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On the appearance of Eisenstein series through degeneration

Daniel Garbin, Jay Jorgenson and Michael Munn

Abstract. Let I" be a Fuchsian group of the first kind acting on the hyperbolic upper half plane
H, and let M = I"\H be the associated finite volume hyperbolic Riemann surface. If y is
parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part
of mathematical literature. If y is hyperbolic, then, following ideas due to Kudla—Millson, there
is a corresponding hyperbolic Fisenstein series. In this article, we study the limiting behavior of
parabolic and hyperbolic Eisenstein series on a degenerating family of finite volume hyperbolic
Riemann surfaces. In particular, we prove the following result. If ¥ € T" corresponds to a
degenerating hyperbolic element, then a multiple of the associated hyperbolic Eisenstein series
converges to parabolic Eisenstein series on the limit surface.

Mathematics Subject Classification (2000). 11M36, 30F35, 11F72.

Keywords. Hyperbolic Eisenstein series, degenerating Riemann surfaces, and counting func-
tions.

1. Introduction

1.1. Spectral expansions. Let M = I'\H be a finite volume hyperbolic Riemann
surface, realized as the quotient of the hyperbolic upper half plane H by a discrete
subgroup I' of PSL;(R). Let Ay denote the Laplacian, associated to the hyperbolic
metric, which acts on the space of smooth functions on M. For the sake of our
discussion, consider the corresponding heat kernel K, (¢; z, w), which is a function
ofteRYandz,w e M. If M is compact, then the heat kernel admits the spectral

expansion
o0

Ktz w) =3 e 0ty o (2 bag (W) (1

n=0

where {¢y »} 18 a complete orthonormal basis of eigenfunctions of the Ay with cor-
responding (non-negative) eigenvalues Ay ,. If M 1s non-compact, then the spectral
expansion of the heat kernel takes a very different form. More specifically, let {P}
denote the finite set of I'-inequivalent cusps, and Ep,;; 57, p(s. z) be the (parabolic)
Eisenstein series on M corresponding to P. Then, in this case, the spectral expansion
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of the heat kernel on M is the identity
Ky (1 z,w)

= e s n (2 Par (W) 2)
n=0

[o,¢}
1 o | |
— o0

Recall now that any finite volume hyperbolic Riemann surface My can be real-
ized as one component of a degenerating sequence of compact hyperbolic Riemann
surfaces M. In this setting, it has been shown that the hyperbolic heat kernels on
M, converge to the hyperbolic heat kernel on Mp; see [13] and [15]. With the heat
kernel convergence result in mind, one immediately has from (1) and (2) the follow-
ing natural question: How does one see the emergence of the Eisenstein series in (2)
through degeneration? More precisely, does there exist a naturally defined sequence
of functions h¢(s, z) on M, which converges to the Eisenstein series Epq a7y, p (5, 2)
on My?

1.2. Spectral theory on degenerating Riemann surfaces. The problem of study-
ing the asymptotic behavior of spectral theory on degenerating Riemann surfaces of
finite volume has received considerable attention in the literature. In [5], Hejhal de-
veloped the theory of degenerating b-groups and obtained, among other results, the
lead asymptotics of spectral counting functions. An improvement of the error term
in the case the degenerating surfaces are compact was proved in [8]. From [2], one
has a construction of degenerating hyperbolic Riemann surfaces of finite volume by
first constructing families of degenerating algebraic curves, from which one can uti-
lize the uniformization theorem in order to obtain degenerating families of Riemann
surfaces of finite volume. In [9], the approach from [2] is used to study spectral invari-
ants associated to the canonical and Arakelov metrics. Beginning in [13], Huntley,
Jorgenson and Lundelius used the methodology from [2] to study hyperbolic spec-
tral theory through degeneration. These authors obtained numerous result, including:
Convergence of heat kernels [13]; asymptotic behavior of heat traces and Selberg zeta
functions [16]; convergence of relative spectral functions [14]; asymptotic behavior of
counting functions [15]; asymptotic behavior of weighted counting functions (Riesz
sums) [6]. In all these articles, the results apply to non-compact degenerating families
as well as compact families. Further results concerning eigenvalue and eigenfunction
convergence have been obtained by Judge in [17] and [18], and Wolpert used degen-
erating techniques to study the problem of existence of L? eigenfunctions on general
finite volume hyperbolic Riemann surfaces. More recently, in [11], it was shown that
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one can use the results from [16] to study other metrics, namely it was shown that the
metric on Teichmiiller space induced from the canonical metric is not complete.

In brief, there 1s a vast literature addressing problems 1n the study of spectral
theory on degenerating finite volume Riemann surfaces. Further problems exist, and
as mathematical development demonstrates, new results are interesting for their own
sake as well as for potential applications to other fields.

1.3. The main results. Throughout this article we refer to the Fisenstein series
Epar;m,p (s, 2) in(2) as parabolic Eisenstein series since each such series is associated
to a parabolic element of the uniformizing group I'. In [20], the authors defined
a hyperbolic Eisenstein series Epyp:p,, (5, 2) associated to any hyperbolic element
y € I'. We will summarize both definitions in Sections 2.3 and 2.4. In addition,
as we will recall below, a degenerating family of hyperbolic Riemann surfaces M,
has two types of hyperbolic elements: Non-degenerating elements, which are those
that converge to hyperbolic elements in the Fuchsian group of the limit surface, and
degenerating elements, which are those whose associated geodesics have lengths that
converge to zero.

Precise definitions and references to all concepts will be given in Section 2 below.
However, with these comments made, we are able to state the main result of the paper.

Main Theorem. Ler My be a degenerating family of hyperbolic Riemann surfaces
of finite volume, with limit surface M.

