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Théorie d’Iwasawa des représentations cristallines 11

Denis Benois et Laurent Berger

Résumé. Soit K une extension finie non-ramifiée de @, et V une représentation cristalline
de Gal(@p /K). Dans cet article, on montre la conjecture Cgp(L, V) pour L C Q;b et sa
version équivariante Cpp(L/K, V) pour L C |J;7 | K (¢pr). Les principaux ingrédients sont la
conjecture 3z, (V) sur I'intégralité de I’exponentielle de Perrin-Riou, que nous démontrons en
utilisant la théorie des (¢, I')-modules, et des techniques de descente en théorie d’Iwasawa pour
montrer que 8z, (V) implique Crp(L/K, V).

Abstract. Let K be a finite unramified extension of 2, and let V be a crystalline representation
of Gal(@P /K). In this article, we give a proof of the Crp(L, V) conjecture for L. C Q;b as well

as a proof of its equivariant version Cyp(L/K, V) for L C U;il K (¢,n). The main ingredients
are the 8z, (V) conjecture about the integrality of Perrin-Riou’s exponential, which we prove
using the theory of (¢, I'}-modules, and Iwasawa-theoretic descent techniques used to show that
6z, (V) implies Cpp(L/K, V).
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Introduction

Soient p un nombre premier impair, K une extension finie de @, et V une repré-
sentation potenticllement semi-stable de G g = Gal (@p /K). Fontaine et Perrin-Riou
ont formulé une conjecture qu’ils ont appelée Cep(K, V), conjecture qui entraine la
compatibilité de la conjecture de Bloch et Kato sur les valeurs spéciales des fonc-
tions L avec I’équation fonctionnelle. 1.’ objet de ce texte est de montrer la conjecture
Cgrp(L, V) pour toute extension finie L de K telle que L C ng, quand K est non-
ramifié sur @@, et V estune représentation cristalline de G g ainsi que, sous les mémes
hypothéses, la version équivariante Cgp(L /K, V') de cette conjecture pour toute ex-
tension finie L de K contenue dans Koo = (Jro; K(¢pr). Comme ingrédient de
la démonstration, on montre aussi la conjecture dz,(V) de Perrin-Riou, que nous
appelons Crw (Ko /K, V') en raison de son lien avec la théorie d’Iwasawa de V.

Rappelons tout d’abord la conjecture Cpp(L/K, V). Pour cela, on se donne une
extension abélienne finie L/ K de groupe de Galois G = Gal(L /K), une représenta-
tion potentiellement semi-stable V de Gk et un réseau 1" de V stable sous I’action
de Gg. On définit 1a droite d’Euler—Poincaré de V en posant :

App(L/K, V) = det@p[g] RI'(L, V) ® det@p[g](lndL/@p V).

On sait que RI'(L, T') est un complexe parfait de Z, [ G]-modules et que I'image de
App(L/K,T) = detzp[(;] RI'(L, T) ® detzp[G](IndL/QpT) dans Agp(L/K, V) ne
dépend pas du choix de 7.

On note DE. (V), Dpy (V) et DX (V) les modules associés a la restriction de V
A G, par la théorie de Fontaine, et tv (L) = D& (V)/Fil’ DL, (V) I'espace tangent
de V sur L. La suite exacte :

0— H%L,V)—> DL (V) > DL (Vy®tv(L) - HY(L,V) >

cris CI1S

— DL (VY @) 4y (L) - DL (VF(1)* — H*(L, V) > 0,

Cris cris
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qui provient de la suite exacte fondamentale (cf. §1.4) et Iisomorphisme £7,. 0 (L) ~
Fil' D%, (V) donnent un isomorphisme canonique :

detg, () RI(L, V) — detg) g Di (V).

La théorie des constantes locales permet d’autre part de définir un ¢lément
e(L/K, V) € Qu({p=)[G] associ€ a 'action de Gk sur Dy (V). L'isomorphisme
de comparaison :

Bar ®q, Indy,q, (V) = Bar ®q, DgR(V)’
normalisé pare(L/K, V) etparle facteur I' habituel I'* (V), fournit un isomorphisme :
det@;[(}] D(%R(V) 03] det@p [G] IndL/@p(V) £ QP[G] V.L/K s

ou Qy[Glv,r/k estun certain Qp[G]-module libre de rang 1 qui contient un sous-
Zy[Gl-module inversible canonique Z,[Gly r,x (cf. définition 2.14). En compo-
sant ces isomorphismes, on obtient une trivialisation canonique de la droite d’Euler—
Poincaré :

dvp/k: App(L/K, V) = Q,Gly /.

Dans son manuscrit non-publié [Kat93b], Kato a propos€ 1a conjecture suivante (qu’il
appelle « local e-conjecture ») :

Conjecture Cgp(L/K, V). Si V est une représentation potentiellement semi-stable
et si L/K est une extension abélienne finie, alors Uapplication 8y p,x envoie
App(L/K,T) sur Zp|Glv,L/k.

C’est la conjecture 2.19 de cet article. S1 L. = K, alors on retrouve la conjecture
Cgp(K, V) de Fontaine et Perrin-Riou que I’on peut d’ailleurs reformuler en termes
de nombres de Tamagawa (cf. conjecture 2.20).

Rappelons a présent la conjecture Cryw(Kso/K, V). On suppose pour cela que
K est non-ramifié, on fixe une suite compatible de racines primitives p”-iémes de
Punité e = ({pn)nzoetpourn = 1, onpose K, = K(pr) ainsi que K = U”21 K.
Soient Hx = Gal(@p/Koo), I' = Gal(Kx/K) et I', = Gal(K~/K;) ce qui fait
que I' = Ag x I'1 ou Ag est le sous-groupe de torsion de I'. Soit A 1’algebre
des séries formelles f(X) € Q,[[X]] qui convergent sur le disque unité ouvert et
HI') ={f(rn =D | nn elyetf e . Onpose A = Zy[[I']], H(T') =
Qp[Ax1®q, H(I'1) et K(I") est "anneau total des fractions de #(17). On définit la
cohomologie d’Iwasawa d’une représentation V en posant ;

Hy (K. T)= lim  H'(KyT),

COLKy /K, 1
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et HL (K. V) =Q, ®z, H. (K. T).
Supposons a présent que V est cristalline. Dans [Per94], Perrin-Riou a construit
une famille d’applications :

Expl,: DV)IAY — #(T) @a H (K, V)/VIE,

qui interpolent les exponentielles de Bloch et Kato. Plus précisement, pour tout /7 > 1
vérifiant Fil‘hDdR( V) = Dgr(V), on a un diagramme commutatif :

EXpiih q o
D(V)A=Y H () @a HL (K, V)/VHE
E;Jll lprT,n
(h=Dlexpy g,
DX (v) P HY(K,. V)/H\(T,, V).

Lei, D(V) estisomorphe a A®z, Deris(V) etles applications A et E“{,n sont explicites,
mais leur définition est un peu technique pour cette introduction (cf. paragraphe 3.1).
Cette construction joue un role important dans la théorie des fonctions L p-adiques
(cf. [Per95] et [Col99b]). Posons maintenant :

Alw(Koo/K, T) = dety RI'iw (K, T) @ detp (Indg /0, T),

et Aw(Koo/K, V) = Q) ®z, Aw(KcK, T). Onpose £; = j —log y1/log x (y1)
et on définit un facteur I par la formule :

Tp(V) = ] e-pytimee T e,
j>—h

Le déterminant de Exp5, ;, normalisé par I'; (V) ~! ne dépend alors pas de k, et la
loi de réciprocité de Perrin-Riou entraine qu’il induit un isomorphisme canonique :

8V Koo/K - Alw(Keo/K, V) = Qp ®z, Av k. /K.

ou Ay k. sk estun certain A-module libre de rang 1 (cf. le paragraphe 4.1). Perrin-
Riou a propos¢ la conjecture suivante (appelée 8z, (V) dans [Per94] et [Per95]) rela-
tivement au déterminant de Expy, .

Conjecture Ciw(Koo/ K, V). Si V est une représentation cristalline de Gg, alors
l'application dy g sk envoie Ay (Koo /K, T) sur Av k. /K.

Le résultat principal de cet article est le suivant :

ThéoremeA. Si K est une extension non-ramifiée de Q, et si V est une représentation
cristalline de G, alors :
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(1) la conjecture Cro (Ko /K, V) estvraie;

(2) la conjecture Cgp(L/K, V) est vraie pour toute extension finie L. de K contenue
dans K .

En udalisant les propriéiés fonctorielles de la conjecture Cgp(L /K, V), on en
déduit le corollaire suivant :

Corollaire B. Si K estune extension non-ramifiée de Q, et si V est une représentation
cristalline de G, alors :

(1) la conjecture Cgp(L, V) estvraie pour toute extension L /K contenue dans Qb ;

(2) la conjecture Cpp(K, V(n)) est vraie pour tout caractere de Dirichlet n de I'.

Le théoréme A et le corollaire B sont démontrés a la fin de cet article (cf. le
théoreme 4.22 et le corollaire 4.23). Disons quelques mots du plan de 'article. Les
chapitres 1 et 2 sont consacrés a des rappels, qui aboutissent a1’énoncé de 1a conjecture
Cep(L/K, V). Les chapitres 3 et 4 sont le coeur technique de I’article. On commence
par y rappeler la construction de I'exponentielle de Perrin-Riou, puis on y énonce
la conjecture Crw(K~/K, V). Aprés cela on montre dans les paragraphes §84.2,
4.3, en utilisant des techniques de descente en théorie d’Iwasawa, que la conjecture
Crw(K~ /K, V) estéquivalente a la conjecture Cpp( K, /K, V) pourtoutrn > 1. Enfin
dans le §4.4 on démontre la conjecture Cry (K~ /K, V).

Les mémes arguments, avec un peu plus de calculs, permettent de démontrer la
conjecture Cpp(L/K, V) pour toute extension L /K contenue dans Q;b. Cette petite
généralisation est importante pour la version équivariante des conjectures de Bloch
et Kato ; nous en laissons les détails au lecteur.

Pour terminer cette introduction, remarquons que dans le cas ou V est ordinaire,
ces résultats étaient déja connus (voir [Per94], [BNO2], [BF04]).

Remerciements. Nous remercions Pierre Colmez pour avoir atliré notre atiention
sur ce probleme et nous avoir encouragés au long de notre travail. Nous remercions
aussi le rapporteur pour sa lecture minutieuse du texte qui nous a permis de beaucoup
I"améliorer.

1. Représentations potentiellement semi-stables

Dans tout cet article, le corps K est une extension finie de @, (dans les chapitres 3
et 4, on suppose qu’elle est non-ramifiée). L'anneau des entiers de K est noté Og
et son corps résiduel kg est de cardinal gx. On fixe une fois pour toutes une suite
compatible de racines primitives p"-iémes de I'unité & = ({yn), >0 etpourn > 1, on
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pose K,, = K({,n) ainsi que Ko, = U@l K. Lanotation K désigne le sous-corps
maximal non-ramifié de K.
On pose :

Gk =Gal(Q,/K), Hg =Gal(Q,/Kw),
Iy =Gal(Koo/Ky), Gy = Gal(K,/K),

et A = Zp[[I']] estI’algébre d’Iwasawa de I'. Profitons-en pour remarquer que le ca-
racire cyclotomique x envoie I' dans Z;; et que cette application est un isomorphisme
si K est non-ramifié sur Q.

[’objet de ce chapitre est de donner quelques rappels, sur la théorie de Hodge
p-adique, la théorie des (¢, I')-modules, la cohomologie galoisienne et 1’exponen-
tielle de Bloch—Kato.

1.1. Théorie de Hodge p-adique. Dans ce paragraphe, on rappelle quelques unes
des constructions de Fontaine (voir [Fon94a], [Fon94b]) qui sont utilisées dans la
suite de cet article. On note o le Frobenius arithmétique absolu agissant sur Q3.
Sotent B s, By et Byr les anneaux de périodes p-adiques construits par Fontaine
(voir [Fon94a] par exemple). Le corps Bgr = B(J{R[l /t] est une Q,-algebre qui
contient @p etqui est munie d’une action de G g ainsi que d’une filtration décroissante
exhaustive et séparée par des Fil' B = tiB:{R. Remarquons que 1’uniformisante
= log|e] dépend du choix de & :A(gpn)n;o que I'on a fait ci-dessus. [anneau
B est une Qp-algebre qui contient Q7 et qui est munie d’une action de G ainsi
que dun endomorphisme ¢ commutant a I’action de G g et o-semi-lin€aire et d’un
opérateur de monodromie N: By — Bg qui commute a ’action de G et vérifie
N o = pp o N.Enfin, B, = B?{ZO. On a donc Bis C By et de plus on a une
injection Q@,, ®qr By — Bar.
Pour toute représentation p-adique V de G g, onpose D (V) = (Bar®q, V)Ck

ce qui fait que D dR(V) estun K -espace vectoriel filtré de dlmensmn finie. S’iln’y a
pas de confusion possible quant au corps K, on écrit plus simplement Dgg (V). De
maniere analogue on pose :

cns(v) (Bcrjs ®Qp V)GK et Dpst(V> — h_r>n(Bst ®Qp V)GL,
L/K
ou L parcourt I’ensemble des extensions finies de K, ce qui fait de Dgls(V) un Ko-
espace vectoriel muni d’une action o -semi-linéaire de ¢ etde Dpe (V) un Kj*-espace
vectoriel muni des opérateurs ¢ et N vérifiants N o ¢ = pp o N. Comme ci-dessus,
on €crit D4i5(V) s’il n’y a pas de confusion possible. On a :

dimg, D (V) < d1meDpst(V) d1mKDdR(V) dimg, V.

CrlS
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On dit que la représentation V est cristalline (resp. potentiellement semi-stable, resp.
de de Rham) si dimg, Dgis(V) = dimg, V (resp. si dingr Dps (V) = dimg, V,
resp. si dimg Dj (V) = dimg, V).

Si V est une représentation de de Rham, on pose :

hi (V) = dimg (Fil' DX, (V)/Fil' 1 DX (vy).

La décomposition de Hodge-Tate de V s’écrit alors C, ®q, V = B,z Cp (—i) (")

ol C,, estle complété p-adique de @p. Les opposés des entiers i tels que /;(V) # 0
sont les poids de Hodge-Tate de V. On pose tg(V) = >, ihi(V).

1.2. Modules de Wach et (¢, I')-modules. Soit K /Q, une extension finie que I’on
suppose ici non-ramifiée. On note ET = 1(111((9@7 / pO@p) I’anneau construit par
Fontaine (voir [Fon91] par exemple, cet anneau s’y appelle R), E = Frac(E™) son
corps des fractions et W(E) I’anneau des vecteurs de Witt a coefficients dans F. On
pose X = [¢] — 1, avec & = ({pn)n>0, A} = @[ X]] et on note Ag le complété
p-adique de A} [1/X]. Les anneaux A} et Ag sont munis d’un Frobenius ¢ et d’une
action de I' = Gal(K4/K), donnés par les formules ¢(X) = (1 + X)F — 1 et
y(X)=Q+X)XY) —1poury e, ouyx: ' — Z,, estle caractere cyclotomique.
Soit B le complét€ p-adique de ’extension maximale non-ramifiée du corps Bg =
Qp ®z, Ak dans W(E)[1/p]. Onpose A = B N W(E), BT =BnNW(EN[1/p]
et AT = AN W(E™T). Tous ces anneaux sont munis d’une action de G et d’un
Frobenius ¢. Enfin, ona Ax = AZK,

Un (¢, I')-module est un module libre de rang fini sur Ax muni d’un Frobenius
semi-lindaire ¢ et d'une action continue et semi-lin¢aire de I' commutant avec .
Dans [Fon91], Fontaine a défini un foncteur :

D: T D(T) = (A®y, Tk,

qui fournit une équivalence entre la catégorie des Z,-représentations de Gg et la
catégorie des (¢, I')-modules étales. Le foncteur :

M > (A ®4, M)*=1

est un quasi-inverse de D. De méme, le foncteur D: V — (B ®q, V)HK donne une
dquivalence entre la catégorie des représentations p-adiques de Gk et la catégorie
des (¢, I')-modules €tales sur Bx = Qp ®z, Ak.

Si V est une représentation cristalline et 7" un réseau de V stable sous I’action
de G, alors un résultat de Colmez [Col99a] dit qu’il existe une base de D(T') dans
laquelle les matrices de ¢ et de y € I sont a coefficients dans A; Plus précisement,
on a le résultat suivant (cf. 1a proposition II.1.1 et le théoréme I11.3.1 de [Ber04]) :
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Proposition 1.1. Si V est une représentation cristalline dont les opposés des poids
de Hodge—Tate sont O = r1 < rp < --- < rg = h, alors il existe un unique sous
Af-module N(T) de D¥(T) = (A" ®z, T)YK, stable par ¢ et qui satisfait les
conditions suivantes .

(1) N(T) est un A}-nwdule libre de rang d = dim(V) et contient une base de
D(T) sur Ag ;

(2) Daction de 1" préserve N (T') et elle est triviale sur N(T')/ XN(T);
(3) X"DH(T) c N(T).

De plus, ona q"N(T) C ¢*N(T), ott g = ¢(X)/X et 9*N(T) est le A% -module
engendré par o(N(T)).

On pose alors N(V) = B ® 4= N(T) ou By, = Q, ®z, A et cette définition
ne dépend pas du choix de T.

Soit B:i“g’ & Uensemble des séries formelles f(X) = Zi?io apX*, avec ap € K et
telles que f(X) converge sur le disque unit€ ouvert {x € C, | |x[, < 1}. L’anneau
B;i“g, x estde Bézout [Laz62] et de plus il admet la théorie des diviseurs ¢lémentaires ;
il est aussi muni d’actions de ¢ et de I" et on a un plongement ¢ =" : B;fg’ r <>
K, [[t]] € B, quienvoie X sur &y exp (t/p™) — 1.

Proposition 1.2. Si V est une représentation cristalline dont les opposés des poids

de Hodge-Tate sont 0 = ry <y < -+ <rg = h, alors Dais(V) = (B, ¢ 4t
N(TH et :

+ . pt , AN AA
[Brig,K ®AE N(T) . Brjg,[{ KK DCHS(V)] = Y T Y )

Preuve. Voir [BerO4, proposition [11.4]. O

1.3. Cohomologie galoisienne. Rappelons maintenant comment on peut calculer la
cohomologie galoisienne des représentations p-adiques a partir des (¢, I')-modules.
On suppose toujours que K /Q,, estnon-ramifiée, onpose I', = Gal(K~/K,,), on fixe

n—1
un générateur topologique y1 de 'y etonpose v, = ylp .S1 7T estune représentation
Zp-adique de Gk, onnote Cy o, (K, T') le complexe :

0 DT 5 Dye DTS DT - 0,

ou les applications f et g sont définies par f (x) = ((¢ — x, (yy, —Dx)etg(y, z) =
(va — Dy —(p — Dz |

Dans [Her98], Herr a montré que les groupes de cohomologie H'(C,, ,, (Kn. T))
s’identifient canoniquement aux groupes de cohomologie galoisienne H'(K,, T)
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(voir [Ben00, proposition 1.3.2] ou bien [CC99, proposition 1.4.1] ou encore [Ber(3,
proposition 1.8] pour une description explicite de cet isomorphisme quand i = 1).
Enfin, on peut aussi retrouver la cohomologie d’Twasawa :

H (K, T)= lim HI(K, T),

COTK, /K, 4

en utilisant les (¢, I')-modules. Pour cela, on utilise 'opérateur v : B — B qui est
défini par la formule :

1
Y(x) = ;qo—l(TrB/go(m(x)).

[ opérateur ¢ commute a 'action de Gg et on a ¥ o ¢ = 1d. La cohomologie du
complexe :

pry L p

s’identifie canoniquement a la cohomologie d’Iwasawa de 7T, c’est-a-dire que
HIIW(K, Ty ~ D(TY"=! et que HIZW(K, Ty =~ D(T)/(fr — 1) (voir [CC99, §I1.3]).
Donnons une description explicite du premier isomorphisme. Siw € D(T)¥=1, alors
(¢ — D € D(T)"=" et comme v, — 1 est inversible sur D(T)¥=0 (cf. [Her98] ou
[CC99, proposition [.5.1]), 1l existe x, € D(T) vérifiant (v, — 1)x, = (¢ — D)x. Les
cl(lxn, «) € H! (Cyp,y, (Ky, T)) forment alors un systeme compatible d’éléments de
H (K,,T).

