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A quasi-periodic minimal surface

Laurent Mazet and Martin Traizet

Abstract. We construct a properly embedded minimal surface in the flat product R? x S which
is quasi-periodic but not periodic.

Mathematics Subject Classification (2000). 53A10.
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1. Introduction

Quasi-periodicity is a popular subject in both mathematics and physics. Probably
the most famous examples are Penrose’s quasi-periodic tiling, and quasi-periodic
crystals.

Recall that a planar tiling 7 is quasi-periodic if any finite part of the tiling repeats
infinitely many often. In other words, for arbitrary R > 0, the tiling 7 contains an
infinite number of translation copies of 7 N B(0, R) where B(0, R) is the ball of
radius R centered at 0.

Of course, for minimal surfaces, it 1s too much to ask that a part of the surface
repeats exactly, because then by analytic continuation the whole surface would be
periodic. We are thus led to the following definition, which was suggested to the
authors by H. Rosenberg.

Definition 1. A complete minimal surface M in R? is quasi-periodic if there exists a
diverging sequence of translations (7)<, such that T, (M) converges smoothly to
M on compact subsets of R>.

While writing this paper, the authors discovered that the same notion had been
introduced by Meeks, Perez and Ros in recent papers ([11], Theorem 1, [12], Defini-
tion 1, [13], Definition 1.5).

Of course a periodic minimal surface is quasi-periodic. A natural, and open, ques-
tion 1s whether there exists quasi-periodic minimal surfaces which are not periodic. In
this paper we answer this question when the ambient space is the flat product R? x S!
instead of R?. The definition of quasi-periodicity is exactly the same in this case.
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Theorem 1. There exists a complete embedded minimal surface in R? x S' which is
quasi-periodic but is not periodic. This surface has bounded curvature, infinite total
curvature, infinite genus, infinitely many ends and two limift ends.

Let us now explain informally how this surface 1s constructed. H. Karcher has
constructed a family of doubly periodic minimal surfaces in R* which he called the
“toroidal halfplane layers™ [4]. They were the first complete, properly embedded,
doubly periodic minimal surfaces to be found since H. Scherk’s classical example.
The toroidal halfplane layers have two periods: a horizontal period T and a vertical
period (0, 0, 1). We may identify the quotient of R® by the vertical period (0, 0, 1)
with R? x S!. So the toroidal halfplane layers project to simply periodic minimal
surfaces in R? x S!, with period T'. They have genus zero.

A very successful heuristic to construct new examples of minimal surfaces is
to start from a simple example, and to complicate it by adding handles. One can
start from a very symmetric example and break the symmetries by adding handles at
suitable places.

Several people have added handles to H. Karcher’s toroidal halfplane layers. The
first one was F. Wei [18]. He was able to add one handle per fundamental piece in a

Figure 1. Left: one of Karcher’s toroidal halfplane layers. Right: one of the Wei surfaces. A
fundamental domain is highlighted for each. Both surfaces extend periodically vertically and
horizontally. The fundamental domains of these two surfaces are the basic building blocks for
the surface we construct: we assemble them in a quasi periodic, non periodic way. Computer
images made by the authors using J. Hoffman’s MESH software.

periodic way. The resulting surfaces have infinite genus in R? x S! and are periodic.
W. Rossman, E. Thayer and M. Wolgemuth [16] have added handles in various ways
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to the toroidal halfplane layers, still requiring periodicity. Recently, the first author
was able to add one single handle to the toroidal halfplane layers, without requiring
horizontal periodicity. The resulting surfaces in R? x S! have genus one and are not
periodic anymore.

In this paper we add an infinite number of handles to the toroidal halfplane layers,
so the resulting surface have infinite genus, but without requiring horizontal period-
icity. In fact the placement of the handles will be prescribed by a sequence of integers
(pi)iez. It this sequence if quasi-periodic but not periodic, the resulting surface will
be quasi-periodic but not periodic.

To construct our surface, we follow the main lines of H. Karcher’s conjugate
Plateau construction. The principle is to first construct a minimal surface with bound-
ary made of straight edges. Typically this surface is constructed by solving a Dirichlet
boundary value problem on a polygonal domain with piecewise linear boundary data.
(The boundary data may take on infinite values, in which case this is called a Jenkins—
Serrin type problem.) Then one considers the conjugate minimal surface which is
bounded by planar geodesics. If the polygonal boundary of the first surface 1s well
chosen, the conjugate surface will extend by symmetry to an embedded, complete
minimal surface. Adjusting the lengths of the edges so that this is the case is called
the Period Problem. The difficulty of solving this problem is the main limitation of
the method.

We add one more step to this construction. We first solve a Dirichlet boundary
value problem for the maximal graph equation, with piecewise linear boundary data.
Then we consider the conjugate function, whose graph is minimal. Then as above
we consider the conjugate minimal surface, solve the Period Problem and extend by
symmetry. So there are two consecutive conjugations, although of a different nature.
The advantage of this approach is that part of the Period Problem (namely the vertical
part) will be automatically solved. More details on maximal surfaces will be given
in Section 2.

In our case, since we add infinitely many handles in a non-periodic way, we are
faced with an infinite dimensional Period Problem. We begin by adding a finite num-
ber N of handles. We solve the Period Problem using the Poincaré—Miranda Theorem,
which 1s a natural N-dimensional extension of the intermediate value theorem. Then
welet N — o0.

2. Preliminaries

2.1. Minimal and maximal graphs. Let u be a function on a domain Q  R?. The
graph of « is a minimal surface if « satisfies the minimal graph equation

Vu
div| ———1] = 0. 1
1V(\/l—I—IVthZ) W
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This equation is equivalent to the fact that the conjugate 1-form

daw

75 Uy
SR S N S
Y1+ [Vap? J1+ [Vul?

is closed. Locally, dW,, is then the differential of a function W, called the conjugate
function. Then v =\, is a solution of the maximal graph equation

Vv
div| ————} = 0. 2
W(«/l — |VU|2) ?

This is called the maximal graph equation because v satisfies (2) if its graph is a
maximal surface in the Lorentzian space >, namely a space-like surface which is a
critical point for the area functional.

Conversely, let v be a solution of (2). Then the conjugate 1-form

by = —— g

4
J1—|Vu|2 N

is closed. Hence locally d &, 1s the differential of a function # = &,, which solves
the minimal graph equation (1). Moreover up to a constant, &y, = u.

2.2. The Dirichlet boundary value problem. Let Q@ ¢ R? be a bounded domain.
Let v: €2 — R be a smooth function satisfying (2). Then |Vv| < 1 hence v is
Lipschitz and extends continuously to d€2, so we can talk about the boundary values
of v. (For this to be true, we need some regularity of the boundary of €2. All the
domains we consider will have piecewise smooth boundary.)

We need to construct solutions v of the maximal graph equation (2) in €2, with
prescribed boundary values, and with singularities at some prescribed points inside
2. For this we use the following theorem, which is a consequence of Theorem 1 in
[5] and Theorem 4.1 in [2]:

Theorem 2. Let @ C R? be a bounded domain. Let 8 < 2 be a finite set (the
singular set). Let ¢: 32U 8 — R be a given function such that

lo(p) — ()| <dg(p.p') forallp.p' €dQUS, p #p, (3)

where the inequality is strict whenever the segment [p, p’] is not contained in 9%.
Then there exists afunctionv: Q — Rwhich satisfies the maximal graph equation (2)
in 2\ 4, with boundary data v = ¢ on 02U 4. This function is smooth in 2\ 4.
(Here dg is the intrinsic distance of 2, so if Q is convex, it agrees with the Euclidean
distance.)
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2.3. Some complements on the correspondence v < &,. Since we obtain solu-
tions v to the Dirichlet problem for (2), we need to understand the behaviour of the
conjugate function &, near the boundary. The first result describes the behaviour
near the boundary of the domain €2.