1) Let Enypm,,y (s, z) be the hyperbolic Eisenstein series on My associated to
the hyperbolic element y. If y corresponds to a non-degenerating hyperbolic
element, then

lim Ehyp;Mg,)/(S’ Z) = Ehyp;Mo,y(Sa Z)-
£,—0

it) Let Eparop, p (s, 2) be the parabolic Eisenstein series on My associated to the
cusp P. Then

llm Epar;Mg’P(S’ Z) = Epal‘;Mo,P(Sa Z)'
£,—0

iii) Let Enypp,.y (s, 2) be the hyperbolic Eisenstein series on My associated to the
hyperbolic element y, whose geodesic has length £,. If y corresponds to a
degenerating hyperbolic element which results in the new cusp P, then

ZIIEIOE;SEhyp’MzJ/(SS Z) — Epar;Mo,P(Sa Z)'
v

In all instances, the convergence is uniform on compact subsets of My bounded away
from the developing cusps, and in half-planes of the form Re(s) > 1 4 & for any
3 > Q0.
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Part (iii) answers the question posed above, namely to determine a naturally de-
fined sequence of functions on a degenerating family M, of hyperbolic Riemann
surfaces whose limit is the parabolic Eisenstein series associated to the newly devel-
oped cusps.

Explanation of (iii). In order to keep the statement of part (iii) manageable, we
employed a slight abuse of notation, which we now explain. If M, has a single
pinching geodesic which is separating, then the limit surface Mg has two components,
which we denote by My.1 and My.;, each with a single newly formed cusp, denoted
by P; and P». In this case, the right-hand side of (ii1) depends on the location of
the point z: If 7 € My, (tesp. z € My.»), then the right-hand side of (iii) signifies
the function Epar;py,, P (5, 2) (t€8P. Epar; My.,: P, (5, 2)). It M has a single pinching
geodesic which is non-separating, then the limit surface My has one component with
two newly formed cusps, denoted by Py and P». In this case, the right-hand side of
(iii} signifies the function Epar;arq, Py (5, 2) + Epar; My, P, (s, 7). To consider the general
case when M; has several pinching geodesics, then one simply iterates the results
from the Main Theorem by pinching one geodesic at a time.

1.4. Outline of the paper. In Section 2, we establish notation and recall various
known results. Perhaps the most important ingredients for our analysis are the defini-
tions of parabolic and hyperbolic counting functions, and the realization that parabolic
and hyperbolic Eisenstein series can be expressed as Stielgjes integrals of these count-
ing functions. In Section 3, we study the asymptotic behavior of the counting func-
tions from Section 2 through degeneration. With these results, we conclude by proving
the Main Theorem in Section 4.

2. Background material

2.1. Basic notation. Let M be a finite volume hyperbolic Riemann surface. By this
we mean there exists a Fuchsian group of the first kind I' acting on the hyperbolic
upper half plane H such that M and I'\H are isometric. Hence, we write M = I'\HL
As is common, we realize H as {z € C | Im(z) > 0}. Writing z = x + iy, then the
hyperbolic metric z4nyp and hyperbolic Laplacian Apyp can be expressed as

dx? + dy? , (8% 32
Hhyp = T and  Apyp = —y (8_162 + a—yz) .

Under the change of coordinates x = ¢ cos @ and y = ¢ sin 6, the hyperbolic metric
and hyperbolic Laplacian are given by

dp* + d6*? ooy B2 B
Hhyp = 1— and Ahyp = —sin“f W + W 4
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In a slight abuse of notation, we will at times in this article identify M with a funda-
mental domain (say, a Ford domain, bounded by geodesic paths) and identify points
on M with their pre-images in H.

2.2, Counting functions. Let ¥ € I' be a primite hyperbolic element. As usual,
primitive means that if yo € I' and yj = y for some integer n, then n = £1. By
hyperbolic, one means that y can be conjugated in PSL; (R) to a non-identity diagonal

matrix, which we write as
_ et/
Y=L o e~tr/2 J°

where £, denotes the length of the closed geodesic on M in the homotopy class
determined by y. Let I'), be the stabilizer in I' of y, and we assume that I'), is
generated by y; it is easily shown that I',, 1s isomorphic to Z. Choose a realization
of I in PSL(R) such that y 1s diagonal. Then the geodesic in H fixed by y 1s the
line Lo = {Re(z) = 0} NH. For any point z € M, which we lift to a point z € H, let
dnyp(z, Lo) denote the geodesic distance from z to L. With all this, we define the
hyperbolic counting function as

Nhyp:pt,y (T 7) = card{n € T)\I" | dnyp(nz, Lo) < T}

Equivalently, one can count the number of geodesic paths from z € M to the closed
geodesic on M in the homotopy class determined by y ; see Figure 1. By following the

N

Figure 1. Geodesic paths from a point to a closed geodesic.

method of proof in Lemma 1.4 of [15] (see also [21]), which simply utilizes elementary

hyperbolic geometric considerations, we can establish the following bound. For any

point z € M with injectivity radius r, and any u > Ty > r, we have

sinh? (44*) — sinh? (%)
sinh? (%)

3)

Nhyp;M,y(”; 7) < Nhyp;M,y(TOQ z) +

For the sake of completeness and convenience of the reader, we now give a proof
of (3).
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Let B,(T) denote the hyperbolic ball of hyperbolic radius T centered at z. Let
{n} € I')\I' be a maximal collection of elements such that iz € B;(u) \ B, (1p).
Note that

|J Buz(r) € Bz(u + 1)\ Bo(Tp — 1),
k

so then

volnyp (| Buuz(r)) = voluyp (Bt + 1)) = voluyp(Bo(To — 1)),
k

where volyy, denotes the hyperbolic volume. Since r is the injectivity radius at z, we
then have