1.4. L’exponentielle de Bloch—-Kato. Dans cette section, K désigne une extension
finie quelconque de ©Q@,. On note K¢ la sous-extension non ramifiée maximale de
K. Soit V une représentation de de Rham de Gg. Bloch et Kato ont défini (voir
[BK90, §4]) la partie exponentielle (resp. parties finie et géométrique) de H (K, V)
en posant :

HY K, V) =ker(H'(K,V) — H' (K, B’Z ®q, V),

H}(K.V) =ker(H' (K, V) - H'(K, Bais ®q, V),
HI(K,V)=ker(H'(K,V) > H'(K, Br ®g, V).

La dualité locale fournit un accouplement (-, -)y: HY(K, V) x HY(K, V*(1)) —
Qp pour lequel ’orthogonal de Hel(K, V) est Hgl(K, V*(1)) et celui de Hfl(K, V)

est i J} (K, V*(1)). L’espace tangent de V sur K est par définition le quotient :
v (K) = DX, (v)/Fil° DX, (V).

Les anneaux B et Bgr sont reliés par 'inclusion B C Bgr mais aussi et
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surtout par les suites exactes fondamentales :

0— Q, — B’~" % Bg/Fil’Bg — 0.

cris
p .
0— Qp — By — Buis © BdR/FﬂOBdR — 0,
ot @(x) = x mod Fil’Bgg et B(x) = (1 — ¢)x, x mod Fil’Bgg). En prenant les

produits tensoriels de ces suites par V et les invariants sous I’action de G g, on obtient
des suites exactes longues de cohomologie qui nous donnent les deux suites exactes :

0— HY%K,V) = Deis(V)*=! = 1y (K) = HN (K, V) -0, (1.1)

0 — HY%K,V) = Dgis(V) = Dgis(V) ® tv(K) — H}(K, Vy—>0. (1.2)

L’application de connexion expy g : tv(K) — H LK. V) dans la premicre suite
s’appelle I'exponentielle de Bloch et Kato. On définit I’exponenticlle duale
exp} x: HY(K, V) — Fil’Df (V) par la formule :

Tr /g, [GXPT/,K(X)a ylv = (x, expyxqy g V) v,

ou -, ly: D{fR(V) X D{fR(V*(l)) — K est la dualité canonique. On vérifie facile-
ment que ker(expy, ) = Hy (K, V).

Lemme 1.3. On a des isomorphismes canoniques :

exp . Dcris(v) :} HJ} (K’ V)
Ve (4 — ) Dais(V)  HNK, V)

* . Hglr(K9 V) g . (p:p_l
eva,g/f. m —F DCI‘IS(V)

Avant de montrer ce lemme, montrons un lemme technique qui est sans-doute
bien connu.

Lemme 1.4. Si W est un Ko-espace vectoriel de dimension finie muni d’un isomor-
phisme o-semi-linéaire @, alors Uapplication qui a tout f € Homg, (W, Ko)(p=1

associe Trg, ), (f) fournit un isomorphisme :

Homg, (W, K¢)*=! = Homg, (W/(1 — p)W, Q).
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Preyve. La forme bilinéaire «trace » de Ko x Ko dans @, qui a (x, y) associe
Trxy/q, (xy) induit un isomorphisme Ko >~ Homyg, (Ko, @p). On en déduit que
I’application :
Homg, (W, Ko) — Homg, (W, Qp)
S = Trky0,(f)

est un isomorphisme de Q,-espaces vectoriels. De plus, elle est compatible avec
I’action de ¢ car :

Trgo/0, (0f) () = Try 0, (@f (0 7'%) = Trry g, £ @ () = (p(Trky o, £))(X).

Comme Homg, (W, @,)*=! = Homg, (W/(1 — @)W, Q,), on en déduit le lemme.
O

Preuve du lemme 1.3. On remarque que la suite (1.1) s’injecte dans (1.2), d’ou on
obtient le premier isomorphisme. D’autre part, en utilisant la dualité locale et le
lemme 1.4, on obtient :

HIK, V) (H}<K, V*(l)))* . ( Daris(V*(1)

~ ~ ) 5 Degs(V)P=P
HNK, V) HIK, V(1)) (1 — ) Deris(VH(1))

et le lemme est démontré. O

On pose maintenant Ly (K, V) = detg, HYK, V)®q, det@; HJ}(K, V). Lasuite
exacte (1.2) fournit alors un isomorphisme canonique iy : Ly (K, V) = det@; ty(K).
Soit T un Zy-réseau de V stable sous I’actionde G g et soit wune base de detg, 1y (K).
On note HJ}(K, T') I'image inverse de H}(K, V) dans HY (K, T) et’on pose :

Li(K,T) = detz, H'(K, T) ®z, det;;) H} (K, T).

Lemme 1.5. On a des suites exactes :
HY K, V)

— e —>
H}(K, V)

— Dais(VF(1)* — H*(K, V) — 0,

Deis(V(N* @ f;’}*(l)(K)

HYK,V)
% _— T
HI(K, V)

= Dcris(v)
(1— p_1§0_1)Dcris(V)

0 — Fl’DX, (V)

— (VXY -0
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Preuve. 11 suffit de dualiser les suites exactes (1.1) et (1.2) en remplacant V' par
V*(1) et d’utiliser la dualité locale et les isomorphismes 77, (1)(K ) o~ FilODfR(V) et
(Dcris(V*(l))(pzl)* — Dcris(V)/(l - p_lqg_l)l)cris(v)- O

Définition 1.6. On appelle nombre de Tamagawa, et on note Tam(}{’w(T), I’unique

puissance de p telle que iv(Ls (K, T)) = ZpTam?{,w(T)a)_l, ot ! est la base
duale de w (voir [BK90], [Per95]).

Ces nombres interviennent dans la formulation de la conjecture Cpp(K, V') (con-
jecture 2.20 ci-dessous).

2. Déterminants et constantes locales

[’ objet de ce chapitre est d’énoncer la conjecture Cpp(L/K, V). On commence par
des rappels sur la théorie des déterminants généralisés, puis on passe en revue la
construction des constantes locales, pour les représentations de Weil-Deligne tout
d’abord, et pour les représentations potentiellement semi-stables ensuite.

2.1. Déterminants généralisés. Dans le reste de cet article, nous avons besoin de
la construction de déterminants sur des anneaux tels que Z,[G] ou Qp[G], pour un
groupe abélien fini G, ou encore Zy[[X]] et Qp ®z, Zp[[X]]. Nous commengons
donc par quelques rappels, tirés de [KM76], [Del87], [BFO1], sur le formalisme tres
général des déterminants.

Soit A un anneau commutatif unitaire. On note M (A) la catégorie des A-modules
et P(A) la sous-catégorie de M(A) formée des modules projectifs de type fini.

On appelle catégorie de Picard une catégorie & dont toute fleche est un isomor-
phisme, munie d’un foncteur X: # x P — &P et d’'une contrainte d’associativité
pour X. On peut déduire de ces axiomes I’existence d’un objet unité 1, unique a iso-
morphisme pres. Tout objet X de & admetun inverse X ~! telque XXX~ ~ 15.0n
dit qu’une catégorie de Picard & est commutative si elle est munie d’une contrainte
de commutativité compatible a la contrainte d’associativité.

Soit (P(A), 1s) lacatégorie dontles objets sontceux de P (A) etdont les fleches sont
les isomorphismes. On appelle foncteur déterminantun foncteurdet: (P(A), is) — P
vérifiant les propriét€s suivantes :

(1) Pour toute suite exacte 0 — P’ — P — P” — 0, on a un isomorphisme
fonctoriel : det(P) =~ det(P”") X det(P").

(2) Pour toute suite exacte 0 — P s, Q — 0, I'application det(«) coincide avec
le composé :
det(P) >~ det(0) X det(Q) ~= det(Q),
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et de méme det(«) ! coincide avec le composé :

det( Q) ~ det( P) K det(0) ~ det(P).

B)SiP=PoPetsi:0>P -P—->P' —-0et0—-P"—>P—->P -0
sont les suites exactes naturelles, alors le diagramme :

det(P)

TN

det(P") K det(P") det(P”) W det(P')

est commutatif.

(4) Pour tout module projectif P muni d’une filtration P > P" > P” > {0}, le
diagramme :

det(P) det(P") M det(P/P’)

| |

det(P”y R det(P/P") — det(P") R det(P'/ P") & det(P/ P")

est commutatif.

Sott K(A) = K(M(A)) la catégorie des complexes de A-modules. On dit qu'un
morphisme de complexes f: M®* — N°® est un quasi-isomorphisme si pour tout ¢,
I’application f{ {(M*) — HI(N*) estunisomorphisme. La catégorie dérivée D(A) =
D(K(A)) estlalocalisation de K (A) par rapport aux quasi-isomorphismes.

On dit qu'un objet M*® de D(A) est parfait s’il existe un complexe borné de A
modules projectifs de type fini: P* =(--+ - P.x1 - P, - P;_; — ---) quasi-
isomorphe a M*. Soit DP(A) la sous-catégorie de D(A) formée des objets parfaits.
Pour tout objet M* de DP(A), on fixe un complexe P* vérifiant les conditions ci-
dessus et ’on pose :

det(M*) = Wiz det(P) ",

Onobtient ainsiune extension du foncteur det, unique a équivalence pres, aun foncteur
(encore noté det) :
det: (DP(A), qis) — P.

Siles modules de cohomologie H' (M*) sont parfaits en toutes dimensions, on a alors
un isomorphisme fonctoriel :

det(M*) ~ &, oz det( H (M*))~1)' .
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Dans [Del87], Deligne construit une catégorie de Picard commutative V(A) etun
foncteur déterminant universel [-]14: (P(A), 1) — V(A) tel que tout foncteur déter-
minant det s’écrit comme le composé de [-]4 avec un foncteur addiaf V(A) — P.
On en déduit en particulier un foncteur [-]4 : (DP(A), gis) — V(A). La proposition
ci-dessous rassemble quelques propriéiés du foncteur [-]4.

Proposition 2.1. Si f: A — B est un morphisme d’anneaux, alors le foncteur « ex-
tension des scalaires » f*M = B®a M induit des foncteurs L f*: DP(A) — DP(B)
et f*: V(A) — V(B), etles foncteurs[-1goL f* et f*o[-1a: (DP(A), qis) — V(B)
sont quasi-isomorphes.

Si on suppose de plus que B est projectif de type fini sur A, alors la restriction
des scalaires induit des foncteurs fo: DP(B) — DP(A) et fi: V(B) — V(A), et
les foncteurs firo-1p et[-]a o fu: (DP(B), qis) — V(A) sont quasi-isomorphes.

Preuve. Voir [Del87, section 4.11]. a

On note £ (A) la catégorie des A-modules inversibles gradués. Un objet de &2 (A)
s’identifie a une paire (X, «) ou X est un A-module inversible et «: Spec(A) — Z
est une fonction localement constante. Une fleche f: (X, ) — (Y, B) n'existe que
st = B, auquel cas ¢’est un isomorphisme. On munit & (A) d’un produit tensoriel
en posant

(X, )@ (Y. p)=(X®a Y. e+ p).

Munie¢ de la contrainte de commutativité donnée par la régle de Koszul .

U: X®uY > Y R4 X
vx@y) =(—D?yenx,

la catégorie P (A) est alors une catégorie de Picard commutative. On identifie I'opposé
(X, o)~ d’un élément (X, @) 2 (X*, —) ol X* = Homu (X, A).

Si P est un A-module projectif de type fini, alors le rang de P est une fonction
localement constante 1gp: Spec(A) — Z et on définit le déterminant de Knudsen—
Mumford dets ( P) en posant :

deta(P) = (A" P,1gp) € Ob(P(A)).

Remarquons que la propriéié universelle du foncteur [ - |4 donne un foncteur additif
V(A) — P(A) qui n’est pas, en général, une équivalence de catégories.

Dans cet article nous n’utilisons que les déterminants sur des produits finis d’an-
neaux locaux. Dans ce cas les catégories V(A) et P (A) sont équivalentes par [Del87,
section 4.13] et la construction de Knudsen—Mumford fournit donc un foncteur dé-
terminant universel. Les anneaux typiques auquels nous allons appliquer la théorie
précedente sont :
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(1) A =Qu[G]oubien A = Z,[G], ou G est un groupe abélien fini.
(2) A =7Zp[[X]l oubien A = Q) ®z, Zp[[X]].

Proposition 2.2, Si A est un anneau local régulier de dimension n, alors :

(1) Tout A-module de type fini M admet une résolution projective P*: 0 — P, —
= Py —> M — Oavecm < n.

(2) Si Q(A) est Uanneau fotal des fractions de A, et si M est un A-module de
torsion, alors le produit tensoriel de P® par Q(A) donne une suite exacte ) —
QA)®A Py — - = Q(A)®4 Py — 0. Onendéduit une injection canonique
ia: deta(M) — detgay(Q(A) ®@a P*) = Q(A) et I'image de deta (M) dans
Q(A) ne dépend pas du choix de P* et coincide avec 'idéal fractionnaire de M.

Preuve. La premicre assertion est un théoreéme classique de Serre (voir par exemple
[Mat92, §19]). Pour la deuxieme voir [KM76, théoreme 3]. O

Exemple 2.3. En particulier, considérons I’'anneau A = Z, [[ X ]] qui est local régulier
de dimension 2 et soit M un A-module de type fini et de torsion. Il existe alors une
suite exacte :

0 — (fini) > M - P! _; A/fiA — (fini) — 0,

ou les f; sont des polyndmes distingués. On a alors det (M) = carqg(M " 1A on
cara (M) = []i_; /i est le polyndme caractéristique de M.

Remarque 2.4. 1’approche de Deligne a €été généralisée aux anncaux non-com-
mutatifs par Burns et Flach, voir [BFO1].

Pour terminer, rappelons deux lemmes purement techniques qui nous serviront
dans la suite. Le lemme suivant sera utilisé dans la preuve du lemme 2.16.

Lemme 2.5. Soient K /F une extension cyclique de degré f et o un générateur de
Gal(K/F). Soient W un K -espace vectoriel de dimension finie d et: W — W un
isomorphisme o-semi-linéaire. On a alors :

detp(e | Wy = (=Y =D detg (o | W).

Preuve. Soitwy, ..., ws une base de W sur K et soit «™: W — W 1’application X -
linéaire définie par «*(w;) = w(w;) pourtouti =1, ...,d. Si A, estla matrice de o

arey

d’ou:

detK(af | W) = NK/F(det A) = NK/F(detK(a* | W) = detF(Od* | W).
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D’autre part, si ¢ est un générateur de K sur Flo ], alors {O’j(C)wi}()gjgf_l’lgigd
est une base de W sur F. La formule :

a(o? (Ywi) = o/ T e)a(w;) = o (a7 ()wy)

montre que la matrice de « dans cette base s’obtient en permutant les colonnes de la
matrice de «*. On en déduit facilement que :

detp(a | W) = (=DY =V detp(a* | W)
et donc que :
detp (@ | W) = (=D "V detg (! | W),
ce qui montre le lemme. O

Soient maintenant K un corps de caractéristique 0, G un groupe abélien fini et
M un K[G]-module. On note X(G) le groupe des caracteres de G et on fixe une
extension E de K contenant les valeurs de tous les éléments de X (G). Sin € X(G),
on note ¢, I’'idempotent habituel :

1
ey = H—G;n—l@g.

Soit M = E®@g M etsoit My, = e,(Mg) = {m € Mg | glm) = n(g)m pour tout
g € G}. On a alors une décomposition canonique :

Mg = D, cxic) My
X = @neX(G) en(x).

Si M est libre de rang fini » sur K[G] et s1 {m;};=1,.. r est une base de M, alors
onpose m = A;_m; € detgjg) M et my,; = AJ_ ey(m;). On a alors my, = e, (m) ce
qui nous donne un isomorphisme :

(detE[G] JME),7 ~ dﬁtE(Mn).

Le lemme ci-dessous est alors évident.

Lemme 2.6. Soient M et N deux K|G|-modules libres de rang fini et soit :
1 detkio) M @k detg|g N — KIG]

un homomorphisme de K[Gl-modules. Pour tous m € detgg) M, n € detgg) N,
on a alors :

fon@i = Y fyliy @iy ey,

neX(G)

ol f: detg My, ® detgl N, — E désigne la n-composante de f.
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2.2. Déterminants de la cohomologie galoisienne. Soit K une extension finie
de Qp. On note M(Gg) la catégorie des Zj,-représentations de Gg, ¢’est-a-dire
la catégorie des Z,-modules (pas nécessairement de type fin1) munis d’une action
linéaire et continue de Gg. Si L est une extension finie de K on a les foncteurs ha-
bituels : Resy x: M(Gg) — M(Gp)etIndr,x: M(Gr) — M(Gg), ce dernier
foncteur €tant donné par la formule Indp/x M = Zp[G k]| ®z,(6,1 M.

Supposons maintenant L abélien sur K et posons G = Gal(L/K). On note
1 Zp| G| — Zp|G]Vinvolution g +— ¢ L.SiM e M(Gg),onnote (pour simplifier)
Indy kM le Z,[G g -module Indy /g (Resy /x M ). Le module Indy, gk M a alors une
structure naturelle de Z [ G |-module donnée par la formule g (o ®@m) = oce 1 @g(m),
ou g désigne I'image de g € G dans G, et on a des isomorphismes canoniques :

MOt ~ (Indg x M)XK, me> Y g ®m:
geG
Indz k(M) ~ (Z,[G] ®z, M)', 0 @m > & ®o(m).

Soit M(G )™ la sous-catégorie de M (G g) dont les objets sont les limites in-
ductives de Z,[Gg]-modules de type fini sur Z,. Pour tout M € M(Gg)™, on
note C*(Gg, Indy x M) le complexe des cochaines continues de G g a valeurs dans
Ind; x (M). On obtient ainsi un foncteur de M(Gg)™ dans D(Z,[G]) qui & M
associe C*(Gg, Indy, x M) et qui induit un foncteur exact :

RI'(L.): D(M(Gg)"™) — D(Zy[G)).
Le lemme de Shapiro donne un isomorphisme R'T'(L, M) ~ H'(L, M).

Proposition 2.7. Si L/K est une extension abélienne finie et si M est un Zp| Gk |-
module qui est de type fini sur Z,, alors :

(1) RI'(L, M) € DP(Zp[G]);
(2) sideplus M estde Z-torsion, alors detz ;¢ RI'(L, M) = detipl[G] (Indy;q,M)
dans Q(Zy|G]).

Preuve. Voir [Kat93c] et [BF96]. O

Pour terminer ce paragraphe, faisons le lien entre les constructions ci-dessus et
la théorie d’Iwasawa des représentations p-adiques. Rappelons que 1’on a fixé un
systeme compatible ({y#), >0 de racines primitives p”-iemes de 'unité et posé K, =
K(¢pn) et Koo = (J,»1 K. Soient G, = Gal(K,/K), Hx = Gal(@p/Koo), I' =
Gal(K/K), 'y = Gal(K/K,) etenfin A = Z,[[I']] I’algebre d’Iwasawa de I'.

