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Irreducibly represented groups

Bachir Bekka and Pierre de la Harpe™®

Abstract. A groupis irreducibly represented if it has a faithful irreducible unitary representation.
For countable groups, a criterion for irreducible representability is given, which generalises a
result obtained for finite groups by W. Gaschiitz in 1954. In particular, torsionfree groups and
infinite conjugacy class groups are irreducibly represented.

We indicate some consequences of this for operator algebras. In particular, we characterise
up to isomorphism the countable subgroups A of the unitary group of a separable infinite
dimensional Hilbert space J¢ of which the bicommutants A" (in the sense of the theory of von
Neumann algebras) coincide with the algebra of all bounded linear operators on .

Mathematics Subject Classification (2000). 22D10, 20C07.

Keywords. Group representations, irreducible representations, faithful representations, infinite
groups, von Neumann algebras.

1. Gaschiitz Theorem for infinite groups, and consequences

Define a group to be irreducibly represented if it has a faithful irreducible unitary
representation and irreducibly underrepresented® if not. For example, a finite abelian
group is irreducibly represented if and only if it is ¢yclic (because finite subgroups of
multiplicative groups of fields, in particular finite subgroups of C*, are cyclic). Itis a
straightforward consequence of Schur’s lemma that a group of which the centre con-
tains a non-cyclic finite subgroup 1s irreducibly underrepresented. For finite groups,
there are also standard examples of groups without centre which are irreducibly un-
derrepresented (see Note I in [Burns11]); moreover, there exists a criterion due to
Gaschiitz who states for finite dimensional representations over algebraically closed
fields of characteristic zero the equivalence of Properties (i), (iv), and (v) in Theorem 2
below (see [Gasch54], as well as [Hupp98], § 42, and [Palfy79]).

*The authors are grateful to the Swiss National Science Foundation for its support.

1 On the day of writing, Google shows 29 000 000 entries for represented groups, 2 390 000 for underrep-
resented groups, ©41 000 for “represented groups”, 670 000 for “underrepresented groups”, and zero entry for
“Irreducibly underrepresented groups”. In some sense at least, what we have to say is new.
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The purpose of the present paper is to extend Gaschiitz’ result to infinite groups and
unitary representations; for the particular case of finite groups, our arguments provide
a new proof of the main result of [Gasch54] (at least for complex representations).
For a generalisation of Gachiitz’ result of a rather different kind, see [Tushe93].

Since our arguments use measure theory, it is convenient to avoid the difficulties
connected with non-standard spaces, so that we assume systematically that the groups
involved are countable (see also Example VII in Subsection 5.1 below). Moreover and
from now on, we write “representation” for “unitary representation” and, similarly,
“character” for “unitary character”.

To formulate our results, we need the following preliminaries. Let T' be a group.

Let N be anormal subgroup of I'. A representation o of N 1s said to be I'-faithful
if (), erker(c?) = {e}, where e denotes the unit element of the group and where
o7 denotes the representation # — o (yny~1), namely the conjugate of o by y. For
example, if V denotes the normal subgroup of order 4 in the symmetric group Sym(4)
on four letters, any character of V distinct from the unit character is Sym(4)-faithful
(even though V does not have any faithful character).

If {S;}ies is a family of subsets of I', we denote by ({S;};e7) the subgroup of I’
generated by | J,.; S;. Following [Remak30], we define a foor of T to be a minimal
normal subgroup of I', namely a normal subgroup M in I" such that M # {e}, and
any normal subgroup of I" contained in M is either M or {e}. We denote by FT the
set of finite feet of I". The minisocle of T is the subgroup M S(T") of T" generated
by the union of its finite feet; it is a characteristic subgroup of I'. Let #Ar denote the
subset of FT of abelian groups, and let Hr be the complement of Ar in . We
define MA(T") and M H(T") to be the subgroups of I" generated by | J ¢ 4. 4 and
U g ege H respectively; both are characteristic subgroups of T' contained in M.S(T').
By the usual convention, M S(I"} = {e} if Fr is empty, and similarly for MA(T")
and M H(T").

Proposition 1. Let T be a group, and let the notation be as above.

(i) Each A € Ar isisomorphic to (IF,)" for some prime p and some positive integer
n (depending on A).

(ii) There existsasubset{A;}icr of Ar suchthat MA(T) = B, c; Ai. Inparticular,
the group M A(I") is abelian.

(iii) For each H € Jr, the feet Sy, ..., Sk of H are conjugate in U, and simple.
Moreover H = S1 & --- & Si.

(iv) We have MH(T') = Ppege. H.
(v) We have MS(T'y = MA(T)y e MH(T).

For some examples of minisocles, see Section 5.1. Here is our first main result.
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Theorem 2. Let I' be a countable group. Let MA(T'Y = @, ; Ai and MS(T") =
MA(T)® MH(T) be as above. The following properties are equivalent:

(1) T isirreducibly represented;
(i) MA(T) has a T -faithful character;
(iii) M S(T") has a U-faithful irreducible representation;

(iv) for every finite subset E of I, there exists an element xg in MAg(I') =
P, Ai such that the T'-conjugacy class of xg generates MAg (I');

(v) for every pair of finite subsets E C I and F C Kr, there exists an element
zpr in MSp p(T) = (Biep 4i) ® (Dpuer H) such that the T -conjugacy
class of zg.r generates MSg r(I).

In particular, a countable group U has a faithful irreducible representation as soon
as MA(I) = {e}, and a fortiori as soon as M S(I') = {e}.

The next corollary is a straightforward consequence of Theorem 2. Recall that a
group 18 icc if it is not reduced to one element and if all its conjugacy classes distinct
from {e} are infinite.

Corollary 3. For a countable group to be irreducibly represented, any of the three
Jollowing conditions is sufficient: (1) the group is forsionfree, (i) the group is icc,
(ii1) the group has a faithful primitive action on an infinite set.

