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Selmer groups and Tate–Shafarevich groups for the congruent
number problem

Maosheng Xiong and Alexandru Zaharescu

Abstract. We study the distribution of the sizes of the Selmer groups arising from the three
2-isogenies and their dual 2-isogenies for the elliptic curve En W y2

D x3 n2x. We show that
three of them are almost always trivial, while the 2-rank of the other three follows a Gaussian
distribution. It implies three almost always trivial Tate–Shafarevich groups and three large
Tate–Shafarevich groups. When combined with a result obtained by Heath-Brown, we show
that the mean value of the 2-rank of the large Tate–Shafarevich groups for square-free positive
odd integers n X is 1

2
log logX C O.1/, as X 1.

Mathematics Subject Classification 2000). 11G05, 14H52, 11L40, 11N45.

Keywords. Elliptic curves, congruent number problem, Selmer group, Tate–Shafarevich group,
Erdös–Kac Theorem.

1. Introduction

A positive integer n is called a “congruent number” if n equals the area of a rational
right triangle, where “rational” means that the lengths of the three sides of this triangle
are rational numbers. Although Tunnell ([38]) presented an elementary criterion via
the theory of modular forms, strictly speaking the problem of deciding whether or not
a given integer is a congruent number is still open. Clearly one may restrict attention
to positive square-free integer n. It is a well-known fact that n is a congruent number
if and only if the elliptic curve En W y2 D x3 n2x has positive rank over Q ([25]).
Partly because of this relation and among other things, this family of elliptic curves

En has attracted a lot of attention and its arithmetic properties, such as the rank, the
associated L-functions, the Selmer groups and Tate–Shafarevich groups related to
this curve have been studied extensively see [1], [4], [5], [8], [11], [13], [14], [15],
[16], [20], [21], [23], [27], [29], [30], [32], [33], [34], [35], [37], [38], [42], [43]).

Let W E E0 be an isogeny between two elliptic curves E and E0 over Q. For
the cases of interest to us, is defined over Q and EOE the kernel of consists of

The second author wassupported by NSF grant number DMS-0456615, andby CNCSISgrant GR106/2007,
code 1116, of the Romanian Ministry of Education and Research.
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Q-rational points. Via Galois cohomology the exact sequence

0 EOE E E0 0

givesus thefollowing commutativediagram fordetails,please see chapterXin [36]):

0 E0.Q/
E.Q// Sel. / E=Q/ E=Q/OE 0

0
E0.Q/
E.Q// H1.GQN Q; EOE / H1.GQN Q; E/OE 0

0 0 Qv
H1.Gv; E/ Qv

H1.Gv; E/ 0,

where Sel. / E=Q/ is the -Selmer group and E=Q/ is the Tate–Shafarevich
group.

While the Selmer group is relatively easy to handle, the Tate–Shafarevich group is
more mysterious. It appears naturally in the Birch and Swinnerton-Dyer conjecture,
and measures the degree of deviation from the Hasse principle. Even the finiteness
of the group is not known in general. Various families of elliptic curves with large
Tate–Shafarevich groups were identified by a number of authors see [2], [3], [6],
[7], [24], [26], [28], [30]). Moments ([10]), heuristic results ([9]), and upper bounds

([17], [18]) on the order of Tate–Shafarevich groups were also considered.
For the elliptic curve En, Heath-Brown ([20], [21]) employed a method based on

character sums to obtain deep results on the behavior of the size of the Selmer group
Sel.2/.En=Q/ arising from the isogeny OE 2

W En En. For h D 1; 3; 5; 7, denote

S.X; h/ D f1 n X W n h mod 8/ and n is square-freeg; 1)

and for n 2 S.X; h/, let

#Sel.2/.En=Q/ D 2s.n/C2:

In Theorem 1 of [21] he proved that for any fixed positive integer k

X
n2S.X;h/

2ks.n/
D ck#S.X;h/ C ok.X/ 2)

as X 1, where ck D Q
k
jD1.1C2j /. He further derived the following result. Let

D 1Y
nD1

.1 C 2 n/ 1
D 0:4194 : : :;
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and

dr D
2r

Q1 j r .2j 1/
r D 0;1;2; : : :/:

Then if h D 1 or 3 and r is even, or if h D 5 or 7 and r is odd, one has

#fn 2 S.X; h/ W s.n/ D rg dr#S.X; h/;

as X 1. This is Theorem 2 in [21], and it shows that the probability that the
2-rank of the Selmer group Sel.2/.En=Q/ equals any given non-negative integer is
always positive.

Heath-Brown also obtained the asymptotic formula see Corollary 2, [21])

X
n2S.X;h/

s.n/ D c0h#S.X; h/ C o.X/ 3)

as X 1, where

c0h D´1:2039 : : : if h D 1; 3;

1:3250 : : : if h D 5; 7:

Notice that since the rank of the elliptic curve satisfies r.En=Q/ s.n/, the above
asymptotic formula yields a sharp upper bound on the average rank of the elliptic
curves in this family see Corollary 3 and 4 in [21]). Heath-Brown’s method was

generalized by G. Yu ([39], [40], [41]) to broader families of elliptic curves with full
2-torsion points and with a 2-torsion point in Q, and he obtained sharp upper bounds
on the average rank of the elliptic curves in those families.

In this paper we also focus on the family of elliptic curves En. For the three
different 2-isogenies 1, 2, 3 defined by

1 W En E1;n W y2
D x3

C 4n2x;

x; y/ 7 y2 x2; y.n2
C x2/=x2/;

2 W En E2;n W y2
D x.x2 6nx C n2/;

x; y/ 7 y2 x C n/2; y.2n2 x C n/2/=.x C n/2/;
and

3 W En E3;n W y2
D x.x2

C 6nx C n2/;
x; y/ 7 y2 x n/2 ; y.2n2 x n/2/=.x n/2 /;

let O1
W E1;n En, O2 W E2;n En and O3 W E3;n En be their dual 2-

isogenies respectively. Hence Oi B i D OE 2 for i D 1;2; 3, and one has the following
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commutative diagrams see pp. 97, [1]):

0 0 0

0 Ei;n.Q/
i.En.Q// Sel. i /.En=Q/ En=Q/OE i 0

0 En.Q/
2En.Q// Sel.2/.En=Q/ En=Q/OE2 0

0
En.Q/

Oi.Ei;n.Q// Sel. Oi/.Ei;n=Q/ Ei;n=Q/OE Oi 0

0 CO CO 0

0 0.

The first three rows are basic short exact sequences in the arithmetic of elliptic curves
coming from Galois cohomology; the exactness in the first column comes from the
fact that En contains full 2-torsion in Q, and the rest come from the Snake lemma.

Here one may apply Heath-Brown’s method to obtain asymptotic formulas for the

average of the sizes of the twoSelmer groupsSel. i/.En=Q/ andSel. Oi/.Ei;n=Q/, and
this may reveal some interesting distribution phenomena. Moreover, by comparing

such results on Sel. i/.En=Q/ and Sel. Oi/.Ei;n=Q/ and the result on Sel.2/.En=Q/
obtained by Heath-Brown, one may be able to obtain new information on the Tate–

Shafarevich groups in the third column of the commutative diagrams. As we will see

below, this is precisely the case. We will prove the following results. Let S.X; h/ be
the set of integers defined in 1).

