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Reparamétrisation universelle de familles f-analytiques de cycles
et théoréme de f-aplatissement géométrique

Daniel Barlet

En hommage a Henri Cartan

Résumé. This article presents a new point of view around the main results of D. Mathieu [M0O] on
meromorphic equivalence relations. We introduce the space of finite type cycles (closed analytic
cycles with finitely many irreducible components) of a given finite dimensional complex space
and a natural topology on this space, in order to avoid the “regularity” condition for analytic
families of cycles introduced in loc. cit. and also the two notions of “escape to infinity” which
are here encoded in a natural way in our framework. Then the results are stronger and much
simpler to state and to use. They contain, in a slightly different language, a clean and more
general version of the works of H. Grauert [(G83] and [G86] and of B. Siebert [S93] and [S94]
on meromorphic equivalence relations.

Résumé. Cet article présente un nouveau point de vue a propos des principaux résultats de David
Mathieu [MOO] sur les relations d’équivalence méromorphes. Nous introduisons 1’espace des
cycles de type fin (les cycles analytiques fermés n’ayant qu’un nombre fini de composantes
irréductibles) d’un espace analytique complexe donné de dimension finie, muni d’une topologie
naturelle, ce qui permet d’éviter la condition de “régularité” des familles analytiques de cycles
quiestutilisée dans loc. cit. et également les deux notions de “fuite a1’infini” qui sont ici encodées
de fagon naturelle dans notre contexte. Les résultats obtenus sont meilleurs et surtout d’énoncés
et d’utilisation beaucoup plus simples. Ils contiennent, avec un langage un peu différent, une
version plus claire et plus générale des travaux de H. Grauert [G83] et [G86] et de B. Siebert
[SO3] et [S94] sur les relations d’équivalence méromorphes.

Mathematics Subject Classification (2000). 32C25, 32H35, 32H04.

Keywords. Analytic and meromorphic equivalence relations, cycles, geometric flattening, uni-
versal reparametrization, meromorphic quotients.

Mots Clefs. Relations d’équivalence analytiques et méromorphes, cycles, aplatissement géo-
métrique, reparamétrisation universelle, quotients méromorphes.

Introduction

Présentation. Le présent article se propose de reprendre et de compléter les résultats
de David Mathieu [MOO] en les replagant dans le cadre des familles f-analytiques de
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cycles qui me semble bien adapté a ces questions. e probleme “fondamental” qui
sous-tend cette étude est, bien sir, celui des relations d’équivalence analytiques et
de I’existence de quotients (ou de quotients méromorphes) dans le cas semi-propre.
Cette question qui est résolue dans le cas propre par H. Cartan [C60] se raméne en
suivant le point de vue “familles analytiques de cycles” développé dans [MOO] et
que nous reprenons ici, au théoreme d’image directe de R. Remmert [R57] et a sa
généralisation [M74] en utilisant les résultats de [B75] et [B78].

Comme c¢’est déja indiqué par D. Mathieu dans [M0O0], le cas semi-propre est a
comparer avec les travaux de H. Grauert [G83] et [G86] et de B. Siebert [S93] et
[S94]. Dans ce cas le théoréme d’image directe de N. Kuhlmann [K64] et [K66] ainsi
que la généralisation donnée par D. Mathieu [M00] donnent le lien avec le point de
vue “familles f-analytiques de cycles” que nous introduisons 1ici.

Il s’agit en fait d’une généralisation de la notion de famille analytique de cycles
compacts qui est plus restrictive que la notion de famille analytique de cycles (fermés)
qui est utilisée dans [MOO] et qui est bien micux adaptée aux problemes que nous
traitons ic1, comme le lecteur s’en convainera facilement en comparant nos ¢nonces
et ceux de loc. cir.

Je tiens cependant a préciser que I'article [MOO] contient les points techniques les
plus délicats, et que, si les énoncés du présent article semblent plus simples et plus
“esthétiques™, ils ne sont pas réellement plus profonds que ceux de loc. cit.

Relations d’équivalence holomorphes et méromorphes. Une relation d’équiva-
lence analytique sur un espace analytique réduit Z peut étre vue comme une collection
(X;):ez de sous-ensembles analytiques fermés (les classes d’équivalence), paramé-
trée par I’ensemble Z lui-méme. Le quotient consiste a identifier deux points z, 7' € Z
s1 et seulement si les sous-ensembles analytiques X, et X,/ coincident. De ce point
de vue, le fait que les X, forment une partition de Z parait accessoire. De plus le cas
méromorphe conduit tres vite a abandonner la condition que les X, soient disjoints
ou €gaux.
Ce point de vue met également en évidence le fait que I’espace Z initial joue deux
roles tres différents :
(1) Z est’espace analytique ambiant dans lequel on considere la famille de sous-
ensembles analytiques (X;) ez.
(i1) Z est’espace qui parametre la famille (X ),z considérée.
Dans ce qui suit, nous garderons Z dans son premier role (d’espace ambiant) et
nous introduirons un espace analytique réduit S, a priori sans relation avec Z, pour
paramétrer des sous-ensembles analytiques de Z (en fait des n-cycles).
Nous allons considérer un sous-ensemble analytique G C S x Z, qui jouera le
role du graphe de la relation d’équivalence, vérifiant la propriété suivante :
La projection 7 : G — S est quasi-propre!, n-équidimensionnelle et ses fibres

I.a définition est rappelée plus loin.
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(notées (X;)ses) forment une famille analytique de cycles (de dimension pure »)
de Z paraméirée par S. Rappelons que cette derniere condition est conséquence des
précédentes des que S est normal.

On remarquera que, si on demande seulement la surjectivité de 1" application quasi-
propre 7 et que I’'on pose n 1= dim G —dim S en demandant a G et S d’étre irréduc-
tibles, I’hypothese précédente est toujours vérifiée sur un ouvert de Zariski dense de S.
Nous traiterons ce cas plus général comme le cas “méromorphe”, le cas holomorphe
correspondant a notre hypothese plus restrictive ci-dessus.

Nous cherchons maintenant a quotienter 1’espace analytique réduit S, supposé
faiblement normal (pour éviter de considérer des espaces annelés) par la relation
d’équivalence associée a 'application y: § — G,{ (Z) qui “classifie” la famille
(X )ses OU G,{ (7) désigne I’ensemble de tous les n-cycles (fermés) de Z ayant
un nombre fini de composantes irréductibles, et ou I'application x est définic par
x(s) = X, considéré comme n-cycle de Z. On a donc s ~ s’ si et seulement si
Xy = Xy comme cycles.

