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Rigidité topologique sous l'hypothèse «entropie majorée»
et applications

Guillemette Reviron

Résumé. We study some families of compact length spaces whose entropy is bounded from
above. We prove that these families are complete w.r.t. the Gromov-Hausdorff distance and we
give an explicit constant s-q > 0 such that, on balls of radius so with respect to the Gromov-
Iiausdorff distance, the fundamental group is constant, the universal covers are close for the

equivariant Gromov-Hausdorff distance, the length spectrum is continuous and the entropy is

Lipschitz. If we consider now some subsets of manifolds, we show moreover that the volume is
semi-continuous from below and that the integral of the Ricci curvature is bounded from below.

Résumé. Nous étudions certaines familles d'espaces de longueur compacts dont l'entropie volu-
mique est majorée. Nous montrons que ces familles sont complètes pour la distance de Gromov-
Hausdorff et nous prouvons l'existence d'une constante explicite sq > 0 telle que, sur les boules
de rayon so pour la distance de Gromov-Hausdorff, le groupe fondamental est constant, les
revêtements universels sont prochés pour la distance de Gromov-Hausdorff équivarianté, le spectre
des longueurs est continu, l'entropie est Lipschitzienne. Si l'on se restreint à certains sous-
ensembles des variétés riemanniennes compactes, nous montrons de plus que, sur ces boules de

rayon so, le volume est semi-continu intérieurement et que l'intégrale de la courbure de Ricci
est minorée uniformément.

Mathematics Subject Classification (2000). 53C23, 53B21, 54E45, 53C24, 37A35, 14H30.

Mots Clefs. Espaces métriques, entropie volumique, rigidité topologique, distance de Gromov-
Hausdorff, précompacité, spectre des longueurs, revêtements.

1. Introduction

Notons Mm,K,D l'ensemble des classes d'isométries de variétés riemanniennes
compactes {M, g) de dimension m, dont le diamètre est majoré par D et telles que
Ricci(M, g) > —(m — 1 )K2g et munissons cet ensemble de la distance de Gromov-
Hausdorff, notée dç,\y. Dans ce cadre classique, toutes les variétés sont localement

difféomorphes (théorème A.112 de [CCI]) et le volume est un invariant continu
(théorème 0.1 de [Co2]). De plus, (-'R.m.K.D- dca i est précompact dans l'ensemble
des classes d'isométries des espaces de longueur compacts (théorème 5.3 de [Gr]).
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Comme il n'est pas complet, il était naturel d'étudier son adhérence, qui s'avère en
fait très difficile à caractériser (voir le survey [Col] des travaux de J. Cheeger et
T. Colding à ce sujet).

Dans cet article, nous affaiblissons l'hypothèse de minoration de la courbure de

Ricci dans le but d'obtenir des ensembles d'espaces de longueur compacts qui sont

complets vis-à-vis de la distance de Gromov-Hausdorff ; nous y étudions la continuité

de certains invariants topologiques et géométriques (volume, premier nombre
de Betti, spectre des longueurs,...). Dans le même but, J. Lott et C. Villani d'une

part et K. T. Sturm d'autre part ont considéré 3lm.K,D comme un sous-ensemble de

l'ensemble des espaces métriques mesurés compacts sur lequel ils généralisent
l'hypothèse "dimension m et courbure de Ricci minorée". Notons que, jusqu'à présent,
leurs travaux portent essentiellement sur la généralisation du cas Ricci > 0 et que,
sur les variétés, cette hypothèse implique que le groupe fondamental est à croissance

polynomiale, ce qui n'est pas le cas que nous considérons.

Nous avons ainsi remplacé la notion de courbure par celle d'entropie volumique
qui a pour premier avantage d'être directement définie sur les espaces métriques de

longueur compacts si l'on adopte la définition suivante :

Définition 1. Soit (X, <7.y un espace de longueur compact qui admet un revêtement

universel/?: (X.dy) hp (X, dx Soil.v un poinlde X cl NX{R) le nombre de points
de l'orbite de ,î (par l'action du groupe des automorphismes du revêtement universel)
situés dans une boule de rayon R. On définit alors l'entropie volumique de (X, dx)
par

Ent(X, dx) lim ~ log N^(R).
R—>+oo K

Un second avantage réside dans le fait que l'entropie volumique est uniformément
continue par rapport à la distance de Gromov-Hausdorff (voir le théorème 39). Nous
considérerons donc l'ensemble Mh.d des classes d'isométrie des espaces de

longueur compacts, qui admettent un revêtement universel, dont l'entropie et le diamètre
sont majorés par H et D. Le théorème de Bishop-Gromov implique que 'Rn,.K.D
est inclus dans mais est bien plus vaste que 3lm,K,D dans

le sens suivant :

Remarque 2. (i) L'ensemble (Mq„-\)K,D• ^gh) n'est pas précompact (voir [Re],
exemple 2.29).

(ii) Toute variété riemannienne de dimension m paire (m > 4) est obtenue comme
la limite (pour la distance de Gromov-Hausdorff) d'une suite de variétés rieman-
niennes compactes de même dimension m, dont l'entropie est uniformément majorée
(voir [Re], exemple 2.31) mais telles que deux variétés quelconques de la suite aient
des caractéristiques d'Euler différentes.
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(iii) Toute variété riemannienne (X, g) compacte de dimension m > 3 peut
être obtenue comme la limite d'une suite de variétés riemanniennes compactes

de même dimension m, toutes difféomorphes à X, dont l'entropie
est uniformément majorée, mais telle que (Vol(X„, gn))nen tende vers l'infini (voir
[Re], exemple 2.33).

Si l'on se restreint aux variétés riemanniennes compactes de Mh.d, le point (ii)
prouve qu'il ne peut y avoir ni fmitude ni rigidité locale de la topologie ou de l'ho-
mologie. De plus, la finitude ou la rigidité locale de l'ensemble de leurs groupes
fondamentaux ne peut être espérée puisqu'elle est déjà fausse pour l'ensemble des

variétés riemanniennes compactes de courbure de Ricci minorée et de diamètre
majoré (voir [PI], exemple 1.1). Cependant, dans ce dernier cadre, M. Gromov prouve un
résultat de finitude de l'ensemble des groupes fondamentaux en ajoutant une borne

sur la dimension et une hypothèse algébrique sur la croissance des sous-groupes à

deux générateurs du groupe fondamental ([Gr], corollaire 5.27). C'est une hypothèse
algébrique du même type que nous ferons ici :

Définition 3. Un groupe G non-abélien possède la propriété FSG(/V) si, pour toute
paire d'éléments (y, y') qui ne commutent pas, le semi-groupe engendré par yN et
(y')N (ou (y')~N) est libre.

En revanche, nous nous affranchirons de toute hypothèse sur la dimension des

objets étudiés, car celle-ci n'est pas continue pour la distance de Gromov-Hausdorff.
Notons donc Mn,h,d l'ensemble des classes d'isométrie des espaces de

longueurs compacts (X, clx) qui appartiennent à Mh.d et dont le groupe des automor-

phismes du revêtement universel G{X. X) est de Centre réduit à zéro et possède la

propriété YSG{N).
Si (Y.cIy) est un espace de longueur compact et si p: (Y,dy) [Y. dy est

un revêtement galoisien, nous noterons G(Y, Y) le groupe des automorphismes de

ce revêtement. Sur l'ensemble C. Sormani et G. Wei ont montré le résultat
suivant, dont une version plus précise avaient été démontrée par W. Tuschmann dans

le cas particulier des variétés riemanniennes compactes dont la courbure sectionnelle
est uniformément bornée (voir [Tul], [Tu2]) :

Théorème 4 ([SW] .théorème 1.4). Soit ((M, gi))ieN une suite de variétés
riemanniennes compactes qui appartiennent à lRm,K.D et qui convergent vers un espace de

longueur (F, cly au sens de Gromov-Hausdorff. Alors le revêtement universel Y de Y
existe et, pour n suffisamment grand (qui dépend de Y), il existe un homomorphisme

surjectifde dans le groupe G(Y, F).

Sur Mn.h.d, nous montrons le théorème principal suivant, dont une version plus
générale est donnée dans le théorème 16 :
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Théorème 5. Il existe une constante e0 e0(N, H. D) telle que, si (X.clx) et
{Y, cly sont deux espaces de longueur compacts qui appartiennent à Mn,h,d et qui

vérifient doa((X, dx), (Y, dy)) s. < f§,( S existe un triplet (p, fi, fi) où

(i) p est un isomorphisms entre les groupes G(X, X) et G( Y. Y).

(ii) fi: X ^-Y et fi: Y —X sont, pour tout R > 0, des(j^R+3)s-approximations
de Gromov-Hausdorffentre les boules de rayon R de X et Y, $-presque inverses
l'une de l'autre (voir la définition 10), et respectivement p-équivariante et p~l-
équivariante.

