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Théorie d'Iwasawa des représentations cristallines II

Denis Benois et Laurent Berger

Résumé. Soit K une extension finie non-ramifiée de Qg et V une représentation cristalline
de öältJQL/j?)- Dans cet article, on montre la conjecture Cep(L, V) pour L c (Äb et sa

version équivariante Cép{L/K, V) pour L C Un=i ^"(fp'1)- Les principaux ingrédients sont la
conjecture %p(V) sur l'intégralité de l'exponentielle de Penin-Riou, que nous démontrons en
utilisant la théorie des {p, r)-modules, et des techniques de descente en théoiie d'Iwasawa pour
montrer que Szp(V) implique Cep(L/K, V).

Abstract. Let K be a finite unramified extension Sfijjs and let V be a crystalline representation

of GalfJIp/K). In this article, we give a proof of the Cep (L V) conjecture for L c sMp as well
as a proof of its equivariant version Cbp (L/K, V) for L C U»Li &(fp'O- The main ingredients
are the IpyfF) conjectme about the integrality of Perrin-Riou's exponential, which we prove
using the theory of (g>< r)-modules, and Iwasawa-theoretic descent techniques used to show that

kf(Y) implies Cw(Lj/K, V).
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Introduction

Soient p un nombre premier impair, K une extension finie de Qp et V une
représentation potentiellement semi-stable de Gk Crd\(Qr/ K). Fontaine et Perrin-Riou
ont formulé une conjecture qu'ils ont appelée V), conjecture qui entraîne la

compatibilité de la conjecture de Bloch et Kato sur les valeurs spéciales des fonctions

L avec l'équation fonctionnelle. L'objet de ce texte est de montrer la conjecture
Cj;p( /.. V) pour toute extension finie L tie K telle que L cQf, quand K est non-
ramifié sur QP et V est une représentation cristalline de G k ainsi que, sous les mêmes

hypothèses, la version équivariante C^p(L/K, V) de cette conjecture pour toute
extension linie L de K contenue dans MjC, KComme ingrédient de

la démonstration, on montre aussi la conjecture &%P(V) de Perrin-Riou, que nous
appelons CiwC-Koo/TC V) en raison de son lien avec la théorie d'Iwasawa de V.

Rappelons tout d'abord la conjecture Cep(L/K, V). Pour cela, on se donne une
extension abélienne finie L/K de groupe de Galois G Gal(L/K), une représentation

potentiellement semi-stable V de Gk et un réseau L de L stable sous l'action
de Gk. On définit la droite d'Euler-Poincaré de V en posant :

Aep(L/K. V) det(^,[G] MF(L, V) <S> det^[G](Indz,/Qp V).

On sait que Mr (L, T) est un complexe parfait de 7LP [G]-modules et que l'image de

Aep(L/K, T) det ,|g| Mr (L, T) 0 detlLign fthdrjp„ ff dans Aep(L/K, V) ne
dépend pas du choix de T.

On note D^i/V), I)ps[< V et l)'iR( V les modules associés à la restriction de V
à Gi par la théorie de Fontaine, et ty(L) Dffe{Vyf]0B&tV) l'espace tangent
de V sur L. La suite exacte :

0 -* H°(L, V) -* D^is(V) -* D^S(V) 0 tv(L) -* Hl(L, V)

> Dtis(V*(l)f D^s(V*(l)r > H2(L, V) > 0,
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qui provient de la suite exacte fondamentale (cf. §1.4) et l'isomorphisme tyt{1)(L) ~
KPDfrm donnent un isomorphisme canonique :

detQ?[G]Kr(L, V) ^ det^[G] D^R(V).

La tliéorie des constantes locales permet d'autre part de définir un élément

e(L/K, V) g L/ )|ï''I associé à l'action de Gk sur Dpst(V). L'isomorphisme
de comparaison :

#4R ÇpQp IndL/%(^) — ®dR <S>öp D^k(V),

normalisé pare(L/K, Vi et par le facteur F habituel F* V), fournit un isomorphisme :

dct:. '|o| DdR(v)det%IG] Indz./op(V) - <®.pVG]VX/K-

où <Q>p[G]v,l/k est un certain 0'/;[G |-module libre de rang 1 qui contient un sous-

Z/;| (1 |-module inversible canonique hp[G]vx/K (cf. déûnition 2.14). En composant

ces isomorphismes, on obtient une trivialisation canonique de la droite d'Euler-
Poincaré :

$v,L/K • App{L/K, V) — Qp[G]y,i//r.
Dans son manuscrit non-publié [Kat93b], Kato a proposé la conjecture suivante (qu'il
appelle « local e-conjecture ») :

Conjecture Cev(L/K, V). Si V estime représentation potentiellement semi-stable
et si. L/K est une extension abélienne finie, alors l'application Sv,i/k envoie

Aep{L/K, T) sur TLp\G\vxjK-

C'est la conjecture 2.19 de cet article. Si L K, alors on retrouve la conjecture
CwftM* f"î de Fontaine et Perrin-Riou que l'on peut d'ailleurs reformuler en termes
de nombres de Tamagawa (cf. conjecture 2.20).

Rappelons à présent la conjecture (WKgç/K, V). On suppose pour cela que
K est non-ramilié, on fixe une suite compatible de racines primitives //'-ièmcs de

l'imitée (£p«)feo et pour n p 1, on pose K„ K(ÇP") ainsi que Uff>i Kn-

Soient Hk (iah (!)/À'x h T §M(Koe/K) et r„ (lai( K~^/K„ ce qui fait
que T A k x Ti où Ak est le sous-groupe de torsion de T. Soit ,H l'algèbre
des séries formelles f{X) g Q/; [ [ A11 qui convergent sur le disque unité ouvert et

Wi) {fin - 1) i yi G T! et / G m. On pose A Zp[[r]], M(T)
Q/1A A-1-Wd'i ' et JC(r) est l'anneau total des fractions de ,K{T). Ondéhnitla
cohomologie d'Iwasawa d'une représentation V en posant :

H1l(K,T)= lim Hl(K„,T),
corj„/r„_i



606 D. Beilois et L. Berger CMH

et H}JK, V) Qp 0Zp HljK, T).
Supposons à présent que V est cristalline. Dans [Per94], Perrin-Riou a construit

une famille d'applications :

KxiV.r : S>(V?=° -* M(Y) 0A

qui interpolent les exponentielles de Bloch et Kato. Plus précisément, pour tout h 3p 1

vérifiant Fil_,i/)dR(R) D^(V), on a un diagramme commutatif :

Exps
D(V)A=0 f *£T) 0A H}W(K, V)/VH*

uV,n Ve T.t

h1 (Mm. V)/Hl(r„, VHn.

Ici, oD( V) est isomorphe à A0zpJ9cris(R) et les applications À et H y n sont explicites,
mais leur déhnition est un peu technique pour cette introduction (cf. paragraphe 3.1).
Cette construction joue un rôle important dans la théorie des fonctions L p-adiques
(cf. [Per95] et [Col99b]). Posons maintenant :

Ai« (Koo/K. T i del A MFjw(K, T) 0 dctA ilnd^,

et Ai^Koo/K, V) Qp 0^ AiwiKooK, T). On pose Ij j - log yi/log/(n)
et on déhnit un facteur F par la formule :

ThiV). H
/>-/!

Le déterminant de Hxpj, h normalisé par T /,( V)~ ne dépend alors pas de h, et la
loi de réciprocité de Perrin-Riou entraîne qu'il induit un isomorphisme canonique :

àv.ftmffz AiwiKoo/K, V) —» Qp 0,zc Av,K:coêK-

où A v,Kco/K est un certain A-module libre de rang 1 (cf. le paragraphe 4.1). Perrin-
Riou a proposé la conjecture suivante (appelée Jg_ (F) dans [Per94] et [Per95])
relativement au déterminant de Fxpj, h.

Conjecture Ciw(Koo/K, V Si. V est une représentation cristalline de Gk, alors
l'application A ,x\ • A envoie \|«( K-^/K. T) sur Avx^/k-

Le résultat principal de cet article est le suivant :

Théorème A. Si K est une extension non-ramifiéedeQp et si. V estune représentation
cristalline de Gk, alors :
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(1) la conjecture Fjw( K^/K, V) est vraie;

(2) la conjecture C^p(L / K, V) est vraie pour toute extensionfinie L de K contenue
dans Koq.

En utilisant les propriétés fonctorielles de la conjecture (fipd./K, V), on en
déduit le corollaire suivant :

Corollaire B. Si K est une extension non-ramifiée de Qp etsi V est une représentation
cristalline de G%, alors :

(1) la conjecture Cvp(L, V) est vraie pour toute extension L/K contenue dans Q®b ;

(2) la conjecture Y;p t K. V(r/)) est vraie pour tout Caractère de Dirichlét q de F.

Le théorème A et le corollaire B sont démontrés à la lin de cet article (cf. le
théorème 4.22 et le corollaire 4.23). Disons quelques mots du plan de l'article. Les

chapitres 1 et 2 sont consacrés à des rappels, qui aboutissent à l'énoncé de la conjecture
Cep(L/K, V). Les chapitres 3 et 4 sont le coeur technique de l'article. On commence

par y rappeler la construction de l'exponentielle de Perrin-Riou, puis on y énonce
la conjecture Ciw{K-%,/K, V). Après cela on montre dans les paragraphes §§4.2,
4.3, en utilisant des techniques de descente en théorie d'Iwasawa, que la conjecture
Clw(Koo/K, V) est équivalente à la conjecture fj;p( K„j K, V pour (ou in 7 l.Enûn
dans le §4.4 on démontre la conjecture Qw( K-^ f K, V).

Les mêmes arguments, avec un peu plus de calculs, permettent de démontrer la

conjecture C\\>iL/K, V) pour toute extension l.jK contenue dans Q?,b. Cette petite
généralisation est importante pour la version équivariante des conjectures de Bloch
et Kato ; nous en laissons les détails au lecteur.

Pour terminer cette introduction, remarquons que dans le cas où V est ordinaire,
ces résultats étaient déjà connus (voir [Per94], [BN02], [BL04]),

Remerciements. Nous remercions Pierre Colmez pour avoir attiré notre attention
sur ce problème et nous avoir encouragés au long de notre travail. Nous remercions
aussi le rapporteur pour sa lecture minutieuse du texte qui nous a permis de beaucoup
l'améliorer.

1. Représentations potentiellement semi-stables

Dans tout cet article, le corps K est une extension finie de Q/; (dans les chapitres 3

et 4, on suppose qu'elle est non-ramihée). L'anneau des entiers de K est noté &k
et son corps résiduel % est de cardinal qK. On fixe une fois pour toutes une suite

compatible de racines primitives /?"-ièmes de l'unité s ((/,")„ o pour n i> 1, on
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pose Kn K (Çpn) ainsi que Km Un>4 'a notation Kq désigne le sous-corps
maximal non-ramifié de K.

On pose :

Gk Gal(QP/K), Hk Gti(Qp/K^),
r» CràKKoo/Kn), G„ Ga\{Kn/K),

et A Z/7|| F H est l'algèbre d'Iwasawade F. Profitons-en pour remarquer que le
caractère cyclotomique y envoie F dans Z? et que cette application est un isomorphisme
si K est non-ramifié sur QP.

L'objet de ce chapitre est de donner quelques rappels, sur la théorie de Hodge
p-adique, la théorie des <(p. r)-modules, la cohomologie galoisienne et l'exponentielle

de Bloch-Kato.

1.1. Théorie de Hodge p-adique. Dans ce paragraphe, on rappelle quelques unes
des constructions de Fontaine (voir [Fon94a], [Fon94b]) qui sont utilisées dans la
suite de cet article. On note e le Frobenius arithmétique absolu agissant sur O"1'.

Soient /icns, Bst et /Lir les amieaux de périodes p-adiques construits par Fontaine

(voir [Fon94a] par exemple). Le corps /ijR /it|(,| 1//1 est une ûp-algèbre qui
contient Qp et qui est munie d'une action de G k ainsi que d'une filtration décroissante

exhaustive et séparée par des I i F /Lir / ' B jR. Remarquons que l'uniformisante
t logL' l dépend du choix de e (£p*)n|* que l'on a fait ci-dessus. L'anneau
Bst est une û/;-algèbre qui contient O"1' et qui est munie d'une action de G k ainsi

que d'un endomorphisme <p commutant à Faction de G k et a-semi-linéaire et d'un
opérateur de monodroinie N : Bst Bst qui commute à l'action de G k et vérifie
N o q> pq> o N. Enhn, Bcns B^=". On a donc /fcns c Bst et de plus on a une

injection <Qp Bst ^ ßdR.

Pour toute représentation p-adique F de G k on pose I)pi{ < V f/Lir®ü„ V )g'G

ce qui fait que DfR(V) est un /é-espace vectoriel filtré de dimension finie. S'il n'y a

pas de confusion possible quant au corps K, on écrit plus simplement Dur (F). De
manière analogue on pose :

hJ^F) (ßcns (8>% F)G* et Hps,(F) hm(ßst F)GC
L/K

où L parcourt l'ensemble des extensions finies de K, ce qui fait de D*LjV) un Ko-

espace vectoriel muni d'une action a -semi-linéaire de q> et de Hpst F) un /éf"' -espace
vectoriel muni des opérateurs q> et Ai vérihants N l <p pcp m N. Comme ci-dessus,

on écrit DcnS(V) s'il n'y a pas de confusion possible. On a :

dunA'0 D^(V) dim A- HpSt(F) s; dimA H^R(F) y: tlim V.
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On dit que la représentation V est cristalline (resp. potentiellement semi-stable, resp.
de de Rham) si dimjr0 D^V) dim r V (resp. si dim^w Dpst(V) dim V,

resp. si dim^ E>fR(V) 4iü% V).
Si V est une représentation de de Rliam, on pose :

hi(V) dim^(Fil':Z)fR(V)/Fil':+l/)fR(V)).

La décomposition de Hodge-Tate de V s'écrit alors Cp0qp V ~ ÇP(—i)hi{-V]

où Cp est le complété p-adique de Op. Les opposés des entiers I tels que /? / V 3 0

sont les poids de Hodge-Tate de V. On pose %(¥| ihi(V).

1.2. Modules de Wach et (<p, T)-modules. Soit KJQg une extension finie que l'on
suppose ici non-ramifiée. On note E linu ![>() l'anneau construit par

Fontaine (voir [Fon91] par exemple, cet anneau s'y appelle 31), E Frac(i?+) son

corps des fractions et W(E) l'anneau des vecteurs de Witt à coefficients dans E. On

pose X [g] — 1, avec é o» 0aT[^]] et on note Ak le complété
p-adique de [ 1 /X], Les armeaux et AK sont munis d'un Frobenius q> et d'une
action de T GaliKoo/K), donnés par les formules (p(X) (1 + X)p — 1 et

y (X) (1 + X)x(-yî — 1 pour y e F, où y : F H* hyp est le caractère cyclotomique.
Soit B le complété p-adique de l'extension maximale non-ramifiée du corps Bk
Qp Ak dans W {E)[\ /p\. On pose A ßn W(E'), B+ B n W(E+)[\/p]
et A+ A n W(E+). Tous ces amieaux sont munis d'une action de Gk et d'un
Frobenius (p. Enfin, on a Ak A"K,

Un {<p, r)-module est un module libre de rang fini sur A K muni d'un Frobenius
semi-linéaire <p et d'une action continue et semi-linéaire de F commutant avec <p>

Dans [Fon91], Fontaine a défini un foncteur :

D : /'• > D3IA (.1 0*)/. T)"'.

qui fournit une équivalence entre la catégorie des -représentations de G k et la

catégorie des {<p, F)-modules étales. Le foncteur :

Mho(A ®Ak Mf=1

est un quasi-inverse de D. De même, le foncteur /): V ^ %B ®qp V)Hk donne une

équivalence entre la catégorie des représentations p-adiques de Gk et la catégorie
des (</9, r)-modules étales sur Bk Qp És, A p-.

Si V est une représentation cristalline et T un réseau de V stable sous l'action
de Gk, alors un résultat de Colmez [Col99a] dit qu'il existe une base de D(T) dans

laquelle les matrices de q> et de y g F sont à coefficients dans A^. Plus précisément,
on a le résultat suivant (cf. la proposition 11.1.1 et le théorème 1ÏL1.1 de [Ber04]) :
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Proposition 1.1. Si. V est une representation cristalline dont les opposés des poids
de Hodge-Tate sont 0 rj ^ r2 < • • • G' rj h. alors il existe un unique sous

Ag-module N(T) de D+(T) (A+ ®zp T)Hk, stable par tp et qui satisfait les

Conditions suivantes :

(1) N(T) est un A^-module libre de rang d dim(V) et contient une base de

D( T) sur Ak ;

(2) l'action de F préser\'e N(T) et elle est triviale sur N(T)/XN(T) ;

(3) XhD+(T) c N(T%

De plus, on a qhN(T) c q>*N{T), où q (p{X)/X et (p*N(T) est le A~jt-module

engendré par cp(N(T%.

On pose alors N( V) Bg <g>A+ N(T) où B~^ Qp <S>ip A~}t et cette définition

ne dépend pas du choix de T.
S°it B+ig K

1 ensemble des séries formelles f(X) Y^kLo akXk, avec «a- g K et

telles que f (X) converge sur le disque unité ouvert {.r G Cp \ \x\p < 1}. L'anneau

II. K est de Bézout [Laz62] et de plus il admet la théorie des diviseurs élémentaires ;

il est aussi muni d'actions de <p et de T et on a un plongement q>~" : K
[[r]] c qui envoie X sur ép" exp (t/p") — 1.

Proposition 1.2. Si V est une représentation cristalline dont les opposés des poids
de Hodge-Tate sont 0 r\ < r2 ^ • • • < rj h, alors Dcris(F) ~ i

K <g>A+

N(T))V et :

N(T) »a- Dais(V)]
t D»

X \xt
Preuve. Voir [Ber04, proposition III.4].

1.3. Cohomologie galoisienne. Rappelons maintenant comment on peut calculer la

cohomologie galoisienne des représentations p-adiques à partir des <</>. r)-modules.
On suppose toujours que K/Qp est non-ramihée, on pose r„ Gal( K~^ f K„ on hxe

p»-i
un générateur topologique y\ de T i et on pose y,, =y[ .Si T est une représentation
Z?-adique de Gk, on note Cip.y„ K„, T) le complexe :

0 D(f -4 D(T) © D(T) 4 D(T) -> 0,

où les applications f et g sont définies par f(x) ({cp — l).t, (yn — l )x) et gÇy, s)
(Yn ~ l).v - (<P ~ 1 )z.

Dans [Her98], Herr a montré que les groupes de cohomologie H1 (CPtyn (Kn, T))
s'identifient canoniquement aux groupes de cohomologie galoisienne H'(Kn, T)
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(voir [BenOO, proposition 1.3.2] ou bien [CC99, proposition 1.4.1] ou encore [Ber03,
proposition 1.8] pour une description explicite de cet isomorphisme quand i 1).

Enfin, on peut aussi retrouver la cohomologie d'Iwasawa :

H{W(K.T) lim H'iK,,, T),
COIKn/K„-\

en utilisant les [cp, H-modules. Pour cela, on utilise l'opérateur xjr : B -> B qui est
défini par la formule :

1

wm.1 -p iv/j/. « (.vu.