Ensemblistement le quotient s’identifie donc a x (S) a savoir I’ensemble des n-
cycles qui apparaissent dans la famille analytique considérée. Le probléme est donc
de munir, sous des hypotheses convenables, le sous-ensemble

x(S) c &l (z)

d’une structure analytique de dimension finie “naturelle”. On ne dispose malheureu-
sement pas d’une structure analytique “raisonnable” sur G,{ (Z) comme c’est le cas
quand on se limite a considérer des cycles compacts. En particulier certainement pas,
en général, d’une structure d’espace analytique de dimension finie?. Cependant les es-
paces classifiants locaux? associés aux écailles, qui sont dela forme H (U, Sym*(B)),
sont des ensembles analytiques banachiques. Ce fait permettra de travailler comme
s1 I’ensemble (?,{ (7) était réellement muni d’une structure analytique (de dimension
infinie). Mais cela posera quelques problemes techniques.

On constate alors que le probleme est trés similaire a un probleme d’image di-
recte, puisque “moralement” I’application y est analytique et que 1’on veut, sous des
hypothéses convenables, munir son image d une structure d’espace analytique réduit
de dimension finie (la finitude venant de celle de S).

Quand on aura obtenu une structure de sous-ensemble analytique de dimension
finie sur x(S), 1l ne sera pas difficile de montrer que son normalisé faible ¢ muni
de la famille analytique de cycles (X,),ep de Z obtenue par image réciproque de
la famille universelle restreinte a x (S) est une “reparamétrisation universelle” des
cycles apparaissant dans la famille initiale.

2Car G,{ (Z) n’est pas méme localement compact, en général.
3Pour les revétements ramifiés de degré k sur U contenus dans U < B.



872 D. Barlet CMH

C’est A dire que pour toute famille f-analytique® (¥;);cr de n-cycles de Z paramé-
trée par un espace analytique de dimension finie et faiblement normal 7', vérifiant
Vi € T ds € Stel que ¥, = X, alors 1l existe une unique application holomorphe
g: T — QtellequeVvi €T, ¥; = Xp).

Enoncés des deux théoremes. Nos deux principaux résultats, qui sont des variantes
des théoremes 4 et 5 de [M00], s’énoncent de la fagon suivante. On trouvera au para-
graphe 1 la définition d’une famille f-analytique de n-cycles d’un espace analytique
complexe Z de dimension finie.

Théoréeme A (Reparamétrisation universelle dans le cas semi-propre). Soit
(Xs)ses une famille f-analytique de n-cycles de Z paramétrée par un espace analy-
tique réduit S de dimension finie et faiblement normal.

On suppose la famille Semi-prapre5 . Alors il existe un espace analytique réduit de
dimension finie Q faiblement normal et une famille f-analytique (X,)q4ep vérifiant
la propriété universelle suivante :

Pour toute famille f-analytique (Y; )ier de n-cycles de Z, paramétrée par un espace
analvtique réduit de dimension finie faiblement normal T, vérifiant

VieTds e S: Y, =X
il existe une unique application holomorphe g: T — Q telle que [’on ait
YieTl: Y = Xg(t).

Bien str, ceci implique que Q est le quotient de S par la relation d’équivalence
donnée par 1’égalité des cycles associés, ¢’est a dire que s ~ s’ si et seulement si on
a Xy = Xy comme cycles de Z. Ceci est détaillé dans les commentaires qui suivent.

Commentaires. (1) La propriété universelle donnée pour la famille f-analytique
(X4)gep dans le théoréme A donne une unique application 7: S — @ telle que
pour chaque s € S on ait Xy = X;(s. La famille f-analytique (Xj);es initiale est
donc I’'tmage réciproque par I’application analytique t de la famille “reparaméirée”.
De plus, ’application t est semi-propre par construction (vue la définition de Q qui
est donnée dans la démonstration : elle coincide a un homéomorphisme pres avec
I’application classifiante x qui est semi-propre par hypothese).

Enfin I’application 7 est également surjective : s1 gp n’est pas dans I’'image de
alors QO \ {go} muni de la famille f-analytique (X,),ep\ig,) Serait une solution de
notre probleme universel !

40n définira plus loin une famille f-analytique de cycles comme une famille analytique dont le graphe est
quasi-propre sur 1’espace de paramétre.

S(est a dire que I’application classifiante associée y: .S — (9,{ (7)) est semi-propre.
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(2) Réciproquement, étant donnée une famille f-analytique (X;);c5 ou S est un
espace complexe faiblement normal, §°il existe une application holomorphe fermée
et surjective 7: S — Q sur un espace complexe faiblement normal Q tel que I’on ait
X5 = X si et seulement si 7(s) = 7(s’), alors T est semi-propre :

En effet, considérons une suite (g, ),>1 convergeant dans Q vers g et telle que
I’on ait, pour chaque v > 1,¢q, & t(L,) ou L, CC L,y est une suite exhaustive
de compacts de S. Comme 7 est surjective, on peut choisir pour chaque v > 1 un
point s, € S tel que t(sy) = g,. On adonc s, ¢ L, et ’ensemble {s,, v > 1} est
fermé dans S. Mais son image par t n’est pas fermée. Contradiction. On en déduit la
semi-propreté de 7.

(3) Considérons une application holomorphe t: § —  entre deux espaces
complexes faiblement normaux, et soit (X, )y une famille analytique de n-cycles
de Z paramétrée par (. Notons par (X;)ses la famille image réciproque par 7 de la
famille (X, ),e0. Notons respectivement par I' C O x Zet G C S x Z les graphes
de ces deux familles analytiques et par 7 et 7w leurs projections respectives sur ¢ et S.

Alors, s1 7 est quasi-propre, 7 est quasi-propre. Et réciproquement, si 7 est quasi-
propre et T semi-propre, alors 77 est quasi-propre.

Preuve. Fixons so € S. La quasi-propreté de 7 donne ’existence d'un voisinage
ouvert 'V de t(sgp) dans @ et d'un compact K dans Z tels que pour chaque g € V
chaque composante irréductible de X, rencontre K. Alors 7 1('V) et K donnent la
quasi-propreté de 7 en sg.