Remarquons que le théorème 5 détermine a priori la taille des voisinages sur
lesquels ses conclusions sont vérifiées ; une valeur possible de r{) es! e(,(N, H, D)
WH l0§ (l-e-2NHd)-

Remarquons également que l'hypothèse FSG(N) n'est guère restrictive. En effet,
notons en premier lieu que les groupes fondamentaux de n'importe quelle surface de

genre supérieur ou égal à 2 possèdent tous la propriété FSG(l). Plus généralement,
si T est le groupe fondamental d'une variété riemannienne compacte de courbure
strictement négative, il vérifie la propriété FSG (Ai) pour un N qui dépend de T.
Pour les résultats que nous visons, il est souhaitable que N soit indépendant de T,
ce qui est le cas pour les ensembles de groupes suivants : les groupes è-épais et 8-

non-abéliens (voir les définitions et de nombreux exemples dans [BCG1], p. 9—13)

possèdent uniformément la propriété FSG(£ [|]) ; les groupes ^-hyperboliques selon
Gromov non abéliens et sans torsion possèdent la propriété I;SG(/V pour un N ne
dépendant que de S et d'un majorant du nombre de générateurs ([CG], p. 158) ; les

produits libres et les produits amalgamés malnormaux - voir la définition p. 933
de [KS] - de deux groupes ayant la propriété FSG(/V0 } ont eux aussi la propriété
l'SG(/V0) ([Zu], proposition 2.0.14). Enfin, remarquons que (dCv.h.d- d(\\\) n'est

pas précompacte et que, dans la remarque 2, si la variété de départ est de courbure
strictement négative, les suites de variétés qui y sont construites appartiennent toutes à

un même ensemble Mn,h,d ' supposer l'appartenance à un même ensemble Mn,h,d
reste donc une condition relativement faible.

Le théorème 16 a pour corollaires les résultats suivants :

Théorème 6 (Théorème 39). L'espace métrique (Mn,h,d ém) est complet et
l'entropie volumique y est uniformément continue.

Dans la preuve du théorème 6, une des difficultés est de démontrer que, pour toute
suite d'éléments de Mn,h,d qui converge au sens de Gromov-Hausdorff, l'espace-
limite possède un revêtement universel. Ce point est vérifié dans la proposition 34.

Corollaire 7. En restriction à l'ensemble des variétés riemanniennes qui
appartiennent à Mm. h.d. lespropriétés suivantes sontvérifiées sur toute boule de rayon || :
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(i) le groupe fondamental et le premier nombre de Betti sont constants;

(ii) l'entropie et, pour tout i, le logarithme de la ième valeur propre du spectre des

longueurs sont des fonctions Lipschitziennes de la structure riemannienne pour
la distance de Gromov-Hausdorff, la constante de Lipschitz étant contrôlée
(corollaire 35).

Pour le volume, aucune continuité ne peut être espérée (voir la remarque 2 (iii».
Cependant, on a le résultat de semi-continuité inférieure suivant :

Corollaire 8 (corollaire 42). Sous les hypothèses du corollaire 7, si la boule de

rayon || est centrée en une variété riemannienne (Xm, go) de courbure sectionnelle

ct0 < —1, pour toute variété riemannienne (Ym, g) de cette boule qui est un K(n, 1),

on a

f m- 1 Y" 3 dm{{X, go), (Y, g)) Y"
voi(r'«nw7ii) 0— : w-w)-

En imposant sur (F, g) des hypothèses plus fortes, on obtient également le semi-
continuité supérieure du volume (voir le corollaire 43).

Enfin, on obtient les obstructions suivantes sur la courbure de Ricci (proposition

41) :

Corollaire 9. Sous les hypothèses du corollaire 7, si le centre de la boule de rayon
H est noté (X, dx), aucune des variétés riemanniennes [Ym, g) de la boule ne peut
vérifier

Ricci (F, g) > —(m — 1)
m — 1 y £o

De plus, il existe une constante C(m,S,X) > 0 telle qu'aucune des variétés
riemanniennes (Y, g) de la boule ne puisse avoir la norme Ym+;u/2 de la partie
négative de sa courbure de Ricci majorée par C(m, S, X).

Remarquons finalement qu'une des conséquences d'une version du Lemme de

Margulis sans courbure démontrée par G. Besson, G. Courtois et S. Gallot dans

[BCG1] est l'existence d'une constante «o £o(N, H, D) telle que la systole de tout
espace de longueur qui appartient à Mn,h,d est uniformément minorée par êo (voir
la définition 14 de la systole sur les espaces de longueur). En fait, le théorème 5, ses

corollaires 7, 8, 9 et le théorème 6 restent valables si l'on y remplace l'hypothèse
d'appartenance à Mn,h,d par l'hypothèse plus faible "la systole est minorée par
£o", c'est pourquoi nous avons choisi cette dernière hypothèse dans les énoncés et
les démonstrations. Certains des résultats présentés dans cet article restent même
valables lorsque seul le centre de la boule de rayon # est un espace {X, dx) dont la

Ent(F, dx) (X_A ëtgY&X, dx), (F, g))
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systole est minorée par «0, le point "courant" (Y. g y de la boule étant quelconque
(voir le théorème 16, le théorème 37 et la proposition 41).

Je remercie Sylvestre Gallot et Bruno Colbois pour leur disponibilité et leurs
encouragements.

2. Généralités

Nous utilisons la définition d'espaces métriques de longueur doimée dans [Gr],
définition 1.7. Nous les supposerons toujours connexes.

Distance de Gromov-Hausdorff. Nous adopterons les déhnitions suivantes :

Définition 10. Une application (p: X —> Y entre deux espaces métriques compacts
(X, dx et (F, dy est dite «-presque-isométrique si elle vérifie, pour tous les points
x et x' de X,

\dy{(p{x). y. (-v')) — dx(x,x')\ < s.

La distance de Gromov-Hausdorff entre deux espaces métriques compacts (X. dx)
et (F, dy), notée cIqh((X, dx).{y. dy)), est la borne inférieure des e > 0 tels qu'il
existe deux applications «-presque-isométriques <p: X —> Y et \[r : Y —> X telles

que, pour tout point S de X et tout point y de F,

(/.V( <!' o (p(x).x) < «,

dy {(p ° ty{y),y) < «.

Si $ eî vérifie ces deux dernières conditions, nous dirons qu'elles sont «-presque-
inverses l'une de l'autre.

Une «-presque-isométrie (p : {X. clx) (F, cly qui admet un «-presque-inverse
est appelée «-approximation de Gromov-Hausdorff entre (X, dx) et (F dy).

Existence d'un revêtement universel et a-revêtements. Soit (X, dx) un espace de

longueur. Si p : F —> X est un revêtement galoisien de X, nous noterons G(F, X) le

groupe des automorphismes de ce revêtement.

Rappelons que l'application p\Y —X est un revêtement universel de X si,

pour tout autre revêtement p' : Y' —X, il existe un revêtement p" : F Y' tel que

p p' o p". Un tel revêtement est unique (à équivalence de revêtement près). En
général, quand il existe, le revêtement universel n'est pas simplement connexe (voir
par exemple [Sp], exemple 18, p. 84).

Dans le cadre des espaces de longueur, C. Sormani et G. Wei ont établi une
condition nécessaire et suffisante pour assurer l'existence d'un revêtement universel.

Si (X, dx) est un espace de longueur connexe, on construit des sous-groupes
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normaux du groupe fondamental de X de la manière suivante : fixons a > 0 et
considérons le sous-groupe distingué (noté A'o)[a]) de jrt(X.x0) engendré par les

lacets y en x0 de la forme y c~l.ß.c où ß est un lacet entièrement inclus dans

une boule de rayon a et c est un chemin entre .v0 et ß(0). Si l'on note à présent

Pu : (Xa. dx" h» (X, dx) le revêtement galoisien de (X, dx) dont le groupe des

automorphismes est it\(X, xo)/tt\(X, -v0)[a], un critère d'existence du revêtement
universel est alors donné dans le théorème suivant :

Théorème 11 [SW], théorème 3.7). Un espace de longueurcompact (X, d admet un
revêtement universel si et seulement s'il existe ao > 0 (qui dépend de X tel que, pour
tout a < ao, les revêtements pa. -*• (X,dx) et pao: (Xao,dx°>o) -+
(X,dx) sont isomorphes. Dans ce cas, pao : (Xa°,dx«o) h* (X,dx) est le revêtement

universel.

Nous donnons à présent quelques propriétés immédiates sur les ce-revêtements

(voir [Re], p. 85-88 pour les détails).

Propriété 12. Le relevé d'un lacet c sur X de point-base x0 est un lacet de X" si et

seulement si la classe de ç dans tt, (X. ,v0 (/tt, (X. x0)[a] est nulle.

Propriété 13. Soit (X, dx) un espace de longueur compact et considérons son a-
revêtement de longueur pa : (Xa. dx" (X, clx). Alors, pour tout point v de Xa,
l'application pa est

(i) un homéomorphisme de B\ (v- ' sur Bx{pa(x), r) si r < a,

(ii) une isométrie globale de D>x<j (v, r} sur Bxipa(.v). r) si r < a/2.

Définition 14. Si (X,d) est un espace de longueur compact qui admet un
revêtement universel p: (X. dp) —> (X,d), nous définissons la systole de [X, d) par

sys(X, d) inf\dg(x, y.x) / x 6 X, y e G(X, X) \ (id}}.

Proposition 15. Considérons un espace de longueur compact (X,dx) qui admet

un revêtement universel (X. dg) et dont la systole est minorée par eç,. Alors, pour
tout 0 < a < Ç, le revêtement universel (X.dg) est isomorphe au a-revêtement
de X (ou, ce qui est équivalent, pour tout a e]0, ^J, les groupes jti(X, x0)[a] et

jti (X, x0)[y-] sont isomorphes).

3. Construction d'approximations équivariantes entre revêtements

Nous démontrons dans cette section le résultat fondamental de cet article, qui est un
résultat de rigidité locale sur le groupe des automorphismes du revêtement universel
et de quasi-rigidité de son action sur le revêtement universel.
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Théorème 16. Soit (X,dx) un espace de longueur compact (connexe), qui admet

un revêtement universel et dont la systole est minorée par un réel eç, > 0. Si (Y, dy)
est un espace de longueur compact connexe tel que cIgu((X, dx), (Y, cly)) # < vj
cdors, pour tout a tel que 0 < 5e < a < Ijp — |s, il existe un triplet (p, <p, f) tel que

(i) p est un isomorphisme entre les groupes G(X, X) et G(Ya, Y).