> olngp (Byez () < volngpy (B:( + 7)) — volnyp(Bo(Ty — 7).
k

By computing the volume of geodesic balls, in H, we have that

card{yy € D,\I' | 5z € Bo(u) \ Bz(To)} - 4o sinh?(r/2)
<47 (sinh2 (” +r> _ sinh? (TO — r)) .
> >

card{n € T)\I' | nz € B (u) \ B.(Tp)} = card{n € I',)\I" | nz € B (u)}
— card{n € T,\T'" | nz € B;(To)},

Since

we get the desired result, namely the bound

card{n € I')\I' | nz € B;(u)}
nh? (447) —sinh? (57)

sinh? (%)

3

S1
< card{n e T)\I" | nz € B.(Tp)} +

thus completing the proof of (3).
Consider now a parabolic element y € I', which, by conjugation in PSL;(R), we

may assume
({1l o
y - 0 1 ’

where w 1s referred to as the width of the cusp associated to y. Let I', denote the
stabilizer in I" of y, and without loss of generality we may assume that y generates
I'w. Choose and fix any point z € M, which we lift to a point z € H. Elementary
considerations show that one can choose yg € R sufficiently large so that yg > Im(nz)
forall n € I'. Let £y, be the horocyclic line in H defined by {Im(z) = yo}. For any
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point z € M, which we lift to a point z € H, let dyyp(z. Ly,) denote the geodesic
distance from z to £Ly,. With all this, we define the parabolic counting function
associated to ¥ and yg to be

Npar;M,P(T; Z, yo) = card{n € I'sc\I" | dhyp(nzy OCyo) < Ik

Observe that when defining the parabolic counting function, we needed to use the
length from z to a horocyclic line £y, since the cusp is at infinite distance. Such
considerations are not necessary when defining the hyperbolic counting function.
Finally, as with (3), the arguments from [21] apply to yield the following bound. For
any point z € M with injectivity radius r, and any # > Ty > r, we have

sinh? (#437) — sinh? (777)
sinh? (%)

“4)

Npar;M,P(”; Z,)0) < Npar;M,P(T§ z,y0) +

The proof of (4) is similar to the proof of (3) given above.

2.3. Parabolic Eisenstein series. By now, the study of parabolic Eisenstein series
associated to a cusp P on a non-compact, finite volume hyperbolic Riemann surface
M is a classical aspect of mathematics (see, for example, [4], [7] or [19]). To recall,
for any z € H and s € C with Re(s) > 1, we define the parabolic Eisenstein series

Epar;M,P (s,2) by

Eparpp(s,2) =0~ > (Imnz)’. (5)
n€loc\I

It 1s standard in the mathematical literature to normalize cusps so that the width o
is equal to one. We will work slightly more generally and, as a result, include the
multiplicative factor of @™ in (5). For any point z € H and yp € R with Im(z) < yo,

we have that W o
y Yo
N (z,oC)zf —:10( )
e AN T

(Im(2))* = y§exp (—s - dhyp(z, Lyy)) -

so then

With this observation, we can express the parabolic Eisenstein series (5) as a Stielgjes
integral, namely

e 0]
Bigerson, o5, B = (el fo &5 AN, p (15 20 Y0)- ©)

Observe that the integral in (6) depends on the choice of yg through the parabolic
counting function; however, after multiplying by y; the product itself is independent
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of yo. As we will see, one can use (4) and (6) to prove the well-known result that (5)
converges uniformly and absolutely for Re(s) > 1. Though not needed in this article,
we state, for the sake of completeness, the classical differential equation satisfied by
the parabolic Eisenstein series, which is the identity

AEpar;M,P(Sa z) =s(1 — S)Epar;M,P(Sa Z).

2.4. Hyperbolic Eisenstein series. Let M = I'\H be any finite volume, compact
or non-compact, hyperbolic Riemann surface, and let y be any hyperbolic element
of I'. As in Section 2.2, we assume that " has been conjugated by an element in
PSI,(R) so that y is diagonal. We will use the change of coordinates 7z = efe'?
and write #(z) = 6. With this notation, we formally define the hyperbolic Eisenstein
series Enyp.ar,y (5, 2) by

Eypimy(s.2) = Y (sin0(n2))". (7
nel A\l

The hyperbolic metric in the (p, 6) coordinates was given in Section 2.1, from which
one can easily show that

dhyp(z, Lo) = [loglcscO(z) + cot6(z))|,
which can be used to obtain the relation
sin(@(z)) - cosh(dnyp(z, L)) =1,

so then we can write (7) as

Engperty (5,0 = Y (coshidnyp(nz, £0)) ™ -
nely Al

We can express the hyperbolic Eisenstein series (7) as a Stielgjes integral, namely

0
Ehyp;M,y(Sa z) = f(COSh ”)_S thyp;M,y (u; z). (8)
0

A by-product of the computations from Section 4 is that by combining (3) and (8),
we can show that the series defining the hyperbolic Eisenstein series (7) converges
uniformly and absolutely for Re(s) > 1 (see also [20] and [22]). Also, using the
computations from Section 2.1, one can easily verify the differential equation

AEhYP;M,)/(S’ 2y =s(l— S)Ehyp;M,y(S, z) + Sthyp;M,y (s + 2, z), (9)
which is given in [20], [22] and [24] (Lemma 3.2).
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2.5. Degenerating families of Riemann surfaces. The discussion in this section is
taken from [16] and is repeated here for the convenience of the reader.

In [13] and [14] the authors gave a construction of a degenerating family M, of
either compact or non-compact hyperbolic Riemann surfaces of finite volume. The
construction of the family M, allows one to define unambiguously various notions
such as the tracking of points through degeneration and the idea of points not contained
on the degenerating geodesics. The reader is referred to these articles for complete
details, which will be assumed here.