Lemma 1 ([3] and [9]). Let v be a solution of (2) on Q2 and T C 92 be an open
straight segment oriented as 3. Then | rdv = |T|ifand only if D, diverges to +0o<
onT.

Now we shall describe the behaviour near a singularity in the domain. Let v be a
solution of (2) on a punctured disk D* (with D = {(x, y) € R?| x?+ y* < r2}). Then
the conjugate function u = @, is not well defined on D*; actually, « is multivalued
in the sense that when we turn around the origin we need to add a constant to «: this
constant is given by . 7 d®, where y generates 1 (D). If this constant vanishes, u
i1s well defined and so extends smoothly to the whole disk; v then also extends to D
and the origin 1s a removable singularity for v.

In the case |, . d®,, #£ 0, the graph of the multivalued function u has then the shape
of a half-helicoid. On the boundary of the cylinder I x R the graph is bounded by a
helix-like looking curve. It is bounded by a vertical straight line above the origin.

In fact in the paper, we are always in the case where v 1s positive and vanishes at
the origin. This first implies that f y dd, # 0. Besides, Theorem 4.2 in [9] proves
that the graph of « is bounded by a vertical straight line above the origin.

2.4. Convergence of sequences of solutions. We shall study many times the con-
vergence or the divergence of sequences of solutions to (2). In this subsection, we
expose some results that we will use. Actually, these results were developed by the
first author 1n [7], [9] for solutions of (1); the correspondence u < W, and v < &,
translates them to solutions of (2). Here the convergence that we shall consider is the
C* convergence on compact subsets of the domain for every k.

So let us consider a sequence (vy,),en Of solutions 0 (2) which are defined on
a domain €2. We first notice that since each v, is Lipschitz continuous there exists
a subsequence of (v, — v,(g)) (where g € €2 1s a fixed point) that converges (o a
Lipschitz function v on €; but the convergence is only CY and v is a priori not a
solution to (2). However, since we have convergence on Q, we can talk about the
boundary value of the limit.

To study the smooth convergence, we first define the convergence domain of the
sequence by

B((n)nen) = {p € Q[ sup{|Vu,|(p)} < 1}

B((vy)nern) is an open subset of © and on each component ' of it, there is
a subsequence of (v, — v,(g))uen converging C* on compact subsets of Q' to a
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solution v of (2), where ¢ is some fixed point in ’. We notice that all solutions
of (2) that we shall consider are bounded by 1; thus we do not need to use the
vertical translation by v, (g) (o ensure the convergence. Besides €2\ B((vy)pen) 18
the union of straight lines U; L;, where each L; is a component of the intersection of
a straight line with €2. The L; are called divergence lines of the sequence (vy),en
since sup, {|Vux|(p)} = 1 for p € L;; more precisely we have

Lemma?2. Let pbeapointinadivergenceline L, then a subsequence of (Vvy (p))nen
converges to one of the two unit generating vectors of L.
Besides, if T is a segment in L, it holds that fT dv, — x|T'| for a subsequence.

To ensure the convergence of a subsequence of (vy)xer on €2 it then suffices to
prove there are no divergence line. The above lemma is one tool in that direction.
The following one is another.

Lemma 3. Lef us assume that one part of the boundary of Q is a segment [a, b). If
foreveryn |v,(a) — vy, (b)| = |a — b|, then no divergence line can end in the interior

of [a, b].

Actually in this paper, the solutions are not defined on the same domain 2: we
have in fact a sequence of domains (€2,),en and each solution vy, is defined on €2,,.
So to make sense to the above definition we need to introduce the limit domain Qao:

Q0= Im( M Qk).

peN k=p

A point is then in Q4 if a neighborhood of this point is included in all Q2 for k&
great enough. With this definition, we have anew the convergence domain and the
divergence lines by replacing €2 by Q2.

We notice that when (£2,,),ery 18 an increasing sequence, 2, 18 simply the union
of all the €2,. In this paper, the sequence €2, is often Q \ 4, where 4, 1s a locally
finite set of points. If (4,) converges on compact subsets to a locally finite subset 5~
then Q2o = 2\ 40.

3. The fundamental piece

3.1. The Dirichlet boundary value problem. In this section we solve a Dirichlet
boundary value problem for the maximal graph equation (2) in an infinite strip. The
solution v will have singularities at some prescribed points. The position of these
singularities are the parameters of our construction. (Fach singularity 1s responsible
for one handle of the minimal surface we are constructing. In later sections, we will
adjust these parameters so that the Period Problem is solved.)
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Fix some £ > 0 and let 2 be the strip R x (—¥£, £). Let us define the boundary
data ¢ on 92 as follows: for k € Z, let @;” = (k,#) and a, = (k, —¢). Define ¢
on the segment [ai_l, afk Ll by elp) =|p — ail. In other words ¢ is piecewise
affine on 2€2, with value O at ai and 1 at ai 41 (see Figure 2).

Let £ be a closed, discrete subset of the horizontal line y = 0. It will be convenient
to identify the x-axis with R and see 4 as a subset of R. When 4 is finite, we write
8 ={q1,...,gn}and assume thatg; < g2 < --- < gy. When 4 is infinite, we may
write § = {g; : i € I}, with gq; < g;4+1, where [ is either N, —N or Z, depending
on whether 4 is bounded from below, bounded from above, or neither. Finally, we
define ¢ = 0 on 4.

0

a -
2k a2k+1

Figure 2. The Dirichlet boundary value problem.

Proposition 1. Let Q2 and 8 be as above. Assume that
g — iyl > 1 forallg € 8, k €L @)

Then there exists a function v on Q2 which solves (2) in 2\ 8, with boundary data
v=gond2U4S Moreover, 0 < v < 1in 2 The function v is unique.

We call the function v the solution to the Dirichlet problem in €2 \ 4. When
needed, we will write v = v[4].

Remark 1. The condition (4) is automatically satisfied when £ > 1. We are however
mostly interested in the case £ < 1, as this is the only case where we know how to
solve the Period Problem.

Proof of the proposition. For n € N*, consider the box @, = (—2n,2n) x (—£, £).
We first solve the Dirichlet problem on €2, and then let n — oc. Let 4, = § N Q,.
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Define ¢, on 32, U 3§, by ¢, = ¢ on the horizontal edges [—2n, 2n] x {£l}, ¢, =0
on the vertical edges {+2n} x [—£, £], and ¢, = 0 on the singular set 4.

Claim 1. The function ¢, on 092, U &, satisfies the condition (3) of Theorem 2.

Proof. Consider p, p’ € 3Q, U S$,, p # p’.
+ If p and p’ are both on the line y = ¢, then clearly |¢, (p) — ¢ (p)| < |p — P/|.

« If p and p’ are on 32, let p and p’ be the projections of p and p’ on the line
y = £. Then

|00 (2) — @n (P = lon (D) —u (P <P —P| < |p— Pl

Moreover, if the segment [p, p’] is not horizontal, the last inequality is strict. If
the segment [p, p’] is horizontal, and is not included in 92, then p and p’ are
both on the vertical edges, so |¢,(p) — pa(p)| = 0 < |p — p’| as required.