L'opérateur f commute à l'action de C<k et on a il/ q> id. La cohomologie du

complexe :

ilf—1
D(T) DiT)

s'identifie canoniquement à la cohomologie d'Iwasawa de T, c'est-à-dire que

H}jK. T) ~ D(Tf=l et que Hfw(Kl T) ~ D(T)/(f - 1) (voir |CC99^§11.31).
Donnons une description explicite du premier isomorphisme. Si a g l)(T 1, alors

(<p — 1 )a G D{T)^=q et comme yn — 1 est inversible sur 1)\ l' y' (cf. [Her98] ou
[CC99, proposition 1.5.1]), il existe xn g D(T) vérifiant (yn — l)x„: {<p — l)a. Les

cl(.vw, a) g H1(Cip^yn(Kn, T)) forment alors un système compatible d'éléments de

//' Kr. i).

1.4. L'exponentielle de Bloch-Kato. Dans cette section, K désigne une extension
finie quelconque de Qp. On note Ko la sous-extension non ramifiée maximale de

K. Soit V une représentation de de Rham de (ïk- Bloch et Kato ont défini (voir
[BK90, §4]) la partie exponentielle (resp. parties finie et géométrique) de H1 (K, V)
en posant :

H}(K, V) ker(Hl(K, V) Hl(K, B^1 Vu.

H}(K. V) ker(HX(K, V) ^ Hl(K. ßCTis V)).

Hg(K. V) ker(Hl(K. V) Il'(K. ßdR V)).

La dualité locale fournit un accouplement (•, )y: Hl(K, V)yiHl(K. y*(l)) -»•

% pour lequel l'orthogonal de H}(K, V) est IIUK. \' i 1 m et celui de Hj(K. V)
est H} (K. V:' \ L'espace tangent de V sur K est par définition le quotient :

tv(K) DfR(V)/Fil0DfR(V).

Les anneaux Bcns et Bor sont reliés par l'inclusion Bcns c B,jR mais aussi et
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surtout par les suites exactes fondamentales :

o _> % BdR/Fil°BdR -> 0,

0 Q.p ^ ®cris ®cris © ßdR/Fil°/ldR -> 0,

où a(x) x mod I dIu />dR et ß(x) ((1 — <p)x, x mod Fi I''/Or En prenant les

produits tensoriels de ces suites par V et les invariants sous l'action de Gk on obtient
des suites exactes longues de cohomologie qui nous donnent les deux suites exactes :

0 - H°(K, V) -* /WW 1

-4 tv(K) H](K, V) -* 0, (1.1)

0 H°(K, V) -> ^cris (V) -* ^cris (V) © tv(K) -* H}(K, V) -* 0. (1.2)

L'application de connexion expy K : tv(K) —> Hl(K, V) dans la première suite

s'appelle l'exponentielle de Bloch et Kato. On définit l'exponentielle duale

expy,a: : //'(A'. V) > Fil°/)fR(E) par la formule :

TOe/%[expy ^(,r),y]y (x,expVHlhK(y))v,

où [•, -]v ^ »kW x l)k< ^'( '© A" est la dualité canonique. On vérifie facilement

que ker(expy KJ HHK, V%

Lemme 1.3. On a des isornorphism.es canoniques :

p^çv,V)eXPv-"'' (1 -<P)Dai,(V} H}(K. vy
HhK.V) _i

Avant de montrer ce lemme, montrons un lemme technique qui est sans-doute

bien connu.

Lemme 1.4. Si W est un Ko-espace vectoriel de dimension finie muni d'un isomor-

phisme o -semi-linéaire <p, alors l'application qui à tout f g Hom/y, VF. Kr.v
associe Tr^m,)/) fournit un isomorphisme :

Homft(W. K0f=i ^ Hotra^(W/(l - <p)W, Qp).
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Preuve. La forme bilinéaire «trace» de Ko x Ko dans Qp qui à (xty) associe

Tr^o/Op (Xv) induit un isomorphisme Kq ~ Horn» (Kq, Qp). On en déduit que
l'application :

VL. Ko) Hom^CIL, <Q>P)

f Tr:%%(/)

est un isomorphisme de Qp-espaces vectoriels. De plus, elle est compatible avec
l'action de q> car :

Tr^o/% (<Pf)(x) (:<pf(<P~lx)) TiKo/Qp f (^-1 (*)) /) (*).

Comme 1 Iom (IL, <Q),F=1 I Ioni; 7.i ll'./i 1 — q>)W. Qp), on en déduit le Icinmc.

Preuve du lemme 1.3. On remarque que la suite (1.1) s'injecte dans (1.2), d'où on
obtient le premier isomorphisme. D'autre part, en utilisant la dualité locale et le
lemme 1.4, on obtient :~„ (w)iy-
H}(K.V) \(l-ç)Dcàs(V'(l))J

et le lemme est démontré.

On pose maintenant Lf(K. V) del ^ //"( K. /ij { K, Vt. La suite

exacte (1.2) fournit alors un isomorphisme canonique iy : Lf(K, V) ~ det^ty(K).
SoitL un Ma-réseau de V stable sous l'action de Gk et soit co une base de tkSL tv(K).
On note Hj(K, T) l'image inverse de IlJ K, V) dans Hl{K, T) etl'onpose :

Lf(K. T) del //"( K. T) (g®, det^ Hj(K, T).

Lemme 1.5. On m des suites exactes :

HHK.V)
0 ' HHK.V)

(1)3 o4ni)(^)

V" dû" -> H2(K. V) 0,

HHK, V)

HhK,V)
Fil°D^(V)

DanÂV)
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Preuve. Il suffit de dualiser les suites exactes (1.1) et (1.2) en remplaçant y par
V*(l) et d'utiliser la dualité locale et les isomorphismes (1) (K) ~ Fil°D^(y) et

WWr - Dais(V)/(\ - p-lcp-l)DcàS(V).

Définition 1.6. On appelle nombre de Tamagawa, et on note Tairi1^ ÇfJ, l'unique

puissance de p telle que iv(Lf(K. T)) Z^Tam1^ où a>~1 est la base

duale de w (voir [BK90], [Per95]).

Ces nombres interviennent dans la formulation de la conjecture C^viK, V)
(conjecture 2.20 ci-dessous).

2. Déterminants et constantes locales

L'objet de ce chapitre est d'énoncer la conjecture Cvp(L/K. V). On commence par
des rappels sur la théorie des déterminants généralisés, puis on passe en revue la
construction des constantes locales, pour les représentations de Weil-Deligne tout
d'abord, et pour les représentations potentiellement semi-stables ensuite.

2.1. Déterminants généralisés. Dans le reste de cet article, nous avons besoin de

la construction de déterminants sur des anneaux tels que ZP[G] ou QP[G], pour un

groupe abélien fini G, ou encore ZP[[X]] et <Q>P iffe, ZP[[X]]. Nous commençons
donc par quelques rappels, tirés de [KM76], 11 >el871, [BF01], sur le formalisme très

général des déterminants.
Soit A un armeau commutatif unitaire. On note M (A) la catégorie des A-modules

et P(A) la sous-catégorie de M (A) formée des modules projectifs de type fini.
On appelle catégorie de Picard une catégorie P dont toute flèche est un isomor-

phisme, munie d'un foncteur S : 'P x 'P -t 'P et d'une contrainte d'associativité

pour Kl. On peut déduire de ces axiomes l'existence d'un objet unité 1 r unique à iso-

morphisme près. Tout objet X de 'P admet un inverse X~x tel que Ï0I"1 ~ 1 ./>. On
dit qu'une catégorie de Picard P est commutative si elle est munie d'une contrainte
de commutativité compatible à la contrainte d'associativité.

Soit P(A), is lacatégorie dontles objets sont ceux de P A) et dont les flèches sont
les isomorphismes. On appelle foncteur déterminant un foncteur del : (P(A),is) P
vérifiant les propriétés suivantes :

(1) Pour toute suite exacte 0 ^ /' ^ ^ 0, on a un isomorphisme
fonctoriel : de(( /') ~ de t P') K dcK

Ot

(2) Pour toute suite exacte 0 P Q 0, l'application défia) coïncide avec
le composé :

det(P) s det(0) K det(Ô) ot det(Q),
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et de même det)»)-1 coïncide avec le composé :

det(Ô) ~ det(P) Kl det(0) ~ dett /').

(3) Si P P' © P" et si : 0 -* P' P P" -* 0 et 0 -* P" -+ P -+ P' -# 0

sont les suites exactes naturelles, alors le diagranune :

det (P)

det(P') K deli /'" det (P") K deli I")

est commutatif.

(4) Pour tout module projectif P muni d'une filtration P Z) P' I) P" I) {0}, le

diagramme :

det(P) » det (P') K dctï /'//")

detiP") K detf /'/P") dett P") K doliP'/P"' M det (/VP')

est commutatif.

Soit K(A) K(M(A)) la catégorie des complexes de A-modules. On dit qu'un
morphisme de complexes / : M* -> N* est un quasi-isomorphisme si pour tout i,
l'application//'(M*) -> //' (A'*) est un isomorphisme. La catégorie dérivée IX A)
D(K(A)) est la localisation de K(A) par rapport aux quasi-isomorphismes.

On dit qu'un objet M* de D(A) est parfait s'il existe un complexe borné de A
modules projectifs de type fini : P* (• • • -> P!+i -* P; -* P,_i • quasi-
isomorphe à M*. Soit DP(A) la sous-catégorie de D(A) formée des objets parfaits.
Pour tout objet M* de DV(A), on fixe un complexe P* vérifiant les conditions ci-
dessus et l'on pose :

det(M*) Mj-diMiet(P,#C
On obtient ainsi une extension du foncteur det, unique à équivalence près, à un foncteur
(encore noté det) :

det: i/fi'i.li.qisi -> P.

Si les modules de cohomologie H1 (M*) sont parfaits en toutes dimensions, on a alors

un isomorphisme fonctoriel :

den M* i - K/Ädet(/P:(M,))^iy.
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Dans [Del87], Deligne construit une catégorie de Picard commutative V A) et un
foncteur déterminant universel [ ]a : (PIA), is) —> V(A) tel que tout foncteur
déterminant det s'écrit comme le composé de [-]a avec un foncteur additif V(A) P.
On en déduit en particulier un foncteur [ ]/i : (Dp(A),qis) —> V(A). La proposition
ci-dessous rassemble quelques propriétés du foncteur | • I.4.

Proposition 2.1. Si f : A B est un morphisme d'anneaux, alors lefoncteur«
extension des scalaires» f*M 5 0a M induit desfondeurs Lf* : DP(A) -> DP(B)
etf*: V (A) —* V(B),etlesfoncteurs[]BoLf* et f*o[-]A: (DP(A). qis) —p V(B)
sont quasi-isomorphes.

Si on suppose de plus que B est projectif de type fini sur A, alors la restriction
des scalaires induit des fondeurs /*: DV(B) -»• DP(A) et f*: V(B) -*> V(A), et
lesfondeurs f* o [-]b et ® f*: (DV(B). qis) -> V(A) sont quasi-isomorphes.

Preuve. Voir [Del87, section 4.11],

On note P A) la catégorie des A-modules inversibles gradués. Un objet de P(A)
s'identifie à une paire (X. a) où X est un A-module inversible et a : Spec(A) -> Z
est une fonction localement constante. Une flèche / : (X, a) -* (Y, fi n'existe que
si a fi. auquel cas c'est un isomorphisme. On munit P(A) d'un produit tensoriel

en posant
(X. a) ® (Y. ß) (X (8>a Y, a + ß).

Munie de la contrainte de commutativité dormée par la règle de Koszul :

fi : X ®A Y Y <S>A X

fi(x0v) (-1 )aß-y<S>x,

la catégorie P A) est alors une catégorie de Picard commutative. On identifie l'opposé
(X, u

1

d'un élément (X. a à (X*. —a) où X* Hom ,\ (X. A)..
Si P est un A-module projectif de type fini, alors le rang de P est une fonction

localement constante rgP : Spec(A) -> Z et on définit le déterminant de Knudsen-
Mumford dc( \ /' en posant :

4P) (A' P.rgp) g Obi •/'( A i i.

Remarquons que la propriété universelle du foncteur [ >|m, dorme un foncteur additif
V(A) P(A) qui n'est pas, en général, une équivalence de catégories.

Dans cet article nous n'utilisons que les déterminants sur des produits finis
d'anneaux locaux. Dans ce cas les catégories V (A) et P (A) sont équivalentes par [Del87,
section 4.13] et la construction de Knudsen-Mumford fournit donc un foncteur
déterminant universel. Les anneaux typiques auquels nous allons appliquer la théorie

précédente sont :
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(1) A QP[G] ou bien A ZP[G], où G est un groupe abélien fini.

(2) A Zp[[X}\ ou bien A Qp 0^ ZP[\X}\.

Proposition 2.2. Si A est un anneau local régulier de dimension n, alors :

(1) Tout A-module de type fini M admet une résolution projective /'* : 0 —> Pm -*
Pq M 0 avec m < /;.

(2) Si Q(A) est l'anneau total des fractions de A, et si M est un A-module de

torsion, alors le produit tensoriel de P* par Q{A) donne une suite exacte 0 ->
Q(A)0APm -s* *»•« -le Q(A)0aPo -* 0. On en déduit une injection canonique
iA : deta(M) -> detqxa)(Q(A) 0a P*) — Q(A) et l'image de deta(M) dans

Q (A) ne dépendpas du choix de P' et coïncide avec l'idéal fractionnaire de M.

Preuve. La première assertion est un théorème classique de Serre (voir par exemple
[Mat92, §19]). Pour la deuxième voir [KM76, théorème 3],

Exemple 2.3. En particulier, considérons l'anneau A Zp[[X]] qui est local régulier
de dimension 2 et soit M un A-module de type fini et de torsion. Il existe alors une
suite exacte :

0 _ (fini) - M ^ ©;'=1 A/fA -+ (fini) 0,

où les f sont des polynômes distingués. On a alors det^(M) cara(M)~1A où

carA(M) nU f est le polynôme caractéristique de M.

Remarque 2.4. L'approche de Deligne a été généralisée aux anneaux non-com-
mutatifs par Burns et Flach, voir [BF01],

Pour terminer, rappelons deux lemmes purement techniques qui nous serviront
dans la suite. Le lemme suivant sera utilisé dans la preuve du lemme 2.16.

Lemme 2.5. Soient K/F une extension cyclique de degré f et o un générateur de

Gall K / /•'). Soient W un K-espace vectoriel de dimension finie d et a : W W un

isomorphisme a-semi-linéaire. On a alors :

detp (a | W) h' 1

det x (f '
i W).

Preuve. Soit w\,wa une base de W sur K et soit a* : VF —> IL l'application K -

linéaire définie par cf* (tù,) aiup) pour tout i I. à. Si Aa est la matrice de a
f /-Idanslabase {uj,: alors la matrice de o1 dans la même base est A A° A°

d'où :

det^(o'/ | W) N^/F(detA) (détela* | W)) del/, (a* | W).
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D'autre part, si e est un générateur de K sur Ffö-]» alors {o 't < >»/•; ji:. } u ,•

est une base de W sur F. La formule :

</(o ' '

(c)a(uii a*(o(c)Wi
montre que la matrice de a dans cette base s'obtient en permutant les colonnes de la
matrice de cf*. On en déduit facilement que :

detF{ftf I W) 1),
?' 1 'dct/.u/ | W)

et donc que :

detF (a | W) (-l)(/-1)lfdetK(af \ W),

ce qui montre le lemme.

Soient maintenant K un corps de caractéristique 0, G un groupe abélien fini et
M un F[G]-module. On note X(G) le groupe des caractères de G et on fixe une
extension E de K contenant les valeurs de tous les éléments de X(G). Si r) g X(G),
on note en l'idempotent habituel :

en h E " ](u)-
H

gse

Soit Me E ®k M et soit M); r,p M e | {m g Me \ g(m) >](g)m pour tout

g G G}. On a alors une décomposition canonique :

Me — ©,;ex(ö) Mtj.

x ^ ®V: Y o': en(x).

Si M est libre de rang fini r sur K\G\ et si {m}!=i est une base de M, alors

on pose m a[=1/?î; g det/qG] M et mn On a alors mn en(m) ce

qui nous donne un isomorphisme :

(det£[G] Me)v — dete(M,,)-

Le lemme ci-dessous est alors évident.

Lemme 2.6. Soient M et N deux K[G]-tnodules libres de rang fini et soit :

f : det^[G] M <8>^[g] det^[Gj ^ ^[60

un homomorphisme de K\G]-rnoduleS, Pour tous m g det/qG] M, h g det/q^] N,
on a alors : _f(m 0 à-1) ^ fn(mn 0 n~h)etp

neX{G)

où fn : det£- Mt] <g> det^1 Nrj —* E désigne la rj-composante de f.
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2.2. Déterminants de la cohomologie galoisienne. Soit K une extension finie
de <QP. On note M (Gr) la catégorie des Zp-représentations de Gr, c'est-à-dire
la catégorie des Zp -modules (pas nécessairement de type fini) munis d'une action
linéaire et continue de Gk- Si L est une extension finie de K on a les foncteurs
habituels : Rest/K : M(Gr -> M (Gl) et bid/./a- ' M (Gl) -* M (Gr), ce dernier
foncteur étant donné par la formule Indl/kM Zp[Gr] ®%p[gl\ M.

Supposons maintenant L abélien sur K et posons G Gal(L/K). On note

i: Zp[G] -> ZP\G | l'involulion y i-+ g-1. Si M G M( Gr),<,)ti noie (p<>ur simplilier)
Ind//A' M le ZP\G K |-module Indi/^(ReS£/^M). Le module Indi/^M a alors une
structure naturelle de Zp [G]-module donnée par la formule g (a®m) ag~ ®g(m),
où g désigne l'image de g g Gr dans G, et on a des isomorphismes canoniques :

MGl — (lndL/RM)GK, m t—g m;

geG

lndL/R(M) ~ (Zp[G] ®%p M)1, a ® m h* ä ® cr(m).

Soit M(GR)md la sous-catégorie de M(Gr) dont les objets sont les limites in-
ductives de Zp[Gr(-modules de type fini sur Zp. Pour tout M g M(GR)md, on
note C*(Gr, Ind l/kM) le complexe des cochaînes continues de Gr à valeurs dans

Indl/k(M). On obtient ainsi un foncteur de M (G K)md dans D(ZP[G]) qui à M
associe C*(Gr, Indl/kM) et qui induit un foncteur exact :

RTÇL, •) : D(M(GKtA) > D(ZP[G]).

Le lemme de Shapiro dorme un isomorphisme MT(L, M) ~ //' (L, M).

Proposition 2.7. Si L/K est une extension abélienne finie et si M est un Zp[Gr]-
module qui est de type fini sur Zp, alors :

(1) W(L,M) G DP(ZP[G]};

(2) si-deplus M estdeZp-torsion,alorsdelsp[G]^L(L, M) deÇV^vflndijo^ÂJ
dans Q(ZP[G]).

Preuve. Voir [Kat93c] et [BF96].

