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Reparamétrisation universelle de familles f-analytiques de cycles
et théorème de f-aplatissement géométrique

Daniel Barlet

En hommage à Henri Cartan

Résumé. This article presents a new pointofview around the main results ofD. Mathieu [MOO] on
meromorphic equivalence relations. We introduce the space of finite type cycles (closed analytic
cycles with finitely many irreducible components) of a given finite dimensional complex space
and a natural topology on this space, in order to avoid the "regularity" condition for analytic
families of cycles introduced in Joe. cit. and also the two notions of "escape to infinity" which
are here encoded in a natural way in our framework. Then the results are stronger and much
simpler to state and to use. They contain, in a slightly different language, a clean and more
general version of the works of H. Grauert [G83] and [G86] and of B. Siebert [S93] and [S94]
on meromorphic equivalence relations.

Résumé. Cet article présente un nouveau point de vue à propos des principaux résultats de David
Mathieu [M00] sur les relations d'équivalence méromorphes. Nous introduisons l'espace des

cycles de type fini (les cycles analytiques fermés n'ayant qu'un nombre fini de composantes
irréductibles) d'un espace analytique complexe donné de dimension finie, muni d'une topologiê
naturelle, ce qui permet d'éviter la condition de "régularité" des familles analytiques de cycles
qui est utilisée dans loc, cit. etégalement les deux notions de "fuite à l'infini" qui sont ici encodées

de façon naturelle dans notre contexte. Les résultats obtenus sont meilleurs et surtout d'énoncés
et d'utilisation beaucoup plus simples. Ils contiennent, avec un langage un peu différent, une
version plus claire et plus générale des travaux de II. Grauert [G83] et [G86] et de B. Siebert
[S93] et [S94] sur les relations d'équivalence méromorphes.

Mathematics Subject Classification (2000). 32C25, 321135. 32H04.

Keywords. Analytic and meromorphic equivalence relations, cycles, geometric flattening,
universal reparametrization, meromoiphic quotients.

Mots Clefs. Relations d'équivalence analytiques et méromorphes, cycles, aplatissement
géométrique, reparamétrisation universelle, quotients méromorphes.

Introduction

Présentation. Le présent article se propose de reprendre et de compléter les résultats
de David Mathieu [M00] en les replaçant dans le cadre des familles f-analytiques de
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cycles qui me semble bien adapté à ces questions. Le problème "fondamental" qui
sous-tend cette étude est, bien sûr, celui des relations d'équivalence analytiques et
de l'existence de quotients (ou de quotients méromorphes) dans le cas semi-propre.
Cette question qui est résolue dans le cas propre par H. Cartan [C60] se ramène en
suivant le point de vue "familles analytiques de cycles" développé dans [M00] et

que nous reprenons ici, au théorème d'image directe de R. Remmert [R57] et à sa

généralisation [M74] en utilisant les résultats de [B75] et [B78].
Comme c'est déjà indiqué par D. Mathieu dans [M00], le cas semi-propre est à

comparer avec les travaux de H. Grauert [G83] et [G86J et de B. Siebert [S93] et

[S94], Dans ce cas le théorème d'image directe de N. Kuhlmann [K64] et [K66] ainsi

que la généralisation donnée par D. Mathieu [M00] donnent le lien avec le point de

vue "familles f-analytiques de cycles" que nous introduisons ici.
Il s'agit en fait d'une généralisation de la notion de famille analytique de cycles

compacts qui est plus restrictive que la notion de famille analytique de cycles (fermés)
qui est utilisée dans [M00] et qui est bien mieux adaptée aux problèmes que nous
traitons ici, comme le lecteur s'en convaincra facilement en comparant nos énoncés

et ceux de loc. Cit.

Je tiens cependant à préciser que l'article [M00] contient les points techniques les

plus délicats, et que, si les énoncés du présent article semblent plus simples et plus
"esthétiques", ils ne sont pas réellement plus profonds que ceux de loc. cit.

Relations d'équivalence holomorphes et méromorphes. Une relation d'équivalence

analytique sur un espace analytique réduit Z peut être vue comme une collection

(X-)rez de sous-ensembles analytiques fermés (les classes d'équivalence), paramétrée

par l'ensemble Z lui-même. Le quotient consiste à identifier deux points z, z' e Z
si et seulement si les sous-ensembles analytiques Xz et X- coïncident. De ce point
de vue, le fait que les Xz forment une partition de Z paraît accessoire. De plus le cas

méromorphe conduit très vite à abandonner la condition que les Xz soient disjoints
ou égaux.

Ce point de vue met également en évidence le fait que l'espace Z initial joue deux
rôles très différents :

(i) Z est l'espace analytique ambiant dans lequel on considère la famille de sous-
ensembles analytiques (Xz)zez.

(ii) Z est l'espace qui paramètre la famille {Xz)zez considérée.

Dans ce qui suit, nous garderons Z dans son premier rôle (d'espace ambiant) et

nous introduirons un espace analytique réduit S, à priori sans relation avec Z, pour
paramétrer des sous-ensembles analytiques de Z (en fait des «-cycles).

Nous allons considérer un sous-ensemble analytique G c S x Z, qui jouera le
rôle du graphe de la relation d'équivalence, vérifiant la propriété suivante ;

La projection n : G -> S est quasi-propre1, «-équidimensionnelle et ses fibres
'

f .a définition est rappelée plus loin.
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(notées (Xs)ses) forment une famille analytique de cycles (de dimension pure «)
de Z paramétrée par S. Rappelons que cette dernière condition est conséquence des

précédentes dès que S est normal.
On remarquera que, si on demande seulement la subjectivité de l'application quasi-

propre TT et que l'on pose « := dim G — dim S en demandant i G et .S'd'être irréductibles,

l'hypothèse précédente est toujours vérifiée sur un ouvert de Zariski dense de S.

Nous traiterons ce cas plus général comme le cas "méromorphe", le cas holomorphe
correspondant à notre hypothèse plus restrictive ci-dessus.