« If pisondQ, and p’ = g € 4. if pis ona vertical edge, then ¢, (p) = ¢, (q) =
0. If p is on the segment [a;g(, aiﬁc Jrl], we have

[0n(P)—0n(@)| = |p—adl = 1=|p—a 1| < 1+lg—pl—lg—ad | < |p—q

where we have used the triangle inequality and the hypothesis of Proposition 1.
The case where p is on the segment [a;rk_l, a;rk] is similar, and the case where
p is on the line y = —£ follows by symmetry of ¢j,.

« If p, p’ are both in 4, then ¢, (p) = ¢, (p’) = 0. O

By Theorem 2, there exists a solution v, of the maximal graph equation (2) on
Q, \ 4, with boundary data ¢,. Since v, extends continuously to the compact set
Q,., v, is bounded. By the maximum principle for the maximal graph equation, v,
reaches 1ts maximum and its minimum at a boundary point or a singular point, so
0 < v, < 1in 2,. Consider now the sequence (v, ),. Let L be a divergence line.
Let T C L be a segment, then lim fT dv, = £|T|. Since v, is bounded, this implies
that L has finite length so L is a segment connecting two points p and p’ on 9Q U 4.

Then

!

r
[ duvy
P

which contradicts claim 1 since L C €2. Hence there are no divergence lines, so
passing to a subsequence, (v,), converges on compact subsets of & to a function v,
which is a solution of (2) in €2 \ 4 with boundary data ¢ on 92 U §. Uniqueness
follows from Theorem 2 in [10]. U

lp(p) — @(p))| = —lp=p1 = lep)—ePHl=Ip—7|
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3.2. The minimal graph. In this subsection and the following one, we assume that
8 ={q1,...,qn}withg) < --- < gn. Letv be the solution of the Dirichlet problem
on 2\ 4, given by Proposition 1. Let % be the strip R x (0, £). Since Q7 is simply
connected and v is smooth in Q7F, the conjugate function « is well defined (up to a
constant) in . The graph of « is a minimal surface. In this section we describe
geometrically its boundary.

By uniqueness, v satisfies v(x, —y) = v(x, y) in €2. Hence on the x-axis, away

from the singular points g1, . . ., gy, we have vy, = 0. From the definition of &, this
gives u, = 0. Hence # 1s locally constant on the x-axis minus the singular points,
with a finite number of jumps at the points g1, ..., gy. On the line y = £, u goes to

00 on the segments (aj;_;.a3;,) and o —oo on the segments (a3, az; 1), k € Z
(see Lemma 1).

Let M be the graph of u on the strip 2. The minimal surface M is bounded by ver-
tical lines Ay above the points a;r, k € Z,by N vertical segments B; above the points

gi.t =1,..., N, by N — 1 horizontal segments C; above the segments (g;, g;+1),
i = 1,..., N — 1 and by two horizontal half-lines Cy and Cy above (—o0, g1)
and (gx, +0o0) (see Figure 3). The heights of the horizontal pieces Cy, ..., Cy are
unknown,
—00 +00 —0 400
a2+k a;;z—}—l
ot
qi qi+1

Figure 3. The minimal graph.

3.3. The conjugate minimal surface. Let M* be the conjugate minimal surface
to M. The third coordinate of M* (seen as an immersion of the strip Q1) is the
function v, so M* lies in the slab 0 < z < 1. Let A}, B] and C; denote the
corresponding conjugate curves on M* (see Figure 4). Then the A}, k € Z, and B/,
i =1,..., N, are horizontal geodesics. From the boundary values of v, A3, and B/
lie in the plane z = 0, while A’z"kJrl lies in the plane z = 1. Each Cf,i =0,..., N
is a geodesic contained in a vertical plane parallel to the plane x = 0. There is no
reason however that all C}" are in the same vertical plane: this is the Period Problem,
which we will consider in the next section.

Remark 2. The function « is the solution of a Jenkins—Serrin type problem on the
strip 7. One possible way to construct M would be to directly solve this Jenkins—
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4

S inplane 7 =0

T inplanez =1

| C _______ in vertical plane
F i S

Figure 4. The conjugate minimal surface, Period Problem not solved.

Serrin problem, with the jumps of « at each point ¢; as parameters. Then we would
have to adjust these parameters to guarantee that the conjugate curves B all lie in the
plane z = 0. This means another Period Problem to solve. It is automatically solved
in our maximal graph approach.

4. The Period Problem

In this section, we first formulate the Period Problem in general. Then we solve it
provided that £ < 1 and there is a finite number of singularities g1, . . ., gy, which
are not too close from each other. Our solution to the Period Problem is based on the
Poincaré—Miranda Theorem:

Theorem 3 (Poincaré-Miranda). Let F = (Fy, ..., Fy) be a continuous map from
[0, 11 o RN, Write x = (x1, ..., xn). Assume that for each i, F;(x) is negative
on the face x; = 0, while F;(x) is positive on the face x; = 1. Then there exists
x0 € [0, 11Y such that F(x") = 0.

4.1. Formulation of the Period Problem. ILet €2 and 4 be as in Proposition 1, and
let v be the solution of the Dirichlet problem in €2\ 4. Let # be the conjugate function
of v and X* = (X], X3. X3) be the conjugate minimal surface to the graph of u.
Both # and X* are only locally well defined, but their differentials are well defined
in Q\ 4. Explicitly, 4X* is given by

txtiydx + (1 + (uy)*)dy

Y1+ |Vul?

dX¥ = (35)
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—{1+ (ux)z)dx - ”x”ydy
Y1+ |VuP? ’

dX}t =dv.

The Period Problem asks that X* is well defined in € \ 4. This is equivalent to
fy dX* = 0, where y is a small circle around any point of the singular set 4.

dX% = (0)

Proposition 2. X7 and X3 are well defined in Q \ 8.

Proof. This is clear for X3. For X7, we use the following symmetry argument. Let
T(x,y) = (x, —y). By uniqueness and symmetry of the boundary data, veo r = v.
Hence t*dv = dv, so vy o7 = vy and vy o T = —vy. This gives uy o 7 = —uy
and uy o T = uy. Hence using (6), 7*d X5 = dX;. Let y be a small circle around a
singularity ¢ € 4. Since 7(y) is homologous to —y, this gives fy dX3 = 0,50 X3
is well defined in € \ 4. This also gives t*dX] = —d X7, so X7 is locally constant
on the x-axis. 0O

By Proposition 2, we only have to worry about the periods of 4X7.
From now on, we assume that § = {g1, ..., gn} 1s finite. Let 3; be a small circle
around the point ¢; and let

Fi<ql,...,qN>=/ 4x;.
;

The Period Problem asks that F; = 0 for 1 < < N. Note that by symmetry, F; is
equal to twice the integral of ¢ X7 on a half circle from g; + € tog; — €, 50 F; =0
means that the curves C" and C | are in the same vertical plane as required (see
Figure 4).

4.2. Continuity of the periods. To apply the Poincaré-—Miranda Theorem, we need
the continuity of the periods with respect to the parameters.

Proposition 3. The periods I; depend continuously on (q1, ..., qgn).

