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Rigidité topologique sous I’hypothese «entropie majorée»
et applications

(Guillemette Reviron

Résumé. We study some families of compact length spaces whose entropy is bounded from
above. We prove that these families are complete w.r.t. the Gromov—Hausdorff distance and we
give an explicit constant &g > 0 such that, on balls of radius &g with respect to the Gromov—
Hausdorff distance, the fundamental group is constant, the universal covers are close for the
equivariant Gromov-Hausdorff distance, the length spectrum is continuous and the entropy is
Lipschitz. If we consider now some subsets of manifolds, we show moreover that the volume is
semi-continuous from below and that the integral of the Ricci curvature is bounded from below.

Résumé. Nous étudions certaines familles d’espaces de longueur compacts dont I’ entropie volu-
mique est majorée. Nous montrons que ces familles sont complétes pour la distance de Gromov—
Hausdorff et nous prouvons I’existence d’une constante explicite &g > 0 telle que, sur les boules
derayon &g pour la distance de Gromov—Hausdorff, le groupe fondamental est constant, les revé-
tements universels sont proches pour la distance de Gromov—Hausdorff équivariante, le spectre
des longueurs est continu, I’entropie est Lipschitzienne. Si I’on se restreint a certains sous-
ensembles des variétés riemanniennes compactes, nous montrons de plus que, sur ces boules de
rayon &g, le volume est semi-continu inférieurement et que I’intégrale de la courbure de Ricci
est minorée uniformément.

Mathematics Subject Classification (2000). 53C23, 53B21, 54FE45, 53C24, 37A35, 14H30.

Mots Clefs. Espaces métriques, entropie volumique, rigidité topologique, distance de Gromov—
Hausdorff, précompacité, spectre des longueurs, revétements.

1. Introduction

Notons R, k. p I’ensemble des classes d’isométries de variélés riemanniennes com-
pactes (M, g) de dimension m, dont le diametre est majoré par D et telles que
Ricci(M, g) > —(m — 1)K? g et munissons cet ensemble de la distance de Gromov—
Hausdorff, notée dgy. Dans ce cadre classique, toutes les variétés sont localement
difféomorphes (théoreme A.112 de [CC1]) et le volume est un invariant continu
(théoréme 0.1 de [CoZ2]). De plus, (R, k.p. dcn) est précompact dans 1’ensemble
des classes d’isométries des espaces de longueur compacts (théoréme 5.3 de [Gr]).
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Comme il n’est pas complet, il était naturel d’étudier son adhérence, qui s avere en
fait wes difficile a caractériser (voir le survey [Col] des travaux de J. Cheeger et
T. Colding a ce sujet).

Dans cet article, nous affaiblissons I’hypothese de minoration de la courbure de
Ricci dans le but d’obtenir des ensembles d’espaces de longueur compacts qui sont
complets vis-a-vis de la distance de Gromov—Hausdorff ; nous y €étudions la conti-
nuité de certains invariants topologiques et géométriques (volume, premier nombre
de Betti, spectre des longueurs,...). Dans le méme but, J. Lott et C. Villani d’une
part et K. T. Sturm d’autre part ont considéré R, g, p comme un sous-ensemble de
I’ensemble des espaces métriques mesurés compacts sur lequel 1ls généralisent 1'hy-
pothése “dimension m et courbure de Ricci minorée”. Notons que, jusqu’a présent,
leurs travaux portent essentiellement sur la généralisation du cas Ricci > 0 et que,
sur les variéiés, cette hypothese implique que le groupe fondamental est a croissance
polynomiale, ce qui n’est pas le cas que nous considérons.

Nous avons ainsi remplacé la notion de courbure par celle d’entropie volumique
qui a pour premier avantage d’étre directement définie sur les espaces métriques de
longueur compacts s1 1’on adopte la définition suivante :

Définition 1. Soit (X, dy) un espace de longueur compact qui admet un revétement
universel p: (X, d ) — (X.dx). Soit X un point de X et N3 (R) le nombre de points
de I’orbite de x (par 1’action du groupe des automorphismes du revétement universel)
situés dans une boule de rayon R. On définit alors 1’entropie volumique de (X, dx )
par

1
Ent(X,dy) = Rin}roo 2 log Nz (R).

Un second avantage réside dans le fait que I’entropie volumique est uniformément
continue par rapport a la distance de Gromov—Hausdorf (voir le théoréme 39). Nous
considérerons donc ’ensemble Mg, p des classes d’isométrie des espaces de lon-
gueur compacts, qui admettent un revétement universel, dont [’entropie et le diametre
sont majorés par H et D. Le théoreme de Bishop—Gromov implique que R, k. p
est inclus dans M, 1)k, p. mais M,,_1yk, p est bien plus vaste que R, g, p dans
le sens suivant :

Remarque 2. (i) L'ensemble (Myn—1)k,p. dou) n’est pas précompact (voir [Rel,
exemple 2.29).

(i1) Toute variété riemannienne de dimension m paire (7n > 4) est obtenue comme
la limite (pour la distance de Gromov—Hausdorff) d’une suite de variéiés rieman-
niennes compactes de méme dimension m, dont I’entropie est uniformément majorde
(voir [Re], exemple 2.31) mais telles que deux variétés quelconques de la suite aient
des caractéristiques d’Euler différentes.
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(iii) Toute variété riemannienne (X, g) compacte de dimension m > 3 peut
gtre obtenue comme la limite d'une suite de variéiés riemanniennes compactes
((Xn, gn))nen de méme dimension m, toutes difféomorphes a X, dont I’entropie
est uniformément majorée, mais telle que (Vol( X, gx))neN tende vers I'infini (voir
[Re], exemple 2.33).

Si I’on se restreint aux variétés riemanniennes compactes de My p, le point (ii)
prouve qu’il ne peut y avoir ni finitude ni rigidité locale de la topologie ou de I'ho-
mologie. De plus, la finitude ou la rigidité locale de ’ensemble de leurs groupes
fondamentaux ne peut étre espérée puisqu’elle est déja fausse pour I’ensemble des
variétés riemanniennes compactes de courbure de Ricci minorée et de diameétre ma-
joré (voir [P1], exemple 1.1). Cependant, dans ce dernier cadre, M. Gromov prouve un
résultat de finitude de 1’ensemble des groupes fondamentaux en ajoutant une borne
sur la dimension et une hypothése algébrique sur la croissance des sous-groupes a
deux générateurs du groupe fondamental ([Gr], corollaire 5.27). C’est une hypothese
algébrique du méme type que nous ferons ici :

Définition 3. Un groupe G non-abélien posséde la propriété FSG(N ) si, pour toute
paire d’éléments (v, ¥') qui ne commutent pas, le semi-groupe engendré par ¥V et
(YN (ou (¥")™N) est libre.

En revanche, nous nous affranchirons de toute hypothese sur la dimension des
objets étudiés, car celle-cin’est pas continue pour la distance de Gromov—Hausdorff.

Notons donc My g, p 'ensemble des classes d’isométrie des espaces de lon-
gueurs compacts (X, dx) qui appartiennent a My p et dont le groupe des automor-
phismes du revétement universel G(X ., X) est de centre réduit d zéro et possede la
propriété FSG(N). _

Si (Y, dy) est un espace de longueur compact et si p: (Y,dy) — (¥,dy) est
un revétement galoisien, nous noterons G(Y,Y) le groupe des automorphismes de
ce revétement. Sur I’ensemble R,, g p. C. Sormani et G. Wei ont montré le résultat
suivant, dont une version plus précise avaient été démontrée par W. Tuschmann dans
le cas particulier des variétés riemanniennes compactes dont la courbure sectionnelle
est uniformément bornée (voir [Tul], [Tu2]) :

Théoreme 4 ([SW], théoreme 1.4). Soit (M]", g;))ien une suite de variétés rieman-
niennes compactes qui appartiennent d Ry, k. p et qui convergent vers un espace de
longueur (Y, dy ) au sens de Gromov-Hausdorff. Alors le revétement universel YdeY
existe et, pour n suffisamment grand (qui dépend de Y ), il existe un homomorphisme
surjectif de w1 (M) dans le groupe G(Y , Y).

Sur My g p,nous montrons le théoréme principal suivant, dont une version plus
générale est donnée dans le théoreme 16 :
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Théoreme 5. I existe une constante eg = eo(N, H, D) telle que, si (X,dy) et
(Y, dy ) sont deux espaces de longueur compacts qui appartiennent & My g p et qui
vérifient deu((X, dx), (Y, dy)) = & < 335, il existe un triplet (p, §. V) oi

(1) p estun isomorphisme entre les groupes G()F(~ LX) et G(f JY).
(i) @: X fetfl;: ¥ > )?sant,pourtoutR > 0, des (%R+3)e-appr0ximati0ns

de Gromov—Hausdorff entre les boules de rayon R de Xet?, g-presque inverses
I'une de Iautre (voir la définition 10), ef respectivement p-équivariante et p~ -

équivariante.

Remarquons que le théoreme 5 détermine a priori la taille des voisinages sur
lesquels ses conclusions sont vérifices ; une valeur possible de &g est eg(N, H, D) =
v 102 (= ).

Remarquons également que I’hypothése FSG({N ) n’est guére restrictive. En effet,
notons en premier lieu que les groupes fondamentaux de n’importe quelle surface de
genre supérieur ou égal a 2 possédent tous la propriété FSG(1). Plus généralement,
si I est le groupe fondamental d’une variété riemannienne compacte de courbure
strictement négative, il vérifie la propriété FSG(N) pour un N qui dépend de T.
Pour les résultats que nous visons, il est souhaitable que N soit indépendant de I,
ce qui est le cas pour les ensembles de groupes suivants : les groupes §-épais et J-
non-abéliens (voir les définitions et de nombreux exemples dans [BCG1], p. 9-13)
possédent uniformément la propriété FSG(E[3]) : les groupes §-hyperboliques selon
Gromov non abéliens et sans torsion posseédent la propriété FSG(N ) pour un N ne
dépendant que de & et d’'un majorant du nombre de générateurs ([CG], p. 158); les
produits libres et les produits amalgamés malnormaux — voir la définition p. 933
de |KS] — de deux groupes ayant la propriété FSG(Ny) ont eux aussi la propriété
FSG(Ny) ([Zu], proposition 2.0.14). Enfin, remarquons que (My, g, p,dgr) n'est
pas précompacte et que, dans la remarque 2, si la variéeé de départ est de courbure
strictement négative, les suites de variétés qui y sont construites appartiennent toutes a
un méme ensemble My g p : supposer 1’ appartenance a un méme ensemble My g p
reste donc une condition relativement faible.