Nous cherchons maintenant à quotienter l'espace analytique réduit S, supposé
faiblement normal (pour éviter de considérer des espaces annelés) par la relation

fd'équivalence associée à l'application % > S —> G,, (Z) qui "classihe" la famille
f(Xs)ses où Cj (Z) désigne l'ensemble de tous les «-cycles (fermés) de Z ayant

un nombre fini de composantes irréductibles, et où l'application / est définie par

/ (s) Xs considéré comme «-cycle de Z. On a donc je ~ si et seulement si

Xs X,j comme cycles.
Ensemblistement le quotient s'identifie donc à / (S) à savoir l'ensemble des «-

cycles qui apparaissent dans la famille analytique considérée. Le problème est donc
de munir, sous des hypothèses convenables, le sous-ensemble

x(S) c e/(Z)

d'une structure analytique de dimension finie "naturelle". On ne dispose malheureu-
fsement pas d'une structure analytique "raisonnable ' sur G„ (Z) comme c'est le cas

quand on se limite à considérer des cycles compacts. En particulier certainement pas,
en général, d'une structure d'espace analytique de dimension finie2. Cependant les

espaces classihants locaux3 associés aux écailles, qui sont de la forme II (fi, Symk(B)),
sont des ensembles analytiques banachiques. Ce fait permettra de travailler comme

fsi l'ensemble G„ (Z) était réellement muni d'une structure analytique (de dimension
inhnie). Mais cela posera quelques problèmes techniques.

On constate alors que le problème est très similaire à un problème d'image
directe, puisque "moralement" l'application / est analytique et que l'on veut, sous des

hypothèses convenables, munir son image d'une structure d'espace analytique réduit
de dimension finie (la finitude venant de celle de S).

Quand on aura obtenu une structure de sous-ensemble analytique de dimension
finie sur /(.V), il ne sera pas difficile de montrer que son normalisé faible Q muni
de la famille analytique de cycles (Xq)qeQ de Z obtenue par image réciproque de

la famille universelle restreinte à / (S) est une "reparamétrisation universelle" des

cycles apparaissant dans la famille initiale.

<y -f
Car (5„ (Z) n'est pas même localement compact, en général.

3 Pour les revêtements ramifiés de degré k sur U contenus dans U x B.
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C'est à dire que pour toute famille f-analytique4 {Yt)tej de «-cycles de Z paramétrée

par un espace analytique de dimension finie et faiblement normal /'. vérifiant
V( e f ]f e S tel que Yt Xs alors il existe une unique application holomorphe
V : T —> Q telle que Vf g T, Y, XgW,

Enoncés des deux théorèmes. Nos deux principaux résultats, qui sont des variantes
des théorèmes 4 et 5 de [MOO], s'énoncent de la façon suivante. On trouvera au
paragraphe 1 la définition d'une famille f-analytique de «-cycles d'un espace analytique
complexe Z de dimension finie.

Théorème A (Reparamétrisation universelle dans le cas semi-propre). Soit
(Xs).ses une famille f-analytique de « -cycles de Z paramétrée par un espace analytique

réduit S de dimension finie etfaiblement normal.
On suppose lafamille semi-propre5. Alors il existe un espace analytique réduit de

dimension finie Q faiblement normal et une famille f-analytique (Xq)qeQ vérifiant
la propriété universelle suivante :

Pour toutefamillef-analytique (Yt)teT den-cycles de Z, paramétréepar un espace
analytique réduit de dimension finie faiblement normal T, vérifiant

Vf g T 3s g Si JJ A",

il existe une unique application holomorphe g : T Q telle que l'on ait

Vf G T: Yt Xg(f).

Bien sûr, ceci implique que Q est le quotient de S par la relation d'équivalence
donnée par l'égalité des cycles associés, c'est à dire que s ~ s'si et seulement si on
a Xs Xsi comme cycles de Z. Ceci est détaillé dans les commentaires qui suivent.

Commentaires. (1) La propriété universelle donnée pour la famille f-analytique
(.Xq)qeQ dans le théorème A donne une unique application r : S -> Q telle que

pour chaque î g Son ait Xs XT,S). La famille f-analytique (X.v.Le.s initiale est
donc l'image réciproque par l'application analytique r de la famille "reparamétrée".
De plus, l'application r est semi-propre par construction (vue la définition de Q qui
est donnée dans la démonstration : elle coïncide à un homéomorphisme près avec

l'application classifiante / qui est semi-propre par hypothèse).
Enfin l'application r est également surjective : si qo n'est pas dans l'image de r

alors Q \ {qo} muni de la famille f-analytique (Xq)qeq\{%0} serait une solution de

notre problème universel

L )n définira plus loin une famille f-analytique de cycles comme une famille analytique dont le graphe est

quasi-propre sur l'espace de paramètre.
5C'est à dire que l'application classifiante associée (Z) est semi-propre.
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(2) Réciproquement, étant donnée une famille f-analytique (Xs)ses où S est un

espace complexe faiblement normal, s'il existe une application holomorphe fermée

et surjective r : S -> Q sur un espace complexe faiblement normal Q tel que l'on ait
Xs Xsi si et seulement si r (s) r(/), alors r est semi-propre :

En effet, considérons une suite (qv)v> 1 convergeant dans Q vers qo et telle que
l'on ait, pour chaque v > 1 ,qv j r (Lv) où Lv CC Lv+1 est une suite exhaustive
de compacts de S, Comme r est surjective, on peut choisir pour chaque v > 1 un
point sv g S tel que t(sv) qv. On a donc »„ f Lv et l'ensemble {xv, v > 1} est
fermé dans S. Mais son image par r n'est pas fermée. Contradiction. On en déduit la

semi-propreté de r.
(3) Considérons une application holomorphe r : S -> Q entre deux espaces

complexes faiblement normaux, et soit (Xq)qeQ une famille analytique de «-cycles
de Z paramétrée par Q. Notons par (IVlssï la famille image réciproque par r de la
famille (Xq}qeQ. Notons respectivement par F c Q x Z et G c S x Z les graphes
de ces deux familles analytiques et par tt et tt leurs projections respectives sur Q et S.

Alors, si tt est quasi-propre, tt est quasi-propre. Et réciproquement, si tt est quasi-

propre et r semi-propre, alors n est quasi-propre.

Preuve. Fixons .vo e S. La quasi-propreté de tt donne l'existence d'un voisinage
ouvert V de r Ovo dans Q et d'un compact K dans Z tels que pour chaque q G V
chaque composante irréductible de Xq rencontre K. Alors r' '(V) et K donnent la

quasi-propreté de n en .v0.