Theorem 1. Let h D 1; 3; 5 or 7 and i D 1; 2 or 3. For n 2 S.X;h/, denote

#Sel. i/.En=Q/ D 2s.n; i/; #Sel. Oi /.Ei;n=Q/ D 2s.n; Oi/C2:

Then s.n; i/ D 0 for almost all n 2 S.X; h/ as X 1, and s.n; Oi/ follows a

Gaussian distribution. More precisely, for any integer k 0, one has

lim
X!1

1

#S.X; h/ X
n2S.X;h/

s.n; i/k
D 0;
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and for any 2 R,

lim
X!1

1

#S.X; h/
#´n 2 S.X; h/ W

2 log log n

µD G. /;
s.n; Oi/ 1

2
log logn

q1

where the function G is defined by

G. / D
1

p2
Z

1
e

t2
2 dt:

We note that the sizes of the three Selmer groups Sel. i/.En=Q/, Sel. Oi /.Ei;n=Q/
and Sel.2/.En=Q/ behave very differently. While the first is almost always trivial
and the 2-rank of the second follows a Gaussian distribution, the probability that the
2-rank of the third equals any non-negative integer is always positive. It also implies
that the map i W En.Q/ Ei;n.Q/ is almost always surjective for n 2 S.X; h/ as

X 1.
Theorem 2. Let h D 1; 3; 5 or 7 and i D 1; 2 or 3. For n 2 S.X;h/, denote

# En=Q/OE i D 2t.n; i /; # Ei;n=Q/OE Oi D 2t.n; Oi/:

Then t.n; i / D 0 for almost all n 2 S.X; h/ as X 1. Moreover, for any positive
integer k, one has

1

#S.X; h/ X
n2S.X;h/

t.n; i/k D Ok logX/ 1=5 ;

and

1
#S.X; h/ X

n2S.X;h/
t.n; Oi /k

D
log logX

2

k

C Ok log log X/k 1 :

In particular when k D 1, it shows that the mean value of the 2-rank of the
large Tate–Shafarevich groups is 1 log logX 1/. Notice that..Ei;n=Q/OE

2 CO. Oi

Ei;n=Q/OE2 Theorem 2 implies that the 2-part of the Tate–Shafarevich group

Ei;n=Q/ can be arbitrarily large for any i D 1; 2 or 3.
There are three main ingredients in the proofs of the above results. First, we

use a graph method to determine the sizes of the Selmer groups Sel. i/.En=Q/ and

Sel. Oi /.Ei;n=Q/ separately. This will reveal a simple relation, which is essential in
reducing the complexity of the problem. Second, we employ Heath-Brown’s method
based on character sums in order to obtain asymptotic formulas for the average of
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the size of the Selmer group. This will yield the distribution results. Third, by
combining our results, the full strength of the results obtain by Heath-Brown and

the above commutative diagrams, we derive information on the corresponding Tate–
Shafarevich groups.

Acknowledgement. The authors are very grateful to the referee for many useful
comments and suggestions.

2. Preliminaries

2.1. 2-descent and Selmer groups. The 2-descent method is explained in the last
chapter of Silverman’s book ([36]) in general. For our particular case of En, this was

specified in [13], [14] and [15] as follows.
For a square-free positive integer n, let n D p1 : :: pt where p1; : : : ; pt are the

distinct odd prime factors of n. Definea set S of prime divisors of the rational number
field Q by

S D f1; 2; p1; : : : ; pt g

and a subgroup M of the multiplicative group Q Q /2 generated by the elements

1;2; p1; : :: ; pt. For i D 1;2; 3, for each d 2 M we have homogeneous spaces

Ci;d and Ci0
;d

corresponding to the isogenies i and Oi respectively. They are defined
as

C1;d : dw2
D t4

C .2n=d/2 z4;
C0

1;d : dw2
D t4 n=d/2 z4;

C2;d : dw2
D t4 6.n=d/t2z2

C n=d/2 z4 ;

C0
2;d : dw2

D t4
C 3.n=d/t2z2

C 2 n=d/2 z4;

C3;d : dw2
D t4

C 6.n=d/t2z2
C n=d/2 z4;

C0
3;d

: dw2
D t4 3.n=d/t2z2

C 2 n=d/2 z4 :

The Selmer group Sel. i /.En=Q/ Sel. Oi/.Ei;n=Q/) measures the possibility of Ci;d
C 0

i;d/ having non-trivial solutions in the local field Qv for all v 2 S. Namely,

Sel. i /.En=Q/ Š °d 2 M W Ci;d Qv/ ¤ for all v 2 S ;

Sel. Oi /.Ei;n=Q/ Š fd 2 M W
C0

i;d Qv/ ¤ for all v 2 Sg;

where Ci;d Qv/ ¤ C0
i;d Qv/ ¤ means that the homogeneous space Ci;d

C0i;d has non-trivial solutions w; t; z/ ¤ .0; 0; 0/ in Qv. The Selmer groups
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Sel. i /.En=Q/ and Sel. Oi/.Ei;n=Q/ can be considered as subgroups of M. Notice

that f 1; ng Sel. O1/.E1;n=Q/, f1;2; n; 2ng Sel. O2/.E2;n=Q/ and

f1; 2;n;2ng Sel. O3/.E3;n=Q/, since the corresponding homogeneous spaces have

global non-trivial solutions in Q.

2.2. A graph method. We use standard terminology in graph theory ([19]). Let
G D V; A/ be a simple directed graph where V D V.G/ D fv1; : : : ;vmg is the set

of vertices of G, and A D A.G/ is the set of arcs in G. We denote an arc vi; vj / 2 A
by vi!vj The adjacency matrix of G is defined by

M.G/ D aij/16i;j6m ;

where

aij D ´ 1 if vi!vj 2 A .1 6 i ¤ j 6 m/;
0 otherwise.

For the vertex vi 1 i m, let di D P
m
jD1 aij The Laplace matrix of the graph

G is defined by

L.G/ D diag.d1; : : : ; dm/ M.G/:

The term “odd graph” has been used by K. Feng, Y. Xue and one of the authors
in their study of new families of non-congruent numbers ([13], [14], [15]).

Definition 1. LetG D V; A/ be a directed graph. Apartition ofvertices V1[V2 D V
is called odd if either there exists a vertex v1 2 V1 such that #fv1 V2g, the total
number of arcs from v1 to vertices in V2 is odd, or there exists v2 2 V2 such that
#fv2 V1g is odd. Otherwise the partition V1[ V2 D V is called even. The graph

G is called odd if all non-trivial partitions fV1; V2g ¤ fV; g of V are odd.

We need the following counting lemma, which can be derived by the same idea
used in the proof of Lemma 2.2 in [13].

Lemma 1. LetG D V; A/ be a directed graph, V D fv1; : : : ; vsCt g s; t 0/. Then
thenumberof even partition fV1; V2gofV such that fvsC1; : : : ; vsCtg V2 is equal to
thenumberofvectors x1; : : : ; xs/ 2 Fs

2 such that L.G/ x1; : : :; xs; 0; : : : ;0/T D 0.

3. Explicit formulas for the Selmer groups

The problem of finding the sizes of the Selmer groups Sel. i/.En=Q/ respectively

Sel. Oi /.Ei;n=Q/) is equivalent to the problem ofdetermining howmanyhomogeneous
spaces Ci;d respectively C0i;d have non-trivial solutions over certain local fields.
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While the solvability conditions can be found by using Hensel’s lemma, one still
needs a clever combinatoric method to piece them together. We will interpret these

solvability conditions as certain “even partitions” of a graph, and use Lemma 1 to
find the number of such partitions.