Le théoreme 16 a pour corollaires les résultats suivants :

Théoréme 6 (Théoreme 39). L’espace métrique (My g, p. dcn) est complet et 'en-
fropie volumique y est uniformément continue.

Dans la preuve du théoréme 6, une des difficultés est de démontrer que, pour toute
suite d’éléments de My g, p qui converge au sens de Gromov—Hausdorff, I’espace-
limite possede un revétement universel. Ce point est vérifié dans la proposition 34.

Corollaire 7. En restriction a 'ensemble des variétés riemanniennes qui appar-
tiennent d My g, p, les propriétés suivantes sont vérifiées sur toute boule de rayon “;—% :
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(1) le groupe fondamental et le premier nombre de Betti sont constants ;

(i) [entropie et, pour tout i, le logarithme de la i°™ valeur propre du spectre des
longueurs sont des fonctions Lipschitziennes de la structure riemannienne pour
la distance de Gromov—Hausdorff, la constanie de Lipschitz étant contrblée
(corollaire 35).

Pour le volume, aucune continuité ne peut étre espérée (voir la remarque 2 (ii1)).
Cependant, on a le résultat de semi-continuité inférieure suivant :

Corollaire 8 (corollaire 42). Sous les hypothéses du corollaire 7, si la boule de
rayon % est centrée en une variété riemannienne (X™, go) de courbure sectionnelle
oo < —1, pour toute variété riemannienne (Y™, g) de cette boule qui est un K(m, 1),
ond

m— 1 )m (1 ~ 3deu((X, g0). (Y. 8))

m
_ Vol( X, go).
El’lt(X, go) Ep ) ( gO)

Vol(Y, g) = (

En imposant sur (Y, g) des hypoth¢ses plus fortes, on obtient également le semi-
continuité supérieure du volume (voir le corollaire 43).

Enfin, on obtient les obstructions suivantes sur la courbure de Ricci (proposi-
tion 41) ;

Corollaire 9. Sous les hypotheéses du corollaire 7, si le centre de la boule de rayon
20 est noté (X, dx ), aucune des variétés riemanniennes (Y™, g) de la boule ne peut
vérifier

Ricci(Y, g) > —(m — 1) [M (1  4deu((X. dy). (Y. g)))] .

m—1 €0

De plus, il existe une constante C(m,d8, X) > 0 telle qu’aucune des variétés
riemanniennes (Y, g) de la boule ne puisse avoir la norme Lin+8)/2 de 1a partie
négative de sa courbure de Ricei majorée par C(m, 8, X).

Remarquons finalement qu’une des conséquences d’une version du Lemme de
Margulis sans courbure démontrée par G. Besson, G. Courtois et S. Gallot dans
[BCG1] est I’existence d’une constante g9 = £o(N, H, D) telle que la systole de tout
espace de longueur qui appartient & My, g, p est uniformément minorée par o (voir
la définition 14 de la systole sur les espaces de longueur). En fait, le théoréme 5, ses
corollaires 7, 8, 9 et le théoréme 6 restent valables si I'on y remplace 1'hypothese
d’appartenance a My, g p par 'hypothése plus faible “la systole est minorée par
go”, ¢’est pourquoi nous avons choisi cette derniere hypothése dans les énoncés et
les démonstrations. Certains des résultats présent€s dans cet article restent méme
valables lorsque seul le centre de la boule de rayon {5 est un espace (X, dx ) dont la
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systole est minorée par &g, le point “courant” (Y, gy) de la boule étant quelconque
(voir le théoreme 16, le théoreme 37 et la proposition 41).

Je remercie Sylvestre Gallot et Bruno Colbois pour leur disponibilité et leurs encou-
ragements.

2. Généralités

Nous utilisons la définition d’espaces métriques de longueur donnée dans [Gr], défi-
nition 1.7. Nous les supposerons toujours connexes.

Distance de Gromov-Hausdorff. Nous adopterons les définitions suivantes :

Définition 10. Une application ¢: X — Y entre deux espaces métriques compacts
(X,dyx) et (Y, dy) est dite e-presque-isomélrique si elle vérifie, pour tous les points
xetx'de X,

|dy (p(x), p(x)) — dx (x, x')| < e.

La distance de Gromov—Hausdorff entre deux espaces métriques compacts (X, dx )
et (Y, dy), notée dgu((X, dx), (y, dy)), est 1a borne inférieure des ¢ > 0 tels qu’il
existe deux applications e-presque-isométriques ¢: X — Y ety : ¥ — X telles
que, pour tout point x de X et tout point y de ¥,

dx ( o p(x),x) <&,
dy(poy(y),y) <e

Si ¢ et ¥ vérifie ces deux demicres conditions, nous dirons qu’elles sont e-presque-
inverses 1'une de I"autre.

Une g-presque-isomélrie ¢: (X, dy) — (Y, dy) qui admet un g-presque-inverse
est appelée e-approximation de Gromov—Hausdorff entre (X, dx) et (Y, dy).

Existence d’un revétement universel et a-revétements. Soit (X, dy) un espace de
longueur. Si p: ¥ — X estun revétement galoisien de X, nous noterons G(Y, X) le
groupe des automorphismes de ce revétement.

Rappelons que I'application p: ¥ — X est un revétement universel de X s,
pour tout autre revétement p’: Y — X, il existe un revétement p": ¥ — Y tel que
p = p’ o p". Un tel revétement est unique (a équivalence de revétement pres). En
général, quand il existe, le revétement universel n’est pas simplement connexe (voir
par exemple [Sp], exemple 18, p. 84).

Dans le cadre des espaces de longueur, C. Sormani et G. Wei ont établi une
condition nécessaire et suffisante pour assurer I’existence d’un revétement univer-
sel. Si (X, dy) est un espace de longueur connexe, on construit des sous-groupes
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normaux du groupe fondamental de X de la maniére suivante : fixons « > 0 et consi-
dérons le sous-groupe distingué (noté w1 (X, x¢)}[er]) de 71(X, xo) engendré par les
lacets ¥ en xp de la forme y = ¢~ 1.B.c ol B est un lacet enticrement inclus dans
une boule de rayon « et ¢ est un chemin entre xp et 8(0). Si I'on note a présent
Po: (X%, dye) — (X,dy) le revétement galoisien de (X, dy) dont le groupe des
automorphismes est 71 (X, x9)/m1(X, xp)[e], un critére d’existence du revétement
universel est alors donné dans le théoréme suivant :

Théoreme 11 ([SW], théoreme 3.7). Unespace de longueur compact (X, d) admet un
revétement universel si et seulement s’il existe cg > 0 (qui dépend de X') tel que, pour
fout o < o, les revétements po: (X%, dxe) — (X, dx) et poy: (X¥0,dxe0) —
(X.dyx) sont isomorphes. Dans ce cas, py,: (X%, dyeo) — (X, dy) est le revéte-
ment universel.

Nous donnons a présent quelques propriétés immédiates sur les a-revétements
(voir [Re], p. 85-88 pour les détails).

Propriété 12. Le relevé d’un lacet ¢ sur X de point-base x¢ est un lacet de X¢ siet
seulement si 1a classe de ¢ dans 71 (X, x¢)}/ 71 (X, x¢)[ct] est nulle.

Propriété 13. Soit (X, dx) un espace de longueur compact et considérons son «-
revétement de longueur p,: (X%, dy«) — (X, dy). Alors, pour tout point X de X%,
I"application p, est

(i) un homéomorphisme de By« (X, r) sur By (pa(X),r)sir < «,

(i1) une isométrie globale de By« (X, r) sur By (py(X),r)sir < a/2.

Définition 14. Si (X, d) est un espace de longueur compact qui admet un reve-
tement universel p: (X,dg) — (X,d), nous définissons la systole de (X, d) par

sys(X,d) = inf{d (¥, 7.5) /¥ € X,y € G(X,X)\ {id}}.

Proposition 15. Considérons un espace de longueur compact (X, dx) qui admet
un revétement universel (X, dg) et dont la systole est minorée par y. Alors, pour

fout 0 < a < 870, le revétement universel (f .dy) est isomorphe au a-revétement
de X (ou, ce qui est équivalent, pour tout o €]0, 22, les groupes m1(X, xo)[c] et
(X, x0)[ 2] sont isomorphes).

3. Construction d’approximations équivariantes entre revétements

Nous démontrons dans cette section le résultat fondamental de cet article, qui est un
résultat de rigidité locale sur le groupe des automorphismes du revétement universel
et de quasi-rigidité de son action sur le revétement universel.
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Théoreme 16. Soit (X, dy) un espace de longueur compact (connexe), qui admet
un revétement universel et dont la systole est minorée par un réel g > 0. Si (Y, dy)
est un espace de longueur compact connexe tel que deua((X, dx ), (Y, dy)) = e < 2%

5 / _
alors, pour tout o tel que 0 < 5 < o < %0 — 3¢, il existe un triplet (p, @. V) tel que

(1) p est un isomorphisme entre les groupes G(X.X) et G(Y®,Y).

(i) @: X > Y% {ﬁ: Y* > X sont, pour tout R > 0, des (;—;R + 3e)-appro-
ximations de Gromov—Hausdorff entre les boules de rayon R de X et Y,
g-presque inverses 'une de 'aulre, el respectivement p-équivariante et p~'-
équivariante.

Remarques 17. (i) En fait, nous montrons les inégalités suivantes sur ¢ et e pour
tous les points X et X" de X, pour tous les points y et 3’ de Y%,

(1) (1-32)dg(F.¥) =3¢ < dye (FE). §E)) < (1- 28) ' dg@. &) +e;
@) (1= 28)dye(3.7) = 3e <dgF@). P () < (1-35) "dye(7.5) + ¢
(3) dg (Y0 §)(%), %) < e etdya(FoP)(F), §) <e.

