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Genus-one helicoids from a variational point of view

David Hoffman* and Brian White**

Abstract. In this paper, we use variational methods to prove existence of a complete, properly
embedded, genus-one minimal surface that is asymptotic to a helicoid at infinity. We also prove
some new properties of such helicoid-like surfaces.

Mathematics Subject Classification (2000). Primary 53A10; Secondary 49Q05.

Keywords. Complete embedded minimal surface, helicoid, variational methods.

1. Introduction

In this paper, we prove by variational means the existence of a complete, properly
embedded, genus-one minimal surface in M3 that is asymptotic to a helicoid at infinity.
We also prove existence of surfaces that are asymptotic to a helicoid away from the
helicoid's axis, but that have infinitely many handles arranged periodically along the

axis. These theorems were originally proved by very different methods in | WHW06J.
We also prove some new properties of such helicoid-like surfaces.

To state the theorems precisely, we need some terminology. For selwe let as
denote the screw motion of E3 defined by

os(cosû, sin#, z) (cos(0 + ij, sin(# + s), z + s).

We let H be the standard helicoid that contains the x-axis X and the .--axis Z, and
that is invariant under the screw motions as.

A nonperiodic genus-one helicoid is a complete, properly immersed minimal
surface in E3 that is conformally a once-punctured torus (i.e., a torus with one point
removed) and that is asymptotic to II at infinity. If it also contains X and Z, we say
that it is symmetric: by Schwarz reflection, it is invariant under the 180° rotations

Px and pz about X and Z, and hence it is also invariant under their composition py.
(Note that the symmetry group of any positive-genus surface asymptotic to H must

*The research of the first author was supported by the NSF under grant DMS-0139410.
**The research of the second author was supported by the NSF under grant DMS-0406209.
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be a finite subgroup of the symmetry group sym(H) of H. It is not hard to prove that

any finite subgroup of syrrh //) is conjugate to a subgroup of {I, p%, py, pz\, and

thus that a symmetric genus-one helicoid is as symmetric as a genus-one helicoid can

possibly be.)

Theorem 1.1. There exists an embedded, symmetric, nonperiodic genus-one helicoid.

A periodic genus-one helicoid is a complete, properly immersed minimal surface

N in K3 such that for some h > 0:

(1) A is <72/, -invariant,

(2) N/aih is conformally a twice-punctured torus, and

(3) N/o2h is asymptotic to II/A2/( at infinity.

If, in addition, N contains X and Z and if the fundamental domain

N Pi {(.r. y, Z) M "«S h)

is bounded by the two lines ct±/, (X), then N is called a symmetric periodic genus-one
helicoid. (Note that the quotient A/ct2/, of a symmetric periodic genus-one helicoid
N contains two horizontal lines, corresponding to the two parities of n in the lines

Gn'k {%)•)
If N is any genus-one helicoid, let h(N) be the smallest h > 0 such that N is

a?/,-invariant. (If N is nonperiodic, we let h(N) x.)

Theorem 1.2. For every h e in/2, oo], there is an embedded, symmetric, genus-one
helicoid N with h(N) h.

Note that Theorem 1.1 is the special case h oo of Theorem 1.2.

The condition h > nß is sharp: in [HW], we prove that there are no examples
with h(N) < n/2, even if we allow somewhat less symmetry. (For h(N) < nß this
was observed by Meeks.)

Uniqueness is known for h n [WHW06], [FM05], but not in general. Thus
there may be other embedded, symmetric genus-one helicoids that do not arise from
the construction in this paper. The following theorem holds for all symmetric genus-
one helicoids:

Theorem 1.3. Let # > n/t. Let N be an embedded, symmetric genus-one helicoid
with h(N) h £ \tj. op], and let M be the fundamental domain

M NH {.lit! < h}.



Vol. 83 (2008) Genus-one helicoids from a variational point of view 769

(1) The intersection N f) H consists ofZ together with the horizontal lines

{(.*, y, z) H : z "h} {« £ 25)»

Furthermore, N \ H consists of congruent, simply connected components. The

fundamental domain M consists of two of those components, one on either side

of II.
(2) For each vertical plane V, there are at most four points p M\ Z for which

Taiip N is parallel to V. Such points must lie in the cylinder

!' v. v. z) : x2 + v2 < R2, J.|J < 2tt}

where R depends only on r],

(3) The space ofall such N (for a given r) > n/2) is compact with respect to smooth

convergence on bounded subsets ofR3.

If h(N) go, then the fundamental domain M is all of N, and the horizontal
lines in assertion (1) of the theorem consist just of X.

Concerning assertion (1), note that by our dehnition of "symmetric", N H H
must contain the indicated lines. It is perhaps surprising that N D H contains no
other points. For the surfaces we produce, this property follows immediately from
the construction. The proof that (1) holds in general will be given elsewhere [HW],
Proofs of (2) and (3) are given in Section 7.

A proof of assertion (3), the compactness result, by different methods is implicit
in [WHW06],

Figure 1. Nonperiodic (left) and periodic (right) genus-one helicoids.

Hoffman, Karcher, and Wei discovered symmetric genus-one helicoids. (Whether
asymmetric examples exist is not known.) In [HKW93], they proved existence but
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not embeddedness of an example with h oo. In [HKW99], they proved existence
of an example wiill h it, and they proved that every h jt example must be

embedded. By numerical computations, they also discovered embedded examples
for a range of values of h(N); that work is described in [HW02],

Hoffman, Weber, and Wolf [WHW06] proved that there exists a continuous family
of embedded genus-one helicoids taking all values of h in {if/2, oo]. They also proved
that there is only one example with h n. This uniqueness was proved independently
in a different way by Ferrer and Martin [FM05].

All of those investigations relied on the Weierstrass representation, which requires
solution of period problems and a separate proof of embeddedness. We present here

a method of realizing examples as limits of compact, embedded minimal surfaces.

Period problems do not arise, and the method gives existence and embeddedness at
the same time. It also provides additional information about the geometric behavior
of the Surfaces. Our investigation is similar in spirit to [HM88], where a variational
construction of the generalized, higher-genus, Costa surfaces with three ends is given,
and to the part of [CHM89] in which translation-invariant, Callahan-Hoffman-Meeks
surfaces of odd genus are produced.

hi our view, the construction presented here gives a good answer to the question
of why genus-one helicoids should exist.

Using deep results of Colding and Minicozzi |CM04a|, [CM04b], [CM04c],
[CM04d], Meeks and Rosenberg proved [MR05] that the helicoid is the unique properly

embedded, simply connected, nonplanar minimal surface - there is no symmetry
assumption in their result. Whether or not there is only one nonperiodic, embedded,

symmetric genus-one helicoid - and more generally whether there exist any
nonsymmetric examples - has yet to be resolved.

The authors would like to thank Mike Wolf and Matthias Weber for helpful
conversations.

2. Outline of the construction

2.1. The basic idea. Let Hrj, be the portion of H inside a solid cylinder centered

at the origin, with axis Z, radius R, and height 2h:

Hrj, /ï'n [UI < h, r <R}.

The boundary 3Hrj, is a simple closed curve consisting of two horizontal line
segments L±/j c cr-j-h (X) and two helical curves connecting the endpoints of those
line segments. Note that Hrj,, like H, is invariant under 180° rotations about the
coordinate axes.

Our idea is simple: replace Hrj, by an embedded, genus-one minimal surface

Mr j, with the same boundary. Since we want our genus-one helicoids to be symmet-
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ric, we require that Mr# contain the segments X D Hrj, and Z D IIrj,. By taking
a limit as R and h tend to inhnity, we hope to get a nonperiodic genus-one helicoid.

By taking a limit as R -> oo with h hxed, we hope to get a fundamental domain for
a i7)i, -invariant periodic genus-one helicoid.

2.2. Replacing Hrj, by a genus-one surface. If X and Z are removed from IIrj,
four congruent "quadrants" remain. One of the quadrants contains portions of the

positive rays of X and Z in its boundary. Another quadrant contains portions of the

negative rays of X and Z in its boundary. We let Qrj, be the union of those two
quadrants (See Figure 2). The rotation />y interchanges the two quadrants, so Qrj,

Figure 2. Top left: The surface Hrj, H fi C, where C is the solid cylinder centered at the

origin with axis Z, height 2h and radius R. Top center: SHrj, H n 3C. Top right: The

parameter domain of Hr j,, assuming the parametrization («, v) (u cos v, u sin v, v). Bottom
left: The union Qrj, of two of the four congruent components of Hrj, \(XU Z). Bottom right:
The coiresponding region in the parameter domain. Bottom center: T(/?, //) := dQRj,.
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is py-invariant. The boundary F( R, h) of Qrj, is a piecewise smooth curve that is

embedded except at the origin, a double point.
If in IIr ji we replace Q rj, by a connected, py-invariant minimal surface D with

the same boundary, then to insure pz symmetry we must also replace pz(Qrji) by the

corresponding surface Pz(-D). Because D is py-invariant, px(D) Pz(Py(D))
Pz(D). Thus our candidate surface is

M Mr^ D U pz(D) D U px(D). (1)

An Euler characteristic calculation shows that Mrj, has genus one if and only if
D is a disk. For instance if D is a disk, then we can use the nine comers and twelve
edges of the quadrants of Hr j; together with the two faces D and pz(D) to calculate
that the Euler characteristic / of M is 9 — 12 + 2 — 1. Since 9M 9 Hrj, lias

one component, its Euler characteristic and genus g are related by / 2 — 2g — 1.

Thus the genus is one, as desired. (See Figure 3.)
Note that if D is embedded on one side of H, then pz(D) will lie on the other

side of H and thus M will be embedded. By Schwarz reflection (see (1)), the interior
of M will be smoothly embedded along X and Z except possibly at the origin.
Since an embedded minimal surface of finite topology in M3 cannot have an isolated
interior singularity ([Nit89], §363), in fact the interior of M is smoothly embedded

everywhere.

Figure 3, Left: An embedded, py-invariant minimal disk D on one side of H with dD
T(JR, h). In this illustration, h it. Right: The genus-one surface M D U py(D).

We can extend Mujh to get a -invariant surface

N Nr^ I J Ct2hn(MR,h)

Tliis surface is clearly embedded, and its boundary consists of two helices. Since

we can also obtain N from M by repeated Schwarz reflections about the top and

bottom edges, the interior of N will be smooth (as was the case with M.) Since N
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has locally finite topology and since 9N is smooth and lies on the boundary of the

convex hull of N, there are no boundary singularities ([Nit89], §366). That is, N is
smooth everywhere.

To summarize our discussion, we have the following procedure for generating
symmetric genus-one helicoids:

• Find a py-invariant minimal embedded disk D Dm that has boundary
T R, h) and that lies on one side of H.

• Form the corresponding smooth embedded genus-one surface M Mrj, and

tire corresponding smooth, embedded «rjj -invariant surface N Nrj,.
• Take a limit of Mrj, (or, equivalently, of Nrj. as R and h tend to infinity to

get a nonperiodic example. Fix h and take a limit of Nrji as R —> rc to get a

periodic, cx2h-invariant example.

Here and throughout the paper, "disk" means "open disk". (Since F(iC h) has a

double point, D will not be embedded even if D is embedded.) To avoid tedious

repetition, we will let "disk" mean "embedded, py-invariant disk" for the remainder
of this section.

2.3. What could go wrong? To prove that the procedure we have just described

works, we must address the following questions:

(1) How do we know that there is a minimal disk D on one side of H with dD
T(R. /()?