Réciproquement, supposons que r est quasi-propre et v semi-propre. Il n’est pas
restrictif de supposer t surjective d’apres le théoréme d’image directe semi-propre.
Considérons alors un point gy € Q. La semi-propreté de t nous donne un voisinage
ouvert U de go dans Q etun compact L de S tels que U C t(L). Pour chaque s € L
la quasi-propreté de = nous fournit un voisinage ouvert Vs de s et un compact K
de Z tel que pour tout o € 'V, chaque composante irréductible de X, rencontre K.

Extrayons un sous-recouvrement fini s1, ..., sy de L et posons X = Uj-vzl Ksj.
Alors pour tout ¢ € U chaque composante de X, rencontre K. En effet, il existe
seLtelquert(s)=qetonadonc X; = X,. O

Théoreme B (f-aplatissement géométrique). Soit Z un espace analytique complexe
de dimension finie et soit S un espace analytique réduit irréductible de dimension s.
Soit G C S x Z un sous-ensemble analytique irréductible de dimension s 4 n tel que
laprojectionm : G — S soit quasi propre et surjective. Soit X C S un sous-ensemble
analytique fermé et d’intérieur vide dans S tel que la restriction

m:G\7x () > S\ T

ait pour fibres une famille f-analytique® de n-cycles de Z.

o1 suffit pour cela que ¥ contienne le lieu des fibres de dimension > n et le lieu non normal de S.
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On suppose que lapplication ©: T — S de projection sur S de ’adhérence dans
S x G,{ (Z) du graphe de I’application classifiante x : S\ X — G,{ (Z), est propre’.

Alors il existe un espace faiblement normal S, une famille f-analytique (X Fied
et une modification propre (globale) v S — S de centre contenu dans T vérifiant
les propriétés suivantes :

(1) Larestrictiona S\ t=1(X) = S\ T redonne la famille (X;)ses\x.

(2) Pour tout ensemble analytique réduir et faiblement normal T muni d’une famille
f-analytique (Yy)ser et d’une modification propre locale® 6: T — S’ de centre
contenu dans X, fel que la restrictiona T \ 6-1(X) de la famille (Y;) coincide
avec U'image réciproque de la famille initiale, il existe une unique application
holomorphe = T — S au dessus de S telle que I"on ait Y, = X y) pour tout
rel.

On peut alors utiliser le théoreme A précédent, sous réserve que la famille para-
métrée par S soit semi-propre (ce qui équivaut maintenant a la semi-propreté de la
projection de I' dans G’,{ (7)) pour obtenir un quotient méromorphe de S.

Commentaire. La condition de propreté de la projection I’ — S qui est demandde
dans I’hypothese du théoreme d’aplatissement géométrique est nécessaire. En effet,
si on a une modification propre locale le long de N7, 7 8 — S lelong de = NS,
ou §” est un ouvert de S, telle que I’on ait une famille f-analytique (X3)._z qui induit
la famille initiale sur S’ \ X, I"application

tx ' 8 s 8 xelz

ou I"application x/: §' — e! (Z) classifie la famille f-analytique paramétrée par S,
sera propre et son image sera exactement f‘| g C 8 x G,{ (7). Eneffet (v x x)(§'\ X)
est contenu dans " par définition, et S est I'adhérence de S’ \ & ~ & \ v~ 1(Z).
Donc I’image est bien dans T

Réciproquement, si (o, X) € I_‘|5/ il existe une suite (sy)y>1 dans S" \ X qui
converge vers o telle que X converge vers X dans G,{ (Z). Comme 7 est propre,
on peut relever la suite (s,,),>1 en une suite de S’ convergente (s,),>1 vers un point
& € 1~ o). Par unicité de la limite dans G’,{ (7Z) on aura X; = X et donc I’égalité
désirée (t x x") (o) = (o, X).

Alors la projection p’: I'\gr — S’ vérifiera 1’égalité

Poirxy)=r

La propreté de p’ résulte alors de celle de 7.

La signification géométrique de cette hypoth&se, dont nous montrons dans le commentaire ci-aprés qu’elle
est nécessaire, est discutée au paragraphe 3.3.

8Donc §” est un ouvert de 5.

9C’est a dire vérifiant 7 o p=6.
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1. Cycles de type fini

1.1. Topologie de @,{ (Z). Dans ce qui suit nous appellerons espace analytique
complexe de dimension finie, un espace analytique complexe qui est localement de
dimension finie.

Cette terminologie est destinée a clairement distinguer ceux-ci des ensembles
analytiques banachiques que nous serons ¢galement amengs a considérer.

Définition 1.1.1. Soit Z un espace analytique de dimension finie et soit X un n-cycle
de Z. On dira que X est de fype fini si son support | X| n’a qu’un nombre fini de
composantes irréductibles.

Nous noterons par G}lOC(Z) I’espace de tous les n-cycles fermés de Z muni de

sa topologie “naturelle” (voir [M0OO] ou [BM]) et nous noterons par G,{ (Z) le sous-
ensemble de G}f"(Z ) formé des n-cycles (fermés) de type fini.

Nous allons munir ce sous-ensemble d’une topologie plus fine que la topologie
induite par celle de C1¢(Z).

Définition 1.1.2 (Topologie sur G;{ (Z)). Soit W CC Z un ouvert. Nous noterons
par Q (W) le sous-ensemble de G,I,LOC(Z) formé des cycles dont chaque composante
irréductible rencontre W. En fait, comme W est supposé relativement compact dans
7, le sous-ensemble €2 (W) est contenu dans (?nf (£).

Nous dirons qu’'un sous-ensemble €2 de G,{ (Z) est ouvert si pour tout Xo € Q 1l
existeunouvert U de G}LOC(Z ) contenant Xg etunouvert W cC Ztelque Xg € Q(W)
vérifiant

UNQR(W) C Q.

Remarques. (1) Les ouverts de 1a forme U N (W), ot U est un ouvert de @}QOC(Z )
et W CC Z un ouvert de Z, forment donc une base de cette topologie.

(2) Cette topologie est plus fine que la topologie induite par G}LOC(Z) qui est
séparée. Elle est donc séparée.

(3) Pour cette topologie le sous-ensemble 2 (#) = {4} est ouvert et fermé. Rap-
pelons que {#/} n’est pas ouvert pour la topologie de C°¢(Z).

Pour | Q| C @,{ (Z) notons par 0/ et Q¢ les espaces topologiques sur | Q| définis
respectivement par les topologies induites par C?,,{ (£) et (?},LOC(Z ).