Si T est une Zj,-représentation de G, alors le module induit Indg_/x (T') est
isomorphe a (A ®z, T)" eton pose RI'y (K, T) = RI'(K, Indg_ /& (T)). La propo-
sition suivante est un cas particulier d’un résultat de Nekovaf (voir [Nek(2, proposi-
tion 8.4.22]).
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Proposition 2.8. (1) On a des isomorphismes canoniques :
R T (K, T)0 ~ H] (K, T).
(2) Dans la carégorie D(Zp|Grl), on a un isomorphisme canonique .
Z,[Gul ®% RT1w(K, T) ~ RI(K,, T).
(3) On a une suite spectrale dégénérée :
EY = H'(Keo/K,, HL (K. T)) = HF YK, T),
qui donne lieu a des suites exactes .
0— H} (K, T)r, > H (K., T) - HT' (K, T)™ — 0.

Remarque 2.9. La proposition 2.8 donne une approche unifiée des isomorphismes
et suites exactes bien connus en théorie d’Iwasawa locale.

(1) Ona HY (K, T) = 0 ce qui fournit un isomorphisme :
HO(K,.. T) = Hy, (K. T)"™.
(2) Par la dualité locale, on a un isomorphisme
Hify (K. T) = HO(Koo, V¥(1)/T*(1))"

ou ” signifie le dual de Pontryagin. En particulier, lew(K , T') est un A-module
de type fini de torsion. Pour j = 2, la suite exacte (3) de la proposition 2.8 donne
un isomorphisme :

H2 (K. T)r, ~ H*(K,,T)

qui est le dual de I’isomorphisme évident :

HO (K, VR /T*(1)) = HO(K oo, VF(1)/T*(1))17,

(3) Comme le groupe I' est de dimension cohomologique 1, on a une suite exacte
« inflation - restriction » :

0 — HYy, (VH)/T*)HE) — HY (K, VF(1)/T*(1))
— HI(KOO, V*(l)/T*(l))Fﬂ — 0.

En dualisant cette suite exacte, on obtient une suite exacte (voir la proposi-
tion 3.2.1 de [Per94]) :

0— HL(K. Ty, — HY(K,,T)
— H'(T,, (VHL)/T*(1) )™ - 0.
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Comme :

HY (T HY (Koo, V¥ /TH)N" = HY (T, H' (Koo, VF(1)/T*(1))™)
~ HE (K, T)"™,

on obtient une suite exacte ;
0— HL(K,T)r, > H' (K,,T) - H. (K, T)!'" — 0,

qui coincide avec la suite (3) de la proposition 2.8 pour j = 1.
4) Si (V& =0, alors HZ, (K, T) est finictona :

sHE (K, T = HE (K, T, = tH (K, V¥(1)/T*(1)).

(5) Dans [Per92, §2], Perrin-Riou montre que Hllw(K , T) est un A-module de rang
[K : Q,]dim(V). L’application d’inflation :

(T, > H'(T,, THE) < H'(K,. T)
induit une injection :

THE ~ LiLnHl(F”, THxy < HE (K. T),
qui identific T7% avec la A-torsion de I (K, T).

2.3. Constantes locales des représentations de Weil-Deligne. [.’objet de ce pa-
ragraphe est de fournir des rappels sur la théorie des constantes locales, telle qu’elle
est développée dans [Del73], auquel nous renvoyons pour plus de détails. Le corps
K est toujours une extension finie de @,. On fixe une uniformisante 7 g de K et on
note | - |x la norme de K normalisée par |7g |k = q,}l ou g est le cardinal du corps
résiduel kg de K.

On note K™ I’extension maximale non-ramifiée de K et Frx le Frobenius géomé-
trique de K™. Le groupe de Weil Wi de K est par définition le sous-groupe de G
formé des g € G tels que la restriction de g 3 K™ soit une puissance entiére de
Frg. On a donc une suite exacte :

O—)IK—>WK1>Z—>O,

ou I"application v est définie par la formule w|gor = FrvK(w).

Soit E un corps de caractéristique O et contenant toutes les racines de 1’unité
d’ordre une puissance de p et d’ordre p — 1. On fixe une mesure de Haar pg sur K
et un caractere additif continu ¢ : K — E* (le corps E étant muni de la topologie
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discrete). Comme ¢ est continu, il est trivial sur un sous-groupe ouvert de K et 'on
définit son conducteur » () comme étant le plus grand entier » tel que r est trivial
sur 7" Ok.

La théorie de Langlands et Deligne (voir [Del73]) associe a toute représentation
E-linéaire V de Wk une constante (V, v, pg) vérifiant les propriétés suivantes :
(1) Si V est de dimension 1, alors e(V, i, pug) coincide avec la constante locale

« abélienne » définie par la théorie de Tate (dans [Tat67]). Plus précisement,
I’isomorphisme de réciprocité 0g: K~ — W?(b permet de voir V comime un
quasi-caractere n: K* — E”. On note a(n) le conducteur de n ¢t on fixe
¢ € Ok vérifiant vx (c) = a(n) + n(¥r). Si n est non-ramifié, alors on a :

n(c)
lclg Jog

8(377 ‘ﬁ,MK) = d,LLK,

et si i est ramifié, alors on a :

W ()dug — f 1~ ()W () d k.

1Ok

st ) = Y [

= Jwgm=n}

(2) Pour toute suite exacte de représentations 0 — V/ — V — V” — 0, ona
e(V, . ug) =e(V'. ¢, nug)e(V" i, pg).

(3) Pour touta € K>, onae(V, ¥, apg) = a"™Ve(V, ¢, ug) et sim, dénote la
fonction x > ax, alors e(V, o mg, pig) = det(V)(@)|al g™ Ve(V, ¢, uk).

(4) Si L estuneextension finiede K, alors onaune constante A(L /K, Yr, pi1, g ) €
E telle que pour toute représentation V de Wy, on ait :

e(Indy g (V), ¥, pg) = AML/K, ¥, e, )™ Ve(V, o Trp ks pir).

(5) Soientw;: K* — E* le quasi-caractére donné par la formule w;(a) = |alg et
1y la mesure duale de pix relativement & ¢». On a alors :

S(V’ lﬁ, MK)S(V* & w1, '7” om_q, Iu};{) =1.

(6) Pour une représentation non-ramifiée W, on a :
Ve W, ¢, ug) = d@t(W)(JTIa{(V)_I'dim(V)”(W))S(V, W, MK)dim W,

ou a(V) est le conducteur d’Artin de V.

Rappelons que 1’on a fixé un systéme compatible (£,n), ¢ de racines de 1”unité.
On note g 'unique caractere additif de Q,, vérifiant ro(1/p™) = {pn et on pose
Yk = o o Trgg,. On normalise la mesure (g en imposant ug(Og) = 1. Soit
enfin (-, g : K x K* — {£1} le symbole de Hilbert. Le lemme suivant est bien
connu des experts.
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Lemme 2.10. Si L/K est une extension finie, alors :

172 [K:0p)/2
ML/K g, pip, pg) = £(—1, dL/K)K/ ldrk|p e

o dy g estle discriminant de L/ K.

Preuve. Montrons d’abord que pour touta € K* ona:
det(Indz/kx[11)(a) = (a. dr/k )k -

Comme (a, dr k) = (Jdrx)’8' 9/ /drk, il suffit de montrer que I’application
de Kummer K* — H!(K, {#1}) envoie dy/x sur det(Indy k[1]). Soit Gg /G, =
{giGr |t =1,...,n}unedécompositionde G g enclassesde Gy . Le groupe G g agit
sur Gg /Gy ce qui fournit un homomorphisme p: Gx — 8. Soitg,: §; — {£1}
la signature. Si € L esttel que L = K (w), alors :

Vg = [ [(aile) —gj(e)),

i<j

et on voit que I'image de dy s dans H LK, {£1}) coincide avec ¢, o p. D autre part,
il résulte directement de la définitionde Indy /x [1] que &, 0 p = det(Indy ;g [1]),d’ou
la formule voulue.

Passons maintenant a la démonstration du lemme. Les formules (3) et (5), appli-
quées a la représentation réguliere Indy sk [1] donnent :

e(Indpx[1], ¥k, px)e(ndpx[11 @ w1, g om_1, pg) = |dK|;[L:K]'

Comme par ailleurs a(Indy /x [1]) = vk (dp k) (voir par exemple [Ser68, chapitre IV,
proposition 4]) et n(¥rgx) = vk (Dkq,), ona:

e(Indr/k[1] @ w1, Yk om_1, px)
= |dp|pdetIndy g [1D(—De(Indy g [11, Y&, pg).

K: . .
Onaldgl, = ldr ka2 dx K et det(indy x [11)(=1) = (1, dp/x )k, "ol :
1/2 [K:Qy]/2 _
s(Indzk[11, Uk, ) = (—1, dry) ldryly 21l
Comme e([1], ¥z, 1) = |dr |51, on en déduit le lemme. O

Remarque 2.11. Il est facile de voir que si L/K est une extension non-ramifiée de
degré f,alors AM(L/K, ¢, g, pg) = (=Y ~Dnt),
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Supposons maintenant que K est une extension non-ramifiée de Q, de degré f,
et notons X (Gy,) le groupe des caracteres de G, = Gal(K,/K) a valeurs dans E.
Rappelons que pour tout n € X(G,), on note e, I'idempotent habituel. On défimit
la somme de Gauss 7(n) en posant 7(n) = deGk n_l(g)g(gpk) = (G ren(Epr), ol
k = a(n) est le conducteur de 1.

Lemme 2.12. Pour tout caractére n € X(Gy), ona:
e(n, Y, px) = ()Y Dz (L.

Preyve. Pour simplifier les notations, on note z¢ la mesure de Haar sur Q. Comme
K /Qp est non-ramifiée, les groupes de Galois des extensions Q, (£pn)/Qp et K, /K
sont isomorphes et n peut tre vu comme la restriction Resg,q,7 d’un caractére

i Gal(Qp () /Qp) — E*. Comme A(K /Qp, o, ik pio) = 1, ona

e(n, ¥x, px) = e(Indgsq,n. Yo, po)e(Indg /o, [1]1 ® 7, Yo, o)
= (=Y Ve (i, o, o).

Si on suppose que n = a(n), alors I’application composée ng — Gal(Q;b /Qp) —
G, >~ (Z/p"Z)” envoie u € Z;j sur . mod p" et p sur 1, ce qui fait que :

el Yo. o) =p" Y poll+ prZy)iw ek
uely [14+p"Ly

= Y i =1m).

uely /1+p"Zy
Le cas général s’en déduit. O

On appelle représentation du groupe de Weil-Deligne un couple (p, N) formé
d’une représentation p: Wr — Autg(V) du groupe de Weil Wg et d’un endomor-
phisme nilpotent N : V — V vérifiant p(w) ™ Np(w) = ¢ ™ N (voir [Del73, §8]).
On pose alors :

e(V, yx, ng) = e(p, g, pg) det(—Frg | VIE/(VIE)N=0),

2.4. Constantes locales des représentations potentiellement semi-stables. Pour
plus de détails, voir [FP94, chapitre 1, §1.3]. On garde les notations et les conven-
tions des paragraphes précédents. En particulier, K est toujours une extension finie
de @, et K est son sous-corps maximal non-ramifié, dont le degré sur @Q, est

f = [Ko : Qp]. Rappelons que I'on a défini ci-dessus un caractere addiuf g a

Tr a
valeurs dans @y, (¢p) = U, -0 Qp(¢pn) en posant g (a/p™) = Can/Qp( ). On fixe

une extension abélienne finie L /K et on pose toujours G = Gal(L/K).
Le lemme suivant est laissé en exercice au lecteur.
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Lemme 2.13. Si L/K est une extension finie et si V est une représentation p-adique
de Gy, alors DX, (Indp x V) = DX, (V) et Dpg(Indp V) = Indy g Dpst (V).

Si V est une représentation potentiellement semi-stable de G, alors la repré-
sentation Ind; /g V >~ (Q,[G] ®q, V)" est bien-sir elle aussi potentiellement semi-
stable et D = Dy (Indy x V) est un Kj'[G]-module muni d’une action naturelle
Frg-semi-linéaire de Wg. On munit DD d’une action linéaire de Wi, p: W —
Autgrrg(D) en posant (p(w))(d) = wep! ™ (d) ot I"application v est celle définie
au paragraphe 2.3. Le module D est muni d’un opérateur de monodromie N véri-
fiant N o ¢ = pp o N ce qui fait que p(w) "' Np(w) = q}’((w) et que (p, N) est une
représentation du groupe de Weil-Deligne. On pose alors :

e(L/K,V)=e(D, Yk, ug) =elp, vx, ug)det(—Frg | D'E /(DTEYN=0),

I1 est facile de voir (cf. [FP94, remarque 1.3.3]) que la représentation o est @, -ratio-
nnelle, d’ou 'on tire que e(L/K, V) € Qp(Ep)|G].

Si E est un corps contenant K™ ainsi que les valeurs des caractéres de G, alors
ona:

E[G] = @neX(G) E,, ou E,=ekE,

et le module D se décompose sur E en produit de ses n-composantes : Dy =
D, ex () Pn- On appelle 1 le caractére trivial. On déduit de la décomposition ci-
dessus que e(L/K, V) = ZneX(G) e(Dy, Y p, k), avec e(Dy, vk, g) € Ey.

S1 V' est une représentation potenticllement semi-stable de Gy, alors par le
lemme 2.13 ci-dessus, D% (Indz/q,(V)) = DC%R(V) et on a donc¢ un isomorphisme
canonique :

compy 10, - Bar ®q, Indr 0,V = Bar Qq, DC%R(V).
On en déduit un homomorphisme :
a1k detg) o (D5 (V) © detg, (1 (nd L0, V) — @,[G] ®@q, Bar.

On voit que detg,[c1(Indz g, V) est une Qp[Gl-représentation de de Rham de
rang 1 et de poids r = —[K : Q,lig (V) et il existe donc une extension abélienne
finie K'/QJ telle que la restriction de detg,[G)(Indz g, V) & Gk soit isomorphe a
Qp[G1(r). On en déduit donc une application

AV, L/K det@;[G](DgR(V)) ® detq,[¢1(Indz /0, V) — K'[G],

donnéeparlaformulewy 1,k =t~ av 1k, 00t =logle] € Bgr est!’uniformisante
de B, associée d & = (Lpn)n>0-

Soit ¢ I’élément de Gal(@?,b /Qp) qui opere trivialement sur les racines p" -iémes
de I"unit€ et dont la restriction a Q7 est égale a o, et soit

ay.r/K = det@p[(;] (IndL/@p V(o) € Zp [G]~.
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Définition 2.14. On pose : Z,[Gly /x = {x € Z¥[G] | o(x) = ay,r/xx} et
QlGlv .k = Qp ®z, ZplGlv,1/k -

Le module Z, [G v, 1,/ estalors libre de rang 1 sur Z,[ G| (voir [Kat93b]). Posons

— {(i — ! sii >0,

= sii <0,

et I* (V) = [ oy TH (=) VK] Soit aussi :
v,k = MK /Qp)” VT (Ve(L/K, V)~ a1k,
ouA(K/Qp) = A(K/Qp, Yo, pLk , tro) estla constante définie dans le paragraphe 2.3.
Lemme 2.15. L’application Py 1,k induit un isomorphisme :
Bv,L/k det@;[g](DéR(V)) ® detq,[61(Indrq, V) = QplGly k-

Preuve. Onnote x : Gg — Z; le caractere cyclotomique. Si on pose

D = Dpy(Indy ¢ (V) = (Qp[G] ®q, Dpst(V))',

alors on a (voir le paragraphe 2.3) :

MK /Qp) ™V e(D, Yk, pi)
e(Indg s, D, Yo, o)

€ Qu[G].

Pour tout g € Gg,,ona:

g(e(Indg/q, D, Yo, ro)) =e(ndg g, D, tro © my (g, o)
= detq,(61(Ind /0, Dpst (V) (x (2))e(Indk /g3, D, ro, o).

D’autre part, si x € det@;[G](DéR(V)) ® detg,[¢1(Indz/q, V), alors :

glay, ik (x) = x 7" (g) detg,[c1(Indr 0, V) (2)ety 1k (x)
= detg,[61(Ind 1/, Dpst (V) (g)ay, Lk (x).

On en déduit le lemme. a

On dome maintenant une formule explicite pour ’application By g, /x pour les
représentations absolument cristallines, formule qui est utilisée dans la suite. On
suppose donc que K est non-ramifiée, et on écrit comme ci-dessus f = [K : Q,],
gk = p’ etd =dim V.
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Lemme 2.16. Si V est une représentation cristalline de G, alors :
e(Dy, Ui g i) = detly | Deris(V) P~ H @ ¢

Preyve. Comme D = Dy (Indg,x V) = (K"[G,] ®g Dyis(V))', ona D, =
e;Q;b ®r Duis(V). L'action naturelle du groupe de Weil sur D,is(V) est triviale
ce (ui fait que 1’action linéarisée p est non-ramifiée et est donnée par la formule
p(Frg) = ¢/, D'autre part, Gg opre sur ¢ par le caractére ~!. Comme K /Q,
est non-ramifiée, on a n(¥rg) = 0 et la formule (6) du paragraphe 2.3 appliquée a
V = Q% et W = Dis(V) nous donne :

e(Dy, Yy i) = e . pg)? detg (97 | Deais(V)* P @ &)

Par le lemme 2.5, on a detg (¢f | Dgis(V)) = (=YD det(p | Doyis(V)) et
par le lemme 2.12, on a e(n~ Y Yx, ni) = (=DHY D=1y On en déduit le
lemme. O

Soitx, = ¢+ {ppt-- et soit R, le O |G ]réseau de K, engendré par x,,.
Onfixeun Ok -réseau M de Dyis(V) et T unréseaude V etonpose My, = R, @@ M.
Larestriction de Indg /¢, (V) a G g est manifestement cristalline ce qui implique que
la restriction de detg, (Indg s, (V)) @ G est isomorphe a Qp(r). Pour L = K,
I"application ay j,/x § écrit donc :

Ay K det@; D5 (V) ® detg, (Indg g, (V) — Q.

Simplifiantles notations, onnote «v g (M, T') I'image de detip1 M®&detz, (Indk jq, T)
et on pose :

YKok (M, T) = By g,k (et (M) ® detz, [, (Ind, k1))

Proposition 2.17. Si V est une représentation cristalline de G g et T un réseaude V,
alors :

Bv gk, kM, T)

= (Vg (30 et | Do (V)™ Py + (=) gfeer Jav x (M, T).
n#l

Preuve. SiG estun groupe abélien fini et M un G-module, alors on a un isomorphisme
canonique M ~ (M ® Z[G])“ qui envoie m € M sur 3" ; g(m) ® g*. En
particulier, s1 M est un Q,[G]-module et £ une extension finie de @, contenant
les valeurs des caracteres de G, alors aprés extension des scalaires on obtient un
isomorphisme Mg ~ (Mg ®g E[G])Y qui envoie ey(m) sur e;(m) ® tﬁGeﬁ7 pour
touslesm e M, n € X(G).
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Si V est une représentation cristalline, alors I'isomorphisme entre Dflf(V) et
D;@Rp (Indg, /0,(V)) peut etre explicit¢ comme suit. Le plongement canonique

B ais ®g, Qp(pn) — Bgr induit un homomorphisme naturel :
(IndK/(@p(V) ®Qp Bcris) ®Qp (Qp(ép”) ®(@p Qp[Gn]t)
— ((Indg /0, (V) ®g, QplGrl’) ®q, Bar-

Le théoréme de Hilbert 90 (1! (Gal(K /Qp), GL4(K)) = {1})etle fait que K /Q, est
non ramifiée nous donnent D s (Ind g /Qp (V) ~ Dguis(V).Comme Indg /Qp (V)®@p

@p[Gn]t = IndKn/Qp(V) et (Qp(é-p”) ®Qp Qp[Gn]L)Gn = Qp(gp”)a on en déduit
I’isomorphisme voulu :

Dy (V) 2 Degis(V) @y, Qpgpn) Dy (Indg, /0, (V).