(2) How do we know that we have smooth convergence as R tends to infinity, or as

R and h both tend to infinity?

(3) How do we know that the limit surface has the desired topology?

Concerning question (1), there is no such minimal disk when R is very small or
when h < it/% Indeed, in those cases one can prove that Q rj, is the unique minimal
variety with boundary F (R, h), and it is not a disk, but rather two disks. Fortunately,
we need minimal disks D only for h > jt/2 and R very large.

We will discuss the curvature estimates that address question (2) later. The key
to questions (1) and (3) turns out to be the following fact:

Proposition 2.4. Let h > nfL For all sufficiently large R, there exists a minimal
annulus A that has boundary in Qrj, and that lies in the component H+ of R3 \ H
containing the positive y-axis.

Sketch ofproof. (See Proposition 3.3 for details.) Note that when R is very large, the

region H+ near the point (0, R/2, 0) resembles a slab between two horizontal planes.
Consequently, the intersection of H+ with a suitable catenoid centered at (0, R/2,0)
has one component that is an annulus A with boundary in H. Tire condition h > tt/2
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is precisely the condition that guarantees (provided R is sufficiently large) that DA

lies in Qrj,. (Figure 4 shows the case h n.)

Figure 4. The curve T F(R, m) and a catenoidal hairier. A minimal disk that has boundary
T and that avoids the hairier must lie close to T, because if we translate the hairier horizontally,
it must touch V before it touches the interior of the disk.

We can now get a minimal disk in 77+ by minimizing area among disks D that
have boundary V(R, h) and that lie in the unbounded component of 77+ \ A.

(Since the standard theorems about minimal disks assume embedded boundary,
we should first approximate F( R, h) by embedded smooth curves in 77, but in this
outline we will ignore such technicalities.)

Flowever, that least-area disk D* is not the one we want. Consider for example
the case h n. By construction, the disk D* is disjoint from some catenoid passing
through the middle of r(77, h), as shown in Figure 4. By translating the catenoid
around horizontally, we see from the maximum principle that Et* is forced to lie close

to its boundary. Consequently, if we take a limit of such D* as R -> oo, then we are
left just with two flat strips in the vz-plane. The corresponding complete embedded
surface (generated by Schwarz reflections from those strips) is the .ttr-plane. not the

periodic genus-one helicoid we want.
The problem is a loss of topology. Hie closure of D* is not simply connected: it

has a closed geodesic starting and ending at the origin. But as R -> oo, the length
of that geodesic tends to infinity. Thus the limiting geodesic is not closed, and the

limiting surface is simply connected.

Similar reasoning shows that in general our procedure is doomed to yield a simply
connected limit surface unless we use minimal disks D with 97) F( R. h.) that have

the following annular intersection property: D intersects every minimal annulus A
in 77+ with 9A c Qrm

For minimal disks D that have the annular intersection property, we prove a

uniform bound on the length of the geodesic starting and ending at the origin. This

implies that a limit of such disks will generate a surface with the desired topology. (In
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particular, the surface will contain a closed geodesic and therefore will have nontrivial
fundamental group.)

Thus our scheme for producing genus-one helicoids works if and only if we use

disks that have the annular intersection property. Fortunately such disks do exist:

Proposition 2.5. Let h > 7t/2. For all sufficiently large R, the eun> F(R,h)
bounds a py-invariantminimal embeddeddisk in II1 thathas the annular intersection

property.

Sketch ofproof. (See Section 3 for details.) By Proposition 2.4 and the sentence

following its proof, the set F of minimal disks in H+ bounded by Vi R. h) is nonempty.
For simplicity, let us assume that F is a finite set, and that each disk in F is strictly
stable or strictly unstable. Choose a disk D e F that is closest to g&A in the sense
that no other disk in F lies between D and Qrj,. We will show that D must have

the annular intersection property.
Note that Q rj, is strictly stable: each of its two components lies in a half-helicoid

(i.e., one of the components of H \ Z), and each half-helicoid is stable because its

Gauss-map image lies in a hemisphere.
If D were strictly stable, then (by a general minimax or mountain pass lemma)

there would be an unstable disk between D and 0 rj,. contradicting the choice of D.
Thus D is strictly unstable.

Now consider a minimal annulus A in II~ with DA c Qrjt. If A were disjoint
from D, we could minimize area among all disks that have boundary F (R.h) and that
lie in the region of H+ between I) and A. By the instability of I), the result would
be a minimal disk D' lying strictly between D and Qrj,, contradicting the choice
of I). Thus I) intersects every such annulus. That is, I) has the annular intersection

property.

We end this outline by saying a word about the curvature estimates that guarantee
smooth convergence in question (2) of Section 2.3 above. The points of a disk I) c FT

with vertical tangent planes are of course the critical points of nonzero linear functions
of the form f(x, y, z) ax + by. Morse theory lets us deduce facts about the set of
such critical points from knowledge of tire boundary. In that way, in Section 4, we
control the set of points in D with vertical tangent planes. That control in tum lets us
deduce curvature estimates in Section 5.

3. Disks with the annular intersection property

3.1. Let Hrj, be the intersection of the helicoid H with a solid right-circular cylinder
centered at the origin with axis Z, radius R, and height 2h. Thus

Hrj. /'" R.R) x (-h.h))
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where

F(it, v) (m cos v, u sin u, v).

The .v- and --axes divide IIRjt into four congruent "quadrants". Let Q /?j denote
the union of the first and third quadrants:

QRJi F((0. R) X (0, h)) U F((-R, 0) x (-h, 0)).

Note that Q%h consists of two pieces that have a common corner at the origin and

that are related by the 180° rotation py about the v-axis, Y. (See Figure 2.)
We let P{ R, h) be the boundary of Qrj,. We will regard 17 R, h) as a piecewise

smooth curve that is embedded except at the origin, a double point. Note that F (R, h)
consists of line segments together with the two helical arcs

{F(R. v) :0<v< h} and {F(-R. u) : —h <v< 0}. (2)

Recall that H+ is the component of M3 \ H that contains the positive y-axis. Our

goal in this section is to prove existence of a py-invariant minimal disk in // + witli
boundary 17 R, h) and with the following "annular intersection property":

Definition 3.2. If F is closed curve in IF let ./f(T) be the set of minimal embedded
annuli A in H+ such that 3 A is smooth and is contained in the union of the bounded

components of H \ F. A minimal surface with boundary F that intersects every
annulus in <A(F) is said to have the annular intersection property.

Of course the annular intersection property is vacuous if A T is empty. Flowever,

A(r(R, h is nonempty for suitable R and h:

Proposition 3.3. For every rj > nj% there is an Rn < oo such that =A(r(fî, h)) i.s

nonempty provided R > Rn and h > rj.

Proof. Note that for h > rj,

Q(R. rj) c Q(R, h)

andso A(r(R, //)) c ,A(F(7F h)). Thus it suffices to prove (hat A< R. tj) is nonempty
for all sufficiently large R. For the same reason, it suffices to consider tj with n/2 <
rj <7i.

Translate H+ and QrJ} by (0, —R/2, 0) to obtain (II+1'R and Q'R
(/.

Note that

as R -> oo, (H+)'r converges to a limit (7/ + )' consisting of horizontal slabs, one of
which is die slab |z| < tt/2. Also, Q'R converges smooffily to the union Q' of the

planes z 7r/2 and s —tz/2.
Let C be any catenoid with a vertical axis of symmetry. Note that C intersects

the planes g ± riß transversely in a pair of circles that bound an annular portion
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of C in (H+y. Hence for all sufficiently large R, the catenoid C intersects Q'R in a

pair of curves that bound an annular component /\ g of C in (H+)r. Translating Ar
by (0, R/2, 0) produces a minimal amiulus in H+ with boundary in Q,R,n.

3.4. The existence result for smooth simple closed curves T. The closed curve
F( R, h) is neitlier simple nor smootlr. We first prove the result we desire for smooth

simple closed curves T that approximate P{ R. h). We then prove the estimates

(Lemma 3.9) that allow us conclude the desired result (Theorem 3.11) for F(R, h).

Theorem 3.5. Suppose T is a smooth simple closed cun>e in H such that

(1) the region Dr in H bounded by F is strictly stable, and

(2) A(T) is nonempty.

Then Y bounds a weakly unstable minimal embedded disk D in H+ with the annular
intersection property.

If Y is py-invariant, then we may require that D also be py-invariant.

Proof. Consider first the case that F is noncritical in the following sense: 0 is not an

eigenvalue of the Jacobi operator of any smooth embedded mini mal disk in H+ with
boundary F.

LetF F (F) be the set of minimal embedded disks in H+ boundedby F. Then

F U {Dr} is compact by standard curvature estimates (see for example [Wlii87b] or
Lemma 3.9 below.) Moreover, since Z>r is strictly stable and since Y is noncritical,
F is in fact finite.

Let A be an annulus in A(F). We claim that F bounds an embedded disk in //+
disjoint from A. To see this, let B be a large ball in M3 centered at the origin with
T in its interior. Note that H D B and // ' Ff (3B) are topologically disks with a

common boundary, so their union S is topologically a sphere. Thus Y divides S into
two regions, Dr and S \ Dr, each of which is topologically a disk. In particular,
S \ Dr is a piecewise smooth embedded disk in //+ that has boundary F and that is

disjoint from A. By perturbing slightly, we get a smooth embedded disk in H+ \ A
with boundary F.

Now minimize area among all disks in H+ \ A with boundary F. The minimum
exists and is smoothly embedded by a theorem of Meeks and Yau (see Theorem 3.6

below), and thus it is a disk in the family F. By hniteness of F, there is a disk I) g F
that is closest to Dr in the sense that no other disk in F lies between I) and Bg.

Now if D were stable, it would be strictly stable by noncriticality of F. But then

by a standard minimax principle (see for example TheoremA. 1 in the appendix), there
would be an unstable minimal embedded disk between D and Dr contradicting the
choice of D. Thus I) is strictly unstable.



778 D. Hoffman and B. White CMH

It remains only to show that D must intersect every amiulus in A(T). Suppose

on the contrary that ,A(T contains an amiulus A disjoint from I). Let />' be the
least-area embedded disk bounded by T in the closure of the region of H+ between
A and D. (The disk exists and is smoothly embedded by the Meeks-Yau theorem.)
Since Dp does not lie in the closure of that region, D' Y Dr. Since D is strictly
unstable, D' A A Thus D" lies between D and Dr* contradicting the choice of D.
Hence D intersects A as claimed.

Ulis completes the proof in the case of noncritical T. In fact, noncritical F are

generic (see Theorem A.2 in the appendix). Thus we can find a nested sequence of
noncritical F, c II converging smoothly to F from the outside. Let D, be an unstable
embedded disk in H+ bounded by F; and intersecting all the A g -A< V) Note that

<A(T) c «A(r,:) since F/ encloses F in //. Thus D, intersects every A g A(r). The

curvatures of the D, are bounded by standard estimates (see [Wlii87b] or Lemma 3.9

below.) Thus a subsequence converges smoothly to a limit disk D in H+. Now
D is weakly unstable (since it is the smooth limit of unstable disks), so DA Dp.
Hence (by the strong maximum principle) D cannot touch H, so D lies in H+. Also,
D intersects every A g «A(D since each D, does. This completes the proof for
arbitrary F.