The case of icc groups 1s well known, sometimes with a different proof. Indeed, a
groupisicc if and only if its von Neumann algebra is a factor of type /1, (Lemma 5.3.4
of [ROTIV1); it is then a standard fact that the reduced C*-algebra of an icc group has
a faithful irreducible representation, so that a fortiori the group itself has a faithful
irreducible representation (see for example Proposition 21 of [HarpeO7]).

For a group I which has a faithful primitive action on an infinite set X (see
[GelGl08]), observe that any normal subgroup of I' not reduced to {e} is transitive
on X and therefore infinite, so that M S(I") = {e}.

Theorem 2 does not state anything on the dimensions of the representations which
can occur in (1). Before providing some information, let us recall that a group is
virtually abelian if it has an abelian subgroup of finite index.

Theorem 4. For a countable group T, the two following properties are equivalent:
(1) I has an infinite dimensional faithful irreducible representation;
(i1) [ has the properties of Theorem 2 and is not virtually abelian.

In other words, the following properties are equivalent:

(ii1) I has a faithful irreducible representation, and all its faithful irreducible rep-
resentations are finite dimensional;
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(iv) [ has the properties of Theorem 2 and is virtually abelian.

Let M be a von Neumann algebra. We denote by U(M ) the unitary group
(X eM | X*X = XX* = 1} of M and by S” the double commutant of a subset S
of M. Recall that M is a factor if its centre is reduced to C, a factor of type I if there
exists a Hilbert space # such that M = £(H), and a facror of type I in case H
is infinite dimensional (moreover, we assume here that Hilbert spaces are separable).
For factors of type I, we write U(H) instead of U(M ).

Corollary 5. Let M = L(J) be a factor of type 1~,. For a countable group T, the
following two properties are equivalent:

— there is a subgroup A of U(H) isomorphic to T such that A" = M;

— 1" has the properties of Theorem 2 and is not virtually abelian.

It would be interesting to have some information of this kind for other factors. In
particular, we do not know any analogue of Theorem 4 for any given finite dimen-
sion n > 2, nor of Corollary 5 for the finite dimensional factor £(C"). We do not
know any solution to the a priori easier problem to characterise the countable groups
which have at least one finite dimensional faithful irreducible representation.

The proof of Proposition 1 uses standard arguments (compare with Section 4.3
of [DixMo96]). For the convenience of the reader, we give details in Section 2.
Theorem 2 is proved in Section 3. Theorem 4 and Corollary 5 are proved in Section 4.
We formulate a few remarks in Section 5: on examples of socles and minisocles,
on the comparison between minisocles and periodic FC-kernels, on a theorem of
Gelfand and Raikov, on tensor products of faithful representations, and on countable
groups with primitive maximal C*-algebras. The final Section 6 is devoted to a
generalisation of Theorem 2 concerning a countable group I' given together with a
group of automorphisms G which contains the group of inner automorphisms.

Understanding groups of a given class includes understanding their faithful actions
of various kinds, and the setting of linear (or unitary) actions is only one among several
others. For example, in the case of finite groups, the questions of classifying multiply
transitive actions and primitive actions which are faithful have been central in group
theory for more than hundred years; faithful primitive actions for infinite groups have
been addressed in [GelGIOS]. Faithful amenable actions are the subject of [GlaMo07].
Our initial motivation has been to ask some of the corresponding questions for linear
actions.

We are most grateful to Yair Glasner for explaining us his work [GelGI08] and
for his contribution to the setting out of the present work, to Yehuda Shalom for a
useful observation, and to Yves de Cornulier and John Wilson for their remarks on a
preliminary version of this paper.
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2. Proof of Proposition 1
We prepare the proof of Proposition 1 by recalling two lemmas.

Lemma 6. Let T be a group. Let M be a minimal normal subgroup of T and N a
normal subgroup of TU'. Then either M C N or ( M,N) =M & N.

Proof. We can assume N # {e}. Since M N N is both in M and normal in T", either
MNN=M,andM C Nyoo MNN ={e},and ( M\N)=M & N. O

Lemma 7. Let A be a group and let (S;); <y be afamily of nonabelian simple groups;
set S = A® (P,e; Si). Let M be a minimal normal subgroup of S.
Then either M = Sy for some £ € I, or M C A.

Proof. Assume that M # Sy forall £ € I. Choose i € [; by Lemma 6 applied to
M and N = §;, the groups M and S; commute. It follows that M is a subgroup of
the centraliser of &, ; S; in S, namely a subgroup of A. O

Proof of Proposition 1. (i) Let A € Ar. By the structure theory of finite abelian
groups, there exist a prime p and an element @ € A of order p. Let A* denote the
set of elements of order p in A. Then A™ U {e} is a characteristic subgroup of A4, and
therefore a normal subgroup of I'. By minimality of A, we have A* U {e} = A, so
that A4 is isomorphic to (IF,)" for some n > 1, as claimed.

(ii) Let £ be the set of subsets {Az}gc; of Ar such that ({Ag}pcr ) = Pyeyp At
we order £ by inclusion. The crucial observation is that the ordered set &£ is inductive,
so that we can choose a maximal element, say {A;};c;. Suppose that . .; A; is
strictly contained in M A(T"); we will arrive at a contradiction.

Choose B € Ar such that B is not contained in €, .; A;. By Lemma 6 applied
toM = Band N = @,.; Ai, we have either B C P, .; A;, which is ruled out
by the choice of B, or (B, {A;};e;) = B ® (B;¢; Ai). which is ruled out by the
maximality of /. This is the announced contradiction.

(iii) Let H € Jr. Choose a minimal normal subgroup S in H (this is pos-
sible since H 1is finite). For each x € I, the subgroup xSx~! is minimal nor-
mal in H. Choose a set Si,...,S¢ of such conjugates of .S in I' which is such
that {S1....,S5¢) = 81 & --- & S and which is maximal for this property. Set
N = (S1,..., Sg); it is a normal subgroup of H.