Réciproquement, supposons que jr est quasi-propre et r semi-propre. Il n'est pas
restrictif de supposer r surjective d'après le théorème d'image directe semi-propre.
Considérons alors un point qo G Q. La semi-propreté de r nous donne un voisinage
ouvert U de qo dans Q et un compact L de S tels que U c r (L). Pour chaque s e L
la quasi-propreté de jt nous fournit un voisinage ouvert % de J et un compact Ks
de Z tel que pour tout a e Vs chaque composante irréductible de Xa rencontre Ks.
Extrayons un sous-recouvrement fini s\...., de L et posons K := [J '

KSj.
Alors pour tout q £ XL chaque composante de Xq rencontre K. En effet, il existe

^ g L tel que r (s) q et on a donc Xs Xq.

Théorème B (f-aplatissement géométrique). Soit Z un espace analytique complexe
de dimension finie et soit S un espace analytique réduit irréductible de dimension s.

Soit G c S x Z un sous-ensemble analytique irréductible de dimension s + n tel que
la projection n : G S soit quasi propre et surjective. Soit Ec S un sous-ensemble

analytique fermé et d'intérieur vide dans S tel que la restriction

tt: GXTT-^S) S\X

ait pour fibres unefamille f-analytique6 de n-cycles de Z.

6II suffit pour cela que £ contienne le lieu des fibres de dimension > n et le lieu non normal de S.
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On suppose que l'application r : F -> S de projection sur S de l'adhérence dans
f f 7S X G„ (Z) du graphe de l'application classifiante x ' S \ S -> G„ (Z), est propre

Alors il existe un espace faiblement normal S, une famille f-analytique
et une modification propre (globale) t : S Ht S de centre contenu dans S vérifiant
les propriétés suivantes

(1) La restriction à S \ r-1(£) ~ S \ £ redonne la famille (Xs)sës\s,
(2) Pour tout ensemble analytique réduit etfaiblement normal T muni d'unefamille

f-analytique (Yt)teT et d'une modification propre locale8 9: T —»• S''de centre
contenu dans £, tel que la restriction à T \ 0_1(£) de la famille < fi) coïncide

avec l'image réciproque de la famille initiale, il existe une unique application
holomorphe <p: T -> S. au dessus de S'ç telle que l'on ait Y, X^ pour tout
t se T.

On peut alors utiliser le théorème A précédent, sous réserve que la famille
paramétrée par I soit semi-propre (ce qui équivaut maintenant à la semi-propreté de la

— fprojection de F dans G„ (Z)) pour obtenir un quotient méromorphe de S.

Commentaire. La condition de propreté de la projection f *+ S qui est demandée
dans l'hypothèse du théorème d'aplatissement géométrique est nécessaire. En effet,
si on a une modification propre locale le long de £ n S', r : S' S'le long de £ n S',
où S'est un ouvert de S, telle que Fon ait une famille f-analytique (XslgeS' CILU induit
la famille initiale sur S' \ £, F application

r x / ': .S" > .S" x e/(Z)

où F application x' ' $' h* G,{ (Z) classihe la famille f-analytique paramétrée par S',
— f

sera propre et son image sera exactement Fjs/ c S-xß, (Z). En effet (:rxx')(S'\S)
est contenu dans F par définition, et .S" est F adhérence de .S" \ L ~ .S" \ r ^1 E i.
Donc Fimage est bien dans f.

Réciproquement, si (a, X) e F ^ il existe une suite (sv)v>i dans .S" \ E qui
f

converge vers a telle que XSv converge vers X dans G,, (Z). Comme r est propre,
on peut relever la suite (sv jv>i en une suite de S' convergente 0v}pxt vers un Poni1

à e T~l(a). Par imicité de la limite dans G,{(Z) on aura X0 X et donc Légalité
désirée (r x x'K®) X),

Alors la projection p : I'\v S' vérihera Légalité

p O (r x x T-

La propreté de p' résulte alors de celle de r.
7La signification géométrique de cette hypothèse, dont nous montrons dans le commentaire ci-après qu'elle

est nécessaire, est discutée au paragraphe 3.3.
8Donc S! est un ouvert de S.
^C'est à dire vérifiant r otp 9.
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1. Cycles de type fini

f1.1. Topologie de G„ (Z). Dans ce qui suit nous appellerons espace analytique
complexe de dimension finie, un espace analytique complexe qui est localement de

dimension finie.
Cette terminologie est destinée à clairement distinguer ceux-ci des ensembles

analytiques banachiques que nous serons également amenés à considérer.

Définition 1.1.1. Soit Z un espace analytique de dimension finie et soit X un «-cycle
de Z. On dira que X est de type fini si son support V n'a qu'un nombre fini de

composantes irréductibles.

Nous noterons par C'!"c(Z) l'espace de tous les «-cycles fermés de Z muni de
fsa topologie "naturelle" (voir [M00] ou [BM]) et nous noterons par G„ (Z) le sous-

ensemble de Gj°c(Z) formé des «-cycles (fermés) de type fini.
Nous allons munir ce sous-ensemble d'une topologie plus fine que la topologie

induite par celle de gI°c(Z).

fDéfinition 1.1.2 (Topologie sur Gn (Z)). Soit W CC Z un ouvert. Nous noterons

par £2 W) le sous-ensemble de Gl°c(Z) formé des cycles dont chaque composante
irréductible rencontre W. En fait, comme W est supposé relativement compact dans

fZ, le sous-ensemble £2 W) est contenu dans G,, (Z).
Nous dirons qu'un sous-ensemble £2 de G,{(Z) est ouvert si pour tout Xq g £2 il

existeunouvertKdee^fZlcontenantXoetunouvertlT CC ZtelqueXo g £2(W)
vérifiant

U D £2(WO c £2.

Remarques. (1) Les ouverts de la forme U D £2 W), où U est un ouvert de gJ°c(Z)
et W ce Z un ouvert de Z, forment donc une base de cette topologie.

(2) Cette topologie est plus fine que la topologie induite par G}'>c(Z) qui est

séparée. Elle est donc séparée.

(3) Pour cette topologie le sous-ensemble £2(0) {0} est ouvert et fermé.
Rappelons que {0} n'est pas ouvert pour la topologie de G}°c(Z).