Finally, the proof in case of py-i 11variance is exactly the same, except that we work
throughout with py-invariant curves and disks, and with the restriction of the Jacobi

operator to the space of py-equivariant vectorhelds. The minimal annulus A should
be replaced by A U py (A). Where the proof uses a least-area disk À, that disk turns
out to be py-invariant. For if A were not py-invariant, then py A would be a second
least-area disk with the same boundary. By the Meeks-Yau theorem, A and py(A
would be disjoint. But by the py symmetry, the volume of the region between Dp
and A must equal the volume of the region between Dp and py(A), so A and py (A)
cannot be disjoint. The contradiction proves that A is indeed py-invariant.

For the reader's convenience, we state the theorem of Meeks and Yau that was
used in the preceding proof:

Theorem 3.6 (Meeks-Yau, [MY82a], [MY82b]). Let £2 c be a mean convex
domain with piecewi.se smooth boundary, and let F be a smooth curve in dQ that bounds

a disk in f2. Then F bounds a least-area disk D in f2. Such a disk must be smooth
and embedded, and it must be contained either in 9Q. or else in Q. Furthermore, any
two such disks must be disjoint.

Meeks and Yau prove this theorem for convex domains in Theorem 6 of [MY82a].
They extend the result to other domains in Section 1 of [MY82b],

3.7. Approximation results and uniform curvature estimates. Note that a half-
helicoid (such as either component of H \ Z) is stable since its image under the
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Gauss map is contained in a hemisphere. Consequently any bounded domain in a

half-helicoid is strictly stable. In particular, the union Q Q Rjt of the bounded

components of H \ P (R, h) is strictly stable. In the following lemma, we show that

Q can be fattened to get a strictly stable domain Q c_ II bounded by a smooth simple
closed curve.

Lemma 3.8. For any positive numbers R and h, there is a simply connected,
py-invariant domain Q c H that contains Qr^, is strictly stable, and is bounded by a
smooth embedded curve.

Proof. Let Qj be the set of points in H at distance < 1/ i from the union Q Q rj,
of the two bounded components of H \ V. Let 7./ and X be the lowest eigenvalues of
the Jacobi operator on Qj and on Q, respectively. Let in be the first eigenfuction on
Qi, normalized so that max u, 1. Recall that u, > 0 at every interior point. Note
that

7-1 < 7-2 < 7. • • *

and that X{ < X for all i, so that
T-oo < X (3)

where

Xm lim Xj.
i

By the Schauder estimates, we may assume that (lie «% converge to a limit u, the

convergence being smooth away from the corners of P.

(If the smooth convergence is not clear, note that the w,- are uniformly bounded
since they are normalized to have maximum value 1. Thus the Schauder estimates

give uniform local C2 ff bounds asi oo away from the corners of P. Those bounds

imply C2 convergence away from the comers for a subsequence of the m. Likewise,
higher-order Schauder estimates imply Ck convergence for each k.)

Claim. The convergence ut -> u is uniform up to and including the boundary.

Proofof claim. It suffices to show the following: if pi g Qj converges to p g P.

thenwjCp,:) converges to 0. To see that it docs, fix a p G P and let a be the supremum
of

lim sup nop:

among all sequences pi g Qj with pi -> p. Note that the supremum is attained by
some sequence pi. By passing to a subsequence, we may assume that

lim Ut {pi a.

Our goal is to show that a 0.
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Translate £2; by —pi and dilate by

1

m '=
dist(/?i, 9 £2;)

to get a surface £2^. Note that

tM -> oo. (4)

By passing to a subsequence, we can assume that the £2' converge to a plane domain
12' with

dist(0, 3£2') 1

so that in particular 9 £2' is not empty. Note that 9£2' is either smooth or piecewise
smooth. (Indeed, 3 £2' must be a straight line, or two rays together with a quarter circle

joining their endpoints, or a right angle, or the union of two disjoint right angles. Here

"right angle" means "union of two orthogonal rays with a common endpoint".)
Let M; be the function on £2' corresponding to m, Then is a Jacobi eigenfuction

with eigenvalue
kj

H — •

Pf
Note that À' —0 (because by (4) the p\ tend to inhnity and by (3) the À; 's are

bounded.) Tlius by passing to a subsequence we may suppose that the u\ converge
smoothly away from the comers of 3 £2' to a Jacobi eigenfunction

u' : £2; —M

with eigenvalue 0. Since £2' is planar, u' is in fact a harmonic function. Note that

max u' «'(<)) a.

Uius by the maximumprinciple for harmonic functions, u' is constant. But u' vanishes

on the smooth portions of 9£2', so a must be 0. This completes the proof of the

claim.

We now resume the proof of the lemma. By the uniform convergence u, u

is nonzero (its maximum value is 1) and it vanishes at the boundary. By the smooth

convergence on the interior, it is a Jacobi eigenfunction on Q with eigenvalue
Since Q is strictly stable (see the discussion immediately preceding the lemma),
7-oçi î* 0.

Thus there is an n (any sufficiently large n will do) for which £2„ is strictly stable.

Now let £2 be any py -invariant domain in H such that

Q c £2 c £2„

and such that 3 £2 is a smooth simple closed curve.
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The next lemma follows from the estimates in [Whi87b], but since the proof is

short, we include it for the reader's convenience.

Lemma 3.9. Let I), be a sequence ofembedded minimal disks in H+ with embedded,

plecewi.se smooth boundary curves Pf in H. Suppose that the 17 converge to a cun>e F
that is smooth and embedded except at afinite set S, and suppose that the convergence
F| «h» Vis smooth on compactsubsets of WJ\S. Suppose also that the total cun>atures

of the r,; are uniformly bounded.
Then the principal curvatures of the D, are uniformly bounded as i -> oo on

compact subsets of M3 \ S.

Proof. Suppose the lemma fails. Then (by passing to a subsequence) there is a

compact set K disjoint from S and a sequence pi 6 K n I), such that

lb lb. P: -> OO.

Here IP If. pi) is the nonn of the second fundamental form of I), at pi. By enlarging
K slightly, we can assume that

BID,, pi)dish p;. 3K) > oo. (5)

Fixing this K, we may rechoose pi & K D I), to maximize the left hand side of (5).
Now translate /!,, K, and LI by —pi and dilate by

Pi := B(Di.pi)

to get If, Kf and HI such that

ß(/V,0) l (6)

and such that

max_ BiDi, p) distfj*. dKl) dist(0, 3K-) oo.
PeK(nDi<

From this we see that the 3K- are moving off to infinity and that the curvatures of
the D' are uniformly bounded as i -x on compact subsets of K3. Note that 31)'

converges either to the empty set (i.e., it moves off to infinity) or to a straight line, the

convergence in the latter case being smooth on compact subsets of K3. Thus we may
assume that the If converge smoothly to a limit minimal surface />'. After passing
to a subsequence, the H[ will converge smoothly to a limit H' that is either a plane
or the empty set.

Now D' is simply connected and embedded, and

/>'( /)', 0) 1 (7)
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by (6). By the Gauss-Bonnet theorem, the total curvatures of the I), are uniformly
bounded and thus D' has finite total curvature.

If D' has no boundary, then it is a complete, embedded, simply connected minimal
surface of finite total curvature. But the only such surface is a plane, contradicting (7).

Thus D' has nonempty boundary, namely a line. Note that the line lies in a plane,
namely H', and that D' lies in a closed halfspace bounded by H'. Thus extending I)'
by Schwarz reflection produces a complete, simply cormected, embedded minimal
surface of finite total curvature. Again, the only such surface is a plane, contradicting

(7).

3.10. The existence result for T(/?, h). Recall that A(F) is the set of minimal
annuli A in H+ with d A contained in the union of the bounded components of II \ F,
and that Fi R, h) is the piecewise smooth curve defined in Section 3.1.

Theorem 3.11. Let F Y(R, h) and suppose <A(r) is not empty. Then F bounds a

Py -invariant minimal disk D in H+ such that

(1) D is smoothly embedded except at the corners of Y, and

(2) D has the annular intersection property (Definition 3.2).

Proof. By Lemma 3.8, H contains a py-invariant, simply connected, strictly stable
domain Û containing F such that 9Q is a smooth embedded curve.

Now let r(; be a sequence of smooth py-invariant simple closed curves in G such

that

(1) F; encloses T,

(2) F ; converges to F as / -» oo, the convergence being smooth away from the

comers of F, and

(3) the total curvatures of the f| are uniformly bounded.

Since the region of H bounded by F; is a subset of G, it must be strictly stable.
Since Fj. encloses F, A<F; contains A(T) and is therefore nonempty.

Thus by Theorem 3.5, F; bounds a py-invariant minimal embedded disk D\ in H+
that intersects every annulus A in ,A(F; In particular, /), intersects every annulus
A in <A(F).

By Lemma 3.9, the curvatures of the /), are uniformly bounded away from die
comers of F. Thus by passing to a subsequence we may assume that die I), converge
smoothly (away from those comers) to an embedded minimal surface D in the closure
of H+ with dD F.

We claim diat D is not contained in H. To see tiiat this is the case, note that
the strict stability of Q implies diat G is contained in an open set W of M3 widi
the following property: any minimal surface with boundary in Q either is entirely
contained in Q. or else contains points in Wc. (See Corollary A.4 in the appendix.)
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Since 3 A is contained in Q and A is not contained in 12, we see that A D Wc is

not empty. Tims D D Wc is not empty, which implies that I) is not contained in H,
as claimed.

Since the A are simply connected, each component of D is simply connected.
We claim that D consists of only one connected component. To see that it does,

note that F may be regarded as the union of two simple closed curves C and C"
that intersect at the origin. Suppose that D is not connected. Then it must consist
of two components A and D" with boundary curves C and C", respectively. Note
that D" py(D') by the py symmetry of A Since D does not lie in H, neither A
nor D" can lie in H. Note that C lies in the closure E' of one of the two connected

component of H\Z: it consists of a segment I of the --axis, two horizonal segments,
and a helical curve, Now rotate the other half-helicoid E" II \ E' about the --axis
in H+ until it first either touches A on the interior or becomes tangent to A along
the s-axis. It cannot touch at an interior point by the maximum principle. It cannot
touch at the endpoints of I since A is tangent to H there. Thus the first point of
contact is a point of tangency at a point inside the segment I. But that violates the

boundary maximum principle. This contradiction proves that D is connected.
Since D lies in the closure of H+ but does not lie in H, by the strict maximum

principle D cannot touch H at any interior point. That is, D is contained in //+.
Finally, D intersects every A e -AtV) since each A does.

4. Vertical tangent planes

Throughout this section, we will assume that R and ft are fixed with h > jt/2, and

that D c H+ is an embedded, py-invariant minimal disk with boundary '<)!) V

T(R, h), the curve specified in Section 3.1. As explained in Section 2.2,

M D U pz(D) D U px(D)

is a smooth, embedded genus-one minimal surface, and

A' : U crinhiM)
ne.Z

is a smoothly embedded, P2h -invariant minimal surface whose boundary is a pair of
helices.