Proof. Consider an admissible value (g1, ..., gn) of the parameters (namely, all g;
satisfy equation (4)). Consider a sequence (g7, . .., gy ) converging to (g1, ..., gn).
Let 8, ={g7.....qy}and § = {q1,...,gn}. Letv, and v be the solutions of the
Dirichlet problem in €2 \ 4, and Q \ 4, respectively. Assume the sequence (vy),
has a divergence line. Then arguing as in the proof of Proposition 1, L has finite
length so is a segment connecting two points of d€2 \ 4, which contradicts in the
same way the fact that the points g; satisty (4). Hence there are no divergence lines,
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so a subsequence of (v,), converges on compact subsets of € to a solution to the
Dirichlet problem on €2 \ 4. By uniqueness of the solution to this problem, the whole
sequence (vy,), converges to v on compact subsets of €, and converges smoothly to
v on compact subsets of €2 \ 4. This implies that du, converges to du and d X 1",”
converges to d X7 on compact subsets of Q \ 4. Integrating on y; which encloses g;'
for big n, we obtain that Fi (g7, ..., q%) — Fi(q1....,qn). O

4.3. Local property of the period. From now on we assume that £ < 1. Let us
define for the rest of the paper

n=1-v1-—1¢2,

In this section, we prove that some properties of the period F;(q1, ..., gn) depends
only on the position of ¢; if the other ¢; are not too close from g;.

Let us denote by €27 the box (=L, L) x (—¢, £) and consider g € (—n, n) and a
finite set of points £ in (=2, =24+ 1)U (2 —n, 2). Let v be a solution of the maximal
graph equation (2) on 22\ ({g}U4), with boundary value v = ¢ on (=2, 2) x {—¥, £},
v(g) = 0 and v(4) = (. The boundary value of v on the vertical edges is free,
although we require 0 < v < 1. Letus study the divergence lines of a sequence of
such solutions v.

Lemmad. Foreveryn € N, let q,, 8, and vy be as above. We assume thatlim g, = g
exists. Then

s if g € (—n, n), there is no divergence line in 21 \ {q},
« if g = n, the only divergence lines meeting 21 \ {n} are [n, ay | and [n, af“].

Proof. The two segments [ 7, afr land [, a; | have length one. Since v, (g,) = 0 and
i (a1+ ) =1 =wy(a; ), both segments are divergence lines for (v,) e in the second
case.

Let us now prove that there 1s no other divergence line in €21 for both cases. Since
0 < vy, < 1 every divergence line is a segment of length at most one. Hence a
divergence line L which intersects €1 must have an end point in Q7. Because of

Lemma 3 these end points needs to be agc, afl, af‘ or g. Letus assume that o is one

end point of L. The distance from aar to €22 \ €21 is one, hence the other end point
is in 21. It can not be a4 or g since Un(a(‘)") = vplag ) = limv,(g). Itis not ay,

since the distance from aar to these points is +/1 + 4¢2 > 1. Then a(-)" is not an end

point of L; by symmetry, this is also true for a5 . Let us assume that afl is an end

point of L then the other end point is ¢ither g or 2, but the distance from afl to these
two points is strictly larger than one since g € (—n, n]; then afl is not an end point
for L. By symmetry, this is also true for a_; and afc unless g = n and L = [n, afc]
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which is the case we studied first. Then we can assume that ¢ is an end point of L
and the other one 1s in €27 \ €21. By Lemma 3, if L is not horizontal, the second end
point is on the vertical edges of €27 but the distance from g to these edges is larger
than 2 — nn > 1. So L is horizontal; we assume, for example, that L is on the left
of ¢. Since the length of L 1s less than 1, the other end point of L needs to be in the
interior of 27 and 8, N (2 —n, 2] # @. Let s, = min 8, N (2 —n, 2]. We assume that
(s,) converges to s in [2 — n, 2], then L is the segment [q, s]. We have v, (s,) = 0.
Since L is a divergence line |L| = lim |v,(g) — vy (s)| = lim v, (gn) — vu(sy)| =0
this gives a contradiction and the lemma is proved. O

Let v be a solution of the maximal graph equation (2) on 22\ ({g} U 4) as above,
besides we assume now the symmetry v(x, y) = v(x, —y). In applications, v will be
the restriction of some v(gi. ..., g,] to a box around one ¢;. Let v be a small circle
around ¢ then we define the period F(v) by [ , X 1 where 4 X7 is given by equation
(5) with u the conjugate function to v. We then have some control on the behaviour
of the period.

Proposition 4. There exists ng € (0, n) which depends only on ¢ such that for any
solution v of the above Dirichlet problem on Q2:\({q} U 8) we have:

s ifno<g<n Fl) =1
s if —n < g < —no, F(v) < -1

Proof. 1eto(x,y) = —(x, y) and v be a solution of the above Dirichlet problem on
Q\({g}U48) then v’ = vog is asolution of this Dirichlet problemon 2o \({—g }U—4%).
From the definition of du = d®, and du’ = dd,s, we obtain o *du = du’. From
equation (5), we get o *d X T = —d X" where X7 and d X}’ are respectively associ-
ated to v and v’. Since & preserves orientation, integrating on a small ¢ircle around
g gives F(v) = —F(v’). Thus the second item of the proposition is a consequence
of the first one.

If the first item is wrong there exists a sequence g, — n and for each n a set
4, and a solution v, of the above Dirichlet problem on €2 \ ({g,} U 4,) such that
F(v,) < 1. Let us prove that, actually, lim F (v, ) = oo.

By Lemma 4 the two segments LT =n, af land L™ = [n, a; | are divergence

—
lines for (vy)pen. On LT, (Vu,),en converges to nafr = (V1 —4¢2,0). Let Q_
be the connected component of 1\(L™ U L™) containing the origin. Because of
Lemma 4, €2_ is included in the convergence domain of (vy) e

Then we can assume that the sequence (vy, ), ey converges on €2_ (o a solution v
which takes on the boundary the value ¢ on 32N Q_ and |p — | for p € LYU L™,
For every n, let u, be the conjugate function ®,,, whichis defined on 2_\[g,, n]. The
limit domain of (2_\[g,., n])sern 1S Q2_ and (u,),en converges to u = $,,. Because
of the boundary value of v, u takes the value +oc along L. We are interested in
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what happens near the middle point ((141)/2, £/2) of L*. Because of Lemma 1 in

[3] we have

1

b __(21,) — vi-e )
J14+|Vu2\ 2

when y — ¢/2 with y > £/2. Lemma 1 in [3] implies also that

I+n ) C
Uyl ——y) < ————, C=>0 (8)
y( 2 ly —£/2]

fory > £/2near £/2,

Consider the following path I': it 1s the union of the segment [((1 4 r)/2, 0),
((14+n)/2,3¢/4)] with a curve I'3 in Q2_ N {y > 0} that joins ((1 + 1)/2, 3£/4) to
(0,0). Fort € (£/2,3¢/4), let I'1(¢) be the segment [((1 4 1)/2,0), (1 4+ n)/2, 1)]
and 1'2(#) be the segment [((1 + 1) /2, 1), (1 +n)/2,30/4)].

a’y ag ay
|
e i i 1. 1)
15
.f" :
- [M2(t)
0
_
A N Is
|
a_y a5 ay
Figure 5

Because of the symmetry vy, (x, y) = v,(x — y), for large n, the period F(v,)
1s given by 2 fr dX7  where dX7T  is associated to u,. Because of Equation (5),
Jr @ dX7, = 0. Hence

F(uv,) 22[ dXi - (9)
2 (1)Ul ’

Since the convergence u,, — u 1s smooth on compact subsets of €2_,

f Xt —> dX; (10)
(U ' [2(HUT3

with d X{ associated to u. By (7) and (8), we have

f dX] —— +oo. (11)
L2 (6) r—£"
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Equations (9), (10) and (11) imply that lim F'(v,) = 4+00. The lemma is proved. O

4.4. Solution of the Period Problem. In this section, we go back to the N -dimen-
sional Period Problem. Consider N integers p; < --- < py (these will specify
“where” we want to put the handles). Recall that £ < 1andnp = 1 — /1 — £2 and
that Lemma 4 gives us a number ng < n. Equation (4) means that each singular point
g; must be at distance less than i from an even integer. We require that |g; —2p;| < n
fori =1,..., N. The next proposition solves the Period Problem with this setting.