Let M, be a degenerating family of connected, hyperbolic Riemann surfaces
with p degenerating geodesics, with £ denoting a p-tuple corresponding to the lengths
of the degenerating geodesics. To say that £ approaches zero means that the length
of each degenerating geodesic is approaching zero. Although each M, is connected
when £ > 0, the limit surface My need not be connected and, indeed, the number of
cusps on My 1s equal to the number of cusps on My plus 2p.

For ¢ > 0, let C¢ denote the hyperbolic infinite cylinder with simple, closed
geodesic of length £. A convenient fundamental domain for C; in H is

{rexplic) | 1 <r <explt), 0 <« <z}, (10)

with hyperbolic metric induced from H and uniformizing group {exp(k¥) | k € Z}
which acts on H by multiplication. For any ¢ > 0, let C; . denote the symmetric
submanifold of G, about the geodesic defined by  with total volume equal to . A
model for € . in (10) is obtained by adding the restriction

cot e/ (20)) < o < — cot™(g/(20)).

An casy calculation shows that the length of each boundary component of Cg . is
(02 + &2 /)12 If 1 > &0, then the distance from the boundary of G ., and G .,
can be shown to be

Anyp(9Cr s, Cre;) = lOg ((81 + /(] +462)) /(20 +/ (65 + 4’22)))

From[23] wehave thatforany 0 < & < 1/2, the surface C; . embeds isometrically
into M. The surface My contains 2p embedded copies of Cp . which is the limit of
Cee C M;. One can model Cp . as two copies of a symmetric neighborhood of the
origin in the punctured unit disc with 1ts complete hyperbolic metric. From [1] we
have that the family of hyperbolic metrics converges uniformly on My \ Cg ;.

2.6. A Stieltjes integral inequality. A key component in our analysis is an integral
inequality for Suelges integrals, which we quote from [10] and, for the sake of
completeness, we state here. Let /7 be a real valued, smooth, decreasing function
defined for u# > () and let g1, g2 be real valued, non decreasing functions defined for



710 D. Garbin, I. Jorgenson and M. Munn CMH
u > a > () and satisfying g1 (#) < go(u) for u > a. Then, the following inequality
of Stieltjes integrals

0 o0

fF(u)dgl(u) + Fa) g1(a) < fF(M)dgz(u) + Fla) g2(a)

a a

holds, provided both integrals exist.

3. Convergence of counting functions

In this section we will establish the Iimiting behavior of the counting functions
Npar; ., p and Npyp.p,,, On a degenerating family of finite volume hyperbolic Rie-
mann surfaces M. For simplicity, we will assume that M, has a single family of
degenerating geodesics; the more general situation is easily obtained from the argu-
ments presented here with only a slight modification of notation.

‘Throughout this article we make use of the following fundamental result which
we cite without proof from [1], stated as Theorem 8§, page 37.

3.1. Proposition. With notation as above, the hyperbolic metrics on the degenerat-
ing family My converge to the hyperbolic metric on My. Furthermore, the convergence
is uniform on compact subsets of Mo bounded away from the developing cusps.

We refer the reader to [1] for a complete proof of Proposition 3.1. Building on
this result, we consider the convergence of the hyperbolic and parabolic counting
functions through degeneration.

3.2. Lemma. Wirth notation as above, we have the following limifs:

a) If y does not correspond 1o a degenerating hyperbolic element, then

%i_f)% Nuyp; e,y (T2 2) = Nuypiagy,p (15 2):

b) For any cusp P, we have

llg% Npar;Mg,P(TQ Z,¥0) = Npar;Mo,P(T; Z, Y0)-

In all instances, the convergence is uniform on compact subsets of Mo bounded away
Sfrom the developing cusps.
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Proof. Choose ¢ sufficiently small so that the point z lies in M, \ Cy .,. Now choose
go < &1 so that the distance from the boundary of Gy ., to the boundary of Cy ., is
greater than 7', Clearly, any geodesic path from z to the non-pinching geodesic y with
length bounded by T" necessarily lies entirely in the Mg \ C¢, ,. From Proposition 3.1,
we know that the family of hyperbolic metrics converge uniformly away on Mg\ Cy ¢,
which proves part (a).

The convergence statement asserted in (b) follows from a similar argument. O

3.3. Lemma. With notation as above, let

[4)] (6))] 2
g(yo, £) =log | — + (—) +1
vol yol

and let y correspond to a degenerating hyperbolic element.

a) Assume ¢ > O is sufficiently small so that Cg . is embedded in Me, and, for
7€ My, ler Gf’g denote the half of Cy . closest to z. Define

Nogpepocs, (T3 2) = carddy € DT | dnyp(nz, 9CGF ) < Th. (1D)
Then, for any T > 0, we have

Nhyp:my,y (T + g(yo, £): 2) = NhYP?Mf’a@f?,a(T; Z).

b) For any fixed T > 0, we have that

ghi% Nhyp:vte,y (T + 230, €): 2) = Npar;mo, P(T: 2, y0)-

Proof. Yorfixed £, letus identify M, with a (Ford) fundamental domain in H such that
the lift of the pinching geodesic y lies along the line Re(z) = 0. Then, the boundary
8(?28 of C¢ . lies along a ray 6(z) = constant. The curve 8@5’8 is orthogonal to the
geodesics which transverse the sub-cylinder G, so 9C; , converges (o a path on
My which is perpendicular to the geodesics which transverse a neighborhood of the
cusp, meaning dCy . converges to a horocyclic path £, in a neighborhood of the
new cusp; see Figure 2. The area of €; _ equals the area on My above £y, by the
choice of ¢ = ¢(¥). By direct computatif)n, we have

dxdy w

5 =

¥ Yo

bl

(9] w
Area(region on My above £,) = / f
yo J0

thus we get the relation € = 2w/ yo. We define g(yo, £) to be the distance from 8(?28
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= g

ve

Figure 2. The Riemann surfaces M, and M.

to the geodesic in G; _. Using the computations from Section 2.1 and Section 2.5,
we then have that

/2
dae
£Go. &) = f v
sin g
cot~l{g/26)

which is easily evaluated, arriving at the claimed result.

