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On manifolds of small degree

Paltin Ionescu

Abstract. Let X Q ÎP" be a complex connected projective, non-degenerate, linearly normal
manifold of degree d sj n. The main result of this paper is a classification of such manifolds.
As a by-product of the classification it follows that these manifolds are either rational or Fano.
In particular, they are simply connected (hence regular) and of negative Kodaira dimension.
Moreover, easy examples show that d Ç n is the best possible bound for such properties to hold
true. The proofof our theorem makes essential use of the adjunction mapping and, in particular,
the main result of [15] plays a crucial role in the argument.

Mathematics Subject Classification (2000). Primary 14N25, 14N30; Secondary 14M99,
14J4-5.

Keywords. Embedded projective manifold, small degree, rational manifold, Fano manifold,
adjunction mapping.

1. Introduction

Let X c P" be a complex connected projective manifold of dimension r and degree d.
Assume moreover that X is non-degenerate and d tg m. The results contained in this

paper have the following topological consequence:

The bound d © n is optimal for the validity of (*). Indeed, there exist r-dimensional

elliptic scrolls in P2r, of degree 2r + 1 (see [14], 5.2); they have b\ 2.

To the best of our knowledge, (*) was not even conjectured before. However,
F. L. Zak (unpublished) asked if such manifolds are regular (i.e. if b\ 0).

We would like to mention two related topological ancestors of (*). The first one is

(a special case of) the Barth-Larsen theorem (see [3] and, for a singular version, [8])

The second result is the Fulton-Gaffney-Lazarsfeld theorem about branched
coverings of P' (see [9], [8]):

If X -# Pr is a normalfinite covering of degree d < r, then tïi(X) (0). (FGL)

If X is as above, X is simply connected. (*)

If 2r ^ n + 1, then ni(X) (0). (BL)
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Note that, lor <7 C r, (*) follows eitlier from (BL) or from (FGL). We refer to [8] for
a very nice discussion of such topological aspects.

To the best of our knowledge, no topological proof of (*) is known. We are able

to deduce it from the following geometric result:

IfX is as above, then either:

(1) 1 and X is a Fano manifold, or (**)
(2) £>2 -> 2 and X is rational.

It is well-known that both rational and Fano manifolds are simply-
connected; see [17] for a far-reaching common generalization. So (»follows from
(**). The first case in (**) may be seen as generic, as it includes all complete
intersections of dimension at least three. Assuming Flartshome's Conjecture for Fano

manifolds, we may describe all cases in (1) which are not complete intersections

(Corollary 11). Moreover, we shall prove:

Manifolds with d f n and £>2 & 2 may be classified completely.
There are 6 infinite series (having arbitrarily large dimension and (***)
degree) and 14 "sporadic" examples. All turn out to be rational.

The precise list is given in the statement of the main result, see the next section.

The proof of the main theorem will occupy Section 4. It relies on a very detailed

study of the adjunction mapping (see e.g. [4], Chapters 9-11 for a complete treatment).
Moreover, the main result of [15] plays a key role in the proof. We note that, besides
classical adjunction theory, some nontrivial facts coming from Mori theory are also

used in [15]. Finally, (he classification of manifolds of small A-genus (cf. [6], [7|,
[13]) is also needed.

The present work is a slightly improved version of a paper with the same title that

was circulated as Preprint no. 17, IMAR, Bucharest, December 2000.