(11) Sous la seule hypothese de minoration de la systole, on ne peut espérer amé-
liorer le résultat de rigidité du groupe fondamental ci-dessus en un résultat de rigidité
homotopique ou homologique (voir la remarque 2).

(ii1) Les hypothéses faites sur « dans le théoreme 16 sont nécessaires : le réel «
ne peut pas €tre choisi arbitrairement petit par rapport a € ou arbitrairement grand
par rapport a % (voir le paragraphe suivant sur I’approximation d’une variété par un
graphe).

(iv) Dans le cas ou (X, dx ) est un revétement universel de lui-méme (par exemple
si (X, dy} est une sphére de dimension au moins 2), le groupe des automorphismes
du revétement universel est trivial. Le théoreme 16 s’énonce alors de la manicre
suivante :

Corollaire 18. Soit (X, dx) un espace de longueur compact qui est un revétement
universel de lui-méme. Pour tout ¢ > 0, si (Y, dy) est un espace de longueur compact
(connexe) quelconque tel que deua((X,dx ). (Y,dy)) < &, alors le groupe w1 (Y, y)
est isomorphe a w1 (Y, v)[5¢].

Une application directe du théoreme 16 dans le cadre des variétés riemanniennes
est le suivant :

Corollaire 19. Soir Y une variété compacte qui admet une métrique go de courbure
sectionnelle oy < 0. S7il existe sur Y une suite de métriques (gn)nen d’entropie
volumique uniformément bornée (mais dont la courbure est de signe quelcongue) qui
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converge pour la distance de Gromov-Hausdorff, alors I’espace-limite (X, d ) admet
un revétement universelm: X — X et, si y estunpointde Y, G(X, X) estisomorphe

dﬂl(Y,y).

Preyve. La variété Y admet une métrique g; de courbure sectionnelle o; < —1.
Sid; = inj(Y, g1}, le groupe 71 (Y) est §1-€pais (voir la définition dans [BCG1],
p. 9). Comme, par ailleurs, I’entropie des espaces (Y, g, ) est supposée uniformément
bornée par H et que, si n est suffisamment grand, diam(Y, g,) < diam(X,d) + 1,
le point (iv) du théoreme 2.1 de [BCG1] Hrnaplique que, pour tout n suffisamment
grand, sys(Y, gn) > &1 = JW[Z(TI)HMW(X’CIHD. Posons alors ¢, =
&1 3

deu((Y, gn), (X, d)). Sin est suffisamment grand pour que Se, < b6ey < 5 — 3¢&n,

le théoréme 16 implique que 71(Y) ~ G(Y,Y) ~ G(X%~ X). Le théoreme 11
permet de conclure. [

Ilustration : Approximation d’une variété par un graphe. Fixons un espace
de longueur compact (connexe) (X, d) quelconque, semi-localement simplement
connexe : son revétement universel est simplement connexe et G(X.X)est isomorphe
a 1 (X, x0). On construit un graphe qui approche 1’espace de longueur (pour la dis-
tance de Gromov—Hausdorff) de la manidre suivante : si & < 1/4, considérons un g2-
réseau fini sur (X, dy), noté R,>. On construit le graphe G (fini donc compact), dont
I’ensemble des sommets est R,2, en mettant une aréte entre deux points x et y de R »
st et seulement s1 la distance (sur X ) entre ces deux points est strictement inféricure a
& ; on attribue alors 4 cette aréte la longueur dy (x, v). On munit ensuite le graphe G
de la distance de longueur dg naturellement induite par cette construction. On peut
alors vérifier que G est connexe par arcs et que den{(X, dx), (G, dg)) < 4e(D + ¢)
(voir [Re], p. 117).
Le théoreme 16 et sa preuve permettent alors de déduire le corollaire suivant :

Corollaire 20. Soir (X, dx ) un espace de longueur compact (connexe), semi-locale-
ment simplement connexe, de diametre inférieur a D et dont la systole est supérieure
a go. Soit G un graphe de recouvrement connexe construit comme ci-dessus tel que
dou((X, dy). (G.dg)) < 2%. Le morphisme canonique de w1(G, xo) sur m1(X, xo)
(associé a I'inclusion) est surjectif et a pour noyau le sous-groupe w1(G, xo)[{5].

Ce corollaire découle de la preuve du théoreme 16, en remarquant que I’isomor-
phisme p qui y est construit dans le cas général coincide ici avec le morphisme
canonique associé a I’inclusion (ou I’inclusion est dans ce cas une approximation de
Gromov—Hausdorft).

3.1. Démonstration du théoréme 16. Le théoréme 16 est une version quantitative
précisée du théoreme 3.4 de [SW], dont certaines idées étaient déja présentes dans
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[Tul] et [Tu2]. Méme si cette preuve s’appuie sur des techniques classiques, nous
avons décidé de la détailler, d’une part pour montrer que les idées classiques de
preuve (valables dans le cas d’applications continues) s’ appliquent encore dans le
cas d’approximations de Hausdorff non continues, mais aussi pour montrer qu’un
calcul effectif des valeurs admises de € et de « est possible en fonction seulement du
minorant de la systole de (X, dx ). Enfin, la comparaison des distances obtenues n’est
pas classique.

L’idée de la preuve qui suit est de discrétiser les courbes sur X pour les transporter
en des «courbes discretes» sur ¥ a 1’aide de I’approximation de Hausdorff entre X
et Y. Si la discrétisation est assez fine, nous allons montrer qu’une courbe représen-
tant une classe de G(X, X) est envoyée sur une courbe représentant une classe de
G(Y?,Y). Nous posons donc la définition suivante :

Définition 21. Soit (X, dx) un espace de longueur. Une subdivision T = (¢;);=o,....p
de I’intervalle [0, @] sera dite d-admissible pour la courbe ¢: [0,a] — X si0 =1y <
f < - <tp =aelsi,pourtouti € {0,1,....p —1l}ettout t € [t;,%41],
dy (c(t;). c(r)) < d.

Construction de Papplication @ et du morphisme p. Notons p: (X.d 7)) —
(X, dy) le revétement universel de (X, dx) et py: (Y%, dye) — (¥, dy) le o-re-
vétement de (Y, dy). Soient ¢ : X — Y une e-approximation, xo un point fixé de X
et Xo un pointde p~! (xo). Notons yo = ¢(x¢) et fixons un point y* dans (pe )~ (yo).

Pour tout point ¥ de X, nous allons construire @(X). Soit & une courbe qui relie
Foakdans X, ¢ = pocetx = p(x). Soit T = (;)i=1....p une subdivision 4-
admissible pour la courbe ¢. On construit sur ¥ une courbe c7 qui joint yo = @(xg)
et ¢(x) en joignant, pour tout 7, ¢ o ¢(#;} a ¢ o ¢(t;41) par une courbe minimisante
quelconque de (Y, dy). On reléve ensuite cette courbe en une courbe (continue) cf.
de Y telle que ¢ (0) = y“.

Lemme 22. Sic: [0,a] — X est une courbe incluse dans une boule Bx(x,r) et
si T est une subdivision 8-admissible pour c, la courbe cr est incluse dans la boule
By(p(x).r+ 2+ %)

Preuve. Pour tout ¢ de [1;, 1; 1], comme ¢ est une e-approximation, on a

dy (p(x).cT (1)) = dy(p(x). @ oc(t;)) + dy(poc(ti). cr (1))
<r+e+dy(poc(t),cr(r)).

On conclut en ajoutant a cette inégalité celle obtenue en remplacant ¢; par f; 41 et en
utilisant le fait que dy (¢ o c(t;), e (1)) est 1a longueur de c7([t;, ]). O
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Lemme 23. L’extrémité cT.(1) du chemin ¢ ne dépend ni du choix de la subdivision
T (si elle est §-admissible pour § < %a — &), ni du choix des courbes minimisantes
entre les points @ o c(t;) et o c(ti41).

Preyve. Soientd > Oetd > 0 inférieurs a %oz —e. Soit T = (t;);=1,..,.p (resp. T’ =
(t))i=1,....q) une subdivision de [0, ], §-admissible (respectivement ¢’-admissible)
pour la courbe ¢. Construisons les courbes cr et cr7, posons T7 = T U T’ et
construisons cy».

Commengons par montrer que le lacet ¢, .c5" estunlacet de 7y (¥, yo)[e], ¢’est-
a-dire qu’il s’ écrit comme produit de lacets du type B.c.f™L, oul ¢ est un lacet inclus
dans une boule de rayon « et § est un chemin entre yg et v.

Tout d’abord, si 8; = c1|[z,.,,1 €1 81 ¥; est le lacet de point base ¢ o ¢(;) donné
pary; = cpo =ti—|—1]'c;|1[ti,ti+1]’ on a, en homotopie : [ 172 Bi.vi.8; 1 ~ epn.cl.

Par ailleurs, comme le lacet ¢;, . ..c;}  ; estinclus dans une boule de rayon &,
[z .t 1]~ M2 ot 1]

le lemme 22 implique que le lacet y; est inclus dans la boule By (¢ o c(f;), %(5 +¢&)).
D¢s que o > %(5 + €) , on en déduit que tous les lacets de la forme B;.y;.8;"
appartiennent au groupe 71(Y. yo)[e]; il s’ensuit que le lacet ¢;.,.c;! appartient
également a 1 (Y, vo)[e]. D aprés la proposition 12, il se reléve sur Y% en un lacet
%, (e ol ¢, et () sont les relevés des courbes cpv et ¢! d’origines
respectives y® et ¢, (a). Comme (c;:1)*(a) = y* = ¢§(0), ona (c¢zH)* = (¢§) !
et il s’ensuit que les courbes ¢, et ¢7. ont méme extrémité.