Choose any n € I')\I'. By choosing the appropriate coset representative, we
may assume that nz lies in the fundamental domain for Iy from Section 2.5, meaning
0 <log |nz| < £. Itis immediate that the geodesic path from iz to the {Re(z) = O}NH
lies along the path p = constant, which then is seen to be orthogonal to each ray
6 = constant. Therefore, we have that

dnyp(Nz, ¥) = dnyp(nz, IC; ) +dnyp(3C; ., ¥) = dhyp(nz, 9C; ) +g(vo, £). (12)

From the equation (12) it is clear that dyyp(nz, ¥) < T + g(yo, £) if and only if
Anyp(nz, 86‘5 .) < T, which completes the proof of part (a).

Part (b) follows from combining part (a) with the convergence of the hyperbolic
metric on M, away from the developing cusps to the hyperbolic metric on My, as
stated in Proposition 3.1. 0O

3.4. Remark. As discussed after the proof of the main theorem, there are two cases
one needs to consider in part (b) of Lemma 3.3: When the degenerating geodesic is
separating, and when the degenerating geodesic 1s non-separating. If y is separating,
then the statement of (b) holds without any liberty in the notation. If y is non-
separating, however, one needs to take into account that geodesic lengths from z to y
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enter the cylinder about the pinching geodesic from the two different sides. The
proof of (b) immediately extends to show that in the non-separating case the right-
hand side 1s actually the sum of two parabolic counting functions corresponding (o
the two newly formed cusps. With this noted, we choose to use the statement in
(b) with its slight abuse in both the separating and non-separating cases in order (o
prevent burdensome notation.

3.5. Remark. As one can see, the convergence of the counting functions in
Lemma 3.2 follows directly from the convergence of the hyperbolic metrics away
from the developing cusps, as stated in Proposition 3.1. In Lemma 3.3, we have the
added feature that the hyperbolic counting function involves the distances from the
orbits of a point z to the geodesic corresponding to the hyperbolic element, but the
parabolic counting function involves distances to a chosen horocycle. The distances
to the geodesic associated to a degenerating hyperbolic element are growing without
bound; however, Lemma 3.3 can be viewed as establishing a type of “regularized
convergence”. To be more specific, observe that the function g(yg, ) depends solely
on yo and £, and no other aspect of the family M,. With this in mind, Lemma 3.3
states that if we “regularized” the counting functions Nyyp.ps,,, by introducing the
factor g(vo, £), one then has convergence of the counting functions.

4. Convergence of Eisenstein series

In this section, we prove the Main Theorem. In brief, our proof uses the convergence
of the counting functions for fixed 7" (Lemma 3.2 and Lemma 3.3), the uniform
bounds for the counting functions (Section 2.2) and the Steltjes integral inequality
(Section 2.6). As in Section 3, we present the arguments in the setting of a single
degenerating hyperbolic element y whose geodesic has length ¢; in order to consider
the general situation where there are a number of degenerating geodesics, one simply
needs notational changes.

4.1. Proof of the main theorem

Proof of part (1). For any T > 0, write

Ty
By My (51 2) = [ (cosh )™ dNngpe . (3 2)
0

o0

+ (cosh u) ™ d Nuyp: my,y (1t 2).
Ty

(13)

Choose any é > 0 and restrict s € C to the half-plane Re(s) > 1 4 § for some fixed



714 D. Garbin, I. Jorgenson and M. Munn CMH

& > 0. Trivially, we have that

o0
/T (cosh u) ™" d Nnyp: M, (15 2)

0

oo
< [ (cosh ) " ANy a5 (5 2).
T

0

We now establish the following bound: Given any ¢ > 0, there is a Ty = To(g, 8, r),
where r is the injectivity radius at z, such that for each £ > 0, we have

o0
fT (coshu) ™ d Nyypea, o (15 2) < e (14)

0

The verification of (14) follows the proof of Lemma 1.4 from [15], which we repeat
here. In the notation of Section 2.6, let F(x) = (cosh u)~(179) which evidentally is
real-valued, smooth, and decreasing. For u > Ty, we let

gl(“) = Nhyp;Mg,y(MQ Z)
sinh? (457) — sinh? (1)
sinh?® (%) ‘

gZ(M) = Nhyp;Mg,y(TOQ Z) +

As stated in Section 2.2, we have that g;(«) < go(u), and both g; and g are real-
valued and non-decreasing for u > Tp > 0. With all this, the Stieltjes integral
inequality from Section 2.6 yields the bound

o0

- (coshu)_(l""s)thyp;Mg,y(u;z)
0

- sinh? (247} — ginh? (fo—r
< f (COShM)_(1+5)d82(M)+(CoshTO)_(1+5){ ( 2') i (5 )}
T sinh® (%)

Elementary calculations and trigonometric identities imply that

sinh(u 4+ r)

- du
2 sinh? (%)

dga(u) =

and

T B, -
sinh? (OTJ”) _ sinhz( 02 r) — sinh r sinh Tp.