2. Statement of the main result

Our main result is the following:

Theorem. Let X c F* be a connected projective manifold over C, of dimension r
and degree d. Assume moreover that X is non-degenerate and linearly normal. If
d f n, then one of thefollowing holds:

(i) X is Fano, ln(X) 1;

(ii) X is Fano and either:
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(a) 2 sf r sC 4, 3 sf r/ <( 8, A" is a classical del Pezzo manifold'with bziX) A 2

(cf. Theorem B below);

(b) r 3, d 9, X is the Segre embedding of P1 x Fi, where Ft is the blow¬

ing-up of P2 in a point, embedded in P4 as a rational scroll of degree 3;

(c) X is one of the following scrolls over P2 ;

(1) r 4. A 10. X F(%2 © ôpî(l));
(2) r 4, d I À PlTTo (1) © iSEo I © (9p2(2));

(3) r 5, d 10, X is the Segre embedding of P2 x P3;

(iii) r :> 2, A A r, X is a scroll over P1 (Le, a linear section of the Segre embedding
of P1 x P'");

(iv) r p 3 and there is a vector bundle S over P1, ofrank r + 1 and ofsplitting type
e (e-o, er), such that, if L denotes the tautological divisor on P(g) and
F denotes a fibre of the projection ftSJ P1, X embeds in P(g), L\x is the

hyperplane section divisor and either:

(a) n d 2r — 1, e (1, 1, 0, 0), X |2L + F\;
(b) n=d 2r,e= 1 1.0). X G |2L|;

(c) n d 2r + 1, e (1,..., 1), X e \2L - F|;
(d) r 4, n 2r + 1, d 2r, e (1,..., 1), X g |2L — 2F|; equivalently,

X is the product ofa line and a quadric of dimension r — 1, in its Segre

embedding;

(e§ n d 2r + 2, e (1, 1, 2), X G \2L - 2F\.

Remarks. 1. Except for case (i), all manifolds appearing in the theorem are rational.
2. All cases listed actually occur.
3. Manifolds from case (iv) (b) up to (iv) (e) in the theorem are also Fano.

3. Conventions and prerequisites

We follow the customary notation in algebraic geometry (see e.g. [12]). We denote

by X c P" a complex projective connected manifold. We let A be its degree and r
its dimension; s n — r is the codimension of X in P". Hie irregularity of X is by
definition q := h1 (X. Ox) and II will denote a hyperplane section of A c P". We
write Y) for the linear span of Y c P". The sectional genus of X, denoted g, is the

genus of the curve X n Hi n • • • n Il,-\, where If Hr~ i are generic hyperplanes
in P". The adjunction formula reads:

2g-2=(K + (r -\)H)-Hr~l,
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where K is a canonical divisor for X.
The À-genus of X is by definition

A =d + r- h°{X, &x(H))

and is a non-negative integer.
X is said to be a scroll over the manifold Y if X ~ P(g) for some vector bundle S

on Y, such that Ox(H) is the tautological line bundle ofP(g). We use Grothendieck's
notation for P(g).

X is said to be a quadric fibration over the smooth curve C if there is a morphism
il : X -> C such that the fibres of n are quadrics with respect to the embedding
induced by &x(H). It turns out that singular fibres of jt are ordinary cones (see

113]). In tire sequel, we denote by Qr a quadric of dimension r.
The adjunction mapping of X, denoted below by q>, is the rational map on X

associated with the linear system K -\- (r - 1) //1. See e.g. [4], Chapters 9-11 for a

complete study of its properties.
We recall two results on the classification of manifolds of small A-genus. The

first one is classical (see e.g. [13], Proposition 2.3).

Theorem A. Thefollowing are equivalent:

(i) A

thai) g 0/

(iii) X is either Pr, H e |0jv(l)|, or a quadric Qr c Pr+1, orP2, H g 16>ji2 (2)|,
or a scroll over P1.

lire next result is due to del Pezzo if r 2, to Fano and Iskovskikh for r 3 and

to Fujita in general (see also [13], Proposition 2.4 for some other characterizations).

