1.x/. Ifx 2 X2n 2 Z, then thereare
two points x2; 2.x2/ 2 F2\

1
2 f 2.x/g/, and since 1

B 2 B B 1 is the identity
we have 1. 1.x2// D 1. 2.x2//, so that 1. 1.x2// D 1. 1. 2.x2/// and

we set

x/ D 1. 1 x2// D 1. 1 2.x2///:
Since, for each p 2 Fi the fiber of the circle bundle @ i Fi over p is mapped by

i to i.p/, our map is defined consistently on the identified boundary components
@ 1; @ 2 in Z D X1 n 1/ [@ 1 ˆ@ 2 X2 n 2/. One easily sees that

W Z T 2

is a T 2-fibration; the point here is that since 1
B 2 B B 1 D 1,

W F1 F2
descends to a map f W T 2 T 2 such that 2jF2 B D f B 1jF1 ; the fiber of
over t 2 T 2 is formed by gluing the annulus 1

1 ftg/\ X1 n 1/ to the annulus
1

2 ff t/g/\ X2 n 2/.
It remains to consider the case that 1

B 2 B B 1 is a free involution. Then
1

B 2B B 1 commutes with 1 and their composition namely 1
B 2 B is alsoa

free involution. LetE D F1=h 1; 1
B 2B B 1iand letpW F1 E be theprojection
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which is an unramified quadruple covering of a torus by a torus). We shall define a

torus fibration
W Z E rather similarly to the previous case, except that here the

fibers will be formed by gluing four annuli rather than two. If x 2 X1 n 1 Z, set

x/ D p.x1/ where x1 2 F1 \ 1
f 1.x/g/; this is a coherent definition since1

the two elements of 1
1 f 1.x/g/ are intertwined by 1. If x 2 X2 n 2 Z, we

intend to set x/ D p. 1.x2// where x2 2 F2 \ 1
2 f 2.x/g/; we need to see

that the two possible choices of x2 either of which is taken to the other by 2) give
the same value for p.x/. In other words, we need to check that if x2 2 F2 then

p. 1.x2/// D p. 1. 2.x2///. Now since 1
B 2 B B 1 has order 2,

1 2. 1. 1 x2///// D 1. 1 2.x2///

so since E is the quotient of F1 by 1 and 1
B 2 B B 1 it is indeed the case

that p. 1.x2/// D p. 1. 2.x2/// for each x2 2 F2. We have thus defined

W Z E; it is again easily seen to be a torus bundle, with its fibers of the shape

A0` A1` A2` A3
@CAi @ AiC1 i 2 Z=4Z/

where A0 and A2 are annulus fibers of 2jX2n 2
and A1 and A3 are annulus fibers of

1jX1n 1 the fact that 1
B 2 B B 1 is free serves to ensure that, in each of these

torus fibers, A0 and A2 are distinct, as are A1 and A3).

This shows that any symplectic 4-manifold obtained as the symplectic sum of two
S2-bundles over T 2 along a pair of bi-sections is diffeomorphic to a T 2-bundle over

T 2. In fact, we can be quite specific about which T 2-bundles over T 2 are obtained
in this fashion. T 2-bundles over T 2 were classified in [24]; in particular, Theorem 5

of that paper shows that the total spaces of such bundles are distinguished from one

another up to diffeomorphism by their fundamental groups. As such, finding the
diffeomorphism type of the manifold X1 n 1/ [@ 1 ˆ@ 2 X2 n 2/ in Theorem 3.9
is just a matter of applying van Kampen’s theorem.

We know that, for i D 1; 2, the manifold Xi n i is diffeomorphic to one of the
manifolds Y0 or Y1 of 3), 4); more specifically, if Xi is diffeomorphic to S2 T 2

then Xi n i Š Y0, and otherwise Xi n i Š Y1. Note that

1.Yj / D
h ; ; mi

1m D m 1; mD m ; 1 1 D mj j D 0; 1/; 5)

with @Yj being spanned by the subgroup generated by 2; ; m. m here is the
generator of the fundamental group of the annulus fiber of the bundle map Yj T 2.

Where F denotes the torus F1 or F2 whose neighborhood we have removed from X1
or X2 to get Yj we have a trivial circle bundle pj W

@Yj F whose action on 1 has

kernel hmi. There is, of course, some flexibility in the choice of the generators: first,
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we get the same presentation if we replace by mj and then m by m 1; secondly,

if p q
r s / 2 SL.2; Z/ and q is even so that p and s are odd; say s D 2t C1), then we

get the same presentation by replacing with 0 D p r and with 0

D
q smjt

One convenient consequence of this is that if 2 1.@Yj / is any element with
the property that pj / is primitive in Z2 D 1.F / then the generators ; in the
presentation 5) may be chosen so that takes one of the forms

D
2 2cme or D

2a me:

We nowconsider the manifold resulting from gluing twoof thesemanifoldsYj ; Yk

j;k 2 f0;1g) together along theirboundaries in away consistent with the symplectic
sum operation. Nowin terms of bases f

2
1; 1; m1g, f

2
2 ; 2; m2g for the fundamental

groupsof the boundaries @Yj and @Yk respectively, since the gluing mapˆ is required
to cover an isomorphism of the normal bundles it will identify m1 with m2 possibly
after replacing one of the mi with its inverse, which as mentioned earlier can be done

without affecting the presentation 5) at the cost of possibly multiplying i by mi );
also 2