On montre de méme que les courbes ¢, et ¢, ont méme exirémité et, finalement,
sia > %(8 + ), les courbes ¢ et ¢, ont méme extrémité, ce qui termine la preuve
du lemme 23. O

Remarque 24. Le lemme 23 entraine que 1’on peut toujours remplacer une subdivi-
sion §-admissible T par une subdivision 7’ plus fine (ce qui veut dire que & peut étre
choisi arbitrairement petit) pourvu que § < %a — &

A tout point x de X, on associe le point @(x) construit de la mani¢re suivante :
soit ¢ une courbe quelconque reliant xXo & X et soit ¢ = p o ¢ sa projection sur X. A
toute subdivision §-admissible de ¢ (pour § < %a — ¢g),notée 7', on associe la courbe
cr de ¥ construite comme au lemme 23 et I'on pose ¢(x) = c¢Z(1), ot ¢F(1) est
I’extrémité du chemin c7..

D’apres le lemme 23, @(x) ne dépend pas de la subdivision 7', Pour s’assurer que
I’application ¢ est bien définie, il nous reste a vérifier que la construction de @(x)
ne dépend pas du chemin ¢ choisi entre Xy et x, ¢’est-a-dire que si ¥ est un autre
chemin qui relie ces deux points, alors y7.(1) = ¢7(1). D’apres la proposition 12,
ceci équivaut & prouver que yr.c;' appartient & (Y, yo)[e]. Nous commengons
par montrer quelques résultats intermédiaires et nous montrons 1’indépendance de la
construction de ¢ par rapport au chemin choisi dans le lemme 27.
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Lemme 25. Soient ¢ et y deux lacets sur X tels que dans 7w1(X, x0)/71(X, x0)[r]
onalcl” = [yl etsoit T une subdivision §-admissible pour ¢ et y.

Sia>r+ %8 + % er si & < %a — &, on a légalité [cr]® = [yr]® dans
ﬂl(YvyO)/ﬂl(YvyO)[a]'

En particulier, si ¢ et y sont homotopes et si o > %8 + %, on a ’égalité [cT]* =

[vr]® pour toute subdivision T, pourvu qu’elle soit 6-admissible pour ¢ et y.

Preuve. Considérons deux lacets quelconques c et y de X, de point-base xg, et notons
a = c.y le lacet obtenu par concaténation. Si 77 = (1));=o,..p et T" = (t])j=0,...q
sont des subdivisions §-admissibles de ¢ et y, la subdivision T = T U T” =
(t;Yi=o.....p+¢» Obtenue en concaténant les deux subdivisions et en identifiant ¢ et
t;,, est d-admissible pour a. Comme la classe de ay dans 71 (Y, yo)/m1 (Y, vo)l¢]
ne dépend pas des chemins minimisants choisis entre les points ¢ o «(¢; ), on peut
construire ar comme la concaténation de cr- et de yr».

De méme, si ¢ est une courbe sur X, on construit (¢~')7 comme égale 4 (cr)~ 1.

Si de plus, [c]” = [r]’. le lacet &« = y.c™! est alors un produit de lacets du
type B.y;.B~ L, ou chaque y; est un lacet inclus dans une boule By (x;,r). D aprés
la propriété de concaténation que nous venons d’établir, le lacet ar peut alors &tre
construit comme un produit de lacets du type ,BTl Yig, - B ;11 , OU Yir, estinclus (d’apres

le lemme 22) dans la boule By (¢ (x; ), r + %8 + %). Comme By (¢(x;), r + %8 ' %)
est incluse dans By (p(x;), ®), on a [ar]* = [e]*. Par ailleurs, comme [a7]* =
[yTﬂ-C;fl]a’ ona [VTH]a = [CT/]a-

Side plus y et ¢ sont deux lacets homotopes, alors, pour tout r>0, [¢]” = [y]” dans
(X, x0)/m1 (X, xo)[r]. Sia > %3 + %, posons ¥ = o — %8— % > 0 :1l découle du
point (i) du lemme 25 que [c7]* = [yr]“. O

Lemme 26. Si %(5 +&) < a < 22, et si c parcourt lespace des lacets de point-base
xo, application ¢ v c (ot T est une subdivision quelcongue §-admissible pour c)
induit, par passage aux classes d’homotopie, un morphisme

p: (X, x0)/m1 (X, x0)[F] —> (¥, yo)/m1 (¥, yo)let].
Rappelons que
(X, x0)/ (X, xo)[2] = G(X, X)) et mi(Y, yo)/m(Y. yo)le] = G(Y*,Y).

Preuve. D’aprés laproposition 15, puisque sys(X, dy ) > &¢, les groupes 71 (X, x¢}[7]
et 1 (X, x0)[ 5] sont égaux pour tout 0 < r < 2. En particulier, si « < % et si

a—3e— % > Oetsic ety sont deux lacets tels que [¢]#9/2 = [y]?°/2, il en découle

2 2
que [c]“_%s_% — [y]“_%g_%. Si T et T’ sont des subdivisions §-admissibles pour ¢
et v, le lemme 25 entraine que [c7]* = [y7/]% ; I'application p est donc bien définie.

Le fait que p est un morphisme découle du fait que [er]* = e et de la propriété
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de concaténation, établie quand ¢ > %(5 + ¢) dans la preuve du lemme 25 : si
a=cyetsiT =T UT", alors ar et cpr.yr» représentent le méme élément de
71(Y, vo)/m1(Y, yo)le]. Ceci termine la preuve du lemme 26. O

Lemme 27. Si 5 3(8 + &) < a < 20, la construction de §(X) ne dépend pas du choix

du chemin ¢, pourvu que celui-ci relle Xoa X dans X; I’ application ¢ X — @(X)
est donc correctement définie.

Preuve. Si¢:[0,1] — X et y:[0.1] — X sont deux chemins continus d’origine
Xo et d’extrémité ¥, etsil'onnote ¢ = pocety = po ¥, le chemin y.c™! est un
lacet de X dont un relevé est le lacet y.(¢) ™. Il s’ensuit que le lacet y.c ™! appartient
a 71(X, xp)[5] (d"aprés la proposition 12). Si T' est une subdivision §-admissible
pour les courbes y et ¢, le lemme 26 permet d’en déduire que

[e]* = p(ly.c %) = [yr(er) 1"

Le lacet yr.(cr)™! sur Y appartient done a 71 (Y, yo)[e] : son relevé y§.(c%) ™1 est
alors un lacet sur Y% et les relevés yy et ¢ des courbes yr et ¢y, qui ont méme
origine y%, ont méme extrémité dans Y%, Il en découle que la construction de ¢ ne
dépend pas du chemin choisi entre Xy a x. O

Construction de ’application ¥.Soit ¥: Y — X une g-approximation de Haus-
dorff «presque-inverse» de 1’approximation ¢ (¢’est-a-dire que ¥ et ¢ vérifient le
pomt (i1) de la définition 10). On peut supposer, sans nuire a la géncralité, que

o p(xg) = ¥{vo) = xp. On construit alors 1’application U Y — X etle
morph1sme r: (Y, yo)/m (Y, yo)la] — m1(X, x0)/m1(X, x0)[%Z] comme on a
construit I’application ¢ (en relevant cette fois- Cl I’ application ) et le morphisme
p. Il suffit pour cela de remarquer que X est le 2 _revétement de X. Comme dans le
lemme 23, on monire I’'indépendance de la Construcuon par rapport au choix de la
subdivision T é-admissible pour § < %0 — &, ainsi que I’'indépendance par rapport au
choix des courbes minimisantes entre les points ¥ o c(#;) et ¥ o ¢(t;+1). Par ailleurs,
S8 >0+ e+ % I’application

r: (Y, vo)/m1 (Y, vo)la] —> m1(X, x0)/m1 (X, xo)[%o]
[e]* — [er]®/2,
induite par passage aux classes d’homotopie est bien définie. En effet, si ¢ et y sont
deux lacets de Y tels que [c]® = [p]%, le lemme 25 implique que [c7]50/? = [yr]o/2.

On montre comme dans le lemme 26 que, sous ces conditions I’ application r estun
morphisme. L"application  est alors bien définie dés que > o+ 8
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Preuve des inégalités du théoreme 16

Lemme 28. Si %8 <a< - %8, les agplicatims @ et Y (bien) définies ci-dessus
vérifient, pour tous les points X et X’ de X et pour tous les points v et y' de Y2,

Q) dye (@), 7)) < (1= 38Y  dp(7,7) + &,

(i) dg(F(H). TG < (1-32) dyu(§.§) +e.

Preuve. Comme %8 < a < 2, lelemme 27 nous assure I’existence de . De méme,
comme o < %O — %8, I”application 4 est bien définie.

Choisissons un réel § qui vérifie 0 < § < min {Za — &, 9 — 3¢ — 2a}.

Soient & une courbe minimisante qui relie les points ¥ et & dans X et 7 un chemin
qui joint les points X et X. Pour construire @ (X"), comme %(5 +&)<ua< %0 (par
choix ded)ete < %‘x le lemme 27 nous permet de choisir le chemin § = y.¢ comme
chemin qui relie Xg et X'. Si T (resp. T’) est une subdivision §-admissible pour y
(resp. ¢) paramétrée par [0, 1] (resp. [1,2]), alors T U T" = Ty est une subdivision
d-admissible pour .

Posons §' = %a — ¢ et fixons un réel n > 0. Construisons une subdivision 7" de
[1,2] (6’-admissible pour la courbe ¢) de telle sorte que les points ¢(; ) (pour tous les
éléments 1; € T" \ {2} sauf le dernier) vérifient d (¢(;). C(t;+1)) = 6" — n. Alors,
la subdivision T = T U T” est une subdivision de # qui, bien que n’étant plus §-
admissible, permet de construire une courbe f ‘}2 de Y% qui a la méme extrémité que

p7, d’apres lelemme 23 et~ le paragraphej qui le suit (car on a bien alors o > % (&' +¢€)).
On a donc, puisque x = (1) et x’' = B(2),

px) = yr(D) = 7, (1) et §(x) = py, (2) = B7,(2).
Ainsi,

dy« (F(X).5(F)) < Y dye(BF, (). B, (i1))-

t;eT”"\{2}

Puisque la courbe 7, estla courbe relevée de Br,,ona

dye« (BT, (1), BT, (ti41)) < long (ﬁaT2|[ti,fi+1]) = long (87,411
=dy(poB(ti),poBlti+1) < dx(B(t:), Bti+1)) + &
<dg(Bu), Blti+1)) + &,

la derniére inégalité provenant du fait que p est contractante.
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Par ailleurs, comme 7”7 C [1, 2] et comme f [1,2] = € est minimisante, en som-
mant et en faisant tendre 7 vers zEéro, on en déduit que

dg{ %, &
o (D7) = dg(w. ) + (L5 1)

ce qui termine la preuve de la premiere inégalité du lemme 28.