Pour terminer ce paragraphe, faisons le lien entre les constructions ci-dessus et
la théorie d'Iwasawa des représentations /sadiques. Rappelons que l'on a fixé un
système compatible (Kf- )n o de racines primitives //'-ièrries de l'unité et posé Kn

K(fipn) et Koo l)„ I Kn. Soient Gn Gai(Kn/K), IIK Gal{Qp/%0, Y

Gab A\/À' i. r„ Gab à\ /à'(. et enfin A Z^QT1]] l'algèbre d'Iwasawa de T.
Si T est une Zp-représentation de Gr, alors le module induit Ind/,, ^ t /" > est

isomorphe à (A ®ip T)' et on pose Mriw(K, T) Mr(K, hidgv /Ri T)). La proposition

suivante est un cas particulier d'un résultat de Nekovâr (voir [Nek02, proposition

8.4.22]).
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Proposition 2.8. (1) On a des isomorphismes canoniques :

(2) Dans la catégorie D(Zp[Gn]), on a un isomorphisme canonique :

%p[G„] <g>A lljW(K, T) ~ M.r(K„, T).

(3) On a une suite spectrale dégénérée :

Bf WiKoe/Kn.HijK, T)) => Il '.A',. T%

qui donne lieu à des suites exactes :

0 Hl(K, T)r„ -> HHK,U T) -> H{+l(K, T)r" -* 0.

Remarque 2.9. La proposition 2.8 donne une approche unifiée des isomorphismes
et suites exactes bien connus en théorie d'Iwasawa locale.

(1) On a //[f K, T) 0 ce qui fournit un isomorphisme :

H°(K„, T) H^(K, Tf".
(2) Par la dualité locale, on a un isomorphisme

M^(K, /') ~ H0{Km,

où A signihe le dual de Pontryagin. En particulier, //,2W( K. T) est un A-module
de type fini de torsion. Pour j 2, la suite exacte (3) de la proposition 2.8 domie

un isomorphisme :

qui est le dual de l'isomorphisme évident :

V" ih//"il M m

(3) Comme le groupe T est de dimension cohomologique 1, on a une suite exacte
« inflation - restriction » ;

0 H\rn, (V*{l)/T*{l)fK) -> Hl(Kn,
> hHKoo, Y" 0)/T'i\ > 0.

En dualisant cette suite exacte, on obtient une suite exacte (voir la proposition

3.2.1 de [Per94]) :

0 -> H}W(K, T)r„ -> T)

> //'cl",. V '
i h/ /' '

I !//a > 0.
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Comme :

Hx(Yn, //"(A'x. VUl)/T*(l))f - //!!<A\. V*(iyrU\))")
~ Hiw(K, r>r",

on obtient une suite exacte :

0 -* HÏJK, T)rn -+ H\Kn, F) -> H^iK, T)r" -> 0,

qui coïncide avec la suite (3) de la proposition 2.8 pour j 1.

(4) Si t V')"* 0, alors HfjK, T) est fini et on a :

ml(K, T)r" ml(K, T)rn W°(K„, V*(l)/r*(1)).

(5) Dans [Per92, §2], Perrin-Riou montre que //r'w( K. T) est un A-module de rang
[K : Qp] dimi V). L'application d'inflation :

(THK)rn - //'(TV T"K) T)

induit une injection :

THk - 7*3 Hl(K, T),

qui identifie 7* avec la A-torsion de //j'w( K, T).

2.3. Constantes locales des représentations de Weil-Deligne. L'objet de ce

paragraphe est de fournir des rappels sur la théorie des constantes locales, telle qu'elle
est développée dans [Del73], auquel nous renvoyons pour plus de détails. Le corps
K est toujours une extension finie de û/;. On fixe une uniformisante ttk de K et on

note | • \k la norme de K normalisée par \ttk\k '/K où qk est le cardinal du corps
résiduel !<k de K.

On note Km l'extension maximale non-ramifiée de K et Fr^ le Frobenius géométrique

de Km'. Le groupe de Weil WK de K est par définition le sous-groupe de G k
formé des g e Gk tels que la restriction de g à A'"1' soit une puissance entière de

Frk On a donc une suite exacte :

0 -* IK H* WK \ Z -* 0,

où l'application v est définie par la formule wygm Fr^1'
Soit E un corps de caractéristique 0 et contenant toutes les racines de l'unité

d'ordre une puissance de p et d'ordre p — 1. On fixe une mesure de Haar //k sur K
et un caractère additif continu f : A' Ey (le corps E étant muni de la topologie
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discrète). Comme \{r est continu, il est trivial sur un sous-groupe ouvert de K et l'on
définit son conducteur «(i/rj comme étant le plus grand entier n tel que >1/ est trivial
sur

La théorie de Langlands et Deligne (voir [Del73]) associe à toute représentation
E-linéaire V de \VK une constante e(V, <//, // k vérifiant les propriétés suivantes :

(1) Si V est de dimension 1, alors e(V, il/, //g } coïncide avec la constante locale
« abélieime » définie par la théorie de Täte (dans [Tat67]). Plus précisément,
l'isomorphisme de réciprocité 0K : K ' permet de voir V comme un
quasi-caractère f : -> Ey. On note a(q) le conducteur de q et on fixe
c e (9k vérifiant vk(c) a(q) + Si q est non-ramiûé, alors on a :

q(c) f/'a 1 / mK.
\C\K J0K

et si q est ramihé, alors on a :

l iq. I;'/. Il K > £ / q~1(x) f(x)dfJK= u
1

< v i <//1 v n/// A

nsE^vK(xl=n} Jc~t&K

(2) Pour toute suite exacte de représentations 0 -> V -s> V -> V" -> 0, on a

e<V, fi k) e(V\ f, fAK)e(Vfi, ,iK).
(3) Pour tout a e K on a e(V, <f/\ »jttjsfJ adim ve(V, ijr, hk) et si ma dénote la

fonction.* m» ax, alors e(V, tj/ o ma, //k > det(y)(a)]a|£im vs(V, tj/,

(4) Si L est une extension hnie de K, alors on a une constante )JL/K, il/, /.il, h k) e

E telle que pour toute représentation V de Wj on ait :

"lud, A(V'i. fiK) UL/K, f,,iKfmVe(V, f o -fr/;A-. ///».

(5) Soient a>\ \ K ' -> Ex le quasi-caractère donné par la formule «q(a) \a \ k et
H*K la mesure duale de // k relativement à il/. On a alors :

e(V, ij/, hk)£(V* 0û>i, if o ni-1, ii*K) 1.

(6) Pour une représentation non-ramiûée Vf, on a :

e{¥ 0 W, f, fiK) det (W) (^^V)+dim( y )s(V, f, ßK)dimW,

où a( V) est le conducteur d'Artin de V.

Rappelons que l'on a fixé un système compatible ((,>» o de racines de l'unité.
On note i/o l'unique caractère additif de Q/; vérihant ip(£ 1 ///") (v>< et on pose
'P'k 0"o 0 Tr^/%. On normalise la mesure hk en imposant hk(Ok) 1- Soit
enfin (•, -)k E ' x K —{±1} le symbole de Hilbert. Le lemme suivant est bien
connu des experts.
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Lemme 2.10. Si L/K est une extension finie, alors :

k(L/K, fiK, pL, nK) ±(—1, dL/K)lK~\dL/x\p 'D"p]/2,

où cIl/k est le discriminant de L/K,

Preuve, Montrons d'abord que pour tout a e KK on a :

dot Und/ a* 111 m<-/ (a,di/K)K

Comme ta. dL/K)K i Jd/fififi)"k'"'/ Jd/fifi. il suffit de montrer que l'application
de Kummer K y H1(K, {±1}) envoie d^/K sur detUnd/,/^ 111). Soit Gk/Gl
{giGi i 1, n June décomposition de Gr en classes de Gl-Le groupe Gr agit
sur G k / Gl ce qui fournit un homomorphisme p : G k —* Sn. Soit ea : Sn -* {±1}
la signature. Si a e l. est tel que L K (a), alors :

yJdL/K n(gi(«) - gj(a)h
i <j

et on voit que l'image de dL/K dans H1(K, {±1}) coïncide avec % o p. D'autre part,
il résulte directement de la définition de Indt/A'lU qtie en <?p detUnd/./*-11|), d'où
la fonnule voulue.

Passons maintenant à la démonstration du lemme. Les formules (3) et (5), appliquées

à la représentation régulière lud/ /a' 111 donnent :

e(Indz,/ALl]. fi'R. PK »•' « Inclr,a 111 <g> a>\, fip 0 »?-i, pk) \dR\fi^L'K\

Comme par ailleurs a Und/, k 111 Vk (dL/K) (voir par exemple [Ser68, chapitre IV,
proposition 4]) et nf.#x3 on a :

(Indi/A[l] 0cû\, fik om-i,pK)
Wl\p det(Ind/,/A[l])(-l)e(Indz,/A[l]. fitc-P A'b

On a \dL\p \dL/K\[pm\dK\f:K] etdet(Ind£//,[l])(—1) (-1, dL/K)K, d'où :

eGndL/xl^fifiK'PK) M-l.dL/K^'WL/Klp °~p]/
Vhlfi"

Comme s([l], fit, pl) Wl 13l, on en déduit le lemme.

Remarque 2.11. Il est facile de voir que si L/K est une extension non-ramifiée de

degré /, alors k(L/K. fi\ p/.. /jr) (—1 _
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Supposons maintenant que K est une extension non-ramifiée de QP de degré /,
et notons X(Gn) le groupe des caractères de Gn Gal(Kn/K) à valeurs dans E.
Rappelons que pour tout rj G X(Gn), on note en l'idempotent habituel. On définit
la somme de Gauss r(q) en posant t(ij) T,geGk '/ ''.vK-uy s où
k a(rj) est le conducteur de q.

Lemme 2.12. Pour tout caractère rj g X(Gn on a :

£ÏVr VW-Mif) ("I )(/"1)ö(,')t(??/.

Preuve. Pour simplifier les notations, on note po la mesure de Haar sur QP. Comme
K /GP est non-ramifiée, les groupes de Galois des extensions et Kn/K
sont isomorphes et q peut être vu comme la restriction ResK/A,q d'un caractère

rj : Gal(Qp(Çpx)/Qp) -> E>:. Comme X(K/QP, i//0. z'x- Mo) 1, on a :

e(q, 1I/k,Pk) f IihIa'fq. /ro)s(Indjg-/^[1] <g> rj, fo, //»)

(-1 ){f~l)a(n)e(rj, f0< Mo)7-

Si on suppose que « a(q), alors l'application composée Qï, -> Gal(Qpb/Q/?) ->
Gn ~ (Z/p"Z)>: envoie u g Wk sur u mod p" et p sur 1, ce qui fait que :

e{fj,fo, Mo) Pn Mo(l + pk%p)r)(uy

HeZp7l+/j«%

ri(u)-l^„ T(Ï]).

uë£P/i+pn"ip

Le cas général s'en déduit.

On appelle représentation du groupe de Weil-Deligne un couple (p, N) formé
d'une représentation p : Wk A ut/M V) du groupe de Weil WK et d'un endomor-

phisme nilpotent AT : V —> V vérihant p(w)~lNp(w) qK X (voir [Del73, §8]).
On pose alors :

«(V. fK. PK) s(p. èK, MA') deti l-rA | y^/(F^)w=°).

2.4. Constantes locales des représentations potentiellement semi-stables. Pour

plus de détails, voir [FP94, chapitre I, §1.3]. On garde les notations et les conventions

des paragraphes précédents. En particulier, K est toujours une extension finie
de 0/; et Ko est son sous-corps maximal non-ramifié, dont le degré sur GP est

/ |Wo : IM) Rappelons que l'on a déhni ci-dessus un caractère additif èjK à

valeurs dans QrU>>G U„ 0 en posant ^(a/p") çJ,K/Qp{a). On hxe

une extension abéliemie finie L/K et on pose toujours G Gal(L/K).
Le lemme suivant est laissé en exercice au lecteur.
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Lemme2.13. SiL/K est une extension finie et si V est une représentation p-adique
de Gl, alors Z)fR(\nàL/KV) - dÏîr(v) et ^pst(Indl/KV) ~ Ind£/^Z)pSt(V).

Si V est une représentation potentiellement semi-stable de Gk, alors la
représentation Iik1//a' V — (Q,,\G\ 0p, V)' est bien-sûr elle aussi potentiellement semi-
stable et D /JpSi( Iiid/ /A' V) est un K"' \G ]-niodule muni d'une action naturelle
Fr^-semi-linéaire de VFK. On munit D d'une action linéaire de Wp, p: Wr ->
Aut^m[G](D) en posant (p(w))(d) W(p^v(w) (d) où l'application v est celle définie
au paragraphe 2.3. Le module D est muni d'un opérateur de monodromie N vérifiant

N a (p pq> o N ce qui l'ait que p(w)~] Np(w) qv^w) et que (p, N) est une
représentation du groupe de Weil-Deligne. On pose alors :

e(L/K, V) e(D, fiK, pK) e(p, fiK, pK) det(-Fr* | D%7(D%^°).
Il est facile de voir (cf. [FP94, remarque 1.3.3]) que la représentation p est Qp-rationnelle,

d'où Fon tire que $(L/K, V) Qy \C,:- Il G'].
Si E est un corps contenant Km ainsi que les valeurs des caractères de G, alors

on a :

E[G] ©„eX(G) l'-'i- dû Eq — E,

et le module D se décompose sur E en produit de ses //-composantes : Dp
©/;eX(G) 'V d)n appelle rjo le caractère trivial. On déduit de la décomposition ci-
dessus que e(L/K, V) T,qeX(G)i (Dw txpf, Pk), avec e(Dn, fK^, pK) g En.

Si V est une représentation potentiellement semi-stable de Gr, alors par le

lemme 2.13 ci-dessus, DdR(Ind|,7Qp(V/)) ~ /)^R(V) et on a donc un isomorphisme
canonique :

comp, ./ßdR 0% Indz,/%F 3 ßdR <8>%

On en déduit un homomorphisme :

àv,L/K ' det !|/,|' f-'dK' 1 ' t ' 5) dct.|ilnd/./ V) > 'J, |(/'| ßdR.

On voit que det .pqtTnd?. V) est une Q/,[G]-représentation de de Rham de

rang 1 et de poids r •
- \K : QP\i//( V) et il existe donc une extension abélienne

finie K'/Q telle que la restriction de del^,[^(Ind^ V) à GK soit isomorphe à

Qp[G](r). On en déduit donc une application

av,L/K : det,^[G](L»dR(F))®detii7i<?](lfidi./^F> K'[G],

donnée par la formule av,ljk t~ràv,L/K,oùt log[s] g /fiik est l'uniformisante
de /I associée à e

Soit ô l'élément de Gal(Q?,b/Qp) qui opère trivialement sur les racines p"-ièmes
de l'unité et dont la restriction à O"1' est égale à a, et soit

av,L/K det^[G](Indz,/%y)(<T) g Zp[Gf
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Définition 2.14. On pose : 1av\G\xvlik {x g Z[G] j oi.n avxfK*} et

Qp[G]y,£/^ Qp %p[G]v,L/K-

Le module %p [G] v.l/k est alors libre de rang 1 sur Z/; [G] (voir | Kat93b]). Posons

ni) ii 11! si / •• 0.

si i •< 0,I (—i

et r*(V) rii«sSoit aussi :

ßvx/K X(K/Qp)-dimVr*(V)e(L/K, F)"Vi/*,
où >JK /Qp) k(K /QP, i//o, [iK, no) est la constante définie dans le paragraphe 2.3.

Lemme 2.15. L'application ßvx/K induit un isomorphisme :

ßv,L/K * l'ct ..'p;!1 ^dR( V'n » dct;.„|oO l'ul/ V > Q/K;ly., K

Preuve. On note x Gk -> Z/; le caractère cyclotomique. Si on pose

D DpSt(Indz./^(y (Qp[G] ®qp Dpst(V))'.

alors on a (voir le paragraphe 2.3) :

k(K/Qp)dimVe(D,ilfK,iJK)
' — '

G On [G].
e(Indk/%,£>< </'d - no)

Pour tout g G Gqp, on a :

glsdnd^/o^D, fo,, no)) e(Indk/%P, fo 0 mx{gh no)

detäj>[G](Indz./OpDpSt(L))(x (g))e(IndS7op.D. fo, /ni).

D'autre part, si ,v g deljV{D|y| V'n <g> clct ;. |<;|i lud/, V), alors :

yu/y./ Ai.Tll X~'te)det(^[G](Indz./Q?,L)(^)Q'y!i/^(v)

l,c,V/.|o|diul/ DpSt(V))(g)avx/K(•*)•

On en déduit le lemme.

On donne maintenant une formule explicite pour l'application ßv,K„/K pour les

représentations absolument cristallines, formule qui est utilisée dans la suite. On

suppose donc que K est non-ramihée, et on écrit comme ci-dessus f [K : QP\,
ciK pf et d dim V.
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Lemme 2.16. Si V est une représentation cristalline de G%, alors :

e(D,v det(<p | 1' 0 e\r

Preuve, Comme D D^(\adKn/KV) (Km[Gn] ®K Dais(VW» on a Dn

®k öcris(^)- L'action naturelle du groupe de Weil sur l)ais< V) est triviale
ce qui fait que l'action linéarisée p est non-ramifiée et est donnée par la formule
(> (ITk j (pl D'autre part, Gk opère sur elv par le caractère jjT1. Comme K /QP
est non-ramifiée, on a 0 et la formule (6) du paragraphe 2.3 appliquée à

V et W Dçrifi V nous donne :

e(Dn, i/o,, hk) tiij '• 'l'K- Pk)" detjç:(cpf \ DcliS(V))aW 0^.
Par le lemme 2.5, on a detk(<P^ I Deris (V)) i If 1

det t (/
| Dcris(L))et

par le lemme 2.12, on a t/w, pk) (—l)(^~1)a(,')r(^~1)^. On en déduit le
lemme.

Soit xn t,p + g 2 H h ip" et soit Rn le &k\G„ I-réseau de Kn engendré par xn.
On fixe un (9k -réseau M de /lcns < V) el T un réseau de V et on pose M„ Rn &(:>K M.
La restriction de IikIa « V J à G k est manifestement cristalline ce qui implique que
la restriction de defofInd/c/iqfW)] à G k est isomorphe à Q^(r). Pour L K,
l'application ayx/K s'écrit donc :

av,K : del' ' E>§R(V) 0 det^(Ind^/up(L)) -* Q°r.

Simplifiant les notations, on note ay,;r (M, T) l'image de det^1 .V/0dcl i Intl a .79

et on pose :

f'WK, k ' -17. T) ßv^/Kideq^JMn) 0 detg,I&)(Indff(l/jrr)).

Proposition 2.17. Si. V est une représentation cristalline de Gk et T un réseau de V,
alors :

ßv,Kn/K(M, T)

r*(V)q-nd( Y^det(<p | Dais(V))-a{^en + (-3Lf%fci)c^M, T).
'm

Preuve. Si G est un groupe abélien hni et M un G-module, alors on a un isomorphisme
canonique M ~ (M 0 Z[G]')C qui envoie m g M sur V 0 g-1. En

particulier, si M est un QP | G]-module et E une extension finie de QP contenant
les valeurs des caractères de G, alors après extension des scalaires on obtient un
isomorphisme Me — {Me 0e E[G]')g qui envoie e^rti} sur en(m) 0 CG e' pour
tous les m c M. ij G X(G).
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Si V est une représentation cristalline, alors l'isomorphisme entre Dd£(V) et

Dfâ (Indj^/o^JFJ) peut être explicité comme suit. Le plongement canonique
/icns ®% Qp(Çp'1) ^ BdR induit un homomorphisme naturel :

(ïnd^/Oj>îL) ®cris) (Qp(Çp"ï ®ïjp

-* ((Indtf^ÇV) ®Qp Qp[G,,]') 0^ BdR.