Theorem B (Fujita, [6], [7]). Assume that r :> 2. Thefollowing are equivalent:

(i) A 1;

(ii) X is either a classical del Pezzo surface (anticanonical embedding of either
P1 x P1 orP2 blown-up at at most six points) or, ifr :> 3, one of thefollowing:

(a) a cubic hypersurface;

(b) a complete intersection of type (2, 2);

(c) a linear section of the Flicker embedding of the Grassmannian of lines in
P4,-

(d) the Segre embedding of P2 x P2;

(e) a hyperplane section of the manifold in (d) (this is P(7js));

(f) the Segre embedding of P1 x P1 x P1;
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(g) the scroll over P2, P(@P2 (1) © &¥i (2)) (this is P3 blown-tip at a point);

(h) the Veronese embedding «2(P3)-

Recall that X is a Fano manifold if — K is ample. We see dial the examples listed
in Theorem B (which were called classical del Pezzo manifolds in [13]) are all Fano

manifolds.

4. Proof of the theorem

We begin with the following simple fact.

Lemma 1. Let C be a smooth projective curve ofpositive genus and let X g Pic(C)
with deg(X) > 0. Then we have h0(X) X deg(X).

Proof. If X is special, we may apply Clifford's theorem. If X is non-special, the

result follows from the Riemami-Roch theorem.

Proposition 2. Let C be a smooth projective curve ofpositive genus and let 8 be an

ample and spanned vector bundle on C. Then we have h°(8) X elegit-).

Proof. We proceed by induction on e ;= rank(g). When « 1, we may apply
Lemma 1. Assume now e Js 2. As 8 is ample and spanned, it follows that h0(8) > e.

So, for p Ç.C, we may find a non-zero section t g H°(C, 8(—pj) which induces an

exact sequence:
0 —» X —» 8 —» 8' —* 0,

where X g Pic(C), deg(<£) := I x 0, and 8' is ample, spanned and of rank g — I.
Indeed, Xv is the image of tv : Iv Oc(—p)', as C is a smootli curve, this (non-
trivial) sheaf of ideals is invertible. We have

deg(g) - I dcgifc't > h°(8') w h°(8) - h°(X)

by the induction hypothesis and the cohomology sequence of the above exact

sequence. Applying once again Lemma 1 we get deg(g) -> h°(8).

Corollary 3. Let X c P" be a scroll over a smooth curve C. Assume that X is

non-degenerate of degree d X n. Then C ~ P1.

Proof. Let X ~ P(6). If g(C) s> 0, by Proposition 2 we get

n + IX h°(X. Ox(H)) h°(C, 8) X deg(g) d,

a contradiction.
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Lemma 4. Let X c F be smooth connected non-degenerate ofdegree d and dimension

r, with d X n. Assume moreover that 2r + n + 1. Then we have:

(i) g C r — 1; and

(ii) d > 2g + 1.

Proof, (i) Let s := n — r and let C c P' + i be a curve section of X. If He is special,
by Clifford's theorem we get

# + 2M h°(C, Oc(Hc)) 4 d-
+ 1 4 r-^Y~ + U

giving 7- >5+2. Ulis is a contradiction. So He is non-special and by Riemann-Roch
we get

5 + 2 < h"i(\ Oç(Hc)) d + 1 - g ^ r + s + 1 - g,

hence g 4 r — 1.

(ii) We get by Riemann-Roch and (i):

d > 5 + 1 + g > r + g > 2g + 1.

Proposition 5. L<?fX c F'1 be smooth connected non-degenerate and linearly normal
with d + 77. Assume that the adjunction mapping q> makes X into a

scroll over a smooth surface S. Then S c: P2 and X is one of the following:

(1) ,• 4. d 10, X S P(TP2 ® 0jü(1)),':

(2) r 4, d' 11, X — P(0P2(1) ® 0p2(l) © ÖP2 (2));

(3) r 5, d 10, X ~ P(<9®4(1 i.e. X is the Segre embedding of P2 x P3.