La notion de fuite a I'infini de [MO0O] peut &tre introduite de la fagon suivante,
pour un sous-ensemble de G,{ (Z):

Définition 1.1.3. Soit |Q| un sous-ensemble de @,{ (7Z) et soit gp un point de | Q.
On dira que | Q] est sans fuite a I'infini en g si ’inverse de I’application continue
Id: 9/ — Q¢ est continue en go.
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Ceci revient exactement 2 demander qu’il n’existe pas de famille (g, ) de | Q| qui
converge vers go au sens de G}f"(Z), sans converger au sens de G,{ (Z) vers gop.

On remarquera que si la suite (g,) converge vers gg dans ¢ sans converger
vers go dans Q/, quitte & passer i une sous-suite, on peut supposer que 1’on peut
choisir dans chaque cycle g, une composante irréductible I',, de sorte que la suite
(I",) converge vers le cycle vide au sens de G}LOC(Z ). Ceci revient a dire que pour
chaque compact K de Z, il existe v(K) tel que pour v > v(K)onait ', C Z \ K.
D’ou la dénomination de “fuite a 1’infini”.

Un sous-ensemble | Q| C C?,{ (Z£) est sans fuite a I’'infini en chacun de ses points,
si et seulement si I’application Id: Q7 — Q'°°¢ est un homéomorphisme.

Par exemple cette propriété est clairement vérifide par tout compact de (?nf (Z)!

On remarquera que si cette propriété est vraie pour | Q| elle est également vraie
pour tout sous-ensemble de | Q.

On prendra garde au fait qu’en revanche cette propriété n’est pas nécessairement
vérifiée par un sous-ensemble localement compact de G,{ (Z) (voir 'exemple 2.3).

La proposition suivante décrit les compacts pour cette topologie. Sa preuve est
immédiate d’apres ce qui vient d’étre dit.

Proposition 1.1.4. Soit Z un espace analvtique complexe de dimension finie et soit K
un sous-ensemble de G,{ (7). On a équivalence entre les deux propriétés suivantes .

(1) K est compact pour la topologie induite par celle de G,{(Z).
(2) K estun compact de @}LOC(Z) qui est sans fuite a Uinfini au sens de IMOO].

Rappelons que les parties relativement compactes de G}f"(Z ) coincident avec les
parties bornées (voir [BM], [B06] ou la condition (2) de 3.3).

Corollaire 1.1.5. Soit Z un espace complexe de dimension finie et soit (X,),>1 une

suite de an (7)) convergeant vers Xo au sens de la topologie de G,{ (7). Choisissons
pour chague v > 1 une composante irréductible 1", de | X, |.

Alors ’ensemble @ .= {I',,, v > 1} est relativement compact dans G,{ (Z).

De plus, toute sous-suite convergente de la suite {I'y,v > 1} a pour limite un
cycle non vide qui est réunion de composantes irréductibles de | Xo|. La multiplicité
dans une telle limite d’une composante irréductible de | Xo| est toujours majorée par
la multiplicité de cette composante dans le cycle Xo.

Preyve. D’apres la caractérisation des compacts de G}LOC(Z) il est clair que ¢ est
relativement compact dans G,[LOC(Z). Soit W CC Z un ouvert relativement compact
de Z rencontrant chaque composante irréductible de Xy. Alors, il existe vy tel que
chaque composante irréductible de X, rencontre W pour v > vg. Dong, a fortiori 17,
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rencontre W pour v > vg. Ceci montre que ¥ n’est pas un point d’accumulation de
I’ensemble < dans G}fC(Z ). Si E estun tel point d’accumulation, on aura | E| C | X|.
En effet, s1 7 ¢ |Xo| la considération d’une écaille adaptée a X au voisinage de z
dans laquelle X est de degré nul, montre que z ¢ |Z|. Donc chaque composante
irréductible de E rencontre W, puisque ¢’est une composante irréductible de | Xg|.
Ceci montre que d est un compact de G}QOC(Z) sans fuite a I’infini, donc un compact

de G,{ (Z) d’apres la proposition 1.1.4. L’assertion sur la multiplicité dans un cycle
limite d’une composante irréductible de X¢ se déduit facilement de I"’hypothese de
convergence vers Xg de la suite (X)), > initiale. a

Remarque. On a un corollaire analogue dans le cadre de G’}LOC(Z). La différence
fondamentale est que 1’ensemble des points d’accumulation du sous-ensemble rela-
tivement compact P peut &tre réduit au cycle vide dans ce contexte.

C’est précisément ce qui se produit lors du phénomene de fuite a I’infini !

Le lemme suivant montre que pour I’espace des cycles compacts G, (Z) la topolo-
gie “usuelle” est celle induite par I’'inclusion dans G,{ (7). Ceci montre que I’espace

(?,{ (Z£) est probablement une “meilleure” généralisation de I’espace C, (Z) des cycles
compacts que 1’espace G,lfc (7).

Lemme 1.1.6. Soit Z un espace analytique complexe de dimension finie, et soit X
un n-cycle compact de 7. Alors il existe un ouvert relativement compact W dans 7
et un voisinage ouvert U de Xo dans G,{(Z) tel que tout X € U vérifie | X| C W, ce
qui implique en particulier la compacité de X.

Preuve. Fixons une fonction continue d’exhaustion (¢’est une fonction continue
propre) ¢ : Z — [0, +00[.

Soit o = sup,¢|x, ¥(x), et posons W := ¢~ 1[0, @ 4+ 1[). Recouvrons alors
le compact e Mo+ 1,a4+2) par un ensemble fini d’ écailles (F;);<; adaptées
a Xo telle que degy, (Xo) = 0 pour tout i € I. Recouvrons ¢galement le compact
¢~1([0, @ + 17) par un nombre fini d’écailles (£;);<; adaptées a Xo. Posons alors™®

U=2Wn( ) @)
hellJ

ou kyp = degy, (Xo) pourtouth € T U J.

Considérons alors un cycle X dans U, et soit I' une composante irréductible de
| X|. Comme la nullité du degré dans les écailles (E;); <y assure que | X | ne rencontre
pas o 1 ([a+1, @+2]) et comme (") est un connexe qui doit rencontrer I’intervalle
[0, & + 1[ puisque I' rencontre W, on aura I C o 10,0 + 1) = W. O

10Rappelons que pour une n-écaille E sur Z, 25 (E) désigne 1’ouvert de G}IOC(Z) des cycles X tels que E soit
adaptée a X et tels que degp (X) = k.
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Terminons ce paragraphe en donnant la “clef” qui va permettre de remplacer
I’espace G,{ (Z) par un ensemble analytique banachique.