We claim that xSs~! C N for each x € I, so that N is normal in I". Indeed,
by Lemma 6 applied to M = xSx~! and N in H, either {(xSx~!,S1....,85) =
xSx7 '@ S, PP Sk, but this is ruled out by the maximality of the set {5y, ..., Sk},
or xSx~! < N, and this establishes the claim.

Since N is normal in I' and N C H, we have N = H by minimality of H.
Observe that, for each i € {1,...,k}, any normal subgroup of S; is normal in H; it
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follows that S; is a simple group. Finally, the set {S7, ..., Si} coincides with the set
of all minimal normal subgroups of /4 by Lemma 7.
(1v) The same argument as for (i1) shows that there exists a subset {Hy}; g of
Jer such that P Hx = M H(T'), and Lemma 7 implies that { Hy };cx = JT.
(v) Again by the same argument as for (ii), there exists a subset {M¢},-; of Fr
such that P,.; My = MS(T'), and Lemma 7 implies that {My},.,; contains Hr.
U

3. Proof of Theorem 2

We will prove successively that

(i) = (i) & (iii) (see Lemma 9),

(i) = ) (Lemma 10),
(il) < (i) (Lemma 13),
(ii) < (iv) (Lemma 14).

The equivalence (iv) <= (v) is straightforward, since nonabelian feet are direct
products of simple groups. Recall that we write “representation” for “unitary repre-
sentation”,

Given a representation w of a countable group I' in a Hilbert space #, there
exist a standard Borel space €2, a bounded positive measure @ on €2, a measurable
field @ +— m, of irreducible representations of T" in a measurable field @ — #, of
Hilbert spaces on €2, and an isomorphism of J with |, g Hed (@) which implements
a unitary equivalence

(s}
w(y) [ o () dji()

Q
forall y € I'. See [Dix69C*, Sections 8.5 and 18.7.6]. (Such decompositions in irre-
ducible representations carry over (0 continuous representations of separable locally
compact groups, and more generally of separable C*-algebras. They are applica-
tions of the reduction theory for von Neumann algebras [Dix69vN, Chapter I1]). The
following lemma 1s standard, but we haven’t found any appropriate reference.

Lemma 8. Let T be a countable group. Let Q be a measure space with a positive
measure j1. Letw — my, be ameasurable field of representations of I in ameasurable
Jield of Hilbert spaces w +— H,, over Q2 and let y € T.

Then{w € Q| me(y) = 1} is a measurable subset of Q.

Proof. Let (W @ ) be a fundamental sequence of measurable vector fields
(see [Dix69vN, Chapter I, Number 1.3]). For i, j > 1, consider the set

Q=o€ Q| (Tp(PE(w), £V (0) = D (), £Y ()}
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Observe that
fweQ|m®=11= ()
ij>1
Therefore it suffices to show that each set €2; ; is measurable.
For fixed 7, j > 1, the functions

o — (ED@), £ (@) and o — (m,(NED (@), £9 (w))

ar¢ measurable, by definition of a measurable vector field and of a measurable field
of representations. Hence £2; ; is measurable and the proof is complete. O]

Let us now recall a general fact which can be seen as a weak form of Clifford
theorem for infinite dimensional representations. (For a version of Clifford theo-
rem concerning finite dimensional representations but possibly infinite groups, see
Theorem 2.2 in [Dixon71].)

Lemma 9. Let T be a countable group, N a normal subgroup, m an irreducible
representation of T in a Hilbert space J#, and o the restriction of 7w to N. Identify
o to a direct integral of irreducible representations

®
o =um|N :f Ooudit(w)
Q
as above.
If the representation m is faithful, then the representation o, is U-faithful for
almost all w € €.

Proof. If N = {e}, there is nothing to prove. We assume from now on that N is not
reduced to one element.

Denote by {C ¥ }j < the family of I"-conjugacy classes in N distinct from {e}. For
each j € J, denote by N; the subgroup of N generated by C;; observe that each
N; is normal in T, and that the family {N; }j .7 1s countable (possibly finite) and
nonempty. Set

2 ={oeQ|N; Cker (@ o)} and G=[].

yel jeJ

For @ € Q, observe that o,, is not I'-faithful if and only if the kernel of P < ol

contains one of the N;; thus & is the subset of Q of the points @ such that o, is
not I'-faithful. Each 2; is measurable in £2 as a consequence of Lemma 8; as J is

countable, € is also measurable.
To end the proof, we assume that (€2) > 0 and we will arrive at a contradiction.
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As the family J is countable, there exists £ € J such that ©{Q2,) > 0. Hence
the unit representation 1y, of the group Ny is strongly contained in the restriction
of o to Ny, so that the subspace of A of Ng-mvariant vectors is not reduced to {0}.
Since Ny is normal in I, this subspace is invariant by 7 (I"}; by irreducibility of =,
this subspace is the whole of J€. In other words, the restriction of 7 to Ny is the unit
representation. The last statement 1s a contradiction, since 7 1s faithful. O

The particular case of Lemma 9 for which N = MA(T") [respectively N =
M S(I")] shows that (i) implies (ii) [respectively (ii1)] in Theorem 2. The implication
(iii} = (i) follows from the next lemma applied to N = M S(T") since, by definition,
there does not exist any finite foot M of I" such that M N MS(I") = {e}.

Lemma 10. Let I" be a countable group, N a normal subgroup, o an irreducible
representation of N in a Hilbert space K, and m = IndR, (o) the corresponding
induced representation. Let m = fsée nedp(w) be a direct integral decomposition
of & into irreducible representations. Assume that there does not exist any finite foot
M in T such that M N N = {e}.

If the representation o is U-faithful, then the representation m,, is faithful for
almost all w in 2.

Proof. In the model we choose for induced representations, s acts on the Hilbert
space J of mappings f: I' — K with the two following properties:

(1) fyn)=ocm Y f(y) forally eT andn € N,
@ Y IO < o

T/N

(The notation of (2) indicates a summation over one representative y € [ of each
classin T/ N.) Then (7 (x) f) (y) = f(x"'y)forallx,y € T.