We will prove in Proposition 4.4 that there are at most two interior points of D at

which the tangent plane is parallel to a given vertical plane, Furthermore, such points
must be close (within distance 2tt) to the v v-plane. We will give similar bounds on
the number of times a vertical plane V can be tangent to D along Z (Theorem 4.10).
We combine these results to get a local upper bound (Theorem 4.13) on the number
of points in N where the tangent plane is parallel to a given vertical plane V.
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The theorems of this section, all of which control the set of points with vertical

tangent planes, will be used in Section 5 to get the curvature estimates needed when

we let R and/or h tend to infinity.
A key ingredient in the proof of Proposition 4.4 is a generalization of Rado's

theorem, according to which the tangent plane to a minimal disk in R3 must intersect
the boundary in at least four points. Rado's theorem has the following consequence:
if the restriction of a linear function / to the boundary of a minimal disk has only one
local maximum, then / has no interior critical points in the disk. The generalization,
due to Schneider ([Sch66] or [Nit89], §374), is the following proposition:

Proposition 4.1 (Schneider). Suppose that D is a minimal disk in R3 and that

f : R3 M is a linear function. If f\8D has at most n local maxima with f > 0,

then f\D has at most (n — 1) interior critical points, counting multiplicity, with

/ > 0.

4.2. A global angle function on H+, Let S be the half-strip in die ,v--plane defined

by

S {(*, 0, z) : x > 0. —7i < z < 0}.

Note diat
77+ \J*e(S),

9eR

where erg % RJ -fr R3 is die screw motion dedned by

erg(r cos r sinf, Z) (r cos(f + 9),r sin(//> + 0), z + 9).

Thus 77+ is foliated by the 7g (Si, and we may think of 9 as a globally defined angle

function on T7+. Furthermore, 9 extends continuously to T7+ \ Z. Indeed,

9 : 77+ \ Z - M

is the unique continuous function such that

(x, y, z) x2 + y2 cos9, yjx^ + y2 sin 9, z

and such diat

9(x, 0, 0) 0 for.v > 0.

Note also diat 9(x, 0,0) jt for x < 0 and diat

0(7s(p)) 9(p) +
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It will be useful to understand the helical portions of the boundary curve F
Ti R, h) (which was defined in Section 3.1) in terms of the angle function 9. By (2)
in Section 3.1, there are two such helical portions:

(R cos V, R sin v, o), 0 < v < h (8)

and
R cos u, —R sin u, v), —h < v < 0. (9)

Now
R cos u, R sin v, v) av(R, 0, 0)

so

9(R cos v, R sin v, v) 9(R, 0, 0) + v v.

Similarly
(-R cos v, —R sin o, v) av(—R, 0, 0)

so

9(—R cos v, —R sin u, v) 9(—R, 0, 0) + v n + v.

Hence we can express the upper and lower helical portions of F in terms of the angle
coordinate 9 by substituting 9 for v in (8) and by substituting 0 — jt lor v in (9),
yielding

(R cos 0, R sin8, 9), 0 <9 < h (10)

for the upper portion and

(R cos 9, R sin0,9 — jt), —h + Ti<9<7i (11)

for the lower portion.
The curve F also contains six line segments: the four horizontal segments joining

the endpoints of the helical arcs (10) and (11) to the --axis, and two segments in the

--axis (the two segments given by 0 < z < h and —h < z < 0). See Figure 2.

4.3. Vertical tangent planes at points in the interior of D

Proposition 4.4. Let D be a py -invariant minimal embedded disk in H+ with 3D
F F i A'. h Let

f(x, y, z) ax + by

be a nonzero linear function with a < 0.

Ifa <0, then

(1 /1D has at most one critical point p with f (p) > 0. Such a critical point must

satisfy 0 < 9{p) < 2ti.



786 D. Hoffman and B. White CMH

(2) /1D has at most one critical point p with f (p) < 0. Such a critical point must
satisfy —7i < 9(p) <t 7i.

Ifa =0, then f D has exactly one critical point. That critical point is the unique
point of intersection of D and Y, and it lies on the positive y-axis.

Remark 4.5. There appears to be an asymmetry between assertions (1) and (2), but
in fact tliey are equivalent (either one implies the other). To see this, let g(x, y, z)
ax — y. If p is a critical point of /1D with / (p) < 0, then q py (p) is a critical point
of g|D with g(q) > 0, and 9(q) tt — 9(p). The apparent asymmetry disappears

if the theorem is restated using the angle function at (p) := 9(p) — riß. (Note that

o(Py{p)) -o(p).)

Proof. For k Z, let

Dk [p e D : 2ttk 9(p) < 2n{k + 1)},

We will prove that /1 Dk has

(la) no critical points with / > 0 if A0, and

(lb) at most one critical point with / > 0 if k 0.

These imply assertion (1), because if p (x, y, z) G D\ Ua-T>a-, then 9 (p) is an even

multiple of 2tv, which implies that y 0 and x > 0 and thus, in the case a < 0, that

f(p) < 0. (At the end of the proof, we will also use (la) and (lb) in the case a 0.)
Let us first suppose that h is an integer multiple of 2ti :

h 2ttN.

Let J be the halfplane
J (i.v. 0, z) : * > 0}

and let
rA. (8 Dk) \./.

Note that if k > N or if k < —N, then TA 0, which implies by the convex hull
property that Dr =0. Thus from now on we assume that —N<k<N.

By hypothesis, / < 0 on /, so any local maxima of f\ê.t>k with / > 0 must lie
on Tk.

If k > 0, then T| consists of the single helical arc:

ji R cos o. R sin >>. fi i ; 27rk< 6 < 2n(k + 1)}.

Likewise if k < 0, then TA consists of the single helical arc

{(R cos9, R sin0,9 — tt) : 27rA < 9 < 2jr{k + 1)}.
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(These assertions about V/( follow immediately from (10) and (11) in Section 4.2.)
Orthogonal projection to the x v-plane maps each of these helical arcs homeomor-

phically to the circle j* + y2 R2 minus the point (R, 0, 0). Thus if k 0, then

f\8Di- has exactly one local maximum with / > 0. By Schneider's theorem, f\Dk
has no critical points with / > 0. This proves (la).

To prove (lb), note that To has two connected components. One component is
the helical arc

(i R cos §, R sin a. 8) : 0 < 8 < 2tt}.

The other connected component of To is the helical arc

{(R cos 8, R sin8,8 — n) : 0 < 8 < n}

together with the line segment

{(/, 0, 0) : 0 » t > R\.

Hence the function / has at most two strictly positive local maxima on d Dq. (If
this is not clear, consider the projections to the xv-plane as above.) By Schneider's
theorem, f\Do has at most one critical point with / > 0. Ulis proves (lb).

This completes the proof of (la) and (lb) under the hypothesis that h/( 2tt is an

integer. If 2n(N — 1) < h < 2nN, then the topmost component of F \ J is not a

full tum of a helix, but rather (he helical arc

{(Rcosd, Ä sin0, 0) : 2n(N - 1) < 8 < h}

together with the line segment

{(i cos h, î sin/?, /?) : 0 •- / < R]

Note that this piecewise smooth arc C still has the following property: the function

f (x, y, z) ax + by has at most one local maximum on C with / s» 0. A similar
remark applies to the lowest component of T \ /. The rest of the proof of (la) and

of (lb) is exactly as before.
As explained above, (la) and (lb) imply assertion (1), which in tum (by

Remark 4.5) implies assertion (2).
Now suppose that a 0. Without loss of generality we may assume that

f(x, y, z) y. Since py : D D is an orientation-preserving involution, it has a

unique fixed point q. That is, q is the unique point of D D Y. Since D g H+, the

point q lies on the positive v-axis. Since py : D -* D preserves orientation, so does

Py : Tan,y D Tan,7 I). Thus Tan,y D is perpendicular to K, so q is a critical point
of ./ P.

By (la), q is the only critical point of f\ U/. /// with ./ >(). In particular, there is

no critical point p of /1D for which 8 (p) an odd multiple ofn. By the py symmetry,
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there is also no critical point p for which 9{p) an even multiple of tt Thus q is the

only critical point of /1D with / > 0.

Finally, for each k (including k 0),

F|: n {y < 0}

consists of just one arc (unless it is empty). (This is because y > 0 on one of the two
components of TqJ As before, / has a unique local minimum on each such arc. Thus

by Rado's theorem (or by Schneider's theorem applied to the function —f)f\D has

no critical points With. / < 0.

Corollary 4.6. Suppose D c H+ is a py -invariant minimal embedded disk with
boundary T. Let V be a plane containing the z-axis, Ifp § D is a point at which

Tanp D is parallel to V, then p lies within distance 2n of the plane z 0. There are
at most two such points. If there are two, they lie on opposite sides of V. If there is
such a point on V, then it satisfies:

()<0(p)<7i. (12)

Proof. Note that V can be expressed as the zero set of a nonzero linear function

f (x, y, z) ax + by with a < 0, and that p is a critical point of f\D if and only if
Tanp D is parallel to V. By Proposition 4.4, (here are at most two critical points, and

if there are two, they must lie on opposite sides of V. Also, if p is a critical point,
then

—7T < 9{p) < In

which implies that p lies in the slab ji] < 2n, since, for any q (.r, % z) fi //+

0(q) - tt. < z < 0(q).

Finally, if p is a critical point on V, then f(p) 0, so combining conclusions (1)
and (2) of the theorem gives (12).

Remark 4.7. Proposition 4.4 and Corollary 4.6, and indeed all the results in Section 4,

are true for a larger class of curves F. For example, they remain true if F is obtained
from T(R,h) by replacing the two helical arcs ot Fi R. h) with two smooth curves in

H+ n {(*, y, z) : x2 + y2 R2}

such that the angle function $ strictly increases from 0 to h on one curve and from
—h + Ti to tt on the other. No changes are required in the proofs.
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4.8. Vertical tangent planes along the axis Z. Let V be a vertical plane containing

Z. Note that M D V contains an interval in Z. If M and V are tangent at a point
p g Z, then M D V also contains a curve transverse to Z that passes through p.
Equivalently, D H V contains a curve with p as one of its endpoints. Analyzing the

curves of intersection of D and V will allow us to understand the distribution of points
on Z where V and M are tangent. This analysis is carried out in Theorem 4.10.

We begin with a simple lemma.

Lemma 4.9. The intersection of D with any plane in R3 cannot contain a closed
cun>e unless the curve passes through the origin.

Proof. Consider a closed curve C in D not passing through the origin. Since I) \ {0}
is an embedded disk, C bounds a portion />' of D. If a plane contained C, then

by the maximum principle that plane would contain D', and therefore by analytic
continuation it would contain all of D, which is impossible since F is not a planar
curve.

Theorem 4.10. Let V be a plane that contains Z. Let W be a connected component
of H+ D V that intersects D transversely and that does not contain any horizontal
segment ofT(R, h) in its boundary. Then W D D consists of at most three cur\>es,

and at mostfour of the endpoints of those curves are on Z.

Proof. (See Figure 5.) Note that W ati(S) for some öeK. where S is the halfstrip

[(.v. 0, z| : v > 0, —ri < z «g 0}

as in Section 4.2. Equivalently,

W {p G H+ :6(p) =9}.

By transversality, DPiW consists of smooth curves.

By Lemma 4.9, none of the curves in D D W is closed. By elementary topology,
the endpoints of such curves must lie in the set

(dD) D W I U P

where I is an interval in the z-axis, namely

{(0, 0, z) : z G I h. h] n [9 — 7i, ''I)

and where P is the intersection of the helical portion of F with W.

Note that P consists of zero, one, or both (depending on 9) of the points

a{9) (R cos''. R sin'', 9)
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Figure 5. The possible intersections of a vertical plane V and an embedded minimal disk Z>,

where Z C V, D C H+, and dD l'i A', hJ. The dotted horizontal line is at the level 2 0.