Sotent compg,is: Beris Q, Indg /@p(V) s B s ®q, Dis(V) et compy k, /0, :
Bar ®q, Indg,/x (V) S Bar R0, DfR” (V) les isomorphismes de comparaison. On
a un isomorphisme :

(QulGnl ®g, QL))" ®a, Bar = QplG,]' ®q, Bar.
(x®y)® > x® (y2),

et compy g, /o, 8"€crit comme le composé :

Byr ®q, (Indg0,(V) @g, QplG,l)
= Bar ® (Qp[Gr] ®q, Qp(tp)) " @ Indg /g, (V)
S B ® (QlGal ®g, Qp(5m) %" ©q, Deris(V) = Bar ®q, Dyi (V).

COMP g

L’isomorphisme (Q,({pr) @, QP[GH]‘)G” ~ Qp(Lpn) envoie §Gpey(xy) @ e
sur e;(x,), et donc pour tous v € Indg,q,(V), n € X(Gy)ona:

1
COmMpy g, /0, (v® e;) = (compyis(v)ey(x,)) @ m~ (2.1)

Si U est une base de detz, Indg /¢, (T'), alors U peut €tre vue comme une base de
detz, G,/ (Indg, ,q,(T)) = Zip Gyl ®z, detgz, Indg s, (1) et pour tout p € X(Gy),
on note v, = ¢, @ v sa n-composante. Soit m = Am; une base de detzp M. On pose

Bi = x,®m; € M, etonnote B = Api labase de dety, [, M, associce. La formule
(2.1) nous donne alors ;

OlV,Kn/K,n(ﬁn_l ® Uy) = C{V,K(ﬁ’l_l V)@ (m) :
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Sik = a(n) # 0, alors ¢,(x;) = ¢,({,x). On a une formule bien connue pour

les sommes de Gauss : (n)t (™) = p*n(c), ol ¢ est la conjugaison complexe

et Lpn > £y etdone 1/(8Gren(xa)) = p*t (" Do),
Comme K /Q, estnonramifiée, ona A(K, Q,) = 1 etla formule démontrée dans
le lemme 2.16 donne :

By K,k (Bt @ By) = n(c) g T (Ve k(™ @ ©) det( | Deis(V)) ™.

Sin = ngestle caractere trivial, alors e, (x,,) = (1—p)~! d'oul/(5Guep, (x,)) =
—pl~™ et on obtient :

< 1 . 1—nyd
BY kKoo Bt © ) = (=1 To(e) g VT (V).

Comme 1(c)/%e, = ¢/9e,, le lemme 2.6 donne :

By k. k(B D)

=cf dF*(V)q,}”d(Z det(y | Dcﬂsw))—a(%ﬁ(—1)qu;'éeno)av,f<<n’a—1®ﬁ>,
n#no

et comme ¢/ est une unité de Z,[G,]1, la proposition est démontrée. O

2.5. La conjecture Cgp(L/K, V). On commence ce paragraphe par la définition
de la droite d’Euler—Poincaré. Rappelons que V' est une représentation p-adique de
Gk, que L estune extension abélienne finie de K et que 'on a posé G = Gal(L/K).

Définition 2.18. La droite d’Euler—Poincaré App(L/K, V) de V est définie par la
formule suivante :

AEP(L/K, V) = detQp[G] BRI’ (L, V) 03] detQp[G] (IndL/@p V)
~ @F o (detg, 61 H (L, V)™V @ detg, (61(Ind s, V).
Si T est un Zp-réseau de V, alors Indy , I = Indg,q, (ZplG] ®z, T)' et

RI'(L, T) sont parfaits sur Z,[ ], et par la proposition 2.7 le sous-Z,, [ G]-module de
App(L/K, V)

AEP(L/K, T) = detzp[(;] RI (L, T) & detzp[G](IndL/Qp T)

ne dépend pas du choix de T et définit donc un Z,|G]-réseau canonique de
App(L/K. V).

Revenons aux constructions du paragraphe 1.4. Par le lemme 1.5, 1a suite duale
de la suite (1.2) s’ecrit :

) = HJ}(L, VE)* = DL (V) @ 1), (L)
— DL (vran*t — HY(L,V) — 0,

cris



630 D. Benois et L. Berger CMH

et en composant cette suite avec la suite (1.2), on obtient une suite exacte de Q,[G]-
modules :

0— HYL,Vy—> D:E. (VY= DL (VY@ ty(L) - HY(L, V)

cris Cris

— DL (V) @ 13y (L) > D5 (VH(D)Y* — H*(L, V) — 0.

cris Cris

(2.2)

En utilisant la suite exacte 0 — 13,y (L) — DI (V) — ty(L) — 0, on en déduit
des isomorphismes canoniques :

8y 1k detg,[c) DiR(V) ® detg, 161 RI'(L, V) — Q,[G], (2.3)
App(L/K, V) S det@;[G](DgR(V)) ® detg,(61(Indz /g, V). (2.4)

En composant le dernier isomorphisme avec I’application By 1,k , on obtient une
trivialisation canonique de la droite d’ Euler—Poincaré :

Sv.isk: App(L/K, V) = Qu[Glv./x.

Nous pouvons maintenant enfin énoncer les conjectures Cgp(L/K,V) et
Crp(K, V) (voir [FP94], [Per95], [Kat93b]).

Conjecture 2.19 (Cpp(L/K, V). Si V = Qp ®z, T est une représentation po-
rentiellement semi-stable de Gg et si L/K est une extension abélienne finie, alors
['application dy | x envoie Agp(L/K,T) sur Z,[Glv,L/k.

Si L = K, alors on peut reformuler cette conjecture en termes des nombres de
Tamagawa locaux (voir [FP94] et la définition 1.6 ci-dessus). Soitw € dety, DfR(V)
une base vérifiant w 2 a)2_1 ® w) avec w) € detg, ty (K) et ap € detg, ty+1)(K).
Soit wy une base de Indg g, (T) et soitay g (@, T) = ay g (0™ @ wr).

Conjecture 2.20 (Cpp(K, V)). Si V = Qp @z, T est une représentation potentiel-
lement semi-stable de G, alors :

Tam%m (T)

_ ay g (w, T)
Tam , (T*(1))

dim V/2 |~
d I'(v .
ke =&V |,

La proposition suivante rassemble quelques propriéics fonctorielles de la conjec-
ture Cpp(L/K, V).

Proposition 2.21. (1) Les conjectures Cpp(L/K, V) et Cpp(L/K, V*(1)) sont équi-
valentes.

(2)Si0 — V' - V — V" — 0 est une suite exacte de représentations poten-
tiellement semi-stables et si la conjecture Cgp est vraie pour deux des représentations
V7, Vet V", alors elle est vraie pour la troisiéme.



Vol. 83 (2008) Théorie d’Iwasawa des représentations cristallines II 631

(3)Si M /K est une extension de K contenue dans L et si Cgp(L /K, V) est vraie,

alors les conjectures Cpp(L/M, V) et Cpp(M /K, V) le sont aussi.

(4) Si la conjecture Cpp(L /K, V) est vraie, alors pour tout caractere n € X(G),

la conjecture Cgp(K, V(n)) est vraie.

Preuve. La démonstration se fait comme dans [Per95, C.2.9], en utilisant en plus les
remarques suivantes :

(1

(2)

(3)

(4)

La dualit€ locale donne un isomorphisme detz, (6] RHomg,, (RU(L, T), Zp) =~
detz, (¢ RI'(L, T*(1)).

Pour le triangleexact RI["'(L, T') — RI'(L, T) - RI'(L, T”) — RI'(L, T")[1],
on a un isomorphisme fonctoriel dety, (6] RI'(L, T) ) detz, (6] RI'(L, &
detz, (1 RI'(L, T") (voir [KM76, proposition 7]).

Si on pose
H =Gal(L/M), Dpm = Dpse(Indr;pV), Dipxk = Dpae(IndpxV),
alors pour toutn € X(H)ona:

AMM/E)™Ve(Dr s st iar) = e(ndag x (Drjag.n)s Wk s 1K)
= l_[ S(DL/K,ﬁa Ebﬁ, HEK)-

neX(G)
i1
On en déduit que la restriction transforme By 7,k en By r/y et le fait que
Cep(L/K, V) implique Cgp(L /M, V) résulte maintenant de la proposition 2.1.
La deuxieme implication est analogue : on voit facilement que la projection de
QplG] sur QuG/H] transforme By 1,k en By m/k.

Soit E un corps contenant toutes les valeurs des caracteres n € X (G) et soit
Vin) = E(n) ®gy, V. Stonnote A(G) I’ordre maximal de £[G], alors on a des
isomorphismes canoniques :

A(G) ®F 161 RU(L, T) — RI(K, AG) @z, T) = B, cx(g) RUK. T(m).

Si la conjecture Crp(L/K, V) est vraie, alors I'application dy 1,k envoie
Agp(K, AG) @z, T) sur A(G)y /xk = AG) ®z,[6] ZplGlyv,L/k. En dé-
composant cet isomorphisme caractere par caractere, on en déduit les conjectures
Crp(K, V(1)) pour tous les caracteres n € X(G). O
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3. L’exponentielle de Perrin-Riou

Dans tout ce chapitre, on suppose que K est une extension non-ramifiée de @@,. On
commence par des rappels et des compléments sur I’exponentielle de Perrin-Riou, ce
qui nous permet d’énoncer la conjecture Cry, (Koo /K, V). Dans le chapitre suivant,
on montre que Crw (K~ /K, V) est équivalente a Cpp(K, /K, V) pourtoutn > 1 et
finalement, on démontre la conjecture Cry (Koo/K, V).

3.1. Rappels et compléments. L’objet de ce paragraphe est de rappeler la construc-
tion et certaines propriétés de I’exponentielle de Perrin-Riou, tout d’abord telle qu’elle
a été définie par Perrin-Riou elle-mé&me dans [Per94], puis ensuite (dans le paragraphe
suivant) telle qu’elle a été faite par 1’'un d’entre nous dans [Ben00].

Rappelons que K, = K(¢»), que Koo = Un?1 Ky, que I’ = Gal(K/K) et
que G, = Gal(K,/K) = I'/I';;. On fixe un générateur topologique y; de I'y et on

pose v, = ylp " ce qui fait de y,, un générateur topologique de I';,. Si onnote Ak le
sous-groupe de torsionde I', alorsona I' = Ag xTI'j et A = Zy[Ak] ®1z, ZplT110.
On définit une action de I' sur K [[ X ]] par la formule :

gX)=(1+X)¥® —1,

ol y: I' — Z;; est le caractere cyclotomique. On munit par ailleurs K[[X]] d’un
Frobenius ¢ et d’un opérateur différentiel 9 en posant :

40 400
p( P ax') =3 af X)), oup(X)=(1+X)7 -1,
i=0 i=0
d 1+ X 4
=1+ )ﬁ

On vérifie facilement que d o ¢ = pp o 9. Soit ¥r: K[[X]] — K[[X]] I'opérateur
défini par la formule :

1
PFE) = e (X S+ 0 - 1),

(=1

qui est compatible avec la définition du paragraphe 1.3. 11 est classique que
OxlI XY= = {f € OxlIX]1l | ¥(f) = 0} est un O[T ]l-module libre engen-
dré par 1 4+ X.

On note # I’ensemble des séries formelles f(X) € Qu[[X]] qui convergent
sur le disque unit€ ouvert, ¢’est-a-dire {x € C,, |x[, < 1}, et 'on pose #H(1'1) =
{fin = 1), f € H} et H(') = QplAg] &g, #(I'1). Pour tout A-module N,
I’homomorphisme naturel N — N, se prolonge en une application #(1') @, N —

Qp ®Zp NI‘n-
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Si V est une représentation cristalline de G g, alors on pose
D(V) = OxIX1"=" @pg Deis(V).

Pour toutk € Z,on définitune application A : H(V) — Dis(V) /(1= p*9) D i (V)
par la formule Agp(f) = (0% £1(0) mod (1 — p*¢)Dyis(V). Si on éerit A =
@kez Ay, alors pour tout f € D(V)A=0, I’équation (1 — ¢)F(X) = f(X) aune
solution dans H (V) = H ®q, Dais(V) et on en déduit une application :
2% 0 DVIA=0 > DI (V) [ Desis (V)P
[ p Mo @e) T (F)(En — 1)

Dans [Per94], Perrin-Riou a démontré le résultat suivant.

Théoréme 3.1. Si h est un entier tel que Fil =" D, (V) = DX, (V), alors pour tout
i € Zvérifiant i + h = 1, il existe un A-homomorphisme (appelé exponentielle
élargie, ou exponentielle de Perrin-Riou) :

EXpY iy gt DV — H(T) @4 (HL (K, T @)/ T (0)7%),

vérifiant les propriétés suivantes :

(1) Le diagramme ci-dessous est commutafif :

EXP?/(i),h

DV (i)ns=° H() @a (HL (K, T())/T(i)Hx)

E@(i),nt lprT(i),n

. (h+i-Dlexpygy g, . .
Dfﬁl(v(l)) HY(K,, V(i) /H Ty, V(i)HE).

(2) Soite; = ' @1 le générateur de D ois(Q,(—1)) associé au choix de ¢ et soit :
WSy 5t Hiy (K. V() = H, (K, V(i + k)
application définie par Twi,(i)’k(x) = x®e% Onaalors :
EXpy i1 i1 = ~ Wy 1 0 ExPygy p 0 (8 @ e1).
(3) Si:

log(y1)

by =m — ————
" log x (1)

alors Expﬁ/(i),thl = EhEXpi(i),h-
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On déduit de ce théoreme plusieurs formules qui nous sont utiles. Tout d’abord,
en itérant (2), on obtient :

Soit K (I') I’'anneau total des fractions de #€(1") (il suffit en fait d’inverser les £;).
Le (3) permet de définir pour tout /2 € Z :

Expf 1 DVIA=0 — K () @4 (Hiy (K. T)/TH).
En particulier, si Fil’ Dois (V) = Deis(V), alors on dispose de I'application :
Exp o: D(V)A=Y > 3 @4 (Hp, (K. T)/T7E),

qpi est telle que pour tout: = 1, si’on pose Eg/)n 8% Vi o (07" ® e_;), alors le
diagramme ci-dessous commute ;

& &
Twy, oExpy o

DVYA=0(i) > 3¢(D) @4 (HL(K, T(i))/T(i)"x)

),
dé,ngl lprm),n
(=D G-Dlexpyy g,

Dy (Vi) —= H'(K,, V(i))/H (T, V() 7¥).

Rappelons a présent quelques résultats techniques concernant 1’ application E uV . €t
qui sont démontrés dans [Per94, §3.4]. L’homomorphisme A donne lieu a une suite
exacte courte :

()—>§DVA=0—><DVA> ( D,CriS(V) ) ) — 0
) W=D\ T )

qui induit une suite exacte :

D (V D (V
0 — CI'IS( ) g (O'D(V)A:O)Fn g :D(V)Fn s CI'IS( ) — 1.
(1 — @) Dyis(V) (1 — @) Dyis(V) G.1)
La deuxicme fleche de cette suite est donnée par la formule d>de (v — 11+ X)
sid=d mod (1 —¢)Dqyis(V).
L’application = uV , se factorise par (y, — DHD(V)A=Y et on note :

25 0 (DA, — DE(V)/Deis (V)P

la fleche qui s’en déduit. Soit :
Expi/,h,n: (@(V)A:O)Fn — (Qp ®Zp HIIW(K, T)/THK)FH

I"application déduite de Expy, ;.
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Proposition 3.2. (1) La suite :

b S |
0 — Dais(V)/(1 — @) Dgis(V) — ker E uV W & Do (V)PP — 0,
o f{x(X)) = «(0), est exacte.
(2) L'application o — Trg, sk () induit un isomorphisme :

coker(E5, ) = Deris(V)/(1 = p~ ™) Digis (V).

(3) On a une suite exacte :

mE

0 — ker(E%, ) — ker(Exp, ; , ) = FIOD RE(V)/VOE (32)
%Dcﬂs(w(l— oY Dis(V) — (V (HEY* — 0,

dont les trois derniers termes sont obtenus en dualisant la suite exacte (1.1) (voir le
lemme 1.5).

Preuve. Voir [Per94, 3.4.4-3.4.5]. Remarquons néanmoins que dans [Per94], Perrin-
Riou utilise une autre normalisation de 1'tsomorphisme (2), a savoir ¢ — (1 — @)
Trk, k(@) (mod (1—p~le™1)Dyis(V)). Comme I’opérateur 1 — ¢ coincide avec la
multiplicationpar 1 —1/p sur (1 — p o Y Dyis(V), celane change pas les énoncés.
Le choix que nous faisons dans ce texte semble plus naturel (voir le paragraphe 4.3).

0O

3.2. L’application exponentielle et les (¢, I')-modules. Nous rappelons mainte-
nant la construction de I’exponentielle en termes de (¢, 1')-modules qu’a donnée I'un
d’entre nous (dans [Ben0O]). On suppose désormais que V est une représentation
cristalline de G g qui est positive, ¢’est-a-dire que les opposés des poids de Hodge—
Tatede V sont0 =r; <rp < -+ <rg = h. Onfixe un Zp-réseau T' de V stable par
Gk, et on définit un Ok -réseau M de D (V) par:

= {f(X) € (B}, x @+ N(T)'" | f(0) € N(T)/XN(T)}.

La proposition V.1 de [BerO4] nous dit que le déterminant de I'isomorphisme de
comparaison Bgr R, Indg /QPV ~ Bir ®q, D s (V), calculé dans des bases
de T et de M, appartient a @;mt”*'*’”d, ¢’est-a-dire que dans les notations de la
section24,onaay g (M, T) € 0%,

L’anncau Og[[X]] est muni comme ci-dessus des opérateurs ¢ et 0 = (1 +
X)d/dX,etonpose D(T) = COK[[X]]"”ZO R M, 00 M estle réseau de D yis(V)
que I’on vient de définir.

Pour des raisons techniques, on remplace le complexe Cy, 5, (K, T') par le com-
plexe 9 7" (Cy 5, (Ky, T)) de (@, I')-modules sur Ag, = ¢~ "(Ag), complexe qui est
isomorphe 4 C,,,, (K, T). On pose X, = [¢1/7"] — 1.



636 D. Benois et L. Berger CMH

Supposons d’abord que V7% = O et rappelons que dans cet article, p # 2.
Soit n1,...,n,; une base de N(T') et soit m = Z?:l a; (X) ® n;, avec a;(X) €

B:i“g x> un élément de M. Siy € I, alors un petit calcul qui utilise les congruences

y(n;) = n; mod XN(T) montre que si I'on pose ¢ = ]_[le(xf(y) — 1) pour
un géncrateur topologique y de I' et pour tout & > 1, alors a; (X) appartiennent a
'anncau A% = AL[[X*/ce,k > 01l Sie = f(x) @ m € D(T), alors on pose

Een(f)®m =YY" (a;(X)Exa(f)) ®ni,ou:

o0

1-kb2-K...(j—k—-1 ; ;
Ek,n(f):Z( ) )‘ (Jj )pn(}—l)a—](f(xn)).

t/

j=1

On tronque les séries a;(X)/t/ modulo X et on note a; Er 2 (f) les séries que ’on
obtient ainsi. Soit :

d

Eran(e) =Y n @aiEp,(f) @5~
i=1

On vérifie que &7 () € ™" (D(T (k))) et on définit Fr g (o) € =" (D(T (k)))
par :
(1 —@)Frinla) = (1 = vu)Er i nla),

cequi faitque (87 k n (&), Fr i () définitune classe de cohomologie dans I’espace
H! (7" (Cy,y,(Kyn, T (k)))). En composant avec I’isomorphisme :

H' (97" (Cp.y, (K, T(0))) — H'(Ku, T(K)),
on obtient un homomorphisme :
Gin: DT —> HY (K, TK)).
Revenons maintenant au cas général (on ne suppose plus que V& = 0) et posons :
H(T) = {a € Ok [ X1 @0 M | () = a}.