(ii) îp: X —> Ya et Ya —X sont, pour tout R > 0, des (MR + 3e)-appro¬

ximations de Gromov-Hausdorff entre les boules de rayon R de X et Ya,

e-presque inverses l'une de l'autre, et respectivement p-équivariante et p~1-

équivariante.

Remarques 17. (i) En fait, nous montrons les inégalités suivantes sur <p et ~)> : pour
tous les points f et 3T de X, pour tous les points y et y' de Ya,

(1) (1 - 3^)d^(x,x') -3e < dya(tp(x), (p(x')) < (1 - ||) x') + s ;

<2) (I - )-3e < df(ïr(y),i/(y')) < (l - 3^) 1dY<x (y, f + s ;

(3) d^((\j/ o (p)(x),x) < s et dya(((p o xfr)(y). j?) < s.

(ii) Sous la seule hypothèse de minoration de la systole, on ne peut espérer
améliorer le résultat de rigidité du groupe fondamental ci-dessus en un résultat de rigidité
homotopique ou homologique (voir la remarque 2).

(iii) Les hypothèses faites sur a dans le théorème 16 sont nécessaires : le réel a
ne peut pas être choisi arbitrairement petit par rapport à s ou arbitrairement grand

par rapport à |f- (voir le paragraphe suivant sur l'approximation d'une variété par un
graphe).

< iv) Dans le cas où (X, dx est un revêtement universel de lui-même (par exemple
si (X, clx) est une sphère de dimension au moins 2), le groupe des automorphismes
du revêtement universel est trivial. Le théorème 16 s'énonce alors de la manière
suivante :

Corollaire 18. Soit (X, dx) un espace de longueur compact qui. est un revêtement
universel de lui-même. Pour tout e > 0, si (F, dy) est un espace de longueur compact
(connexe) quelconque tel que daa((X, dx), (Y, dy)) < e, alors le groupe téî{Y, y)
est isomorphe à jti (F, y)[5e].

Une application directe du théorème 16 dans le cadre des variétés riemanniennes
est le suivant :

Corollaire 19. Soit Y une variété compacte qui admet une métrique go de courbure
sectionnelle oq < 0. S'il existe sur Y une suite de métriques (gn)nen d'entropie
volumique uniformément bornée (mais dont la courbure est de signe quelconque) qui.
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converge pour la distance de Gromov-Hausdorff, alors l'espace-limite (X, d) admet

un revêtement universel jt : X ^ X et, si y est un pointde Y, G (X, X) estisomorphe
à jt\(Y,y),

Preuve. La variété Y admet une métrique gi de courbure sectionnelle oq < — 1.

Si f)'i injjXgq), le groupe jti(F) est -épais (voir la définition dans [BCG1],
p. 9). Comme, par ailleurs, l'entropie des espaces (F, gn) est supposée uniformément
bornée par H et que, si n est suffisamment grand, diam(F, gn) < diam(X, d) + 1,

le point (iv) du théorème 2.1 de [BCG1] implique que, pour tout n suffisamment

grand, sys(F,g„) > ex
2i ' • D^ posons aiors £n

</<-.ii( >
- gn), (X, d)). Si n est suffisamment grand pour que 5e„ < 6e„ < qr — §£«.,

le théorème 16 implique que tri (F) ~ G (Y. Y) ~ G(X6s",X). Le théorème 11

permet de conclure.

Illustration : Approximation d'une variété par un graphe. Fixons un espace
de longueur compact (connexe) (X, d quelconque, semi-localement simplement
connexe : son revêtement universel est simplement connexe et G (X, X) est isomorphe
à jti (X, -Vo). On construit un graphe qui approche l'espace de longueur (pour la
distance de Gromov-Hausdorff) de la manière suivante : Si s < 1/4, considérons un e2-

réseau fini sur (X, dx), noté IRS2. On construit le graphe G (fini donc compact), dont
l'ensemble des sommets est Sls2, en mettant une arête entre deux points x et y de Sls2

si et seulement si la distance (sur X) entre ces deux points est strictement inférieure à

e ; on attribue alors à cette arête la longueur dx (x, y). On munit ensuite le graphe G
de la distance de longueur da naturellement induite par cette construction. On peut
alors vérifier que G est connexe par arcs et que deh((X, dx), (G, da)) < 4e(D + g)

(voir [Re], p. 117).
Le théorème 16 et sa preuve permettent alors de déduire le corollaire suivant :

Corollaire 20. Soit {X. dx) un espace de longueur compact (connexe), semi-localement

simplement connexe, de diamètre inférieur à D et dont la systole est supérieure
à sq. Soit G un graphe de recouvrement connexe construit comme ci-dessus tel que
dGn((X, dx), (G, do)) < Le rnorphisme canonique de aq(G, x0) sur art(X, Xq)
(associéà l'inclusion) est surjectifetapour noyau le sous-groupe jtx(G, vo)[q§]-

Ce corollaire découle de la preuve du théorème 16, en remarquant que l'isomor-
phisme p qui y est construit dans le cas général coïncide ici avec le rnorphisme
canonique associé à l'inclusion (où l'inclusion est dans ce cas une approximation de

Gromov-Hausdorff).

3.1. Démonstration du théorème 16. Le théorème 16 est une version quantitative
précisée du théorème 3.4 de [SW], dont certaines idées étaient déjà présentes dans
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[Tul] et [Tu2], Même si cette preuve s'appuie sur des techniques classiques, nous
avons décidé de la détailler, d'une part pour montrer que les idées classiques de

preuve (valables dans le cas d'applications continues) s'appliquent encore dans le

cas d'approximations de Hausdorff non continues, mais aussi pour montrer qu'un
calcul effectif des valeurs admises de « et de a est possible en fonction seulement du

minorant de la systole de (X, clx). Enfin, la comparaison des distances obtenues n'est

pas classique.
L'idée de la preuve qui suit est de discrétiser les courbes sur X pour les transporter

en des «courbes discrètes» sur Y à l'aide de l'approximation de Hausdorff entre X
et F. Si la discrétisation est assez bne, nous allons montrer qu'une courbe représentant

une classe de G(X. X) est envoyée sur une courbe représentant une classe de

G(F°\ F). Nous posons donc la débnition suivante :

Définition 21. Soit {X, dx) un espace de longueur. Une subdivision T (fi)/=o,...,P
de l'intervalle [0, a] sera dite ^-admissible pour la courbe c : [0, a] -> X si 0 to <
t\ <•••< tp a et si, pour tout i e {0, I p — 1} et tout t e [fi,fi + i],
,/.v(c(/;).(•(/)) < S.

Construction de l'application <p et du morphisme p. Notons p: (X,d^) —

{X, dx le revêtement universel de (X, dx et pa: (Ya.dYa) —> Y, dy le
a-revêtement de (F, dy). Soient tp: X —F une «-approximation, xt> un point fixé de X
êt la un point de p-1 (A"o)- Notons jfe <p{xo) et fixons un point y" dans (pa)~1(yo)-

Pour tout point X de X, nous allons construire (p(x). Soit c une courbe qui relie

xo à Ê dans X, c p o c et x p(x). Soit T (ti)i=i,...,p une subdivision S-

admissible pour la courbe c. On construit sur F une courbe cj qui joint yo <p{xo)

et (p(x) enjoignant, pour tout i, (p o c(q) à (p o c(q+1) par une courbe minimisante
quelconque de (F, dy). On relève ensuite cette courbe en une courbe (continue)
de Y01 telle que cf(0) ya.

Lemme 22. Si. c: [0,a] —X est une courbe incluse dans une boule Bx(x. r) et
si T est une subdivision 8-adrnissible pour c, la courbe cr est incluse dans la boule
By (vK-v r + |e + §).

Preuve. Pour tout t de [/,./, 11], comme <p est une «-approximation, on a

,/) (i/,(.v).<•/ (/ < dy((p(x). <po c(ti)) + dY((p0c(ti), «/ (/

</•+« + dy((p c(/,).c/ (/)).

On conclut en ajoutant à cette inégalité celle obtenue en remplaçant fi par fi + j et en
utilisant le fait que dY(<p o c(ti).cr(r)) est la longueur de «/•([/,. ?]).
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Lemme 23. L'extrémité cf (1) du chemin cf ne dépend ni du choix de la subdivision
T (si elle est 8-admissible pour S < |a — e), ni du choix des courbes minimisantes
entre les points (p o c(q) et <p ° c(ti + i).

Preuve. Soient S > 0 et 8' > 0 inférieurs à fa — e. Soit T (t, i (resp. T'
une subdivision de [0, a], ^-admissible (respectivement S'-admissible)

pour la courbe c. Construisons les courbes ct et cj', posons T" T U T' et
construisons ct».

Commençons par montrer que le lacet cT„.cf1 est un lacet de it\.(Y, v'o )[a], c'est-
à-dire qu'il s'écrit comme produit de lacets du type ß.c.ß~l, où c est un lacet inclus
dans une boule de rayon a et ß est un chemin entre vy et y.

Tout d'abord, si ßj et si yi est le lacet de point base p o c(q) donné

par y, cr"|[qq;+1]-cr|p;^;+1]> on a, enhomotopie : nfJo ßf-Yi-ßß1 cT».cßl.

Par ailleurs, comme le lacet cUl est inclus dans une boule de rayon S.

le lemme 22 implique que le lacet y, est inclus dans la boule By (<p o c(/, | (S + e)).
Dès que a > |($ + e) on en déduit que tous les lacets de la forme fß.yj.ßß1
appartiennent au groupe tt, (Y. v0)[«] ; il s'ensuit que le lacet cT„.cfl appartient
également à tti(F, v() )[(/]. D'après la proposition 12, il se relève sur Ya en un lacet

cf„,(cfl)a où c".,, et (cyx f sont les relevés des courbes ct" et ry1 d'origines
respectives y" et c£„(a). Comme (ctßl)a[a) y01 c"(0), on a (Cjl)a (c^.)-1
et il s'ensuit que les courbes cf„ et c" ont même extrémité.