On procede de la méme manicre pour la deuxieme indgalité du lemme 28, en
remplacant § par ¥ et X et &' par deux points quelconques 7 et 7 de Y. La seule
différence réside dans le fait que, pour pouvoir appliquer le lemme 23, 1l faut remplacer
o pat 2 et & par 6" = % — &. On trouve ainsi

~ ~ dye(V, v’
ARG TG = dya(5. )+ (LF 1) e

ce qui termine la preuve du lemme 28. O

Lemme 29. Les applications § et r vérifient, pour tous les points ¥ de X et pour
tous les points y de Y,

() dg((Fo@)(F). %) <& si e < 3,

i) dy«((§od)().7) <& sie<
Preuve. Soit ¢ une courbe qui joint X¢ et X ; fixons une subdivision T = (#; }o<i <N
d-admissible pour ¢. Nous allons prouver par récurrence sur 7 que, si ¢, estla courbe

sur Y associée a ¢ = p o ¢ selon le procédé décerit avant le lemme 25, alors, pour
touts; € T,

djf(lzoc%(fi)ag(li)) <é. (H;)

Ceci est vrai au rang / = 0, puisque ¥ (yg) = Xy par construction.
Supposons que ce soit vrai a I'ordre 7, alors

(1) dg(¥ o ¢%(1),8(1)) < & par hypothgse de récurrence,
(2) dg(f o c%(1),E(ti+1)) < & + & par 'inégalité triangulaire.
Par ailleurs, la courbe c7. est un relevé de la courbe ¢ minimisante entre les points
@ oc(t;) et g oc(tig1), ce qui implique
dya(c7(t), cp(tiz1)) < long (C%[;i,ti“]) = long (71,1441

=dy(poclti).pocllit1)) <d+e.

En utilisant la deuxieme inégalité du lemme 28, nous en déduisons 1’inégalité

3) dg(P o cF (1), ¥ o c(tigr)) < (1— 3%)_1(5 +e)+e< BB +e) +e.
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la derniere ligne étant valable parce que € < ‘i—%.

Sil’on choisit 6 tel que 1—70 (8 + &) +¢& < 2, les membres de droite des inégalités
(2) et (3) sont majorés par <. Comme (X.d %) est isomorphe au % -revétement
(X%0/2, dyeo/2) de X, le point (i) de la propriété 13 implique que les points U o
cF(ti+1) et ¢(¢;+1) sont les uniques relevés de ¥ o ¢[c(f;+1)] et de ¢(#;+1) dans la
boule de X de centre fl} o ¢f.(1;) et de rayon =2. Comme, d’aprés le point (ii) de la
propricté 13, 'application p est une isométrie en restriction a cette boule, on a

dg (o c§(tig1), E(tig1)) = dx (¥ o p(c(tit1)), c(tiv1)) < &,

ce qui prouve I'inégalité (H;) pour tout 7. En "appliquant pour #; = 1, on obtient
ds (¥ o §(¥), X) < e. Ceci termine la preuve de la premiére inégalité du lemme 29,

Montrons la deuxieéme inégalité : soit ¢* une courbe qui joint y* et ¥ dans Y * ;
fixons une subdivision T = (#;)p<; <y (d-admissible) pour ¢ et construisons la
courbe ¢ de X et sonrelevé ¢y sur X associées 4 la courbe ¢ = Pe ©c%. On prouve
par récurrence que, pour tout #; € 7',

dya(§ocr(t). (1)) <e. (H])
La preuve est identique a celle que nous venons de faire, a condition d’y rem-
placer v par @, cf par &7 et 5 par o. On obtient ainsi que, si ¢ < £, alors
dye (@ o T (F).7) < e, 0

3

Lemme 30. Si5s < o < 22— 3¢, les applications g et W définies ci-dessus vérifient,

pour tous les points X et ¥ de X et pour tous les points ¥ et ' de Y,

€ - np e
(1 - 35) [dg (%, %) — 3¢] < dye @), 7))
et 3
& - A A
(1= 32 ) ldre 6.5 = 36] < dg G G). TG,
Preuve. Remarquons que ’hypothése 5¢ < o < %0 — %8 implique que ¢ < %,
que £ < 7% et que %8 < o, d’our la validité des lemmes 23 a 29 pour une valeur
suffisamment petite de 6. En appliquant I’inégalité triangulaire et le lemme 29, puis
le lemme 28, nous obtenons

de(%,5) <dg( o §(X), ¥ o F(X)) + 2¢
—
< (1 — 3i) dy«(§(%), p(X')) + 3¢,
€0

ce qui donne la premiere inégalité du lemme 30.
La deuxieme inégalité se montre exactement de la méme maniere. O
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Le morphisme p est un isomorphisme
Lemme 31. Si5¢ < o < 3 — %8, le morphisme p défini dans le lemme 26 est un

isomorphisme dont 'inverse est le morphisme v défini dans la section « Construction
de Uapplication yr ».

Prewve. Rappelons tout d’abord que (X, d ) estisomorphe a (X 20/2 dyeq/2). No-
tons [¢] la classe d’un lacet ¢ sur X dans le groupe 1 (X, xo)/m1(X, x0)[Z], € le
relevé de ce lacet 3 X d’origine X et [y]* la classe d’un lacet y sur ¥ dans le groupe
m1(Y, vo)/m1 (Y, yo)le] et v le relvé de ce lacet a Y¥ d’origine y®. I’action de
m1(X, x0)/ 71 (X, x0)[22] (respectivement de 1 (Y, yo)/m1(Y, yo)la]) sur X (resp.
sur Y'@) étant définie par [c].xo = ¢(1) (resp. [¥]*.y® = y*(1)), on a, pour tout lacet
¢ (resp. y) de point-base x, sur X (resp. de point-base yq sur Y'%),

@ r([y]*).%0 = [yr)-%o = prr(1) = ¢ (1) = ¥ ([y]*. ¥,
(5) p(le])-y* = [er]®.y® = e (1) = @(c(1)) = ¢([c]-x0),
ou T (resp. T’) est une subdivision §-admissible de ¢ (resp. de y) et ot § est choisi suf-

fisamment petit pour que, soushl’hypothése 58 <e< o — %8, toutes les hypotheses
des lemmes 23 a 29 soient vérifides. On obtient ainsi

(r o p([e]))-Fo = Ylo(e]).¥“] = ¥ ° §([c]-Fo).

En appliquant le lemme 29, il s’ensuit que

dg(Ir o p(eD] Fo. [e]. o) < e.

Les points 7 o p([c]).Xo et [c].Xo sont donc deux éléments de p~!(xg) situés 4 une
distance inférieure a € et, si ¢ < %, ils sont confondus d’aprés le point (i) de la
propriété 13. Ainsi, comme I"action de 71 (X, x¢)/71 (X, x0)[F] sur X est sans point
fixe,onarop=1id.

On prouve de méme que p o r = 1d, donc que p et r sont des 1somorphismes

inverses 1’un de 1’autre. O

Equivariance des applications ¢ et ¥. Laction de 71 (X, x0) /71 (X, x0)[52] décrite
dans la preuve du lemme 31 explicite I’isomorphisme @z, entre ce groupe et le groupe
G (X, X) des automorphismes de revétement ; Pz, ([c]) est défini comme 1"unique
élément de G(X, X) qui envoie X sur &(1) ot & est le relvé de ¢ d’origine %o. Bien
que Pz, dépende du choix de X, dans la fibre au-dessus de xp, nous adopterons,
par commodité, la notation [c].xX pour ®5 ([c]).X. La méme remarque vaut pour
I’isomorphisme entre 7 (Y, vo)/m (Y, vo)[ct] et G(Y*, Y ). Moyennant cet abus de
langage, on peut énoncer le lemme suivant :
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Lemme 32. Pour tous les points X de X et § de Y, pour tous les éléments [y] de
w1 (X, x0)/m1 (X, x0)[%2] et tous les éléments [B]* de m1(Y, yo)/m1(Y, yo)la], on a

#(y1-%) = p(ly)-3(F)
P ([B17.7) = r((BI").BG).

Preuve. Celemme a déja été prouvé dans le cas ou x = Xp et y = y¥, puisque nous
avons déja vu que [c]¥.y* est extrémité du relevé ¢ de ¢ d’origine y*. Si y est un
point quelconque de Y%, choisissons une courbe % qui joint y* a v et notons b la
courbe relevée de b = py o b” en partant de 1’origine [¢]*.y* = ¢¥(1). On a alors,

(6) [c]*.7 = extrémité de b

= extrémité du relevé ¢®.b ( dans Y'*) de la courbe ¢.b d’origine y*.

En effet, la courbe ¢ — [¢]*.5%(z) est un relevé de b de méme origine que b elle
coincide donc avece b et, comme p — X est galoisien,

extrémité de b = [¢]. (extrémité de b%) = [¢]%.7.

Choisissons des subdivisions d-admissibles (pour & assez petit) 7 et 7" de c et b
respectivement et notons 7 = T/ UT" la subdivision concaténée de (c.b). Rappelons
que

(7) [er] = r([c]™),
(8) 1;()7) = {/;(b“(l)) = extrémité du relevé by de byr d’origine Xo. On en dé-
duit que
W ([c]®.7) = ¥ (extrémité de ¢*.b)
— extrémité du relevé (c.b)y de (c.b)p d’origine %,
= extrémité du relevé de cr+.brr d’origine Xo
= [c77].(extrémité du relevé byr de byr d’origine o)
= [er ]9 ()
= r([e]). ¥ (3),
ou la premiere et la quatrieme égalité découlent de (6),1a seconde etla cinquiéme
de la définition de ¥ (voir (8)), la troisicme de la construction de (¢.b)7 a

partir de c¢.b qui donne {(¢.b)p = cy.bypr (ce choix élant rendu possible par le
lemme 23) et la sixiéme des égalités (7) et (8).