Using the trivial bounds sinhu < ¢"/2 and coshu > &"/2, we then obtain the
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estimates
o0
(cosh ) "1 doy (u)
1p
! - inh 7 sinh 7
<——— | (coshu)™ ¥ sinh(u + r) du + (cosh To) =+ T2 10
2sinh*(5) Jr, Sinh?(5)
25 r o0 b . hT
% % e " du + (cosh TO)_(IH)W
il sinie? ()
< —8-To( e +2(Ssinhr)
e y
s sk ()
(15)

which clearly can be made smaller than any ¢ > 0, namely, by taking

Ty > 1( loge + 1o ( Te 2 Smhr)) (16)
—| — & .
O= S\ TR T O Ssinn?(D) T sink? ()

Therefore, we have proved the bound asserted in (14).

In addition to (16) let us assume, for convenience, that 7j is a point of continuity
of Nhyp: M,y (1'; 2), meaning there is no geodesic path from z to y on Mo with length
equal to Ty. Then, with 7y chosen, there 1s an integer N and an £ sufficiently small
such that for £ < £g, we have N = Npyp.p, ) (10:2) = Npypimy,y (To: 2). Let
{di.m,} C [0, To] be the set of lengths on M, such that for any > 0 we have

Nhyp;Mg,y(dk,Mg —-1n7) < Nhyp;Mg,y(dk,Mg +n; 2).

For simplicity, we count the elements in the set {di p,} with multiplicities so that we

have
N

Ty
fo (coshu) ™" dNnyp:myy (1 2) = Z (cosh dk,Mz) v
k=1
With this, we can write
Ty Ty

A (coshu) ™ dNnyp;m,, (1 2) — ; (cosh u) ™ d Nnyp; My, (1 2)

N
Z [(cosh dy pr,) ™" — (cosh dy, pry) "] -
]

Observe now that the function (coshu)™ is uniformly continuous and absolutely
continuous on [0, Tp]. By Lemma 3.2, which we apply for all T < T, there 1s an E{)
such that for ¢ < ¢, we have

3
\die,mp — diep| < w for all k,
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so then, Zﬁ]:l \dk,.m, — di.m,| < 8. By the absolute continuity of (coshu)™ on
[0, Ty] we arrive at the bound

N
‘ Z [(cosh di m,) " — (cosh dk,MO)_S]

k=1

v (17)

< > " |(coshdi a1,) ™ — (coshdi agy) ™| < &

k:
To put all this together, let us write
‘EhYP;MM/(S’ z) = Enyp:mo,y (5, Z)|
I 1y
ad f (cosh u) ™" d Nhyp: M, (1 2) — [ (cosh t) ™ d Nhyp:mp.y (1 2)
0 0
o0 o0
+ (coshu) ™ d Nnyp: ,, (13 2)| + (cosh )™ d Npyp,mo, (1 2] .
Ty Ty

(18)

The second and third terms on the right-hand side are arbitrarily small by taking
Ty as in (16), and the first term on the right-hand side is arbitrarily small by (17).
Wilth all this, the proof of part (i) of the main theorem is complete. O

4.2. Remark. The referee has proposed the following alternate proof of (14). For
any given ¢, on the geodesic y there are finitely many points wy ;, 7 = 1,..., K
which partition y into segments of length < 81. Since y 1s not a pinching geodesic,
we can take y, as well as the partitioning points, as lying in a subset of M, which is
bounded away from the developing cusps. Forany n € I')\I' with d(nz, Lo) < T
on My, let wy be the point on y such that d(nz, wy) = d(nz, Lo). Using that wy is
within distance &1 from some wy _;, the triangle inequality gives the bound

d(nz, we ;) <d(nz,we) + 81 < T + 4.

If we let N (z, w, t) denote the counting function for the groups elements that move z
within distance ¢ from w, we then arrive at the inequality (hyperbolic lattice counting).

Nhyp: .y (T3 2) < ZNF(Z, we i, T+ 81).
J
Using hyperbolic volume considerations, one trivially shows that Nr(z, we ;, T +81)

is bounded by O (e” +°1), and the bound is uniform for the w ¢,; contained in a compact
set. Therefore, we can write

Nhypim, .y (15 2) < o i,
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Returning to (14), one can integrate by parts to get

0
(cosh )™ =% d Nugpa, . (5 2)

1y
= [(cosh u)_l_éNhyp;Mg,y(u; Z)];j
e @]
+(1+8) | (coshu)™*7 sinh uNyyp a5 (1t 2) du.
Ty

The discussion above implies that Nhyp: ar,. (1; 2) is bounded by O (¢"*°1) indepen-
dently of £. If we take 81 < 4, then we can easily choose Ty with the required property
that the original integral is < e. Indeed, the first term is O(e!=*+31)70) and the same
applies to the second since (cosh #) ™2~ sinhu = O (e =179,

As noted by the referee, an important aspect of the above argument is that one
only needs the rough order of growth of Nyyp,. 4., (#: 2), 1.e. the injectivity radius
plays no role in the formula.