Proposition 5. For any N and for any choice of p1, ..., py satisfying p1 < p2 <

.- < pp, there exists (q1, . .., gn) satisfving |q; —2p;| < noand Fi(q1,...,g9n) =
Ofori=1,...,N.

Proof. Consider any pq, ..., py such that p1 < -+ < py. Consider any value of
the parameters (g1, . .., gn) in the cubic box defined by ¢; € [2p; — no, 2p; + nol.
Consider some 7, 1 < i < N. Translating by —2p;, Proposition 4 tells us that if
qi = 2p; + no, Filq1,....qn) = 1 while if ¢; = 2p; — no, Fi(g1,....qn) <
—1. The result then follows from the Poincaré—Miranda Theorem since F; depends
continuously in the g;. O

Remark 3. We do not know if the solution to the Period Problem is unique. Since we
do not know how to compute derivatives of the periods with respect to the parameters,
its seems hard to obtain uniqueness.

5. Finite genus

Proposition 5 implies the following

Corollary 1. For each N > 1, there exists a complete, properly embedded minimal
surface in R x S! which has genus N, infinite total curvature, infinitely many ends,
and two limit ends.

Proof. Consider integers p1 < --- < py. Let (g1, ..., gy) be the solution to the
Period Problem given by Proposition 5. Let v = vlgy, ..., gn], #u = ulq1, ..., gn]
and X* = X*[g1,...,gn]. Then X* is well defined in 2 \ {g1,...,gn}. To see
that the image of X™* is embedded we argue as follows. Let M be the graph of u
on the strip Q7 = R x (0, £) and M* be the conjugate minimal surface to M, so
M* = X*(Q™1). Since Q1 is convex, M* is a graph over a planar domain by the
Theorem of R. Krust, so is embedded.

Since the Period Problem 1s solved, all segments (¢, gi+1), ¢t = 1,..., N — 1,
as well as the half lines (—o0, ¢1) and (gn, +00), are mapped onto geodesics in the
vertical plane x = O (after a suitable translation). Consider now some (x, y) € Q%
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such that x # g; for all ;. From the formula (5) we see that f(gf”oy)) dX7 > 0. Hence

the point X*(x, y) lies inx > 0. By continuity this is true for all points of QT, so M*
is an embedded minimal surface in x > 0, 0 < z < 1. Extending by symmetry with
respect to the plane x = 0 and the horizontal planes at integer heights we obtain an
embedded, periodic minimal surface in R* with period 7 = (0, 0, 2). The quotient
by this period is an embedded minimal surface My in R? x S! of genus N (now
and in the following, we identify S! with R/2Z). We will see in Section 7 that it
has bounded curvature. By a theorem of Meeks - Rosenberg, theorem 2.1 in [14],
a complete embedded minimal surface in R* with bounded curvature is properly

embedded. Hence My is properly embedded. O
In the following, when (g1, ..., gn) 1s given by Proposition 5, the associated
minimal surface given by the above corollary will be denoted by Mlq1, ..., gn].

This surface is normalized so that the conjugate to the point (—1, 0, #(—1, 0)) is the
point (0, 0, v(—1, 0)).

4 inplanez =0

i
|
i s
= i
L
_ : _ ____ inplanez =1
i
i
i -
- R e

Figure 6. The conjugate surface, Period Problem solved.

Remark 4. In Proposition 5, if the singularity set 4 is empty, the period Problem is
solved. Then a surface M[¥] of genus zero exists; in fact this surface is a Karcher’s
toroidal halfplane layer.

6. Infinite genus

In this section, we consider the case where we have an infinite number of singularities.

Proposition 6. Lef £ and no be as in Proposition 5. Consider a strictly increas-
ing sequence of integers (p;)icz. Then there exists a sequence (q;)icz, such that
lgi — 2p;| < no, which solves the Period Problem F;(q; - i € Z) =0 for all j € Z.
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Proof. Consider some n € N. We apply Proposition 5 with N = 2n 4 1 and the
N integers p_,, ..., py,, and we obtain N real numbers ¢_, . ..., g, , such that
|gin — 2pil < mo tor all |i] < n, and Fi(gi, @ |i]| < n) = 0 forall |j| < n.
Using a diagonal process, we can find a subsequence (which we will still denote
by n) such that g; = lim,_,~ q; » exists for all for all i € Z. The limit domain of
(2N A{Gin @ i] < Abner 18 @\ {gi 11 € Z}. Letvy = vlgin : |i| < nland veo =
vlg; . i € Z]. Arguing as usual, the sequence (v, ), <y has no divergence line, so up to
a subsequence, it converges on compact subsets of Q to a solution v of the Dirichlet
problem on Q \ {g; : i € Z}. By uniqueness, v = veo. Then dX{[qin : il < n]
converges (0 dX7[g; : i € Z] on compact subsets of 2\ {g; : i € Z}. Integrating on
y; gives

Filgi vi € Z) = lim Fy(gin: |if =n) =0. D

In the following when a sequence (p;);cz satisfies the hypotheses of the above
proposition and (g;);ez 18 a sequence such that |g; — 2p;| < no foralli € Z and
Fi(g; 11 € Z) = Oforall j € Z, we shall say that (g;); ez solves the Period Problem
for the data (p;)iez.

Corollary 2. For any strictly increasing sequence of integers (p;)icy, there exists a
properly embedded minimal surface M in R> x S' which has infinite genus, infinite
total curvature, infinitely many ends, and two limit ends. Moreover, if the sequence
(Pi+1 — Pi)iez Is not periodic, then M is not periodic.

Proof. Same as proof of Corollary 1. O

As above when (g; );e7 solves the Period Problem for the data (p;), <7, the asso-
ciated surface is denoted by M|g; : ¢ € Z] and is normalized as in the finite genus
case.

Using the notation of the proof of Proposition 6, we define My = Mg N :
—N<i<Nland M = Mlg; : i € Z].

Proposition 7. A subsequence of (My)n converges smoothly on compact subsets of
R? x St 10 M.

Proof. Since a subsequence of (vy,), converges to v, the result seems to be obvious.
This is not immediate for the following reason: the convergence of the conjugate
functions (i, ), to # only holds on compact subsets of 2\ {g; : ¢ € Z}. In particular,
this convergence does not tell us anything for the graph of # above the singular points
and the vertices al‘f, k € 7Z. Since these correspond to the horizontal symmetry curves
on the conjugate minimal surface, we see that the convergence of (v,), to v is not
enough to conclude.
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One way around this difficulty is as follows: we will see in the next section that the
curvature of My is bounded by a constant independent of N. By the Regular Neigh-
borhood Theorem, or “Rolling Lemma” (firstly proven by A. Ros [15], Lemma 4,
for properly embedded minimal surfaces in R? with finite total curvature, and gen-
eralized to properly embedded minimal surfaces with bounded curvature by Meeks
and Rosenberg [14], Theorem 5.3), each My has an embedded tubular neighborhood
of radius 1/./c. In particular, we have local area bounds, namely the area of My
inside a ball of radius 1/,/c is bounded by some constant. By standard results, a
subsequence of (Mpy)x converges smoothly on compact subsets of R2 x S! to a limit
minimal surface M. Since (v,), converges to v, the limit M~ needstobe M. O

Here 18 another result 1in the same spirit, which will be useful in Section 8. For
every n € N, let (pi.»)icz be a sequence as in Proposition 6, namely (p; ,)ic7 1S a
strictly increasing sequence of integers. Let (g; »)icz be a sequence that solves the
Period Problem for the data (p; »)iez.