Rappelons que pour tout j € Z on a défini un homomorphisme A;: D(V) —
Dis(V) /(1 = p? ) Dis(V) par la formule

Aj(f) =87 F(0) (mod (1 — p/@)Dyis(V)).

Un petit calcul montre qu’on a une suite exacte :

0 — M= = 36(T) =% D(T)y=0 5 0,
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(voir par exemple [Ben00, §84.1.2 - 4.1.3]) et la méme construction qu’avant fournit
un homomorphisme :

Skt H(T) > HY (K, T(K))

qui s’inscrit dans un diagramme :

&
ZT,k,n

H(T) HY(Ky, T(k))

-| |

D(T)A0=0 —— H' (K, T (k))/H (T, T (k)7%).

En particulier, si V& =0, alors on a :

i (@) = Q7 (1 — @)ar).

Les résultats suivants sont démontrés dans [Ben0O, théoréemes 4.3 et 5.1.2].

Proposition 3.3. Si V est une représentation positive vérifiant VHE = 0 et si a €
D(T), alors :
(1) Pourtousk =z letn =21, 0na:

T (e) = (—D*k — DYexpy x, Fel&pr — 1)),

ou Fy(X) est une solution de I’équation (1 — @) Fy = (0% @ e_p)(a) et e_y est le
générateur de Deis(Qp (k) associé a e.
(2) Plus généralement, pour tous k € Zetn 2 1, ona:

Q7 1. (e ®a) (@) =pryy , © TWy ;. 0 Bxpy o(a).

(3) Soit (. Yryn: HY (K, T()) x H' (K, TH(1 — k) = Qp laccouplement
Sfourni par la dualité locale. On a alors

(Q?,k,n(“)’ QST*(—h),h—k+1,n(/8))T(k)a” =
h

1 a. Xy
(D™ Tk - m)TrK/Qpres(f[a_ka(X”)’ (@ @ e p(Xn)] 1+ X )

m=1

Remarque 3.4. (1) Cette proposition entraine la loi de réciprocité de Perrin-Riou (le
théoréme 4.1 ci-dessous) ;

(2) rappelons qu’une représentation cristalline W telle que W = WHE est néces-
sairement de la forme W = B, _, @p(i)di, voir [Per94, lemme 3.4.3].
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Proposition 3.5. Si V n’a pas de sous-quotient isomorphe a Q,(m), avec m € Z,
alors pour tout k & [1, h], Uapplication Q% , | induit un isomorphisme

DK, > @ NIDENET < HL(K, T,

La démonstration de cette proposition fait I’objet du reste de ce paragraphe. Pour
simplifier la notation on pose Q7 , = Q% |.

Lemme 3.6. Le A-module (9* N(T)?= est libre de rang d = dim(V) et pour tout
k & [1, h), Uapplication QST,k induit une injection :

i * =1 1
DT)K)r, — ("N (k) — Hy (K, T(k)r,.

Preyve. Rappelons que A C W(E) et soit A”Y I’ensemble des x = Z:fio Px] €
A tels que x; € mpg pour tout & > (. On a une suite exacte scindée 0 — ARG,

At S Wikg) — 0.81 D™%T) = (A7° ®7z, T)Hx | alors on a une suite exacte :
0— D™UT) — D) = (W(kg) @z, T)¥E — 0.

Comme la restriction de ¢ & W(kg) coincide avec ¢~!, et que par hypothese
THE =0, ona (W(kg) @z, T)Y=HHx = 0, ?ou DT(T)¥=! = D~UT)¥=1,
Comme T est positive, on a p*(N(T)) ¢ N(T) ¢ DT(T), d’ou (¢*N(T)HY=!
D>(T)"=". Uopérateur 1 — ¢ estinversible sur D~°(T), d’inverse Y_; .o ¢/, etun
petit calcul montre qu’il donne lieu a un isomorphisme :

(P*N(TH'=! S (p* N ()P0

Pour montrer que le A-module (¢* N (T 1)¥=1 estlibre de rang d = dim V, il reste
enfin a remarquer que (¢*N(T)) ¥=0 gt un A-module libre engendré par les éléments
pn) (1 + X),ouny,...,n, estune base de N (7).

Posons maintenante = f®m € D(T),oum = Zle a; (X)®n; € (Bji_g,K®A_E

N(TNH et feok [[Xn¥=Y. Laproposition 3.1.3 de [BenOO] montre que 1’on a alors :

(1 —yD&ril@) = (1 —y)(Ei(f) @ m @)

1 — k
;iyl) FX1) @ m @ e® mod X,Q,[[X1] © 4 N(T)(k)

d

. k
= Y a0 5 1) @ m 9% mod XaN(T)K)
i=1
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ce qui faitque (1 —y1)8r () € AK1®A} N(T)(k). D’ autre part, soit yr; I’opérateur
1

W agissant sur Ag,. Comme ¥1(377 f(X1)) = 0 et ¢1(X"x) = XI"¥1(x), on a
Y1 (Er(@) = 0 etdone (1 — y1Eri(@) € (Ax; @47 N(T)(H)*=0, d'ou:

Frile) = (1 - )7 1 - yEra@) € (A, @42 N(T)(&)"=,
etla formule & — ¢ (Fr k() définit un homomorphisme
D(T)(k) — (@*N(T) (k)"

qui induit un diagramme commutatif :

DT (R)r, — (@*N(TH (kDL

HI{N(K,I(k))m

£
QT,k

HY(Ky, T(k)).

Le (3) de la proposition 3.3 entraine 1’injectivité de Q? pour k & [1, h] et I'ap-
plication D(T)(k)r, — (¢*N(T )(k))#’lz1 est donc injective. D autre part, D(T) (k)
et (*N(T)(k)?=! sont des A-modules libres de méme rang, donc D(T)(k)r, et
(p*N (T )(k))fflzl sont des Zy-modules libres de méme rang et D(T)(k)r, est un
réseau de ((p*N(T)(k))fflzl. On en déduit que 1’application (@*N(T)(k))?fl —
HL (K, T(k))r, estinjective et le lemme est démontré, O

Remarque 3.7. On donnera plus bas une autre preuve de I’injectivité de I’ application
(p*N(T) (k))}fl:1 — HI1 (K, T (k))r, (voir Proposition 4.20).

4

Lemme 3.8. (1) Si f(X1), g(X1) € AE, alors pour toutk € Zetn = 0,0na:

dx 'k
(B (e ) =0 mod (o)

Q) Sim®@ feDT)etBe (@ NT (==Y h—k—1), alors :

dX I (k
res(Ek,l(f)[m, 99_1(/3)]1/(/«)1 +;{1) =0 mod (phW(—)h))’

ou h est le dernier saut de la filtration de Hodge de Dyr(V) et ou on a
' (k) T*(k—n)=(k—1) x - x (k—n), méme si k < 0.
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Preuve. On commence par montrer le (1). S1 07 = (1 + X1)d/d X, alors 31 = pd

etona:
o (PEDY _ 91A(Xy) h(X1)

On en déduit que :

eS(h(Xl) dx, ): 1 es(alh(xl) dXi )

11X np "1+ X

et par récurrence on obtient la formule :

(h(Xl) X, ) 1 (af—lh(xl) aXi )
Ics = Ircs .
o1+ X (n— 1)p*1 X  1+X

On applique cette formule au calcul du résidu :

» X
I‘GS(Ek,l(f)[m’ ¢ (B)lvay 1+ Xl)'

La série Ej 1 est définie par :

X A—kQ2—-k...(—k—1
)3

v

Ex1(f) = p? 1T (f (X))

j=1
Sin = j,onaévidemment ;

1 -2 -k —k—-1) . ; dX
res(( o U R D iy e 1 )

-1 - n—jg=i X1 \ _
(1-Kk@2—k)...(j —k—Dres{ 1"/ 3 f(Xl)g(Xl)l+X1 =0

Sin<j—1,ona 8= f;xnxl()ﬂ 10 ¢ 7, dou:

1-k2—-k...(j —k—1 dX
oA LI e k)
tJ + X1

A -kQ—-k...(j—k—1p/~ 1re (aJ n=1(a- Jf(Xl)g(Xl)) dXi )

B (j —n—Dlp/—n=1 X 1+ X,
et on en déduit la congruence (1) du lemme.

Montrons maintenant le (2); rappelons qu’on a posé ¢; = (x(y) — 1)...
(x(y) — 1), ot y est un générateur topologique de I'. Ona X = exp(t) — 1 =
t+12/20 4 ..., dou:

yi+h _ i+h Z A . (3.3)
(s1+ Dt (sjn + 1!
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Comme m € M et g~ (B) € A}, ®,+ N(I*(—h)),ona:

i bi(X1)X/

[m, o~ L(B)]y = X" , (3.4)

=0
pour des €léments b; (X1) € A}l. Comme p # 2, en utilisant la congruence (1) du
lemme et les congruences évidentes p* /(s + 1)1 =0 mod p et p’/c;, =0 mod p
pour tout s > 1, on montre que :

ORI T S r———— ) =0 md (o )
Ies i = mo —_— ).
S S+ DL Gjn + Dlej T+ X, P v —n)

et la congruence (2) découle maintenant des formules (3.3) et (3.4). 0O

Proposition 3.9. Soient (-, )rqy: H' (K1, T(k)) x HY (K1, T*(1 — k) — Z,
’accouplement fourni par la dualité locale, « € D(T)(k), B € (p*N(T*(—h)))¥=!
(h—k—+ 1 etcl(B) e HY (K1, T*(1 — k) la classe de cohomologie associée a f
via I’injection (@*N(T*(=NY=Yh —k+1) — Hllw(K, T*(1 — k)) suivie de la
projection. On a alors :

(k) )

(QF (). cl(B)ry =0 mod (phm

Preuve. Soit A € ¢~ (D(T*(1 — k))*=Y) une solution de 1’équation (y; — )A =
¢~ (@ — 1)B. La formule du cup-produit en termes de (¢, I')-modules (voir [HerO1,
proposition 4.4]) s’ écrit :

(QF c(@). Bz = —cl ([ Eri(@). o (B)lvy — [oFrale). Alvw) -

Pour calculer cette classe, on reprend les arguments de la preuve du théoréme 5.1.2 de
[BenOO]. En termes de (¢, I')-modules, I'isomorphisme canonique /1 2(K,. Zp(1)) =
Zy, est donné par la formule (voir [BenOO, théoréme 2.2.6]) :

TR, : H* (9™ (Cp.y, (Ku, Zp (1)) — Z,

(A(h(X,) ® ) > — 2 Trg s, (res

h(Xn)an>
10g % (¥a) '

1+ X,
Siea = f@m e Ox[[X11"=° @0, M, alors il existe y tel que

eri(e) = Ex((f) @m+(p =Dy,  Frile) =Fri(e) + 0 —y)y,
et

(¢ — DFrp(a) = (y1 — D(E1(f) @ m).
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On en déduit que :

(827 (e0), l(B)) T (k)

B P 1 B dX| )
—710gx(yl)TrK/@p(reS([mET,k(f)®m,90 BNV [(PFT,k(Of)»A]V(k))1+X1 :

Comme ¢r1(A) = 0, on a ¢ ([¢l7 (). Alyy) = 0, d’ou (cf. [BenOO, lemme
2221)):

dXq
IGS([WFT,k(Oé), Alv I+ Xl) = (.

D’autre part, comme (y1 — D) Er 1(f) € Qp[[X1]] le (2) du lemme 3.8 nous donne :

1 79.€
res([ylET,k(f)@)m,gD (ﬁ)]v(k)1+X1)

_ dX I'* (k)
:res([ET,k(f) @m, ¢ 1(6)]V(k)1 +)1(1) =0 mod (Ph—r*(k — h))'

Preuve de la proposition 3.5. La (3) de la proposition 3.4 nous donne :

detz,, (Q7 (DMK, gy 144 (DT DA+ h = F)r)) gy

:( w IR )[K“@p”

L,
P e —nm ?

ou d = dim(V). Par ailleurs, la proposition 3.9 donne I'inclusion :

detz, (0" N(TYERDE™ Q5 1 e DT =)+ h = Br))

. THE) [K1:Qpld
—_—r L.
C(prﬂk—m) P

Comme I'inclusion D(T)(k)r, — (go”‘N(T)(k))rl=1 est déja ¢tablie, on en déduit
que D (T (k)r, = (p*N(T )(k))"*éflz1 et la proposition 3.5 est démonirée. O
Corollaire 3.10. Si k ¢ [1, h], alors :
(DT DL (o N k)]
(DA — k)T @ N —m)(h+1 — k)]

y T* (k) [K1:Qp]dim(V)
:(prﬂk—m) :
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Preuve. Soit H' (K1, T(k)) = HY (K1, T(k)/HY (K1, T (k))ior. Comme par hypo-
these V(K)°k =0,ona H' (K1, T (k))wor = H° (K1, V(k)/T (k). Soit

0— HL (K, T(k)r, - HY(K.T(k)) = H, (K, T(k)'" =0

la suite exacte de la proposition 2.8. Comme V n’a pas de sous-quotient isomorphe
AQ,(m),ona V*(1 — k)HE = 0 et donc HIZW(K, T(k))estfinietona

tHE (K, TN = tHY Ky, V(1 —k)/T*(1 — k)
(voir le (4) de la remarque 2.9). On en déduit :

[HA (K. TRy = (0" N ()]

HOYK,, Vk)/Tk i * )
- ﬁHo(il ‘(/*21 —(kiiTi(i)— k))[Hl(Kl’ Ty : (@*N (T EDET],

d’ou :
[HL(K, TG)ry : (" N(TY ()]
[HL (K, THL — B)py < (@ NTH )+ 1— k) e
= [A' (K, T(h) : ("N (T kDL
[N (K1, T — k) s (@*N(T*(—h))(h + 1 — k))}ffl].
Par la proposition 3.5, ce produit est égal au déterminant :

detz, (U7 ((D(TYK)r,), Qs gy 1an 1 (DT (=) A +h — Kr 1w

qui est égal & (p”"T"* (k) / T* (k — h)IKrQ1dim(Y) 1 6 corollaire résulte alors du fait
que D(T(k)Y=1 ~ HL (K, T(k)). O

4. La conjecture Ciw (Ko /K, V)

Dans ce chapitre, on énonce la conjecture Cry, (Ko/ K, V') puis on montre qu’elle est
équivalente Cpp(K, /K, V) pour toutn > 1 et finalement, on démontre la conjecture
Crw(Koo/K, V).

4.1. Enoncé de la conjecture. Dans ce paragraphe, on énonce la conjecture
Ciw(Koo/ K, V) (C’est 1a conjecture que Perrin-Riou appelle 4z, (V). On commence
par des rappels et des compléments sur la loi de réciprocité explicite.
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Soit (-, V7.t HY(K,, T) x HY(K,, T*(1)) — Z, ’accouplement fourni par la
dualité locale. On définit une application bilinéaire :

(o)1 Hyy (K, T) x Hy (K, TH(1)" — A,
en imposant que pour tout 7 > 1, on ait :

. yr= Y T w v rar mod (v — 1.

1€Gy
Par linéarité, on obtient un accouplement :
() : K(T) @ Hyy (K, T) x K(U) @4 Hyy (K, TH(1) — K (D).

D’autre part, en posant (1 + X)« (1 + X) = 1+ X, on étend la dualité canonique
DX (V) x DI (V*(1)) — K en une forme A-bilinéaire :

xpy: DV) x DVHD)) - K @, Ok [[X11V=0.

Le théoreéme sutvant est la lo1 de réciprocité de Perrin-Riou (la conjecture Rec(V) de
[Pero4]).

Théoréme 4.1. Si V est une représentation cristalline de G, alors pour touth ona:

-1
(Exp} , (/). Explegy 1y @) v (L4 X) = (=D g0, (f *v) 8.

On dispose de plusieurs démonstrations de ce résultat : voir [Col98], [KK'T96],
[Ben00], [Ber(03]. On note A@p I"anneau Q,, ®z, A, etonpose :

Apr(Kso /K, V) = dG[AQp RIMw(K, V) ® detAQP D(V)
~ @F_; (detp,, Hiy (K, V)TV @dety,, D(V).
Comme HI{N(K , T)/TH& estun A-module sans torsion, de rang [K : Qp]dim(V)
(voir le (5) de 1a remarque 2.9), Hllw(K , V) /VHE estun Ag,-module libre du méme

rang. Comme HI%V(K , V) estun Ag,-module de type fini de torsion, le déterminant
de I'application exponentielle élargie induit une application :

Sy ks APR(Koo/K, V) — 3(I).

Sodent Tj(V) = [1j,_ (b= ™o WPV op 50, 0 = Th(V)7I85, ¢ ke
Un petit calcul montre que I’application 5@,, Ko/K " Apr(Kn/K, V) — K(I') ne
dépend pas de h, et le théoreme 4.1 entraine le résultat suivant (¢’est 1’ancienne
conjecture dg, (V) de [Per94]).
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Théoreme 4.2. Ona 5‘{/,KOO/K(APR(KOO/K’ V) = Ag,.

Preyve. Voir le théoréme 3.4.2 et la proposition 3.6.6 de [Per94]. O

Nous allons maintenant donner une version enticre de la conjecture ég, (V) ci-
dessus, ¢’est la conjecture (SZP(V) de Perrin-Riou. Soient :

Alw(Koo/K, T) = deta RI'w(K, T') ®4 deta(Indx /g, 1)
~ @F_ (dety HL, (K, T)H"V @, deta(Indg s, 7).

el Atw(Keo/K, V) = Aw(Keo /K. T) ®z, Qp.
Soitay x € Z,, I’élément défini au paragraphe 2.4 et soit :

Av kwik = (f € Okn®z,A | o (f) = av x f}.

Onalndg,. /q,(V) = (A®z, Indk,qg, (V) et D(V) = A®g, Dais(V). Comme V
esteristalline, ona Dps (V) = K" @ Deris (V) etlelemme 2.16 donne e(K, V) = 1.
[application ey g induit donc par linéarité un homomorphisme :

AV Koo /K - detj_\qlgp DV ® detAQp (IndKoo/Qp(V)) — Av k. /K &7, Qp-

En le composant avec SQ, KooK 0N obtient une trivialisation canonique :

8V, KooK Aw(Koo/K, V) = Av koo/k ©7, Qp.
Conjecture 4.3 (Crw(Ko/K, V)). Onady k../k (A (Koo /K. T)) = Av k. /K-
Cette conjecture est démontrée dans le paragraphe 4.4, ¢’est le théoreme 4.22.
—-z

4.2. Equivalence de Cpy et de Cgp : étude de Ey, . Ce paragraphe et le suivant
sont consacrés a la démonstration du théoréme suivant,

Théoréeme 4.4. Pour tout n = 1, la conjecture Crw (Koo /K, V) est équivalente a la
conjecture Cpp(K, /K, V).