Denote this time by {C;};cs the family of conjugacy classes of I distinct from
{e}. Foreach j € J, denote by I'; the subgroup generated by C;, which is a normal
subgroup of I' not reduced to {e}; set

Q={weQ |l Cker(r,)} and Q=[]0
jelJ

As in the proof of Lemma 9, Q is the set of points « such that 7., is not faithful, and
it is measurable. To end the proof, we assume that () > 0, so that there exists
£ € J for which ;£ (£2¢) > 0, and we will arrive at a contradiction.

Continuing as in the proof of Lemma 9, we observe that there exists a nonzero
vector f: ' - KinH = féa H,d 1 {w) which is supported in €2 (as a measurable



Vol. 83 (2008) Irreducibly represented groups 855

section of the field of Hilbert spaces w +— ¥, underlying the field of representations
w > 1, ), and which is such that 7(x) f = f forall x € T'y.
Let yo € T be such that f(y5!) # 0;set & = f(y5!). Using (1), we find

3) E=fo )=/ 0"v )= v oxyg D) = olyoxyg DE =070 (x)k
forallxeI'y N N.

Claim 1. Ty N N = {e}. Denote by X T¢"¥ the subspace of X of vectors invariant
by ¥ (I'y N N). This is a o¥°(N)-invariant subspace of K, since Iy N N is a
normal subgroup of N. Now KT £ {0 by (3) and X"V = X because o7°
is irreducible. Thus Ty N N 1s inside the kernel of the representation o¥© of N; as

'y NN isnormal in I, the group I'y NN is also inside the kemnel of the representation
oV of Nforall y e I'. As o is I'-faithful, 'y N N = {e}, as claimed.

Claim 2. The subgroup Uy of ' is finite. Consider the function

: T — Ry, yr— || fW)]-
We have

@) ey # 0,

(5) ¢ is constant under right translations by clements of N,

© Y )P < oo,

T/N
(7) ¢ isinvariant under left translations by elements of ['y.

It follows from (4) to (7) that the image of ¢y in I'/N is finite. The image of
Yo 'Teyo = Ty in '/ N is also finite, so that the index of N in Ty N is finite. Claim 2
follows since 'y N is isomorphic to the direct sum ['; & N by Claim 1.

Any subgroup M of T’y which is normal in I and minimal for this property is a
finite footof I', and M N N = {e} by Claim 1. This is in contradiction with one of
the hypotheses of the lemma. O

The particular case N = {e} is of independent interest.

Proposition 11. Let T be a countable infinite group which does not contain any finite
foot, and let At = féa modu(w) be adirect integral decomposition of the left regular
representation Ar info irreducible representations. Then 7, is faithful for almost all
w € L.

Next, we show that (1) <= (111) in Theorem 2. This will be a consequence of
Lemma 13, for the proof of which we will call upon the following lemma.
For a Hilbert space #, we denote by &£ (J€ ) its algebra of bounded linear operators.
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Lemma 12. Let #y, #5 be two Hilbert spaces. Let S, € £(H1), S> € L£(H>) be
such that S; ® S, € L£(H1 ® Ja) is a non-zero multiple of the identity operator.
Then S| and S5 are multiples of the identity.

Proof. 1et A € C* besuch that S| ® S; = AI. Let {& };<7 be a Hilbert space basis
of #£,. Since S, # 0, there exist 17,72 € J> such that

{(Sa(m1).m2) #O.

For every & € J¢,, we have

((S1 ®@S)ERM1).& ®n2) = (516).&)(S2(n1). m2)

and hence

(S1(6).&) = {(S1®S2)(E®m).& ®n2)

1
(S2(n1). m2)

= m(é ® M1.& ® 172)

_ AMm,m)
(S2(n1), n2)

for all ; € [. It tollows that

S18) = > {S1(8), &)

16[
A1, 772)
= om0
_ A{N1,12)
{(S2(n1),n2)

for every £ € Hj, showing that Sy is a multiple of the identity. A similar argument
applies o S5. O]

(&, &)

Lemma 13. Let I" be a group and let N be a normal subgroup of I'. Assume that
N = A& S, where A is an abelian normal subgroup of T and where S is the direct
sum of a family (S;);c; of finite simple nonabelian normal subgroups of S. The
Jollowing properties are equivalent.

(1) N has a U-faithful irreducible representation;
(i1) A has a I'-faithful character.
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Proof. Assume first that there exists a ["-faithful irreducible representation = of N.
Since the factor A of N = A & S is abelian, and in particular a type I group, there
exist a character y of A and an irreducible representation p of S such thatr = y ® p
[Dix69C*, Proposition 13.1.8]. Since ker(y¥) = ker ({(n¥)|4) for all y € T, the
character y of A is I'-faithful.

Assume now that there exists a I'-faithful character y of A. We claim that there
exists an irreducible representation p of S such that, for every ¥y € S, y # e, the
operator p(y) is not a multiple of the identity operator. Lemma 12 will then imply
that the exterior tensor product y & p is a I'-faithful representationof N = A& S.

Foreveryi € [, let p; be an irreducible representation of S; distinct from the unit
representation, in some Hilbert space J¢;. Choose a unit vector n; € J¢;. Consider
the infinite tensor product p = X),.; p; of the family (p;);e; with respect to the
family (1;);e7. Recall that p is the representation of S defined on the infinite tensor
product H = ®;e7(H;. n;) of the family of Hilbert spaces (#; );c; with respect to
the family (7;);es by

P((%’)zd)((@ Ef) & ( ® Th’)) = (® Pi(]/i)‘i:f) ® ( ® 771’)’
feF

ieI\F fer ieI\F

for every finite subset F of I, element (y; );e; € S withy; = 1 wheneveri € I\ F,
and decomposable vector (§¢)rer € @ rep Hr. The representation p is irreducible,
since the p;’s are irreducible. For all this, see for example [Guich66], in particular
Corollary 2.1.