Proposition 1.1.7. Soir Q C C?,,{ (Z) un sous-ensemble localement compact.

Alors Q est localement fermé. 1l vérifie la propriété suivante :

Pour tout qo € Q, soient Ey, ..., E,, des écailles adaptées a qo et notons par
ki, ..., ki les degrés respectifs de qo dans ces écailles. Supposons de plus que chaque
composante irréductible de qo rencontre ouvert W ;= U:-”:l D(E;) de Z.11

Alors il existe un voisinage ouvert V(qo) de qo dans Q, contenu dans [’ouvert
Mty Qu, (E) N QW) de G,{(Z), tel que "application “évidente”

A (), @B — [ HWi, Sym" (B))
1

induise un homéomorphisme de 'V (qo) sur son image (qui est donc localement com-
pacte).

Preuve. Le fait qu’un sous-ensemble localement compact d’un espace topologique
séparé soit localement fermé est général. Rappelons rapidement ce point dans le cas
métrisable (les amateurs d’ultra-filtres pourront traiter le cas général...).

Soit go € Q et soit U un ouvert de I’espace ambiant contenant gy dont la trace
sur O est relativement compacte. Soit (g, ),>1 une suite de O N U convergeant vers
x € U. Quitte A passer a une sous-suite, on peut supposer que la suite (gy)v>1
converge vers un point y du compact ¢ N U. Onadonc x = y € O N U. Donc
Q N U est fermé dans U.

Considérons maintenant un voisinage ouvert V(go) de go dans @ vérifiant les
propriétés suivantes :

(1) L’adhérence de V(go) est compacte.
(2) L’adhérence de V(qgg) est contenue dans 1’ouvert ﬂ;f”:l Qp, (E;) N QW) de
¢l (2.
L’application A est continue et est injective sur ouvert ()i €, (E;) N Q(W) de
G’,{ (Z), puisque pour un cycle de cet ouvert chaque écaille F; est adaptée avec le
degré k;, et puisque chaque composante irréductible d’un tel cycle doit rencontrer
au moins le domaine d’une de ces €cailles. Elle induit donc un homéomorphisme du
compact V(gg) sur son image.
Montrons qu’alors ’application A: V(go) — A(V(qo)) est fermée!2, Pour cela
considérons une suite (X)) dans V(go) telle que la suite A(X,,) converge vers A(X)

11Rappelons que pour une n-écaille E := (U, B, j) sur Z le domaine de E est I'ouvert D(E) := j*1 (U =< B)
de Z.

12Rappelons qu’une injection continue d’un espace localement compact n’est pas nécessairement un homéo-
morphisme sur son image ! Voir 2.3.
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ou X € V(qo). La compacité de V(gg) permet, quitte a4 passer a une sous-suite, de
supposer que la suite X, converge vers ¥ € V(go). L’injectivité de A donne alors que
X =Y, et & induit bien un homéomorphisme de V(go) sur son image. O

1.2. Familles f-analytiques de cycles de type fini. Le substitut & une “structure

analytique” sur ’espace C’,{ (7Z) sera donné par la notion de famille f-analytique de
n-cycles de type fini de Z.

Définition 1.2.1. Nous dirons qu’une famille (X;);cs de n-cycles de type fini de Z
paramétrée par un ensemble analytique banachique S est f~analytique siles conditions
suivantes sont réalisées :

(1) L’application classifiante correspondante y : — G,{ (Z) est continue.

(2) La famille est une famille analytique de n-cycles de Z paramétrée par S.13

Remarque. Ilne suffit évidemment pas que chaque cycle X soit de type fini dans une
famille analytique de cycles (X)ses pour que la définition précédente soit satisfaite.
La proposition ci-dessous montre que, si la famille (X )5 est analytique, la quasi-
propreté (définie ci-apres) de la projection sur S du graphe de 1a famille est nécessaire
et suffisante pour satisfaire la définition précédente.

Définition 1.2.2. Soit S un espace topologique séparé, et soit G C S x Z un sous-
ensemble fermé tel que pour chaque s € S lafibre | X| (= {z € Z2/ (s,2) € G}
soit un sous-ensemble analytique fermé de Z. On dira que la projectionw: G — S
est gquasi-propre si pour chaque s € § il existe un voisinage V de s dans S et un
compact K de Z tel que, pour chaque s* € V;, chaque composante irréductible de
| X/| rencontre K.

On a la caractérisation immédiate suivante des familles f-analytiques.

Lemme 1.2.3. Soit Z un espace complexe de dimension finie, et soit (X;)ses une
Jamille analytique de n-cycles de 7 paramétrée par un ensemble analytique bana-
chique S. Soit | X| le support du graphe de cette famille.
On a équivalence enire les deux propriétés suivantes .
(1) La projection pr:. |X| — S est quasi-propre.

(2) La famille (X)ses est une famille f-analytique.

Le corollaire suivant est conséquence immeédiate de la proposition précédente et
du théoreme 1 de [B75].

Bvoir [B75] ou [BM].
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Corollaire 1.2.4. Soit f: Z — S une application holomorphe quasi-propre, a fibres
de dimension pure n entre deux espaces analytiques complexes de dimension finie.
On suppose 'espace analytique S normal. Alors il existe une unique famille f-ana-
Iytigue (Xs)ses de n-cvcles de tvpe fini de Z telle que pour s € S générigue on ait
Xs = Xl = 7).

2. Reparamétrisation universelle

2.1. Le théoréme d’image directe semi-propre. Nous allons rappeler la générali-
sation de N.Kuhlmann (voir [K64] et [K66]) du théoreme d’image directe propre de
R. Remmert (voir [R57]). Pour la commodité du lecteur, commengons par donner la
définition d™une application semi-propre.

Définition 2.1.1. Soient f: X — Y une application continue entre deux espaces
topologiques séparés. On dit que f est semi-propre si pour tout vy € ¥ on peut trouver
un voisinage Vy, de y et un compact K de X vérifiant

Vo0 £(X) = Vy 0 FKD.