Proposition 8. Let (p; n)icz and (qi n)iez be defined as above. Let us assume that
foreveryi € Z, limy, pi n = pi.co and limy, q; n = qi 0. Then (gi oc)iez solves the
Period Problem for the data (p; ~)icz and (Mlg; » 1 1 € Z])yern converges smoothly
on compact subsets 0fR2 x S! 1o Mlgi o0 11 € Z].

Proof. Let v, be vlg;, : 1 € Z]. First we notice that the convergence of (g; »)nez
implies the convergence of (p; »), € Z. Since we have piy1, — pin > 1 and
|Gi,n —2pin| < notoralli and n, we get pi11 00 — Pi,oo = land |g; oo —2p; 00l < no.

Since all the (g; ,)nen converge, the limit domain of (2\{g;, 11 € Z})uem 1S
Q\{gi.~ : 1 € Z}. As in the preceding, the sequences (v,),en has no divergence
line and converges to a solution vs, of the Dirichlet problem on the limit domain
Q\{gi o : 1 € Z}. By uniqueness, v = V[gic : I € Z]. As in the proof of
Proposition 6,

Fi(@ioo 1§ €2) = lim Fj(gin i €Z) =0.

Then (g; ~ )i ez solves the Period Problem.

Now as in the proof of Proposition 7, since the curvature of the surfaces Mlg; , :
1 € Z]1s uniformly bounded (see Proposition 10), the sequence (Mlg; , 1t € Z])pem
converges smoothly on compact subsets of R x S! to a limit minimal surface M.
Since (vy)nen converges to vl[gi o : ¢ € Z], the surfaces Mo needs to be Mg  :
1 € Z]. O
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7. Bounded curvature

In this section we prove that the curvature of the surfaces M given by Corollaries 1
and 2 are bounded by a constant C depending only on £. Actually, because of
Proposition 7, it suffices to prove it in the finite genus case.

7.1. Size of the handles. Suppose that v is the solution of the Dirichlet problem
on €\ {q1,...,gn}. The multi-valuation of its conjugate function u# around the
singularity g; is | i du. This is equal to twice the length of the vertical segment B;,
which is equal to the length of the geodesic Bf. So the multi-valuation of # may be
understood as the “size” of the handle. In this section we give a uniform lower bound
for this multi-valuation, which prevents the handles from getting too small.

We use the notation Q27 = (—L, L) x (—£, £).

Proposition 9. Consider some € < 1 and some no < n. There exists k > 0
(depending on U and no) such that the following is true: Let g € (—ng, no) and
3 C (=2, -24+n)U(2—n,2). Letv be asolution of the maximal graph equation (2)
in 22\ ({g} U &) with boundary value ¢ on [—2,2] x {—£, £} and 0 ar {g} U 4.
As in Lemma 4 the boundary value on the vertical edges is free, but we require v 1o
be berween O and 1. Let u be the conjugate function of v. Let y be a small circle
around q. Then | [ du| > k.

Proof. Assume by contradiction that the proposition is not true. Then there exists
sequences (¢,), and (4,), and a sequence (v,), such that fy du, — 0. Passing to
a subsequence, g, converges to some g € [—no, o] C (—n, n). By Lemma 4, the
sequence (vy),, restricted to €21 \ {¢}, does not have any divergence line, so passing
to a subsequence, it converges (o a solution v on €21. Then the conjugate differential
duy of v, converges on compact subsets of €21 \ {g} to the conjugate differential du
of v. This implies that fy du = 0, so u 1s in fact well defined in €21 \ {g}. Since
it satisfies the minimal graph equation, the point ¢ 1s a removable singularity, so u
extends smoothly to ¢g. But then v itself also extends smoothly to ¢. Since v(g) =0
and 0 < v < 1, the maximum principle for maximal surfaces gives us that v = 0 in
€21; this contradicts v = ¢ on the boundary. O

7.2. Gradient estimates. Recall that the graph of # is bounded by a vertical segment
above each singularity ¢;. Along this segment, the normal is horizontal. The following
lemma ensures that the normal remains close to the horizontal on the disk D(g;, §),
where & 1s a number we can control in function of the length of the vertical segment.

Lemma 5. For any C > 0, for any « > 0, there exists 5 > O such that the following
is true: let v be any solution of the maximal graph equation (2) on the punctured disk
D0, 1) \ {0} with a singularity at the origin. Assume that v(Q) =0 and 0 <v < L.
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Let du be the conjugate differential of v. Assume that | [ du| > k. Then |Vu| > C
in D0, §) \ {0}.

Proof. Assume by contradiction that the lemma is false. Then there exists C > 0,
k > 0, and sequences (v, )y, (Pn)a, such that v, 1s a solution of (2) in D(0, 1) \ {0},
Pn —> 0, fy duy >« and |Vu,(p,)| < C. Let &, = |pal. Let v,(p) = va(Ayp)/An
(so the graph of v, is the graph of v, scaled by 1/x,). Let p, = p,/A,; by rotation
we may assume that p,, = (1, 0). Then v, solves (2) in the punctured disk of radius
1/x,. This domain converges to the plane punctured at the origin.

Let us study the convergence of the sequence (v;),. If there are no divergence
lines, then the sequence (v, ), converges on compact subsets of the punctured plane to
a solution v. Then the conjugate differentials dii, converge to du = d . However,

| i
1

SO f y diu = oo, which is absurd. So there must be divergence lines.
Observe that

1

i

o . & . . Vit (pn)l C
VU, (1,0)| = Vo, (pu)| = [Vu(py)| = = < 1.

\/1 + |Vun(pn)|2 B v1+ C?

Hence the point (1, 0) is in the convergence domain of the sequence v,. Let U be
the component of the convergence domain containing the point (1, 0). Since v, > 0,
a divergence line cannot extend infinitely in both directions, so must be a half-line
ending at the origin. If there are atleast two divergence lines then U is a sector defined
in polar coordinates by 0 < » < 00, @1 < 6 < «». The conjugate functions u, are
well defined in U and converge to #. Then u takes the values =00 on the half-lines
6 = ayand § = «p. Since v(0) = Oand v > 0, & takes the values 00 on 6 = o1 and
—oo on 6 = «p. It is proven in [8], Proposition 2, that this Jenkins—Serrin problem
has no solution.

If there is only one divergence line, then U is a sector of angle 27 defined in
polar coordinates by 0 < r < 00, ¢ < 6 < « + 27. Then u solves the following
Jenkins—Serrin problem: ©# = +o¢ on the half-line & = « (approaching this line

with ¢ > ) and u = —oc on 0 = o + 27 (approaching with 6 < « 4 2m. It is
proven in [8], Proposition 4, that this Jenkins— Serrin problem has no solution. This
contradiction proves the lemma. O

The following lemma provides a similar estimate in a neighborhood of the bound-
ary points a;, k € Z. Itis proven in [6], Lemma 6.