3.1. The sizes of Sel. 1/.En=Q/ and Sel. O1/.E1;n=Q/. We collect the solvability
conditions for C1;d and C0

1;d
over local fields as follows.

Lemma 2 Lemma3.1, [14]). Suppose that n D p1 : : :pt t 1/ is a square-freeodd
integer, d 2 M D h 1; 2; p1; : : : ; pti Q Q /2; v 2 S D f1;2; p1; : : : ;ptg.
Let p denote an odd prime number. One has

1) C1;d Q1/ D d < 0;

2) For p || d; C1;d Qp/ ¤
1

p D 1 and n=d
p D 1;

d C1;d Qp/ D
d3) For p ||

n
p D 1;

4) If n 3 mod 8/ and 2 || d, then C1;d Q2/ D ;

5) d 1 mod 4/ H) C1;d Q2/ ¤ ;

6) If n 1 mod 8/, d D 2d0 || 2n and d0 1 mod 4/, then C1;d Q2/ ¤
Lemma 3 Lemma 3.2, [14]). Under the same assumptions one has

1) 2 || d H) C0 Q2/ D ;1;d

2) If 2-d, then C0 Q2/ D d 3 mod 8/ and n 3 mod 8/;1;d d

3) If p || d, then C0
1;d Qp/ D

1
p D 1 and n=d

p D 1;

d then C0
1;d Qp/ D

14) If p ||
n

p D 1 and d
p D 1.

For a square-free positive odd integer n, let

n D p1 :: : ptq1 : : :qs

be its prime factorization, where

´ pi 1 mod 4/; 1 i t;
qj 3 mod 4/; 1 j s:

If n 3 mod 8/, we construct a graph yG1.n/ D V; A/ by assigning

V D fp1; : : :; pt; q1; : : : ; qsg;
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A D npq W

q
p D 1; p || n; q || no:

By 1), 2) and 3) of Lemma 2 one has Sel. 1/.En=Q/ hp1; : : : ;pt i. For any

d D p1 : : : pr 2 hp1; : : :; pt i, it iseasy toseefromLemma2 that d 2 Sel. 1/.En=Q/
if and only if the partition

fp1; : : : ; prg[ fprC1; :: : ;ps; q1; :: : ;qsg D V

is an even partition. Let L. yG1.n/ be the Laplace matrix of the graph yG1.n/. Then
by Lemma 1, the number of such even partitions, as well as the size of the Selmer
group Sel. 1/.En=Q/ is

2t rankF2L. yG1.n//:

For the Selmer group Sel. O1/.E1;n=Q/ and n 3 mod 8/, we construct
another graph G1.n/ D V; A/ by assigning

V D fp1; : : :; pt; q1; : : : ; qsg;

A D npipj W

pj
pi D 1; 1 i ¤ j to

[ npi!qr W

qr
pi D 1; 1 i t; 1 r so:

We knowfromLemma3 thatforany d Dp1 : : : prq1 :: : ql 2hp1;: : : ; pt;q1;: : : ; qsi,
d 2 Sel. O1/.E1;n=Q/ if and only if the partition

fp1; : : : ; pr; q1; :: : ;qlg[ fprC1; : : : ; ps;qlC1; : : :; qsg D V

is an even partition. By Lemma 1, the size of the Selmer group, which is twice the
number of such even partitions is

2tCsC1 rankF2L.G1.n//:

Here L.G1.n// denotes the Laplace matrix of the graph G1.n/. One sees that

rankF2L. yG1.n// D rankF2L.G1.n/:

Therefore

#Sel. O1/.E1;n=Q/ D #Sel. 1/.En=Q/ 2sC1:

In the case when n 1 mod 8/ the computation is similar and we omit the details.
We have in conclusion the following result.
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Theorem 3. For any square-free positive odd integer n, let

n D p1 :: : ptq1 : : :qs

be its prime factorization, where

´ pi 1 mod 4/; 1 i t;
qj 3 mod 4/; 1 j s:

Let s.n; 1/ and s.n; O1/ be the 2-rank of the Selmer groups Sel. 1/.En=Q/ and

Sel. O1/.E1;n=Q/ respectively, i.e.,

#Sel. 1/.En=Q/ D 2s.n; 1/; #Sel. O1/.E1;n=Q/ D 2s.n;O1/C2:

If n 3 mod 8/, we construct a graph G1.n/ D V;A/ by

V D fp1; : : :; pt; q1; : : : ; qsg;

A D npipj W

pj
pi D 1; 1 i ¤ j to

[ npi!qr W

qr
pi D 1; 1 i t; 1 r so:

Let M1.n/ be the Laplace matrix of the graph G1.n/. Then

s.n; 1/ D t rankF2M1.n/; s.n; O1/ D s 1 C t rankF2M1.n/:

If n 1 mod 8/, we construct a graph G01 n/ D V;A/ by

V D fp1; : : : ;pt; q1; :: : ;qs; 1g;

A D npipj W

pj
pi D 1; 1 i ¤ j to

[ npi!qr W

qr
pi D 1; 1 i t; 1 r so

[ n 1/p W p 3 mod 8/; p 2 V o:

Let M01 n/ be the Laplace matrix of the graph G01 n/. Then

s.n; 1/ D t C 1 rankF2 M01 n/; s.n; O1/ D s 1 C t rankF2 M01 n/:

These explicit formulas reveal asimplerelation between these two Selmer groups,
which are crucial in determining the distribution of the 2-rank of one of them. They
are essentially the same as the ones obtained by N. Aoki Theorem 2.1, [1]).
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3.2. The sizes of Sel. 2/.En=Q/ and Sel. O2/.E2;n=Q/. The solvability conditions
of homogeneous spaces C2;d and C0

2;d
over local fields can be derived from Hensel’s

lemma, and the proofs are very similar to those leading to Lemmas 2 and 3 above.
Thus we omit the proofs and collect the results below.

Lemma 4. Suppose that n D p1 : : :pt t 1/ is a square-free odd integer, d 2
M D h 1; 2;p1; : : : ; pti Q Q /2; v 2 S D f1; 2;p1; : : :; ptg. Let p denote
an odd prime number. One has

1) 2 || d H) C2;d Q2/ D ;

2) For p || d; C2;d Qp/ ¤
2
p D 1 and n=d

p D 1;

d C2;d Qp/ D
d3) For p ||

n
p D 1;

4) C2;d Q1/ ¤ d > 0;

5) C2;d Q2/ ¤ n 3 mod 4/; d 1 mod 8/ or n 1 mod 4/,
d 1 mod 8/.

Lemma 5. Under the same assumptions one has

1) C0
2;d Q1/ ¤ ;

2) 2-d, C0
3;d Q2/ ¤ d 1 mod 4/ or n

d 3 mod 4/;

3) If p || d, C0
2;d Qp/ D

2
p D 1 and n=d

p D 1;

d C02;d Qp/ D
24) If p ||

n
p D 1 and d

p D 1.

By the same graph method one can compute explicitly the sizes of the Selmer

groups Sel. 2/.En=Q/ and Sel. O2/.E2;n=Q/.