Pour | Q\ c G,{(Z) notons par Q1 et gloG les espaces topologiques sur | Q \ définis

respectivement par les topologies induites par G,{(Z) et ej"c( Z).
La notion de fuite à l'infini de [M00] peut être introduite de la façon suivante,

f
pour un sous-ensemble de G„ (Z) :

fDéfinition 1.1.3. Soit \Q\ un sous-ensemble de Gn (Z) et soit qo un point de \Q\,
On dira que \Q\ est sans fuite à l'infini en c/o si l'inverse de l'application continue
Id : Q? <2loc est continue en qo.
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Ceci revient exactement à demander qu'il n'existe pas de famille (qv) de | Q qui

converge vers qo au sens de C}°C(Z), sans converger au sens de G,, (Z) vers qo.

On remarquera que si la suite (qv) converge vers qo dans ßloc sans converger
vers qo dans QJj quitte à passer à une sous-suite, on peut supposer que l'on peut
choisir dans chaque cycle qv une composante irréductible F,, de sorte que la suite

(rv) converge vers le cycle vide au sens de C(''>C(Z). Ceci revient à dire que pour
chaque compact K de Z, il existe v(K) tel que pour v > v(K) on ait Fv c Z \ K.
D'où la dénomination de "fuite à l'infini".

fUn sous-ensemble \Q\ c G„ (Z) est sans fuite à l'infini en chacun de ses points,
si et seulement si l'application Id: Q? —> gloc est unhoméomorphisme.

fPar exemple cette propriété est clairement vérifiée par tout compact de G„ (Z)
On remarquera que si cette propriété est vraie pour | Q | elle est également vraie

pour tout sous-ensemble de \Q \.

On prendra garde au fait qu'en revanche cette propriété n'est pas nécessairement
fvérifiée par un sous-ensemble localement compact de G„ (Z) (voir l'exemple 2.3).

La proposition suivante décrit les compacts pour cette topologie. Sa preuve est
immédiate d'après ce qui vient d'être dit.

Proposition 1.1.4. Soit Z un espace analytique complexe de dimensionfinie et soit K
fun sous-ensemble de G„ (Z On a équivalence entre les deux propriétés suivantes :

f(1 K est compact pour la topologie induite par celle de G„ (Z).

(2) K est un compact de Gl°c(Z) qui est sansfuite à l'infini au sens de [M00].

Rappelons que les parties relativement compactes de CZ) coïncident avec les

parties bornées (voir [BM] [B06] ou la condition (2) de 3.3).

Corollaire 1.1.5. Soit Z un espace complexe de dimension finie et soit (Xv)v>i une
f fsuite de G„ (Z) convergeant vers Xq au sens de la topologie de G„ (Z). Choisissons

pour chaque v > 1 une composante irréductible Tv de |XV|.
fAlors l'ensemble <b := {rv, v > 1} est relativement compact dans G„ (Z).

De plus, toute sous-suite convergente de la suite {Fv, v > 1} a pour limite un

cycle non vide qui. est réunion de composantes irréductibles de |Xo|. La multiplicité
dans une telle limite d'une composante irréductible de |XoI est toujours majorée par
la multiplicité de cette composante dans le cycle Xo.

Preuve. D'après la caractérisation des compacts de G}°c(Z) il est clair que <b est
relativement compact dans gJ°c(Z). Soit W cc Z un ouvert relativement compact
de Z rencontrant chaque composante irréductible de Xq. Alors, il existe vo tel que
chaque composante irréductible de Xv rencontre W pour v > vq. Donc, à fortiori I\.



Vol. 83 (2008) Reparamétrisation universelle 877

rencontre W pour i! > vq, Ceci montre que 0 n'est pas un point d'accumulation de

l'ensemble d> dans Cj°c(Z). Si H est un tel point d'accumulation, on aura jS'j c l-Xol.
En effet, si 2 f \Xo\ la considération d'une écaille adaptée à Xo au voisinage de I
dans laquelle Xq est de degré nul, montre que ç | H [,, Donc chaque composante
irréductible de H rencontre W, puisque c'est une composante irréductible de pTqj,
Ceci montre que d> est un compact de CloG(Z) sans fuite à l'infini, donc un compact
de G„ (Z) d'après la proposition 1.1.4. L assertion sur la multiplicité dans un cycle
limite d'une composante irréductible de Xq se déduit facilement de l'hypothèse de

convergence vers Xo de la suite (Xv)v>\ initiale.

Remarque. On a un corollaire analogue dans le cadre de Cloc(Z). La différence
fondamentale est que l'ensemble des points d'accumulation du sous-ensemble
relativement compact (b peut être réduit au cycle vide dans ce contexte.

C'est précisément ce qui se produit lors du phénomène de fuite à l'infini

Le lemme suivant montre que pour l'espace des cycles compacts G„ (Z) la topolo-
fgie "usuelle" est celle induite par l'inclusion dans G„ (Z). Ceci montre que l'espace

fG„ (Z) est probablement une "meilleure" généralisation de l'espace Gn(Z) des cycles

compacts que l'espace Cloc(Z),

Lemme 1.1.6. Soit Z un espace analytique complexe de dimension finie, et soit Xo
un n-cycle compact de Z. Alors il existe m ouvert relativement compact W dans Z

fet un voisinage ouvert U de Xo dans G„. (Z) tel que tout X g 'îi vérifie \X | c W, ce

qui implique en particulier l'a compacité de X.

Preuve, Lixons une fonction continue d'exhaustion (c'est une fonction continue

propre) (p\ Z -> [0, +oo[.
Soit a := sup¥e|Xo| <?(.*), et posons W := ([0, a + 1[). Recouvrons alors

le compact </>' i\a I. a + 2]) par un ensemble fini d'écailles {Sflkel adaptées
à Xo telle que deg£. (Xo) 0 pour tout I g I. Recouvrons également le compact
q>~1 ([0, a + 1]) par un nombre fini d'écaillés (Ej)jej adaptées à Xo. Posons alors10

U:=n(W)n( f] nkh(Eh))
helUJ

où kh := deg£Ä(Xo) pour tout h g I U /.
Considérons alors un cycle X dans K, et soit F une composante irréductible de

|X |. Comme la nullité du degré dans les écailles (Eùiei assure que A' ne rencontre

pas q>~1 ([a +1, a + 2]) et comme </>(T est un connexe qui doit rencontrer l'intervalle
[0, a + 1[ puisque T rencontre W, on aura T c <p~ ([0, a + 1[) W.