Lemma 6. Given C > 0, there exists § > O such that the following is true: let u
be a solution of the minimal graph equation (1) in the half disk D(0, 1) N {y > 0},
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with boundary values +00 on the segment (0, 1) x {0} and —oo on the segment
(—1,0) x{0}. Lerv be the conjugate function of u. Assume that v(0) = 0andv > Q.
Then |Vu| = Cin D0, §) N {y > 0}

7.3. Curvature estimate. Let M be a minimal surface given by Corollary 1.

Proposition 10. There exists a constant C (depending only on £) such that the Gauss
curvature K of the surface M is bounded by C.

Proof. Since M* and M are locally isometric, it suffices to bound the curvature of
M . The proof is based on stability arguments. In what follows, all constants involved
only depend on £.

Recall that M is the graph of u on QT = R x (0, ). Let ¢y, ..., gy be given
by Proposition 5. By Proposition 9, there exists « such that | f du| > « for
i =1,...,N. Weapply Lemma 5 with C = 100 and obtain a 51 < £ such that
|Vu| > 100 in D(g;, 81),1 =1,..., N. Weapply Lemma 6 with again C = 100 and
obtain a 52 < £ such that |Vu| > 100 in D(a,j, 82), k € Z. We take § = min{dq, d2}.
Fix somei =1, ..., N. Let U be the graph of u above the half disk D(g;, 8) N Q™.
Since |Vu| = 100, the Gauss image of U is included in the spherical domain
S? N {|z] < 1/100}. The boundary of U consists of a vertical segment, two hori-
zontal segments and a helix-like looking curve which is a graph on $'(g;, 8) N Q7.
Completing by all symmetries, we obtain a minimal surface > which is bounded by
two helix-like looking curves, and which is complete in the cylinder D(g;, §) x R.
The surface X is of course not a graph anymore. However its Gauss image 1s still
included in S? N {|z] < 1/100}. As the spherical area of this domain is less than
27, ¥ is stable by the theorem of Barbosa Do Carmo [1]. Consider now a point
(x,¥) € D(gi,8/2) and let p = (x, v, u(x, y)) be the corresponding point on M.
Since p € X is at distance more than §/2 from the boundary of X, the theorem
of Schoen [17] ensures that the Gauss curvature at p is bounded by ¢/(8 /2)? for
some universal constant ¢. The same argument gives the same estimate for the Gauss
curvature when (x, y) € D(a;,8/2),k € Z.

Assume now that (x, y) € Q7 is at distance more than §/2 from all points ¢; and
all points ak Let again p = (x, v, u(x,y)). If y > 4/4, then the distance of p to
the boundary of M is greater than 5/4 (because u = £co on the top edges). Since
M 1s a graph, 1t is stable, so the Gauss curvature at p is bounded by ¢ /(8 /4)?

It remains to understand the case 0 < y < 8/4. There exists ¢ such that ¢; <
x < g1 (with the convention that g = —o¢ and gy 41 = +0o¢). Consider the box
(gi, qi+1) x(—8/2,8/2). Asthis is a simply connected domain of €2, « is well defined
on it. Let V be the graph of # on this box. The distance of p = (x, y, u(x, y)) to
the boundary of V is greater than §/4. Since V 1s stable, we conclude again that the
Gauss curvature at p is bounded by ¢/ (8 /42 O
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8. Quasi-periodicity

In this section, we prove that if the sequence (p; — pi—1)iez 18 quasi-periodic but
not periodic, then we can find a solution (g;);<z to the Period Problem such that
the associated minimal surface Mlg; : i € Z] 1s quasi-periodic but not periodic in
R? x Sl

8.1. Preliminaries. First we need to fix some notation. In the following, an element
of R” will be denoted as a function; x € R? denotes the sequence (x(i));cz. We
consider on R? the topology of the pointwise convergence, i.e., the sequence (x™),ex
converges to x™ if for every i: lim, x" (i) = x* ().

We notice that, forevery A € R, , thesubset[—A, A]* ¢ R” is compact. Besides,
on[—A, A]Z, the pointwise convergence is metrizable: if x, y € [—A, A]Z, we define
a distance by d(x, y) = Y ;7 ﬁ|x(i) — v(i)).

Let¢: N — Nbeafunction. In the following we say that ¢ 1s an extraction if ¢ is
strictly increasing. The group Z acts on the set R” by shift: if x € R* and n € Z, we
denote by # - x the sequence (x(n+i))icz. Thenif ¢ is an extraction and x € R”, we
define the sequence ¢ - x = (@(n) - x)yeny 0 R”. We have the following definitions.

Definition 2. Let x be in R”, this sequence is said to be quasi-periodic if there exists
an extraction ¢ such that the sequence ¢ - x converges pointwise to x (namely, for
all 2, limy, x (2 + @(n)) = x(1)).

Let x € RZ be an increasing sequence, we say that x has quasi-periodic gaps if
the sequence (x(1) — x(@ — 1));ez is quasi-periodic.

Let us give two examples:

(1) let @ be an irrational number, let x (1) = [«i] be the integer part of «i and let
g(i) = x(i) —x(i — 1). Then the sequence (g(i));ez 18 quasi-periodic and 1s
not periodic. Moreover, for any extraction ¢, if lim,_, ~, @(n) - g exists, then it
is not periodic.

(2) (the counting sequence) consider the infinite word on the alphabet {0, ..., 9}
formed by writing in order all natural integers:

0123456789101112131415161718192021 . . ..

Fori = 1, let x(z) be the ith digit in this word. For: < 0, let x(i) = 0.
The sequence (x(i));ez 18 quasi-periodic but not periodic. However, if ¢ is an
extraction, the limit of ¢(n) - x can very well be periodic (in fact it can be any
sequence of integers between 0 and 9).
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8.2. Why are we not yet done? Let us assume that the sequence (p(i));cz has
quasi-periodic gaps, and let (g (i));<z be a sequence that solves the Period Problem
for thedata (p(i));ez. Weexpect the surface Mg (i) : 1 € Z]tobe quasi-periodic, but
unfortunately we cannot prove that. What we can prove is that there exists a sequence
of translations 7}, such that T, (M [g (i) : i € Z]) convergesto M[g'(i) : i € Z], where
(q'(i)); ez is another solution to the Period Problem for the same data (p(i));e7. Since
we do not know whether the Period Problem has a unique solution, we cannot ensure
that ¢’(i) = ¢(i). (If the reader knows that the solution to the Period Problem is
unique, he may omit what follows. He should also inform the authors).

Our strategy is to prove, using Zorn’s lemma, that amongst all the solutions
(g(1));ez to the Period Problem, at least one of them yields a quasi-periodic minimal
surface.

8.3. Quasi-periodic surfaces. Let us consider ¢ and 7o as in Proposition 5.

Let us now explain how we shall construct a quasi-periodic minimal surface. Let
p = (p(i))iez be a strictly increasing sequence with quasi-periodic gaps. In the
following, we always assume that p(0) = 0. The sequence g = (p(i) — p(i — 1))z
is quasi-periodic, we then denote by 4 the non-empty set of all extractions ¢ : N — N
such that lim,,_. o, ¢(n) - g = g.

Let us fix a sequence ¢ = (g(i))jez that solves the Period Problem for the data
(p(i))iez. The problem consists in building from ¢ a sequence (¢'(i));<7 that solve
the Period Problem for the data (p(i));<z and such that M[g'(i) : i € Z] is quasi-
periodic.