Le théorème de Hilbert 90 (//' (Gd\(K /Qp)< (il. p À' {1}) et le fait que K /<QP est

non ramifiée nous donnent /)cris(Ind^/Qp(L)) ~ D^iV). Comme hid^/q^L)®^
- Ind^/QpX^) et (QpiÇp») ®% Qp[Gn]')G" - Qp(£p"), on en déduit

l'isomorphisme voulu :

D^(V) - DCI1S(V) ®% QpUpn) ~ J9^(Ind^/%(y»,

Soient compcris : Bcns %ip IikIa,- (Vi /icns 0®p Dcris(V) et compy^^ g

B dR IikIav. a1 rj —* BdR 0^ DdR V) les isomorphismes de comparaison. On
a un isomorphisme :

(Qp[(3«]' ®Qp <0>p(Xp"))G" ®Op ®dR —* %IÄ1S '*dR-

(x ® v) 0 " - - ,V 0 ()'?),

et compys'écrit comme le composé :

BdR ®% (IndK/%(y) ®QP Qp[Gnî)

' #dR ® 1 C-/ KL I ®% Qp(Çpn))G" 0 llld/,' V i

«dR ® (Qp[Gn]' ftq, Qp(Xp''))Gn 0% />cns(V) ~ ßdR ®%
eomPcris

L'isomorphisme (Qp(Xp«) 0^ G/IOVI')'"- - QpiÇp") envoie §Gnen{xn) 0 L.
sur ev(xn), et donc pour tous v g Indx

<
i 1"). i X(G„) on a :

1

comp, (e 0 41 (compcr,s(c)r,;(:>•« i ® — ——. (2.1)
|J(_rner]\Xn)

Si 5 est une base de del- Ind^fc.|T)., alors v peut être vue comme une base de

det&y \c,H\ Ind %n ("/')) ~ %p[GtJ ® del;-.,, Inda.-/y(T) et pour tout ij g X(Gn),
on note î)n ey ® v sa 17-composante, Soit m Amt une base de detzp M. On pose

ßi x„ ®mj g Mn et on note ß Aßj labasededet^jo,,] M„ associée. La formule
(2.1) nous donne alors :

/ 1

av,K„/Kji(ßß ® L?) av.K(m~ 0 û) ® — ——
VflGnen(xn)J
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Si k a(r}) 0, alors en(xn) en(kpk). On a une formule bien comiue pour
les sommes de Gauss : r(rç)r(?7_1) pkrj(c), où c est la conjugaison complexe
c: Çpn H* Ç„l et donc l/(ÖG„^(.r„)) p~nx{rj~l)r](c).

Comme K /Gr est non ramifiée, on a )J K, QP 1 et la formule démontrée dans

le lemme 2.16 donne :

ßvM„/K,nCß-1 0 %1 r]{c)fdqlndT%V)avM.m-X 0 v) | Dais(V)ra(^.

Si rj rio est le caractère trivial, alors o,;o (xr! (\—p)~l<Xo\\\/{§Gnem(xn))
—pl~n et on obtient :

K..7. ' /È ' 0 vm) (-\)fdm(c)fdq%-n)dr*(V).

Comme r](c)fdeJ] c^dev, le lemme 2.6 domie :

t'V.K,. K 1 t'
' 0 0)

cfdT*{V)q-Knd( YJA^(P />cnO.V'ü "'' f., i li' b/^, )«V.K"h
1

0r!.
>7©?o

et comme r l li est une unité de Z/; [G„ ], la proposition est démontrée.

2.5. La conjecture C^(L/K, E). On commence ce paragraphe par la définition
de la droite d'Euler-Poincaré. Rappelons que E est une représentation p-adique de

Gk, que L est une extension abélienne finie de K et que l'on a posé G Gal(L/K).

Définition 2.18. La droite d'Euler-Poincaré App(L/K, V) de E est définie par la
formule suivante :

Aep(L/K, "Fj det^G] Rrp. E) 0 det^[G](Indz,/^y)

— 0f=o(dé%[G] II' (L, E))(_1) 0 det V|(,|.pndi/o^E).

Si T est un Zp-réseau de E, alors Ind^^T hid^/oyfZ^G] ®%p T)1 et

KF(L, T) sont parfaits surZp[G], et par la proposition 2.7 le sous-Z^[G]-module de

Aep(L/K, E) :

A^piL/K. T) det^[G]REP- T) 0 dct.-...[G|' Iiul/,, I'\

ne dépend pas du choix de T et définit donc un Z/;[G|-réseau canonique de

Aep(L/K, E).
Revenons aux constructions du paragraphe 1.4. Par le lemme 1.5, la suite duale

de la suite (1.2) s'écrit :

0 > Hf(L, V" 11 > > - D'hJ V" (Iii" © t*>w(L)

>/^rijE'ihr > //"(/.. \'s >0.
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et en composant cette suite avec la suite (1.2), on obtient une suite exacte de QP[G]-
modules :

0 > //•'(/.. F) > D^S(V) > D^S(V) © ty(L) > //'</.. F)
2 2

© t^w(D D^(v*mr Ht h2(L, F) -* o. }
En utilisant la suite exacte 0 -> fy+(1)(L) 1)'[R< V) -> tv(L) -> 0, on en déduit
des isomorphismes canoniques :

8V,l/K ' de%[G] Dc\R(v) ® detl^G] IRE (L, F) > QP[G], (2.3)

Aep(L/K, V) "> det^[g](^(F» ® del qGi'Ind/ ...V,. (2.4)

En composant le dernier isomorphisme avec l'application ßvx/K, on obtient une
trivialisation canonique de la droite d'Euler-Poincaré :

&V.L/K ï Aep(L/K,V) -> <Q>p[G]v,L/K

Nous pouvons maintenant enfin énoncer les conjectures Cy\>(L/ K. V) et

CW(K, F) (voir [FP94], [Per95], [Kat93b]).

Conjecture 2.19 {Cnp(L/K, F)). Si V <Q)p T est une représentation
potentiellement semi-stable de Gk et si L/K est une extension abélienne finie, alors
l'application 8v,l/k envoie Aep(L/K, T) surZp[G]vx/K-

Si L K, alors on peut reformuler cette conjecture en termes des nombres de

Tamagawa locaux (voir [FP94] et la définition 1.6 ci-dessus). Soit co G déi§p I)fR F)
une base vérifiant a> ~ co^1 <g> a>\ avec co\ g detjx, ty(K) et g del. t\ -, i t A' i.

Soit car une base de Inda:/qAT) et soit ay, a: (®, T) ayjf(a)"1 ®o>t).

Conjecture 2.20 <f 'î pt A'. V)). Si V <Q>P T estune représentation potentiellement

semi-stable de Gk, alors :

_ .dim V/2 r,aV,K(m, /")
— I d-K I pTarn 1»

r (V -
$(K, F)

La proposition suivante rassemble quelques propriétés fonctorielles de la conjecture

Cyyil./K. V).

Proposition 2.21. (1) Les conjectures Cep(E/K, V) et Cx?(L/K, F*(l)) sont
équivalentes.

(2) Si. 0 -> V V —> V" 0 est une suite exacte de représentations
potentiellement semi-stables et si la conjecture Çyp est vraie pour deux des représentations
V', V et V", alors elle est vraie pour la troisième.
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(3)SiM/K est une extension de K contenue dans L etsiC^p{L/K, V) est vraie,
alors les conjectures C^p{L/M. Vj etC^(M/K, V) le sont aussi.

(4) Si la conjecture C^(L/K. V) est vraie, alors pour tout caractère q g X(G),
la conjecture C^p(K. V(qj) est vraie.

Preuve. La démonstration se fait comme dans [Per95, C.2.9], en utilisant en plus les

remarques suivantes :

(1) La dualité locale donne un isomorphisme detzp[g\ MHomgp (Kr(L, T), Zp) ~
de%mMT(L,THm

(2) Pour le triangle exact MF (L, T') -* MJF(L, T) -> MF (L, T") MF(L, 7")[1],
on a un isomorphisme fonctoriel àQtzp[G] Mr(L, T) -> detz^G] Mr(L, T') 0
detg^jg] IF(L, T") (voir [KM76, proposition 7]).

(3) Si on pose

H Gal(L/M), F)pst(Ind£/MF), IhtfK

alors pour tout q G X (H) on a :

\{M/K)AimVeiDi/Mj], fM.n, Pm) s(Indm/k(Dl/Mji), hk)
I~[ eiDi/Kjj.fjpnK).

fjeX(G)
rj\—^-r]

On en déduit que la restriction transforme ßv.L/K en ßv.L/M et le fait que
Cep(L/K, V) implique C\:\>(LjM. V) résulte maintenant de la proposition 2.1.

La deuxième implication est analogue : on voit facilement que la projection de

QP[G\ sur QP[G/H] transforme ßv,L/K en ßv,M/K
(4) Soit E un corps contenant toutes les valeurs des caractères q g X(G) et soit

V(q) E(q) 0M V. Si on note A(G) l'ordre maximal de E[G], alors on a des

isomorphismes canoniques :

MG) 0||G] Rr(L, T) > Mr (K, A(G)^ T) •• 0v: v MF (K, T(r,)).

Si la conjecture éj;p(L/K. V) est vraie, alors l'application <5v.l/k envoie

Aep(K. Aie) 02g T) sur A(G)v,ljk A(G) <S>%[G] -/ |f'h ./ a • En

décomposant cet isomorphisme caractère par caractère, on en déduit les conjectures
Cep(K, V(q)) pour tous les caractères q e X(G).
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3. L'exponentielle de Perrin-Riou

Dans tout ce chapitre, on suppose que K est une extension non-ramifiée de Qp. On

commence par des rappels et des compléments sur l'exponentielle de Perrin-Riou, ce

qui nous permet d'énoncer la conjecture C^iKoc/K, V). Dans le chapitre suivant,
on montre que C^iK^/K, V) est équivalente à Cnp(:Kn/K, V) pour tout n > 1 cl
ûnalement, on démontre la conjecture Cyv(K~^/ K, V).

3.1. Rappels et compléments. L'objet de ce paragraphe est de rappeler la construction

et certaines propriétés de l'exponentielle de Perrin-Riou, tout d'abord telle qu'elle
a été définie par Perrin-Riou elle-même dans [Per94], puis ensuite (dans le paragraphe
suivant) telle qu'elle a été faite par l'un d'entre nous dans [BenOO].

Rappelons que Kn Kt cr' ». que Km U,,+i Km d1-10 F Gai(Km%IK\ et

que G,, Gai(Kn/K) ~ Y/ F„. On hxe un générateur topologique y\ de F| et on
«-1

pose y,, y, ce qui fait de y,, un générateur topologique de F„. Si on note Ak le

sous-groupe de torsion de F, alors on a F ~ Ak x Fi et A 2,p[Ak] ®zp hp[\Tj J].

On déhnit une action de F sur /f|| A|| par la formule :

g(A) (l + A)^«)-l,
où x : F —* Z/;, est le caractère cyclotomique. On munit par ailleurs AT[[X]] d'un
Frobenius </> et d'un opérateur différentiel 9 en posant :

+.OO +00

V
v

i=0 i=0

-j-OO -j-oo

(J2aiXi) • où vf * > =(|+x>p -1 •

d
9 (1 + X) —.dX

On vérifie facilement que 9 o <p pq> m 9. Soit f" : /C|| .Y]| H* A HA']] l'opérateur
déhni par la formule :

Hf(X)) v '( y /aii + Ad - h).
1

qui est compatible avec la déhnition du paragraphe 1.3. Il est classique que
f-ùa 11 A' Il

' {/ g | iA(/) 0} est un öjf[[F]]-module libre engendré

par 1 + X.
On note M l'ensemble des séries formelles f(X) g 0/;|j A|| qui convergent

sur le disque unité ouvert, c'est-à-dire {x g Cp, |x|p < 1}, et l'on pose #(T\3
{fin — 1),/ G M} et M(T) QP[A^] ®qp M(r%). Pour tout A-module N,
l'homomorphisme naturel N -> Nr„ se prolonge en une application 'H'(Y) 0 A N ->
Qp NVil-
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Si V est une représentation cristalline de Gk alors on pose

S>(V) Ma-Il A'II
' 0 a.,, fiafa(V).

PourtoutA" g Z, on définit une application A a- : <SD(V) -> DCIis(V)/(l—pkç)Dais(V)
par la formule A/, t / > (3A'/)(0) mod (1 — pk(p)Dajs(V). Si on écrit À

Àjt» alors pour tout / G D(V)A=0, l'équation (1 — q>)F(X) f(X) a une
solution dans ,H(V) X ®qp DCïls{V) et on en déduit une application :

1%: D(V)A=0 -> D^(V)/Dais(Vf=\

f y-> P~n (a® Vrn (F )();pn -1).
Dans [Per94], Perrin-Riou a démontré le résultat suivant.

Théorème 3.1. Si h est un entier tel que Fil_/i/)jR(V) D§R(V), alors pour tout
i g Z vérifiant i + h > 1, I existe un A-homotnorphisme (appelé exponentielle
élargie, ou exponentielle de Perrin-Riou) :

Exj%^+1 : D(V(/))A=0 JétD ®a A'. T(i)) / T(if^
vérifiant les propriétés suivantes ï
(1) Le diagramme ci-dessous est commutatif:

Kxps

®(V(i))A=° * xm 0A C^Pn T(i))/T(i)H*)

JV(i),n WT(i),„

(h+i — 1 exp^j;j a"„ „D^(v(i)) -> h\K„, nmml{Tn, vafn.

(2) Soitei e~ ®t le générateur de Dcris (Qp (—1)) associé au choix des et soit :

TweV{iU: Hl(K, Vi/)) > Hl(K, V(i + k))

l'application définie par Tw'y(;) k(x) x i e®k. On a alors :

Fxpyfl- + jj /i+1 -TWy-jgj^ 0 l-xPl ® ®> ' I >•

(3) Si :
* log(vi)
tm m

logx(yi)
alors ExpfF(i)ft+1
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On déduit de ce théorème plusieurs formules qui nous sont utiles. Tout d'abord,
en itérant (2), on obtient :

EXPv= —l)'TweVii o Expyjj O (d1 ® ei).

Soit .K( F) l'anneau total des fractions de M (Y) (il suffit en fait d'inverser les f;).
Le (3) permet de définir pour tout h e Z :

Expyjj : 1D(V)A=0 -> XiT) ®A {HÏJK, T)/THX).

En particulier, si I;i]'7fcns(' V) Dais(V), alors on dispose de l'application :

Expy.o : ®(V)A=0 -* M(T) ®A T)/TH*),

(i) s
qui est telle que pour tout i Js l.,Bi l'on pose 3yn 3y((.j n i (ß~l ® <?-;)> al°rs le

diagramme ci-dessous commute :

Twf, -oExpf, „
5)(F)A=Q(0 " — - 7.E.®a (HÏJK, T(m,/T®Hx)

r^(î),S nr"V,n P T(i),n

D&Z?<S)) >Hl(Kn, Vu 11/// E, V(i)Hn

Rappelons à présent quelques résultats techniques concernant l'application 3y et

qui sont démontrés dans [Per94, §3.4], E'homomorphisme A domie lieu à une suite

exacte courte :

o ^ <D(V)A=0 1D(V) A 0 /;;TI^'1 (j) -> 0,
V(l- PJ<P)DcriS(V)J

qui induit une suite exacte :

n ^cris A=0\ *
cris(E)

ü 71 77Ï rw\ ~> 1 ÜfV "> • — — "> 0.
(1 - (p)Dcris(E) (1 - (p)Dais(y)

(3.1)
La deuxième flèche de cette suite est domiée par la formule cl h* d ® (yn — 1 1 + X)
si cl d mod (1 — ^(DcrislE).

L'application 3f, n se factorise par (y„ — )D< V )A=(> et on note :

(1D(V)a=0)r„ -* D^(V)/Dais(Vf=1

la flèche qui s'en déduit. Soit :

l'Apr./., : (£>OOA=0)r„ ^ (QP Äz, H^K. T)fTH')rn

l'application déduite de Expy h.
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Proposition 3.2. (1) La suite :

0 > D^m/d - ip)Dais(V) > ker U Dah{Vf ' f 0,

où f(a(X)) ff(0), gst exacte.

(2) L'application a h» Trk„/kM induit un isomorphisme :

coker(3^,) ^ Dais(V)/(l - p-lq>-h)Dais{V).

(3) On a une suite exacte :

0 -> kenâv>, -> ken l:\pr Fil0D^(V)/VG* (3 2)

-> />cn,'V'!/il - p-^-^D^iV) -* (V*(l ft)* 0,

dont les trois derniers termes sont obtenus en dualisant la suite exacte (1.1) (voir le
lemme 1.5).

Preuve. Voir [Per94, 3.4.4-3.4.5]. Remarquons néanmoins que dans [Per94], Perrin-
Riou utilise une autre normalisation de l'isomorphisme (2), à savoir a i—> (1 - <//)

Trk„/k(o() (mod (1 — p~
1

</;"1 )Dcns( P i Comme l'opérateur 1 — (p coïncide avec la

multiplication par 1 — 1 /p sur 1 — p _ ltp~1 l)ais V), cela ne change pas les énoncés.

Le choix que nous faisons dans ce texte semble plus naturel (voir le paragraphe 4.3).

3.2. L'application exponentielle et les ((p, r (-modules. Nous rappelons maintenant

la construction de l'exponentielle en termes de (>. F (-modules qu'a donnée l'un
d'entre nous (dans [BenOO]). On suppose désormais que V est une représentation
cristalline de Gk qui est positive, c'est-à-dire que les opposés des poids de Hodge-
Tate de V sont 0 ri4Ê r2 0 0 r,/ h. On fixe un Z/;-réseau T de V stable par
Gk, et on définit un Ok-réseau M de /tcns< F) par :

M {f(X) g (B*&k <g>A+ N(T)f | /(0) G N(T)/XN(T)}.

La proposition V.l de [Ber04] nous dit que le déterminant de l'isomorphisme de

comparaison hicU*/ V ~ Bl\r <8>op MçaW)* calculé dans des bases

de T et de M, appartient à ÔyKxat'"l+'"+rd, c'est-à-dire que dans les notations de la

section 2.4, on a T) g (9^.
L'anneau Ok[[V]] est muni comme ci-dessus des opérateurs <,// et '<) (1 +

X)d/dX, et on pose Dil') Ö^OX]]1^0 M. où M est le réseau de I)ais( V)
que l'on vient de définir.

Pour des raisons techniques, on remplace le complexe Çv,Y„(Kn, T) par le
complexe <p~n(Cptyn(Kn, T)) de (tp, r)-modules sur Ak„ <p~'"{Ak), complexe qui est

isomorphe à (/é,,, T). On pose Xn [e1/p"] — 1.
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Supposons d'abord que VHk 0 et rappelons que dans cet article, P t 2.