Theorem 4. For any square-free positive odd integer n, let

n D P1 : : : Ptp1 : : : pt0Q1 : : : Qsq1 : : :qs0

be itsprime factorization, wherePi 1 mod 8/, pj 7 mod 8/, Qr 3 mod 8/,
qm 5 mod 8/, t; t0;s; s0 0. Let s.n; 2/ and s.n; O2/ be the 2-rank of the Selmer

groups Sel. 2/.En=Q/ and Sel.O2/.E2;n=Q/ respectively, i.e.,

#Sel. 2/.En=Q/ D 2s.n; 2/; #Sel.O2/.E2;n=Q/ D 2s.n; O2/C2:

If n 1 mod 4/, construct a graph G2.n/ D V; A/ by

V D fp W p || ng [ f 1g;
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A D npq W

q
p D 1 and 2

p D 1; p || n; q || no

p D 1 and 2[ np 1/ W

1
p D 1; p || no:

Let M2.n/ be the Laplace matrix of the graph G2.n/. Then

s.n; 2/ D t C t 0 rankF2M2.n/; s.n; O2/ D s C s0 C t C t 0 rankF2M2.n/:

If n 3 mod 4/, construct a graph G02 n/ D V; A/ by

V D fp W p || ng [ f 1; g;

A D npq W

q
p D 1 and 2

p D 1; p || n; q || no

p D 1 and 2[ np 1/ W

1
p D 1; p || no

[ n p W

1
p D 1; p || no:

Let M02 n/ be the Laplace matrix of the graph G02 n/. Then

s.n; 2/ D t Ct 0

C1 rankF2 M02 n/; s.n; O2/ D s Cs0 Ct Ct 0 rankF2 M02 n/:

3.3. The sizes of Sel. 3/.En=Q/ and Sel. O3/.E3;n=Q/

Lemma 6 Lemma4.1, [15]). Suppose that n D p1 : : :pt t 1/ is a square-freeodd
integer, d 2 M D h 1; 2; p1; : : : ; pti Q Q /2; v 2 S D f1;2; p1; : : : ;ptg.
Let p denote an odd prime number. One has

1) 2 || d H) C3;d Q2/ D ;

2) For p || d, C3;d Qp/ ¤
2
p D 1 and n=d

p D 1;

d C3;d Qp/ D
d3) For p ||

n
p D 1;.

4) C3;d Q1/ ¤ ;

5) C3;d Q2/ ¤ n 3 mod 4/; d 1 mod 8/ or n 1 mod 4/; d
1 mod 8/.

Lemma 7 Lemma 4.1, [15]). Under the same assumptions one has

1) d < 0 C0
3;d Q1/ D ;

2) 2-d, C0 Q2/ ¤ d 1 mod 4/ or n 1 mod 4/;3;d d

p D 1 and n=d3) If p || d, C0
3;d Qp/ D

2
p D 1;
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d
C0

3;d Qp/ D
24) If p ||

n
p D 1 and d

p D 1.

We use the same graph method to compute explicitly the sizes of the Selmer

groups Sel. 3/.En=Q/ and Sel. O3/.E3;n=Q/.

Theorem 5. For any square-free positive odd integer n, let

n D P1 : : : Ptp1 : : : pt0Q1 : : : Qsq1 : : :qs0

be its prime factorization, where Pi 1 mod 8/, pj 7 mod 8/, Qr 3

mod 8/, qm 5 mod 8/, t;t 0; s;s0 0. Let s.n; 3/ and s.n; O3/ be the 2-rank of

the Selmer groups Sel. 3/.En=Q/ and Sel. O3/.E3;n=Q/ respectively, i.e.,

#Sel. 3/.En=Q/ D 2s.n; 3/; #Sel. O3/.E3;n=Q/ D 2s.n;O3/C2:

If n 3 mod 4/, construct a graph G3.n/ D V; A/ by

V D fp W p || ng;

A D npq W

q
p D 1 and 2

p D 1; p || n; q || no:

Let M3.n/ be the Laplace matrix of the graph G3.n/. Then

s.n; 3/ D t Ct
0 rankF2M3.n/; s.n; O3/ D s Cs0 Ct Ct

0 1 rankF2M3.n/:

If n 1 mod 4/, construct a graph G03 n/ D V; A/ by

V D fp W p || ng [ f 1g;

A D npq W

q
p D 1 and 2

p D 1; p || n; q || no

[ n 1/p W

1
p D 1; p || no:

Let M03 n/ be the Laplace matrix of the graph G03 n/. Then

s.n; 3/ D tCt0C1 rankF2 M03 n/; s.n; O3/ D sCs0CtCt 0 1 rankF2 M03 n/:

4. Averaging the Selmer groups Sel. i/.En=Q/

First we consider the Selmer group Sel. 1/.En=Q/. From Lemma 2, if n 3
mod 8/ one has

2s.n; 1/
D X

nDdd0
Y
p||d

1

4

1

p C 1
d0

p C 1 Y
p||d0

1

2

d

p C 1 ;
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and if n 1 mod 8/,

2s.n; 1/
D X

nDdd0
Y
p||d

1

4

1

p C 1
d0

p C 1 Y
p||d0

1
2

d
p C 1

C X
nDdd0

Y
p||d

1

4

1

p C 1
2d0

p C 1 Y
p||d0

1

2

2d

p C 1 :

4.1. The case n 3 mod 8/. We consider this simpler case first. Let h D 3 or 5
and n 2 S.X; h/. Expanding the product in the formula for 2s.n; 1/ one has

1
2s.n; 1/

D X 4 D0D1D2D3/2 D4D5/ D4 D1
D1D2 D1 D4

nDD0D1D2D3D4D5

D3

D3D4

D4
D5

D1

D5

D3

D0

D4

D2

D4 DX
D

g.D/;

where the vector D D D0;D1; D2;D3; D4;D5/ is subject to the condition that

n D D0D1D2D3D4D5. Here is the additive function counting the number of
distinct prime divisors.

The authors would like to remark that the above formula, which runs over 6-
dimensional vectorsD, is intrinsically much simpler than the corresponding formula
for the cardinality of S.2/.En=Q/ of [20], which runs over vectors D which are

16-dimensional see Lemma 3 on page 177 of [20]).
Our goal is to estimate

X
n2S.X;h/

2s.n; 1/:

We sumover the sixvariablesDi subject to theconditions that eachDi is square-free,
that they are coprime in pairs, and that their product n satisfies

n X; n h mod 8/:

We divide the range of each variable Di into intervals OEAi; 2Ai /, where Ai runs over
powers of 2. There are O.log6 X/ many non-empty subsums, which we shall write
in the form S.A/, where A D A0; A1; A2; A3;A4; A5/. Here we may assume that

1 5Y
iD1

Ai X:

Following Heath-Brown, we shall describe the variables Di and Dj as being

“linked” if exactly one of the Jacobi symbols

Di
Dj

;
Dj
Di
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occurs in the expressionforg.D/. It iseasy to see that D1; D5/, D3; D5/, D0;D4/
and D2; D4/ are all the pairs of linked variables.

4.1.1. Case one. For the linked variables D1, D5. Suppose A1; A5 log X/224.

We may write g.D/ in the form

g.D/ D
D5

D1
a.D5/b.D1/;

where the function a.D5/ depends on all other variablesDi exceptD1, and similarly
for the function b.D1/. Moreover we have

ja.D5/j; jb.D1/j 1:

We can now write

jS.A/j D X
D0;D2;D3;D4

D1
a.D5/b.D1/XD1;D5

D5
:

We need the following result.

Lemma 8 Lemma 4, [20]). Let am, bn be complex numbers of modulus at most 1.
Let an odd number h be given and let M; N; X 1. Then

Xm;n

n

m
ambn MN fmin.M; N/g

1=32 ;

uniformly in X, where the sum runs over square-free m, n satisfyingM m < 2M,
N n < 2N;mn X and mn h mod 8/.