Cect prouve I’équivariance de v par rapport a la représentation r ; I’équivariance
de @ par rapport a p se prouve de la méme manicre. O
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3.2. Convergence des revétements universels et complétude. Dans cette partie,
nous montrons le résultat suivant :

Proposition 33. Tout ensemble de classes d’isométrie d’espaces de longueur com-
pacts qui admetient un revétement universel et dont la systole est uniformément mi-
norée est compler pour la distance de Gromov—Hausdorff.

Comme 1’ensemble des classes d’isométrie des espaces de longueur compacts
est complet pour la distance de Gromov—Hausdorff (voir [Gr], proposition 3.8), la
proposition 33 découle de la proposition suivante :

Proposition 34. Soit ((X,, d,Dnen une suite d’espaces de longueur qui possédent
un revétement universel et dont la syvstole est uniformément minorée par eo. Si
(Xn, dn)nen est de Cauchy pour la distance de Gromov-Hausdorff, alors elle
converge au sens de Gromov—Hausdorff vers un espace métrique de longueur compact
(Y, dy) qui a les propriétés suivantes :

() (Y, dy) admet un revétement universel, noté (Y, dg) s

(ii) le revétement Y* — Y est isomorphe au revétement Y > Y pour tout réel o
tel que 0 < a < 2 (donc la systole de (Y, dy ) est supérieure a &¢);

(iil) (¥ .dy) est la limite pour la topologie Gromov équivariante (au sens de la
définition de [Fu)) de la suite des revétements universels ((fn, d z, MneN.

Remarquons que le revétement universel de (Y, dy) n’est pas nécessairement
simplement connexe, méme si les revétements universels de tous les espaces X, le
sont (voir I’exemple 3.76 de [Re]).

Preuve de la proposition 34, D’apres le théoreme 11 de C. Sormani et G. Wei, pour

montrer le point (i), il suffit de vérifier que, pour tous les réels « et o tels que
’ "

0<d << %0 les revétements p,: Y% — Y et py: Y* — Y sont isomorphes.

F A 4 .
Comme o’ > «, on a clairement un revétement 7 : Y% — Y * rendant le diagramme

suivant commutatif :
ye Yy
Y.

Nous allons vérifier que 7 est un isomorphisme de revétement.

Soite > Ounréel tel que e < L et 56 < o <o < L — e et soit noun
entier suffisamment grand pour que dgu((Xn,d,), (Y,dy)) < e. On applique le
théoréme 16 au revétement py: Y% — Y puis au revétement pyr: Y o . Or,
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dans la preuve du lemme 26, on montre qu’il existe un point x, de X, et un point yq
de Y tels que 1"application

Vo | JTI(Y, y()) — nl(anxn)/nl(Xnvxn)[%)]
] > [er]

soit un morphisme dont le noyau contient 71 (Y, yo)[er] et 1 (Y, yo)[c'].
I1 s’ensuit que le morphisme r, passe au quotient en deux morphismes

res (Y, vo)/mi (Y, yo)le] —> w1 (Xn. %n) /71 (X, X0)[ 2]

ra s (Y, yo)/m (Y, yo)le'] — 7y (Xn. xp) /701 (Xn, xa)[ 2]

Le lemme 31 prouve que ces deux morphismes sont deux isomorphismes; il en
découle que les groupes 71 (Y, yo)[e], Ker ry, et w1 (Y, vo)[e’] sont égaux. Le corol-
laire IX.3.6 de [Go] permet d’en déduire que 7: Y — ¥ est un isomorphisme de
revétement. Les revétements po: Y% — Y et pyr: Y @ _ ¥ sont donc isomorphes
pour tous les réels 0 < o’ < o < 7. Le théoréme 12 de [SW] implique que I’espace
Y admet un revétement universel (ce qui termine la preuve du point (i)) et que ce
revétement universel est isomorphe & py: Y% — Y pour tout @ €]0, 22[ (ce qui
termine la preuve du point (ii)).

Pour Verlﬁer le point (ii1), il suffit de remarquer que, si0 < o < T et 0 < 56 <

a <P - —8 et si n est suffisamment grand pour que dgu((X,, dy), (Y dy)) < &,

les applicatlons @ et v construites dans le théoréme 16 sont des [2;R38 + 2]8—

approximations de Gromov—Hausdortf entre les boules de rayon R des espaces X et
Y = ¥, respectivement p-équivariante et (p)~!-équivariante. O

3.3. Continuité uniforme du spectre des longueurs et isospectralité. Soit (X, d)
un espace de longueur compact semi-localement simplement connexe. Notons ~ la
relation d’équivalence sur G(ff , X) définie par y ~ 7’ si et seulement s’il existe
geGX,X)telquey = g_ly’g.

Lapplication/ly : y — inf ;g d(x, y.X) étant constante sur les classes de conju-
gaison de la relation ~, le spectre marqué des longueurs est I’ensemble des valeurs
prises, avec multiplicité, par 'application Iy : G(X, X}/ ~— R obtenue par pas-
sage au quotient de ’application Ix. Le spectre non marqué des longueurs est I’en-
semble des valeurs prises par [y, sans multiplicité.

Corollaire 35. Soient (X, dx) et (Y, dy) deux espaces de longueur dont la systole
est minorée par g et tels que deu((X. dx), (Y. dy)) = ¢ < 3§

Soit (p. ¢, 1'17) un triplet vérifiant les propriétés du théoreme 16 et p la bijec-
tion induite par p entre les ensembles de classes de conjugaison G(X,X)/ ~ et
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G(Y.Y)/ ~. Alors, pour tout élément y de G(X, X)/ ~,

3¢

(1 _ g) (x ) — o) < Ty () < (1 _ 4—j)

1
Ix(y) +e.

Preuve. Soit g un ¢lément de G(f , X), montrons que

-1

(1 _ 3—) (I (e) — ) < Iy (p(g)) = (1 _ :—0) lx(g) +¢.

&y

D’apres le théoréme 16 (remarque 17), comme @ est p-équivariante, en faisant tendre
a vers £ — 3¢, on obtient

3e

g9 — 3¢

A5Gz = (1= =20 ) (@ ). 7o) -

4e o .
. (1 . g) (d5[3(). p(e)-FE)] — ).
En prenant la borne inférieure en X, nous obtenons

Ix(g) > (1 - 4—0) (I (p(g)) — .

La minoration dans la double-inégalité du corollaire 35 se démontre de la méme
maniere en utilisant I’inégalité suivante :

dy (.2(3)) = (1 - i—o) (gl (), g (D] - ¢) 0
Corollaire 36. (i) L’ensemble des classes d’isométrie des espaces métriques de lon-
gueur compacts isospectraux pour le spectre des longueurs (marqué ou non-marqué)
est un sous-ensemble complet de I’ensemble des espaces de longueur compacts muni
de la distance de Gromov—-Hausdorff.

(i1) Tout ensemble de classes d’isométrie de variéiés riemanniennes compactes
isospecirales (pour le spectre du laplacien) de courbure sectionnelle strictement né-
gative est d’adhérence compacte dans 'ensemble des espaces de longueur compacts
isospectraux a ces variétés (pour le spectre non marqué des longueurs) muni de la
distance de Gromov—Hausdor{f.

Preuve. Considérons une suite de Cauchy ((X,, d,))nen d’espaces de longueur com-
pacts isospectraux. Comme la systole sy est donnée par le spectre non marqué des
longueurs, la proposition 34 implique que I’espace-limite de longueur (X, d) posséde
un revétement universel et que sa systole est minorée par sq. Le point (i) découle alors
du corollaire 35.
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Le point (i1) provient du résultat de Y. Colin de Verdiere (voir le corollaire de [CV])
qui assure que, sous les hypotheses du point (ii), deux variétés isospectrales ont méme
spectre des longueurs non marqué (donc méme systole L) et méme volume. Comme
les variétés considérées sont de courbure strictement négative, sur toute variét€ de la
famille considérée, les boules de rayon L /2 sont de volume uniformément minoré et
la proposition 5.2 de [Gr] assure que la famille est précompacte pour la distance de
Gromov—Hausdorft. Le point (1) implique finalement que I’adhérence de la famille est
incluse dans I’ensemble des espaces de longueur compacts isospectraux aux variétés
considérées (pour le spectre des longueurs non marqué). O

4. Ensembles d’espaces de longueur d’entropie majorée

Si (Y, dy ) estun espace de longueur connexe par arcs, complet et localement compact
et si iy estune mesure borélienne sur Y, on définit son entropie volumique par rapport
a la mesure py de la maniére suivante :

1
Ent(Y, dy, py) = liminf — log[iy (B(v, R))].
R—>+o0o R

Si (X, dx) est un espace de longueur compact qui posséde un revétement universel
(X,d 7). Uentropie de (X, dx) est par définition I’entropie volumique de (X.d )
muni de la mesure de comptage sur 1’orbite d’un point sous I'action du groupe
G(X,X).

4.1. Continuité uniforme de I’entropie.

Théoréeme 37. Soient (X, dx) et (Y,dy) deux espaces de longueur compacts qui
admelttent un revétement universel. Si la svstole de (X, dx) est minorée par ey > 0
et sidou((X,dy),(Y.dy)) =¢ < alors

(i) Pour tout o €]5¢, % — —g[

13’

3 3\
(1 — 2—‘9) Ent(X,dy) < Ent(Y%, dy«, pya) < (1 — —8) Ent(X, dx ),
(04

&

ou pye est la mesure de comptage de ['orbite d’un point sous Uaction de
GY* Y)surY®.

Gi) Ent(Y,dy) > (1 _ g—g) Ent(X, dy).
(iii) Si, de plus, sys(Y, dy) = &g, alors

-1
(1 — 3—) Ent(X,dy) < Ent(Y,dy) < (1 — E) Ent(X, dy).

& &0
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Preuve. Si (p, g’ﬁ,j) est un triplet vérifiant les conclusions du théoreme 16, tout
élément y de G(X, X) vérifie

—1
dg G o™ ) @) < (1 - i—j) (ol D), M) 4 3]
Il en découle que, pour tout R > 0,

s 55— -
log N[V, R _ 108 Vs [£.(R+3:(1- 27 (R +30)(1 - ) 1_
R N (R+3e)(1-2)™" R

En passant a la limite inférieure quand R tend vers +oo, on obtient I’'inégalité de
droite du point (i).