Letus check that, for y = (v;);c; € S,y # e, the operator p(y) is not a multiple
of the identity operator. Choose j € I such that y; # e. Observe that the set

{6 € S; 1 p;j(d)is a multiple of the identity operator}

is an abelian normal subgroup of S; and is therefore reduced to {e} since S; is
simple and nonabelian. The operator p; (y;) is therefore not a multiple of the identity
operator. Denote by p} the tensor product of the family (og)ger\¢;}, defined on
J(’J’ = Qe 1{(He. ne). We can then write

H=HH ad p=p; ®p).
Lemma 12 implies that p(y) is not a multiple of the identity operator. O

It remains to show that (i1) <= (iv) in Theorem 2. This will be a consequence
of the following lemma.

We are most grateful to Roland Lotscher, who pointed out a mistake at this point
in a first version of our paper; we are also grateful to Jacques Thévenaz for a helpful
discussion on modular representations.
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Lemma 14. Let T be a countable group, set A = MA(T). Let {A;};er be a set of
finite abelian feet of T' as in Proposition 1, so that A = @, .; Ai. For each finite

subset E of 1, set Ap = P, g Ai, Whichis afinite abelian group. Let A AE denote
the dual group of A, Ag respectively. The following properties are equivalent:

(1) A has a U-faithful character;

(i) there exists a character y & A such that the subgroup generated by y*T = {17 |
y e I'}isdensein A;
(ii1) for every finite subset E of I, the finite group A g has a U-faithful character;

(iv) forevery finite subset E of I, there exists y € Ap such that Ag is generated by
the I'-orbit of x;

(v) for every finite subser E of I, there exists xg € Ag such thar Ag is generated
by the I'-conjugacy class of xg.

Proof. Equivalence of (1) and (11) and equivalence of (ii) and (iv). Let N be a
normal abelian subgroup of I'. Let y € N. Denote by I the closed subgroup of
N generated by xT. By Pontrjagin duality, the unitary dual of the compact abelian
group N /H can be identified with the subgroup

={aeN : y(a)=1forally € H};
observe that

=faeN : yla)=1forally € '} = m ker(x?).
yel

Thus xT is dense in N if and only if H+ = {e}, namely if and only if y is [-faithful.

Equivalence of (1) and (ii1). Itis clear that (i1) implies (iii). Let us assume that
(ii1} holds; we have to check that this implies (i1). For every finite subset E of I,
denote by pg: A — Apg the canonical projection. Consider the subset

Xg =1{xe€ //1\| the T-orbit of pg (x) gencrates A\E}.

Since the group A £ 18 finite, the subset Xg of A is closed. For a finite fam-
ily Eq,....E of finite subsets of [, the intersection Xg, N --- N X g, contains
XEg,u-uE,. By Condition (iii), X g is non empty for any finite subset E of /. Since
Ais compact, it follows that

(1 Xe #0.
E

where E runs over all finite subsets of /. Let y € (| Xg. Itis easily checked that
x is I'-faithful.
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Equivalence of (iv) and (v). Consider a finite subset £ of /. Recall that each
A; is a finite dimensional vector space over a prime field [, , for a prime number
pi. For each prime p, denote by V,, the direct sum of those A; with i € E which
are vector spaces over IF,, and denote by P the set of primes p such that V,, # {0}.
Wehave Ap = P,ep Vp. Since the V},’s are subgroups of A of pairwise coprime
orders, every subgroup H of Ag is a direct sum €, p (H N V3). The dual group

l7p of V, can be identified with the dual vector space Vp*; as before, each subgroup

H* of Ag is a direct sum Dpep (H* N V). It follows that, in order to prove the
equivalence of (iv) and (v), we can assume that P consists of a single element p. We
can also assume that T" is a subgroup of GL(V},).

Let F,[I'] denote the group algebra of I' over IF,. Observe that V, is a semi-
simple IF,[I"]-module, since V), is a direct sum of minimal normal subgroups of I".
(A module 1s semi-simple if it 18 a direct sum of simple modules; other authors use
the terminology completely reducible.)

Under the identification of V with V¥, the I-action on V corresponds to the
dual (or contragredient) action of I" on V* Observe that V" is a semi-simple I, [T']-
module. Indeed, if W is submodule of Vp*, then its annihilator W+ has a complement
ZinVy,and Z Lisa complementof W in V* (compare with Lemma 6.2 in [Landr83]).

Observe also that there exists x € 1, such that V, 1s generated by the I'-conjugacy
class of x (respectively, there exists y € V such that V is generated by the I'-orbit
of x)if and only if V), (respectively V) is 1somorph1c as IF, [I"]-module, to a quotient
of theleftregular module F,[I"]. To Conclude the proof, we show that V), is isomorphic
to a quotient of Fp[T'] if and only if V7 is isomorphic to a quotient of F,[I'].

We first show that every semi-simple submodule of F,[I'] is isomorphic to a
quotient of Fp[I"]. Indeed, let Fp[I'] = P, ; P; be a direct sum decomposition
of I, [I"] into indecomposable submodules P;. Every P; contains a unique simple
module S;. Moreover, S; is isomorphic to a quotient of P; and M = P,y S; is
the sum of all simple submodules of IF,[I"]. For the standard facts on representation
theory of finite groups, see for example [Landr83], in particular Theorem 6.8. Let N
be a semi-simple submodule of F,[I"]. Then N is a submodule of M and is therefore
isomorphic to &P ;- S; for a subset J” of J. Hence, N is isomorphic to a quotient
of P, P;. Since Py Pj is a direct summand of Fy,[['], it follows that N is
isomorphic to a quotient of IF,[I"] and this proves our claim.