As a consequence of this lemma one finds that

S.A/ D0D2D3D4D1D5 fmin.D1; D5/g
1=32 X.log X/ 7:

Similar results hold for other linked variables. Therefore one has

Lemma 9. We have

S.A/ X.log X/ 7

whenever there is a pair of linked variables with Ai; Aj log X/224.
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4.1.2. Case two. We now examine the case when A1 log X/224 while A5 <
log X/224. Using quadratic reciprocity we put g.D/ in the form

g.D/ D 4 D1/ D1
D5

D1/c;

where is a character modulo 8, which may depend on the variables Di other than

D1, and the factor c is independent of D1 and satisfies jcj 1. It follows that

jS.A/j XD0;D2;D3;D4;D5 XD1
D5

D1/4 D1/ D1
; 4)

where the inner sum is restricted by the conditions that D1 must be square-free
and coprime to all the other variables D0, D2, D3, D4, D5. Next, we employ the
following result, which slightly generalizes Lemma 4 in [20].

Lemma 10 Lemma 4.2, [39]). Suppose s is a fixed rational number. Let N be
sufficiently large. Then for arbitrary positive integers q, r and any nonprincipal
character mod q/, we have

X
n X;gcd.n;r/D1

2 n/s n/ n/ X r/ exp. plogX/

with a positive constant D s;N, uniformly for q logN X. Here is the usual
divisor function and is the Möbius function.

To use this result we remove the condition D1 h0 mod 8/ from the inner sum
on the right side of 4) and insert instead a factor

1

4 Xmod 8/

D1/ h0/:

One has

S.A/ A1 exp.
plogA1/ X

D0;D2;D3;D4;D5

D0D2D3D4D5/

A1 exp. plogA1/ Y
Di ;i¤1

X
Di

Di/

A1 exp. plogA1/ Y
Di ;i¤1

Ai logX

X.log X/5 exp.
plogA1/;

provided that D5 ¤ 1 and 8D5 logN A1 for someN > 0. We summarize the
above results as follows.
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Lemma 11. For any constant with 0 < < 1 one has

S.A/ X.log X/ 7

whenever there are linked variables Di; Dj for which

Ai expf.log X/ g

and Dj > 1.

4.1.3. Case three. For any 0 < < 1 denote

C D exp f.logX/ g : 5)

Let P
0 indicate the condition that A0; A1; A2; A3 C, A4 C or A5 C. Then

X
0

A
jS.A/j 2 X

Di 2C;0 i 4
4 D0/ : : : 4 D3/2 D4/ X

D5 X
D0:::D4

2 D5/:

We now use the bounds

Xn X

n/ X.log X/ 1;

and

X
n X

n/

n Y
p X

1 C p
log X/ ;

which are valid for any fixed > 0. Since

X
D0 : : : D4

XC 5 X1=2;

one has log.XC 5/ logX. Therefore

X
0

jS.A/j X
A Di 2C;0 i 4

4 D0/ : : :4 D3/2 D4/ X
D0 : : :D4

log X/ 1= 2

X.log X/ 1=2 Xn 2C
n

4

Xn 2C

4 n/

n
2 n/

X.log X/ 1=2 log 2C/
1
4 4 log 2C/

1
2 X.log X/

1
2C

3
2 :
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Let
P

00 indicate the condition that A4; A5 C and at least one of A0, A1, A2, A3 is
less than C. Then

X
00

A
jS.A/j X

D0D1D2D3D4D5 X
4 D0/ : : : 4 D3/2 D4/2 D5/

D Xmn X

1 X
D4D5Dn

4 m/2 n/ X
D0D1D2D3Dm

1

X
n .2C/2

1 X
m X=n

4 m/ X
D0D1D2D3Dm

1:

Write
m1 D YDi<2C

Di; m2 D Y
Di 2C

Di ;

so that m1 .2C/4. One has

X
00

A
jS.A/j X

n .2C/2 m1n

3
1 X

m1 .2C/4 X
m2 X 4

m2/

X
n .2C/2

1 X
m1 .2C/4

X
m1n

log X/ 1=4

X.log X/ 1=4 log 2C/2 X.log X/
1
4C2 :

We summarize our results as follows.

Lemma 12. Choosing D
1

40 we have

X
A

jS.A/j X.log X/ 1=5;

where the sum over A is for all sets in which either A0;A1; A2; A3 C and at least
one of A4; A5 C, or A4; A5 C and at least one of A0; A1; A2; A3 C, or there
are linked variables Di and Dj with Di C and Dj > 1.

4.1.4. The remaining cases. The cases where the sums S.A/ are not handled by
Lemma 12 are as follows.

1) A4; A5 C H) D0 D D1 D D2 D D3 D 1.

2) A4 C;A5 < C H) D0 D D2 D D5 D 1, A1 or A3 C.
3) A4 < C;A5 > C H) D1 D D3 D D4 D 1, A0 or A2 C.
4) A4; A5 C H) A0; A1; A2;A3 C and D4 D D5 D 1.
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Case 1). With D0 D D1 D D2 D D3 D 1 the function g.D/ reduces to

2 D4/2 D5/. The sum is

X
D4;D5

2 D4/2 D5/;

where D4, D5 are subject to the conditions

D4;D5 > C; n D D4D5 h mod 8/; n square-free; n X:

We can remove the condition D4; D5 > C with an error

2 X
D4 C

2 D4/ X
D5 X

D4

2 D5/ X.log X/ 1=2 X
D4 C

2 D4/

D4

X.logX/
1
2C

1
2 X.log X/ 1=5:

Since n D D4D5 is square-free it factors as D4D5 in exactly 2!.n/ different ways.
We therefore obtain

X
n2S.X;h/

1 C O.X.log X/ 1=5/ D #S.X; h/ C O.X.log X/ 1=5/:

Case 2). With D0 D D2 D D5 D 1 the function g.D/ reduces to

f D/ D 4 D1D3/2 D4/ 1

D1
D4
D1

D1
D4

D4
D3

D3
D4

;

and the conditions for A are A4 C and at least one of A1; A3 C. We separate

it into two cases.

i) If A1 C, we have

S.A/ X
D1;D3;D4

4 D1/4 D3/2 D4/ X
D1<2C

4 D1/ X
D3;D4

4 D3/2 D4/

D XD1<2C

4 D1/ X
n X

D1

n/

X
rD0

n/
r

1

4

r 1

2

n/ r

D XD1<2C

4 D1/ X
n X

D1

4

n/3
X.logX/ 1=4 XD1<2C

4 D1/

D1

X.log X/ 1=5:

A similar estimate holds true if A3 C.
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ii) Suppose A1; A3; A4 C. We write the sums as

S.A/ DXD f D/;

where the variables D D D1; D3; D4/ are subject to the conditions

Di 2 OEAi; 2Ai/ i D 1; 3; 4/; n D D1D3D4 X; n h mod 8/; n square-free:

Now we write

S.A/ DX
D

1

4 X
mod 8/

D1D3D4/ h/f D/

D
1

4 X
mod 8/

h/X
D

D1D3D4/f D/ D
1
4 X

mod 8/
h/S.A; /;

and we have

S.A; / DX
D

D1D3D4/f D/

X
D4

X
D1;D3

4 D1/4 D3/ 1

D1
D1/ D1/ D3/ D3/ :

Here the character depends on D4 and is defined as

n

n
n/ D

D4
D4

for any n 2 Z. We may proceed by applying the following lemma.