Afin de montrer le théoreme ci-dessus, nous avons besoin de résultats de descente.
La technique générale de descente des complexes a été développée par Nekovar
(voir [Nek02, §11.6] ainsi que [BGO3, lemme 8.1]). Nous avons besoin d’un cas
tres particulier de cette théorie, qui est sans doute bien connu, et qui en tout cas se
démontre facilement.

Dans cetie section, on pose £ = H(I') pour alléger la notation. S1 M et N sont
deux #-modules libres de méme rang et s1 f: M — N est un homomorphisme
injectif, on note :

det(f): dety M @ det;! N — #
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I"homomorphisme qui s’en déduit. Pour tout » = 0, on a une projection naturelle
H — QplGy,]. Lalgebre Q,[G,] se décompose en produit de corps Q,[G,] =
b, E..etonnote p(i) lenoyau delaprojection ¢ — E;. Onpose M) = E;, @x M,
eton note f;: M, — N, I'homomorphisme de E;-modules qui se déduit de f. Le
diagramme commutatif :

1—yn
0 M M M, 0
Jf lf lfn
I—yn
0 N N Ny 0

donne lieu a des isomorphismes canoniques :

ker( f,,) =~ coker( f)'™,
coker( f) == coker(f)r,.

On dit que [ est A-semi-simple si la A-composante By, ; de 1’application :
By, ker(fy) < coker(f) — coker(f,)
est un isomorphisme. Dans ce cas on a un isomorphisme canonique :
if: detg, M, ® detgi N, =~ detg, ker(f) ® detgi coker( 1) >~ E;,

le deuxieme isomorphisme étant induit par By ;.

On dit que f est A-admissible si I’image de det(f) s’écrit sous la forme
(1 —yp)™*hdt, ou h estune unit€ de F,(;) et r;, = dimg, (ker f3). Onditque f estad-
missible si elle est A-admissible pour tout A et on pose det™( f); = (1—y,) ™" det( ).

Lemme 4.5. On conserve les hypothéses concernant f: M — N. Si f est r-admis-
sible, alors f est A-semi-simple et le diagramme suivant est commutatif :

-1 det”™ (/)
det}fp(x) My ® detﬁp(}\) Npy ——— Hpin)

|

detE)\ ]W)L ® deta ]V)L E)v

Preuve. Soit Xy, ..., X, € My, un relcvement d’une base x1, ... x,, de ker f;.
Comme M, _est un facteur direct de M, on peut choisir X; de telle fagon que f(X;) =
(I —yn)A; ou A; € Nygy. On fixe un complément X, 11, ..., X, de Xq, ..., X,, a
une base de My;). Soit Y1, ..., Y, € Ny unrelevement d’une base yy, ..., y,, de
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coker(f;).Leséléments Y1, ..., Y, . Y, 411 = f(X;, 41). ..., Y = f(X,,) forment
alors une base de Ny;y etona:

det(f) (AL, X; @ AL, YF)

= det(AL Xi @ AT V) = (1 — yu)™ deti<y, jr, (Y] (A1),
ce qui montre le lemme. O
En particulier, soit N un Ag,-module de torsion et de type fini; il admet une

résolution projective 0 — P L Po — N — 0, ourg(Fy) = rg(Fr). Pour tout
&, on note Ay la localisation de Ag, en p(1). On dit que N est A-admissible si
[ P1 — Polest. Dans ce cas, le lemme 4.5 fournit un diagramme commutatif :

det” ()

-1
detAp(A) Npiy

|

dety! (Nr,), ® detg, (N, —4 E;,

Apiy

ol la deuxidme ligne est induite par la projection N'n — N
On fixe un isomorphisme Z,[[1'1]] >~ Z,[[T']] en envoyant y; sur 1 + 7. On pose :

N (o
SE—MK > X he.

8EAK

ce qui fait que A = @f;oz Aj ou Ay = 8, Z,[[TM1]).
I est clair que 8;(Z,(j)) = 0sii # j mod (p — 1). Sinon, on a une suite

exacte 0 — Z,[[T]] i ZpllT]] — Zy(j) — 0O, 0u f; est la multiplication par

(x(»1)? = 1) = T, ce qui fait que detj\il Zp(j) = ((x(»1)! —1) = T)A;sii = j
mod (p — 1). En particulier, Q,(7) est admissible.

Proposition 4.6. Si i > 1 est un entier tel que Fil~" DX, (V) = DX (V), alors
I'application Expi,’ 5 est admissible.

Nous allons déduire cette proposition du théoreme 4.2. Pour alléger les nota-
tions, posons a; = dimg, Fil/ D&, (V), b; = dimg, Dais(V)?=F"" et op(T) =

(14 T)Pk — 1. On commence par un lemme purement technique.

Lemme 4.7. Pour toutn > 1, onaTp(V) =T (V)w,_1(T)* mod wy_1(T)o+L
o TH(V) = (h — 1)1 PerslV(log y (3,)) =0T *(V) 71,
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Preuve. Comme :

log(y) _ log(yn)
log x(¥)  log x(ya)

=log~! x (y)w,—1(T) mod w,_1(T)?,

ona:

Ta(V) = (o2 x (7)™ ( [ % )ana(1)™  mod w, 1 (T)+,
j>—h
40

Un calcul facile montre alors que :

(h . 1)Idijp Dyis (V) — :l:( 1_[ jaj) l_[ l—w*(h _ l‘)[K:Qp]hifh(V)

j=—h >0
0
=+( [T %)rm,
J>—h
J#0
d’ou le lemme. 0O

Preuve de la proposition 4.6. 11 résulte de la suite exacte (3.1) que I’image de :

_ 4 (HL(K. V)
dans F#(1") est égale a :

v =T5(V) detng, (V) detg) (VOO T (dety) QM)
JEZ
Fixons un A et notons »n le plus petit entier tel que E; C Q,[G,].
Supposons d’abord que A # Ao (Ao correspond a I'inclusion de Q, dans Q[ Gy ).
Alorsdetag, (VHE), detag, (V* (1) 7E)* ¢ detag, @p (/) sont des unités de Hy) et v
est congru a :

p(V)detag, (VIE) ety (V:(1)1)* [ T detag, Qi)™ wnr(T)"
jerk
mod w,_ (T)%+.

D’autre part, la suite exacte (3.2) nous donne ker(Expﬁ/v pir = FilODflg(V) 1, C€ qui
fait que dimg, (ker(Exp§; ;):) = ao et Expj, , est bien A-admissible.
Supposons maintenant que A = Ap. Le méme calcul montre alors que v est congru
a:
L(V) detag, (VIE/VOR) detl (VE)™R /v ()9%)" [ ] detag, @)™ T
J€Z
mod 7711,
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ou:
r = dimg, (ker(Exp?,’h,n)lo)
= dimg, (Dais(V)?=") + dimg, (Fil® Deris (V)
— dimg, (VOX) + dimg, (V*(1)°%),
et Expf, ;, est bien A-admissible dans ce cas aussi. O

Nous allons maintenant calculer le déterminant de I’application &Y, , ; ces calculs
généralisent (et corrigent .. .) ceux de [Per94, lemme 3.5.7]. S1 :

Ag: D(V) = Dyis(V) /(1 — @)D is (V)
est I'application définie ci-dessus par Ag(x(X)) = «(0) (mod (1 — ¢) Dyis(V)),
alors la suite exacte :
Dcris(v)

— 0
(I — @)D yis(V)

0 — D(V)20=0 & (V) 2

induit une suite exacte :
D cris ( V)
(1 — @)D is(V)

B Dcris(V)
— (D)=, > DV)p, — ik
(DV)™ r, Vo, (1 — @)D is (V)
(4.1)

En comparant cette suite avec (3.1), on voit facilement que JD(V)IQFE’:O =D (V)léfo.
Rappelons que pour 0 < i < p—2, onnote §; les idempotents de A x = Gal(K1/K).

00—

Lemme 4.8. (1) Le A-module (XZ,[[X MY=0 est libre de rang 1 engendré par
l’élément :

r—2
o= (To+ 3 8)1+X), T=n-1
i=1

(2) Si Dgis(V) = (1 — @)D is(V) @ D' est une décomposition de D is(V) en
somme directe, alors :

DV = (Zp (XN ®z, (1 — ¢)Deris(V)) & (XZp[[XIN'=" @z, D).

Preyve. Comme Zj [[X]]lf”=0 est un A-module libre engendré par (1 + X), tout
f(X)e Zp[[X]]"’=0 s’écrit sous laforme f(X) = Zf:oz Sigi(IH(1+X),ougi(T) €
Zp[TT =~ Zp[[T'11]. Alors £(0) = go(0), d’olt on obtient que f € (XZ,[[XT)¥=Y
st et seulement s1 T divise go(T'). La premiere assertion s’ en déduit.

Passons a la deuxieme. 11 est clair que pour tout ¢(X) € (1 — ¢)Dais(V) @z,
Zp[[X]]WZO onaa(0) € (1 —¢)Duis(V),dot Ag(er) = 0.SiB=4d"® f(X) ¢
D' ®z, Zy [[XT1¥=0°, alors B(0) = d’ £(0) € D’ et donc Ag(B) = 0 si et seulement
si f(0) =0d o (Z[[X]"=° @z, D')2=0 = (XZ,[|X])"=° ®z, D’ etle lemme
est démontré. 0O
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Nous pouvons considérer = uV comme un homomorphisme de D(V)20=0 yers
Iespace DI (V) /Deis(V)P=1.

Lemme 4.9. Pour tout «(X) € DVY20=0 onqa:

By 1(@(0) = p~ (Z(("@W—k“@pk_1)+(1—€0)_1a(0)) (mod Deis(V)P=).
k=1

Preuve. Supposons d’abord que «¢(X) € D(VHYA=0 Dans ce cas, «(0) € (1 —
@) Dois (V) et I’élément (1 —(p)_la(O) S Dcris(V)/l’)Cﬁs(V)(*”:1 est bien défini. Soit
F(X) e #H ®g Dyis(V) telleque (1 — ) F(X) = a(X). Pourtout 0 < k <n—1
ona:

@ ®VF (s — 1) = (p ® )M F (i1 — 1) = (p ® 0) (g pns — 1)
ainsi que (1 — @) F(0) = «¢(0), ce qui fait que :

EY (X)) = p g ®0) " F(fpn — 1)

n

=7 (@) ety - D+ (1 - 9) ")

k=1

(mod Deris(V)?=1).

Passons mamtenant au cas général. Si a(X) € D(V)Y20=0 alors comme
:D(V) = {D(V) 0 ilexiste 8(X) € D(V)2=Ytelque f(X) = a(X)—B(X) €
(Vn — l)ch(‘V)AO

Comme Y ;1 (6 @ ) * f({pp — 1)+ (1 — ) 'e(0) =0 (mod Digis (V)#=1),
on obtient :

2y, (@(X)) = B (B(X))

-f _”(Z(“ ®9) Falty — D+ (1= ) a(0) (mod Deig(V)*). T
k=1

Pour tout caractere n € X (G,) on note

[x]:

Yt DOV DE(V), /Do (V)0

la p-composante de Ei,n c(D(V)AO — DK”(V)/DCHS(V)(P L. Bien siir, on a
Dcris(v)(r? = 08171 # no.
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Corollaire 4.10. Si« = (1 +X) ®d € Zy[[X1]"=° @z, (1 — ¢)Daiis(V)) et si
n € X(G,) est un caractere de conducteur p*, alors :

o _ p—ngp—k(d)en(épk), sin # 1o,
, [Kn:K](1 —p 9o )1 =) (d), sin=ne.

Parailleurs, si p = z0d’ € (XZP[[X]])W:()@D’etsiX(Gn) ~ X(Ag)xX((T'1/Ty)
estladécomposition du groupe des caracteres de G, qui correspond al’isomorphisme
canonique G, >~ Ag x (I'1/T'y), alors :

) p oM@ ey (L) sin ¢ X /Ty),
8y ,(B) = 127" (1) — Do~ (d)ey(Lr) sin € X(T1/Tn), n # no,
0 St 1 = 1jo.

Preuve Si 7 # 7o est un caractére de conducteur p*, alors en(&pm) = 081 m # Kk,
d’on &5, (@) = p~"9~F(d)e, (L,). D autre part, on a :

0 si2 <m < n,
1 . _
T-p SlI’I’L—l,

e (Epm) = {

dou:

(1]

V@ =p e @A - p) T+ (1 — ) )

(1—¢)!
= g i d
= P@
1
= 9T A= H@  (mod Dain(V)T.

Ceci montre la premiére assertion; passons a la seconde. Soit n = §;7/, ou
n e X(I'/Tp). Sig ¢ X(I'1/Ty), alors i # 0, ¢,(z) = ey(1 + X) et le cal-
cul déja fait ci-dessus donne é%,n(ﬁ) = p_”(p_k(d’)en(cpk). Sing e X(I'1/T)),
alors e;(z) = ey((y1 — D+ X)) = (n(y1) — Dey(1 + X), d'ou =5, (B) =
p " (n(y1) — 1)<p_k(d’)en(§pk). En particulier, si n = no cette formule donne
@i, 770(ﬁ) = 0 et le corollaire est démontré, 0l

Le (2) de la proposition 3.2 donne une suite exacte :

~
=
=

2e DV N Dyis(V)
Dcris(V)gozl (1 _p_l(P_l)Dcris(V)

0 — ker 8, JD(V) — 0.

4.2)
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En composant cette suite avec les suites tautologiques :

0 = Dais(V)*=! = Desis(V) =5 Deia(V) > — 2V 43
Cris Cris Cris (1 L (p) Dcris(v) b +

R |
O — Dcrjs(V)go_p — DCI'iS(V)
el oy Deis(V) N 4
e (1 - p_lfp_l)Dcris(V)

et en utilisant le (1) de la proposition 3.2, on obtient un isomorphisme canonique :

KV op' detQp[Gn]o@(V)%n:O Bp[Gal det@;[Gn]DcII{Rn(V)
Dcris(v) )
(1 = §0) Dcris(v)
-1 _
& (detQp [Gn]Dcris(V)go_p 2 dﬁt@;[Gn] (1
~ Q,[G,]

Rappelons que I'on note R, le Ok [G,]-module libre engendré par x;, = {» +
{pn1+- -+ p. Onfixeunréseau M de Deis(V) etl’onpose Dy (V) = Ok [[ X1y @
MetM, =R, ®z, M.

e (det@; (Gl D s (V) =] det@p [Gnl

Dcris(v) )
- p_l(p_l) D is (V)

Proposition 4.11. L’isomorphisme kv , envoie :
Ao=0 —1
detz, 16,1 Du (V)P ™ @216, dety 6,1 Mn

sur le réseau engendré par :

= ) =1 o

g™ Y () — 1PV Pl et (g | Do (V) ™" e+
n#10

1

dimgy, Deris (V)PP
) Qp eris(V) p(l_”)fd+djm@p DCﬁS(V)(D:l

(-

ond(n)=1sine X(T'1) et 5(n) =0 sinon.

€no s

Preuve. SIN = (1 —¢)Dis(V)YNM, alors M /N estsans torsion etil existe N’ ¢ M
telque M = N @& N’. Par le lemme 4.8, on a :

Dy (V)20=0 = (Z,[[X11"=° ®z, N) ® (XZ,[[X]"=0 @z, N').

En particulier Dy (V) Ao=0 agt A-libre et par le lemme 2.6, il suffit de démontrer
la proposition caractére par caractere.
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On fixe une base (n;) (resp. (n})) de N (resp. N'). Les éléments «; = (1+X) ®n;
forment une base de Z, [[X [I¥=° ®z, N et les éléments a;. =7® n; forment une
base de (XZ,[[X1)"=% ®z, N’. On pose :

& = niai € deta (Zp[IX117=" ®z, N).
& = njed) € deta (XZp[I XY= ®z, N'),
a A& e dety Dy (V)20=0

a
On pose aussi B; = x, @ n; et ,8; =%, ® n; Alors (8;) (resp. (ﬁ;)) est une base
de R, ®z, N (resp. R, ®z, N'). On pose :
B = /\iﬁi € dety (RM ®Zp N) ,

ﬁ’ — /\jﬁ; e detp (Rn ®Zp N/),
b=pB AR €detp(R, @z, M).

Soit 5 un caractére non-trivial de G,, de conducteur p*. Les suites exactes (1) et (3)
de la proposmon 3.2 impliquent que la n- composante de & uV est un isomorphisme

g5 i DV S D (V) etque ky,y = det(E5, ). Onae,(B;) = e, (L0,
en(ﬁj) = en(g“pk)nj. Sin ¢ X(I'1/1;,), alors le corollalre 4.10 donne :

e = p e nen(t),
e = p e ey (4,0,

[1]: [a]:

<P o=

On en déduit que :
kv, (ay @ byt = p7 M PensMidery (978 | Dais(V)).

Sin € X(I'1/ ') est un caractere non-trivial, alors encore par le corollaire 4.10
ona &Y, () = p~"(n(y1) — Do~ (n})ey(Lpr), d’ol :
s 2 —ndi ; i ; p=1 _
kv (an®by1) = p=7 M PtV (1) —1)8mep Peis™ ey, (9 | Deis (V).
Pour terminer la preuve 1l reste a étudier le cas n = ng. Dans ce cas, le corol-

laire 4.10 donne :

f ()= —— (1 — p~lp)(1 — )~ In
Vo= K, : K] :

uvno(a ) _O

(1]

Pour simplifier les formules, nous identifions D (V) avec A @ Di(V) vial’iso-
morphisme canonique Zy|[[ X T e & qui envoie (1 + X) sur 1. On décompose
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A en somme directe : A =~ @52—02 8 Zplll'1]], Zpl[I'1]1] 2= Zp[[T']]. On utilise I’iso-
morphisme no(Q,[Gnl) = Qpno = Q,p pour identifier D(V),, avec Dis(V). En
prenant la ng-composante de la suite (4.1), on obtient une suite exacte :

Dcris(V) s c>fD(V)Aozo

B gy 2= (1 — @) Dgis(V) = 0. (4.5)

Sia=T8 + Z{j 8 € A, alors D(V)20=0 ~ (A ®z, (1 — ¢) Deris(V)) &
(AA ®z, D'), ce qui permet d’identifier JD(V);%)OZO avec (1 — @)D is(VY @ D', La
deuxieéme fleche de la suite (4.5) est donnée par la formule d' — ey (v, — 1) @ d’

(voir (3.1)). Posons g,(T) = ((1 + T)f””*1 —1)/T. Alors y,, — 1 = 60T g, (T) et
comme g1 = dgi, on obtient :

eno(Vn — 1) = Aenogn(T) = Agn(0)eg, = p"~ ey,
On en déduit que la suite (4.5) est isomorphe a la suite :
0= D' = (1 -¢)Dais(V)® D' — (1 = ¢)Dais(V) — 0, (4.6)

dont les fleches sont données par les formules d’ +— (0, P dy et (a,b) > a.
Les suites exactes (4.2), (4.5) et 1a suite (1) de la proposition 3.2 s’ inserent dans
un diagramme :

= (2) _
ker(EY, ) ——— Dyis(V)?=P" —=0

(1)

cris 3 Ap=0 (4)
0 =B ("D(V)rf )no —— (1 = ) Dyis (V) — 0

/ )
Dcris ( V)

0 Dcris(v)g):1

6
& “4.7)

Dcris(v)
(l_Pilwil)Dcris(V)
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dont les fleches sont données par les formules suivantes :

(1)et(3): d—d® (y, — {1+ X),
(2)et(4): a(X) — «(0),

i 1 = | -1 . =1
(5): d — m(l—p ¢ )1 =) (d) (mod Dis(V)77),
(6) : d— [K, : K]d.

La commutativité de ce diagramme est immédiate.