Proof of part (i1). The proof of part (i1) follows the pattern set in the proof of part (1).
The only difference is that one is considering the function F'(u) = e~*", rather than
F(u) = (coshu)™". For the integral over [ 1y, 00), the essential feature from F to be
used is that |F(u)|e* is integrable. For the integral over [0, Tp], one needs F to be
uniformly and absolutely continuous. O

Proof of part (ii1). We proceed as in the proof of parts (i) and (i1) with a few slight
modifications. To begin, we write

To+g(y0.£) B

Brspane (5.2 = | (cosh )™ d gy, (13 2

o (19)
+ f (coshu) ™ d Nnyp: m, (13 2),

To+g(yo.£)

where g(vg, £) is given in Lemma 3.3. We shall multiply both sides of (19) by
275¢5800:8) and Jet £ approach zero. For the integral over [Ty + g (yo, £), 00), we first
use part (a) of Lemma 3.3 to write

o0
f (cosh u) ™" d Nhyp: My (1 2)
To+g(y0,£)
o0

= (cosh(u + g(yo, €))) ™" d Nuyp;mp 8¢, . (4: 7).
T

The geometric argument from [15] and [21] which produced (3) and (4) immediately
extends to give the bound

sinh? (432) — sin? (172)
sinh? (%)

Nhyp;Mg,a@g’S(M; 7) < Nhyp;Mg,aﬁg,e(TO; z)+

b
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for u > Ty > r where, as before, r is the injectivity radius of M, at z. Following the
computations in (15), we arrive at the estimate

—5-Ty e’ 1
e (5 T 1)‘
(20)

0.8}
‘2—S8Sg(y035) [ (COSh M)_Sthyp;Mby(u; Z)
To+g(y0,6)

where we have written Re(s) = 1 + 8. By choosing

1 e 1
1o = g (—IOgS +10g (m (E + 1))) )

we have that the upper bound in (20) is less than €.
For the first integral in (19), we begin by writing

To+g(yo.£)
fo (cosh )™ d Nnyp, (13 2)

1

=/, (cosh(u + g(yo. €)™ dNnyp:m,,0¢, . (1 2).

Also, we observe the following elementary result: For fixed x > 0 and s € C with
Re(s) = 0, we have

lim 277" (cosh(x +r)) ™" = . (21)

F— 00

Furthermore, the limit (21) is uniform for all x > 0 and Re(s) > 1 + 4. Let
f(s,8) = 2‘Sygesg(yo=@. Then, by Lemma 3.3 and the argument yielding (17), we
have, for any 7§ as in (16), the limit

To+g(yo,8)
im £5.) | (0sh ()™ dNagpeaty (1 2)
£—=0 0 (22)

Ty
= y(S)/ e dear;Mo,P(”§Zy Yo).
0
We now use (20) and (22) and the triangle inequality, as in (18), in order to prove
L!E)% f(s,8) Enypimyp (s, 2) = C!)SEpar;MQ,P(S, Z )« (23)

To complete the proof of part (iii), it remains to evaluate f(s, £).
Evaluation of f (s, £). As shown in the proof of Lemma 3.3, we have

(@] [ 2
glyo, £) =log | — + (—) +1],
yolt
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from which we immediately derive the relation

N

w a 2
fls,6) =27y | — + (—) +1 | =(@/0)°+o((@/t)) ast—0.
Yol yot
(24)
Substituting (24) into (23), then multiplying both sides by @ ™*, completes the proof
of part (iii) of our Main Theorem. O

4.3. Remark. In the setting of part (iii) of our Main Theorem, consider the differ-
ential equation satisfied by Enyp.ar,.y (s, z) which, after multiplying by £7°, 1s the
identity

A(*&Z_SEhyp;M,y (5,2))
= 5(1 = $) (0™ Enypsat, (5, 2) + 5O E " Engpr,y (s + 2, 2)).
By part (iii) of our Main Theorem, we have that

l}gl’é (s(1 — $)(€° Enypsp,p (5, 2)) + 520> Enypst,p (s + 2, 2)) - £2)

(25)

— S(l e S)Epar;Mo,P(Sa Z)’

for all Re(s) > 1 and z bounded away from the developing cusps. The point here
1s that the second term on the right-hand side of (25) vanishes through degeneration.
Heuristically, this shows that in the setting of part (iii), the differential equation for
the hyperbolic Eisenstein series limits to the differential equation for the parabolic
Eisenstein series.

4.4. Remark. In the definition of the parabolic Eisenstein series (5) we included
a multiplicative factor of »™°. Analogously, we could have included a factor of
¢° in the definition of the hyperbolic Eisenstein series (7). Let us use the term
adjusted hyperbolic Eisenstein series to denote the hyperbolic Fisenstein series from
(7) multiplied by £, *. With this factor, then part (iii) of the Main Theorem states that
the adjusted hyperbolic Eisenstein series associated (o the degenerating hyperbolic
element converges to the parabolic Eisenstein series of the newly formed cusp. In
addition, the adjusted hyperbolic Eisenstein series will satisfy an equation similar to
(9), where the second term has the multiplicative factor of (sﬁy)z, as in (25).

4.5. Remark. The concept of an Eisenstein series associated to an elliptic element
of I was first defined in [12] and has been studied in [22]. At this time, A. von Pippich
1s continuing her systematic investigation of elliptic Eisenstein series, which, almost
certainly, will include convergence results as in the present paper when considering
a sequence of elliptically degenerating Riemann surfaces. This problem in under
investigation by the first named author of this paper (D.G.) and von Pippich.
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4.6. Remark. After completion and initial review of this article, Gautam Chinta
called our attention to the article [3] where the author establishes the Main Theorem
using different techniques. The advantage of our approach 18 the introduction of
counting function techniques when studying Eisenstein series, both parabolic and
hyperbolic, thus reducing the main theorem to convergence questions associated to
the various counting functions.

Acknowledgements. The authors thank Anupam Bhatnagar, James Cogdell, Jozek
Dodziuk, and James Harlacher for numerous helpful conversations. In particular, we
thank Cogdell for several comments concerning exposition as well as the contents of
Remark 4.4, We also thank the referee for providing an extensive list of comments
which enhanced the presentation and clarity of the paper. The second named author
(J.J.) acknowledges support from NSF grants and several PSC-CUNY awards.