On montre de même que les courbes cß„ et cß, ont même extrémité et, finalement,
si a > | (S + e), les courbes Cj. et cß, ont même extrémité, ce qui termine la preuve
du lemme 23.

Remarque 24. Le lemme 23 entraîne que l'on peut toujours remplacer une subdivision

à-admissible T par une subdivision T'plus fine (ce qui veut dire que S peut être

choisi arbitrairement petit) pourvu que 1

A tout point x de X, on associe le point ïp (x construit de la manière suivante :

soit c une courbe quelconque reliant _v0 à i et soit c p o c sa projection sur X. A
toute subdivision ù-admissible de c (pour S < |a —s), notée T, on associe la courbe

ct de Y construite comme au lemme 23 et l'on pose îp(x) Cj{ 1), où cf( 1) est

l'extrémité du chenùn cf<.

D'après le lemme 23, ip{x) ne dépend pas de la subdivision T. Pour s'assurer que
l'application <p est bien définie, il nous reste à vérifier que la construction de ïpix)
ne dépend pas du chemin c choisi entre .v0 et x, c'est-à-dire que si y est un autre
chemin qui relie ces deux points, alors y^(l) cf (1). D'après la proposition 12,

ceci équivaut à prouver que yr-Cj1 appartient à jt\ {Y. _Vo)[«]. Nous commençons
par montrer quelques résultats intermédiaires et nous montrons l'indépendance de la
construction de p par rapport au chemin choisi dans le lemme 27.
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Lemme 25. Soient c et y deux lacets sur X tels que dans jti(X, x0)/jti(X, x0)[r]
on a [c]'" [y]r et soit T une subdivision 8-admissible pour c et y.

Si a £ f + I# + | et si 8 < |a — s, on a l'égalité [cy]" V/tT dans

rri(Y, y0)/ni(Y, jo)[a].
En particulier, si c et y sont homotopes et si a > |g + on a l'égalité [cy]"

[yr]" pour toute subdivision T, poumi qu 'elle soit 8-admissible pour c et y.

Preuve. Considérons deux lacets quelconques c et y de X, de point-base x(), et notons
a c.y le lacet obtenu par concaténation. Si T' (f/);=o,et T"
sont des subdivisions ^-admissibles de c et y, la subdivision T T' U T"
(ti)i=o,...,p+q, obtenue en concaténant les deux subdivisions et en identifiant et

t', est ^-admissible pour a. Comme la classe de aj dans ;yi(F,yo)/^i(F, jo)[a]
ne dépend pas des chemins minimisants choisis entre les points (p o a(q), on peut
construire a y comme la concaténation de cy< et de yy».

De même, si ç est une courbe sur X, on construit (c-1 )y comme égale à (cy )_1.
Si de plus, [c]'" [y]r, le lacet a y.c-1 est alors un produit de lacets du

type ß.yj.ß~1, où chaque y/ est un lacet inclus dans une boule Bx(xi,r). D'après
la propriété de concaténation que nous venons d'établir, le lacet ay peut alors être

construit comme un produit de lacets du type ßT[. y,r, -ßß\ > où y, ^ est inclus (d'après

le lemme 22) dans la boule By((p (.y, r + §e + | Comme By (y (Xi r + | e + |
est incluse dans By((p(xi),a), on a [ay]" [e]". Par ailleurs, comme [ay]"
tyytmïy/]", on a [yT„]a [cT,]a.

Si de plus y et c sont deux lacets homotopes, alors, pour tout r>0, [c]r [y]r dans

jti(X, xo)/jti(X, -Yo)[r], Si a > |e + |, posons r a — |e — | > 0 : il découle du

point (i) du lemme 25 que [cy]" [yy]".

Lemme 26. Si |(ù + e) < a < et si c parcourt l'espace des lacets de point-base
x0, l'application c \-+ ct (où T est une subdivision quelconque 8-admissible pour c)
induit, par passage aux classes d'homotopie, un morphisme

p\ jt\(X, xo)/rt\(X, Vo)!^-] —* JTi(Y,yo)/jTi(Y, yo)[a].

Rappelons que

7ra(X;%Byjra{X;%ff>[f] M G(X, X)) et ^(F, y0)M(F,y0)H G(F",F).

Preuve. D'après la proposition 15, puisque sys(X, d\ > codes groupes tt, (X. _v0 [/•]

et jti(X,xo)[y] sont égaux pour tout 0 < r < y. En particulier, si a < y et si

a — |e — | > 0 et si c et y sont deux lacets tels que [c]£°/2 [y]e°(2, il en découle

que [c]a~is~i [y]a~is~i. Si T et T'sont des subdivisions ù-admissibles pour c

et y, le lemme 25 entraîne que [cy]" [yy]" ; l'application p est donc bien déhnie.
Le fait que p est un morphisme découle du fait que [cy]" e et de la propriété
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de concaténation, établie quand a > | (5 + s) dans la preuve du lemme 25 : si

a c.y et si T T' U T", alors «y et cy<.yy<< représentent le même élément de

jti (F, _v(j )/ jt ] (F, >•())[«]. Ceci termine la preuve du lemme 26.

Lemme 27. Si |(<5 + e) < a < #, la construction de <p(x) ne dépend pas du choix

du chemin M, pourvu que celui-ci relie Jq à x dans X; l'application <p: x —> p(x)
est donc correctement définie.

Preuve. Si 3: [0,1] —* X et y: [0, 1] —>• X sont deux chemins continus d'origine
.v0 et d'extrémité x, et si l'on note c p o 3 et y p e y, le chemin y.c-1 est un
lacet de X dont un relevé est le lacet y.(c)-1. Il s'ensuit que le lacet y.c-1 appartient
à jt\(X, x0)[y] (d'après la proposition 12). Si T est une subdivision ^-admissible

pour les courbes y et c, le lemme 26 permet d'en déduire que

M" P({y.c-lr'2) [YT-ictr1]"-

Le lacet yy.(cy)-1 sur F appartient donc à yo)[a] : son relevé yf.{cj)~l est
alors un lacet sur Ya et les relevés y"r et c"- des courbes yr et cy, qui ont même

origine ya, ont même extrémité dans F". Il en découle que la construction de p ne

dépend pas du chemin choisi entre xq à x.

Construction de l'application f. Soit fi : F —X une e-approximation de Haus-
dorff «presque-inverse» de l'approximation y (c'est-à-dire que fi et y vérifient le

point (ii) de la définition 10). On peut supposer, sans nuire à la généralité, que

fi o (p(x0) fi (jo x0. On construit alors l'application fi\Ya —> X et le

morphisme r : jxi{Y,y0)/ixi{Y,yo)[a] jxi(X, xq)/jx\{X, x0)[y] comme on a

construit l'application p (en relevant cette fois-ci l'application fi) et le morphisme
p. Il suffit pour cela de remarquer que X est le ^-revêtement de X. Comme dans le
lemme 23, on montre l'indépendance de la construction par rapport au choix de la
subdivision T ^-admissible pour S < ^ — s, ainsi que l'indépendance par rapport au

choix des courbes minimisantes entre les points fi o e{H) et : <'(/, • i )• Par ailleurs,
si y > a + Ie + I l'application

/•: JTi{Y,yo)/jTi(Y,yo)[a] —» jrijX.xoj/jrHX.Xolf^]
[c]« ^ [afo/fi

induite par passage aux classes d'homotopie est bien définie. En effet, si c et y sont
deux lacets de F tels que [c]a [y]", le lemme 25 implique que [cy]f"/2 \yrY"/2.
On montre comme dans le lemme 26 que, sous ces conditions, l'application r est un
morphisme. L'application fi est alors bien définie dès que f > a + \e.
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Preuve des inégalités du théorème 16

Lemme 28. Si |e < a < Ç — |s, les applications fi et fi (bien) définies ci-dessus

vérifient, pour tous les points x et x' de X et pour tous lés points y et y' de Ya,

(i) dY<* (fi(x), îp(x')) < (1 -||) 1

d^(x,x ') +$f
(ii) d^(fi(y), fi(y')) < (l - 3 ~^)~l dY<* (y, y') + s.

Preuve. Comme |e < a < Ç., le leimne 27 nous assure l'existence de fi. De même,

comme a < 41 — |g, l'application fi est bien définie.

Choisissons un réel S qui vérifie 0 < S < min ] |a — s, ç0 — 3e — 2a).
Soient c une courbe minimisante qui relie les points .y et x' dans X et y un chemin

qui joint les points .v0 et jf) Pour construire fi(x'), comme |(<5 + e) < a < Ç (par

choix de 8) et s < le lemme 27 nous permet de choisir le chemin ß y.c comme
chemin qui relie x& et .v'. Si T (resp. T) est une subdivision (»-admissible pour f
(resp. c) paramétrée par [0,1] (resp. [1,2]), alors T U T' 7j est une subdivision
(»-admissible pour ß.

Posons 8' a — ê et hxons un réel r\ > 0. Construisons une subdivision T" de

[1.2] ((»'-admissible pour la courbe c) de telle sorte que les points <?(/, (pour tous les

éléments ß e T" \ {2} sauf le dernier) vériûent dy(c(ij c(ti + \ 8' — rj. Alors,
la subdivision T2 T LJ T" est une subdivision de ß qui, bien que n'étant plus 8-

admiSsible, permet de construire une courbe ß"2 de Ya qui a la même extrémité que

ßjt d'après le lemme 23 et le paragraphe qui le suit (car on a bien alors a > |((5'+e)).
On a donc, puisque i >0(1) et S' ß(2),

m Yri D ß%iV et fi(x>) ßfifi) ß%{2).