Lemma 13 Lemma 10, [20]). LetX > 0 and M; N C > 0 be given. Then for
an arbitrary positive integer r, any odd integer h, and any distinct characters 1, 2

mod 8/, we have

Xm;n

2 m/ 2 n/4 m/ n/ 1.m/ 2.n/ X r/ exp cplogC log X;

for some positiveabsolute constantc, where thesum runsover coprime m; n satisfying
the conditions

M < m 2M; N < n 2N; mn X; mn h mod 8/; gcd.mn; r/ D 1:

It follows that thesumsS.A; / and alsoS.A/ inquestionare allO X.logX/ 7

since the constant in Lemma 11 may be taken sufficiently large. The total contribution

of these sums is therefore O.X.log X/ 1/.



Vol. 84 2009) Selmer groups and Tate–Shafarevich groups 41

Case 3). With D1 D D3 D D4 D 1 the function g.D/ reduces to

4 D0D2/2 D5/ 1

D2
;

and the conditions for A are A5 C and at least one of A0; A2 C. If one

of A0;A2 C, following the argument in i) of Case 2) one finds that the total
contribution is O.X.log X/ 1=5/, while ifA0;A2; A4 C, similar to ii) of Case 2),
the total contribution is O.X.log X/ 1/.

Case 4). With D4 D D5 D 1 the function g.D/ reduces to

4 D0/ D1/ D2/ D3/ 1
D1D2

;

and the conditions for A are A0; A1;A2; A3 C. One has in this case

S.A/ D XD0;D1;D2;D3

4 D0/ D1/ D2/ D3/ 1

D1D2

DXm;n
2 m/ n/ 1

m
:

By the same argument as in ii) of Case 2) one finds that the total contribution is

O.X.log X/ 1/.
We conclude that for h D 3 or 5, one has

X
n2S.X;h/

2s.n; 1/
D #S.X; h/ C O X.log X/ 1=5

as X 1.
4.2. The case n 1 mod 8/. Let h D 1 or 7 and n 2 S.X; h/. Expanding the
product in the formula for 2s.n; 1/ one obtains that

2s.n; 1/
DX

D
g.D/ CX

D
h.D/;

where g.D/ is the same function appearing in the case n 3 mod 8/ and

h.D/ D 4 D0D1D2D3/2 D4D5/

1

D1D2

2

D1D3D4
D4
D1

D1

D4

D3

D3D4

D4

D5

D1

D5

D3

D0
D4

D2

D4
:
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Here the vector D D D0; D1;D2; D3;D4; D5/ is subject to the condition that

n D D0D1D2D3D4D5. Our goal is to estimate

X
n2S.X;h/

2s.n; 1/
D X

n2S.X;h/
X
D

g.D/ C X
n2S.X;h/

X
D

h.D/:

While the first term from the previous computation is

X
n2S.X;h/XD g.D/ D #S.X; h/ C O X.log X/ 1=5 ;

we need to estimate the second term by the same idea. We sum over the six variables

Di subject to the conditions that each Di is square-free, that they are coprime in
pairs, and that their product n satisfies

n X; n h mod 8/:

We divide the range of each variable Di into intervals OEAi; 2Ai /, where Ai runs over
powers of 2. There are O.log6 X/ many non-empty subsums, which we write as

S0.A/, where A D A0;A1; A2; A3; A4; A5/. We assume the condition

1 5Y
iD1

Ai X:

We see that D1;D5/; D3;D5/; D0; D4/ and D2; D4/ are all the pairs of linked
variables in the function h.D/. Following the proof for the case n 3 mod 8/,
one sees that Lemma 12 holds true for the sum S0.A/. The remaining cases are

1) A4; A5 C H) D0 D D1 D D2 D D3 D 1,

2) A4 C;A5 < C H) D0 D D2 D D5 D 1, A1 or A3 C,
3) A4 < C;A5 > C H) D1 D D3 D D4 D 1, A0 or A2 C,
4) A4; A5 C H) A0; A1; A2;A3 C and D4 D D5 D 1.

In Case 1), the function g.D/ reduces to 2 D4/2 D5/ 2
D4

; in Case 2), the

function g.D/ reduces to 4 D1D3/2 D4/ 1
D1

2
D1D3D4

D4
D1

D1
D4

D4
D3

D3
D4

;

in Case 3), g.D/ reduces to 4 D0D2/2 D5/ 1
D2

; and lastly in Case 4), g.D/
reduces to 4 D0/ D1/ D2/ D3/ 1

D1D2
2

D1D3 All these fourcases are similar

to theCase 2) for n 3 mod 8/ and we canapply Lemma 13 to obtain enough
cancellation. So we have

X
n2S.X;h/XD

h.D/ D O X.log X/ 1=5 :
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In conclusion one has for h D 1; 3; 5 or 7,

X
n2S.X;h/

2s.n; 1/
D #S.X; h/ C O X.log X/ 1=5

as X 1.
4.3. The Selmer groups Sel. i/.En=Q/ for i D 2; 3. Let h D 1;3;5 or 7. For
any n 2 S.X; h/, when i D 2, one has from Lemma 4

2s.n; 2/ X
nDdd0

Y
p||d

1
4

2

p C 1
d0

p C 1 Y
p||d0

1

2

d

p C 1 ;

where one has equality “D” when n 3 mod 4/ and inequality “ ” when n 1
mod 4/. Denoting the right-hand side by S2.n/ and expanding the product one has

4 D0D1D2D3/2 D4D5/ 2
S2.n/ D X

nDD0D1D2D3D4D5
D1D2

D4

D1

D1
D4

D3

D3D4

D4

D5
D1

D5
D3

D0

D4

D2

D4
:

When i D 3, from Lemma 6 we have

X Y
1 2

2s.n; 3/
4

nDdd0 p||d
p C 1

d0

p C 1 Y
p||d0

1
2

d

p C 1 ;

where one has equality “D” when n 1 mod 4/ and inequality “ ” when n 3
mod 4/. Denoting the right-hand side by S3.n/ and expanding the corresponding

product one has

S3.n/

D X
nDD0D1D2D3D4D5

4 D0D1D2D3/2 D4D5/ 1

D1D3

2

D1D2
D4
D1

D1

D4

D3
D3D4
D4

D5

D1

D5

D3

D0

D4

D2
D4

:

Notice that both sums

X
n2S.X;h/

S2.n/ and X
n2S.X;h/

S3.n/

are very similar to the sums treated before for the case n 3 mod 8/ for the
Selmer group Sel. 1/.En=Q/. When we sum over the six variables Di subject to the
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same conditions, Lemma 12 holds true for both sums S2.n/ and S3.n/, and similarly
we also have the same four remaining cases 1), 2), 3) and 4). A little thought gives
that only the first case contributes to the main term, which is #S.X; h/, and altogether
the errors are of size O X.log X/ 1=5 Since s.n; 2/; s.n; 3/ 0, we obtain the

same asymptotic formula for the Selmer groups Sel. i /.En=Q/ for i D 2; 3. We
conclude this section with the following result.

Theorem 6. Let h D 1; 3; 5 or 7. For i 2 f1; 2;3g, one has

X
n2S.X;h/

2s.n; i / D #S.X; h/ C O X.log X/ 1=5

as X 1.