The straight line segments represent H P\V. The unshaded rectangles lie in M+ n V, the shaded

ones in 11 (T V. The curves in H+ (T V indicate possible intersections of V and D. The
component of H+ fl V that contains points at the level of 2 0 is the only component that

can contain more than one intersection curve, and the only component in which an intersection
curve might conceivably have both endpoints on Z.

and

b{ß) (RcosÔ, R sind, 9 — n).
(See (10) and (11) in Section 4.2.) Also note that each element of P is indeed the

endpoint of exactly one curve of D n W. Thus at most two curves in D n W can
have an endpoint in P. These curves together have at most two endpoints on the

--axis. Any other curve C of I) fl W must have both endpoints on the --axis. Note
one endpoint of .C must be on the positive --axis and the other on the negative --
axis, since otherwise C together with the segment joining its endpoints would violate
Lemma 4.9. Furthermore, there cannot be a second curve (" from the positive --axis
to the negative --axis, since C U C together with the two segments joining their
endpoints (and not containing the origin) would then violate Lemma 4.9.

If we assume that W is disjoint from the plane 2 0, then the method of proof
of Theorem 4.10 gives considerably more;

Proposition 4.11. Suppose W cra(S) {peH+ -.Bip) =9}.
(1) IfW is disjointfrom the plane 2 0, then D intersects W transversely.

(2) IfW is contained in the interior of the slab

K {(.v. v. 2) : |z| < max{/?, 7r}},
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and is disjoint from the plane z 0, then D H W consists of a single smooth
embedded cun>e with exactly one endpoint on Z.

(3) If W is not contained in the slab K, then D C\W is empty.

(4) If W is contained in the Slab 2n < z < h or in the Slab —h < z < —2jt, then

D D W is a single smooth embedded cun'e with one endpoint on Z, and that
citr\'e is a graph over a line segment in the plane z 0.

Proof. The hypothesis in assertion (1) is equivalent to the condition that 9 is not in
the interval [0, tt]. The transversality thus follows from Corollary 4.6.

In assertion (2), the set P in the proof of Theorem 4.10 consists of a singe point,
and that proof then shows that D n W is a single curve with exactly one endpoint
on Z.

In assertion (3), the set P is empty, from which it follows that I) n W is also

empty.
In assertion (4), DOW consists of a single smooth curve by assertion (2). The

hypothesis implies that & is not contained in the interval [—tt, 2tt |. By Theorem 4.4,
that curve has no vertical tangents and thus is a graph over its projection to the plane
Z 0.

4.12. An upper bound on the number of tangent planes parallel to a vertical
plane V. Let D be a py -invariant minimal embedded disk in II+ with boundary
T r(R.h),let

M D U pz(D),

and let N be the corresponding <72h-invariant surface. We combine the results of the

two previous sections to get a local bound on the number of points of N at which that
the tangent plane is parallel to a given vertical plane. The estimate is independent of
R and h.

Theorem 4.13. Let V be a plane containing Z, and let LI be an open horizontal slab

of thickness n :
n {(.ï, y, z) : a <z z <t a + n}.

Then n contains at most sixteen points of N at which the tangent plane is parallel
to V.

Hie number sixteen is certainly not optimal, but for our purposes any finite number
would suffice.

Proof. Consider first a plane V containing Z that is generic in the following sense:
V intersects N \ Z transversely and V does not contain any of the countably many
horizontal line segments in N. Now N is made up of congruent copies of M, which
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is in turn made up of two copies of D. Note that 0 contains points from at most

two copies of M, and therefore from at most four copies of D. Now Tan/; N is not
vertical at any boundary point of N by the boundary maximum principle. Also, V
does not contain any of the horizontal edges of the copies of D. Thus if Tan/; N is

parallel to V, then p lies either on the --axis or else in the interior of one of the four

copies of D. By Theorem 4.10 (see also (he discussion in 4.8), there are at four such

points on Z in each copy of M. By Corollary 4.6, there are at most two such points
not on Z in each copy of D. Tims there are at most 2x4 + 4x2 or sixteen such

points in n.
By openness of the Gauss map, the number of such points is a lower semicon-

tinuous function of V. Thus the bound for arbitrary V follows from the bound for
generic V.

5. Uniform estimates

5.1. A uniform curvature estimate. Consider a />y-invariant minimal embedded
disk D in H+ with boundary '<)!) — F F< R, h), the curve specified in Section 3.1.

Extend D by Schwarz reflection in Z to get a minimal embedded genus-one surface
M with dM '<) IIrj,. As observed in Section 2.1, tins boundary consists of a top
line segment, a bottom line segment, and two helical arcs. By repeated Schwarz
reflection in the top and bottom line segments, we get a smooth embedded minimal
surface N invariant under the screw motion The boundary of N consists of two
helices.

In Section 6, we will obtain complete nonperiodic (or periodic) genus-one heli-
coids by letting R and h (or just R) tend to infinity. In this section, we prove the
estimates that allow us to control passage to the limit.

Lemma 5.2. Suppose D is a py -invariant minimal embedded disk in H+ with boundary

dD T V( R, h\ Let

M D U pz(D)

and let N be the 02h-invariantsurface obtainedfrom M.

(1) IfC is a closed cun>e in N that does not intersect any straight line or straight
line segment contained in N, then C is contractible in N.

(2) Anypair ofdisjoint homologically nontrivial embedded closed curves in M must
bound an annulus in M.

(3) There is a unique shortest homotopically nontrivial curve a in D. It is a smooth
closed geodesic in N that is bisected by 0 together with the unique point of
Y no.
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Proof. Note that if we remove the straight line segments from A, we are left with
a disjoint union of pieces, each of which is congruent to D and therefore is simply
connected. In assertion (1), C lies entirely in one of those pieces and is therefore
contractible in it.

In Section 2.2, we showed that M is topologically a once-punctured torus. Assertion

(2) follows by standard, elementary topology.
Let a be a shortest curve that is a generator for rc\ I). 0) Z. (The fundamental

group is infinite cyclic since D is topologically a closed disk with two boundary points
identified.) Note that A has geodesically convex boundary because the curvature

vector at each point of its bounding helices points toward the --axis. Since D is

bounded by portions of 9 A together with geodesies in A, the curve a does not touch

dD except at 0. Thus a is a smoothly embedded geodesic in I) that starts and ends

at 0. Since D has nonpositive curvature, a is a unique. Therefore it is py invariant,
so its midpoint p is a fixed point of py, namely the unique point of Y D D. (See

Proposition 4.4.) The py invariance also implies that the two components of» \ {0, p
are related by py. This implies that a does not have a corner at 0, but rather forms a

smooth closed geodesic in A.

Remark 5.3. Note that conclusions (1) and (2) of Lemma 5.2 are preserved under
smooth convergence. Thai is, if Mi and A; are smooth minimal surfaces satisfying
the first two conclusions of the lemma, and if the Mj and A; converge smoothly to
limits M and A, then M and A also satisfy those two conclusions.

The proofs of our next two results rely strongly on the following theorem of Mo
and Osserman [MO90], which extends earlier work of Osserman [Oss63], Xavier
[Xav81], Sa Earp-Rosenberg [SER88], and Fujimoto [Fuj88], (The Sa Earp-Rosen-
berg result is also strong enough for our purposes.)

Theorem 5.4 (Mo-Osserman). IfA is a complete minimal surface in R3 with Gauss

map g : A -> §2 and if the set

ju e S2 : g_1(y) is finite}

containsfive or more poin ts, then A has finite total curvature.

We now give our main curvature estimate:

Theorem 5.5. There are finite constants Rq and K with the following property.
Suppose D is an py-invariant minimal embedded disk in H+ with boundary Y R. h),
where R > R<> and h > tt/2. Then

mi), p) < k.
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Here B(D, p) is the norm of the second fundamental form of D at p.
The hypothesis h > tt/2 could be removed, since one can show that there is no

such disk I) if h < tt/2. However, we only require the theorem for h > tt/2.

Proof. Suppose the theorem is false. Then there is a sequence of examples /), with
dDj F( R,, hi) and a sequence of points p? D, such that Hi D,. pi) and If tend

to infinity and such that /?/ > n/2.
Let

Mi Dj U pz(Di),
let Ni be the screw-motion-invariant surface obtained from Mi, and let C,- be the solid
cylinder of radius Rj about the z-axis.

We may suppose that pi has been chosen in Dj to maximize />'( /).. p\
B(Ni, pi). (The maximum exists because Af is smooth and Dj is a compact subset

of Nj It follows that

màxB(Nj,p) B{Ni,pi).
peNj

Translate Ni, Mi, and by —pi, and then dilate by B(N;,,pi). to get N[, M|,
and C- By passing to subsequences we may assume that NL M[, and C[ converge
as sets to limits N', M', and C.

Note that

max J{NL p) B(N', 0) 1. (13)
peNi

Also, either 'SN. converges to the empty set or else it converges smoothly to a

horizontal line. (There is just one line since ht > tt/2 and since the dilation factor
B(Di, pi) tends to infinity. The line is horizontal since Rj —oc.) This together
with (13) implies that the convergence N- —>• N' is smooth. Thus the limit is a

smooth, embedded minimal surface and dN' is either the empty set or a horizontal
line.

Let
if 3N' 0,

\N'UpdN/(Nr) if dN' ^ 0.

If 8N' is a line, then N' lies in a halfspace (namely C'j whose boundary plane
contains that line, and thus W is embedded. Of course if 8N' is empty, then ,A" is

also embedded. Either way, W is a complete embedded minimal surface.

By Theorem 4.13, N' has the following property: if V is a vertical plane, then
there are at most a finite number of points of N' at which the tangent plane is parallel
to V. (If this is not clear, recall that the hi are bounded below and that the dilation
factor B(Di, pi) tends to infinity.) Note that if L is a horizontal line, then pi(N') has

the same property. Consequently ibf also has this property. In other words, the set

{« G S2 : g_1(u) is finite}

W



Vol. 83 (2008) Genus-one helicoids from a variational point of view 795

contains a great circle, where g : M —> X is the Gauss map. Hence by the Mo-
Osserman theorem 5.4, -V has hnite total curvature.

We now know that Af is a complete embedded minimal surface of hnite total
curvature. By (13),

B(X,p') l, (14)

so Af is not hat. Therefore -V has a catenoidal end. Intersecting the end with a

suitable plane parallel to the end, we see that Af contains a planar closed curve that
does not intersect any straight line segment Contained in Af. By assertion (1) of
Lemma 5.2, that curve bounds a disk in ,N. By the maximum principle, the disk must
lie in the plane containing its boundary. But then by analyticity, all of Af must be

planar, contradicting (14).

The following theorem will let us conclude that the complete surfaces we construct
are nearly horizontal away from the z-axis.

Theorem 5.6. Suppose £>,: is a sequence of embedded, py -invariant minimal disks
in H+ with 9A F(/?,-, Ii;), where R; -> oo and if —*• h e (tt/2, og]. Let D- be

the result of translating I); by —p;, where p\ g I); is a sequence ofpoints such that

dist(p,:, Z U 9Cj) oo. (15)

Here disl(/>;, •) denotes intrinsic distance in I), and C; denotes the solid cylinder of
radius R, about Z.

Afterpassing to a subsequence, the If converge smoothly to a limit I)'. Let Y be

the component of D' containing 0. Then

(1) S is a horizontal plane, or

(2) E is a horizontal halfplane, or

(3) 9E consists of two lines parallel to the x-axis.