1 since it projects via pj to a primitive element in 1.F/, will be taken to some
element in the fundamental group of @Yk which likewise projectsvia pk to a primitive
element. Hence by the remark at the end of the previous paragraph, possibly after
renaming the generators 2, 2, and m2 in the presentation of 1.Yk/, the action of
the gluing map on the fundamental groups of the boundaries in terms of the bases

f 2
i ; i; mig takes one of the forms

0@

1 b 0

2c d 0
e f 11A d 2bc D 1/ or 0@

a b 0
1 d 0
e f 1

1A ad b D 1/:

Hence van Kampen’s theorem gives the fundamental group of the glued manifold
Yj [ˆ Yk as either

1.Yj [ˆ Yk/ D
h 1; 1; 2; 2; mi

1
1 m 1 D

1
2 m 2 D m 1; 1m D m 1; 2m D m 2;

1 1
1

1
1

1 D mj; 2 2
1

2
1

2 D mk;
2
1 D

2
2

2c
2 me; 1 D

2b
2

d
2 mf

6)

or

1.Yj [ˆ Yk/ D
h 1; 1; 2; 2; mi

1
1 m 1 D

1
2 m 2 D m 1; 1m D m 1; 2m D m 2;

1 1
1

1
1

1 D mj; 2 2
1

2
1

2 D mk;
2
1 D

2a
2 2me; 1 D

2b
2

d
2 mf

7)

The reader may verify that thegroup on the right hand side of 6) may be rewritten,
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by identifying D
1

1 2 c2 as

h 1; 2;m; i
m D m; 1 2

1
1

1
2 D mjC2.f be/; 1

1 m 1 D m 1;
1

1 1 D mkc e 1; 1
2 m 2 D m; 1

2 2 D mj kC2.f be/

;

which we recognize as the fundamental group of the T 2-bundle over T 2 given in the
notation of the introduction as

0 1
;

1 j k C 2.f be/
M

1 kc e

0
:

0 1 I j C 2.f be/

Similarly, the group on the right hand side of 7) may be identified, by taking D
1 2

1
1

1
2 1mjC2.f de/ and 2

2
1 D2 and then using the relations 1

2
2 D

2

2
1 2m2e k to obtain commutation relations between the i and as

h 1; 2; m; i
m D m; 1 2

1
1

1
2 D ; 1

1 m 1 D m 1;
1

1 1 D mk 2e 1; 1
2 m 2 D m 1; 1

2 2 D mjC2.f de/ 1

;

which is precisely the fundamental group of the T 2-bundle over T 2

0 1
;

1 j C 2.f de/
M

1 k 2e
1 :0 1 I
0

Now by changing the basis for the homology of the base by p q
r s / 2 SL.2IZ/, a

T 2-bundle over T 2 of form M.A; BI Ev/ may be equated with M.ApBr;AqBsI Ev/;
also, the bundles M.A;BI Ev/ and M.A; BI Ev0/ are equivalent if Ev0 Ev lies in the
submodule of Z2 spanned by the columns of A I and B I where I is the
identity; these statements are proven in Proposition 2 of [24]). As such, given a

bundle of form

0 1
;

1
M

1 i
0

;
0 1 I j C 2x

by letting z D gcd.i; / p D z, r D i=z, and since p and r are then relatively
prime) q and s be such that ps qr D 1, so that qi C s D z, we obtain

0 1
;

1
M

1 i
0 D M 1/pI; 1/q

1 z
0 1 I

j C 2x
00 1 I
j

note also that p and q cannot both be even since ps qr D 1, and if p is odd then
a further basis change for the homology of the base identifies M. I; AI Ev/ with
M. I;AI Ev/). This gives rise to the following list of possibilities for the diffeomorphism

type of Yj [ˆ Yk when its fundamental group is given by 6):
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j k possible diffeomorphism types of Yj [ˆ Yk

0 0 M 1 z 0I; 0 1 I 0 ; M I; 1 2y
0 1 I

0
0 y;z 2 Z/

0 1 I
0

0 1 M I; 1 2yC 1
0 y 2 Z/

1 1 M I; 1 z

0 ; M I; 1 2y
0 1 I

1
0 y; z 2 Z/0 1 I
1

Similarly, a bundle of form

M
1 i

0 1
;

1
0 1 I

0
1

is equivalent to

M 1/pCrI; 1/qCs 1 z

10 1 I
0

where z D gcd.i; / p D z, r D i=z, and ps qr D 1). From this, we deduce
the following list of possibilities for the diffeomorphism type of Yj [ˆ Yk when its
fundamental group is given by 7):

j k possible diffeomorphism types of Yj [ˆ Yk

0 0 M I;
1 2y

1 ; M I;
1 2y

0 1 I
0

1
y 2 Z/

0 1 I
0

0 1 I
0

0 1 M I; 1 2yC 1

1
y 2 Z/

0 1 I
0

1 1 M I; 1 2yC 1

1
y 2 Z/

In both of the above tables, it is easy to see that any of the indicated diffeomorphism
types can in fact be realized by means of an appropriate choice of the gluing mapˆ
Since if X is a ruled surface over T 2 and F X is an embedded representative of

PD. X/, we have seen that X n F Š Y0 if X D S2 T 2 and X n F Š Y1
if X D S2 z T 2, this completes the proof that the diffeomorphism types of the
symplectic sums in question are as claimed in the introduction.
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