5. Proof of Theorem 1

5.1. For Sel. i /.En=Q/. Fix i 2 f1; 2;3g. For any integer r 0, let

ar D # fn 2 S.X; h/ W s.n; i/ D rg:
Then

Xr 0

ar D #S.X; h/:

Theorem 6 yields

Xr 0
2r ar D #S.X; h/ C O X.log X/ 1=5 ;

hence

Xr 1
2r 1ar Xr 1

.2r 1/ar D O X.log X/ 1=5 ;

and

ar D O X.log X/ 1=52 r ; r 1:

Therefore for any positive integer k,

X
n2S.X;h/

s.n; i/k DXr 1

rk ar D Ok X.log X/ 1=5 : 6)

Notice #S.X; h/ X, this shows that s.n; i / D 0 for almost all n 2 S.X; h/, and

for any positive integer k,

lim
X!1

1

#S.X; h/ X
n2S.X;h/

s.n; i/k
D 0:

This completes the first part of the proof of Theorem 1.
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5.2. For Sel. Oi /.Ei;n=Q/. Forcoprime integersa; q, we define the additive function

a;q as

a;q.n/ D X
p||n

1;

p a mod q/

for any n 2 N. By Theorem 3, if n 3 mod 8/, then

s.n; O1/ D s.n; 1/ 1 C s;

and if n 1 mod 8/,

s.n; O1/ D s.n; 1/ 2 C s;

where s D 3;8.n/ C 7;8.n/. Similar results hold for 2 and 3 by Theorems 4

and 5. Therefore for any square-free integer n one has

s.n; Oi/ D s.n; i/ C hi n/ C ci;n; i 2 f1; 2; 3g; 7)

with the functions h1 D 3;8 C 7;8, h2 D h3 D 3;8 C 5;8, and the constants

c1;n D 1 if n 3 mod 8/ and 2 if n 1 mod 8/, c2;n D 0 if n 1
mod 4/ and 1 if n 3 mod 4/, and finally c3;n D 2 if n 1 mod 4/ and 1

if n 3 mod 4/. Since s.n; i/ D 0 for almost all n 2 S.X; h/, one has

s.n; Oi/ D hi n/ C ci;n;

for almostall n 2 S.X; h/. It isenough to showGaussiandistribution for the functions

hi n/ with the conditions n 2 S.X; h/ for h D 1; 3; 5 or 7 and X 1.
We contend ourselves to applying the following generalization of Erdös–Kac

Theoremobtained by Ru-Yu Liu([31]). Forcompleteness we reproduce the statement
here. Let S be an infinite subset of N. For X 2 R; X > 1, define

S.X/ D fn X W n 2 Sg:

We assume that S satisfies the cardinality condition

S.X1=2/ D o jS.X/j/ ; 8)

where jS.X/j is the cardinality of S.X/. Let f W S N be a map. For each prime l
write

1

jS.X/j
# fn 2 S.X/ W f n/ is divisible by lg D l.X/ C el.X/;

and for any u-tuples of distinct primes l1; l2; : : : ; lu/, write

1

jS.X/j
# fn 2 S.X/ W f n/ is divisible by l1l2 : :: lug D uY

iD1
li X/ C el1l2:::lu X/:
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We will use abbreviated notations l; el and el1l2:::lu below.
Suppose there exist absolute constants and c with 0 < 1 and c > 0, and a

function Y D Y.X/ < X such that the following conditions hold:

i) For each n 2 S.X/, the number of distinct prime divisorsl of f n/withl > X
is bounded uniformly.

ii)
PY<l X l D o..log log X/1=2/, where the sum is over primes l

iii)
PY<l X jelj D o..log logX/1=2/.

iv)
Pl Y l D c log logX C o..log log X/1=2/.

v)
Pl Y

2
l D o..log logX/1=2/.

vi) For r 2 N, let u D 1;2; : : : ;r. We have

X00jel1:::luj D o..log log X/ r=2/;

where
P

00 extends over all u-tuples of distinct primes l1; l2; : : : ; lu/ with
li Y

Notice that the condition 4) in Liu’s paper [31] is actually c D 1. However there
is no essential difference by introducing the constant c > 0 here.)

Theorem 7 Theorem 3, [31]). Let S be an infinite subset of N satisfying condition
8) and f W S N. Suppose there exist absolute constants c with 0 < 1,

c > 0 and Y D y.X/ < X such that the conditions i)–(vi) hold. Then for 2 R,
we have

lim
X!1

1

jS.X/j
# ²n 2 S.X/ W pc log log n ³ D G. /:f n// c log log n

Let
S D fn 2 N W n square-free and n h mod 8/g:

Define the map f W S N as

f n/ D Y
p||n

p;

p 3 mod 4

for any n 2 N. Then

h1.n/ D f n//; n 2 N:

It is easy to verify by Merten’s estimate and the estimates proved in Appendix below
that S and f satisfy all the conditions listed in Theorem 7 with constant c D

1
2

Therefore for n 2 S.X; h/, h D 1;3;5;7 and X 1, h1.n/, as well as s.n; O1/

satisfies theGaussian distribution,with meanand variance 1
2 log log n. Thisresultalso

holds true for the values h2.n/ and h3.n/. This proves the second part of Theorem 1.
Now Theorem 1 is completely proved.
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6. On..En=Q/OE i and..Ei;n=Q/OE Oi

For h D 1; 3; 5 or 7 and i D 1; 2 or 3, n 2 S.X; h/, denote

# En=Q/OE i D 2t.n; i /; # Ei;n=Q/OE Oi D 2t.n;Oi /; # En=Q/OE2 D 2t.n/;

and as in previous sections

#Sel. i/.En=Q/ D 2s.n; i/; #Sel. Oi /.Ei;n=Q/ D 2s.n; Oi /; #Sel.2/.En=Q/ D 2s.n/:

From the commutative diagrams in the introduction one has the formula

t.n; Oi/ D s.n; i/ C s.n; Oi/ s.n/ C t.n/ t.n; i/
and the inequalities

0 t.n; i / s.n; i /; 0 t.n; Oi / s.n; Oi /; 0 t.n/ s.n/:

Since s.n; i/ D 0 for almost all n 2 S.X; h/, one has that t.n; i/ D 0 for almost
all n 2 S.X; h/. Moreover by the asymptotic formula 6) one has

X
n2S.X;h/

t.n; i/k D Ok X.log X/ 1=5 ;

for any fixed positive integer k. This proves the first part of Theorem 2.

Next, for any fixed positive integer k, we will prove in the Appendix that

X Oi
log logX

s.n; /k D #S.X;h/
k

2
n2S.X;h/

C Ok X log logX/k 1 9)

as X 1. Noticing that

s.n; Oi/ s.n/ t.n; Oi/ s.n; Oi/;

one has

X
n2S.X;h/

s.n; Oi / s.n/
k

X
n2S.X;h/

t.n; Oi/k X
n2S.X;h/

s.n; Oi/k:

The magnitude of the right-hand side is known from 9), and the left-hand side is

X
n2S.X;h/

s.n; Oi/k C Ok max
0 r k 1

n X
n2S.X;h/

s.n; Oi/rs.n/k r
o :
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For any r with 0 r k 1, one obtains that

X s.n; Oi /rs.n/k r X
n2S.X;h/ n2S.X;h/

s.n; Oi/2r
1=2

X
n2S.X;h/

s.n/2.k r/ 1=2

X
n2S.X;h/

s.n; Oi/2r
1=2

X
n2S.X;h/

22.k r/s.n/
1=2

k X.log log X/2r 1=2 X/1=2 X.log log X/k 1;

by using 9) again and the formula 2) obtained by Heath-Brown. Therefore

X Oi
log logX

t.n; /k D #S.X; h/
k

2
n2S.X;h/

C Ok X log logX/k 1 ;

which completes the proof of Theorem 2.