Ainsi,

dYa(fi(x),fi(x')) < Y. dY"(ßf2(h)4^2(ti + l))-
ti&T"\{2}

Puisque la courbe fi"2 est la courbe relevée de ßr2, on a

dY*^tk),Pfz<ti+ï)y < long (ßT2\lti,ti+1ß lon§

dY((p o ß(ti), (p o fi(ti + i)) < dx(ß(ti),ß(ti+i)) + e

< d^(ß(ti),ß{tl + i)) + fi,

la dernière inégalité provenant du fait que p est contractante.
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Par ailleurs, comme T" c [1,2] et comme jSp^l c est minimisante, en
sommant et en faisant tendre rj vers zéro, on en déduit que

(CIy{x,X') \
(Y

^ 1

ce qui termine la preuve de la première inégalité du lemme 28.

On procède de la même manière pour la deuxième inégalité du lemme 28, en

remplaçant p par f et v et jf par deux points quelconques f et y' de Ya. La seule

différence réside dans le fait que, pour pouvoir appliquer le lemme 23, il faut remplacer
a pat ® et S' par 8" y — s. On trouve ainsi

dfitiy)' fiy')) < + 1

ce qui termine la preuve du lemme 28.

Lemme 29. Les applications îp et f vérifient, pour tous les points x de X et pour
tous les points y de Ya,

(1) •: p)(x).x) < s a £ <

(ii) dya({p o f)(y), y) < s si. s <

Preuve. Soit c une courbe qui joint .v0 et | ; fixons une subdivision T (/,• )o<, <,v
^-admissible pour c. Nous allons prouver par récurrence sur / que, si c". est la courbe

sur Ya associée à c p oc selon le procédé décrit avant le lemme 25, alors, pour
tout ti m T,

dfif o 4(q), c(ti)) < e, (H,

Ceci est vrai au rang f 0, puisque fi(yo) par constmction.

Supposons que ce soit vrai à l'ordre t, alors

(1 dj{f oc" (q <~(// ))< s par hypothèse de récurrence,

(2) dg(xfi o cfLi c(t,+1 < e + 8 par l'inégalité triangulaire.

Par ailleurs, la courbe c-j- est un relevé de la courbe cp minimisante entre les points
(p o c(ti) et (p o c(ti+1 ce qui implique

dy'(c^(tîlcf(rl+l)) < long (4|[?.^.+i]) long (<r|,v.q. ])

drip - < (//). y - <•(/, i < 8 + e,

En utilisant la deuxième inégalité du lemme 28, nous en déduisons l'inégalité

(3) d%{ty o <4(q)4 o 4(^+1» < (1 ~ 3^) *(<5 + e) + e < ^-{8 + fi) + e,
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la dernière ligne étant valable parce que s <
Si l'on choisit S tel que (S + e) + e < les membres de droite des inégalités

(2) et (3) sont majorés par Comme (X ,dy) est isomorphe au ^-revêtement
{XE°l2,dXe0/2) de X, le point (i) de la propriété 13 implique que les points 1p o

çf(ti+1) et c(ti+1) sont les uniques relevés de V ° f [c(h+i)] et de c(q+1) dans la

boule de X de centre fi 0 c".(i/ et de rayon Comme, d'après le point (ii) de la

propriété 13, l'application p est une isométrie en restriction à cette boule, on a

dx(f 0 cj-(ti + i),c(ti+i)) dx(fi o(p{c{tI + 1)),c(ti+i))

ce qui prouve l'inégalité (Hi) pour tout i. En l'appliquant pour i, 1, on obtient

dy(fi o <p(x), x) < s. Ceci termine la preuve de la première inégalité du lemme 29.

Montrons la deuxième inégalité : soit c" une courbe qui joint y01 et y dans Ya ;

hxons une subdivision T (/, )o<, <,v (^-admissible) pour c" et constmisons la
courbe cj de X et son relevé cj- sur X associéês à la courbe c pa oc". On prouve
par récurrence que, pour tout |eî,

dy (0 o <"/ (/;). <•"(//)) < s. (HQ

La preuve est identique à celle que nous venons de faire, à condition d'y
remplacer îî> par îp, c". par if et Q par a. On obtient ainsi que, si s < f, alors

dy (p o 1jr(y):, y) < s.

Lemme 30. Si 5s < a < ^ — |e, les applications 0 et 1f définies ci-dessus vérifient,

pour tous les points f et x' de X et pour tous les points y et y' de Ya,

s
1 —3—\clx(x,x') — 3s] < dY»(0(x),0(x'))

et

f 1 - ^ j \dY<*(y,f) - 3e] < dx(f(y), 0(y')).

Preuve. Remarquons que l'hypothèse 5e < a < Xfi — -e implique que fi < f,
que e < et que |e < a, d'où la validité des lemmes 23 à 29 pour une valeur
suffisamment petite de S. En appliquant l'inégalité triangulaire et le lemme 29, puis
le lemme 28, nous obtenons

dx(x,x') < dx(yß o <p(x), fi o 0(x')) + 2e

< ^1 — 3— j cIyoi(<p(x), 0(x')) + 3e,

ce qui donne la première inégalité du lemme 30.

La deuxième inégalité se montre exactement de la même manière.



Vol. 83 (2008) Rigidité topologique sous l'hypothèse «entropie majorée» et applications 831

Le morphisme p est un isomorphisme

Lemme 31. Si 5e < a < le morphisme p défini dans le lemme 26 est un

isomorphisme dont l'inverse est le morphisme r défini dans la section «Construction
de l'application fi ».

Preuve. Rappelons tout d'abord que (X, dx) est isomorphe à (Xf:"-/2. dxs0/s).
Notons [c] la classe d'un lacet c sur X dans le groupe jxi{X.xq)/ixi{X,x0)[^-], I le

relevé de ce lacet à X d'origine f0 et h'Y la classe d'un lacet y sur F dans le groupe
jï\{Y,yo)/jti{Y,y0)[a} et ya le relvé de ce lacet à Ya d'origine ya. L'action de

7Ti(Z, xq)/tti{X, (respectivement de jt^F, y0)4i(X, jo)M) sur X (resp.
sur F") étant définie par [c].Â'o c(l)(resp. [y]a.ya ya(l)), on a, pour tout lacet

c (resp. y) de point-base x0 sur X (resp. de point-base yo sur Y").

(4) r([y]°).xo [yH~*o YT'(D fi(yad)) fiiWY),
(5) p([c]).ya [cT]a.y01 4(1) fi(c( 1)) fi({c]X0),

où T (resp. F')est une subdivision (»-admissible de c (resp. de y) et où S est choisi
suffisamment petit pour que, sous l'hypothèse 5s < a < — |e, toutes les hypothèses
des lemmes 23 à 29 soient vérifiées. On obtient ainsi

(/• °p([c])).Xo fi[p([c])-ya] fi o#fc]Jo).

En appliquant le lemme 29, il s'ensuit que

df{ [r ° p(W)l -Vu- MJù) < «v

Les points r o p([c]).va et [c].x0 sont donc deux éléments de p~l{xfi) situés à une
distance inférieure à e et, si s < f, ils sont confondus d'après le point (i) de la

propriété 13. Ainsi, comme l'action de nfiX. xq)/n fiX. xq)[^-] sur X est sans point
fixe, on a r o p id.

On prouve de même que for id, donc que p et r sont des isomorphismes
inverses l'un de l'autre.

Equivariance des applications <p et fi. L'action de ttj (X, xq)/tti (X, vo)^] décrite
dans la preuve du lemme 31 explicite l'isomorphisme #,g(} entre ce groupe et le groupe

G(X,X) des automorphismes de revêtement; <LVn([c]) est défini comme l'unique
élément de G(X, X) qui envoie xq sur c( 1) où c est le relvé de c d'origine _v0. Bien

que F dépende du choix de .v0 dans la fibre au-dessus de xq. nous adopterons,

par commodité, la notation [c].x pour FAll([c])..ï. La même remarque vaut pour
l'isomorphisme entre jt\(F, joV^i (F, v'o)[«] et G(F°\ Y). Moyemiant cet abus de

langage, on peut énoncer le lemme suivant :
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Lemme 32. Pour tous les points x de X et y de Y01, pour tous les éléments [y] de

xo)/jti(X, xo)IÇ] et tousles éléments [ß]a de it\{Y, yo)/jti(Y, vo)[«], on a

(p([y].x) p({y]).ïp{x)

f(W-y) r([ß]a)-ß(y).

Preuve. Ce lemme a déjà été prouvé dans le cas où x x0 el y y", puisque nous
avons déjà vu que [c]a.ya est l'extrémité du relevé ca de c d'origine ya. Si f est un
point quelconque de Ya, choisissons une courbe ba qui joint ya à y et notons h la
courbe relevée de b pa°ba en partant de l'origine [c]a.ya ca{ 1). On a alors,

(6) [c]°vv extrémité de b

extrémité du relevé ca.b dans Ya) de la courbe c.b d'origine ya.

En effet, la courbe t_ —[c]a,ba{t) est un relevé de h de même origine que h ; elle
coïncide donc avec b et, comme p —X est galoisien,

extrémité de b [c]a.(extrémité de ba) [c]a.y.