Assume that V, is isomorphic to a quotient of F,[I']. Then V7 is isomorphic
to a submodule of F,[I']*. Now, it is standard that IF,[I"]* is isomorphic to [, [I']
as a F,[I']-module (see [Landr83, Theorem 6.3]). Hence, Vp* is isomorphic to a
submodule of F,[I"]. By what we have seen above, it follows that V,* is isomorphic
to a quotient of IFp[T"]. Similarly, if V7 is isomorphic to a quotient of Fp[T"], then V,,
is isomorphic to a quotient of I, [T']. O
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4. Finite and infinite dimensional representations

Our proof of Theorem 4 uses the following elementary lemma, which is well known.
'To our surprise, we haven’t been able to find a convenient reference.

Lemma 15. Ler Q a standard Borel space and i1 a bounded positive measure on Q.

(i) Let A be a separable C*-algebra, m a representation of A, and

i " i)

a dirvect integral decomposition of = with respect to a measurable field w +— 7,
of representations of A. Then m , is weakly contained in 7 for almost all w in €2.

(i) Let I" be a countable group, m a representation of I', and

[ " ol 16)

a direct integral decomposition of w with respect to a measurable field w — m,,
of representations of I'. Then m,, is weakly contained in s for almost all w € 2.

Proof. (i) By definition of “weak containment”, we have to show that ker(z) C
ker(m ) for almost all w € Q. Since A is separable, so is ker(;r), and we can choose
in this kernel a countable dense subset, say C. For any x € A4, recall from the theory
of direct integrals that ||z (x)| is the essential supremum (on « € ) of the norms
|z, (x)], sothat ||z, (x)| < ||z (x)]| for almost all @ € €2;in particular, any x € C
isinker(x ) for almost all w € . Since C is countable, we have also C C ker(x )
for almost all » € €2, and this implies the announced conclusion.

(i1) Any representation 7 of I' corresponds to a representation z of the maximal
C*-algebra A = C, (T") of the group. For two representations w1, 7, of the group,
mq is weakly contained in m, if and only if ker(z,) C ker(z,); moreover, a direct
integral decomposition 7 = |, S;B medi(w) at the level of I' corresponds to a direct

integral decomposition 7 = fg w dp{w) at the level of C: (I'), with the same
space €2 and the same measure p. Thus (ii) is a consequence of (1).

[More generally, both (ii) and its proof hold verbatim for representations of sep-
arable locally compact groups.] H

To prove Theorem 4, it is clearly enough to show that Conditions (1) and (i1)
there are equivalent. The implication (1) == (11) 1s a straightforward consequence
of [Thoma64, Korollar 1], according to which every irreducible representation of a
virtually abelian group is finite dimensional.
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End of proof of Theorem 4, namely of (i) = (1). We assume that I has Proper-
ty (i1), and we split the proof in two cases.

Assume first that I' 1s not amenable. Let o be a I'-faithful irreducible represen-
tation of M S(I"); set w = Ind};l sy ©- By Lemmas 10 and 15, some (in fact almost
every) irreducible representation g which occurs in some direct integral decompo-
sition of m is faithful and is weakly contained in w. As M.S(T") is amenable, 7
is weakly contained in the left regular representation of [', and therefore the same
holds for 7. As I 1s not amenable, 7 cannot be finite dimensional, so that I" has
Property (1).

Assume now that I' is amenable. Assume furthermore, by contradiction, that
[ does not have Property (i). Then I' has a finite dimensional faithful irreducible
representation, by the first part of (i1). In particular, T can be viewed as a subgroup
of the compact unitary group U(n), for some integer » > 1. By Tits’ alternative
[Tits79], there exists in [ a soluble subgroup A of finite index. Let R denote the
closure of A in U(n) and let R denote its connected component; then R? is of finite
index in R (because R 1s a compact Lie group, see for example [Helga62, Chapter 11,
Theorem 2.3]) and an abelian group (because a connected compact group is soluble
if and only if it is abelian, see for example [Bourb82, Appendice I]). Thus A N RO is
an abelian subgroup of finite index in I'; but this contradicts the hypothesis that I™ is
not virtually abelian, and this ends the proof. O

Proposition 16. Let T be a countable group.

(i) If there exists a factor M and an injective homomorphism w: I' — U(M ) such
that (")’ = M, then T is irreducibly represented.

(i) If T is irreducibly represented, then there exists a factor M = L£(H) of tvpe I
and a faithful representation 7. I' — U(I) such that =(I')" = £(I).

Proof. et w be as in (1). If M is an algebra of operators on some Hilbert space
JC, then 7 1s 1n particular a factorial representation of I' in K. It corresponds to a
C*-representation, say 7: C- (I') — £(XK). By aresult of Dixmier (Corollary 3,
page 100 of [Dix60]), there exists an irreducible representation p of C.; . (I") such
that 7 and p have the same kernel. The restriction p of p to T is therefore a faithful
irreducible representation. a

In view of Schur’s lemma, (i1) is nothing but a reformulation of the definition of
“irreducibly represented”. O

Corollary 5 is a straightforward consequence of Theorem 4 and Proposition 16.
Short of knowing how to answer the questions which follow Corollary 5, let us
record the following elementary remark.

Observation. If I" is a countable group which has a finite dimensional faithful irre-
ducible representation, then M H(I) is a finite group.
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Proof. Consider the following properties of a group I':
(a) I" has a finite dimensional faithful irreducible representation;
(b) M S(T") has a finite dimensional I"-faithful irreducible representation;

(¢) MA(T") has a I'-faithful character and M H(I") has a finite dimensional faithful
irreducible representation;

(d) MA(T) has a I'-faithful character and M H(I") is a finite group.

Property (a) implies Property (b) by Lemma 9, Properties (b) and (c) are equivalent
because MS(I') = MA(T') @ M H(T), and Properties (c) and (d) are equivalent
because M H(T) is a direct sum of finite simple groups.