Proof. Let S' be the smooth surface M fi ft * • • f) //, _%, where //, are generic
hyperplanes in P". We first remark that the geometric genus of S' is zero. This
follows from Lemma 4 (ii) and the adjunction formula for /+ The standard exact

sequences

0 — Ox(K + {r- 2)H) — 0X(K + (r - 1 )H)

—, &h(Kh + (r - 2)Hh) 0

together with Lemma 1.1 from [13] show that h°(X. &x(K + (r — 1)//)) g —q in
our case. So, we have <p: X -, S c Fg~q"1. Let Hs be a generic hyperplane section
of S c Pg-4-1 and let Y := q>~l(Hs). Note that Y is a scroll of dimension r — 1 over
the curve Hs', if we let dy be its degree, we get dy (K + (r-l)H)-Hr~ 2g — 2

by the adjunction formula. Let m be the dimension of the projective space spanned by
Y inside P". By Barth's theorem (see [2]), the Picard group of Y is cyclic whenever
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m < 2(r — 1 — 1. As Y is a scroll, we must have m > 2(r — 1 — 1. We get, using
Lemma 4 (i), that

m ^ 2r — 3: A 2 (r — 2) V 2(g — 1) dy.

So, by Corollary 3, it follows that fis — P1. The two-dimensional case of Theorem A
shows that q 0 and one of the following holds:

1. S P2, g A 3;

2. S is a scroll over P1 ;

3. S is the Veronese embedding MP2), g 6

Recalling the definition A d + r — h°(X, 6x(H)), we get

n + r ^ d + r n + 1 + A,

giving r ^ A + 1. Now, if we are in case 1, by Proposition 4.7 from [13], it follows
that we have the following possibilities for A:

r 4, d 9,10 or 11;

r 5, d 10, X is the Segre embedding of P2 x P3.

Assume that r 4, so X m P(6) for some very ample vector bundle of rank three

over P2. If f is a line in P2, it follows that S |

f, has degree 4 and is very ample. So,

S\i — &t{ 1) © &e(l) © &e'(2), i.e. S is uniform. One may use the classification
from [5]; we find that the case d 9 is not possible, while for d 10 we get
S — jTji2 © <%> (1) (equivalently A is a hyperplane section of the Segre embedding of
P2 x P3) and for d 11 we get 8 ~ <%2 (1 © (:>?:( 11 © <%2 (2) (this is the blow-up
of P4 with center a line).

To finish the proof we only have to show that cases 2 and 3 cannot occur. We use
the notation from [12], Chapter V, Section 2. If we are in case 2, we have Is F,„,

lis On hi' with I) > c ...• 0.

We look at the (r — 1 i-dimensional rational scrolls To </• ''('Vd and Y\

cp~1(F). Put dt deg(T,) for i 0, 1; we get <7; © r — 1. By Barth's theorem

([2]), if m-i dim(T), we get as above A 2(r — 1) — 1; moreover, since

A(T,:, (9y. (H)) 0 (see Theorem A) we deduce that

di+r- 1 h°(Yi, Oy, (H)) :> mi + 1 A 2(r - 1),

i.e. dj. gßr — L So, we find

2g — 2 deg(T) do + bd\ ^ do + d\ "2% 2(r — 1),

contradicting part (i) of Lemma 4. Case 3 is ruled out by a similar argument.

Next we need a general lemma concerning the geometry of quadric hbrations (see

also [14], 6.2).
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Lemma 6. Assume that the adjunction mapping q> : X -k C c Pm makes X into a

quadric fibration over a smooth cur\>e C. Then m g — q — 1 and q coincides with
the genus of C. Moreover.; 8 := fp is a spanned vector bundle of rank r + 1

over C. Denote by ti : P(6T) -> C the projection and by L the tautological divisor on

P(g). Then X is embedded inF(ß) in such away that L\x HandX g \2L + tt*B\
for some divisor B on C. Finally, if a := deg(g) and b := degf B), the following
formulae hold:

a 1 — g + 2 (q — 1) + d and b 2 (g — 1) — 4 (q — 1) — d.