The third case can occur only if h n, the intrinsic disU/r/, X) from p; to X is

bounded, and the length of the shortest closed geodesic in A: tends to infinity.

Remark 5.7. One can prove (using a slight generalization of Proposition 5.13 below)
that in case (3), the surface Z must be a hat strip. However, we will not need that fact.
Our main construction (Section 6) uses disks with the annular intersection property,
and Theorem 5.11 below implies that case (3) does not occur for disks /), having that

property.

Proof. By the convex hull property, I); lies in the solid cylinder By Theorem 5.5,

we may assume (after passing to a subsequence) that the ÛC converge smoothly to
D' and that the corresponding translates of the C; and of H converge to a limits ("
and H', respectively.
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Note that IV is either a helicoid or else a union of horizontal planes according
to whether the Euclidean distance from p-: to Z stays bounded or tends to infinity.
Similarly, since Rj -> 00, the limit (" is either a halfspace bounded by a vertical
plane or else all of R3 according to whether the Euclidean distance from fit to 3 Ci

stays bounded or tends to infinity.
By Corollary 4.6, for each vertical plane V. there are at most two points of E at

which the tangent plane is parallel to V.

Consider first the case 3E =0. By the Mo-Osserman Theorem 5.4, S has finite
total curvature. Also, it is complete, embedded, and simply connected. Therefore it
is a plane.

Since H and D% are disjoint, IV and E cannot cross each other (i.e., contain points
of transverse intersection). Now H' is either a helicoid or a union of horizontal planes.
Since the plane E crosses every helicoid, IV must be a union of parallel planes. Since
E does not cross //', the plane E must also be horizontal.

Note that the horizontal plane S is contained in C, so (" must be all of 173 (rattier
than a halfspace bounded by a vertical plane.) Since IV is a union of horizontal
planes and C is all of M3, it follows, as explained above, that the Euclidean distance

from pi to Z U '<)(', tends to infinity in the case 3E 0.

Now suppose 3E is not empty. By (15), the boundary 3E consists of one or
more horizontal lines corresponding to the horizontal radial segments in 3D,;. Since

intrinsic distance in Dj and Euclidean distance coincide on line segments in Dj \ {0},
the hypothesis (15) implies that the Euclidean distance from //; to Z U 3Q tends to

inhnity. This in turn implies that IV is a union of horizontal planes.

Suppose that 3E consists of a single horizontal line L. Let

E* EULUftE.

Then (just as before) E * is a complete, embedded, simply connected minimal surface

of finite total curvature. Thus E* is a plane, so E is a half-plane. Since Dj lies in
H+, E must lie in the closed region between two successive planes in H+. Thus E
is horizontal.

Finally, suppose 3 E consists of more than one horizontal line. Since Dj lies in
H+, E lies in the region between two successive planes in IV. Thai is, S lies in a

horizontal slab S of thickness tt It follows that 3E consists of exactly two horizontal
lines, one in each component of <)Q. The vertical distance between those two lines
is n.

On the other hand, the horizontal segments in 3D; E(Rj, //,) lie in the planes
2 —hj, z. 0, and s hi. Thus the vertical distance between two lines in 3E is
either h or 2h. Thus h n or 2h tt Since h > nj2, this means h n.

Since hi —tt, the horizontal edges of 3D; converge to the positive and negative
portions of the x-axis and to the rays {(x, 0, n) : x < 0} and {(x, 0, — tt) : x > 0}.
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Thus the two lines of 3 S are parallel, and (after passing to a subsequence ifnecessary)
they are limits ei liter:

(1) of X~ and of the top horizontal edge If, both translated by —pi, or

(2) of X+ and the bottom horizontal edge If, both translated by — pi.
Of course in either case dist(p;, X) must be bounded. Note in case (1), disK/y, 7})
is also bounded, and in case (2) dist(>;, Bf) is bounded.

Without loss of generality, assume we are in case (1), so that disK/y, Jf"~| and

dist(p,-, Ti) are bounded.

Let (J) be the shortest closed curve in A. Then a\ divides F( If, h-) into two
components. One component consists of the top edge 7);, the edge in positive x-axis,
and a helical arc joining them. The other component consists of the bottom edge Bj,
the edge in the negative x-axis, and a helical arc joining them. In particular, the top
horizontal edge and the edge in the negative X-axis belong to different components of
T R;, hi \ a,: and thus in different components of A: \ off. Hence either the shortest

curve from pi to Ti or the shortest curve from p- to X~ must cross Therefore the

union of those two curves with ai contains a path joining pi to the origin. Thus

dist(p;, 0) < Length(a,-) + dist(p,:, 7j + dist(p(-, X~),

Since the left hand side tends to infinity and since the second and third terms on the

right are bounded, Length (a,: must tend to infinity.

In proving the theorem, we also proved

Corollary 5.8. If the intrinsic distance from pi to Z U 3Q tends to infinity, then the

Euclidean distance from pi to Z U 3C,- also tends to infinity.

Hie following special case of Theorem 5.6 will be used in 5.11 :

Corollary 5.9. If dist{/?,\ X U Z U 3C; hf oo, then TanA A converges to a
horizontal plane.

Proof. Since dist(p,-, Z U 3C, oo, assertion (1), (2), or (3) of Theorem 5.6 must
hold. Since dist(p;, X) -> oo, assertion (3) does not hold.

5.10. A uniform bound on the length of the closed geodesic in D. Consider a

Py-invariant, minimal embedded disk D in H+ with boundary lb R. h) (for some
R and h), where 1 "( R. ft) is the curve dehned in Section 3.1. The next theorem
establishes a uniform estimate for the length of the shortest closed geodesic in D,
provided the disk D has the annular intersection property 3.2. (This is the only
estimate in the paper that depends on the annular intersection property.) We will use

this result to show that the genus-one surfaces M D U pz(D) have genus-one
limits as R — oo.
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Theorem 5.11. Suppose I), is a sequence of py -invariant minimal embedded disks
in H+ with boundary 11 R;, fa and with the annular intersection property. Suppose
also that

hi > i/ > Ti/2

and that Rj -> oo. Then the length of the shortest closed geodesic in I), is bounded
above.

Proof. Let a, be the shortest closed geodesic in I),. By assertion (3) of Lemma 5.2,

cf; contains both the origin and the unique point Pi in I), n Y. and the length of U) is

twice the intrinsic distance from p\ to 0. Thus it suffices to bound dist (/v,, 0) above.

Let qi be the point in X U Z that is closest in intrinsic distance to pi. Then

distil, 0) < distip;, </; + distw/-, 0)

distip;. (/• 1 + \qi\

< dist(p,:, q{) + | pt - qt \

< 2dist

(Here \qi | < \pi — qi \ because pi g Y and qi e X U Z arc orthogonal.) Thus

dist(p,-, 0) < 2 distfp;, I U Z). (16)

rfhe tangent plane to I), at pi is vertical by Proposition 4.4. Titus by Corollary 5.9,
the sequence

dist(p;, X U Z U dCj)

is bounded, which implies by (16) that the sequence

distt p":, {0} U dCi)

is bounded. Hence it suffices to prove that

disti! > x. (17)

Suppose, on the contrary, that distCp/, 3C, is bounded. Translate Dj, II. and C;

by —pi to get Dl, II'. and C\. Since distf p\, 9C,) is bounded and R, - oo, the C-

converge (after passing to a subsequence) to a halfspace (" of the form

c {(v, v, *) : y < a}.

It follows that the H[ converge smoothly to a limit II' consisting of the horizontal
planes on which % is an odd multiple of 77-/2. By the curvature estimate in Theorem 5.5,

we may assume that the If converge smoothly to a limit surface. Let D' be the
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connected component of that limit surface containing the origin. Then A lies in one
of the components of C \ II', namely the halfslab

{(v, y, z) : y <a and ).fj < tt/2}. (18)

Note that 3 A consists of the two straight line edges of tire halfslab. (By the py
symmetry of A, the boundary 3A camrot be just one of the two lines.)

By Corollary 5.8, D' is properly embedded.

We have shown that D' is a simply connected properly embedded minimal
surface in the half-slab (18) and that 3 D' consists of the two edges of (18). The only
such minimal surface is the vertical strip S bounded by those two edges (see Proposition

5.13 below), so D' S. However, we will show that D' S contradicts the
annular intersection property of the A •

Let A' be a catenoid that intersects tire planes - ± tt/2 in a pair of circles in
the region f < a. Since A intersects each amrulus in A(T;), it follows that D'
intersects A'. But the strip D' S does not intersect A', so we have a contradiction.

(In case it is not clear, we spell out in more detail why D' must intersect A', Let A-
be the component of A' \ H- that crosses tire .rv-piaire. Translate A - by p\ to get A;.,

Because of the smooth convergence, when i is sufficiently large, A; will be in ,A(T;
and so A: will intersect A,:. Thus D- intersects Af and hence, passing to the limit, D'
intersects A'.)

Remark 5.12. Note that the annular intersection property was only used to prove (17).
Thus, even without assuming the annular intersection property, the theorem applies
to any sequence A for which (17) holds.

Proposition 5.13. Suppose U cl3 is a half-slab bounded by two horizontal half-
planes and an infinite strip S. Suppose M is a simply connected, properly embedded

minimal surface in U with 3 M 3 S. Then M S.

Proof. We may suppose that U {(.v, v, z) : y < 0 and |z| < /;} and thus that the

strip is S {(x, y» z) : y 0 and |z| < h}.
Since M is connected, it contains an embedded path y joining (0, 0, —/? to

(0, 0, h). Since M is simply connected, y divides M into two components. One of
those components, which we will denote M+, has boundary consisting of y together
with {(.v.O, ±/;> g 35': > ()}.

(If this is not clear, note that if M f S, then M 1U S bounds a region in K3 and so

is orientable. Thus M U S is topologically an annulus (rather than a Möbius strip),
and thus y together with the segment joining its endpoints divides MUS into two
components.)

Let 1 be a ball centered at the origin and containing y. Let G be the set of
complete catenoids C with vertical axes of symmetry such that C is disjoint from
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1 U (u, y, z) G .S' : x > ()}. Note that G is a connected family, and that there are

catenoids in G that are disjoint from M+. (Take any C § G disjoint from If.) Thus by
the maximum principle, all the catenoids in G are disjoint from M+. These catenoidal
barriers force M+ to be arbitrarily close to S near cc:

lim y 0.
(x,y,z)sM+, JMHBö

Likewise for (x, y, z) e M~ M \ M+, we see that y -> 0 as x -> —oo. Tims
I y I achieves its maximum on M at a finite point p. By the maximum principle, this
maximum value must be 0.

6. The main theorems

Theorem 6.1. There exists a complete, properly embedded minimal surface M in M3

such that

(1) MOH X UZ.

(2) Each of the two components of M \ TI is simply connected.

(3) M is topologicals a once-punctured torus.

(4) Taiip M converges to a horizontal plane as disb/x Z) oo.

(5) The points of M \ Z with vertical tangent planes lie in a cylinder 1(0, R) x
[—2JT, 2JT].

(6) M is conformais a once-punctured torus.

{!) The level set Mfl{; 0j consists ofX together with a smooth, simple closed
curve that intersects X in exactly two points.

(8) For each c / 0, the level set MG\{z c} consists ofa single smooth, nonclosed

curve.