Soit ni, n# une base de N(T) et soit m Yj=i ai(X) ® nt, avec ai(X) g
B+{j K, un élément de M. Si y G F. alors un petit calcul qui utilise les congruences

y(nj) tij mod XN(T) montre que si l'on pose et — F) pour
un générateur topologique y de Y et pour tout k y 1, alors a-, (X) appartiennent à

l'amieau A'K A^[[Xk/ck, k p 0]]. Si a f(x) ® m g kD(T), alors on pose

Ek,n (/) ® m Yï'=\(a' (x)Ek,n (/)) ® m, où :

Ä (1 - k)(2 - k) ff - k - 1); i n #EkAf)=Y, -pnij-l)d-J(f(Xn)).
j=1

On tronque les séries ai(X)/tJ modulo X et on note a-, Pi(JI( f les séries que l'on
obtient ainsi. Soit :

d

fe/.A./."/! - Yl"{ ® aiEkAf) ® <•'''*•

1=1

On vérifie que êj,kAa) e <p~n(D{T(k))) et on définit Fr,k,n(a) e ip~n(D(T(k)))
par :

(1 - f)ET,kAa) (1 — Yn)8T,k,n(a)->

ce qui fait que (8r,kAa), Ft.a.k (a)) définit une classe de cohomologie dans l'espace
//1 {(p~n(Çip,y„(Kn, T(k)) En composant avec l'isomorphisme :

H\cp-n(C^Yn(Kn, T (k)))) A Hl{KTOfc

on obtient un homomorphisme :

•/)('/') Il] iKn. Tik)).

Revenons maintenant au cas général (on ne suppose plus que VHk 0) et posons :

,H(T) {a G &k[ffl] ®qk M I ijr(a) a}.

Rappelons que pour tout j G Z on a défini un homomorphisme A, : 'D< V ->
Dclis(V)/a - pjcp)Dœis(V) par la formule

A./(/) djf(0) (mod (1 - pWmÄVII-
Un petit calcul montre qu'on a une suite exacte :

0 Mv=x -> ,K(T) £>(T)Ao=0 0,
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(voir par exemple [BenOO, §§4.1.2 - 4.1.3]) et la même construction qu'avant fournit
un homomorphisme :

H(T)-> H\Kn,T(k))

qui s'inscrit dans un diagramme :

M{T)
*T.k.n

Hl(Knt Tikn
1 -<p

g)(T)M=0 //UK,,. Tik i///1 i IV- T(k)Hn.

En particulier, si V"K 0, alors on a :

^i ,k.ria) ~~ V)a)-

Les résultats suivants sont démontrés dans [BenOO, théorèmes 4.3 et 5.1.2],

Proposition 3.3. Si V est une représentation positive vérifiant VHk 0 et si. a g

D(T), alors:
(1) Pour tous k ;>. 1 et n ijt 1, on a :

Wfik - l)ïexpvikXKn(FMP» - 1)),

où Fk(X) est une solution de l'équation (1 — <p)Fk (d~k 0 e-k)(a) et est le

générateur de Z)cris (Qp (k)) associé à e,
(2) Plus généralement, pour tous k g Z et n 1, on a :

"^T.k.r • • 'i » >=' pi't i ° 'l'w, A
Q Expy>ö(or).

(3) Soit [•, :)T{k),nä H1(Kn, T(k)) x Hl{Kn, 7' ' 1 — £)) l'accouplement
fourni par la dualité locale. On a alors

^T*t-h),h-k + l,n(ß))T(k),n
h

(-\)kpnh f] (k - m)Tr^/%resQ[9-Mx,0. ® e-h}ß(X„)] •

m=l

Remarque 3.4. (1) Cette proposition entraîne la loi de réciprocité de Perrin-Riou (le
théorème 4.1 ci-dessous) ;

(2) rappelons qu'une représentation cristalline W telle que W W'Ik est
nécessairement de la forme W 0(sZ Qp(i)<?! voir [Per94, lemme 3.4.3].
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Proposition 3.5. Si V n'a pas de sous-quotient isomorphe à %(«}? avec m g Z,
alors pour tout kg [1, h], l'application ÙST k l induit un isomorphisme

3><Wmr, > (ç*N(T)m*=l > Hl(K, T(k))ri.

La démonstration de cette proposition fait l'objet du reste de ce paragraphe. Pour

simplifier la notation on pose Qj- k SJ k {.

Lemme 3.6. Le A-module (q>* N (T))^=i est libre de rang d dim(V) et pour tout
k é [ 1, h\ 1'applicati.on QeT k induit une injection :

mrmVl %k ^ hïjk. rmn-

Preuve, Rappelons que A c W(E) et soit A>0 l'ensemble des .r YltLo g
A tels que it g me pour tout k p 0. On a une suite exacte scindée 0 -* A ''" -*
A+ W(kK) —» 0. Si D>0(T) (A>0 ®-£p T)Hk alors on a une suite exacte :

o > d Vn > d / ^ (w(kK) mP t)Uk > o.

Comme la restriction de i(r à W(kK) coïncide avec <p~l, et que par hypothèse
Thk o, on a W(kK) ®zp Tf=l)HK 0, d'où D P T À ' D a\ Tà '.
Comme T est positive, on a <p*(N(T)) c N(T) c D+(T), d'où {(p*N{T))f=l c
D>0(T)^=i L'opérateur 1 — tp est inversible sur D>0(T), d'inverse J2jpo vK et un
petit calcul montre qu'il domre lieu à un isomorphisme :

{<p*N(T))f=l % (<p*N(T)f=0.

Pour montrer que le A-module {q>*N {T j)^=l est libre de rang d dim V, il reste
enfin à remarquer que (tp* N( T))^~ '

est un A-module libre engendré par les éléments
<p(r>i) <g> (1 + X), où «i nLi est une base de N(T).

Posons maintenant a /<g>m g 3P(T), où m Xj=i öi W®«; e

NÇT'If et / G 0^[[X]]^=O. La proposition 3.1.3 de [BenOO] montre que l'on a alors :

(1 - vpt/.AU/) ee (1 - n){Ekp{f) 05 m <g> e®kj

l — y(vÂk
m ./ A 11 <g> m ® e®k mod ®A+ N(T)(k)

pic ^ 11 K

VmiO.i' /1'/" ftXiï <g> m ® e®A' mod AiN(T)(k)~1P
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ce qui fait que (1 • FiiS'/'.rU-O g AK] <8o N(T)ffc), D'autre part, soit i//| l'opérateur
ët

if agissant sur Akv Comme tfefiiM ' /'iA'pi 0 et fii(Xmx) X"'\ln(x), on a

<ln(ST.k{m o et donc (1 - n)ßrMcf) e (AKl N(T)(k))^=°, d'où :

Ki

FTJ&Q '1 V '< i - YiWrMa) G (Al Sy.i
* ÜT

et la formule or <p(!F-/\i:(a) définit un homomorphisme

£>(T}(k) > (<p*N(Tmf=1

qui induit un diagramme commutatif :

£(T)(k)ri ^(ç*N(T)(k))^1

Hl(K,T(k))r,
"T,k X

x y

//'iÀ'|. /'(Â

Le (3) de la proposition 3.3 entraîne l'injectivité de 0^ A. pour k é\\, h] et

l'application 0(T)(k)pj -> ((p*N(T)(k))r~l est donc injective. D'autre part, 3d(T)(k)
et (xp*N(T)(k)f=1 sont des A-modules libres de même rang, donc D\ /'uA);• et

fb — 1

((p*N(T)(m^ sont des Z^-modules libres de même rang et 'Di T){k)r: est un

réseau de (y*N(T)(k))j,~A. On en déduit que l'application ((p*N(T)(k))p~J
//['w( K. T(k))\p est injective et le lemme est démontré.

Remarque 3.7. On domiera plus bas une autre preuve de l'injectivité de l'application
^NiTyik))^1 -* H^{K, T(k))Vl (voir Proposition 4.20).

Lemme 3.8. (1) Si f(X\), g'QC-ß G jfcl, alors pour tout k eZet n ^ 0, on a :

res(£ij(/""«(x,,ïfv)s 0 mod

(2) Si m ® / g 3)(T) etß G (<p*N(T(-h)yf=l(h -k- 1), alors :

rr.(/»lU/)l»vr-,ù'l!^r|mod
où h est le dernier saut de la filtration de Hodge de DdR(C) et où on a
Y*{k)J r*(S — n) (k — 1) x • • • x (k — n), même si. k ^ 0.
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Preuve. On commence par montrer le (1). Si 3i (1 + Xßd/dXi, alors 3i pd
et on a :

'h (Xß\ dih(Xi) ftfifû
9l\ tn tn

nP t"+l
On en déduit que :

(h(Xi) dXi \ 1 fSlMXû dX 1

res ——r —res —\t"+l 1 + Xi J np \ t" l+Xi
et par récurrence on obtient la formule :

/h(Xi) dXi \ 1 (X~lh(Xi) dXi
res —— — ; rres

V t" i + XiJ (>i-i)\pn~l \ x î + Xi
On applique cette formule au calcul du résidu ;

res(^Ek,i(f)[m,<p-l(ß)]ym

La série i est définie par :

z, ^ ^(l-k)(2-k)...(j -k-1)
/'Â.1 f./ >

-j P' I }(f(X 1

j=1

Si « > j, on a évidemment :

f([-k)(2-k)...(j -k-1) : |m /(. v ^ dXl
res pJ 3 Jf(Xi)t"g(Xi),fi ' " v ° 1 + Xi

p' '(! - m2 ~ k) (j — k - î)ms^a-tf(Xi)gm)^Y~)

Si n «g j - 1, on a G d'où

(1 — k)(2 — k)... (j — k — 1) • : v v Mi
res -. pJ 3 Jf(Xi)tng(Xi)-

0.

fi ' ' ° ;

1 .Y,

(1 - k)(2 - k)... (j - k - 1Jpi-1 i d' ' '(3 dX i
-res

(j -n - xy.pj-"-1 \ X 1 - X\ /'
et on en déduit la congruence (1) du lemme.

Montrons maintenant le (2); rappelons qu'on a posé tj (x(y) — 1)...
(xiyV — 1)> où y est un générateur topologique de F. On a X exp('/) — 1

t -\~ i~ /2.1 -)-•••, d'où

xm tj+h y t^+-+^
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Comme m g M et (p~l(ß) g Ap: ®a+ N(T*(-h)), on a :

l K

[m, <p-l(ß)]v X!> jr bj(Xl)XJ. (3.4)
U Cj

pour des éléments bj(X\) e a+k{ Comme p / 2, en utilisant la congruence (1) du
Ienune et les congruences évidentes ps/(s 4- 1)! 0 mod p et ps/cs 0 mod p
pour tout & A 1, on montre que :

/ ,/A'| V / h r*(k) I4^(/feTO(8i + 1|, (w + 1|!c;1 + Xi),o »«i

et la congruence (2) découle maintenant des formules (3.3) et (3.4).

Proposition 3.9. Soient (•, .)m): Hl(KuT(kj) x Hl(KuT*( 1 - An ->
l'accouplementfourni par la dualité locale, a g tD(T)(k), ß g {ç*N(T*(—li)))^=
ih — k + 1) cl(j0) g II[(K\, T*{ 1 — À-)) la eta de cohotnologie associée à ß
via l'injection (<p*N(T*{-h))f=Hh — k + î) 7'*(1 - kj) suivie de la

projection. On a alors :

tm,Mf cl(ß)hm « 0 mod (// rliktkiln)

Preuve. Soit A g % ></)t / *( l - k)f=°j une solution de l'équation (y\ — 1 )A
(p~l{(p — 1 )ß. La formule du cup-produit en termes de (>. r)-modules (voir [HerOl,
proposition 4.4]) s'écrit :

{QfTk(ct), cl(ß))T(ki ~cl (lYi^T,k(a), <P~l(ß)]v(k) ~ ['pF-r^ia). 4 h a-

Pour calculer cette classe, on reprend les arguments de la preuve du théorème 5.1.2 de

[BenOO]. En termes de (<p. r (-modules, l'isomorphisme canonique H2(Kn, Zp(\)) ~
hp est donné par la formule (voir [BenOO, théorème 2.2.6]) :

TS-s : //2iV ACf.yjK,. hp(l))j) ^ hp

P" h(Xn)dXn\
(cl(h(Xn) <s> £')) m» —Tr^Ä res— —

logxi.Yn) m\ l+Xn J

Si a f <g> m g C/dlA'll^ M, alors il existe y tel que

êr,k(a) Ek,\{f ® m + (xp - 1 i v. #?£(<*) + (1 - yi)v,
et

Ci - \)FT,k(a) (yi - 1 h/'.'a.O./'i » >«)•
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On en déduit que :

'Oy .Cl(ß))T(k)
P -I dX\

; :—® m- V iß)]v(k) ~ I<pFT,k(ot), A]f(*))———
logx(yi) l+Xi

Comme f iCÀ) 0, on a </'i< Iv /'/.aux). .4 U ,a. > 0, d'où (cf. [BenOO, lemme

2.2.2.1]):
/' dXi \res \[<pFTj(a), Jjysg^ ^

0.
1 + Ji

D'autre part, comme (yi — 1)£a-,i(/) e Q;,11A111 le (2) du lemme 3.8 nous donne :

-1 dXi \
œsyiyiErMf) ® >»• f (^)]vw1 + Xl)

res([ET<k(f) <g> m, <p~l(ß)]V(k)= 0 mod (Ph r*(k-h))' D

Preuve de la proposition 3.5. La (3) de la proposition 3.4 nous donne :

dot:,, {SleTtk(â)(TXk) n). Oy,, ki'DiTU !nn\ + h - k)Vl))m
j. r *(k)

v r*(A--/î)

où d dimi V). Par ailleurs, la proposition 3.9 dorne l'inclusion :

det {(y*N(T)(k))*=\ Oy, /rJ., ki'DiT'i /md + h - Ay i),,,.

r*(k)
c t r*(k-h),

-df—i
Comme l'inclusion •/)( /'»Ai;- "—SN est déjà établie, on en déduit

qae - (<p*N(T)(k))y 7 et la proposition 3.5 est démontrée.

Corollaire 3.10. Si k 4 [1. A], alors :

\DiTiku'i:
1

: (^iV(r)(A))f

- A))f1 : ((p*N(T*(—h))(h + 1 - A .y ']

; r*(A-) ^Kî?%MtfClÇÎ

^ r*(A-A)
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Preuve. Soit Hl(Ku T(k)) //1 A',, T(k))/Hl(KuT(k))toI. Comme par hypothèse

Vtkf'x 0, on a Ht(K\. Tik))tor ~ H°(Ki, V(k)/T(k)). Soit

0 > Hl(K, T(k))ri > Hl(K. T(m > Hl(K, T(l))n > 0

la suite exacte de la proposition 2.8. Comme V n'a pas de sous-quotient isomorphe
à Qp(m), on a V*(l — k)HK 0 et donc H^W(K, T(A)) est fini et on a

mUK* y«ôri &H°(Ki< - k)/T*a - m

(voir le (4) de la remarque 2.9). On en déduit :

T(k)Sr, : {v'H (T)(k))*f]
V(k)/T(k))

;// (Ki. 1 :
i 1 Ao/y-il A i) ri J

d'où :

[HijK. rp))rj : ']

[B&K, T*( 1 -à))Tl : {<p*N(T*(—h))(h + 1 - Agfa]
[H1 {Ki, Tim

[fll(Ku T%1 - A4) : (v*N(T*(-h))(;h + 1 - An" 'j

Par la proposition 3.5, ce produit est égal au déterminant :

m^^tkmrw)v{kœTtt_h) l+h_k(kD(T*(-hm + h - A)ri))m)

qui est égal à (phr*(k)/r*(k — /;))[Vi:%]dim(V) [e corollaire résulte alors du fait
que D(T(k))+=1 ~ II^sK, T(k)).

4. La conjecture Ci-wiK^/K, V)

Dans ce chapitre, on énonce la conjecture Ciw(K^/K, V) puis on montre qu'elle est

équivalente Cpp(Kn/K, V) pour tout « > 1 et finalement, on démontre la conjecture
Ci^Koo/K. V).

4.1. Enoncé de la conjecture. Dans ce paragraphe, on énonce la conjecture
Ci-w(Koç/K, V) (c'est la conjecture que Perrin-Riou appelle h .tV'n. On commence

par des rappels et des compléments sur la loi de réciprocité explicite.
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Soit (•, • !/ .,• : H1(Kn, T) x H1(Kn, T*( 1)) -* Zp l'accouplement fourni par la
dualité locale. On définit une application bilinéaire :

(•, .)r : Hl(K, T) x /&('«, T*(1))' > A,

en imposant que pour tout n jp 1, on ait :

<x, y)T ^2 '-v,.. .v, i/.,. r mod (yn - 1).

reO„

Par linéarité, on obtient un accouplement :

{•, ->v : JC(F) 0A Hl(Kl T) x X(T) 0A H^JK, T*(1W > JC(R.

D'autre part, en posant (1 + X) * (1 + X) 1 + A, on étend la dualité canonique

DjR F x £>fR(F*(l)) —> X en une forme A-bilinéaire :

*Ö(F): J)(F) x 5>(V*(1)) -* K®vk 0K[[X]f=°.

Le théorème suivantes! la loi de réciprocité de Perrin-Riou (la conjecture Rec(F) de

[Per94]),

Théorème 4.1. Si. V est une représentation cristalline de G%, alors pour tout h on a :

(Exp2h(fh ExpÇt\lU-h(g'))va +X)= (-1 )h~lTtKmp{f g).

On dispose de plusieurs démonstrations de ce résultat : voir [Col98], [KKT96],
[BenOO], [Ber03]. On note Al'amieau Qp 0g^ A, et on pose :

Apr(Xoo/X, V) detA^ Rrïw(K. V) 0detA^ <2)00

- Or | 'dct a -. H{W(K, FJiHI 0detA% 3)( V).

Comme T)/T"K est un A-module sans torsion, de rang | K : Qp | dimf V)
(voir le (5) de la remarque 2.9), Hjw(K, V)/ Vl,K est un A -module libre du même

rang. Comme Hjw(K, V) est un A-,,-module de type fini de torsion, le déterminant
de l'application exponentielle élargie induit une application :

8V^/K,h - A^(Kœ/K, V)

Soient TÄ(V> ]|, M{i et S'VK^/K rh(V)~%Kco/Kh.
Un petit calcul montre que l'application S'v K /K : Apr(Kr^/K, V) -> JC(r) ne

dépend pas de h, et le théorème 4.1 entraîne le résultat suivant (c'est l'ancienne
conjecture A i V} de [Per94]).
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Théorème 4.2. On a Sy_Kxi/K(Am(K00/K, V)) Aqp.

Preuve. Voir le théorème 3.4.2 et la proposition 3.6.6 de [Per94],

Nous allons maintenant donner une version entière de la conjecture jU (V) ci-
dessus, c'est la conjecture feAFj de Perrin-Riou. Soient :

AiwiKoo/K, T) detA T) <g>A

- ®Li(detA H{JK. r))("l)! })A tlctAi InclA-

et AiwiKoc/K, V) Aiw(Â\./Â'. T) 0^ <Q)p.