Choisissons des subdivisions ù-admissibles (pour I assez petit) T et T' de c et b

respectivement et notons T T'U T" la subdivision concaténée de (c.b Rappelons

que

(7) [cr] r([c]œ),

(8) iA v î/(ha( 1) extrémité du relevé br" de b-r» d'origine xo. On en dé¬

duit que

~l/{[c]a.y) x[r(extrémité de ca.b)

extrémité du relevé (c.b)-/- de (c.b)j d'origine xo

extrémité du relevé de CT'-br" d'origine xo

[cy],(extrémité du relevé h-/-» de br» d'origine xo)

kH-Rf)
r([cr).f(y),

où la première et la quatrième égalité découlent de (6), la seconde et la cinquième
de la délinition de f (voir (8)), la troisième de la construction de (c.b)-/- à

partir de c.b qui donne (c.b)r c-/-•}>/•" (ce choix étant rendu possible par le
lemme 23) et la sixième des égalités (7) et (8).

Ceci prouve l'équivariance de f par rapport à la représentation r ; l'équivariance
de îp par rapport à p se prouve de la même manière.
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3.2. Convergence des revêtements universels et complétude. Dans cette partie,
nous montrons le résultat suivant :

Proposition 33. Tout ensemble de classés d'isométrie d'espaces de longueur
compacts qui admettent un revêtement universel et dont la systole est uniformément
minorée est complet pour ta distance de Gromov-Hausdorjf.

Comme l'ensemble des classes d'isométrie des espaces de longueur compacts
est complet pour la distance de Gromov-Hausdorff (voir [Gr], proposition 3.8), la

proposition 33 découle de la proposition suivante :

Proposition 34. Soit ((Xn, dn))nn une suite d'espaces de longueur qui possèdent
un revêtement universel et dont la systole est uniformément minorée par go. Si

((Xn,.dn))neN est de Cauchy pour la distance de Gromov-Hausdorff, alors elle

converge au sens de Gromov-Hausdorffvers un espace métrique de longueurcompact
(F cIy) qui a les propriétés suivantes :

(i) (F, dy) admet un revêtement universel, noté (F, éf) ;

(ii) le revêtement Y" Y est isomorphe au revêtenwnt Y —> Y pour tout réel a
tel que 0 < a < Ä (donc la systole de (F, dy est supérieure à e0);

(iii) {Y,clf) est la limite pour la topologie Gromov équivariante (au sens de la

définition de [Fu]) de la suite des revêtements universels ((Xn,dg ))nen-

Remarquons que le revêtement universel de (Y,dy) n'est pas nécessairement

simplement connexe, même si les revêtements universels de tous les espaces X„ le
sont (voir l'exemple 3.76 de [Re]).

Preuve de la proposition 34. D'après le théorème 11 de C. Sormani et G. Wei, pour
montrer le point (i), il suffit de vérifier que, pour tous les réels a et a' tels que
0 < a' < a < %, les revêtements pa : Ya —> F et /v : Y" -h» Y sont isomorphes.

Comme a' > a, on a clairement un revêtement jt : Ya' —Ya rendant le diagramme
suivant commutatif :

Y«' » Ya

Y.

Nous allons vériûer que n est un isomorphisme de revêtement.
Soit g > 0 un réel tel que g < |§ et 5g < a' < a < ^ — |g et soit n un

entier suffisamment grand pour que dc,\\((Xn. d„), (Y. dy)) < s. On applique le
théorème 16 au revêtement pa: F" —Y puis au revêtement par. Y01 Y. Or,
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dans la preuve du lemme 26, on montre qu'il existe un point x„ de X„ et un point yo
de Y tels que l'application

rn: jri(F. vo) —* t(î»
[c] i—* [cT]

soit un morphisme dont le noyau contient it\ (F, yo)[«] et jï\ (F, >'o )[«'].
Il s'ensuit que le morphisme r„ passe au quotient en deux morphismes

r": 7Ti(Y,y0)/jti(Y, yo)[«] —* ni{X„,xn)/jTi{Xn,x„)[^\
Jt\(Y,yo)/iTi(J,yo)[a'\ —* Jti{Xn,xn)/iti{Xn,xn)[^\.

Le lemme 31 prouve que ces deux morphismes sont deux isomorphismes ; il en
découle que les groupes ®i(F3 Vo)[«], Ker r„ et tt, (Y, yo)[a'] sont égaux. Le corollaire

IX.3.6 de [Go] permet d'en déduire que jt: Ya Y" est un isomorphisme de

revêtement. Les revêtements pa : Ya —>• F et /v : Ya * Y sont donc isomorphes

pour tous les réels 0 < a' < a < ®. Le théorème 12 de [SW] implique que l'espace
F admet un revêtement universel (ce qui termine la preuve du point (i)) et que ce
revêtement universel est isomorphe à pa : Y" Y pour tout a e |(), y [ (ce qUi
termine la preuve du point (ii)).

Pour vériûer le point (iii), il suffit de remarquer que, si 0 < a < Ç et 0 < 5e <
a < y — le et si n est suffisamment grand pour que r&wffJL,.. dn (F, cly)) < &,

les applications îp et îj/ construites dans le théorème 16 sont des [ 2a_ 3g + ^]fi"

approximations de Gromov-Hausdorff entre les boules de rayon R des espaces X et
Ya Y, respectivement p-équivariante et (p)_1-équivariante.

3.3. Continuité uniforme du spectre des longueurs et isospectralité. Soit (X, d)
un espace de longueur compact^semi-localement simplement connexe. Notons oc la
relation d'équivalence sur G (X ,X) définie par y — y' si et seulement s'il existe

g e G(X. X) tel que y g'1 y'g.
L'application lx : y -* iuf i dy(x. y.x étant constante sur les classes de

conjugaison de la relation —, le spectre marqué des longueurs est l'ensemble des valeurs

prises, avec multiplicité, par l'application l\- : G(X, Xjf ——? R+ obtenue par
passage au quotient de l'application lx. Le spectre non marqué des longueurs est
l'ensemble des valeurs prises par /.y. sans multiplicité.

Corollaire 35. Soient {X, dx) et (F, cly) deux espaces de longueur dont la systole
est minorée par s0 et tels que dGh((X, éx), (F, dy}) - t: < y.

Soit (/>.$*$) un triplet vérifiant les propriétés du théorème 16 et p la Injection

induite par p entre les ensembles de classes de conjugaison G(X,X)/ — et
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G(Y,Y)/ AlotSy pour tout sloriîCHt y de -^0/

(1 ~ e^) - ^Y(p(yï) - (1 ~ kW + s.

Preuve. Soit g un élément de G(X. X), montrons que

j Ux(g)-s) < h(p(g)) ' I Ixig) + fe

D'après le théorème 16 (remarque 17), comme p est p-équivariante, en faisant tendre

a vers % — |e, on obtient :

clf(x,g(x)) > £q^3£) (df[ë(x),(p(g(x))\ ~ s)

> fi - - | (dy [(p(x), p(g).(p(x)\ - e)

En prenant la borne inférieure en x, nous obtenons

hig) ' I J (h(p(g)) — i

La minoration dans la double-inégalité du corollaire 35 se démontre de la même

manière en utilisant l'inégalité suivante :

àf(y*g(y)) t (î - ^ -£) •

Corollaire 36. (i) L'ensemble des classes d'isométrie des espaces métriques de

longueur compacts isospectraux pour le spectre des longueurs (marqué ou non-marqué)
est un sous-ensemble complet de l'ensemble des espaces de longueur compacts muni
de la distance de Gromov-Hausdorff.

(ii) Tout ensemble de classes d'isométrie de variétés riemanniennes compactes
isospectrales (pour le spectre du laplacien) de courbure sectionnelle strictement
négative est d'adhérence compacte dans l'ensemble des espaces de longueur compacts
isospectraux à ces variétés (pour le spectre non marqué des longueurs) muni de la
distance de Gromov-Hausdorff.

Preuve. Considérons une suite de Cauchy {(Xn, dn )nÇ\ \ d'espaces de longueur
compacts isospectraux. Comme la systole ,v0 est donnée par le spectre non marqué des

longueurs, la proposition 34 implique que l'espace-limite de longueur (X. cl) possède

un revêtement universel et que sa systole est minorée par s0. Le point (i) découle alors

du corollaire 35.
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Le point (ii) provient du résultat de Y. Colin de Verdière (voir le corollaire de [CV])
qui assure que, sous les hypothèses du point (ii), deux variétés isospectrales ont même

spectre des longueurs non marqué (donc même systole L) et même volume. Comme
les variétés considérées sont de courbure strictement négative, sur toute variété de la
famille considérée, les boules de rayon L/2 sont de volume uniformément minoré et
la proposition 5.2 de [Gr] assure que la famille est précompacte pour la distance de

Gromov-Hausdorff. Le point (i) implique finalement que 1 ' adhérence de la famille est
incluse dans l'ensemble des espaces de longueur compacts isospectraux aux variétés
considérées (pour le spectre des longueurs non marqué),

4. Ensembles d'espaces de longueur d'entropie majorée

Si (F, cIy) est un espace de longueur connexe par arcs, complet et localement compact
et si hy est une mesure borélienne sur Y, on définit son entropie volumique par rapport
à la mesure ßy de la manière suivante :

Ent(F, dy.py) liminf ^-\og[ß¥ (B(y, R))].
R—^+00 K

Si (X, dx) est un espace de longueur compact qui possède un revêtement universel

l'entropie de (X, dx) est par définition l'entropie volumique de (Y, df)
muni de la mesure de comptage sur l'orbite d'un point sous l'action du groupe
G(X,X).

4.1. Continuité uniforme de l'entropie.

Théorème 37. Soient (X,dx) et Çf,dy) deux espaces de longueur compacts qui
admettent un revêtement universel. Si la systole de (X. clx) est minorée par eo > 0

et si 4äat((Y, dx), (F dy)) t: < alors

(i) Pour tout a e ]5&, ^ — |e[,

1 ~ S) Ent(^'dx) ~ l';nl(ra'- dYa>< 1 - ^ Ent(Y, dx),

où ßYm est la mesure de comptage de l'orbite d'un point sous l'action de

G(Ya. Y) stir Ya.