Onremarquera que ceciimpose a f (X) d’étre un fermé localement compactde Y.
On remarquera également qu’une application quasi-propre est semi-propre.

Théoréeme 2.1.2. Soir f: X — Y une application holomorphe semi-propre entre
espaces analytiques réduits de dimensions finies. Alors f(X) est un sous-ensemble
analvtique fermé de Y.

Rappelons également une autre généralisation du théoreme d’1mage directe propre
(voir [Ma74]).

Théoreme 2.1.3. Soit f: X — Y une application holomorphe propre entre un
espace analytique réduit de dimension finie X et un ouvert Y d’espace de Banach.
Alors f(X) est un sous-ensemble analytique fermé de dimension finie de Y qui est
localement contenu dans une sous-variété complexe lisse de dimension finie de Y.

D. Mathieu “fusionne” dans [M00] ces deux généralisations dans le résultat encore
plus général suivant.

Théoréme 2.1.4. Soif f: X — Y une application holomorphe semi-propre entre un
espace analytique réduit de dimension finie X et un ouvert Y d’espace de Banach.
Alors f(X) est un sous-ensemble analytique fermé de dimension finie de Y qui est
localement contenu dans une sous-variété complexe lisse de dimension finie de Y.
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Ce résultat étant local sur I'image de f, il est facile de lui donner un aspect *“plus
général” enremplagant ¥ par un sous-ensemble analytique fermé d un ouvertd’espace
de Banach. Par contre, on se convaincra sans peine qu’il n’est pas évident de I'uuliser
directement en prenant ¥ = Cl°°(Z), ce que D. Mathieu évite soigneusement de faire
a juste titre.

On montrera plus loin comment la considération de Gr{ (7Z) permet d’utiliser ce

résultat, grace alaproposition 1.1.7, bien que C?,{ (Z) ne puisse Etre utilisé directement
comme Y.

2.2. Reparamétrisation universelle des familles f-analytiques semi-propres.
Commencons par donner 'idée directrice. Considérons une famille analytique
(Xs)ses de cycles compacts de Z paramétrée par un espace analytique réduit S.

On s’intéresse a la relation d’équivalence sur S définie par

s~s & X=Xy
L application “classifiante” x : S — C,(Z) quias € S associele cycle X dans 1’es-
pace G, (Z) définit cette relation d’équivalence, et le quotient s’identific a 1’image
x (5). On voit donc que I’existence d une structure naturelle d’espace analytique ré-
duit sur ce quotient, au moins dans le cas ol S est supposé faiblement normal'#,
revient a montrer un théoréme d’image directe. Dans la situation considérée mainte-
nant, puisque I’on sait que G, (Z) est un espace analytique de dimension finie (d’apres
[B75]), le théoréme de N. Kuhlmann (qui est essentiellement “optimal”), donne donc
I’existence du quotient cherché sous 1’hypothese de semi-propreté de 1’application
x avec une propriété universelle “évidente” par rapport aux familles analytiques de
cycles compacts qui ne font intervenir que les cycles figurant dans la famille initiale

(Xs)ses.

Définition 2.2.1. Soit Z un espace analytique complexe de dimension finie.
Nous appellerons graphe universel au dessus de Gr{ (Z) le sous-ensemble fermé

G :={(X.2) € C(Z)xZ/ze|X|}.

La projectionm : § — G’,{ (Z) est quasi-propre, comme conséquence de la définition
méme de la topologie de G,{ (Z£).

Si on considere une famille f-analytique (X )ses de n-cycles de Z paraméirée par
un ensemble analytique banachique S, on a une application “classifiante”

v 8 = el

4 est a dire que toute fonction sur un ouvert de .S qui est méromorphe et continue est holomorphe.



882 D. Barlet CMH

et la restriction au-dessus de x (S) = E de la projection du graphe universel est une
application quasi-propre 7 : $z — & ou E est muni de la topologie induite par celle
de & (7).

On remarquera que ceci nous permet d’éviter de parler de familles régulicres et
de fuite a I’infini (ensembliste ou topologique).

Sil’on suppose I”application classifiante x semi-propre avec S de dimension finie,
on obtient ainsi la variante suivante du théoreme 4 de [MOO].

Théoréme 2.2.2. Soit (Xy)ses une famille f-analytique de n-cycles de Z paramétrée
par un espace analytique réduit S de dimension finie ef faiblement normal.

On suppose la famille semi-propre, c’est a dire que ['application classifiante
associée x:. S — (?,{(Z) est semi-propre.

Alors il existe un espace analytique réduit de dimension finie Q faiblement normal
et une famille f-analytique (X,),eo vérifiant la propriété universelle suivante :

Pour toute famille f-analytique (Y )ier de n-cycles de Z, paramétrée par un espace
analytique réduit de dimension finie faiblement normal T, vérifiant

VielT ds e S: Y, =X
il existe une unique application holomorphe g: T — Q telle que I’on ait

VieT: Y[:Xg([).

Bien siir, ceci implique que @ est le quotient de S par la relation d’équivalence
donnée par 1’égalité des cycles associés.

Preuve. Commengons par montrer que le sous-ensemble fermé et localement com-
pact x(S) C @,{ (Z) est naturellement muni d’une structure d’espace analytique
réduit de dimension finie et faiblement normal.

Définissons déja cette structure au voisinage d'un point gg € x(S). Puisque
I"hypothese de semi-propreté de y donne la locale compacité de x (S), onpeut, d’apres
la proposition 1.1.7, trouver un voisinage ouvert V(go) dans x () et une injection
continue A: Vigo) — [[{ H (U;, Symki (B;)) qui induise un homéomorphisme de
V(go) sur son image. Alors 1’application composée

rox:x (Vigo) > | H(U:, Sym"™ (By))
1

est semi-propre. De plus elle est holomorphe, par définition de la notion de famille
analytique de cycles. Donc son image est naturellement un sous-ensemble analy-
tique localement fermé et de dimension finie de I’ensemble analytique banachique
[ H (U;, Symkf (B;)). Définissons alors une structure d’espace analytique réduit
sur V(go) en prenant 1a normalisation faible de celle de cette image.
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Montrons maintenant que cette construction se globalise, ¢’est a dire que la struc-
ture ainsi définie ne dépend pas des choix effectués. En effet le seul choix dont dépend
notre structure au voisinage de go est celui des écailles adaptées Eq, ..., Ey. Orsion
ajoute une €caille adaptée a go on ne changera pas la dite structure : en effet1’applica-
tion d’oubli de I’écaille ajoutée est un homéomorphisme holomorphe. On en déduit
que cette structure d’espace analytique faiblement normal se globalise.