Proof. From Lemma 1.1 in [13] and the standard exact sequences

0 — (9X(K + (r- 2)H) — Ox(K + (r - 1 )H)
&b{Km + (r ~ 2fHrt) —> 0

it follows that h°(X, 6X(K + (r — 1 )H)) g — q. Let S c X be a surface section
of X, i.e. S X n H\ n • • • n //, _2, where //, are generic hyperplanes in P". By
Lefsclietz's tlieorem on hyperplane sections, X and $ have the same irregularity. As
S is a conic fibration over C, it is birationally ruled, so we have q q(S) g(Cj.
For any c g C, let X, denote the fibre of f over c. Note that Xc is a quadric of
dimension r — 1, hence it is linearly normal in its linear span P'. In particular, for
any cgC, we have h°(Xc, &x ill)) r + 1 and Hx (Xc, &Xc(Hj) 0. So 8 is a

vector bundle by Grauert's theorem; let 8C be its fibre at the point c. The canonical

diagram

//"( <". 8) —^ //"t.V. (j\ I //

6'c H°(XC, &g4iHj)
shows that 8 is spanned by global sections, since the restriction map res is surjective
for any c g Ç. Consider also the canonical induced diagram

P(g)

and write X ^ 2L + n*B, for some divisor B on C. Let He be a hyperplane section
ofC c F-*-* We find

cp*(Hc) K + (r- 1 )H (ÏCnm + ^ + (r ~ 1 )D\x <P*(KC + det 8 + B).

By taking degrees, we get g — 1 2(q — If + a + b. Moreover, a (Lr+I), so

d (Lr X) 2a + b. The two formulae follow.



Vol. 83 (2008) On manifolds of small degree 935

Lemma 7. Let X c P" be smooth connected non-degenerate with d < n. Assume

that the adjunction mapping q>\ X -> C makes X into a quadric fibration over a

smooth curve C. Then C S P

Proof. Assume that q g(C) > 0. By Lemma 4 (ii), d 2g + 1. So, by Lemma 6,

we have b Ifg — 1) — d — 4(q — 1] < 0.

We show first that 8 is ample. As 8 is spanned, &s:. ,([.) is spanned. So, if
L is not ample, there is a curve D c P(£) such that (L • D) 0. It follows that

(X D) (2L + 7t*B) D ab for some a s» 0. As b < 0, we deduce that

{X • D) < 0, so I) c A. But L|x so I) L) > 0 which is a contradiction. So

8 is ample.
Let now S c X be a surface section of X. We have (Us + Ks)2 0, giving

d + 2(11s Ks) + (Ks)2 0. The adjunction formula yields (fis • Ks) 2g — 2 — d.
As S is birationally ruled, it dominates a geometrically ruled model, say So. So, we
have (Ks)2 ^ (K.v(, )2 8(1 — q), see e.g. [12], Chapter V, Corollary 2.11 for the

last equality. We deduce, using also Lemma 4 (ii)

4(g - 1) d 8(q - 1) 2g + 1 + 8(q - 1).

So we get 4q < g + 1. By Lemma 6, a 1— g + 2(q —1)+<7 andwehnda ^ d — 2q.
Now, since S is ample and spanned, we may apply Proposition 2 to find

a elegit) h°(C\ t) h°(X. &X(H)) + n + 1.

Putting things together, we get

n + 1 ^ a ifl d — 2q ^ n — 2q.

rfhis is a contradiction, so q 0.

We shall also need the proposition below which might have an interest in itself.

Proposition 8. Let X c P" be smooth connected non-degenerate and linearly normal.

Assume that the adjunction mapping <p : X hf makes X into a quadric
fibration over C — P1. Assume moreover, that d filg + 2 and r fi g + 1. Then, in
the notation ofLemma 6 and denoting by e (eq,..., er) the splitting type of 8 and
by F a fibre of the projection P(t -* P1, we have one of the following:

(a) r 4 d 2r, e (1,..., 1, 0), X 6 \2L\;

(b) r s - 1, d 2r + 1, e (1 l),Xe |2L - F|;
(e) r s — I, d 2r, e (1, 1), X g \2L — 2F\ or, equivalently, X ~

P1 >< (}' 1 embedded Segre;

(d) r s - 2, d 2r + 2, e (1 1, 2), Xe|2L- 2F\;
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(e) r 3, X ~ P1 x Fj, embedded Segre, where Fi is embedded in P4 as a rational
scroll of degree 3.