'"Rappelons que pour une n-ëcaille E sur Z, 12/, (' l: i désigne l'ouvert de (îIoc(Z) des cycles X tels que E soit
adaptée à X et tels que deg£ (X) k.
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Terminons ce paragraphe en domiant la "clef" qui va permettre de remplacer
fl'espace C„ (Z) par un ensemble analytique banachique.

fProposition 1.1.7. Soit Q c (Z) un sous-ensemble localement compact.
Alors Q est localementfermé. Il vérifie la propriété suivante :

Pour tout qo 6 Q, soient E\,..., Em des écailles adaptées à qo et notons par
ki km les degrés respectifs de qo dans ces écailles. Supposons de plus que chaque

composante irréductible de qo rencontre l'ouvert W := U;=i D0&) À Z.11

Alors il existe un voisinage ouvert V(#o) de qo dans Q. contenu dans l'ouvert

n'=i ^kj(Ei) n Ù(ïfj de C/ i /!. tel que l'application "éx'idente"

m

//( 17. Syn/'(/»';!!
i

induise un homéomorphisme de V(qo) sur son image (qui est donc localement
compacte).

Preuve. Le fait qu'un sous-ensemble localement compact d'un espace topologique
séparé soit localement fermé est général. Rappelons rapidement ce point dans le cas

métrisable (les amateurs d'ultra-filtres pourront traiter le cas général...).
Soit qo g Q et soit II un ouvert de l'espace ambiant contenant qo dont la trace

sur Q est relativement compacte. Soit (qv)v>i une suite de Q n U convergeant vers

x g U. Quitte à passer à une sous-suite, on peut supposer que la suite (qvh>i
converge vers un point y du compact Q AU. On a donc x y g Q H U. Donc
Q n U est fermé dans U.

Considérons maintenant un voisinage ouvert V(qo) de qo dans Q vérifiant les

propriétés suivantes :

(1) L'adhérence de y(qo) est compacte.

(2) L'adhérence de V{qo) est contenue dans l'ouvert fÊi i E, n f2(VT) de

(•/ (Z).

L'application X est continue et est injective sur l'ouvert HlLi n 0.(1?) de
fGn (Z), puisque pour un cycle de cet ouvert chaque écaille Mk est adaptée avec le

degré À,-, et puisque chaque composante irréductible d'un tel cycle doit rencontrer
au moins le domaine d'une de ces écailles. Elle induit donc un homéomorphisme du

compact V(qo) sur son image.
Montrons qu'alors l'application X: V(qo) -» X(V(qo)) est fermée12. Pour cela

considérons une suite (Xv) dans V(qo) telle que la suite X(XV) converge vers X(X)

^Rappelons que pour une M-écaillai: := (U, B, j sur Z le domaine de E estl'ouvert D(E) := j '
: U y B)

de Z.
12Rappelons qu'une injection continue d'un espace localement compact n'est pas nécessairement un

homéomorphisme sur son image Voir 2.3.
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où X g V(c/o La compacité de y(qo) permet, quitte à passer à une sous-suite, de

supposer que la suite Xv converge vers Y g X(qo). L'injectivité de X donne alors que
X Y, et X induit bien un homéomorphisme de Vfi/o) sur son image,

1.2. Familles f-analytiques de cycles de type fini. Le substitut à une "structure
fanalytique" sur l'espace Q| (Z) sera donné par la notion de famille f-analytique de

«-cycles de type fini de Z.

Définition 1.2.1. Nous dirons qu'une famille ÇK&j&s de «-cycles de type fini de Z
paramétrée par un ensemble analytique banachique S estf-analyUque si les conditions
suivantes sont réalisées :

f(1) L'application classifiante correspondante y : —> G„ (Z) est continue.

(2) La famille est une famille analytique de «-cycles de Z paramétrée par S.13

Remarque. Il ne suffit évidemment pas que chaque cycle Xs Soit de type fini dans une
famille analytique de cycles (Xs)ses pour que la définition précédente soit satisfaite.
La proposition ci-dessous montre que, si la famille (Xs)ses est analytique, la quasi-
propreté (définie ci-après) de la projection sur S du graphe de la famille est nécessaire

et suffisante pour satisfaire la définition précédente.

Définition 1.2.2. Soit S un espace topologique Séparé, et soit G c S x Z un sous-
ensemble fermé tel que pour chaque s & S la fibre |XÄ | := {z g Z / (s, z) i G}
soit un sous-ensemble analytique fermé de Z. On dira que la projection tt : G —> S

est quasi-propre si pour chaque .v g .S'il existe un voisinage Vs de .v dans S et un
compact K de Z tel que, pour chaque s' g Vs, chaque composante irréductible de

|XÄ/) rencontre K.

On a la caractérisation immédiate suivante des familles f-analytiques.

Lemme 1.2.3. Soit Z un espace complexe de dimension finie, et soit (Xs)ses une
famille analytique de n-cycles de Z paramétrée par un ensemble analytique
banachique S. Soit ]X| le support du graphe de cette famille.

On a équivalence entre les deux propriétés suivantes :

(1) La projection pr : |X| -*> S est quasi-propre.

(2) La famille (Xs)ses est une famille f-analytique.

Le corollaire suivant est conséquence immédiate de la proposition précédente et
du théorème 1 de [B75],

13Voir [B75] ou [BM],
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Corollaire 1.2.4. Soit f : Z S une application holomorphe quasi-propre, à fibres
de dimension pure n entre deux espaces analytiques complexes de dimension finie.
On suppose l'espace analytique S normal. Alors il existe une unique famille
/-analytique (Xs)ses de n-cycles de type fini de Z telle que pour s g S générique on ait
X, X, f U,}.'

2. Reparamétrisation universelle

2.1. Le théorème d'image directe semi-propre. Nous allons rappeler la généralisation

de N.Kuhlmann (voir [K64] et [K66]) du théorème d'image directe propre de

R. Remmert (voir [R57]). Pour la commodité du lecteur, commençons par donner la
définition d'une application semi-propre.

Définition 2.1.1. Soient / : .¥ > Y une application continue entre deux espaces

topologiques séparés. On dit que / est semi-propre si pour tout y G F on peut trouver
un voisinage Vy de y et un compact K de X vérifiant

vynf(X) vynf(K).