(ii) Ent(F, dY) > (l - Ent(Y, dx).

(iii) Si, de plus, sys(F, df) > eo, alors

(l- — Ent(Y, dx) < Ent(F, dY)<[ 1 - - Ent(Y, dx).
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Preuve. Si (/>.£, ïfr) est un triplet vérifiant les conclusions du théorème 16, tout
élément y de G(X, X) vérifie

</y(.v./>
1

(v)(-v)) < j\î - ^ j \dy ,(f(x).f(p
1

{;')(-v))) + 3e].

Il en découle que, pour tout R > 0,

logJVRi,[r°.Jil l°8*4*.(« + 3s)(!-gr'](Ji + 3«)(l-g)\-l
R («+«h - ir' R

En passant à la limite inférieure quand R tend vers +oo, on obtient l'inégalité de

droite du point (i).
On montre que Ent(X, dy) < (1 — Ent(Fœ, dy« ß Y" de la même

manière, à partir de l'inégalité :

/ 3s\_1
dya((p(x), <p(y.x)) < M — — j djr(x. y.x) + e.

Le point (ii) découle du point (i). En effet, {Y.df) (Y". dy Y, dy
est une chaîne de revêtements et notons que, si ya Jta(y), alors na
envoie Bf(y, R)(resp. G(F, Y).y (F1 (v surjecli vemcnl sur Byy (ya, R)
(resp. sur G{Ya ,Y).ya /Ç1 (y Ceci implique que EntO7", dy, /i y a <

Ent(F, dy, H y Ent(F, dy L'inégalité de (ii) se déduit alors en faisant tendre

a vers Ç — |e dans (i).
Si l'on suppose de plus que sys(Y.dy) > Sa, pour tout a vérifiant l'hypothèse

du point (i), Ya est le revêtement universel de F. Comme nous l'avons remarqué
au début de cette section, on a alors Ent(F, dy Ent(Ya,dya, /ia). L'inégalité de

droite du point (iii) découle donc directement du point (i). Comme dans ce cas les

rôles des espaces X et F sont symétriques, l'inégalité de gauche s'obtient à partir de

l'inégalité de droite.

La continuité uniforme de l'entropie sous l'hypothèse de minoration de la
systole (théorème 37) associée au résultat de complétude sur la famille des espaces de

longueur dont la systole est minorée (voir le théorème 33) implique la proposition
suivante :

Proposition 38. Si une suite ((Xn, r/„))„eN d'espaces de longueur qui possèdent un
revêtement universel et dont la systole est uniformément minorée converge vers un

espace de longueur (F, dy)au sens de Gromov-Hausdorjf, alors (F, dy) possède un

revêtement universel et la suite (Ent(X„, dn))nejq converge vers Ent(F, dy

Notons que, contrairement au théorème 37, nous ne faisons ici aucune hypothèse
sur l'espace F.
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4.2. Complétude de familles d'espaces de longueur d'entropie majorée Dans

cette partie, nous appliquons les résultats précédents à la famille Mn.h.d définie

p. 817, En effet, rappelons qu'il est montré dans [BCG1] (voir le théorème 2.1)

que, sur la famille Mn.h.d, la systole est uniformément minorée par %

j<-jl log (jzpJrjrrm)- Les résultats précédents peuvent donc s'interpréter de la
manière suivante :

Théorème 39. L'espace métrique (Mn,h,d,cIgu) est complet.
Deplus, il existe une constante £o % (N, H. D) explicite telle que, sur les boules

de rayon ||, le groupe des transformations du revêtement universel est constant et

l'entropie volumique est f^-lipschitzienne.
£-0

Preuve. Posons £o joj log (^Jnhd)-
Considérons une suite ((Xn, dn))nen d'éléments de Mn.h.d qui converge vers

un espace métrique (F, dy au sens de Gromov-Hausdorff. D'après le théorème 3.8
de [Gr], l'espace (Y.dy) est un espace de longueur compact. De plus, la suite

(diam(F„, d„ ))„eN converge vers diam(F, dy). qui est donc également majoré par D.
La systole de chaque espace (X„.d„) étant minorée par e0, la proposition 34

implique que Y admet un revêtement universel et que sa systole est minorée par êq • Le
théorème 16 implique alors que, si n est suffisamment grand, le groupe G(X„. Xn) est

isomorphe à G(F, F). Le groupe G(F, F) est ainsi de centre réduit à zéro et possède
la propriété FSG(/V). Finalement, la proposition 38 implique que Ent(Y.dy) est
la limite de la suite (Ent(F„, dn))ne^ et est ainsi inférieure à H. L'espace-limite
(F, dy) appartient donc à la famille Mn.h.d, qui est complète pour la distance de

Gromov-Hausdorff.

Notation : désigne le sous-ensemble de My.u.n constitué des classes

d'isométries des variétés riemarmiennes compactes de dimension m, dont le volume
est majoré par V et dont le revêtement universel ne possède pas de lacets géodésiques
de longueur inférieure à L (cette dernière condition est une condition vide dès que la
courbure sectionnelle est négative).

Il est montré dans la proposition 4.1 de [BCG1] que la famille Mm^,H.D.v,L est

précompacte pour la distance de Gromov-Hausdorff. Il découle donc du théorème 39

le corollaire suivant :

Corollaire 40. L'adhérence del'ensemble h, d,v,l est compacte dans Mn,h,d
muni de la distance de Gromov-Hausdorff.

Un problème ouvert est de caractériser les espaces métriques de longueur qui sont
dans le bord de cet ensemble.
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4.3. Obstructions à ce que la courbure soit arbitrairement petite. Dans les
années '80, M. Gromov posait la question suivante : «Lxisle-l-il des obstructions
topologiques ou géométriques au fait qu'une variété M de dimension n admette une

métrique riemamiienne dont la norme L" '2 de la courbure soit arbitrairement petite
(i.e au fait que infg fM | courbure (g)\n/2 clvg 0, où g parcourt l'ensemble des

métriques riemanniennes). Dans la version faible de cette conjecture, la courbure

invoquée est la courbure sectionnelle et les formules de Allendoerfer-Chern-Weil

pour les classes caractéristiques montrent qu'une obstruction est que /(M") 0.

La question de M. Gromov concerne alors les dimensions impaires. Dans la version
forte, la notion de courbure invoquée est la courbure scalaire (et la question reste
alors ouverte en toute dimension n > 3), mais la même question est également
ouverte lorsque la notion de courbure invoquée est la courbure de Ricci. Une réponse a

été donnée par C. Lebrun pour certaines variétés de dimension 4, l'obstruction étant

exprimée en terme d'invariants de Seiberg-Witten.

Proposition 41. Soit (X.clx) un espace de longueur compact fixé qui admet un
revêtement universel et dont la systole est minorée par eq.

(i) Si G(X, X) est infini, parmi toutes les variétés riemanniennes compactes,
connexes, de dimension m [Y, g) qui vérifient dc^HX, clx), (Y, dg s < S,
U n 'en existe aucune telle que

(ii) Pour tout réel s', il existe une constante (explicite) C C{m,e', X) telle que,

parmi toutes les variétés riemanniennes (F, g) compactes, connexes, m-dimen-
sionnelles qui. vérifient c/gh((F, clx), (F, clg)) s < il n'en existe aucune
telle que

où r(x) est la plus petite valeur propre du tenseur de courbure de Ricci sur
l'espace tangent TX(Y) et où r-(x) max(0, —ripe)) est sa partie négative.

Preuve. Supposons par l'absurde qu'il existe une variété riemamiienne (F, g)
vérifiant simultanément (U\\\((X. clx), (F. clg)) e < || et

Ent(X, clx)

(m — 1)

4e
1

£o

2

Ricci(F, g) > —(m — 1) g-

2

Ricci(F, g) > —(m — 1) g-
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Le point (ii) du théorème 37 implique que

Ent(F g) Ent(F, dg) > | 1 - - j Eut (F, dx).

Si Ent(F, dx) > 0, ceci entre en contradiction avec le théorème de R. L. Bishop qui
donné

Ent(F,g) < fi" — }Ent(Xrfy).

Si Ent(F, clx) 0, notre hypothèse implique que Ricci (F g) > 0 et, comme F
est compacte, le théorème de Myers implique que tti(F) est fini. Il en découle que
G(F°\ F) (pour a e]5g, Ç - |e[) est fini, donc G(X, X) est fini d'après le
théorème 16. Ceci termine la preuve du point (i).

Posons «o ^ : «o appartient alors à ]5s, y — |s[ et le point (i) du théorème 37

implique que Ent(Ya°. dYa0, ßYa0) > (l — ^-)Ent(F, dx).
Fixons un réel s' > 0. Le point (ii) du théorème 1 de [Ga] (en posant H {x} et

5 0) donne l'existence d'une constante (explicite) C C'(m,e') telle que, pour
tout point y de Fœ°,

Ent(Fœ°, dY«o, dvgao
i/ 1 f m+e' \ m+e'

< C limsup / f-(x) 2 dv„a0

où ga° désigne la métrique riemaimienne relevée de g sur Ya° et où ifm et dvg«Q

désignent la distance et la mesure associées.

Notons £)x {y e Ya° | Vy ë G(Ya°,Y) \ {id}, dy .(x. y) < dYa0(y.x, y)}
le domaine de Dirichlet pour l'action de G(Ym, Y) pointé en x, £>y son adhérence

et E r (x le sous-ensemble de G(Y"", Y) défini par

Yr(x) {y e G{Ya°, F), dYa0 (x, y.x) < R}.