Moreover, all these cases do occur.

Proof. We first remark that g ^ 2 (seh [13]), so r > 3. Let Q denote a fibre of q>.

We have (II — Q] • //' d — 2. The standard exact sequence

0 —* &x(~m 0x(H - Q) —> Oh(H ~ ß) —* 0

and the fact that H1(X. Oxi—QÏ) 0 allow one to prove by induction on r that
\ H — Q] is base-point-free. Note that on a curve section of X, the degree of the

restriction of \H — Q\ is > 2g, so it is base-point-free. Moreover, \II - Q \ is not
composed with a pencil, since r p 3. So, by Bertini's theorem, there is a smooth
member X' e | H — Q \. We let

H' H\x>. A": Kx.
r' dim(X') r - 1, <p'

d' deg{X') d- 2, g' g(H'),

/ h°(X', &X'0f) ~ 1 - r'\

One linds easily g' g — 1, s' s — 1 and q>' can be identified with (p\x - Hie
statement of the proposition is proved by induction on r (note that we still have

d'^ 2g' + 2 and r' ^ g' + 1). Assume first that g ^ 3. Since r ^ g + 1, for r 4

we get g 3 and we may use the classification from Theorem 4.3 in [13]. For r p 4

we find inductively the following possible values for the numerical invariants:

(a) r s, d 2r, g r — 1;

(b) r s — \,d 2r + \, g r — 1;

(c) r s — 1, d 2r, g r — 2;

(d) r s — 2, d 2r + 2, g r — 1.

It remains to analyze the case g 2, where one may use the classification theorem

3.4 in [13]. This leads to only one new case, which is (e).
Next we investigate the structure of S in each case.

First we have that S is non-special (since it is spanned by Lemma 6). So the

Riemann-Roch theorem gives

r + 51 + 1 hQ(8) a + r + 1,

hence a s. Now, in case (a), we remark that |H — 2Q\ 0, since (H — QY~]
(H — 2Q) d — 2r — 2 < 0. By Lemma 6,b =s 0, so X e \2L\.
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The exact sequence

0 —> &\- 2F) —> <9$(gy(L - 2F) —> (j\i H - 2Q) —> 0

shows that h°(S(—2)) 0; as S is spanned and a r, the splitting type of S must
be (1 1,0). The existence follows by the same type of argument as in the proof
of Proposition 3 from [16]. The other cases are similar and simpler. For instance, in
case (b) one gets as above/?°(&(—2)) 0,a r + 1 and b —1. So<? (1 1),
S is very ample and the existence follows now easily.

Proposition 9. Let X c P" be smooth connected non-degenerate and linearly
normal, with d X n. Assume that the adjunction mapping makes X into a quadric
fibration over a smooth curve C. Then X is as in case (ii) (b) or case (iv) of the main
theorem.

Proof. By Lemma 7, C ~ F '. We have d X 2y -+ 1 and y s) r — 1 by Lemma 4. If
d ^ 2g + 2, we may apply Proposition 8, thus leading to cases (ii) (b) and (iv) (b)

up to (iv) (e) of the main theorem. So, assume that d 2g + 1. As in the proof of
Proposition 8 we deduce that a s. By Lemma 6 we get a g, b 1. It follows
,v y y) r — I. Barth's theorem ([2]) ensures that s > r — 1, so we must have

s r — 1. We obtain

g r — 1, d 2r — 1, a r — 1.

As in the proof of Proposition 8, we have |H — 2Q\ 0, so h0(ê(-2)) 0. It
follows that the splitting type of g is (1 1, 0, 0), so we are in case (iv) (a) of the

main theorem. The existence follows from Proposition 3 in [16].