Soit ay.k G Z/; l'élément défini au paragraphe 2.4 et soit :

A vtK^/K {/ fi Wa' A | cx(f) av,KÎ}-

On a IndjE^/% (F) ~ (A IndA/op (V))1 et MV) A ®2? Z}cris(F). Comme V
est cristalline, on a Z)pSt(V) K"'0k l)aiA V et le lenimc 2.16 donne e(K, V) 1.

L'application ay.K induit donc par linéarité un homomorphisme :

av.Kco/K : tlctA£>(V) 0 clctA;;;.j fiHUvc/:.;. A'11 > Av.k^/k ®% Qp-

En le composant avec J|t K /K, on obtient une trivialisation canonique :

h .a:,., k Ai«t K^/K. V) —Av,k^k ®ïp Qp-

Conjecture 4.3 {Ciw(Kro/K. V)). On a h .a k 1 Aiwi K^ /K. T)) Av,kx,/k-

Cette conjecture est démontrée dans le paragraphe 4.4, c'est le théorème 4.22.

4.2. Équivalence de Ciw et de Cep : étude de Esv n. Ce paragraphe et le suivant
sont consacrés à la démonstration du théorème suivant.

Théorème 4.4. Pour tout n A 1, la conjecture C^iKoo/K, V) est équivalente à la

conjecture Cv,v(Kn/K, V).

Afin de montrer le théorème ci-dessus, nous avons besoin de résultats de descente.

La technique générale de descente des complexes a été développée par Nekovàr
(voir [Nek02, §11.6] ainsi que [BG03, lemme 8.1]). Nous avons besoin d'un cas

très particulier de cette théorie, qui est sans doute bien connu, et qui en tout cas se

démontre facilement.
Dans cette section, on pose M JCT pour alléger la notation. Si M et N sont

deux .A-modules libres de même rang et si f : M -* N est un homomorphisme
injectif, on note :

det(/) : del./, .17 ® det^1 N > -K
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l'homomorphisme qui s'en déduit. Pour tout n .> 0, on a une projection naturelle
M —¥ O!>{(>,> ]. L'algèbre Q/;[0„ I se décompose en produit de corps QP\(l„ | ~
0À Ex, et on note pu.) le noyau de la projection M —P,. On pose M, É% 0./f M,
et on note fx : M, —> Ni l'homomorphisme de Ex -modules qui se déduit de /. Le
diagramme commutatif :

1 —y>n

M > M

domie lieu à des isomorphismes canoniques :

ker(/„) es coker(/)r",

coker(/„) ~ coker(/)rv

On dit que / est /.-semi-simple si la /.-composante ß/>. de l'application :

Bf,n ker(/„) • > coker(/j > coker(/„)

est un isomorphisme. Dans ce cas on a un isomorphisme canonique :

if,x : det£x Mx 0 det^1 - det f;._ ker(/À) 0 det^1 coker (fx) îïï Ex,

le deuxième isomorphisme étant induit par Hfj
On dit que / est /.-admissible si l'image de det(/) s'écrit sous la forme

(1 — Yn Y^hM, où h est une unité de etrx dint/. ;
i ker /, i. On dit que / est

admissible si elle est k-admissible pour tout k et on pose det*(/)^. (1 — yn)~'A det(./').

Lemme 4.5. On conserve les hypothèses concernant f : M -> Ai. Si f est k-admis-
sible, alors f est k-semi-simple et le diagramme suivant est commutatif:

deiJfe) mp<4> ® det4w Npa)
d6t (/k' M?(X)

dct /.; Mk 0 det~.J Nk — Ex.

Preuve. Soit Xi, Xn g Mpaa un relèvement d'une base i|,.. .xn de ker fx.
Comme M, est un facteur direct de Mn on peut choisir Xj de telle façon que f<Xj

1 — y„) Aj où Aj g iVpm. On hxe un complément Xn+j Xm de Xi X,r à

une base de Mp(^. Soit j % g Np§4 un relèvement d'une base yi,....., yn de
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coker(/x), Les éléments Yu-, Yrx, Yn+1 f(Xn+1) Ym f(Xm) forment
alors une base de JSg(iS et on a :

dcu/u^r ® -y y; 1

det(Af=1X(: 0 Ar/=1Y*) (1 - y„)'ï detj gf.j „.K/i/L-n.

ce qui montre le lemme.

En particulier, soit N un A%-module de torsion et de type fini ; il admet une

/résolution projective 0 —> /j —> l'a N -y 0, où rg( Fq) rg( /j Pour tout
k, on note Ap(x) la localisation de A en p(A). On dit que N est A-admissible si

f : Pi Po l'est. Dans ce cas, le lemme 4.5 fournit un diagramme commutatif :

A I AT
det +(/)A

detApW NV{X> * Ap(À)

dot,.1 (Nrn)x 0 det/ (Nr")x - Ek,

où la deuxième ligne est induite par la projection Nr" Nr„.
On fixe un isomorphisme Zp [[Fi ]] ~ Zp [[F]] en envoyant y\ sur + 7'. On pose :

* ® £ Às-'k,
W

geAK

ce qui fait que A ®fro2 Äfg où Aj <5;Zp[[EjJJ.
Il est clair que Si(Zp(j)) 0 si i 7^ j mod (p — 1), Sinon, on a une suite

exacte 0 -> ZP[[F]] ZP[[F]] -» Zp(j) -* 0, où fj est la multiplication par
(x(Yi)j - î) - T, ce qui fait que del"' Zp(j) ((x(Yi)j ~ l) - 7')A, si i j
mod (p — 1). En particulier, Qp(j) est admissible.

Proposition 4.6. Si h p 1 est un entier tel que Fil^D^E) D^R(V), alors
l'application Expy h est admissible.

Nous allons déduire cette proposition du théorème 4.2. Pour alléger les

notations, posons a,- diniQp FiF/)fR(y), bj dimaa, DCIis(V)tp=p
J

et û>k(T)
Je

(1 + T)p — 1. On commence par un lemme purement technique.

Lemme 4.7. Pourtoutn p 1, on a T/AE) s rjl(V)a>n_i(T)a(> mod cw„_i(r)00+l,
où Hg V i ±(h - I i!ain' / IKr" 1

(log /(ü ' r •q vt ».
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Preuve. Comme :

log (y) iog(y«) _i .„,2- log x(yn)On-\(T) mod û)„_l(Fr,
log x(y logx(yn)

on a :

rh(V) m ' 1 log / y,, i i "•( f[ j')<>, i.yr' mod i./'r"-1.
;>-A

Un calcul facile montre alors que :

(/, _ I q'li»«':,-. IKr~- 1' _ I J~~J j%g j J~~J _ i MpV'i-bïV)

}>-f> i'SsO

ft#

:( n ./;')r"n'K±
i >-fi

d'où le lemme.

Preuve de la proposition 4.6. Il résulte de la suite exacte (3.1) que l'image de :

detAfi dXV)&=0 <g> detA'
Hlw(K' V]

Vhk

dans «ÂÇTf est égale à :

u TdVjà^:qpiV^)det£ (V^'/JJ(de^L

Fixons un k et notons n le plus petit entier tel que 2% c Q/; [('•„ \.

Supposons d'abord que k # ko (ko correspond à l'inclusion de Qp dans Q/jCl,, |).

Alors detA:;.. V"K detA% F* (1 Hk )* et detA% Qp (j) sont des unités de J£pW et v

est congra à :

r,*(F) detkü1p(VHk) det^V^l)"*)* f] detA% (T)m
jÇzL

mod <»,

0 KD'autre part, la suite exacte (3.2) nous donne ker(Exp^ /( )A ~ Filu74d^(F)x, ce qui
fait que dimA;l(ker(Expy h)\) üq et Expy h est bien /.-admissible.

Supposons maintenant que k ko. Le même calcul montre alors que v est congru
à :

jeZ

mod Tr+i,
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ou :

r dintuj? (ker (ExpyjM Aß

dimap(Dais(Vf=l) + dimq,(Eil0/W^
- dim®p(VG*) + dimo^V^l)^

et Expy h est bien À-admissible dans ce cas aussi.

Nous allons maintenant calculer le déterminant de l'application S y n
; ces calculs

généralisent (et corrigent...) ceux de [Per94, lemme 3.5.7]. Si :

A0: ^cris ^cris (V)

est l'application définie ci-dessus par Ao(a(X)) a(0) (mod (1 — q>) Z)cris(E)),
alors la suite exacte :

0 -* 5)(V)Ao=0 £(V) % -* 0
(1 - q>)Dais(V)

induit une suite exacte :

Dcris(V) » r, DciisiV)
0 ^ 7Ï n tvt ^ (W)A=°)r„ -> mV)r, -* — „ ,T/, -* 0.

(1 -q>)Dais(V) (1 -q>)Dais{V)
<4-D

En comparant cette suite avec (3.1), on voit facilement que <£>(E)A°~' D(V)p-
Rappelons que pour 0 A i < p — 2, on note <5; les idempolenls de A K GaKÂ'i/A'

Lemme 4.8. (1) Le A-module (XZp[[X]])^=0 est libre de rang 1 engendré par
l'élément :

p-2
z (r^o + ^ôi)(i + A), T n -1.

i=l
(2) Si DeàsiV) — (1 — <p)Dais(V) © D' est une décomposition de Dcris(E) en

somme directe, alors :

g)ÇV)h=0 (Zp[[X]f=° ®% (3 - <P)Dais(V)) © ((XZp[[X]]f=° m, lï).

Preuve. Comme Zp[[A]]^=0 est un A-module libre engendré par (1 + X), tout

f(X) g Zp [[A]]^=0 s'écrit sous la forme / (X) J2f=o Sigi(T)(l+X),oùgi(T) g

ZP[[T]\ A Zp[[Ti j]. Alors /(0) go(0), d'où on obtient que / g (XZp[[X]])'^=v
si et seulement si T divise go(T). La première assertion s'en déduit.

Passons à la deuxième. Il est clair que pour tout a(X) G (1 — q>)Dais(V) P)c.p

Zp[[X]ty=° on a cf(0) g (1 - (ß)D^(V\ d'où A0(a<) 0. Si ß d'® f(X) g
D' <S>zp alors ß(0) d'f(0) g D' et donc Ao(ß) 0 si et seulement

si /(0) 0 d'où (ZpllX]]*=0 ®ïp (XZp[[X]])*=° D'et le lemme
est démontré.
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Nous pouvons considérer H y n comme un homomorphisme de D( V)&0=0 vers

l'espace DKAl(V)/D

Lemme 4.9. Pour tout a(X) g £)(V)&0=0, on a :

n

SeVi„(a(X)) p
' X^io ' i(y!V h !l V l</(0)) (mod D^ÇVT=1).

A=1

Preuve, Supposons d'abord que a(X) g D{V)a={>. Dans ce cas, or(0) g (1 —

(p) Dais{V) etl'élément (1 —c/(0) g Dcàs{V)/Dais(V)(l>=l est bien défini. Soit

F(X) G ,H ®k Dais(V) telle que (1 — <p)F(X) a(X). Pour tout 0 I x n 1

on a :

(q> 0 a)kF(t;pn-k - 1) - {(p 0 a)k+lF(t;p„-k-\ - 1) (ç ®cr)ka(^p„-k - 1)

ainsi que (1 — <p)F(0) a(0), ce qui fait que :

È^, (a(X)) p-n(cp 0 o ' Fi cr - l)
n

P~"(^2(<P 0 <yTka(^pk - 1) + (1 - p)_1a(0))
A ~ l

(mod Z)cris(FF=1).
Passons maintenant au cas général. Si a(X) g <©(V)Ao=0, alors comme

£>(y)A°=0 5) V) A=°, il existe ß (X) G D(y)A=0telque f(X) a(X)-ß(X) g

(yn -l)®(P)Ao=°.
"

CommeIXi- D + C® " #"M0> s <» (mod
on obtient :

n(ß(x»
n

P~" J2(P ® <prka(çpk - 1) + (1 - §r:W)) (mod Dcn^V')'
A=1

Pour tout caractère ijgï (G„ on note

3^: £)(P)Ao=° -* /^(^//WC)^1
la ^-composante de Sy„: -* D^(V)/Da:is(V)'p=!, Bien sûr, on a

F>cvis(V)îr o si X) ^ rjo.
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Corollaire 4.10. Si a (1 + X) ® à G Zp[[X]f=° ®Zp ((1 - <p)Dais(V)) et si

rj g X(Gn) est un caractère de conducteur pk, alors :

Jv,n (a)
\p n<p k\,Iu !ACl, si r) r)o,

I i(i -!' V 1)(i - f)~liM* si'i lo<

Parailleurs, si ß z®d' g (XZp[[X]]f=%D'etsi.X(Gn) ~ X(Ajr)xX(Fi/r,
est la décomposition du groupe des caractères de Gn qui correspondà l'isomorphisme
canonique G„ m x i F| / F,, i, alors :

Jv,nm
p '

v si n i XCi
p-'HMyi) - l)f kul'uVcr,ï si n e X(Fi/Ffl). r, £ m
0 Si. r) r)o.

Preuve. Si q 7^ ijq est un caractère de conducteur pk, alors 0 si m i=- k,

d'où SEv n(a) p~"<p~k(d)en(t;pk). D'autre part, on a :

10
si 2 ^ m ^ n,

1 • 1

./( si m 1,

d'où :

Sy,))0(«) p-"i<p-l(d)( 1 - p)-1 + (i - cprHd))

PmPn{l-P)
~ Gr T-P " r)~Ja -p-l<p-l)(d) (mod Dais(Vf=l).

pn ~l(p -1)
Ceci montre la première assertion; passons à la seconde. Soit r) Sir)', où

rf g xcri/r,,). Si ï) i XiF|/F,.t. alors i # 0, i .A.z) ev(l + X) et le calcul

déjà fait ci-dessus donne Ey n(ß) p~n<p~k(d/)en(t;pk). Si i) G X(Fi/r„),
alors en(z) en((Yl - F)(l + X)) (q(Yl) - 1)^(1 + X), d'où WV tj{ß)
p~n(ï](yi) — 1 )<p~k(d')eri(t;pk). En particulier, si, 9 m cette formule domie

Ey m(ß) 0 et le corollaire est démontré.

Le (2) de la proposition 3.2 donne une suite exacte :

0 hi ker If £>(V)ÄO=0
1 -'' ->

Dcns(V)
Q0 -, ker B*„,„ -* mvlr_ — (wvy_ - (1 _ j y, - 0.

(4.2)
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En composant cette suite avec les suites tautologiques :

0 -> Dais(Vf=l -+ D^iV) —% Dais(V) -> 0, (4.3)
(1 - <p) DCÜS(V)

0 -* * -> Dais(V)
1 -P-l<p-\ n rt,, Dais(V) n

(4-4)
* ^eris(l^) n _i _i\n /T/\

®

(1-p V )Octf«(^)

et en utilisant le (1) de la proposition 3.2, on obtient un isomorphisme canonique :

Kv,n ' det%jôv,]-âD(F)pB
0

4e(&;[;G„]^dR(^î

Sü det;
1 ^eris(b)

[Gn] Oa:iS(V) det%[G„]
(1 _ ^ D^(V)

® (det%[G„]/>ens(y)^ p ® det^[GB]
_ p_Ç^ ^(y)

— Qp[Gn]

Rappelons que l'on note R„ le (9 g \ Gn |-module libre engendré par x„ Çpn +
Çph-i 4 + (4. On fixe un réseau M de l)aiS{V) et l'on pose 39m(V)
M et M„ Rn M.

Proposition 4.11. L'isomorphisme /cy,„ envoie :

detgp[G„]39M(V)p°~° ®%1RJ det^[Qn]M„

sur le réseau engendré par :

{î]{yi) _ I ' >'»»4 DcnslVf-1

—ij |i 1 y m cî;o,
P/

où 8(r}) \ sir) £ X(F 1) et 8(r}) 0 sinon.

Preuve. Si N OL — alors M /N atsm torsion ei il existe M* c M
tel que M N ® N'. Par le lemme 4.8, on a :

39m(\Oäö=0 (zP[mf ,:i

<8$, N) e (XZp[[X]]f=° ®% N%

En particulier 39m(V)Ao=0 est A-libre et par le lemme 2.6, il suffit de démontrer
la proposition caractère par caractère.

d~Kd J2 (r>(yi) - l)Ä(")dlm^ det (<P 1 Dcris(V))-a^eri +

I / -•

^ 1 :

~~P

p(l-n)fd+dmrQp DçàstVf^
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On fixe une base («;') (resp. (np)de A(resp. A'). Les éléments cq (1 + A)0«(;
forment une base de Z/; || A||',/=0 0®, A et les éléments a= z 0 n' forment une

base de {XZP [[X]])*=° #j|, N'., On pose :

à A.mi g detA {Zp[[X]f=() 02p N)

à' Ajc/j G detA {(XZpl[X]]f=° N'),
à à A à' g detA£>M

On pose aussi ßi xn 0 //,• et jSj xn 0 «j. Alors (ßi) (resp. (/P)) est une base

de R„ 02 A (resp. /0 0® A'). On pose :

ß aißj g detA (f?,, 0®p A),
ß' Ajßj g detA (Rn 02p A'),
b ß a ß' g detA(f?„ .0Eg M).Up

Soit rj un caractère non-trivial de Gn de conducteur //. Les suites exactes (1) et (3)
de la proposition 3.2 impliquent que la ^-composante de 0^ est un isomorphisme

SeV
rj

: 00").v -> V)»7 et CILIC kv,v det(Ê^). On a enQfif) c.ßCp )».••-

r,.ißj \ en(ßpk)n'j. Si i] A(r1/10), alors le corollaire 4.10 donne :

3y (ffi) !>
'

<j O/i lr,.(C

.../</•' t> n(p kWj)e,j(Çp).

On en déduit que :

MAÀ8À" i' 'dim:'!'tlet av
A

| l'i».