On montre que Ent(X, dy) < (1 — g—;)_l Ent(Y¥, dye, juye) de la méme ma-
niére, a partir de I’inégalité :

—1
o (U0, B T (1 - 5—2) s

Le point (i) découle du point (i). En effet, (V,dy) 55 (Y%, dya) 55 (¥, dy)
est une chaine de revétements et notons que, si y* = m,(y), alors 7,
envoie By (¥, R) (resp. G(Y.Y).7 = (pgoma) H(y))surjectivement sur By« (y%, R)
(resp. sur G(Y®,Y).y* = p 1(y)). Ceci implique que Ent(Y?, dye, puye) <
Ent(Y, dy.py) = Ent(Y, dy). Linégalité de (ii) se déduit alors en faisant tendre
a vers 2 — 3¢ dans ().

Si ’on suppose de plus que sys(Y,dy) > &g, pour tout ¢ vérifiant I’hypothese
du point (i), Y% est le revétement universel de Y. Comme nous 1’avons remarqué
au début de cette section, on a alors Ent(Y, dy) = Ent(Y¥, dy«, pg). L'inégalité de
droite du point (ii1) découle donc directement du point (1). Comme dans ce cas les
roles des espaces X et Y sont symétriques, I’inégalité de gauche s’obtient a partir de
I’inégalité de droite. [

La continuit¢ uniforme de I’entropie sous ’hypothese de minoration de la sys-
tole (théoreme 37) associée au résultat de complétude sur la famille des espaces de
longueur dont la systole est minorée (voir le théoréme 33) implique la proposition
suivante :

Proposition 38, Si une suite ((Xy, dyNnew d’espaces de longueur qui possédent un
revétement universel et dont la svstole est uniformément minorée converge vers un
espace de longueur (Y, dy ) au sens de Gromov-Hausdorff, alors (Y, dy) posséde un
revétement universel et la suite (Ent(X,, dy))nen converge vers Ent(Y, dy).

Notons que, contrairement au théoreme 37, nous ne faisons ici aucune hypothese
sur I'espace Y.
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4.2. Complétude de familles d’espaces de longueur d’entropie majorée . Dans
cette partie, nous appliquons les résultats précédents a la famille My g p définie
p. 817. En effet, rappelons qu’il est montré dans [BCG1] (voir le théoréme 2.1)
que, sur la famille My g p, la systole est uniformément minorée par ey =
ﬁ log (1_8_%) Les résultats précédents peuvent donc s’interpréter de la ma-
nicre suivanie :

Théoreme 39. L’espace métrique (Mpy g, D, dcu) est complet.
De plus, il existe une constante g = €o(N, H, D) explicite telle que, sur les boules
de rayon % le groupe des transformations du revétement universel est constant et

» . . 4 H . W
[’entropie volumique est E-lzpschttzzenne.

Preuve. Posons &g = g7 l0g (1_(3,%)

Considérons une suite ((X,, d; )nen d’éléments de My g p qui converge vers
un espace métrique (Y, dy ) au sens de Gromov—Hausdorff. D’apres le théoréme 3.8
de |Gr], 'espace (¥, dy) est un espace de longueur compact. De plus, la suite
(diam(X,,, d,))nen converge vers diam(Y, dy ), qui est donc également majoré par D.

La systole de chaque espace (X, dy) étant minorée par &g, la proposition 34
implique que ¥ admet un revétement universel et que sa systole est minorée par gy. Le
théoreme 16 implique alors que, si z est suffisamment grand, le groupe G(X,, Xp)est
isomorphe 2 G(Y, Y). Le groupe G(Y, ') est ainsi de centre réduit 2 zéro et posséde
la propriété FSG(N ). Finalement, la proposition 38 implique que Ent(Y, dy) est
la limite de la suite (Ent{ Xy, dx))nen et est ainsi inféricure a H. 1 espace-limite
(Y, dy) appartient donc 2 la famille My g p, qui est compléte pour la distance de
Gromov—Hausdorff. O

Notation : M.,y g, p,v,1 désigne le sous-ensemble de My g, p constitué des classes
d’1isométries des variéiés riecmanniennes compactes de dimension #i, dont le volume
est majoré par V et dont le revétement universel ne posseéde pas de lacets géodésiques
de longueur inférieure a L (cette derniére condition est une condition vide deés que la
courbure sectionnelle est négative).

I1 est montré dans la proposition 4.1 de [BCG1] que la famille M,, v g p.v.1. €st
précompacte pour la distance de Gromov—Hausdorff. Il découle donc du théoreme 39
le corollaire suivant ;

Corollaire 40. L’adhérencede l’ensemble My, N H.p,v,1, €stcompacte dans My g p
muni de la distance de Gromov—-Hausdorff.

Un probleme ouvert est de caractériser les espaces métriques de longueur qui sont
dans le bord de cet ensemble.
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4.3. Obstructions a ce que la courbure soit arbitrairement petite. Dans les an-
nées "80, M. Gromov posait la question suivante : «Existe-t-il des obstructions to-
pologiques ou géométriques au fait qu’une variété M de dimension n admette une
métrique riemannienne dont la norme L™?2 de la courbure soit arbitrairement petite
(ie au fait que inf, [y, | courbure(g)|*/2dv, = 0, oit g parcourt I’ensemble des
métriques riemanniennes). Dans la version faible de cette conjecture, la courbure
invoquée est la courbure sectionnelle et les formules de Allendoerfer—Chern—Weil
pour les classes caractéristiques montrent qu’une obstruction est que y(M™) = 0.
La question de M. Gromov concerne alors les dimensions impaires. Dans la version
forte, la notion de courbure invoquée est la courbure scalaire (et la question reste
alors ouverte en toute dimension » > 3), mais la méme question est également ou-
verte lorsque la notion de courbure invoquée est la courbure de Ricci. Une réponse a
été donnée par C. Lebrun pour certaines variétés de dimension 4, I’obstruction étant
exprimée en terme d’invariants de Seiberg—Witten.

Proposition 41. Soir (X, dx) un espace de longueur compact fixé qui admet un
revétement universel et dont la systole est minorée par €.

(1) Si G(f , X) est infini, parmi toutes les variétés riemanniennes compactes,
connexes, de dimension m (Y, g) qui vérifient dea(X,dx), (Y. dg)) = e < 35,
il n’en existe aucune telle que

2
Ricci(Y, g) > —(m — 1) [% (1 — f)} g
i — &0

(1) Pour tout réel &', il existe une constante (explicitey C = C(m, &', X) telle que,
parmi toutes les variétés riemanniennes (Y, g) compactes, connexes, m-dimen-
sionnelles qui vérifient deu((X, dx), (Y,dg)) = & < 3%, il n’en existe aucune

telle que
1 P
(m+tey mi+te’
- F_ 2 d'U
iz Uy -0 i)

13
< (1 _ —8) COm, &, X) Ent(X, dy ).

€0

ot ¥(x) est la plus petite valeur propre du tenseur de courbure de Ricci sur
Pespace tangent T (Y') ef ot r—(x) = max(0, —r (x)) est sa partie négative.

Preuve. Supposons par 1’absurde qu’il existe une variété riemannienne (Y, g) véri-
fiant simultanément dep (X, dx). (Y. dg)) = & < 35 et

2
Ricci(Y,g) > —(m — 1) [EI(IL/EL_CSI) (1 — E)] g.
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Le point (i1) du théoréeme 37 implique que
de
Ent(Y,g) = Ent(Y.dg) > (1 — —) Ent(X, dx).
€0

Si Ent(X, dx) > 0, ceci entre en contradiction avec le théoréme de R. L. Bishop qui
donne

Ent(Y, g) < (1 — 4—) Ent(X, dy).
€p

Si Ent(X, dy) = 0, notre hypothése implique que Ricci(Y, g) > 0 et, comme Y
est compacte, le théoreme de Myers implique que 71 (Y) est fini. Il en découle que

G(Y®.Y) (pour & €]5e, % — —s[) est fini, donc G(X, X) est fini d’aprés le théo-
reme 16. Ceci terrmne la preuve du point (1).

Posons o = 13 : p appartient alors 4 |5¢, 5 — —8[ et le point (1) du théoreme 37
implique que Ent{(Y *°, dyeo, ptyeo) > (1 — —)Ent(X dyx).

Fixons un réel ¢ > 0. Le point (ii) du théoréme 1 de [Ga] (en posant H = {x} et
s = 0) donne I’existence d’une constante (explicite) C’ = C’(m, &’) telle que, pour
tout point y de Y %0,

Ent(Y“, dyao, dvg,, )

1

1 mte’

< C’ limsup ( r_ (x) “ dv ao) )
R—stoc \VOI(B(y, R)) JB(y.R) &

ol g%¢ désigne la métrique riemannienne relevée de g sur Y0 et oul dywo et dvgag
désignent la distance et la mesure associdées.

Notons Dy = {y € Y* | Vy € G(Y¥,Y)\ {id}, dyao(x,y) < dyeo(y.x,¥)}
le domaine de Dirichlet pour I’action de G(Y %0, Y') pointé en x, i)y son adhérence
et X p(x) le sous-ensemble de G(Y *°, Y') défini par

Srx)={y € G(Y?®,Y),dyeo (x,y.x) < R}.

Si D = diam(X, dy), comme dou((X, dx), (Y, dy)) < &, pour tout point y de ¥ 0
on a diam O, = diam(Y,dy) < D 4 &.1l s’ensuit que

Ent(Y*, dyeo. dvg,,)

1
1 m+8’ mt-g!
/ .
< C’'limsup (Vol(B(y, R) E /_ r—(x) 2 dvgao)

Rdrfoo YESR D e Oy
R D mte m+te’
< C'lim sup (Ny( +D +8) r_(x) + Ug)
R—+oc \ YOI(B(y,R)) Jy

1 1
Ny (R D m+e’ 1 mte’ m-+eg’
fC’limsup( y(R+ +8)) (—[r (x) 2 ) dvg) ,
P\ N R-D ) Vol(Y, )
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la premiére inégalité provenant du fait que laboule B(y, R) estincluse dans laréunion
UyEE e 15l 90 Dy ., ; la deuxieme inégalité provenant du fait que le bord d’un do-

maine de Dirichlet est de mesure nulle pour la mesure riemannienne et que la projec-
tion de revétement est une isométrie de chaque domaine de Dirichlet sur son image ;
la derniere mnégalité provenant du fait que la réunion disjointe Uyez 2 b o) Dry
est incluse dans la boule B(y, R) et du fait que tout domaine de Dirichlet a pour
volume Vol(Y, g).