On remarquera que ceci impose à f(X) d'être un fermé localement compact de Y.

On remarquera également qu'une application quasi-propre est semi-propre.

Théorème 2.1.2. Soit f : X —> Y une application holomorphe semi-propre entre

espaces analytiques réduits de dimensions finies. Alors f(X) est un sous-ensemble

analytique fermé de Y.

Rappelons également une autre généralisation du théorème d'image directe propre
(voir [Ma74]).

Théorème 2.1.3. Soit f : X —> Y une application holomorphe propre entre un

espace analytique réduit de dimension finie X et un ouvert Y d'espace de Banach,

Alors f(X) est un sous-ensemble analytique fermé de dimension finie de Y qui est
localement contenu dans une sous-variété complexe lisse de dimension finie de Y.

D. Mathieu "fusionne" dans [M00] ces deux généralisations dans le résultat encore
plus général suivant.

Théorème 2.1.4. Soit f : X -> Y une application holomorphe semi-propre entre un

espace analytique réduit de dimension finie X et un ouvert Y d'espace de Banach.
Alors f(X) est un sous-ensemble analytique fermé de dimension finie de Y qui est
localement contenu dans une sous-variété complexe lisse de dimension finie de Y.
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Ce résultat étant local sur l'image de /, il est facile de lui donner un aspect "plus
général" en remplaçant Y par un sous-ensemble analytique fermé d'un ouvert d'espace
de Banach. Par contre, on se convaincra sans peine qu'il n'est pas évident de l'utiliser
directement en prenant Y C}°C(Z), ce que D. Mathieu évite soigneusement de faire
à juste titre.

fOn montrera plus loin comment la considération de G„ (Z) permet d'utiliser ce
frésultat, grâce à la proposition 1.1.7, bien que G,, (Z) ne puisse être utilisé directement

comme Y.

2.2. Reparamétrisation universelle des familles f-analytiques semi-propres.
Commençons par donner l'idée directrice. Considérons une famille analytique
(Xs)ses de cycles compacts de Z paramétrée par un espace analytique réduit S.

On s'intéresse à la relation d'équivalence sur S définie par

s ~ s' Xs Xs/.

L'application "classifiante" / : S -> G„ (Z) qui à.v e .S'associe le cycle Xs dans

l'espace G„(Z) définit cette relation d'équivalence, et le quotient s'identifie à l'image
X (S). On voit donc que l'existence d'une structure naturelle d'espace analytique
réduit sur ce quotient, au moins dans le cas où S est supposé faiblement normal14,

revient à montrer un théorème d'image directe. Dans la situation considérée maintenant,

puisque l'on sait que Gn (Z) est un espace analytique de dimension finie (d'après
|B75J), le théorème de N. Kuhlmann (qui est essentiellement "optimal"), donne donc
l'existence du quotient cherché sous l'hypothèse de semi-propreté de l'application
X avec une propriété universelle "évidente" par rapport aux familles analytiques de

cycles compacts qui ne font intervenir que les cycles figurant dans la famille initiale

Définition 2.2.1. Soit Z un espace analytique complexe de dimension finie.
fNous appellerons graphe universel au dessus de 6| (Z) le sous-ensemble fermé

% :={(X,z) g e/(Z) xZ/îé pf]}.

fLa projection tt : jj —> Gn (Z) est quasi-propre, comme conséquence de la définition
fmême de la topologie de G„ (Z).

Si on considère une famille f-analytique (Xs)ses de «-cycles de Z paramétrée par
un ensemble analytique banachique S, on a une application "classifiante"

x: S m
14C'est à dire que toute fonction sur un ouvert de S qui est méromorphe et continue est holomorphe.
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et la restriction au-dessus de y (S) H de la projection du graphe universel est une

application quasi-propre n : g a H où H est muni de la topologie induite par celle

de (• / (Z).
On remarquera que ceci nous permet d'éviter de parler de familles régulières et

de fuite à l'infini (ensembliste ou topologique).
Si l'on suppose l'application classifiante y semi-propre avec S de dimension finie,

on obtient ainsi la variante suivante du théorème 4 de [MÛÛf,

Théorème 2.2.2. Soit (Xs)ses unefamille f-analytique de n-cycles de Z paramétrée

par un espace analytique réduit S de dimension finie etfaiblement normal.
On suppose la famille semi-propre, C'est à dire que l'application classifiante

fassociée y : 8 Ht- Gg (Z) est semi-propre.
Alors il existe un espace analytique réduit de dimensionfinie Q faiblement normal

et une famille f-analytique (Xq)qeQ vérifiant la propriété universelle suivante :

Pour toutefamillef-analytique (Yt)teTde n-cycles de Z, paramétréepar un espace
analytique réduit de dimension finie faiblement normal T, vérifiant

Vf g T 3s g S: Y, Xs

il existe une unique application holomorphe y T —> Q telle que l'on ait

Yi i: T: Yt Xg(t).

Bien sûr, ceci implique que Q est le quotient de S par la relation d'équivalence
donnée par l'égalité des cycles associés.

Preuve. Commençons par montrer que le sous-ensemble fermé et localement corn-
fpact y (S) c Oh (Z) est naturellement muni d'une structure d'espace analytique

réduit de dimension finie et faiblement normal.
Définissons déjà cette structure au voisinage d'un point qo G y (S). Puisque

l'hypothèse de semi-propreté de y donne la locale compacité de y (S), on peut, d'après
la proposition 1.1.7, trouver un voisinage ouvert V(qo) dans y(S) et une injection
continue X: V(qo) -> [j'i" H(Ûi, Syn/' n qui induise un homéomorphisme de

V(qo) sur son image. Alors l'application composée

m

ko y: y~l (V (qo)) -* f] //«''• Syn/
l

est semi-propre. De plus elle est holomorphe, par définition de la notion de famille
analytique de cycles. Donc son image est naturellement un sous-ensemble analytique

localement fermé et de dimension finie de l'ensemble analytique banachique

nj" H(Üi, Symki(Bi)). Définissons alors une structure d'espace analytique réduit
sur V(qo) en prenant la normalisation faible de celle de cette image.
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Montrons maintenant que cette construction se globalise, c'est à dire que la structure

ainsi définie ne dépend pas des choix effectués. En effet le seul choix dont dépend
notre structure au voisinage de qo est celui des écailles adaptées Bu-,, m » En. Or si on
ajoute une écaille adaptée à qo on ne changera pas la dite structure : en effet l'application

d'oubli de l'écaillé ajoutée est un homéomorphisme holomorphe. On en déduit

que cette structure d'espace analytique faiblement normal se globalise.
On conclut alors aisément.