Si tj g I(ri / F,, est un caractère non-trivial, alors encore par le corollaire 4.10

ona P~n(ri(Yl) ~ !)</ kin'jU-„.iCr. d'où :

M^(",,»/>,,') p r plm,,, t I

Pour terminer la preuve il reste à étudier le cas rj ï]q. Dans ce cas, le corollaire

4.10 donne :

KjJ&Ù K\ (l P P)

^,dH)=0.
Pour simplifier les formules, nous identifions °D(V) avec A 0 I)cn0 V via l'iso-

morphisme canonique Z/; [| A||'//=0 a A qui envoie (1 + X) sur 1. On décompose
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A en somme directe : A ~ ©f=(> 5,i]], Zp[[Fi]] 'it Zp[[r]]. On utilise l'iso-
morphisme r}o(<Q>p[Gn]) <Q>pr)o ~ pour identifier £)(V)m avec DCnS(V). En

prenant la -composante de la suite (4.1), on obtient une suite exacte :

0 -*
£>cns(y

> £>(V)^=0 -* (1 - q>)Dcris(L) -* 0. (4.5)
(l-cp)Dais(V) ' msy

Si /. - T50 + EfJ"i2 <5; A, alors 3D(V)^=0 - (A (1 - ^D^V)) ©

(A.A cg>^ /A), ce qui permet d'identifier £)(V)fy=0 avec (1 — (p)Dais(V) © D'. La
deuxième flèche de la suite (4.5) est donnée par la formule d'H» em(yt! — 1) ® #
(voir (3.1)), Posons gn(T) ((1 + T)*" ' - I )/'/'. Alors y„ - 1 80Tg„(T) et

comme 8qT 8qX, on obtient :

erio{Yn ~ 1) 8-ëq0gnA 1 ^-gii(0)ß);q P •

On en déduit que la suite (4.5) est isomorphe à la suite :

0 "> D' > a - <p)DŒis(V) s/)' > (1 - <p) DçtigiV > 0, (4.6)

dont les flèches sont données par les formules d't-fc (0, p"~1d') et (a, h) h< a.
Les suites exactes (4.2), (4.5) et la suite (1) de la proposition 3.2 s'insèrent dans

un diagramme :

0 0

/r—\p \ (^) —1

ker(aev<„) * Dcris{Vy=P > 0

PcrisfV)
(l-p-l<p-1)Dais{V)

0
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dont les flèches sont données par les formules suivantes :

(1) et (3) : ,/•>,/»(/, lui • Xi.
(2) et (4): a(X) h> or(0),

(5) : d ^
1

(1 - p 'v
1

h 1 - (mod Dais(Vf=lh
[Kn A J

(6) : d t—[K„ : K]d.

La commutativité de ce diagramme est immédiate.

gpN et W Ajit'. GPosons n ag det-;;.,.V et W ajn'. g detg /V'. ce qui fait que « 0 n'

est une base de det^M. Comme em(x,t) (1 — p) 1, on a bm

(1 — j>)~ lim°> Dciis{V\n 0 n') et la /yo-composanle de la formule à montrer s'écrit :

Kv,no (% ® (« 0 n/)

I Ndimo- DçrisCVT^'
n(l-'0/rf+dirnt|p ^cris

p'V p;
pU-nj/d+dimQ^ "caris ^ (4

Fixons des bases m\ G del;;7 .V/'
1

et G detg(M/Mtp~l telles que m\ 0 Ha —

n 0 Rappelons que l'isomorphisme -D< V~ identifie à,10 avec n 0 n'.
Considérons les isomorphismes canoniques :

via (4.4) 1 id—^4 det%J9cns(F) 0detX1Dcris(F) 2% {

et

h-, dem,((l - yUWV)) »daöj(d°°"v4'

via (4.4) 1 id
* tFa /Cri.' b' 0 tlct- IKr\<i b1 rf Qp-

Par définition, l'application kv,m s'obtient en trivialisant la suite exacte verticale
du diagramme (4.7) via la suite exacte (1) de la proposition 3.2 et les suites exactes

tautologiques (4.4). En utilisant la commutativité du diagramme (4.7) et la suite (4.6)
on obtient, grâce à la fonctorialité des déterminants :

icV,m(äm 0 (n 0 7F)-1) p
1 ' D^{V^ix{^ (4.9)
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L'isomorphisme 1 — q>\ /)cris(fO/^cris(f/)'?=1 — (1 — &JßaSÄ¥) induit un

isoinorpliisine dot.".. /:
' ix deto^-<p)Dcris(F) et on note [1 : (1 -<p)m.2\

l'élément de Qp défini par (1—^9 )ni2 P • (1 —<p)m2\n. La définition de i\ implique
alors directement :

/i (il' 0 m |
1} [7? : (1 — (p)m2i-

Pour calculer i%(h 0 mg"-1 considérons le diagramme tautologique suivant :

o o

(4.10)

o —?» ,T7YS)-„-i « n _ dm «n D^V) {6\ D}V)Dais(_V)ip p U. mUmsiV) ijyuSNl Sri»"'-«"1 )fe -3* 0

0 *> Dcris( V)V= öcrisfPi

Crist V )f=1 a-p-tp-MOcristV)

pr [K„:K]

?» Ocns(V) - ti-p-U-l)DaisiV) 0

flatrfffP4 " -DcrisOO^1

(4.11)

Ce diagramme fournit un diagramme commutatif :

d«top (t 1 - <p) öcrisff3) ® deï^ -jdi detiQri, !K:wJ t'.J Q det ;4 /9cns | V

® det r

(4.12)

d^'O-n ®crisERP"-^ ® det(
-1 D,

h V lt—'i
siV>

w"V"1

Les isomorphismes verticaux de ce diagramme sont induits par les lignes exactes
du diagramme (4.11). Par définition, o est le composé de ces isomorphismes avec
la flèche inférieure pointillée et l'isomorphisme id. Les isomorphismes v et n sont
induits par les flèches verticales de (4.11) qui envoient la deuxième ligne de ce

diagramme sur la première. En particulier, on voit tout de suite que pu coïncide avec la

multiplication par (1 — 1//odini/>cris'l/,/* p D'autre part, [K„ : K] pn~l(p — 1)
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et on a :

v{(m\ 0 rh-2) 0 (m\ 0 m2)
1 j

(Pn~l(p ~ l "carislf)/DcarisIjrpA

del (1 - 1 /p I Dais(Vf=]) (1 - cp)m2 0 m

En utilisant la commutativité de (4.12) on en déduit que :

-1
2 •

%((! - cp)ut2 0 m2 1) (4.13)

I ilim.:. Baw(Vf"p
1

dim DcristT}«"1 / 1 -n \ dinlQp(öcrisfVl/öcristV)^1
1 I —pj \p

Comme 0 ?«_,
1

s p : (1 — <p)rii2\~l 0 en mettant
ensemble (4.13), (4.10) et (4.9) on obtient (4.8) ce qui termine la démonstration de

la proposition 4.11.

Proposition 4.12. L'image de dets^g,,] P)r„ 0^ [o„] de%L A dans <QP [G„]
est engendrée par

q-Knd del(f I /lcnqV.)HHB
n

î

/ 1 \ dimo„ Z)cris(^)^ P *
1

I | I j ' pd-^fd+ndàm^Da^fV)1»"1

Preuve. Il suffit de calculer l'image de detgp<fj^M'(V)p°'=0 <H>déB1[G}[j<5DA/( E)pÄ

dans Qp[G„] caractère par caractère et d'utiliser la proposition 4.11.

Si?? g X T1 est un caractère non trivial, alors on a £> V) ~ D(V)A)_< etla
formule enX y 1 — I )cn montre que 1 ' image de detDm V A°_00def"1 Dm V n

est engendrée par (??(yi) — 1 )dim-Ocris<v1 e77.

Supposons maintenant que rj rjo. Dans la preuve de la proposition 4.11, on a

vu que la suite exacte

Dais'(V)
* D(V)AO=0 -H D(V) -*

£>cns(y)

(1 -<p)Dais(V) ' "° ' "° il Vl/C-nOV)0- ,1 ,,/WiV-, -nvsr- wn*- „ -o
est isomorphe à la suite :

0 -h D' -h (i - cp)Dais(V) ® D' hp (1 - tp)Dclis(V) ©fl'^O'^O,
dont les Heches sont domiées par d'Ht (0, p"~ldr), (a, b) (a, 0) et (x, y) h» j
(voir (4.6)). On en déduit que l'image de Dm i C>;'^l=O0dc(T1 Dm V )ljl} est engendrée

par //' ^ t,-où la proposition.
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Remarque 4.13. On peut remarquer que les facteurs qui sortent dans cette preuve

(parexemple // pour le caractère trivial) compensent des facteurs

qui apparaissent dans la preuve de la proposition 4.11 (voir (4.9)) et qu'on n'a pas
besoin, donc, de les expliciter pour démontrer la proposition 4.12.

4.3. Équivalence de Ciw et de Cep : étude de Expy h n. Nous passons maintenant
à l'étude de l'application :

Hxp,: (5)(E)A=0)r„ > % mp (MjK, T)/TH*)rn

déduite de Expy h. On suppose partout que h p 1 est un entier tel que Fil~?i I)ais V)
Dcris(V).

Lemme 4.14. Si V est une représentation cristalline, alors :

(1) L'application naturelle de V°K dans VHk est un isomorphisme ;

(2) L'application composée :

exp*
vgk Hl(Kn, V) ——% D^(V)

coïncide avec l'injection V°K ——x(y"> Fil°ß^(E);
(3) On a VG* n Hlg(Kn, V) {0}.

Preuve. Comme V est cristalline, on a un isomorphisme VHk ~ ® ; Qp (i )d< (voir
[Per94, lemme 3.4.3]). Fa première assertion s'en déduit.

0 KPour montrer la deuxième, on remarque quel' application U log / : Filu/Jd^(F) —>

Il1 Kn, Fil0 B dR® F) est un isomorphisme et que expy K coïncide avec l'application
composée :

Hl(Kn, V) //J (X„, I-ïl0/idK ® V) ^ Fil°D^(V)

(c'est la formule de Kato, voir [Kat93a, §1.2-1.4]).
Enfin, comme ker(expy K>t) H^(Kn, V). on en déduit le (3).

Considérons le diagramme commutatif :

BxpC%
;

H^tK.Virn

uV,n

r» (H^K.V^Prn

tv(K„) dî-l)!expKÂ.^ Hl{K^V)
Dais(Vp^/VGK vGk >
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oùHl(K, V) Hl(K. T)<&%pQp et Hlw(K, V)toI~ VH*. Par la proposition 2.8,
la flèche de droite est infective. Comme la flèche inférieure est injective par définition
de l'application exponentielle, on a un isomorphisme :

keriTixp',,, rs ker 3L : J5(F)& -> — ——' V V'n " DaisiVy^/V'/

La deuxième suite exacte du lemme 1.5 donne un isomorphisme :

crisv
{ y '

| i
'

Fiis&yjv) + .I -r'rlW)
et en quotientant l'isomorphisme (2) de la proposition 3.2 par Fil0, on obtient un
isomorphisme :

coker(Sy : D(y)*=° - tv(K"]
r ^ [VHlf'TV ' r" Dcris(V)v=1 /VGk J

d'où la suite exacte courte :

0
ty( Kn ^K„/K [V*(lyGKy _^ q

ker(Expev/M) Dcli${Vy=y/VGM

D'autre part, pour toute représentation p-adique, on a une suite exacte :

n (UUK, V) \ _

Hl(Kn,V) 2 (F n

(voir la proposition 2.8 ou bien [Per94, proposition 3.2.1]). On a

vGk ~ h1(r„, V"K) et //,;,( A'. F)r'< ~ ((V*{1 ~ (Vil)'''* f.

La flèche Hl(K„,V) -> est duale de l'application d'inflation
V*afK -s, Hl(Kn, V*(l)) (voir le (3) de la remarque 2.9).

Proposition 4.15. On a un diagramme commutatifdont les flèches horizontales sont
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ker(Exp£vhn)

Expf;

uV,n il
tv(K„) O-lflexpy_K H1(K„,V)+VgK

VgK

TIK„/K

(V*{1f*)*-
m

o

C/î—1 log
1

xly,tj 2 ,tz wvrf'iiK- V31 »

0.

Preuve. Il résulte du théorème 3.1 que le carré (1) du diagramme est commutatif.
D'après le lemme 4.14, le diagramme :

r- K (inf ir„ /&-, expy, £„
v*(l fK X D^(V) fl iK,. Vi In X II\K,. V)

(log
1

xCKni.id)

D^(V*(1)) m D^(V)
TrKn/Qp [*'*]

est commutatif, ce qui fait que l'application composée :

ßfgW) eXPy,Â'"> Hl(Kn. ¥} -* i V '
i I )('K i

'

coïncide avec l'application :

log-1 XiV^TiKn/K
> Dais(V) ->»km

On en déduit que le carré (2) du diagramme commute. Il est clair que toutes les
flèches horizontales sont des isomorphismes. Comme la colonne de gauche est exacte,
la colonne de droite l'est aussi.

Corollaire 4.16. On a un isomorphisme canonique :

Hl(Kn, V)
cokeriExpV./j „) - H}(Kn,V) + VGz'
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Preuve. Il suffit d'appliquer le lenune du serpent au diagramme :

0 *lm(ExfVhJ IIISK, V)r» 0

0 ^ hUk'V)tk s»
Hl(Kn,V) >H?(KV)r" 3-0 Du i/Sr vgK IWv ' u-

On note B'v h n
: kcn Expr -> coker(Exp^ h n) l'application déduite de

ExPv,A.„-

Proposition 4.17. On a un diagramme cûmmutatifdont les flèches horizontales sont
des isomorphisms :

ker

ker(Expy M

FaQDdÄR"(V)

VGK

f»

V,h,n

Hj(K„,V)

coker(Expy ?I

m

(h-mo$-1 X(Y„)

exPK„.V

Fii°D&m
VGK

Preuve. La commutativité du deuxième carré est démontrée dans [Per94, lemme

3.5.9] en utilisant la loi de réciprocité explicite. Remarquons que Perrin-Riou utilise
une autre normalisation pour la flèche au milieu (son ty est égal à notre —By h n) ce

qui fait apparaître le signe dans sa formule. Le reste est une conséquence immédiate
de la proposition 4.18 ci-dessous.

Rappelons que dans le lemme 1.3, on a construit des isomorphismes :

exP VJ/e :

exPv.gjf-

Dais(V) ~ H}(Kn.V)
(1 - cp)Dcns(V)

HhK„,V)
H} K„, V

H}{Kn.V)
DcnsiV)<P=P
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Proposition 4.18. Le diagramme :

DcrisiV)
(l-v)D„is(V)

ker(S^)

ev,rn.n
^

Hj{K„,V)

D«iS(vy=p
A ev,g/f,„

mmnM

WhKn.V i

H}(K„,V) '

OH

evj/&,n(a) (h - 1 V.p '' expv j A.m.

ev,g/f,n(b) (l - m ~ 1)!: log-1 z (y„) (expy ^)_1 (i),

est commutatifet où la colonne de gauche est donnée par le (1) de la proposition 3.2.

Preuve. Si a g DaiS(V)/(\ — <p)DCnS(V), on choisit un élément f(X) g D(V)
vérifiant Àf(X) a et l'on pose g(X) (yn — l)f(X) ce qui fait que g(X)
est l'image de a dans ker(Eyn) c D(V)^°. Soit F(X) g ,K(V) un élément

vérifiant l'équation (1 — (p)F(X) f(X) — a. Si on pose a(X) (dh <g> eh) f(X)
et A(X) (d'1 ® eh)F(X), alors MX) vérifie (1 - q>)A(X) a(X).

On a Fil0/)cris(P(-/0) D^iVi-h)) ; soit :

^V(—h),h+k,m ' ,K(V(-h)) -* Hl(Km,V(k))

le système d'applications construit dans [BenOO, §4.2-4.3] et dont la construction a

été rappelée au paragraphe 3.2. Posons :

Zk,m (-1 t^{_^l+k>m((a®V)-mAlX)),

et notons Zk.m son image dans Hl(Km, V(k))/Hl(Ym, V(k)HK). Le théorème 4.3 de

[BenOO] montre que corK„+1/K„(Zk,„+i) zk,n pour tout n p 1 ci qu'il existe s ^ 0

tel que la suite :

pu j)rn J2(-1 )k( ; j'iwl, O resk^/k„ (zm.k)

k=0
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converge vers 0 quand m -> oo. On vérifie que Zk.m G V(k))/V(k)HK)Tm
(par exemple, on peut utiliser les arguments de [BenOO], pour montrer que le cup-
produit de Z%m avec les éléments de V*(' 1 - k)('K est nul) et il existe donc un unique
élément - g ,K(Y) 0A V{k))/V(k)Hh tel que pr^j^dw^) Zk,m

pour tous k g Z et m ß 1.

L'élément B(X) (yn - l)A(X) vérifie (1 - y)B(X) (dh 0 eh)g(X) et on a :

ptvtkim^k ° mvM) c0 *P)-mB(X)),

et donc (yn - lk Exp^fg) et BEvhn(a) ~zo,n mod H){Kn, V). D'autre

part, le même argument que dans [BenOO, §4.4.5] montre que :

mm (h - D]-P~n expv,K„(-V-n(ah io ® &*m&* ~ i)h
où on note encore expy ^ l'application de connexion dans (1.2) :

expy K„ < DcnsiV) ®tv(Kn) -> Hl(Kn, V).

Comme l'opérateur q> agit trivialement sur l)mß V )/( i —(p)l)mß F),on en déduit que
(h - 1 )\p~" exp, ;. .un ~zo,n mod Hj(Kn, V), d'où on obtient BEvh n{a)
(h — 1 )\p~* exp, ; (a) ce qui montre la commutativité du premier carré du

diagramme.

Démontrons la commutativité du deuxième carré. Fixons un entier k ß 1 supérieur

à la longueur de la filtration de Hodge de V*{\) et tel que Fil */Ln.A V'fi 1 n

A*is(F*(l))- Comme Exp^,(1) i,-_iExp®,,(1) j_] et lk -l-j, la loi de

réciprocité s'écrit :

8-1 k-1

<Expyjj(/), Expv.^(g')}a+x)=( n ï#) n ^)Trv/%(/ *£> g).
I / I

Si / g ker(S^), alors ExpeVJl(f) (yn - ©x où x g «^(Fj 0 Hlw(K, V) et

Bv h M P'V.L-v» mod V).
Soient b g Dais(V*(l))/(l - ?»)Dcris(V*<l)) et ß(X) g S)(V*(1)) un élément

vérifiant Aß(X) b. Posons g(X) (y„ — l)ß(X). On a alors :

„-i
Expy*ç|jj.(g i i y# — l)v,

:;Expy ;.i/i. Expy. (y„ - 1 )2(x, y').

D'autre part, par la loi de réciprocité explicite, on a :

(ExpEVJl(f), Exp^D.A-C^OXl + X)
h—1 k—1

(Yn - I}2( H ")( n*j)Trw/0,
1 j=1
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d'où :

gi h—I k—1

<x, yxi + jf) —± f *£> fi)
n i=1 j=1

On a pt'v,, f vi g Hj(Kn, V (Iii et i..i./.î/;i est égale à

modulo H*(Kn, V*i 1 Il est facile de voir que g' vérifie aussi A (g1) h cl que

By k n
(h) ne dépend pas du choix de e d'où :

-pivmJy1) mod v"iln-

Comme le m —,
v"~1 mod (y„ — l)2 et comme le coefficient de (1 + X) dans

106 a\Yn)
le polynôme d'interpolation de Trgyc^Lf *,;> ß) modulo (1 + X)p" — 1 est égal à :

X] VU ~ B-ß'ir1 - i)]v
t £-ßpn

(voir, par exemple, [Per94, proposition 4.3.2]), on déduit de la loi de réciprocité la
formule suivante :

(h - 1)!(A- - 1)! ^n TrK/0 X] va - o< ßla~l ~ Hk.
pn\Ogx(Yn)

ç&Hpn

Soit F(X) un élément tel que (1 — (p)F(X) f(X). Comme Hy n(f) 0, on

a F{Çpn — 1) e /Jcjis(V')''"""1. On peut modifier F(X) par cet élément et on a alors

F(t;pu — 1) 0.Comme F(X) vérilie l'équation £,;,=| Fit,i\+X)-\) /jF< tX
on a F(Çpm — 1) 0 pour tout 1 C m X n. On en déduit que f(£p>" — 1) 0
Si 2 ^ m ^ n et f(Xp — 1) —<p(F(0)). D'autre part, on a (1 — <p)F(0)

/(0) et comme /(0) g Dai&{V)<p=p 1, on en déduit que F(0) (1 — 1 //>> '/i()i
mod DcrixO' i-' Comme Ylcen, ß'a~l ~ O 0, on obtient :

x; i/'a
1

oh-
£ ^f^pn

-D^ß'ir1-m
i qxP

X] I V'/Mü)). ß'ir1 - î)]y + [/(0) + cp(F(0)), /00,|v
f s lxp

im)- m
-1

(!--) lf(0).blv.
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d'où :

«WO. (l - ;) «v

Comme ^ „(b) ey*^),f/e,n(b), la commutativité du deuxième carré
résulte de la définition de l'application exp'j, ?//..