Posons 7t = A;n; € dety, N et n = /\jn} € detsz’, ce qui fait que n ® A’
est une base de detz, M. Comme ey, (xn) = en(Lp) = (1 — p)~ ! ona 5770 —
(1 — p)~ 4imey Peis(V) (7 o 77y et 1a no-composante de la formule & montrer s’écrit :

KV o (Gne ® (R @ 7N

-1
dimQ Dcris(v)q):p . !
1 ) P pU=m fdrdimg, Dass(V)=" 4 gy

-1

Fixons des bases rir; € detz. M=) et iy € dety (M/M?=1) telles que iy & iy ~
P P q

~ ~ . . A :0 . . -~ ~ ~ .
i @ #’. Rappelons que I’isomorphisme D (V);,,'~ identifie &, avec 7 @ #’. Consi-
dérons les isomorphismes canoniques ;

g . d[ ( Dcris(v)
e T ) Das(V)

ia (4.4 Py <
M det(@p Dcris(V) 2 det@; Dcris(v) 1_> QP

) & det@; Dcris(v)(pzl

et

| o Deis(V)
. . 1 cris
12: detQp ((1 - (/Q)Dcns(v)) & det(@p (W)

ia (4.7 sty
YD, detey, Deris(V)P=7 1®det@;(

D cris ( V) )
(1 — p_l(p_l)Dcris(V)
via (4.4) 1 id
— detg, Deis(V) @ det@p Dgis(V) — Q.
Par définition, I’application kv ,, s’obtient en trivialisant la suite exacte verticale
du diagramme (4.7) via la suite exacte (1) de la proposition 3.2 et les suites exactes

tautologiques (4.4). En utilisant la commutativit€ du diagramme (4.7) et 1a suite (4.6)
on obtient, grace a la fonctorialité des déterminants :

~ ~ ~n— —n) di ; =, O o
KV 10 (ano ® (n ® n/) 1) s p(l ﬂ)dlme Deis(V)¥ l](n, ® ml 1)12(}1 ®m2 1) (4.9)
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[’isomorphisme 1 — ¢ DCﬂS(V)/DmS(V)go=1 ~ (1 — ¢@)Dyis(V) induit un
isomorphisme det, (%) ~ detq, (1 — @) Derig(V) etonnote 7 = (1 — )iz ]
I’élément de @, défini par (1 —@)my = [n : (1 —¢)m2]n. Ladéfinition de /1 implique

alors directement :
i @mih =1 (1 — gyl (4.10)

Pour calculer i3 (7 ® 15 1y, considérons le diagramme tautologique suivant :

0 0
- (5) Dois (V) ) Deric (V)
_—1 ) _ VgV ) cris
0 Derig (VYP=P (1 = ¢} Deris (V) Dcﬁ(:(l;)@zl (1-p Lo HDgys () o
[K,I;K](p%) [Kn:K]1(1—@) pr [Kn:K]T
.y B TR S Deis (V)
00— DcriS(V)go_p —_— crls( ) —_— cns( ) —_— (lfpflgpfl)Dcﬁs(V) —0
1—1
- P -
Dcris(V)guil > Dcris(v)qpi1
@11)

Ce diagramme fournit un diagramme commutatif :
Qp

/ idT @“.12)

detgy (1 — ) Pers (V) © detg] (RS ) 720 ety Do (V) © detgy) Deris(V)

I |

] _ Do (V =p~1 - Dy (V
detey, Deris (V)77 ®det@§(ﬁ%)m—dﬂ@fﬂ’)““(v)w 7 o gh (Rl ).

Les isomorphismes verticaux de ce diagramme sont induits par les lignes exactes
du diagramme (4.11). Par définition, 77 est le composé de ces isomorphismes avec
la fleche inférieure pointillée et I'isomorphisme id. Les isomorphismes v et w0 sont
induits par les fleches verticales de (4.11) qui envoient la deuxieme ligne de ce dia-
gramme sur la premiére. En particulier, on voit tout de suite que p coincide avec la

. |
multiplication par (1 — 1/p)4m Pess(V)™"  Dautre part, [K, : K] = p"Hp - 1)
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etona .
V(i @ g) ® (g @ 1) ~")
— (p"V(p — 1y)dimap Pais(V)/ Dars (V)=
det (1 = 1/p | Deris(V)?=") (1 — )iy @ 1ty .
En utilisant la commutativité de (4.12) on en déduit que :
i2((1 — @)y @ s h) (4.13)

( 1)dim<@p Dcris(v)(DZP_l —dimg, Bl (V- ( pl—n )dime(Dcris(V)/Dcris(V)gﬂl

p p—1

Comme iz(7 ® iy ) = [7 : (1 — @)ia] ™ ia((1 — @)y ® y '), en mettant
ensemble (4.13), (4.10) et (4.9) on obtient (4.8) ce qui termine la démonstration de
la proposition 4.11. O

Proposition4.12. L’image de detz, (6,1 DM (V)r, ®7,(G,] detipl[Gn]Mn dans Q,[ G, ]
est engendrée par

qI;”d Z det((p | Dcris(v))_a(n)en
nF#no

p(l—”)fd‘H’L dime Dcris(v)wz1

; i o]
)dlm(@p D (V)PP

Enn .

no

+ 01—

Preuve. 11 suffit de calculer I'image de detzp[(;n]i)M(V)lé::() & detipl[ G Pm(Vr,
dans Q,[G ] caractére par caractere et d’utiliser la proposition 4.11.

Sin € X (I'1) estun caractére non trivial, alors on a J)(V),’?Ozo = JD(V),‘?O Oetla
formule eyA = (n(y1)—1)e, montre que l'image de det:()M(V),’?‘):O@det_lc’DM(V)n
est engendrde par (n(y;) — 1)dm Dess(V)*~! en.

Supposons maintenant que n = ng. Dans la preuve de la proposition 4.11, on a
vu que la suite exacte

5 Dgis(V)
(1 = @) Deris (V)
est isomorphe a la suite :

Ap=0 s 5 Dcris(V> _y
= DW= DV = Gy Y

0— D — (1 —¢)Deuis(V) & D' — (1 —¢)Deuis(V) D D' — D' — 0,

dont les fleches sont données par d’ — (0, p*~'d"), (a, b) — (a,0) et (x,y) — ¥y
(voir (4.6)). Onen déduit que I’image de JDM(V),?O :0®det_1 Dpr (V )y, estengendrée

i 1 :1 . .
par p1=m dimap DerisVI™ g2 34 1a proposition. 0
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Remarque 4.13. On peut remarquer que les facteurs qui sortent dans cette preuve

1 . =1 v ¥
(par exemple p'! =™ dimay Dess(VO"™" 5our Je caractere trivial) compensent des facteurs

qui apparaissent dans la preuve de la proposition 4.11 (voir (4.9)) et qu’on n’a pas
besoin, donc, de les expliciter pour démontrer la proposition 4.12.

4.3. Equivalence de Cjy et de Cpp : étude de Exp‘}'}, j,ne NOUS passons maintenant
a I’étude de I’application :

Exp§y 0 (DVA=Nr, — Q, @z, (Hy, (K, T)/T78)r,

déduite de Exp; 5,- Onsuppose partoutque 2 2> 1 estunentier tel que Fil ™" D i (V) =
D cris ( V) .

Lemme 4.14. Si V est une représentation cristalline, alors :
(1) L’application naturelle de VO dans HY(1',,, VHE) est un isomorphisme ;
(2) L’application composée :

*
eXpy g,

VeE » HY(K,, V) — DX (v)

log™! x(yn)
e

coincide avec 'injection VK FilODfﬁ(V) ;

(3) Ona VOE NH} (K, V) = {0},

Preuve. Comme V est cristalline, on a un isomorphisme VHg ~ b, <7 @p(i)di (voir
[Per94, lemme 3.4.3]). La premicre assertion s’en déduit.

Pour montrer la deuxiéme, onremarque que 1’ application U log x : Fil’ D flg (V) —>
H' (K, Fil'Bg®V) estunisomorphisme et que exp”{/, K, coincide avec I’application
composée :

HY(K,, V) — HY(K,, FI°Bar ® V) = FI’Dg (V)

(c’est la formule de Kato, voir [Kat93a, §1.2-1.4]).
Enfin, comme ker(exp}’}’Kn) = Hé} (K,, V), onen déduit le (3). O

Considérons le diagramme commutatif :

£
D(Vya=0 DRV _HLK Vi,
n (H[lw(KaV)tor)Fn
& l
“V.n
13!
tv (Ky) B=Dlexpvik, g1k, vy

Dcris(V)ggzl/VGK VGK ’
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ol HL (K. V) = HL (K. T)®z,Qp et H}, (K. V)ior = V¥E_ Parla proposition 2.8,
la fleche de droite est injective. Comme la fleche inférieure est injective par définition
de I’application exponentielle, on a un isomorphisme :

= ty (K
ker(Bxpi ) = ker (8,,: DV - —— Kl )

Dcrjs(V)(p:1/ VGx

La deuxieme suite exacte du lemme 1.5 donne un isomorphisme :

D i, (V
- cns( )1 1 ~ (V*(l)GK)*,
Fil"Dis (V) + (1 — p~lo= ") Dis(V)

et en quotientant I’isomorphisme (2) de la proposition 3.2 par Fil°, on obtient un
isomorphisme :

coker(’i“‘{/  pvyA=o L 1K) )Trw
o] R N

< (VD IERYE,
Dcris(v)q):l/VGK ( ( ) )
d’ou la suite exacte courte :

DWVIE &, tv(Ky) Tk, /k
%.
ker(Exp§, , ) Dis(V)9=1/V Gk

(VH1HU5)* — 0.
D’autre part, pour toute représentation p-adique, on a une suite exacte :

— Hi (K, V)" — 0

Oé(Hﬁv(K,V)) KLV
VHk r HYT,, VHK)

(voir la proposition 2.8 ou bien [Per94, proposition 3.2.1]). On a
VIR = HY (I, VIR et Hig (K, V)P = (VH) PR )T o (VD) 7K™

La fleche H'(K,.V) — HZ(K,V)'™ est duale de I'application d’inflation
V*(1)6%x — HY(K,, V*(1)) (voir le (3) de la remarque 2.9).

Proposition 4.15. On a un diagramme commutatif dont les fleches horizontales sont
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des isomorphismes .

0 0
D(V)E=0 EXDY b,

&
Ker(Txpy, , ) Im(Expy 5, ,)

l@;’n (1
tv(Kn) (h—L)expy k, H) (K, V)+VOK
(Deris(V)=1/VOK) VOK
Trg,/x 2

(h="1)!og™ " x (vn)

(V*(1)¥K)* HE (K, V)"

0 0.

Preuve. 11 résulte du théoreme 3.1 que le carré (1) du diagramme est commutatif.
D’apres le lemme 4.14, le diagramme :

(inf g, /K .expy g, )

V(1)K x DEneyy HY(K,, V*(1)) x H(K,, V)
dR

l (log ! X (yn).id)

Trg, 10, -]
Dz (V*(1)) x Dgg (V) - Q

est commutatif, ce qui fait que 1’application composée :

CXPV. Ky

Dy (V) —= HY(K,, V) > (V(1)F%)*
coincide avec I’application :

log ™! x(ya)Trg, /k
DfR”(V) Dais(V) — (V¥(1)E)*,

On en déduit que le carré (2) du diagramme commute. II est clair que toutes les
fleches horizontales sont des isomorphismes. Comme la colonne de gauche est exacte,
la colonne de droite I’est aussi. O

Corollaire 4.16. On a un isomorphisme canonique :

HY(K,, V)
HYK,,V)+ VO’

coker(Expy, ;, ,) =
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Preuve. 11 suffit d’appliquer le lemme du serpent au diagramme :

1 G
0 —Im(Exp}, ;) — Ll T — HE (K, V)™ —0

| |

) —> Hll\;\/E/I{G’I;/)Fn —_— % —_— HIZW'(K’ Vilh —sp, O

On note By, , . : ker(Expj,, ) — coker(Expj,, ) I'application déduite de
Exp{, ,, .-

Proposition 4.17. On a un diagramme commutatif dont les fleches horizontales sont
des isomorphismes :

HI(K,, V)
ker E i Al
Sy (K, V)
(1)
By 1,
ker(ExpY ; ,) . coker(Expf, ;)
S @) expy, v
-1
Fil' DEs (v) (h—1!log™" X (ya) Fil DX2 (v
VGK VGK

Preuve. La commutativité du deuxieme carré est démontrée dans [Per94, lemme
3.5.9] en utilisant 1a loi de réciprocité explicite. Remarquons que Perrin-Riou utilise
une autre normalisation pour la fleche au milieu (son 7, est égal a notre — By, V.ha) €8
qui fait apparaitre le signe dans sa formule. Le reste est une conséquence immédiate
de la proposition 4.18 ci-dessous. O

Rappelons que dans le lemme 1.3, on a construit des isomorphismes :

1
exp . Dcris(v) :} Hf (K”’ V)
Ve (1 — @) Dais(V)  HYK,, V)

Hy(Ky, V) . p—
epvg/f m Dis(V)
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Proposition 4.18. Le diagramme :

Deyis (V) ev. fien H{ (Ky,V)
(1=9) Deris(V) HI(K, V)
Bt 1
~ V,hn H, (K, V)
ker(E§ 5k
(Ev..) HIK,. V)
ol Vit Hy(Kn.V)
Dcris(v) H]}(KH,V) 2

ou
ev. fren(@) = (h — DIp™" expy g/.(a),

1\ ! _ ~
ev,g/rn(b) = (1 - ;) (h — D!og ™! x (yu)(exply 4, ) (),
est commutatif et ou la colonne de gauche est donnée par le (1) de la proposition 3.2.

Preuve. Sia € Dgis(V)/(1 — @)D is(V), on choisit un élément f(X) € D(V)
vérifiant Af(X) = a et 'on pose g(X) = (y, — 1) f(X) ce qui fait que g(X)
est 'image de a dans ker(25, ) € D(V)P=". Soit F(X) € H(V) un élément
vérifiant I’équation (1 — @) F(X) = f(X) —a. Sion pose a(X) = (3" ® ¢,) f(X)
et A(X) = (3" @ e5) F(X), alors A(X) vérifie (1 — ¢)A(X) = «(X).

On a Fil' Deis(V(—h)) = Deis(V(—h)) ; soit :

S5 ko HV (=) — H' (Ky, VK))

le systeme d’applications construit dans [Ben00, §4.2-4.3] et dont la construction a
&té rappelée au paragraphe 3.2. Posons :

2 = (=D"E5 Ly i (0 © @) T AX)),
et notons Zy.,, sonimage dans H (K, V(k))/HY(T",,, V (k)HK). Le théoreme 4.3 de

[BenOO] montre que corg, /k,(Zknt+1) = Tk pour toutn > letqu’il existe s = 0
tel que la suite :

j ;
g J
p(s iim § :(_1)k(k)TWS_k OI€8K . /K, (Zm,k)
k=0
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converge vers 0 quand m — o¢. On vérifie que 2 », € (Hllw(K , V() Vk)HE )T,
(par exemple, on peut utiliser les arguments de [Ben(0], pour montrer que le cup-
produit de Zx ,, avec les éléments de V*(1 — k)Ok estnul) et il existe donc un unique
dlément 7 € H (') @4 (Hllw(K, V (k) Vk)HE) tel que Py ). (TWL(Z)) = Ziem
pour tous k € Zetm > 1.

Lélément B(X) = (y, — DA(X) vérifie (1 —p)B(X) = (8" @ ep)g(X) etona:

Py (TWS 0 BxpY, 1 (2)) = (=1 E5 1 e (0 @ )" B(X)),

et donc (y, — Dz = Expy, . (g) et By, , (a) = —zp,, mod H;(K”, V). D’autre
part, le méme argument que dans [Ben00, §4.4.5] montre que :

2o = (h — D!p™"expy g, (—p " (a), (0 @ @) "F({pr — 1)),
ol on note encore expy g, I'application de connexion dans (1.2)
expy k,: Deis(V) @ 1v(K,) — H' (K, V).
Comme I’ opérateur ¢ agit trivialement sur D (V) /(1 —@) Dis(V), onendéduit que
(h = D)!p™" expy f,(a) = —z0n mod H, (K, V), d’ot on obtient B, ,  (a) =
(h — D!p™" expy, ¢/.(a) ce qui montre la commutativité du premier carré du dia-
gramme,

Démontrons la commutativité du deuxieme carré. Fixons un entier k£ = 1 supé-
rieur a la longueur de 1a filtration de Hodge de V*(1) et tel que Fil =% Dgis (VF(1)) =

Deris(V*(1)). Comme Expsy.p, = &_1Expiy.yy, ;_; et €5 = —f_;. la loi de réci-
procité s’écrit :
h—1 k—1

(Expy (), Expiey 1@ N (1 + X0 = (TT ) (T4 ) tras, (f %0 0.
i=1

i=1

Si f € ker(E5, ), alors Expf, ,(f) = (yu — Dx o x € #(T) ® HL (K, V) et
B, () = =Dty (x) mod H}(K,, V).

Soient b € Dais(VF(1)) /(1 — ) Deris(VE(1)) et B(X) € D(VH(1)) un élément
vérifiant AB(X) = b. Posons g(X) = (y, — 1)B(X). On a alors :

871
EXPv*a),k(g) = (yn — Dy,
-1
(Expy () Expleggy 1 (89) = (v — D2 (x, ¥).

D’autre part, par la loi de réciprocité explicite, on a :

(EX , (F). Expl ) 1 (89) (1 + X)

h—1 k— '
= 0= D (TT4)(
i=1

n

1
14
[1 ¢) Ty, (f %0 £),

j=1
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d’ou :
:5

(e (14 X) = 0 (l_[ﬁ)(]_[ ks, (f +0 8.

On a pry:(py ,(¥) € Hf(Kn, V*(1)) et BV*(D kon (b) est égale a —pry+(py , (¥)
modulo Hel(Kn, V*(1)). 11 est facile de voir que g* vérifie aussi A(g') = b et que
Bf,,k’n(b) ne dépend pas du choix de ¢ d’ou :

By k(b)) = —pryeqy () mod HY K, V¥(1).

Comme # = —log’;(ﬁ mod (v, — 1)? et comme le coefficient de (1 + X) dans

le polyndme d’interpolation de Irg /g, (f *p £) modulo (1 + X )pn — lestégala:

1 .
kg, Do LAE =A@ =l
£ Eppn
(voir, par exemple, [Per94, proposition 4.3.2]), on déduit de la loi de réciprocité la
formule suivante :

(BVh n(f) By*(]) k. n(b))V,Kn

(h — DIk —1)! L
= T —1 , -1
i Tos A () /% gEZW[f@ ) B =Dy

Soit F(X) un élément tel que (1 — @) F(X) = f(X). Comme @ﬁ/,”(f) =0, on
aF(gm—1) ¢ Dois(V)?=! On peut modifier F(X) par cet €lément et on a alors
F(gpn—1) = 0.Comme F(X) vériﬁel’équal;ionZé_pz1 F(c(1+X)—1) = pF?(X),
ona F({m —1) = 0pourtout 1 < m < n. On en déduit que f({m — 1) =0
s12 <m < net f(§—1) = —@((0)). Dautre part, on a (1 — ¢)F(0) =
f(0) et comme f(O) € DCHS(V)(P_V1 on en déduit que F(0) = (1 — /)~ L)
mod Dis(V)¥=1. Comme deu B(c~1 — 1) =0, on obtient :

Y- =Dy

éeﬂp”

=Y [S@-D. ¢ =Dy

feup

= 3 —p(F O, B = Dy + LFO) + o(FO), BO)]y
fepp

= [F(0), bly

— (1 - %)_1[f(0),b]v
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dou:

“Th = Dk = 1)
p"log x (yn)

1
(BV h, n(f)’ B;*(l),k’n(b))V,Kn = (1 - _) TI'K/Qp [£(0), bly

P

Comme By 5, ,(B) = ey(1), /e (P), la commutativité du deuxieme carré ré-
sulte de la définition de I"application expy, /f" O

Preuve du théoreme 4.4, Soit h > 1 un entier vérifiant Fil ™" D i (V) = Dyis(V) et
soit :
V.ka/kh: APR(Koo/K, V) — H(I')

la trivialisation de la droite :
Apr(Koo/K . V) ~ @ (detag, Hi, (K. V)TV @4, detag, D(V)

qui a été construite dans le paragraphe 4.1.
Soit n > 1. Comme £y = logy,/10g x (vy) = logmf s mod (v, — D2, il
est une conséquence du théoréme 4.2 que I'image de 8, K.o/K,n CSt contenue dans

(1 — y,)imep Fil® DessV) g0(1) et on pose :

Soit Qp[Gr] =~ B, E, la décomposition de Q,[G ] en somme directe de corps.
Par la proposition 4.6, I’application Expj, ;, est admissible et le lemme 4.5 fournit un
diagramme commutaf ;

det* (Exp%, ;)a
A=0 oL (K V) V.h
det Ay DV) @ det ! Agy (wa (K,V)mr) Fp(r)
l (4.14)
W K. V)
detg, :O(V))L ® det; (Hl 73 V)tor) E,.