On conclut alors aisément. O

Remarque. Comme I’'tmage réciproque par une application holomorphe g: T — Q
de la famille universelle paramétrée par Q qui est f-analytique doit étre f-analytique,
on obtient donc une propric¢té universelle différente de celle du théoréeme 4 de [MOO].

Rappelons que si le sous-ensemble | Q| C Gr{ (Z) est sans fuite a I’infini en chacun

de ses points, alors ’application Id: Q7 — 0'°° est un homéomorphisme.

On constate alors que, si dans le théoreme 2.2.2 on suppose de plus que le sous-
ensemble |Q| := x(S5) de G,{ (Z) est sans fuite a I'infini’® en chacun de ses points,
toute application continue goy : 7 — Q'°¢ donne également une application continue
gox: T — QF.D’oulaf-analyticité de toute famille analytique constituée de cycles
de x(S).

La différence entre les deux propriétés universelles données dans [MOO] théo-
reme 4 et dans le théoréme 2.2.2 vient du fait que dans le premier cas la semi-propreté
a valeurs dans G},LOC(Z ) donne 1a locale compacité de Q¢ etla régularité de la famille
implique la non fuite a I'infini en chaque point de | Q|. Cela implique évidemment
que Q7 est homéomorphe & Q'°°.

Dans le second cas, on obtient seulement la locale compacité de Q7 mais celle-ci
n’implique pas nécessairement que @/ est homéomorphe!® 3 Q1°° comme le montre
I’exemple donné ci-dessous.

En ajoutant donc 1’hypothese supplémentaire faite dans [M0OO], qui implique que
Id: 9/ — Q%estun homéomorphisme, on trouve immédiatement que toute famille
analytique de cycles qui prend ses valeurs dans | Q| est nécessairement f-analytique.
Ceci redonne bien la propriété universelle “plus forte” du théoréme 4 de [MOO].

Ceci montre que le champ d’application du théoreme 2.2.2 est plus large que celui
du théoreme 4 de [MOO].

2.3. Exemple. Considérons dans Z (par exemple le disque unité de C) une suite de
n-cycles (Y,),>1 qui converge au sens de C1°°(Z) vers le cycle @ (par exemple, avec
n = 0, on peut prendre ¥, = {1 — 1/v}). Considérons alors un n-cycle Xg de Z fixé
(par exemple Xy = {0}). Soit alors

Q= {Xy,v =0}

15prendre garde que cecl est une propriété locale sur 0%°¢ mais qu’elle n’est pas locale sur of.

16Bien que les compacts de 07 soient homéomorphes a leurs images !
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oul'onaposé X, := Xg+ Y, pour v > 1. Alors Qf est un sous-ensemble fermé
discret de @/ (Z) alors que Q'°° est un compact de C°°(Z) constitué d’une suite
convergente et de sa limaite.

Iest clair que dans ce cas Q7 estun sous-ensemble analytique fermé de dimension
finie alors que n’est certainement pas le cas pour Q'°°.

3. Relations d’équivalence méromorphes

Nous proposons dans ce paragraphe de reprendre avec le point de vue que nous avons
introduit les résultats du paragraphe 3 de [MOO].

3.1. Familles f-méromorphes de cycles. Soit S un espace analytique réduit de
dimension finie et soit X C S un sous-ensemble analytique fermé d’intérieur vide
de S. Nous appellerons modification propre locale de S de centre contenu dans X la
donnée d’un ouvert S’ de S (par exemple un voisinage ouvert d’un point so € X) et
d’une modification holomorphe propre : § — §'.

Définition 3.1.1. Soit S un espace analytique réduit de dimension finie et soit X C S
un sous-ensemble analytique fermé d’intérieur vide de S. Soit (X );e5\x une famille
f-analytique de cycles de Z. On dira que cette famille est f-méromorphe le long
de X s’1l existe, au voisinage de chaque point de X, une modification propre locale
7: 8 — S de centre contenu dans ¥, et une famille f-analytique de cycles de Z
paramétrée par S telle que sur S \r71(Z) =~ §’\  onretrouve la famille f-analytique
initiale.

Proposition 3.1.2. On consideére une famille (X;)ses\x. qui est f-méromorphe le
long de 2. Alors il existe un espace faiblement normal S, une famille f-analytique
(X §):e5 et une modification propre (globale) S — S de centre contenu dans T
vérifiant les propriéiés suivantes :

(1) La restriction @ S \ 7 H(Z) =~ S\ T redonne la famille (Xs)ses\x.

(2) Pour tout ensemble analytique réduir et faiblement normal T muni d’une famille
fanalytique (Yy)ier et d’une modification propre locale 0: T — S’ de centre
contenu dans X, tel que la restriction a T \ 6-1(X) de la famille (Yy) coincide
avec Uimage réciproque de la famille initiale, il existe une unique application
holomorphe ¢ T — S au dessus de S"V7 telle que I"on ait Y; = X ) pour tout
tel.

La preuve de la proposition 3.1.2 va résulter immédiatement de la “construction
basique” de loc. cit. reprise dans notre cadre.

17 est a dire vérifiant 7 o p=6.
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Fixons dans tout ce qui suit un espace complexe Z de dimension finie et un es-
pace analytique réduit et irréductible S de dimension finie. Nous considererons un
sous-ensemble analytique fermé G C S x Z irréductible, et nous supposerons que
I"application induite par la projection 7 : &G — § est quasi-propre et surjective, et
que sa restriction au-dessus de I’ouvert de Zariski S \ 2 est un morphisme géoméiri-
quement plat!® 2 fibres de dimension pure n1°.

Soit y: S\ ¥ — G,{ (Z) I'application qui classifie la famille f-analytique de
n-cycles de Z donnée par les fibres de la restriction 7: G\ 71 (£) — S\ . On
notera que I"hypothese de quasi-propreté de m assure que la famille analytique définie
par les fibres de zr sur S\ X est bien f-analytique.

Nous noterons par I C S x G,{ (Z) I’adhérence dans S x @,{ (Z) du graphe I de
I’applicaton x . Nous noterons par 7: [' — S, la projection.

La preuve de la proposition 3.1.2 est alors conséquence du lemme suivant.