(9) M is asymptotic to H at infinitv.

Proof. Choose sequences Rj and hi tending to infinity. By Propositions 3.3 and3.11,
for all sufficiently large i, the curve T(Ri. ftj) bounds a py-invariant minimal embedded

disk Dj in H+ with the annular intersection property. Let

Mi Dj U pz(Dj).

By Theorem 5.5, the curvatures of the Ml) are uniformly bounded, so (by passing to a

subsequence) we may assume that the Mi converge to a complete, embedded minimal
surface M.
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Now
3 (Mi D H+) i)Di T(RiJn) XUZ.

It follows that

d(M D H+) xuz
which implies assertion (1).

Since M D //+ is the limit of the simply connected minimal surfaces Mi D H+
Dj, it must also be simply connected. Similarly M D H~ must be simply connected.
This proves assertion (2).

Furthermore, M is proper by Corollary 5.8.

By assertion (3) of Lemma 5.2, Mi contains a simple closed geodesic a* such that
0 g a; and such that cf; \ {0} lies in I),. Thus a'. pz(a; is another closed geodesic,
and at and a'; intersect transversely at the origin and nowhere else. (They intersect

only at the origin because er,: \ {0} lies in 1), c H+ ander- \{0} lies in pz(Di) C //
Ihe lengths of the geodesies a; and a- are bounded above by Theorem 5.11,

and they are bounded below since the curvatures of the Mi are uniformly bounded

(Theorem 5.5). Thus (after passing to a subsequence if necessary) the m and a';

converge to closed geodesies a and a' in M that intersect transversely at the origin.
Thus M has genus at least one. By part (2) of Lemma 5.2 (see also Remark 5.3), M
has genus at most one. Thus M has genus exactly one. Assertion (2) of Lemma 5.2
also implies that M has exactly one end. Thus M is topologically a once-punctured
torus.

Assertion (4) follows from Theorem 5.6.

Assertion (5) follows from assertion (4) together with Corollary 4.6.
To prove the remaining assertions, it is convenient first to prove the following:

Claim. Let M+ M n //+.

(i) Ifc > 0, then M+ n {a > <?} has exactly one connected component.

(ii) // Tan/; M is horizontal, then p g X \ {0}.

(iii) M+ n {z 0} consists of a single smooth embedded cun>e.

(iv) Either M D {z 0} consists of three connected components each of which is

a smooth embedded cun>e, or it consists of X together with a smooth, simple
closed curve that crosses X exactly twice.

Proofof claim. To prove (i), let C be the component of M+ n (z > r} that contains

{(0, 0, z) s > c}

in its boundary, and let
C (M+ D {z > el) \ C.
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n# M+ n{z > c} and if 9 (p) > c + 2n (where 9 is the angle function defined in
Section 4.2), then by assertion (4) of Proposition 4.11, there is a curve in M+ n {g > c}
that contains p and that has an endpoint on Z. Thus such a point p must lie in the

component C. This shows that the function 9 is bounded above on C'. Thus the
function ç is also bounded above on C. (Recall that 0(x, y, g) and g differ by at

most Ti.)
Now " is a minimal surface that is properly embedded in {z > c}, C is contained

in a slab, and 3C c {z c}. A version of the halfspace theorem [HM90] states

that if a connected, properly immersed minimal surface S lies in a slab, and 3 E (if
nonempty) lies on one boundary face of the slab, then E is a subset of a plane. Hence

C is a union of horizontal planes. But (" is contained in // 1, so C" must be empty,
lliis proves (i).

To prove (ii), suppose the horizontal plane {? c} is tangent to M at some point p.
By the py symmetry, we may assume without loss of generality that c >0. If p were
in M+, then by a theorem of Rado ([Rad71], III.7 or [Oss86], Lemma 7.5), the tangent
plane {z c} would divide M+ into four of more components, at least two of which
would lie in the region g » c, contradicting (i). Thus p does not lie in M+. By the

same argument (or by pz symmetry), it also cannot lie in M~, the other component
of M \ H. Thus by assertion (1), p e X U Z. Since Z c M, the tangent plane to M
at every point of Z is vertical. Thus p e X \ {0}. This proves (ii).

To prove (iii), note that if M+ n {z 0} contained more than a single embedded

curve, then M+ \ 0} would have more than two components. By the py
symmetry, it would have more than one component in the halfspace {g > 0}. But to

according to (i) (with c 0), there is only one such component.
To prove (iv), let S be the curve whose existence is given by statement (iii) of the

claim. If S has no endpoints, then it follows from statement (iii) that M n {z 0}
consists of the three components X, 5, and px(S), each of which is a smooth,
embedded curve. Now suppose that S has an endpoint p. Then p must be a singular
point of M n {g 0}. Thus the tangent plane to M at p must be horizontal. By
statement (ii) of the claim, the point p must lie onI\ {0}. By the py-symmetry of
M, the point —p must also be an endpoint of S. Thus S consists of X together with
the simple closed curve S U px(S), which intersects X precisely at the two points p
and -p. This completes the proof of the claim.

We have established that M is a complete, properly immersed minimal surface

with finite topology, one end, and bounded curvature, such that the level set

M n {g 0}

consists of finitely many curves with finitely many singular points (points where

curves cross). According to a theorem of Rodriguez and Rosenberg [RR98], any
minimal surface M with these properties has finite type, meaning:
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(a) M is conformally a once-punctured Riemann surface. Equivalently, the one-

point compactification M fi {oo} is conformally a compact Riemann surface (in
our case a torus).

(b) The one-form (dg)/g (where g is the Gauss map) is meromorphic on M U {oo},

(c) Let q be the holomorphic one-form on M whose real part is dv, where

o(x, jpg z) 2 is the height function. Then q is a meromorphic one-form on
M U {oo}.

In particular, (a) is assertion (6) of the theorem.
Since the height function v is harmonic and nonconstant on M, the one-form q

must have a pole at oo and nowhere else. Since q is a nonconstant meromorphic
one-form on a torus, it must have an equal number (counting multiplicity) of zeroes
and poles. Thus it must have some zeroes on M. In other words, the height function v

must have critical points on M. By statement (ii) of the claim, those critical points
must lie on X \ {0}. In particular, the level set M D {z 0} is not everywhere smooth.
Thus by statement (iv) of the claim, the level set consists of X together with a simple
closed curve that intersects X at two points. This is assertion (7).

By elementary complex analysis, for each c e M, the number of ends of the level

set M D {s c} (i.e., of v~l(c)) is equal to the order of the pole of q at oo, For c — 0,
there are two ends by assertion (7). Thus q has a double pole at oo, and the level set

M H {z c} has two ends at infinity for every c.
Now let c 7) 0. Since the height function has no critical points at height c, die

level set
M+ D {z c} (19)

is a union of smoodi embedded curves. None of the curves is closed since M+ is

simply connected and embedded. Thus the level set M n{z c} (which is obtained
from (19) by reflection in Z) is a disjoint union of non-closed smooth curves. We
have just shown that this level set has exactly two ends. Thus it consists of exactly
one curve. This proves assertion (8).

It remains only to show assertion (9), that M is asymptotic to H at infinity. This
follows from immediately from a theorem of Hauswirth, Perez, and Romon, who

prove diat any embedded minimal surface of finite type, one end, bounded curvature,
and infinite total curvature must be asymptotic to a helicoid at infinity [HPR01].

Hie Hauswirdi-Perez-Romon Theorem is very general, but has a rather lengthy
proof. We can also deduce assertion (9) from the following theorem (due to Hoffman
and McCuan), which has a much shorter proof.

Theorem ([HM03]). Let E c IK3 be a properly immersed, minimal annular end that
is conformally a punctured disk. Suppose that y and q both have double poles at
the puncture and that q has no residue at the puncture, IfE contains a vertical ray
and a horizontal ray, then a sub-end of E is embedded and asymptotic to a helicoid.
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We have already proved that the end of M satisfies all the hypotheses except for
two: that q has no residue at oo, and that dg/g has a double pole at oo. (We showed
in the proving assertion (8) that q has a double pole at oo.)

Since q has no poles on M, it has no residue at oo by Stokes' theorem.
Since dg/g and q are meromorphic one-forms on M U {oo}, their ratio is a mero-

morphic function and hence has a limiting value at value at infinity:

dg/g
lim (p) : : | eCU {co}.

p—¥0O T]

Recall ([HK97], p. 15) that the principal curvatures at a point are ±/< where

(20)

« 4 ill +
Igl

-2 dg/g

On Z, the tangent plane is vertical, so |g| 1 and

dg/g

Thus by (20),
lim Kip) Hi

yoo.peZ
(21)

Since M has bounded principal curvatures, f 7^ oo.
Note that on any interval I c Z+ of length 47r, the tangent plane to II turns

through angle Att Since M+ lies on one side of H, this forces the tangent plane to
M to tum through an angle at least 3n on I. Thus there must be a point in I at which

3tt 3
K > -47T 4

In particular, there is a sequence of such points in Z tending to 00, so | 7^ 0 by (21).
Since f is finite and nonzero, (20) implies that dg/g and q have poles of the same

order at 00. Since q has a double pole at 00, so does dg/g.
All t he hypotheses of the Hoffman-McCuan Theorem are satisfied, so M is asymptotic

to H. Iliis completes the proof of Theorem 6.1.

Theorem 6.2. For each h > n /2, there is a complete, properly embedded minimal
surface N N(h) in K3 such that

(1) The intersection N C\H ofN with the helicoid H consists of the z-a.xis together
with the horizontal lines

H Ci {z nh}, n G Z.

Furthermore, N \ H consists of congruent, simply connected components.
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(2) N is invariant under the screw motion o^.
(3) The portion M of N in the slab |z| < h is bounded by the two horizontal lines

P±h(X).

(4) The quotient iV/czA has finite total curvature and is conforrnally a twice-punc¬
tured torus.

(5) Tan/; N converges to a horizontal plane as dist(p, Z) do.

(6) The quotient N fo2h is asymptotic to !£/»%& at infinity.

Proof. Fix an h > tt/2 and choose a sequence If -> oo. By Propositions 3.3

and 3.11, for sufficiently large i there is a py-invariant minimal embedded disk I),
in H+ with boundary F If, h) and with the annular intersection property. Let

Mi Dj U pz(Di

and let AO be the 0211 -invariant surface obtained from M; by repeated Schwarz reflections.

(Or, equivalently, let Ni
By Theorem 5.5, the curvatures of the Ni are uniformly bounded, so (passing to a

subsequence) we may assume that the A'; converge smoothly to a complete embedded

V2/,-invariant minimal surface N. It follows that the Mi converge smoothly to die
closure of die surface

M {(x, y. z) &N : |z| < h).

Note that N is orientable since it is properly embedded in It3. If L is a line in N,
then die rotation p/. : N —N is orientation-reversing. Thus

C2h : N ^ N

is orientation-preserving since it is the product of two such rotations (corresponding
to L X and L H n{z h}). Therefore Nfazi, is orientable.

Assertions (1), (2), and (3) follow immediately from the construction.
Exactly as in die proof of Theorem 6.1, M is homeomorphic to T \ A where T is a

torus and À is a closed disk in T. Since M is M together widi its two boundary lines,

M is homeomorphic to the union of T\A with two disjoint arcs of 3À. If we identify
those two arcs, either the result is non-orientable or else it is topologically a twice
punctured torus. Since N/<J2h is orientable and since it is the result of identifying the

two boundary lines of M, it follows diat N/02h is topologically a twice-punctured
torus.