Remarque. Comme l'image réciproque par une application holomorphe g: T Q
de la famille universelle paramétrée par Q qui est f-analytique doit être f-analytique,
on obtient donc une propriété universelle différente de celle du théorème 4 de [M00].

fRappelons que si le sous-ensemble | g] ç C« (Z) est sans fuite a l'mmn en chacun
de ses points, alors l'application Id: Q' -* ßloc est un homéomorphisme.

On constate alors que, si dans le théorème 2.2.2 on suppose de plus que le sous-

ensemble | <2| := x(S) de C,{(Z) est sans fuite à l'infini15 en chacun de ses points,
toute application continue go/: T -> gloc donne également une application continue

g x : T —> Q?. D'où la f-analyticité de toute famille analytique constituée de cycles

de/(S).
La différence entre les deux propriétés universelles données dans [M00]

théorème 4 et dans le théorème 2.2.2 vient du fait que dans le premier cas la semi-propreté
à valeurs dans Cloc(Z) donne la locale compacité de Qloc et la régularité de la famille
implique la non fuite à l'infini en chaque point de \Q\. Cela implique évidemment

que Q? est homéomorphe à <2loc.

Dans le second cas, on obtient seulement la locale compacité de Q-f mais celle-ci
n'implique pas nécessairement que Q1 est homéomorphe16 à ôloc comme le montre
l'exemple donné ci-dessous.

En ajoutant donc l'hypothèse supplémentaire faite dans [M00], qui implique que
Id: Q1 -> <2loc est un homéomorphisme, on trouve immédiatement que toute famille
analytique de cycles qui prend ses valeurs dans \Q\ est nécessairement f-analytique.
Ceci redonne bien la propriété universelle "plus forte" du théorème 4 de [M00].

Ceci montre que le champ d'application du théorème 2.2.2 est plus large que celui
du théorème 4 de [M00],

2.3. Exemple. Considérons dans Z (par exemple le disque unité de C) une suite de

«-cycles (Fv)v>i qui converge au sens de Cloc(Z) vers le cycle 0 (par exemple, avec

« 0, on peut prendre Yv {1 — 1/v}). Considérons alors un «-cycle Xo de Z fixé
(par exemple Xo {0}). Soit alors

IÔI :={*«, v >0}
' »Prendre garde que ceci est une propriété locale sur 0loc: mais qu'elle n'est pas locale sur {? •

'hiien que les compacts de O - soient homéomorphe» à leurs images I
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où l'on a posé Xv ;= X(, + Yv pour v > 1. Alors Q1 est un sous-ensemble fermé
discret de G^(Z) alors que ßloc est un compact de Cj°c(Z) constitué d'une suite

convergente et de sa limite.
Il est clair que dans ce cas Q1 est un sous-ensemble analytique fermé de dimension

finie alors que n'est certainement pas le cas pour (tloc.

3. Relations d'équivalence méromorphes

Nous proposons dans ce paragraphe de reprendre avec le point de vue que nous avons
introduit les résultats du paragraphe 3 de [M00].

3.1. Familles f-méromorphes de cycles. Soit S un espace analytique réduit de

dimension finie et soit S c S un sous-ensemble analytique fermé d'intérieur vide
de S. Nous appellerons modification propre locale de S de centre contenu dans S la
donnée d'un ouvert S' de S (par exemple un voisinage ouvert d'un point ,v0 g S) et
d'une modification holomorphe propre r : S -> S'.

Définition 3.1.1. Soit S un espace analytique réduit de dimension finie et soit Ec S

un sous-ensemble analytique fermé d'intérieur vide de S. Soit fMtïmune famille
f-analytique de cycles de Z. On dira que cette famille est /-méromorphe le long
de S s'il existe, au voisinage de chaque point de S, une modification propre locale

r : S -¥ S' de centre contenu dans S, et une famille f-analytique de cycles de Z
paramétrée par I" telle que sur S'\r_1,(I!) — S'\Z on retrouve la famille f-analytique
initiale.

Proposition 3.1.2. On considère une famille (Xs)lSes\z Qui est f-méromorphe le

long de S. Alors il existe un espace faiblement normal S, une famille f-analytique
(Xjj-gj et une modification propre (globale) r : S S de centre contenu dans S

vérifiant les propriétés suivantes :

(1) La restriction à S \ t_1(S) S \ S redonne la famille (Xs)ses\r,.

(2) Pour tout ensemble analytique réduit etfaiblement normal T muni d'unefamille
f-analytique {Yt)teT et d'une modification propre locale d : T S' de centre
contenu dans S, tel que la restriction à T \ 0_1(E) de la famille (Yt) coïncide
avec l'image réciproque de la famille initiale, il existe une unique application
holomorphe <p: T S au dessus de S'1 ; telle que l'on ait Yt X^g pour tout
t i T.

La preuve de la proposition 3.1.2 va résulter immédiatement de la "construction
basique" de loc. cit. reprise dans notre cadre.

' 4 "est à dire vérifiant r (/; 0.
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Fixons dans tout ce qui suit un espace complexe Z de dimension finie et un
espace analytique réduit et irréductible S de dimension finie. Nous considérerons un
sous-ensemble analytique fermé G c S x Z irréductible, et nous supposerons que
l'application induite par la projection n : G -> S est quasi-propre et surjective, et

que sa restriction au-dessus de l'ouvert de Zariski .S" \ Z est un morphisme géométriquement

plat18 à fibres de dimension pure «19.
fSoit x : S \ E (?„ (Z) l'application qui classifie la famille f-analytique de

«-cycles de Z donnée par les fibres de la restriction n : G \ tt~1 (E) -> S \ E. On
notera que l'hypothèse de quasi-propreté de n assure que la famille analytique définie

par les fibres de n sur S \ E est bien f-analytique.
— f fNous noterons par F c -S' x C,, (Z) l'adhérence dans S x G„ (Z) du graphe F de

l'applicaton y. Nous noterons par f : F —.S", la projection.
La preuve de la proposition 3.1.2 est alors conséquence du lemme suivant.