Si D diam(F, dx), comme r/qn((F, dx), (F dY)) < e, pour tout point y de Ya°
on a diam £>,. diam(F, dy < D — t. Il s'ensuit que

Ent(Fœ°, dYm, dvgaQ

/ 1 x—, /' m+e' \ m**7

Ny(R + D + e) f m+e' \ m+e'
< C Inn sup I — f / -(x) 2 dvg\~ R^\ Vol(5(y, R)) Jy e)

f Ny(R + D + e)\ m+e' / 1 f m+e' \ m+e'
< C'limsup — — / rJhdT*éi)g- R^+£\Ny(R- D-e)J IVol(Fg) ,JY g)
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la première inégalité provenant du fait que la boule B {y, R est incluse dans la réunion

UjeE^+zp+sOi ; la deuxième inégalité provenant du fait que le bord d'un
domaine de Dirichlet est de mesure nulle pour la mesure riemannienne et que la projection

de revêtement est une isométrie de chaque domaine de Dirichlet sur son image ;

la dernière inégalité provenant du fait que la réunion disjointe U,,l; D
est incluse dans la boule B(y. R) et du fait que tout domaine de Dirichlet a pour
volume Vol(F, g).

Comme l'application g: R -> log(Ny(R + 2{D + g))) est sous-additive (c'est
une conséquence directe de la proposition 1.4.10 de [Ro] dont une preuve est rappelée

dans [Re], lemme 2.6), on a par ailleurs < Ny(3D)2. Il en résulte que

2 f \ f m-\-ef \
Ent(frdjr^dvg*) < c" (Ny{3D))m+e' — g dvg J

On montre alors, comme dans la preuve du théorème 37, que

Ny{3D) < sup Nx (en + g) Nsup (x,6D + g).
vc .V

Par ailleurs, comme d'une part l'action de G(Fœ°, F) est discontinue et cocompacte,
d'autre part les mesures dvga0 et sont invariantes sous l'action de G (Y"", Y),
on a Ent(Faö, dyaD, dvga0 Ent(Fœ°, dy«o, /'>'< (voir, par exemple, [Re]
propriété 2.3). On obtient ainsi

Eilt )" '. (/) ". /I »:•

< C (»„«.«> + g))^ (^-5 fr
Si à présent

1 f f (»j-MO \ m+s'
I / '' (v) 2 dvg{y)folcr.gr) \Jy - 8 J

3e \ Ent(X, dx)
2a° ' C'Nsup(X,6D + fg)^7

on obtient EntO'1' .</> <• ./'>•• < (1 — ^)Ent(X,dx), ce qui contredit le

point (i) du théorème 37. Ceci termine la preuve du point (iii).

4.4. Semi-continuité du volume et précompacité. Si le volume est un invariant
continu sur c/gh), rappelons que ce n'est plus le cas sur (MN,H,D*dGn)
(voir la remarque 2),

Nous montrons en particulier le résultat de semi-continuité inférieure suivant :
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Corollaire 42. Fixons une variété riemannienne compacte (M,g0) de dimension

m, dont la systole est minorée pareo et dont la courbure sectionnelle vérifie er0 < —k2.

Si (F, ho) est une variété riemannienne compacte de dimension m, qui est un

K(ji, 1) et telle que sys(F, h0) > g0 et c/gh((F, g), (M0, go)) s < f§, alors

wj^(i
De plus, pour toute métrique g sur Y, on a

Ent(F, g)mVol(F, g) > Cîm - l)k)mVol(M0, go)

En particulier, si cr0 —k2 et si Y vérifie les hypothèses du corollaire 42, on a

f 3s\m
Vol (F, h0) — \ Vol (M0, g0).

Preuve. Comme (Mo, go) et (F, ho) sont deux variétés dont la systole est minorée

par fo et qui vérifient g0), (F, g)) < ||, le théorème 16 implique que les

groupes fondamentaux de F et M0 sont isomorphes. Comme M0 et F sont toutes les

deux des K(n, 1), elles ont même type d'homotopie et il existe une application de

degré 1 entre F et M0. La deuxième inégalité du corollaire 42 découle donc du résultat
suivant, démontré mais énoncé de manière moins générale dans le théorème 1.5 de

[BCG2] : si (X, gx) est une variété riemannienne compacte de dimension m dont
la courbure sectionnelle vérifie o < —k2 et si (F, g y- est n'importe quelle variété
riemannienne compacte de dimension m telle qu'il existe une application f : Y •» X
de degré 1, alors,

Ent(F,gfVol(F,g) > ((m - l)k)mVol(M0, go).

Cette inégalité étant vérifiée en particulier par la métrique /; o, il suffit ensuite d'appliquer

le théorème 37 pour obtenir la première inégalité du corollaire.

Notation : Soient k > 0 et eo > 0, notons f n
l'ensemble des classes d'isométrie

des variétés riemanniennes compactes de dimension m dont la systole est supérieure
à «o et dont la courbure sectionnelle vérifie a < —k2.

Corollaire 43. Soit (Mo, go) une variété compacte de dimension m quiestun K(jr, 1}

et telle que sys(Mo, go) > £o- Si (F, g) est une variété riemannienne compacte qui.

appartient à Iç, «0
et telle que df^dY, g), (M0, go)) < f§t alors

(3
x —m

Vol (M0, go).
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Preuve. Ce corollaire est une conséquence quasi -directe du résultat suivant, démontré
mais énoncé de manière moins générale dans le théorème 1.4 de [BCG2] : si (F, gy
est une variété riemannienne compacte dont la courbure sectionnelle est inférieure
à -k2 et si (X.gx) est n'importe quelle autre variété riemannienne compacte telle

qu'il existe une application continue / : (X,gx) -* (Y. gy), alors

Puisque M0 et F sont des K(jt, 1 et que leur groupes fondamentaux sont isomorphes
d'après le théorème 16, Mo et Y sont homotopiquement équivalentes ; il existe alors

une application continue de degré 1 entre ces deux variétés. De plus, d'après le

théorème 37,

Corollaire 44. Toute boule de rayon dans l'ensemble g0f%s) est précompacte.

Preuve. Soit B une boule non vide de rayon || dans l'ensemble _ </r,n). Fixons
une variété riemarmienne {Mo, go) dans cette boule et considérons une autre variété
(F, g) de B, le corollaire 43 implique que Vol (F g) est uniformément majoré par
(E^-t'jf° )mVol(M0, go). Par ailleurs, comme (F, g) est de courbure sectionnelle

négative, le volume de toute boule de (F, g) de rayon e < ^ est uniformément
minoré par celui de la boule euclidienne de rayon s. Il résulte de la proposition 5.2 de

[Gr] que l'ensemble B est précompact pour la distance de Gromov-Hausdorff.

On rappelle que le volume de toute variété compacte de dimension m, localement

symétrique dont la courbure sectionnelle est comprise entre —4 et —1 est minoré par
une constante universelle que nous noterons cm qui ne dépend que de m (voir, par
exemple, le théorème 37.1.1 de [BZ]). On établit alors la proposition suivante :

Proposition 45. Considérons une variété compacte (X, g0) de dimension m,
localement symétrique de rang 1 (normalisée de sorte que te maximum de sa courbure
sectionnelle soit égal à —1| de diamètre majoré par D. Notons

Ent(X, gx)mNol(X, gx) > | deg f\ Ent(F g)mVol(F, gF).

ce qui termine la preuve du corollaire 43.

(m - l)2m 2cm

Voleuci(Sm-2)(sinli 2D)m~l '

et
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Toute variété riemannienne compacte (F g) de dimension m, qui est un K(jt, 1),

qui appartient à MN 2m sD et telle que ^gh((X, go). (F, g")) s < est homo-

topiquement équivalente à X et vérifie

(3
x m

!-^J Vol(X^o)-

Si, de plus, la courbure sectionnelle de (F, g) est majorée par —k2, on a

Remarque46. (i) La condition diam(F, g) < ~D est nécessairement vérifiée lorsque
(/f;il((.v.g„).(r.g)) <

(ii) Rappelons que Ent(X, go) est égale à (m - 1) (resp. m, resp. (m + 2), resp.
(m + 6)) lorsque (X, go) est hyperbolique réel (resp. complexe, resp. quatemionnien,
resp. de Cayley).

Preuve de la proposition 45. Commençons par vérifier que inj (X, g0 > t)(). La courbure

sectionnelle de (X, go) est supérieure ou égale à —4. Notons / la longueur de la

plus courte géodésique périodique de (X, go), le théorème de J. Cheeger (voir [BZ],
corollaire 34.1.9) donne alors

Vol(X, go) < /.VoleUcl(Sm_2) J cosh(21) ^sinl^2f^ ciu

ce qui assure que

/.Voleucl(Sm-2) /sinh(2D) \ "!_1
Cm ~ (m - 1) { 2

Donc inj(X, go) y > ^o- Le groupe fondamental de (X, go) est donc <5o-épais et
possède la propriété I;SG(/V0 d'après la proposition 1.14 de [BCG1].

Par ailleurs, l'entropie volumique d'une variété riemannienne compacte localement

symétrique de rang 1 est inférieure à 2m (voir la remarque 46), On déduit de tout
ceci que (X, g0) appartient à MNq 2m s D et donc que sys(X, g0) > «o- Le premier

point de la proposition 45 découle ainsi du corollaire 42.
Par ailleurs, si la courbure sectionnelle de (F g) est majorée par —k2, le corollaire

42 implique Vol(X,go)Ent(X, go)m > ({m — l)k)m Vol(F, g), ce qui prouve
la deuxième inégalité de la proposition 45.
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