[Observe that, however, Property (b) does not imply Property (a): if ' is an
icc group which does not have any finite dimensional faithful representation, for
example the group of permutations of finite support of Z, then [" has Property (b)
since M S(I") = {e}, but does not have Property (a).] O

About Conditions (i1) and (iv) of Theorem 4, let us moreover recall the following
facts. For countable groups, and more generally for separable locally compact groups
and for separable C*-algebras, there is a notion of being of rype I, defined in terms of
the von Neumann algebras generated by the images of appropriate representations.
It is then a theorem of Thoma that a countable group is of type I if and only if it is
virtually abelian, if and only 1f all 1ts irreducible representations are finite dimensional.
See [Thoma64] and [Glimm61].

5. Remarks

5.1. Minisocles, socles, and examples. The socle of a group I' is the subgroup
S(T") generated by the union of the minimal normal subgroups (finite or infinite).
Here are some examples of socles and minisocles.

(I) For a prime p and an integer n > 1, the socle of the finite cyclic group Z/ p" Z
is isomorphic to Z/pZ. The socle of the finite symmetric group Sym(n) is the
corresponding alternating group if n = 3 or n > 5, and the Vierergruppe if n = 4.

If ' is a 2-transitive subgroup of Sym(n), then S(I") is either of the form (IF, )™ or
a finite simple group. More generally and more precisely, if I' is a primitive subgroup
of Sym(n), the O’Nan—Scott Theorem (1980) provides detailed information on the
socle of T"; in particular, S(I") ~ S™ for some finite simple group S and some integer
m. See for example Chapter 4 in [DixMo96].

(IT) Free abelian groups Z", n > 1, and nonabelian free groups have socles reduced
to one element.
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(IIT) For n > 3, the socle of SL, (Z) is reduced to one element or is of order two,
if n is odd or even respectively (because any noncentral normal subgroup of S1.,,(Z)
contains a congruence subgroup, and consequently 1s never minimal).

(IV) Let T be a lattice in a connected semisimple Lie group G with finite center
Z(G) and without compact factor. It is an easy consequence of the Borel density
theorem that, if the centre of I' is {e}, then I' is icc, so that M S(I") = {e}; more
generally, MS(T') = T' N Z(G).

The minisocle of a just infinite group is reduced to one element (by definition).
In particular, the minisocle of the Grigorchuk group 1s reduced to one element.

(V) If T is a direct sum of a family of infinite simple groups, then M S(I"} = {e}
and S(I') = I'. If T is a direct sum of a family of finite simple groups, then
MS(T'y=T.

(VI) The socle of anilpotent group I' is contained in the centre Z(I") of I", because
N N Z(I') # {e} for any normal subgroup N # {e} of I'.

(VII) Let I' be an abelian torsion-free group with cardinal strictly larger than that
of the real numbers, for example a direct product of copies of Z indexed by R. Then
M S(TI"} is reduced to one element, and I" does not have any faithful character, so that
the equivalences of Theorem 2 do not hold for I'.

(VII) Let H be a group, p a prime number, U a vector space over the prime field
with p elements, 7: H — GL(U) a faithful representation which is semi-simple
(namely which is a direct sum of irreducible representations), and I' = H x U the
corresponding semi-direct product. Then U is the socle of T'.

Indeed, let N a minimal normal subgroup of I'. If N N U # {0}, then N C U,
and moreover N is a H -invariant subspace of U which is irreducible, by minimality;
these N’s generate U. If one had N N U = {0}, then N and U would commute
(being two normal subgroups of '), so that N would act trivially on U, and this is
ruled out by the faithfulness of .

Let U be of the form U = (P, Vi) & (@jeJ W;), with each V; a H -invariant
irreducible finite-dimensional subspace of U, and each W, a H -invariant irreducible
infinite-dimensional subspace of U. Then the mini-socle of T is €, <; Vi.

The construction carries over to the case where each V; and W; is a vector space
over a prime field of which the number of elements depends on 7 and j .

5.2. Minisocles, FC-kernels, and P. Hall’s theorems. The FC-kernel of a group
I' is the subset I'rc of I' of elements which have a finite conjugacy class. It is a
characteristic subgroup of I'.

The periodic FC-kernel of T is the subset I'L~ of Tpc of elements of finite order.
It is also a subgroup of I', indeed a locally finite subgroup (Dicman’s Lemma, see
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e.g. [Tomki84]). It follows from the definitions and from Dicman’s LLemma that
MS(T) C r};f;

(the inclusion can be strict, as it is for example the case if I" is cyclic of order four).
Any subgroup of a restricted direct product of finite groups is a periodic FC-

group which 1s residually finite, and any quotient of a periodic FC-group 1s a periodic
FC-group. For countable groups, Philip Hall has established in 1959 the converse
implications:

any countable periodic FC-group which is residually finite can be embedded in

a restricted direct product of finite groups, and any countable periodic FC-group

is isomorphic to a quotient of a subgroup of a restricted direct product of finite

groups
(Theorems 2.5 and 3.2 in [Tomki&4]).

A hoof of a group I is a foot of a foot. Thus, with the notation of Proposition 1,
the subgroups IF, and S; are hooves of I'.

Let I' be a group which has a finite Jordan—-Hdolder sequence (for example a finite
group); if a simple group S is a foot of I', then S is isomorphic to a quotient of some
Jordan—Hélder sequence of I' (Bourbaki, Algebre, nouvelle édition, 1970, chap. I,
§ 4, no 7). But the converse does not hold: the group of order 3 1s a simple quotient
of a Jordan—-Holder sequence of the alternating group Alt(4) of order 12, but Alt(4)
has a unique foot which is the Vierergruppe, of order 4.

5.3. Recall of a theorem of Gelfand and Raikov. Recall the following basic result
of the theory of group representations, due to Gelfand and Raikov (see [GelRa42], as
well as Corollary 13.6.6 in [Dix69C*]):

forany y € I, y # e, there exists an irreducible representation m, such that

my(y) # my(e).
This holds for any group I', countable or not; indeed, this holds for any locally compact
group, with 7, a continuous representation. There are two main ingredients of the
proof: the group has a faithful representation which is the left-regular representation,
and any representation has some description in terms of irreducible representations
(via functions of positive types and a theorem of the Krein—Milman type).