Lemme 3.1.3. Dans la situation précisée ci-dessus, on a les propriétés suivantes de
l'application T :

(1) Lapplication T: T — S est indépendante du choix de T. vérifiant les conditions
demandées.

(2) Si la famille f-analytique (Xs)ses\x est f-méromorphe le long de ¥ alors T’
est naturellement muni d’une structure d’espace analytique réduit de dimension
finie faiblement normal et et ’application t est une modification holomorphe
propre dont le centre est contenu dans .

(3) Toujours sous I’hypothese que la famille (Xs)ses\x soit f-méromorphe le long
de X, la modification propre de S obtenue au (2) précédent vérifie la propriété
universelle demandée dans la proposition 3.1.2.

Comme les autres arguments sont analogues a ceux de [MOO], et par ailleurs assez
standards, précisons seulement le point (2). Comme notre probléme est local sur S
le long de X, considérons un point sg € X. Par définition, 1l existe une modification
propre 7 : S — S o S est un voisinage ouvert de so dans S, et une famille f-
analytique de n-cycles de Z paramétrée par S, telle que sur S\t i)~ S\ Zon
retrouve la famille f-analytique initiale. I’ application classifiante de cette famille

58 = el

a un graphe Ii c S x G,{ (Z). 11 est immédiat de vérifier que I" coincide avec la
restriction de I au dessus de S’. Fixons un point (s, X) € I" et soient F1, . .., E,, des

18voir [B78].

196i le sous-ensemble analytique fermé d’intérieur vide ¥ de S contient le lieu des points non normaux de S
ainsi que les points en lesquels la dimension de 7 L(s) est strictement plus grande que # := dim G — dim S,
cette hypothése est automatiquement vérifiée.
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gcailles adaptées a X de sorte que chaque composante irréductible de X rencontre la
réunion des domaines D(F;) de ces €cailles. On a alors une injection holomorphe
h d’un voisinage ouvert V de (s, X) dans S x ]_[’1" H(U;, Sym"i(Bi)), ou k; =
degg, (X).

La proposition 1.1.7 montre que, puisque I est localement compact car homéo-
morphe a S, pour V assez petit I’application /4 est un homéomorphisme sur son image
h(V).

Alors I'application composée i1 o (F x §): § — 8 x [T HU;, Sym®i (B;)) est
propre et d’image A(V). On en déduit que A(V) est un sous-ensemble analytique
de dimension finie. On définit alors la structure désirée sur V' en transportant par A
la structure du normalisé faible?® du sous-ensemble analytique de dimension finie
(V). Il est facile de voir (c’est le méme argument que 1’on a déja utilisé plus haut)
que cette structure faiblement normale est indépendante des écailles choisies et se
globalise. O

3.2. Lethéoréme de f-aplatissement géométrique. Nous allons maintenant donner
la variante du théoréme 5 de [MOO] correspondant a notre point de vue.

Théoréeme 3.2.1 (f-aplatissement géométrique.). Soir Z un espace analytique com-
plexe de dimension finie et soit S un espace analytique réduit irréductible de dimen-
sions. Soit G C S x Z un sous-ensemble analytique irréductible de dimension s +n
tel que la projection w: G — S soit quasi propre et surjective. Soit 2 C S un
sous-ensemble analytique fermé et d’intérieur vide dans S rel que la restriction

G\ () > S\ X

ait pour fibres une famille f-analytique de n-cycles de Z.

On suppose que 'application T: T — S de la projection sur S de 'adhérence
dans S x G’,,{(Z) du graphe de Uapplication classifiante y : S\ ¥ — G,{(Z), est
propre.

Alors cette famille est f-méromorphe le long de X.

En combinant le théoréme ci-dessus et la proposition 3.1.2 on obtient le théo-
reme B donné dans 1I’introduction.

On remarquera que la condition de propreté de I'application T demandée est
une condition nécessaire pour avoir une famille f-méromorphe. Une fois que ’on a
remarqué que cette propriété, qui est locale au voisinage des points de X, se préserve
par ¢clatement local, 11 suffit alors de reprendre la démonstration du théoreme 5 de
[MOO] pour conclure.

20Rappelons que la normalisation faible d’un espace analytique réduit de dimension finie est un homéomor-
phisme.
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3.3. Comment vérifier I’hypothése? Terminons en explicitant concrétement ce
que signifie cette hypothese de propreté de I’application 7.

Fixons une métrique hermitienne de classe ¢V sur Z, ¢’est a dire une (1, 1)-forme
a coefficients continus et définie positive en chaque point (comme forme hermitienne
sur le tangent de Zariski a Z au point).

La caractérisation des compacts de G’,{ (Z) se traduit par le fait que la condition de
propreté de T au dessus d’un voisinage V du point sg € 2 seraréalisée si et seulement
siona

(1) M existe un ouvert W CC Z tel que chaque composante irréductible de chaque
n-cycle de type fini de Z qui est limite (au sens de de G,{ (Z)) de fibres de la
restriction de s au dessus de V' \ 2 rencontre W,

(2) 1l existe pour chaque compact K de Z un nombre Cg tel que pour chaque

s € V\ Xonait
[ h" < Cr:
r1{sNK

Rappelons que la condition (2) caractérise les parties relativement compactes de
G’,lf"(Z ) en vertu du théoréme de E. Bishop [Bi64].

Remarquons de plus que cette seconde condition est automatique dans la situation
du théoréeme 3.2.1 d’apres [B78].

La premiere condition est assez délicate a vérifier, puisqu’elle demande de consi-
dérer toutes les limites dans G,{ (Z) de fibres au dessus de V' \ X,

On peut cependant remarquer que cette vérification est inutile (car automatique)
pour tout cycle irréductible. Plus généralement, elle sera automatique dés que le cycle
limite a chacune de ses composantes irréductibles qui est limite de composantes
irréductibles de cycles génériques.

La difficulté se concentre donc sur les cycles limites qui présentent “plus™ de
composantes irréductibles que les cycles génériques. Mais méme dans ce cas, si les
intersections des composantes irréductibles apparaissant a la limite rencontrent un
compact fixe, la condition sera encore automatique.

Finalement, il reste a vérifier que les composantes irréductibles qui se cassent a
la limite, ne créent pas un phénomene de fuite a I’infini. 11 est probable qu’en général
ceci conduise a une étude difficile du comportement local, quand on s”approche d’un
point de X, des fibres génériques de 7.
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