We are now ready for the proof of our theorem.
Assume first that r ^: s + 1. We have

A =d + r - h0(X&x(H)) + r - n ~ 1 r - %,

If A 0, by Theorem A we get either case (iii) of the main theorem or some special
examples of case (i). Similarly if A 1, by Theorem B we get either case (ii) (a)

or some special examples of case (i). So, assume A A 2, hence r A 3, from now
on. If r 3, it follows A 2, .v :>- 2 and <y : A -> P1 is a quadric fibration
by [13], Theorem 3.12 and Corollary 3.3. If r 4, we get A 2 or 3, 5 ^ 3,

so cp is either a quadric fibration over a rational curve or a scroll over P2 (see [13],
Theorems 3.12, 4.8 and 4.2). Since d A n, it follows that d y) r A- s y) 2s -\- 1. So,

using the general properties of the adjunction mapping (see e.g. [4], Chapters 9—11,

in particular Theorem 11.2.4) and the above analysis for r y) 4, ii follows from
Theorem I in [15] that one of the following holds:
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(1) X is a scroll over a (smooth) curve C;

(2) q> makes X into a scroll over a smooth surface;

(3) (p makes X into a quadric hbration over a smooth curve.

In case (1), from Corollary 3, we get C ~ P1, so A 0. In case (2), by
Proposition 5 we reach case (ii) (c). If we are in case (3), by Proposition 9 we get
case (ii) (b) or case (iv). Assume now that r gi s + 2. By Barth's theorem ([2])
it follows that Pic(X) ~ Z, generated by the class of (9x< &). We show that X is

Fano, so we are in case (i) and the main theorem is completely proved. As we have

Pic( A ~ Z, to prove that X is Fano it is enough to see that tire geometric genus
of X, denoted by pg, is zero. Ffere we make use of a theorem of Harris (see [10]),
generalizing Castelnuovo's bound for the genus of a curve to arbitrary dimension,
which states that

where M (fj — ÏJj/î] and e d — 1 — Ms,
If 5 1 we find pg 0 by direct computation. Its p 2 and r p 2 we get

r + s — 1 < rs; our hypothesis d r + s gives d — 1 < rs, or M < r. So

Pg 0.
"

Proposition 10. LetX c P" be a conneetednon-degenerate linearly normal manifold
withd < «. Assume moreover s + 2 p r X 2s and A X 2. Then one of thefollowing
holds:

(i) r 4. d 6. X is a complete intersection of type (2, 3), or 5 ^ r ^ 6, cl 8,

X is a complete intersection of type (2, 2, 2);

(ii) r 6, d 10, X C(G)P>Q9 c P10, whereG c P9 is the Plücker embedding
of the Grassmannian of lines in P4, C(G) is the cone over G and Q9 c P10 is

a quadric;

(hi) 7 r C 10, d 12, X is the spinorial variety S10 c P15, or one of its linear
sections;

(iv) r 8, d 14, X c P14 is the Plücker embedding of the Grassmannian of lines
in P5.

Proof. As above, X is Fano and Pic(X) is generated by the class of Ox(H), so we

may write Ox(-K) Ox(iH) for some i > 0. Hie adjunction formula yields

2g — 2 (r — i — 1 )d.

We recall Castelnuovo's bound g < M(d—((M+\)/2)s — \) where M [{d — l)/s].
Since d ^ r + s f 3s, we find M s) 2. Assuming r — i — 1 ^ 2 we reach a
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contradiction; so i 3» r — 2. But A ^ 2 gives g 3s 2, so i r — 2, X is a Mukai
manifold and the result follows from [18].

Let us recall from [11] that the Hartshorne Conjecture predicts that when r > 2s,
X must be a complete intersection.

Corollary 11. Assume that the Hartshorne Conjecture holds for Fano manifolds.
Then, in case (i) of the main theorem, X is either a complete intersection or one of
the varieties described in Theorem A, Theorem B, or Proposition 10.
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