For a countable group I" which has the properties (ii) to (v) of Theorem 2, we

have shown that m,, can be chosen independently of y.

5.4. Recall on tensor powers of faithful representations. Let I" be a group and
let r be a faithful representation of I'. TFor integers m, n > 0, consider the tensor
power my, , = 7" ® 7", where 7 denotes the representation conjugate to 7 and
7@ the tensor product of m copies of 7. Then the left regular representation of I' is
weakly contained in the direct sum € Tm.n (see Example 1.11 in [BeL.aS92]).

m,n=>0
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This is a generalisation, with weak containment replacing strong containment, of a
well-known fact about finite groups (and compact groups, see [Cheva46], Chapter VI,
§ VII, Proposition 3). Thus, if, in addition, I' is amenable, then every representation
of T is weakly contained in P m.n- (All this carries over to locally compact
groups.)

For a countable group I" which has the properties (ii) to (v) of Theorem 2, the
representation s can be chosen to be faithful and irreducible.

m,n=>0

5.5. Primitive group C*-algebras. Denote by C,(I") the reduced C*-algebra, and
as above by C>__(I") the maximal C*-algebra of a group I'. A representation of either
one of these algebras is irreducible if and only if its restriction to I' is irreducible. It
follows that, if one of CL ('), C. . (') is primitive, then I is irreducibly represented.

Many examples of countable groups are known for which CZ,(I") is simple
[HarpeO7], and a fortiori primitive. These groups are in particular irreducibly rep-
resented. Concerning the properties of I and C7;(T"), consider the three following
conditions:

(NF) TI' does not have any finite normal subgroup besides {e};
(NA) I' does not have any amenable normal subgroup besides {e};
(C*S) C.L(I')is simple.

It is straightforward that (NF) is a rephrasing of the condition M S(I") = {e}, and
that it follows from (NA). It is elementary to check that (NA) follows from (C*S),
but we recall that it is not known whether the converse holds (see [BekHa00] and
[Harpe(7]).

It T" is amenable, the C*-algebras C (I") and C;, (I') are isomorphic. They are
primitive if and only if I" is icc [Murph03].

If T is a nonabelian free group, it is a result of Yoshiwaza that CJ, . (I") is prim-
1ve (see [Yoshi51], as well as [Choi180]). See the discussion around Problem 25 in
[HarpeO7].

6. A generalisation of Theorem 2

Consider a countable group I' and a subgroup G of the automorphism group of I’
which contains all inner automorphisms. There is an obvious notion of G-faithful
representation, which coincides with that of I'-faithful representation in case G co-
incides with the group of inner automorphisms. Observe that M S(I"), MA(I"), and
M H(T') are G-invariant subgroups of I", since all three are characteristic.

We define a G-foor to be a minimal G-invariant subgroup of I'. Let }‘FG denote
the set of finite G-feet of I'; it is the union of the set .A)ff of abelian finite G -feet and
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of its complement J€1§ . The G-minisocle of T is the subgroup M S (T") generated
by its G-feet, and we have as in Section 1 subgroups M A% (I") and M HC (T").

Proposition 17. Ler T" and G be as above.

(1) Each B € Ag is isomorphic to (Fp)" for some prime p and some positive
integer n (depending on B).

(ii) There exists a subset {B;}icr of AS such that MAY(T) = @,¢; Bi. In par-
ticular, the group MAC(T') is abelian.

(iii) Foreach H € #Z, the feet S, ..., Sk of H are conjugate under G, and simple.
Moreover H = S1 ® -+ @ Si.

(iv) We have MH®(T) = By cgq H.
(v) We have MSC(T) = MA®(T) @& MHS(T).

Theorem 18. Let T, G, and MAC(I') = @D,.; B; be as above. The following
properfies are equivalent:

(1) T" has a representation which is irreducible and G-faithful;
(i) MA(T) has a G-faithful character;

(ii"y MAC(T) has a G-faithful character;

(iii) M S(T") has a G-faithful irreducible representation;

(iii") M SO(T) has a G-faithful irreducible representation;

(iv) for every finite subset E of I, there exists an element xg in MA%(F) =
B, . Bi such that the G-orbit of xg generates MA% (I).

In particular, a countable group 1 has a G -faithful irreducible representation as
soon as MAS(T) = {e}, a fortiori as soon as MSC(T") = {el.

For example, let ' = €, . 4; be a countable infinite direct sum of groups A;
indexed by the natural numbers, each of them isomorphic to a given finite cyclic
group, and let G be the group of permutations of N, identified in the natural way to
a group of automorphisms of I'. Then I' is irreducibly underrepresented, but has a
G -faithful irreducible character, for example the projection onto A; followed by the
natural isomorphisms of A; with the appropriate group of roots of unity.

Proposition 17 and Theorem 18 can be proved by essentially the same arguments
as in Sections 2 and 3.

Lemmas 9 and 10 should be reformulated for a G-invariant subgroup N of I'; in
the new Lemma 9, the G-faithfulness of 7 implies that o, 1s G-faithful for almost
all w € €2; in the new Lemma 10, if we assume that o is G-faithful and that there
does not exist any finite G-foot M such that M N N = {e}, then n,, is G-faithful for
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almost all w € 2. In the new Lemma 13, the groups N, A, S should be G-invariant,
but $; normal (not necessarily G-invariant) and simple (not necessarily G-simple);
the conclusion is that N has a G-faithful irreducible representation if and only if
A has a G-faithful character. In the new Lemma 14, both A and the A4; should be
G-invariant, and x' should be replaced by y¥. The other (minor) modifications, as
well as the formulation of one more c¢laim analogous to Claim (v) of Theorem 2, are
left to the reader.
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