References

[1] W. Abikoff, Degenerating families of Riemann surfaces. Ann. of Math. 105 (1977), 29-44.
7bl 0347.32010 MR 0442293

[2] J.Fay, Theta functions on Riemann surfaces. Lecture Notes in Math. 352, Springer-Verlag,
Berlin 1973. Zbl 0281.30013 MR 0335789

[3] T. Falliero, Dégénérescence de séries d’Eisenstein hyperboliques. Math. Ann. 339 (2007),
341-375.7b1 05208130 MR 2324723

[4] D. Hejhal, The Selberg trace formula for PSL(2, R). Vol. 2, Lecture Notes in Math. 1001,
Springer-Verlag, Berlin 1983. Zbl 0543.10020 MR 0711197

[5] D. Hejhal, Regular b-groups, degenerating Riemann surfaces, and spectral theory.
Mem. Amer. Math. Soc. 437, Amer. Math. Soc., Providence, RI, 1990. Zbl 0718.11024
MR 1052555

[6] J.Huntley, J. Jorgenson and R. L.undelius, On the asymptotic behavior of counting functions
associated to degenerating hyperbolic Riemann surfaces. J. Funct. Analysis 149 (1997),
58-82. 7Zbl 0889.58078 MR 1471099

[7] H.Iwaniec, Spectral methods of automorphic forms. Second edition. Grad. Stud. in Math.
53, Amer. Math. Soc., Providence, RI; Revista Matemadtica Iberoamericana, Madrid 2002.
Zbl 1006.11024 MR 1942691

[8] L.IJiand M. Zworski, The remainder estimate in spectral accumulation for degenerating
hyperbolic surfaces. J. Funct. Anal. 114 (1993), 412-420. Zbl 0783.58078 MR 1223708

[9] J. Jorgenson, Asymptotic behavior of Faltings’s delta function. Duke Math. J. 61 (1990),
221-254. 7bl 0746.30032 MR 1068387

[10] T.Jorgenson and I. Kramer, Bounds for special values of Selberg zeta functions of Riemann
surfaces. J. Reine Angew. Math. 541 (2001), 1-28. Zbl 0986.11058 MR 1876283

[11] J. Jorgenson and J. Kramer, Non-completeness of the Arakelov-induced metric on moduli
space of curves. Manuscripta Math. 119 (2006), Zbl 1096.14017 MR 2223627

[12] I. Jorgenson and J. Kramer, Canonical metrics, hyperbolic metrics, and Eisenstein series
for PSL, (R), in preparation (unfinished manuscript, (2003)).



Vol. 83 (2008) On the appearance of Eisenstein series through degeneration 721

[13] J. Jorgenson and R. Lundelius, Convergence of the heat kernel and the resolvent kernel on
degenerating hyperbolic Riemann surfaces of finite volume. Quaestiones Math. 18 (1995),
345-363. Zbl 0853.58099 MR 1354117

[14] I. Jorgenson and R. Lundelius, Convergence theorems for relative spectral functions
on hyperbolic Riemann surfaces of finite volume. Duke Math. J. 80 (1995), 785-819.
7Zbl 0973.58016 MR 1370116

[15] J. Jorgenson and R. Lundelius, Convergence of the normalized spectral counting function
on degenerating hyperbolic Riemann surfaces of finite volume. J. Funct. Anal. 149 (1997),
25-57.7b1 0887.58057 MR 1471098

[16] I. Jorgenson and R. Lundelius, regularized heat trace for hyperbolic Riemann surfaces of
finite volume. Comment. Math. Helv. T2 (1997), 636—659. Zbl 0902.58040 MR 1600164

[17] C.Judge, Tracking eigenvalues to the frontier of moduli space I: Convergence and spectral
accumulation. J. Funct. Anal. 184 (2001), 273-290. Zbl 1005.58012 MR 1850999

[18] C. Judge, Tracking eigenvalues to the frontier of moduli space II: Limits for eigenvalue
branches. Geom. Funci. Anal. 12 (2002), 93—-120. Zbl 1023.58017 MR 1904559

[19] T. Kubota, Elementary theory of Eisensiein series. Kodansha Ltd., Tokyo; Halsted Press
[John Wiley & Sons], New York, London, Sydney 1973. Zbl 0268.10012 MR 0429749

[20] S.Kudlaand J. Millson, Harmonic differentials and closed geodesics on a Riemann surface.
Invent. Math. 54 (1979), 193-211. Zbl 0429.30038 MR 0553218

[21] R. Lundelius, Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of
finite volume. Duke Math. J. 71 (1993), 211-242. Zbl 0790.58044 MR 1230291

[22] A.-M. v. Pippich, Elliptische Eisensteinreihen. Diplomarbeit, Humboldt-Universitit zu
Berlin, 2005.

[23] B. Randol, Cylinders in Riemann surfaces. Comment. Math. Helv. 54 (1979), 1-5.
Zbl 0401.30036 MR 0522028

[24] M. Risager, On the distribution of modular symbols for compact surfaces. Internat. Math.
Res. Notices 41 (2004), 2125-2146. Zbl 02150556 MR 2078851

[25] S., Wolpert, Disappearance of cusp forms in special families. Ann. of Math. 139 (1994),
239-291.7bl 0826.11024 MR 1274093

Received July 19, 2006

Daniel Garbin, Mathematics Ph.D. Program, The Graduate Center of CUNY, 365 Fifth
Avenue, New York, NY, U.S.A.

E-mail: daniel_garbin @yahoo.com

Jay Jorgenson, Department of Mathematics, The City College of New York, Convent Avenue
at 138th Street, New York, NY 10031, U.S.A.

E-mail: jjorgenson@mindspring.com

Michael Munn, Mathematics Ph.D. Program, The Graduate Center of CUNY, 365 Fifth
Avenue, New York, NY, US.A.

E-mail: mikemunn @ gmail.com



	On the appearance of Eisenstein series through degeneration