Preuve du théorème 4.4. Soit h p 1 un entier vérifiant D^iV) et
soit :

^(Koo/K, V) > M(Y)

la trivialisation de la droite :

\v\pK^/K. V) - ®f=1(detA% H{JK, yyfr-X)1 detA% W)
qui a été construite dans le paragraphe 4.1.

Soit n ^ 1. Comme g0 logy«/logx(y„) ee îog'^y,,) mod iïn - Ï)a ü

est une conséquence du théorème 4.2 que l'image de <5y ,K h est contenue dans

(1 - y„)dmiQp Fll°D«»(y)^fP) et on pose :

«jwo-a-
Soit QP[G„] ~ 0:, Ex la décomposition de Qp[Gn] en somme directe de corps.
Par la proposition 4.6, l'application Ëxpy /( est admissible et le lemme 4.5 fournit un
diagramme commutatif :

iA=n„^.-t I'llKM \

(4.14)

detA% gym*** ® det4

£i-

La flèche inférieure de ce diagramme se décompose en produit des déterminants
des applications :

£)(V)A=0 ~
ExPv,/i,i ' 7 Im(ExpV.h,x) 0-lf)

Kerfnxpy /i ^;

BV,h.x ker(ExPv,/iA) > cokerd Ap,- i. (4.16)
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Comme H2w(K, V) m (V*(1)Hk)* est admissible et comme H2w(K, F)r„ —

H2(Kn, V), le lemme 4.5 donne un diagramme :

detX(^ Hl(K, V) Ap(i)

(4-17>

det^1 II2(KI!, VhMdctr; H2w(K, Fjf« *Ek.

Il est clair que H2(Kn, F)& H2W(K, F)[* 0 si X ^ Ào et que pour X A©,

la flèche inférieure de (4.17) s'identifie avec le déterminant de l'application identité :

V ' (11'7 s
' ^ i V f 11'7' On a des diagrammes du même type pour les modules

D( V)/D(V)a=° et Bfw(K, F)tor - VHk. En particulier, comme Hfw(K, F)tr0';

Hlw(K, V)r" a H°(K„, F), on a un diagramme :

^etÄ% *&<*• ^tor

(4.18)

detV)t0[)i 0 clet H°(K/U V)x Ek,

où H°(Kn, V)x 0 si À i= ko et H°(Kn, V)lo VG*.

Il résulte du théorème 4.2 que le produit des flèches supérieures des diagrammes
(4.14), (4.17) et (4.18) coïncide avec la localisation de <Sy K /K h cnp(À'). En mettant
ces diagrammes ensemble et en utilisant la suite exacte (3) de la proposition 2.8, on
obtient un diagramme commutatif :

detA^ £>(V) 0 det.v., Mrlw(K, F) ^ ^(r)
(4.19)

detiQ^iG,,] 0(F)r„ 0 clet | KP( K,. F) > Qp[Gn]

Nous allons identifier la flèche inférieure de ce diagramme avec l'isomorphisme
äy KjK qui a été défini au paragraphe 2.5. En effet, &'v Ki ,K se décompose en le
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produit des déterminants des suites exactes et isomorphismes suivants :

0 H°(Kn, V) -F />cr,tV'!<
1

-* tv(Kn) HÎ(Kn, V) -* 0,

_ HI(K„, V)
t-xPV,f/e '- ^cris m/a - ë^cris ,Uv v

Hl(Kn,V)
exp* ..: -4—^ ~ D^V)^mm Hj(Kn,V)

Hl(Kn,V) n r cris Cl') * r *0 - r/Lr t^ - m D&W - n -t -un an - 0
H*(Kn, F). UK Cl - P V Décris GO

(4.20)
(voir (1.1), lemme 1.3 et lemme 1.5).

D'autre part, les propositions 4.15 et 4.17 fournissent un diagramme commutatif
(voir figure 1, page suivante) dont les flèches sont doimées par les formules suivantes :

• (1) est la restriction de Bsv h, à ker( 0| h ;

• {2 est —§ EIXilL exr)*yz.) esi expV Kn,
• (3) et (4) coïncident avec les applications correspondantes dans (4.20) ;

• (5) est {h - l)!expy Kn ;

• (6) est la multiplication par (h — 1)! log-1 / (yn) composée avec l'isomorphisme
canonique (V*(1)G*)* e H2JK. L)F'< ;

• (7) et (8) sont induites par les isomorphismes de projection H2w(K, V)r" ->
Hl(K, V)v„ et V)r» - F)tor)rv

Sur la deuxième ligne de ce diagramme, on trouve les isomorphismes (4.15) et
(4.16). Grâce à la proposition 4.18, les parties encadrées s'identiûent, à multiplication
des flèches par des constantes explicites près, avec les suites exactes et isomorphismes
(4.20). Les flèches en pointillés montrent avec quelles parties de ces suites s'identiûent

H2w(K, V)rn H2(K, V) et H°(K, V). Par fonctorialité des déterminants, on
déduit du gros diagramme le diagramme commutatif ci-dessous :

de%[Gn] £)(V)rn 0 det^[6„] Mr(£„, V) >QP[G„

dck;(.|o,.| 'l(V) 0 Get Rr(Kn, V)

(4.21)

Gni

La flèche gauche de (4.21) est induite par /cyet par l'application identité sur

dMq p.i Mû(K,i, V). Par le lemme 4.14, l'application composée 1

H°(K, V) «I &Lçk, V)tor)rn V0*
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H^K„,V)
H} K„, V

coker(Expy

(1)
ker(E Vji>

ker(Expy coim(Expf
Expy

im(Exp!

V)
(1

+0%lm

m

V°K //' K. V)

Fil°D^'(P)
V°K

H

PcristE)
1 -p-lç-^

(4) m
Hl[K, Vf"Iw

(8)

v)r„

Figure 1
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coïncide avec la multiplication par {(h — 1)!)_1. D'autre part, le composé :

h2(k„, V) Vf» -+ (VHlfxf ~ H2(K„, V)

coïncide avec la multiplication par log x(y«)/(// — 1)!. Un petit calcul utilisant les

propositions 4.15,4.17 et 4.18 montre que la flèche inférieure de (4.21) coïncide avec

f.K„/K multiplié par :

((/, - l)!)dim% Dcris(V)^logx(yny)-dimqpVi\0Da]s(V)

.(l + (p~» diffl'Sp ^ _ I 1 )eno

Par le lemme 4.7, on a :

((h - I»É«% (log/(;/,)! llim 01 "'~ v ±Tl(V)T(V).

On obtient enfin le diagramme suivant, qui résume la descente effectuée :

APR (Km/K, V) _ 701')

de%iG„] J0§(V) 0 del s[G-.,|RF(Kn, V) * QP[G.

La flèche inférieure de ce diagramme est :

/ / / 1 \ -dim0pDais(V)f—
1

±r;i(V)r(V)^i+^_'idlin<3pßciäf(yr (i

(4.22)

1 !% I M' A',. K

Nous pouvons maintenant terminer la preuve du théorème 4.4. En effet, par le
théorème 4.2, K /K h envoie detA 7)m F) ® det A IEI '

i w K. L) sur un A-module libre
de la forme :

P—2

(1 " 7/ >
Hl l T,il') Y, A '

• (4-23>

ï=0
où ai G <Q>p et Ai Zp[[r£U^t

La conjecture C\w(Kro/K, V) est vraie si et seulement si ai g Z),, c'est-à-dire
si et seulement si la projection de 70F) sur QP[G„] envoie le A-module (4.23)
sur r^(y)Zp[G„]. La description explicite de la flèche inférieure de (4.22) avec
les propositions 2.17 et 4.12 entraînent que cela équivaut à dire que f KjK
envoie del;....|,;,| Mn 0detz?[G„] KL(Kn, T) sur ßv,K„/K(M, T)~l ce qui équivaut à la

conjecture C^p(Kn/K, V) et en conséquence Ciwï Ä\/ÄZ V) est bien équivalente à

CwWnFK, F) et le théorème 4.4 est démontré.
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4.4. Résultats principaux. Dans ce paragraphe, on démontre la conjecture
CüOmfK, V). Rappelons que si V est une représentation cristalline dont les

opposés des poids de Hodge-Tate sont tous positifs, et si T est un réseau de V, alors

le module de Wach N(T) est un /l^,-module libre de rang d dim (F) (voir la

proposition 1.1). On pose B£ a£[1 /p\ et S V N(T)[l/p],

Théorème 4.19. Si V est une représentation cristalline dont les opposés des poids
de Hodge-Taté sont 0 rf < r2 '4. • • • «g rj h, et qui n 'a pas de sous-quotient
isomorphe à <Q>p(m), alors :

(1) l'application q>~1 induit un isomorphisme :

D(V)' 1

i >©î F*V
Â

i iiA/>CI1.t vn.

(2) On a :

dime Fib Dens {V}DO')* ;1 \ A
detA

Nous montrons ce théorème un peu plus bas. Si /, g g ZpQTi]], on écrit / ~ g
si f et g sont associées, c'est-à-dire s'il existe u g Zp[|[FjJJP: tel que / gu. De

même, si a,b g Z on écrit a b si a et b sont associés dans Z/;. Si M est un
A-module de torsion et de type fini, on note cara (M) son polynôme caractéristique.
Rappelons que detA (M) càTA(M)~l A.

Proposition 4.20. Si F est une représentation cristalline vérifiant les conditions du

théorème 4.19 ci-dessus, alors :

(1) l'application q>~x induit une injection :

D(y\ir=^'A *=i ^ FiIAZ)cns(F)).
(q>*N(V)f=l

(2) On a :

carA
/3(f)#=i

(<p*JV(f))b=1

h

]~[ (carA(Zp[A] <g>Zp (-£)}}ditto,, Fib' Dcris (.V)

A"=l

Preuve. La proposition 1.2 nous dit que :

lAtg ,K Btg ,K »A- Dais(V)\ [(t/xr- ; c//A'«"|.
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et on en déduit que :

N(V) c (yj B^K ®k D^Vk

et que le plongement de fit K dans If®]] dornte un isomorphisme /f[MI 0g+
&> ÜT

N(V) ~ /é11/ ]| ®k Dais(V). Rappelons que l'on pose q <p(X)/X. Comme
qhN(T) c cp*(N(T)) (voir proposition 1.1), on a X~hN(T) c (p{X)~hy* (N {T))
d'où :

w,**. (pwf'-
Comme ç~1(l/X) g l'application </r1 induit une injection :

<p~l : D(Tf=] -* Fil0 (TO ((f)) 0* DctfciV)).

Pour alléger les notations, on pose :

D WiKiiit)) ®K /WV'n ©t ^ ' A' | / * ®K Fil '"D^iVï),
et on définit une filtration croissante de D par des sous-espaces l)k :

Dk ©L-oo(^lt~m ®K FilmDais(V)).

Ort a Dh D et I)k/Dk-\ — K\t~k 0# l'ilA />C|ISt V). On définit aussi une filtration
sur (X~hN(V))^=1 par des sous-espaces Nk(V) en posant :

et <p~x induit alors une injection Nk( V) ^ Dk, Pour montrer que Fapplication
NhiV)/Nq(V) Df,/Do est injective, il suffit de montrer que les applications
iv.k- Nk(V)/Nk-i(V) > K\tk ®KFi\kDçrisiV) sont injectives pour k 1 h.

Pour cela, soit n i,,.., nq une base de if V) sur B^ et soit :

1

% —t.pifm i.3 4 h

f(Xr
un élément de ker i y j(. On a alors :

(p~l{a\)tnP +<P~1(ad)Hd _A-+1 „ rr,-, o n /'t/x
—^ G t A+1^i[[t]]0/r Dais(V),

et comme «i nj forment une base de 7C[[/]] ®k Dais(V), on a ai 0 mod q
dans B jt. Si Fon écrit a, qbj avec è, Y o l'ijX*, alors la condition ij/(x) x
s'écrit :

(y) </"'i » H b ^y^j çOhi) qk~l ^y^j «i H F # ^y^j "dj
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On en déduit que y Yl'i=1 )ni appartient à Dais( V)V=pk '. Mais il appartient

aussi à FilA—1 Deris(V) par construction de iv,k, donc kV(k — 1)Gk (1 — k) 0.

Ceci montre que iv,k est injective. Comme K\t~k est isomorphe à K| A | 0 Zp(—k)
en tant que F-modules, l'injectivité de t'y implique :

carA(C
D(V'f=l

(<p* N (V)A=1
PJ(carA(Zp[A] 0 Zp(-k)))&vmkDWK.
k=l

D'autre part, comme D(T) est libre sur Ak, le quotient D{T)^~l/((p*N(T)A~l
n'a pas de p-torsion et son polynôme caractéristique est égal à

cârAûp(D(Vf=l/(ç*N(V)f=l).
L'assertion (2) s'en déduit.

Preuve du théorème 4.19. Nous démontrons d'abord le (2). Posons :

=i
£-4 I D(Tf=1
J2Si®fTÂYi- 1)=carA((-^

® stayi !» ncarA (%[A^] ® u",Dmiv)

i=0 m=1

Où<$! =EgAÂ- X _i(g)g-Posons aussi/r(yi-l)=nfj02 /7y(yi-l)etgr(yi -1)
Tlfeo Stj (:Yi 1). Comme :

8i(Zp(~m))
| Zp(—m) si i —m mod p — 1,

0 sinon,

et comme ZP[A] ~ ®f=o2 %% on v°ù 4ue Pour 1 0 p — 2, le Zp[|Ti [|-
module iî<(Z»[A] 0 %p{—m)) est isomorphe à Zp(—m). Pour i 0 p — 2, on
a donc :

m=1

h

gTj(Yi - 1) n -x(yi)-"i)d'ra^KrDcns(V),

d'où l'on déduit que :

gTj(x(Yl)~k ~ D ~p plK:%]tH(V' JJ(k - nOdim%>

m=1

Comme tp(V) + ïh(¥*(—Jf) IdiffiQp V et comme :

diin.„., Fi^DcrisCF) + dm^ [K : Qp]dimQ/) V,
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on voit que :

i V*(k) \ [^l:Qp]dim(V)
gT(x(yirk - i)grt{-/i)(x(yi)A_ft~1 -1] [ph

r*(A- - h))
(4.24)

D'autre part, comme :

/ D(T(k)f=l \r'
\((p*N(T)(k))Y=i

si k 4 [1, //1, on a :

/r(/(yi)~A' - 1) [D(T(k))f;=1 : {v*N(T)&))£f},

et le corollaire 3.10 donne :

/ F* (A) \ [Vi:Op]dim(V)
fT(x(nrk - DfTH-h)(x(n)k-h~l - i) \Phr*(k _h))

(4.25)
Comme la divisibilité frj yi — 1 | gr j yi — 1 est démontrée dans la proposition

4.20, les formules (4.24) et (4.25) entraînent :

frixin » - i) -/• vc/co > - i)

pour tout k <1 [1, h] et donc fj(yi — 1) ~ gr (yi — 1) et l'assertion (2) est démontrée.

Montrons maintenant le (1). Si on note Y le conoyau de l'injection :

D(V)^=1
(PSëiôFr " ®L| <Kl'~' *' FD,®«*(V))-

alors detA0 (Y) par le (2), d'où Y 0 car Aqp est un anneau principal, ce

qui montre le (1).

Corollaire 4.21. Si k <$. [1, h% alors le conoyau de l'application :

"y.i.,: DYTikn:- > H^(Kh T(k))r,

est isomoqthe à :

©;;i=1((Z/(A- - m)jpZ)[Ajd)dim% Hl"

En particulier,

detf#M<ß|A1> p^m'uiV) p[ (k _ (V)Zp[AK]
m=1
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Nous pouvons maintenant démontrer le résultat principal de cet article.

Théorème 4.22. Si V est une représentation cristalline de Gk, alors :

(1) la conjecture Cjw( K^/K. V) est vraie;

(2) la conjecture C^p(L/K, V) est vraie pour toute extension L/K contenue dans

Koc.

Preuve. Comme la conjecture Ciw(Koo/K. V) est stable par suites exactes et comme
lecas V Qp(m) a été démontré dans [Per94,page 143], on peut supposer que V n'a
pas de sous-quotient fixé par IIk De plus, ('\vpK^j K, V) est manifestement stable

par twist. Pour fixer les idées, on va donc supposer que V satisfait aux hypothèses du
théorème 4.19 et on va montrer Ci^K^/K, V) pour k q [1, /;]. Sous ces hypothèses,

Hiw(K. T(l<))r> 0, le groupe //,2Wf K. T(k)). est fini et pour n 1 le diagramme
(4.19) du paragraphe 4.3 s'écrit :

ilet.v,. mvm det A Il{\pK. V(kj) .K(T)

(4.26)

det%[Axl MVmn ® det^^ H^W(K. T(A'))ri s-

La première ligne de ce diagramme est induite par l'application

l'Apra i 1 1'wr.A 0 Expv.ù ë ii)k » n i

et le théorème 4.2 (la conjecture §<pp(V) de Perrin-Riou) entraîne que l'image de

detA £>(T (k)) <g> detA Klh/f, T (k)) dans ,K(Y) s'écrit sous la forme

PJ.f, v £ aiAi,
j=1 ;=o

où a; g QP et A; Z/;||Fi]]<5,:. Pour conclure, il suffit de montrer que a* G Z*

pour i — 2. Le (2) de la proposition 3.3 montre que la deuxième ligne
de (4.26) est induite par (—l)A'ß|. k((a <g> q>)~1 o (dk <g> ^.j) et on en déduit que

l'image de det%[AÀq £>(T(k)) rfCSidet^1^] H^w(K. T(k))ri dans QP[A^] est égale

à Yt=i(k ~
V EfZo «8tZp.

D'autre part, comme le ^-module filtré Dcnsf V) est admissible, on a [M :

q>(M)\ e( en comparant aVec la formule du corollaire 4.21, on obtient

que aj g Z* et la conjecture (jw(KK, V) est démontrée.
Le théorème 4.3 et la proposition 2.21 montrent finalement que la conjecture

fj;p( L/K.V) est vraie pour toute extension L/K contenue dans K^.
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Corollaire 4.23. Si V est une représentation cristalline de Gk, alors :

(1) la conjecture Cpp(L, V) est vraie pour toute extension L/K contenue dans Qpb.

(2) la conjecture Cpp(K, V(t])) est vraie pour tout caractère de Dirichlet q de F.

Preuve. C'est une conséquence immédiate de la proposition 2.21.
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