La fleche inférieure de ce diagramme se décompose en produit des déterminants
des applications :

. J)(V)
- .
pV hodt ker(ExpV’h’k)

— Im(Exp§, ;) (4.15)

By 5 ker(Expy ;) = coker(Expy, ;, ,)- (4.16)
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Comme HE (K, V) =~ (V¥(1)FK)* est admissible et comme HE (K, V)r, =~
H*(K,, V), lelemme 4.5 donne un diagramme :

-1 2
detAQp HIW(K’ V) Ap(k)
l 4.17)
=1 g2 2 Iy
dety! HX(Ky, V), ® detg, HE (K, V) E;.

Il est clair que H*(K,, V), = HE (K, V)," = 0si L # Ao el que pour A = Ag,
la fleche inféricure de (4.17) s’identifie avec le déterminant de 1’application identité :
(VH(1)Cr)* LY (V*(1)“&)* On a des diagrammes du méme type pour les modules
DV DVYA=0 et HL (K, V)or ~ V& En particulier, comme H{ (K, V)" =
HE (K, V)'n >~ HY(K,, V), on a un diagramme :

dety Hi, (K. V or Keg
l (4.18)
dety (HL (K, V)ior)z ® detg, HO(K,. V), B,

ot HY(K,. V), =0sir # rget HY(K,, V), = VOE,

I1 résulte du théoreme 4.2 que le produit des fleches supéricures des diagrammes
(4.14),(4.17) et (4.18) coincide avec la localisation de 5"{,, Koo/K.p O11 p(A). En mettant
ces diagrammes ensemble et en utilisant la suite exacte (3) de la proposition 2.8, on
obtient un diagramme commutatif :

8*
detag, D(V) @ detp,, R1w(K, V) PROlEE o ge(T)

J l (4.19)

detg, 6,1 D(V)r, @ detg,[G,) RI'(Kq4. V) Qp[Gy]

Nous allons identifier la fleche inférieure de ce diagramme avec 1’isomorphisme
8;,, k,,k dui a &té défini au paragraphe 2.5. En effet, 8;,7 k,/k S¢ décompose en le
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produit des déterminants des suites exactes et isomorphismes suivants :

0— H%K,, V) = Duis(V)*~! — ty(K,) - HN(K,, V) — 0,

MK, V)
CXPv. fre- Dis(V) /(1 — @) Dyis(V) — ma
e s

HY K, V) .
expy, ¢t ——— = D (V)P7P
pV,g/f H}(Kn, V) CIIS( )

HYK,, V Do (V
0— # s, Fﬂopflg(m s 1"“55 ) — (VHDCE)Y 50
Hg(Kn, V) (1 —p~ 9 ") Deis(V)

(4.20)

(voir (1.1), lemme 1.3 et lemme 1.5).
D’autre part, les propositions 4.15 et 4.17 fournissent un diagramme commutatif
(voir figure 1, page suivante) dont les fleches sont données par les formules suivantes :

* (1) estlarestriction de By, ;, , a ker(@“{,,n) ;

] log x (7a) .
(2) est A5 expl g

* (3) et (4) coincident avec les applications correspondantes dans (4.20) ;

* (S)est (h — Dlexpy g ;

* (6) estla mulaplication par (7 —1)! log_1 x (vn) composée avec I’1somorphisme
canonique (V*(1)9K)* =~ HZ (K, V)™ ;

s (7) et (8) sont induites par les 1somorphismes de projection HI%N(K Ve —
HZ(K, V)r, et HY (K, V)T — (H), (K, V)or,.

Sur la deuxieme ligne de ce diagramme, on trouve les isomorphismes (4.15) et
(4.16). Grace a la proposition 4.18, les parties encadrées s’ identifient, a multiplication
des fleches par des constantes explicites pres, avec les suites exactes et isomorphismes
(4.20). Les fleches en pointillés montrent avec quelles parties de ces suites s’identi-
fient HZ, (K, V)r, = H*(K, V) et HY(K. V). Par fonctorialité des déterminants, on
déduit du gros diagramme le diagramme commutatf ci-dessous :

det@p[Gn] DV)r, @ detQp[G”] RI'(K,, V) ——» QP[GTL]
l H 4.21)

detoy, (6,1 Dig (V) ® detg,(6,] RI (K, V) —= QplGal.

La fleche gauche de (4.21) est induite par «y , et par ’application identit€ sur
detg,[c,] RI'(Ky, V). Par le lemme 4.14, I"application composée :

(7 2
HY(K, V) -5 (HL (K, V)T, —> VO
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0 0

1)
HYE,.V ( o
7Hg1(Kn V) -— ker(E%n)
5( n V) 2 0 0
£
By hn A EXPY hn
coker(Expi/jh’n) -~ ker(Expi/’h’n) cmm(Exp‘%/’hjn) —_— lm(EXp%jh’n)
3 5
H(K.V) @ mfo vy O B T
Hy (B, V)HEE, K V0T, oo - VEK Degis(V)¢=1/VEK e
4
(3)
X!
0 Desis (V) ™ G “ :
: sy — (VSR HRE W
..f
vek = HY(K, V)
S ®
0 0

HE (K. V)r,

Figure 1
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coincide avec la multiplication par ((k — 1))~ L. D’autre part, le composé :

H2(K,, V) & 12 (K, V)T — (VH)O8) ~ HX(K,, V)
Iw

coincide avec la multiplication par log x (y,)/(h — 1)!. Un petit calcul utilisant les
propositions 4.15, 4.17 et 4.18 montre que la fleche inférieure de (4.21) coincide avec
8y k, sk Multipli€ par :

((h — yHtimep Pais(V) (1650 5 (4, ))~ dimep Fil® Diyis (V)
1

; _ - 1 _dimQ Dcris(V)(p:p_
: (1 + (p‘”dlm@p Dess (V) 1(1 — ;) ’ — 1)@;0).

Par le lemme 4.7, on a ;
((h = Dy 8mes Peis(V) 10 y (3,))8mep FDers(V) — £ 13(V)P(V),
On obtient enfin le diagramme suivant, qui résume la descente effectuée :

5*
V.Koo/K.h

Apr(Koo/K, V) H(I)
Kv,n@ndl l 4.22)

QplGal.

detg, [G,4] DR (V)® detq, (G, RI'(K,, V)

La fleche inférieure de ce diagramme est :

. =1 1 _dime Dcris(v)gg:P_l
j:F;’;<V>F<V>(H(p"“‘““@PDm‘s”” (1—;) —1)%) VK /K-

Nous pouvons maintenant terminer la preuve du théoreme 4.4. En effet, par le théo-
reme 4.2, 5; Koo/K I envoie dety Dy (V) @detp Rl (K, T) sur un A-module libre

de la forme :
p-2

(1 — y) = 4mer FED VT, (v) 3™ 4y A, (4.23)
i=0

ouq; € Qp et A; = Zp[[rl]]5i.
La conjecture Crw (Koo /K, V) est vraie st et seulement si a; € Z;;, c’est-a-dire
s1 et seulement si la projection de F(I') sur Q,[G,] envoie le A-module (4.23)
sur I'7(V)Zp|G,]. La description explicite de la fleche inférieure de (4.22) avec
les propositions 2.17 et 4.12 entrainent que cela équivaut a dire que SQ,’ K,/ K e
voie dety, |,] My ® detz, (G, RI'(Ky, T') sur By g, /x (M, Ty 1 ce qui équivaut a la
conjecture Cpp(K, /K, V) et en conséquence Cry (K~ /K, V) est bien équivalente a
Cep(K, /K, V) et le théoreme 4.4 est démontré. O
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4.4. Résultats principaux. Dans ce paragraphe, on démontre la conjecture
Ciw(K~ /K, V). Rappelons que si V est une représentation cristalline dont les op-
posés des poids de Hodge—Tate sont tous positifs, et s1 T est un réseau de V, alors
le module de Wach N(T) est un A*Ig-module libre de rang d = dim(V) (voir la
proposition 1.1). On pose B = AL[1/plet N(V) = N(T)[1/p].

Théoréeme 4.19. Si V est une représentation cristalline dont les opposés des poids
de Hodge-Tate sont O =r; < rp < -+ < rq = h, et qui n’a pas de sous-quotient
isomorphe a Qu(m), alors :

1

(1) lapplication ¢~ induit un isomorphisme :

: D(v)v=!
ly .

) (W*N(V))wzl — @ﬁ:l(Klf_k Ok Fﬂchris(V))-

D)=t B ! dime, Filf Degis (V)
ety (((P*N(T))‘”ﬂ) - g(detA(Zp[A] O E =T |

Nous montrons ce théoréme un peu plus bas. Si f, g € Zp[[I'1]], on écrit f ~ g
si f et g sont associées, ¢’est-a-dire s’il existe u € Zy|[[I'1]]” tel que f = gu. De
méme, si a, b € Z on écrit a ~, b sia et b sont associ€s dans Z,. S1 M est un
A-module de torsion et de type fini, on note carx (M) son polyndme caractéristique.
Rappelons que det, (M) = carp (M)~ 'A.

Proposition 4.20. Si V est une représentation cristalline vérifiant les conditions du
théoreme 4.19 ci-dessus, alors :

1

(1) DUapplication ¢~ induit une injection :

D(vyv=l
(p*N(V)¥=!

iv: < PP (K117 @k Fil* Dis(V)).

(2) Ona:

an [ 2L )
S\l N ()Pt

Preyve. La proposition 1.2 nous dit que :

h
l_[(carA (Zy[A]l ® Zp(_k)))dim@p Fﬂchris(V).
k=1

[Blyx ®pt N(V) 1 By, ¢ ®k Dais(V)] = [(t/X)": .5 1/ X)"],

g, g,
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et on en déduit que :

ko L
N(V) C - B, k ®k Dais(V),

et que le plongement de Brlg x dans K[[7]] donne un isomorphisme K[[7]] ® B:
N(V) =~ K[[t]] ®& Dqis(V). Rappelons que I'on pose ¢ = ¢(X)/X. Comme
g"N(T) c ¢*(N(T)) (voir proposition 1.1), on a X "N(T) C (X)) "o*(N(T))
d’ou :
= () = ()
D(T) N () S )

Comme ¢ 1(1/X) € BdR,l application ¢~ 1

induit une injection :
LD = F(K (D) @k Deris(V)).
Pour alléger les notations, on pose :
D = Fil’ (K1 (1) ®k Deris(V)) = By —_ oo (K117 @k Fil" Dig(V)),
et on définit une filtration croissante de D par des sous-espaces Dy :

D =@ __ (K117 @k Fil" Dyis(V)).

OnaDy=DetDi/Di_1~ Kit " @k Filcher(V). On définit aussi une filtration
sur (X "N (V) ¥=1 par des sous-espaces N (V) en posant

M) = *(N(V)))le,

P (X7

et ¢~ ! induit alors une injection Ny (V) < Dj. Pour montrer que 1’application

Np(V)/No(V) — Dy /Dg est injective, il suffit de montrer que les applications
vk Ne(V)/Nie—1(V) — Kii* ok Filchﬂs(V) sont injectives pour k =1, ..., A.
Pour cela, soit #1, ..., ny une base de N(V) sur BE et soit :

X =

1
m(dlfﬂ(m) + -+ agpng))

un élément de ker iy ;. On a alors :
o Napn + -+ ¢ Y agng
Xk
et comme ny, ..., ny forment une base de K[[1]] ®kx Dais(V),onaa; =0 mod g

dans B}. Sil’on écrit a; = gb; avec b; = Z;io b,-ij, alors la condition r(x) = x
s’ écril :

(l;) glng) 4o +(bx)go<nd>—q" 1(w(b§)n1+m+w(b§)nd)

et ™K @k Duris(V),
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On en déduit que y = 3% 9~ L(bio)n; appartient & Deis(V)¥=F"". Mais il appar-
tient aussi 2 Fil*~1 D (V) par construction de iy k., donc a V(k — )% (1 —k) = 0.
Ceci montre que iy, est injective. Comme K 1t 7% est isomorphe 4 K[A] @ Ly (—k)
en tant que I'-modules, I’injectivité de iy implique :

( D(V)¥=1 )
AN

h
H(carA (ZplA] ® Zp(_k)))dim@p Fil* Deris (V)
k=1

D’autre part, comme D(T) est libre sur Ag, le quotient D(T)¥=!/(p* N(T))¥=!
n’a pas de p-torsion et son polyndme caractéristique est égal a

carpg, (DV)'=1 /(9" N (V)=

[ assertion (2) s’en déduit. O

Preuve du théoreme 4.19. Nous démontrons d’abord le (2). Posons :

Ifé ® frily —1) ( D(T)*~! )

[ [ — = car :

e i T,I Vl A ((p*N(T))w:]

S - dimg,, Fil" Doy (V
Z(Si ®grilyi —1) = 1_[ carp (ZplAg]1® Zp(—m))" ers(V)
i=0 m:l

Oldi =Y e, X ' (g)g. Posonsaussi fr(y1—1) =1 frin—Detgr(n— )=

=2
l_[fzo gr,i(y1 —1). Comme :

Zy(—m) Sii=-m mod p—1,
8i(Zp(—m)) = : ? sinon

et comme Zp[A] > 6]9{:02 Zipdi, on voit que pour i = 0, ..., p — 2, le Zp[[1'11]-
module 8; (Z,[A] ® Z,(—m)) est isomorphe 4 Z,(—m). Pouri =0, ..., p —2,0n
adonc:

h
eritvi — 1) = [Jn = x () ™)mey B Pens (V).
m=1
d’ou I’on déduit que :
h
[K:Qplta (V) 1_[ (k — m)dime Fil" Deyis (V)

m=1

er i ) ™F = 1) ~, p

Comme g (V) +tg(V*(=h)) = hdimg, V et comme :

dimg, Fil" Degis (V) + dimg, Fil' ™ Deis(V¥) = [K : Q,1dimg, V,
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on voit que :

F*(k) >[K1:Qp]dim(V)

er (X ()™ = Der () "= = 1) ~, (phm

4.24)
D’autre part, comme :

( D(T (k)= )Fl_o
(*N(T)ykpv=t/ 7

siké¢|[l,h],ona:

Fricn™ =0 = [DAGE": (@ N ERDET]
et le corollaire 3.10 donne :

F*(k) )[K1 :Qpdim(V)

Srix o™ = D frcn (o =1~y (phm

(4.25)
Comme la divisibilité fr ; (y1—1) | gr,i(y1 —1) estdémontrée dans la proposition
4.20, les formules (4.24) et (4.25) entrainent :

Frix)™ =1 ~, erGriyn) ™ = 1)

pour toutk ¢ [1, Aletdonc fr(y1 —1) ~ gr(y1 — 1) etl’assertion (2) est démontrée.
Montrons maintenant le (1). Si on note ¥ le conoyau de I'injection :

pv)v=t

((/Q*N(V))wzl = @£=1(Klt_k QK Fﬂchris(V))a

alors detAQp (Y) = Aq, parle (2),d’ou ¥ = 0 car Ag, est un anneau principal, ce
qui montre le (1). O

Corollaire 4.21. Si k ¢ [1, h], alors le conovau de I’application :
Q71 DA E)r, — H (K1, T(0)r,
est isomorphe a .
B 1 (2 k — m)pZ)[ A g 1) e T PeisV),

En particulier,

h
deth[AK](Q?’k’l) _ p[K:Qp]IH(V) l_[ (k . m)dlme Fil DCﬂS(V)Zp[AK].

m=1
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Nous pouvons maintenant démontrer le résultat principal de cet article.

Théoreme 4.22. Si V est une représentation cristalline de G, alors :
(1) la conjecture Crw(K /K, V) est vraie,;

(2) la conjecture Cgp(L/K, V) est vraie pour toute extension L /K contenue dans
Koo

Preyve. Comme la conjecture Crw (Koo /K, V) est stable par suites exactes et comme
lecas V = Qp,(m) a été démoniré dans [Per94, page 143], on peut supposer que V n’a
pas de sous-quotient fixé par Hg . De plus, Crw(Kso/K, V) est manifestement stable
par twist. Pour fixer les idées, on va donc supposer que V satisfait aux hypotheses du
théoreme 4.19 et on va montrer Cry, (Koo /K, V) pour k& ¢ [1, i]. Sous ces hypotheses,
HL (K, T(k)' = 0, le groupe HE (K, T (k)) est fini et pour n = 1 le diagramme
(4.19) du paragraphe 4.3 s’¢écrit .

detyg, DV(K) ® detl_\ép H (K, V(K) —— 3¢(T)
l (4.26)
det, (ax] DV )y @ dety) a0 Hi (K V(R)r — QplAg].
La premicre ligne de ce diagramme est induite par I’application

Expy ok = (=D Tw§, ;o Exp g 0 (3% ® ex)

et le théoréme 4.2 (la conjecture dg, (V) de Perrin-Riou} entraine que I'image de
detp D(T (k) @ detpy RI'(K, T'(k)) dans F(I") s’écrit sous la forme

h , p-2

i=1 i=0
oua; € Qp et Ay = ZpllI'1118;. Pour conclure, il suffit de montrer que a; € Zj,
pouri = 0,..., p — 2. Le (2) de la proposition 3.3 montre que la deuxieme ligne

de (4.26) est induite par (—1XQS (0 @ )71 o (¥ @ ex)) et on en déduit que
I'image dedetz,[ax] D(T(k))r, ®detipl[AK] Hllw(K, T'(k))r, dans Q,[Ax ] estégale

a [1)(k — jymes ™ Pess(V) 52072 0,5,

D’autre part, comme le @-module filtré Dg(V) est admissible, on a [M :
o(M)] = plK@lir(V) o en comparant avec la formule du corollaire 4.21, on obtient
que a; € Z]’; et la conjecture Cryw (Koo/K, V) est démontrée.

Le théoreme 4.3 et la proposition 2.21 montrent finalement que la conjecture
Cpp(L/K, V) est vraie pour toute extension L /K contenue dans K ;. O
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Corollaire 4.23. Si V est une représentation cristalline de G, alors :
(1) la conjecture Cgp(L, V) est vraie pour toute extension L /K contenue dans Q;b.

(2) la conjecture Cpp(K, V(1)) est vraie pour tout caractere de Dirichlet n de I'.

Preyve. C’est une conséquence immédiate de la proposition 2.21. O
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