Note that the total curvatures of die Mi are uniformly bounded by the Gauss-
Bonnet theorem. It follows diat N/02h has finite total curvature, which implies by
Huber's dieorem [Hub57] (or by [Oss86], Theorem 9.1)) diat it is conforrnally a

punctured Riemann surface. Thus it is a conforrnally a twice-punctured torus.
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Assertion (5), i.e., that Tanp N becomes horizontal as dish/;, Z) -> oo, follows
from Theorem 5.6. (Note that case (3) of that theorem does not arise because Theorem

5.11 gives a uniform bound on the lengths of the closed geodesies in the I),,)
We now show that the two horizontal ends are helicoidal rather than planar.

(See [MR93] for a discussion of the possible end behavior of embedded periodic
minimal surfaces.) If they were planar, one end would correspond to the plane t, 0

and the other to the plane z h (since N contains horizontal lines at those heights).
But py preserves orientation on N and reverses orientation on the plane z 0. Thus
the ends cannot be planar. (Section 5 of [HW] gives another proof that the ends of
N/cjlh are asymptotic to a helicoid.)

It remains only to show that D is asymptotic to H as x2 + y2 H* oo rather than

to some other helicoid.
Recall that D, has a unique embedded, closed geodesic. Note that the geodesic

divides Dt into two components, and that the portions of X+ and of ct/, (X+ in I), \{0}
belong to the same coimected component. (They are joined by a helical arc in I),
Thus by smooth convergence of D, —D and of the corresponding geodesies, we see

that the simple closed geodesic in D divides it into two components, one of which,
/T'pper, contains X+ and ct/;X+. Consequently X~ and o_/,(X~) belong to the other

component.
Let R be large enough that the closed geodesic and all points of D with vertical

tangent planes lie in the open cylinder of radius R about Z. Then for each r > R,

DuPPer n {x2 + y2 r2}

is a smooth compact curve, on each component of which the angle function

9 : H+ -h M

is monotonie. Thus no component is a closed curve, and since there are exactly two
endpoints, namely (r. 0, 0) and r>h(r, 0, 0), there is exactly one component. Furthermore,

that component can be parametrized by d and therefore written as:

(r cos <>. r sind, f(r, 9)) (a < 6 < ß)

for suitable a and ß. Now 9 0 on X+ and 9 h on ah(X+), so a 0, ß h,

fir. 0) 0, and f(r. liJ h.

Since this is true for all r > R, we have proved that outside of the cylinder of
radius R about Z, /hip|X I' may be written as

!(/- cos9, r sind, f(r. 9J) : r > R, 0 < 9 < h}

where

f{r. 0) 0, f (r. h) h. (22)



Vol. 83 (2008) Genus-one helicoids from a variational point of view 807

Since D is asymptotic to a helicoid, dffW converges to a constant as r —> oo,
namely the pitch of the helicoid. Thus (22) implies that the constant is 1 and that

f(r,&) =e+o(r)
which implies that Dupper is asymptotic to //.

7. A compactness theorem

Let A" be the class of all symmetric, embedded genus-one helicoids, periodic and

nonperiodic. If A g -V is periodic, let h(N) be the smallest h > 0 such that A is

G2h-invariant. If N is nonperiodic, let h(N) oo.
For each h > tz/2, we have proved existence of an A e -V with h(N) h.

Furthermore, there are no A g A" with h(N) <ti/2 (see [HW], Section 3). However,
A" may conceivably contain examples that do not arise from our construction.
Nevertheless, the following two theorems apply to all symmetric, embedded genus-one
helicoids.

Theorem 7.1. Ifq > n/2, then the class

A:i '= {A g A/" : h(N) > ?/}

is compact with respect to smooth convergence on compact sets of M3. Furthermore,
each surface A g A has all the properties listed in Theorem 6.1 ifh(N) oo, or in
Theorem 6.2 ifh(N) < oo.

Proof. If R oo and/or h bo, let us (by a slight abuse of notation) interpret the

expression "3D T(R, /()" to mean "3D 3 Qr,s and D is asymptotic to g/ta at

infinity". Note that if R oo, then 3 Q a\/; has no helical portions, but rather consists

entirely of horizontal rays together vertical segments or rays. In another paper ([HW]
Section 2), we will prove that if A g A, then

D := {(.v. y, z) G A n H+ : JfJ < h(A)}

is a disk with 3D T(oo h(N)).
We claim that all of the results in Sections 4 and 5 of this paper remain true for

any disk D with 3D F (R, h), even when R and/or ft is allowed to be inhnite. By
Remark 4.7, Propositions 4.4 and 4.10 are true for D n C for any sufficiently large
solid cylinder C about Z, and thus those propositions are also true for D. No changes
are required in any of the other proofs. (In particular, one works directly with D
rather than with the portion of D in a solid cylinder.) By Remark 5.12, Theorem 5.11

is true when If m oo even without assuming the annular intersection property.
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Consider a sequence N) g -A',;. By the discussion above, the A) and the disks

Of -= {t'-v- y. Z) g Ni n H+ : |c| < ln\N}

satisfy all the estimates in Sections 4 and 5. In particular, the curvature estimates imply
that a subsequence of the A; converges to a limit N, and Theorem 5.11 implies that the

sequence of points D-, n Y is bounded, lire proofs of Theorem 6.1 and Theorem 6.2
then show that N satisfies all the conclusions of Theorem 6.1 (if h(N) oo) or
Theorem 6.2 (if h(N) «g oo), and so in particular N g Mn.

We end by pointing out that our bounds on points with vertical tangent planes are

uniform:

Theorem 7.2. For every jy > tz/2, there is an R < oo with the following property.
IfN g Mn and if p is a point in the fundamental domain

M {(:*, y, $ Ê. JV : M < h(N)}

such that Tan/; N is vertical, then p lies on the z-axis or in the solid cylinder

{'•v. y. s) : .r2 + y2 < R2, ]jî < 2tt}.

Proof This follows immediately from Propositions 5.6 and 5.11.

Appendix. Existence of unstable minimal disks

Here we prove the minimax principle used in Section 3.

Let U be an open subset of M A We will call U mean convex provided no smooth

minimal surface in U whose boundary is in U can touch 3 II. We will call U strictly
mean convex provided no smooth minimal surface M in 11 can touch QU except at

its boundary 3M. For example, in case that 31/ is smooth, U is mean convex if
and only if the mean curvature of QU (with respect to the inward-pointing normal)
is everywhere nonnegative, and U is strictly mean convex if and only if the mean
curvature is positive on dense subset of 3 U.

Suppose U has piecewise smooth boundary. If each face has nonnegative mean
curvature with respect to the inward-pointing normal, and if the interior angle along
each edge is less than jt then U is mean convex.

Theorem A.l. Suppose F is a smooth, simple closed curve in M3 and that If and
D2 are two disjoint strictly stable smooth embedded minimal disks in M3 with dD\
'<)!)) F. Suppose also that l)\ and D? meet transversely along T. Then F bounds a

weakly unstable, smoothly embedded minimal disk in the region between D\ and D).
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Proof. Let U be the region between I)\ and Dr. Enlarge U slightly by pushing each

Dj outward by« times the outward unit normal, where m(: is the first eigenfunction of
the Jacobi operator on A, normalized to have maximum value 1. By strict stability,
the resulting enlarged domain II, will be strictly mean convex for all sufhciently
small e > 0. (See Proposition A.3 below.) Since tire first eigenfunction is positive
everywhere, U contains U provided é s» 0.

Now we appeal to the following theorem:

Theorem A.2. Suppose that W is a mean convex region in R3 and that V is à smooth

open subset ofdW. Then:

(1) A generic, smooth, simple closed curve C in V is non-cri.ti.cal in that 0 is not
an eigenvalue of the Jacobi operator of any smooth embedded disk in W with
boundary C.

(2) IfW is strictly mean convex and ifC is a non-critical smooth simple closed curve
in V that bounds a disk in V, then C bounds finitely many smooth embedded

minimal disks in W, and the number of even-index disks is exactly one more
them the number ofodd-index disks.

This theorem is stated for strictly convex W with smooth boundary in Theorem 2.1

of [Whi89]. But the proof given there, which is inspired by Tomi-Tromba [TT78],
actually establishes the more general result stated here.

To continue the proof of Theorem A.l, let F' be such a generic curve in either of
the two smooth faces of lb. By strict stability of D, (i l, 2) and by the implicit
function theorem (cf. Theorem 3.1 of [Wlii87a]), if F' is sufficiently close to T, then
T' will bound a smooth embedded minimal disk !)' that is a slight perturbation of I),.
In particular, F' bounds at least two strictly stable disks in Ue. Thus by Theorem A.2,
it must bound at least one minimal embedded disk D' in 11, that has odd index and

that is therefore strictly unstable.
Now take a subsequential limit of such D' for a sequence of F's converging

to F. The resulting surface is a weakly unstable disk D(e) in T<. Now let D be

a subsequential limit of the D(e) as < -» 0. Then I) is a weakly unstable smooth

embedded minimal disk in U. It is not equal to I)\ or to Dr since they are both strictly
stable. Hence by the strict maximum principle, D cannot touch T>\ or I)?. That is,
D c U.

Proposition A.3. Let D be a smooth, embedded, strictly stable, orientable minimal
surface in R3. Let v be a unit normal vectorfield on D. Suppose u is an eigenfunction
corresponding to the first eigenvalue of the Jacobi operator on D. Then for all
sufficiently small t 0, the surface Dm parameterized by x e D i-> x + tu(x)v(x)
lies on one side of D and has nonzero mean curvature vector that points into the

region between D and D(t).
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Proof. Let j be a positive integer and define an operator <b : Cj+1(D) Hi* Cd(D) on

a neighborhood of the zero function as follows. Given w G C^'(D), form the disk

x H* x + w(x )v(x). Let h(w)(x) be the mean curvature vector of this surface at the

point x + w(x)v(x), and let

<I»i M.V.I //1 ,v I • I'l.V I.

Then <b is a smooth map of Banach spaces. Also, <b(0) 0 and T'i'O) is the Jacobi

operator ./. Thus if w is any smooth function on D, then

J(wj + 0(\w\2).

In particular, letting w tu gives

du//* —ti.u + din
where X is the first eigenvalue of /. By strict stability, X > 0. Thus

T>(tu)
—-—-—> —kit in CJ as t H* 0. (23)

Now s does not vanish on die interior of D, and hence by the boundary maximum
principle Du never vanishes at the boundary. Thus the C> convergence (23) implies
(for all sufficiently small / 0) that <!>(/». never vanishes on the interior of D and

that it has the sign indicated in the statement of the lemma.

Corollary A.4. Suppose D is a strictly stable, embedded orientable minimal surface
in M3. Then there is an open set W containing D with the following property. IfM
is a minimal surface in W with dM c D, then M c D.

Proof. Choose S > 0 so that for / < 8, the disk Dit) has the property asserted in
Proposition A.3. Let

W=[J D(t).
I ffeP

Given a minimal surface M in W with 9 M c D, let T be tire largest number such that
M n I) j is nonempty. Then T 0, since if T were positive, the maximum principle
would be violated at the point of contact of M and Df. Likewise the smallest T such

that M n Dt is nonempty is 0.

Remark A.5. Using the boundary maximum principle, one can show that the corollary

is also true for M c W with DM : I).
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