Appendix

To establish formula 9), we first prove the case k D 1, which is essentially the
following lemma.

Lemma 14. For any h 2 f1;3;5;7g and two coprime integers a; q > 0, one has

X
n2S.X;h/

q/ C O.X/a;q.n/ D #S.X; h/
log logX

as X 1, where is Euler’s totient function.

Proof. First we write

X
n2S.X;h/

a;q.n/ D X
n X

n h mod 8/

2 n/!a;q.n/:

Removing the condition n h mod 8/ by inserting the factor

1

4 X
mod 8/

n/ h/;

and interchanging the summation one has

X
n2S.X;h/

a;q.n/ D
1

4 Xmod 8/

h/ X
n X

2 n/!a;q.n/ n/:
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For the character mod 8/, denote

S. ; X/ D Xn X

2 n/!a;q.n/ n/:

If ¤ 1, one has

S. ; X/ D Xn X

2 n/ n/ X
p||n

1 D Xp X
p a mod q/ p a mod q/

X
p||n;n X

2 n/ n/

D Xp X
p a mod q/

p/ Xm X=p
gcd.m;p/D1

2 m/ m/:

By Lemma 10, one has

X
m X=p

gcd.m;p/D1

2 m/ m/
X
p

exp plog.X=p/ :

Since

X
p pX

1

exp plog.
exp log X/=2

p X=p/ p. X
p pX

p 1

exp plogX log logX 1;

and

p X
X<p X

1

p exp plog.X=p/ p X
X<p X

p 1 1;

one has

S. ; X/ X:

When D 1, one has

S.1; X/ D Xn X
gcd.n;2/D1

2 n/ X
p||n

1 D Xp X
p a mod q/ p a mod q/

Xm X=p
gcd.m;2p/D1

2 m/:

For any integer r > 0, denote

A.r;X/ D Xn X
gcd.n;r/D1

2 n/:
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We define the multiplicative function g by the convolution g D
2 One sees

that 2
D 1 g and at any prime p,

g.pm/ D
8
<̂

:̂

0 if m D 1,

1 if m D 2,

0 if m 3.

A.r; X/ D Xn X
gcd.n;r/D1

X
d||n

g.d/ D X
d X

gcd.d;r/D1

g.d/ X
m X=d

1

gcd.m;r/D1

D X
n pX

gcd.n;r/D1

n/ X
m X=n2

1:

gcd.m;r/D1

Since

Xm X
gcd.m;r/D1

1 DX
d||r

d/ X
d DX

d||r

d/ X
d C O.1/ D

r/X
r C O. r//;

where is Euler’s totient function, we have

A.r; X/ D X
n pX

gcd.n;r/D1

n/ r/X
rn2 C O. r//

D r X
n pX

r/X

gcd.n;r/D1

n/
n2 C O pX r/ :

It is easy to see that

X
n pX

gcd.n;r/D1

n/
n2 D

6
2 Y

p||r

.1 p 2/ 1
C O.X 1=2/:

Hence

A.r; X/ D r
6r/X .1 p 2/ 1

C O.X 1=2/ C O pX r/2 Y
p||r

D .1 C p 1/ 1
C O pX r/ :

6X
2 Y

p||r
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Now we have

S.1; X/ D Xp X
p a mod q/

A.2p; X=p/

D Xp X
p a mod q/

6X
2p p .2p/.1 C 2 1/ 1.1 C p 1/ 1

C O qX

D
4X

2 Xp X
p a mod q/

1
C O X1=2

p C 1 Xp X
p 1=2 :

Since

Xp X
p a mod q/

1

p C 1 D Xp X
p a mod q/

1
p C O.1/ D

log logX
q/ C O.1/

by Merten’s estimate, and

X p 1=2 Xp X p X

1
1=2

Xp X
p 1

1=2 X
logX

1=2

log log X/1=2;

one obtains that

S.1; X/ D q/ C O.1/ C O X
log logX4X

2

log logX
logX

1=2

D
4

2 q/
X log logX C O.X/:

Finally, using the estimates for S.1; X/ and S. ;X/ for ¤ 1 one concludes
that

X
n2S.X;h/

a;q.n/ D
1
4

S.1; X/ C X
mod 8/
¤1

h/S. ; X/

D
X log logX

2 q/ C O.X/:
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Since

#S.X;h/ D Xn X
n h mod 8/

2 n/ D
1

4 X
mod 8/

h/ Xn X

2 n/ n/

D
1

4 Xn X
gcd.n;2/D1

2 n/ C
1
4 X

mod 8/
¤1

h/ Xn X

2 n/ n/

D
1

4

6
2 X

1
C O.X1=2/ O X exp

1 C 2 1 C plogX

D
X

2 C O X exp plogX ;

one immediately has

X
n2S.X;h/

a;q.n/ D #S.X; h/
log logX

q/ C O.X/:

This completes the proof of Lemma 14.

Noticing that .8/ D 4, one has

X
n2S.X;h/

a;8.n/ D #S.X; h/
log logX

4 C O.X/:

for any a D 1; 3; 5; 7. Since s.n; Oi/ is a sum of two distinct functions wa;8 plus a

bounded constant, this establishes formula 9) for the case k D 1. We remark that in
verifying the six conditions in the generalized Erdös–Kac Theorem we also need the
above estimates.

Lemma 15. Let the function f W N N be defined as

f D hi D´ 3;8 C 7;8 for i D 1,

3;8 C 5;8 for i D 2; 3:

Then for any positive integer k and h D 1; 3; 5; 7, one has

X
n2S.X;h/

f n/k D #S.X;h/
log logX

2

k

C Ok X log logX/k 1

as X 1.
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Proof. For k D 1, this is established in Lemma 14. For k 2,we recall the following
high-power analogues of the Turán–Kubilius inequalities see [12] or [22]),

1
X Xn X

jf n/ A.X/j
k B.X/k C X

pm X

jf pm/j
k

pm
;

where

A.X/ D B2 X/ D Xpm X

f pm/
pm D

log logX
2 C O.1/;

by Merten’s estimate. For k 2 one has

X
log logX k

f n/ k
2 X

n X n X
jf n/ A.X/j

k
C X

n X
A.X/

2

log logX k

k XB.X/k
C X k X.log logX/k=2 :

Therefore

X
n2S.X;h/

f n/k

D X
n2S.X;h/

f n/
log logX

2 C 2

klog logX

D
log logX

2

k
#S.X;h/ C k

log logX
2

k 1

X
n2S.X;h/

f n/
2

log logX

0 r k 2
´ log logX/r X

n2S.X;h/
C Ok max f n/

2

log logX k r
µ!:

The second term is
Ok X.log log X/k 1

by Lemma 14, while for any 0 r k 2, one has

log logX/r X
n2S.X;h/

f n/
2

log logX k r
k log logX/r X log logX/.k r/=2

X log logX/k 1 :

Putting these two error terms together we complete the proof of Lemma 15.
Noticing that

X
n2S.X;h/

s.n; Oi /k D X
n2S.X;h/

f n/ C s.n; / C ci;n
k ;
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jci;nj 3 and recalling the asymptotic formula 6), one obtains the asymptotic
formula 9), as X 1.
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