Comme I"application g: R — log(N,, (R + 2(D + ¢))) est sous-additive (c’est
une conséquence directe de la proposition 1.4.10 de [Ro] dont une preuve est rappelde

dans [Re], lemme 2.6), on a par ailleurs % < N, (3D)2. 1l en résulte que

1
2 1 me’ m-+te’
Ent(Y*, dyeo,dvyee) < C' (N, (3D))m+e —[_ 2 d :
n ( Y«o Ug O) = ( y( )) (VOI(Y, g) Yr (x) Ug)
On montre alors, comme dans la preuve du théoreme 37, que

£ £
N,(3D) < sup N (6D n —0) = Nyp (X, 6D + —0) .

L= 26 26

xeX
Par ailleurs, comme d’une part 1’action de G (Y %0, Y') est discontinue et cocompacte,
d’autre part les mesures dvgag €t fLyeo sont invariantes sous I’action de G(Y %0, Y),
on a Ent(Y®, dyao, dvgeo) = Ent(Y %0, dyao, pty«o ) (voir, par exemple, [Re] pro-
priéeé 2.3). On obtient ainsi

Ent(YaO ) dYao ) ,LLYOlo)

2

= €' (Nap(X.6D + 22)) """ (

1
Y mtg’
r_(x) % dvgao) .

1
Vol(Y, g) /;z

Si a présent

1
1 (m+e’) m-+tg’
——————————— Vo 2 dU
Vol(Y. 27) (fy ) sy ))

3 (1 38) Ent(X. dy)
200 ) 1 Nyp(X. 6D + £2)mie

2

on obtient Ent(Y®°, dywo, pyeo) < (1 — ;T%)Ent(X .dx), ce qui contredit le
point (1) du théoreme 37. Ceci termine la preuve du point (iii). O

4.4. Semi-continuité du volume et précompacité. Si le volume est un invariant
continu sur (R, k. p, dar), rappelons que ce n’est plus le cas sur (My g.p, den)
(voir la remarque 2).

Nous montrons en particulier le résultat de semi-continuité inférieure suivant :
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Corollaire 42. Fixons une variété riemannienne compacte (M[", go) de dimension
m, dont la systole est minorée par e et dont la courbure sectionnelle vérifie oy < —k?2.
Si (Y, ho) est une variété riemannienne compacte de dimension m, qui est un

K (7, 1) et telle que sys(Y, hy) = &g et deu((Y, g), (Mo, go)) = & < 3%, alors

- (m— 1k \" 3e\"
VOI(Y, ho) - (m) (1 — 5) VOI(M(),g()).

De plus, pour toute métrique g sur Y, on a

Ent(Y, g)"Vol(Y, g} > ((m — 1}k)""Vol(M,, go)

En particulier, si oo = —k?2 et si ¥ vérifie les hypotheses du corollaire 42, on a

3 m
Vol(Y, ho) > (1 = —8) Vol(My, go).
€0

Preuve. Comme (Mg, go) et (Y, ko) sont deux Variétés dont la systole est minorée
par o et qui vérifient deu((Mo, go), (Y. g)) < 13, le théoréme 16 implique que les
groupes fondamentaux de Y et My sont isomorphes. Comme My et Y sont toutes les
deux des K(m, 1), elles ont méme type d’homotopie et il existe une application de
degré 1 entre ¥ et My. La deuxie¢me inégalité du corollaire 42 découle donc du résultat
suivant, démontré mais énoncé de maniere moins générale dans le théoréme 1.5 de
[BCG2] : si (X, gx) est une variété riemannienne compacte de dimension  dont
la courbure sectionnelle vérifie o < —k? et si (Y, gy) est n’importe quelle variéé
riemannienne compacte de dimension  telle qu’il existe une application f: Y — X
de degré 1, alors,

Ent(Y, g)"Vol(Y, g) > ((m — 1)k)"™ Vol(My, go)-

Cette inégalité étant vérifiée en particulier par la métrique /i, il suffit ensuite d’appli-
quer le théoreme 37 pour obtenir 1a premiere inégalité du corollaire. O

Notation : Soientk > 0 et &9 > 0, notons R¥ &, |'ensemble des classes d’isométrie
des variétés riemanniennes compactes de dimension m dont la systole est supéricure

A g et dont la courbure sectionnelle vérifie o < —k2.

Corollaire 43. Soit (My, go) une variété compacte de dimension m qui est un K (s, 1)
et telle que sys(Mo go) > eo. Si (Y, g) est une variété riemannienne compacte qui

appartient a {Rm & et telle que deu((Y, g), (Mo, go)) < =2, alors

3 —m
Vol(Y, g) < (1 - —8) Vol(Mo. 20).
£



Vol. 83 (2008) Rigidité topologique sous I’hypothese «entropie majorée» et applications 843

Preuve. Cecorollaire est une conséquence quasi-directe du résultat suivant, démontré
mais énoncé de maniére moins générale dans le théoréme 1.4 de [BCG2] :si (Y, gy)
est une variété riemannienne compacte dont la courbure sectionnelle est inféricure
A —k? et si (X, gx) est n’importe quelle autre variété riemannienne compacte telle
qu’il existe une application continue f: (X, gx) — (Y, gy), alors

Ent(X, gx)"Vol(X, gx) > | deg /| Ent(Y, g)"Vol(Y, gy).

Puisque My et Y sontdes K (i, 1) et que leur groupes fondamentaux sont isomorphes
d’apres le théoreme 16, My et ¥ sont homotopiquement équivalentes ; il existe alors
une application continue de degré 1 entre ces deux variéeés. De plus, d’apres le
théoréme 37,

3¢

-1
Ent(Mo, go) < Ent(Y, gy) (1 — —) :
11|

ce qui termine la preuve du corollaire 43, O]

Corollaire 44. Toute boule de rayon 5% dans [’ensemble (RK
pacte.

A dgu) est précon-

Preyve. Soit B une boule non vide de rayon 52 dans I’ensemble (RE 60> dan). Fixons
une variété riemannienne (My, go) dans cette boule et considérons une autre variété
(Y, g) de B, le corollaire 43 implique que Vol(Y, g) est uniformément majoré par

(E‘(ILEM%]{O) Vol(My, gy). Par ailleurs, comme (Y, g) est de courbure sectionnelle

négative, le volume de toute boule de (Y, g) de rayon ¢ < ‘970 est uniformément
minoré par celui de la boule euclidienne de rayon e. Il résulte de 1a proposition 5.2 de
[Gr] que ensemble B est précompact pour la distance de Gromov—Hausdorff. [

On rappelle que le volume de toute variété compacte de dimension m, localement
symétrique dont la courbure sectionnelle est comprise entre —4 et —1 est minoré par
une constante universelle gue nous noterons ¢y, qui ne dépend que de m (voir, par
exemple, le théoreme 37.1.1 de [BZ]). On établit alors la proposition suivante :

Proposition 45. Considérons une variété compacte (X, go) de dimension m, loca-
lement symétrique de rang 1 (normalisée de sorte que le maximum de sa courbure
sectionnelle soit égal a —1), de diametre majoré par D. Notons

(m — 1)2"2¢,,

4
by = No=FE|—
0 VOleucl(Sm_z)(Sinh 2D)m—1 ’ 0 |:50j|

et

1 1
= lo .
= No.Hy g (1 _ e_gNOHOD)
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Toute variété riemannienne compacte (Y, g) de dimension m, qui est un K(r, 1),
qui appartient & EMNO’Zm’%D et telle que den((X. go). (Y, g)) = & < 35, est homo-

fopiquement équivalente a X et vérifie
3e\™
Vol(Y,g) > [1——] Vol(X, go).
€o

Si, de plus, la courbure sectionnelle de (Y, g) est majorée par —k?, on a

EHI(X, go)

(m — l)k ) VOI(X, go).

Vol(Y, g) < (

Remarque 46. (i) Lacondition diam(Y, g) < %D estnécessairement vérifiée lorsque
dGH((X7 gO)’ (Y’ g)) < %

(ii) Rappelons que Ent(X, go) est égale a (m — 1) (resp. m, resp. (m + 2), resp.
(m+ 6)) lorsque (X, go) est hyperbolique réel (resp. complexe, resp. quaternionnien,
resp. de Cayley).

Preuve de la proposition 45. Commengons par vérifier que inj( X, go) > . Lacour-
bure sectionnelle de (X, go) est supérieure ou égale a —4. Notons [ 1a longueur de la
plus courte géodésique périodique de (X, go), le théoreme de J. Cheeger (voir [BZ],
corollaire 34.1.9) donne alors

D . m—2
nh(2
Vol(X, g0) < 1. Vol (§™2) f cosh(2) (Sl ([)) dr,
0

ce qui assure que

_ Vol (S™7?) (sinh(2D) m-l
“m = —1) 2 '

Donc inj( X, go) = % > §p. Le groupe fondamental de (X, go) est donc dp-Epais et
possede la propriété FSG(Ny) d’aprés la proposition 1.14 de [BCG1].

Par ailleurs, I’entropie volumique d’une variété riemannienne compacte locale-
ment symétrique de rang 1 est inférieure a 2m (voir la remarque 46). On déduit de tout
ceci que (X, go) appartient a M No.2m. 5D € donc que sys(X, go) = €. Le premier
point de la proposition 45 découle ainsi du corollaire 42,

Par ailleurs, si la courbure sectionnelle de (Y, g) est majorée par —k 2, le corol-
laire 42 implique Vol(X, go)Ent(X, go)™ > ((m — 1)k)™ Vol(Y, g), ce qui prouve
la deuxieme inégalité de la proposition 45. O
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