Lemme 3.1.3. Dans la situation précisée ci-dessus, on a les propriétés suivantes de

l'application x :

(lj L'application r : F ^ S est indépendante du choix de E vérifiant les conditions
demandées,

(2) Si la famille f-analytique (Xs)ses\Y, est f-méromorphe le long de E alors F

est naturellement muni d'une structure d'espace analytique réduit de dimension

finie faiblement normal et et l'application f est une modification holomorphe

propre dont le centre est contenu dans E.

(3) Toujours sous l'hypothèse que la famille (Xs)ses\-£ soit f-méromorphe le long
de E, la modification propre de S obtenue au (2) précédent vérifie la propriété
universelle demandée dans la proposition 3.1.2.

Comme les autres arguments sont analogues à ceux de [M00], et par ailleurs assez

standards, précisons seulement le point (2). Comme notre problème est local sur S

le long de E, considérons un point so e E. Par définition, il existe une modification

propre r : S -> S' où S' est un voisinage ouvert de .vo dans S, et une famille f-
analytique de «-cycles de Z paramétrée par S, telle que sur S \ r-1 (E) ~ .S" \ E on

retrouve la famille f-analytique initiale. L'application classifiante de cette famille

y-.S^el(Z)

a un graphe f c Sx C,{ (Z). Il est immédiat de vérifier que f coïncide avec la
restriction de Y au dessus de Sf. Fixons un point (s, X) g Y et soient E\,..., Em des

18Voir [B78].
^Si le sous-ensemble analytique fermé d'intérieur vide E de S contient le lieu des points non normaux de S

ainsi que les points en lesquels la dimension de n (51) est strictement plus grande que n := dim G — dim S,

cette hypothèse est automatiquement vérifiée.
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écailles adaptées à X de sorte que chaque composante irréductible de X rencontre la
réunion des domaines D(Ei) de ces écailles. On a alors une injection holomorphe
h d'un voisinage ouvert V de (s, X) dans S x //{t/,, Sym'" B, où ki :=
deg£i(Xh

La proposition 1.1.7 montre que, puisque f est localement compact car homéo-

morphe à S, pour V assez petit l'application h est un homéomorphisme sur son image

hm.
Alors l'application composée A o (f x x): S ^ S' x ] ffifiç, Sym^ (Bj est

propre et d'image h(V). On en déduit que h(V) est un sous-ensemble analytique
de dimension hnie. On définit alors la structure désirée sur V en transportant par h

la structure du normalisé faible20 du sous-ensemble analytique de dimension hnie
h(V). Il est facile de voir (c'est le même argument que l'on a déjà utilisé plus haut)

que cette structure faiblement normale est indépendante des écailles choisies et se

globalise.

3.2. Le théorème de f-aplatissement géométrique. Nous allons maintenant donner
la variante du théorème 5 de [M00] correspondant à notre point de vue.

Théorème 3.2.1 (f-aplatissement géométrique.). Soit Z un espace analytique
complexe de dimension finie et soit S un espace analytique réduit irréductible de dimension

s. Soit G c S x Z un sous-ensemble analytique irréductible de dimension s + n

tel que la projection n : G -> S soit quasi propre et surjective. Soit S c S un
sous-ensemble analytique fermé et d'intérieur vide dans S tel que la restriction

7Pl GXn-1^) -fc. 5\S
aitpour fibres une famille f-analytique de n-cyclesde Z.

On suppose que l'application f : F S de la projection sur S de l'adhérence
f fdans S x (Z) du graphe de l'application classifiante x ' S \ S -> C„ (Z), est

propre.
Alors cette famille est f-méromorphe le long de S.

En combinant le théorème ci-dessus et la proposition 3.1.2 on obtient le
théorème B donné dans l'introduction.

On remarquera que la condition de propreté de l'application f demandée est

une condition nécessaire pour avoir une famille f-méromorphe. Une fois que l'on a

remarqué que cette propriété, qui est locale au voisinage des points de S, se préserve

par éclatement local, il suffit alors de reprendre la démonstration du théorème 5 de

[M00] pour conclure.

-"Rappelons que la normalisation faible d'un espace analytique réduit de dimension finie est un homéomor-
phisme.
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3.3. Comment vérifier l'hypothèse? Terminons en explicitant concrètement ce

que signifie cette hypothèse de propreté de l'application t.
Fixons une métrique hermitienne de classe C'° sur Z, c'est à dire une (1, l)-forme

à coefficients continus et définie positive en chaque point (comme forme hermitienne
sur le tangent de Zariski à Z au point).

fLa caractérisation des compacts de G„ (Z) se traduit par le fait que la condition de

propreté de f au dessus d'un voisinage V du point so s S sera réalisée si et seulement
si on a

(1) Il existe un ouvert W cc Z tel que chaque composante irréductible de chaque
fn-cycle de type fini de Z qui est limite (au sens de de G,, (Z)) de ûbres de la

restriction de n au dessus de V \ E rencontre W.

(2) Il existe pour chaque compact K de Z un nombre C/r tel que pour chaque
s e V \ E on ait

Rappelons que la condition (2) caractérise les parties relativement compactes de

èJ'MZi en vertu du théorème de E. Bishop [Bi64],
Remarquons de plus que cette seconde condition est automatique dans la situation

du théorème 3.2.1 d'après [B78],
La première condition est assez délicate à vérifier, puisqu'elle demande de consi-

fdérer toutes les limites dans G„ (Z) de fibres au dessus de V \ E.
On peut cependant remarquer que cette vérification est inutile (car automatique)

pour tout cycle irréductible. Plus généralement, elle sera automatique dès que le cycle
limite a chacune de ses composantes irréductibles qui est limite de composantes
irréductibles de cycles génériques.

La difficulté se concentre donc sur les cycles limites qui présentent "plus" de

composantes irréductibles que les cycles génériques. Mais même dans ce cas, si les

intersections des composantes irréductibles apparaissant à la limite rencontrent un
compact fixe, la condition sera encore automatique.

Finalement, il reste à vérifier que les composantes irréductibles qui se cassent à

la limite, ne créent pas un phénomène de fuite à l'inhni. Il est probable qu'en général
ceci conduise à une étude difficile du comportement local, quand on s'approche d'un
point de S, des fibres génériques de n.
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