Letus denote by r the sequence g —2p: r(i) = q(1) —2p(i)forall: € Z. Lety
be in A; ¢ - r 1s a sequence of elements of [—no, no]Z. This set is compact so there
exists a subsequence of (p(n) - r),en that converges in [—ny, no]%. Thus there exists
an extraction ¥ : N — Nsuch that (¢ o) - r converges. We notice that, since ¢ € 4,
@ o € A. The following result describes such a situation.

Proposition 11. With the above notation, let ¢ € A such thatlim,_, , ¢(n) -r =71’
Then2p+r" = 2p(i) +r'(i)iez solves the Period Problem for the data (p(i));cz.

Proof. For every n € N, let us define the sequence ¢" by ¢" (i) = g(i + ¢(n)) —
2p(p(n)) forall i € Z. We also define p" by p™(i) = p(i + ¢(n)) — p(p(n)) for all
| € Z.

Claim 2. We have lim p" = p and limg" = 2p +r'.

Proof. letus fixi € Z then,if 1 > 1:

i+p(n)
pi) = pli +9m) — plepn) = Z pl)—pl—-1)=

I=1+¢n)
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i+p(n)

= ¥ g(l)-Z(p(n) g(l).

I=14¢p(n)

Since lim;, o0 @(n) - g = g, the right-hand term converges to 2521 g(l)y = p(i).
When i < 1 we have:

pln) 0
Pl =pli+em)—plem) =Y pl—D-plhh=— > ¢m) -2,
I=i+p(n)+1 I=i+1

The right-hand term converges again to p(i). Then lim p" = p.

We have ¢" (i) = r(i +¢(n)) +2p(i + ¢(n)) —2p(p(n)) = ¢(n) -ri) +2p" (i)
forall i € Z. Since lim,, o @(n) -r = 7', limg" = 2p +r. d

By definition of ¢”, the uniqueness of the solution to the Dirichlet problem implies
that we have

vlg" (@) 1i € Zl(x, y) = vlq(i) : i € Z](x + 2p(p(n)), y). (12)

This implies that (¢" (i));ez solves the Period Problem: F;(g"(i) : i € Z) = 0 for
every j € Z.

Then by Proposition 8 and Claim 2, 2p + r’ solves the Period Problem for the
data (p(i))iez. O

Proposition 6 does not give us the uniqueness of the sequence (g(i));ez that solves
the Period Problem for the data (p(i)); <z, $0, as we said in the preceding subsection,
we cannot ensure that the sequences » and »” are equal. Such an affirmation would
be interesting because of the following proposition.

Proposition 12. With the above notations, if there exists an extraction ¢ € A such
that imy, . @(n) - v = r, the surface M|q (1) .1 € Z] is quasi-periodic.

Proof. We use the notations of the proof of Proposition 11. We have the sequences
g", p". Now Claim 2 says us that limg” = ¢. Let us recall that when (a(i));cz
solves the Period Problem, the surface M[a(i) : ¢ € Z] is normalized such that the
conjugate to the point in the graph above (—1, 0) is the point (0, 0, v(—1, 0)) where
v =vla():i € Z].

As above, (12) is true. So our normalization for the surfaces M implies that
M|g" (i) : i € Z] is the image of M[g (i) : i € Z] by an horizontal translation 7;,.
The vector of the translationis (0, —X3(2p(¢(n)) —1)) where X3 is X3[q (i) : 1 € Z].

Then by Proposition 8 and Claim 2, the sequence of minimal surfaces (M[g" (i) :
I € Z)peny = (T (Mlg(@) 11 € Z]))yen converges to Mg (1) : i € Z] smoothly
on compact subsets of R? x S'. Since M[g(i) : i € Z] is propetly embedded,
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lim [ X3 (2p(¢(n)) — 1) = oo; thus (T},), ey is a diverging sequence of translations.
This proves that M[q (i) : 1 € Z] is quasi-periodic. O

By using a proposition that will be proved in the next subsection we then can
prove our main theorem.

Theorem 4. Let (p(i))iez be a sequence with quasi-periodic gaps that satisfies the
hypotheses of Proposition 6. Then there exists a sequence (q(1));ez which solves
the Period Problem for the data (p(1));icz and such that M[q(1) : i € Z] is quasi-
periodic. Moreover if (p(i + 1) — p(i))iez is not periodic, Mlq(i) : i € Z] is not
periodic.

Proof. By Proposition 6, there exists a sequence (g(i));ez that solves the Period
Problem for the data (p(i));e7.

The sequence (g(i))iez = (p(i) — p(i — 1));e7 18 quasi-periodic so we have
the set 4. Let r denotes the sequence g — 2p, we recall that r € [—npo, nol%. By
Proposition 13, there exists ¢ and {r € 4 such that

limg - r =7, (13)
limy -r’ =r'. (14)

By Proposition 11, equation (13) implies that the sequence 2p + r’ solves the
Period Problem for the data (p(i));<z. Equation (14) gives us by Proposition 12 that
M[2p(i) +r'(i) 1 i € Z] is quasi-periodic. O

8.4. A dynamical result. Tet X be a topological space with a countable basis. In
the following, we shall denote by (V,(x))sen a countable decreasing basis of open
neighborhoods of x € X. Let F': X — X be a continuous map. Let g bein X. We
assume that there exists an extraction ¢ such that lim, F#™ (g) = ¢. As above we
denote by # the set of extractions ¢ such that lim, F¥" (g) = g. The aim of this
section is to prove the following proposition.

Proposition 13. Let K be a compact subset of X such that F(K) C K. Letxbein K.
Then there exists two extractions ¢ € A and v € 4 such that lim, F*™ (x) = x’
and lim,, F¥" (x") = x’.

In the proof of Theorem 4, we use this result with X = R% with its pointwise
convergence topology, K 1s [—no, no]z, I is the shift map and g is the quasi-periodic
sequence g.

Before proving the above proposttion, let us fix some notations. Letx be as in the
proposition and ¢ € 4; the sequence F¥)(x) is a sequence in K which is compact.
Thus there exists a subsequence that converges. As said above this implies that there
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exists an extraction ¢ such that F¥Y ) (x) converges. We notice that ¢ o ¢y € A.
Hence we define

Asymp(x) = {y € K | y = lim,, F¥"(x) for some ¢ € A}.

We know that Asymp(x) is non-empty. In fact Proposition 13 consists in proving
that there exists x” € Asymp(x) such that x” € Asymp(x’). Then Proposition 13 is a
consequence of the following three lemmas.

Lemma 7. Let x € K. Then Asymp(x) is a closed subset of K.

Proof. Let (vi)krew be a sequence in Asymp(x) that converges to y € K. For each
k, we choose @ € 4 such that yr = lim, F#" (x). We are going to construct by
induction ¢ € 4 such that y = lim,, F¥ (x).

Let n be in N*, we assume that v (g) is constructed for ¢ < r such that, for every
q < H,

FY@(g) e Vy(g) and FV9(x) € V,(»).

Since lim y; = y, there exists ko such that yg, € V,,(y); hence V, (y) is an open
neighborhood of yg,. Since ¢, € o, there exists go such that ¢g, (go) > ¥(n — 1),
and

FP@®)(g) e V(g) and F% %) (x) e V,(y).
Then if we take ¢ (n) = @i, (g0) we get

F""(g) € Vu(g), (15)
FY®(x) € Vu(y). (16)
This finishes our construction.

Equation (15) implies that ¢ € #4 and (16) implies that lim, F¥" (x) = y thus
y € Asymp(x). O

Lemma 8. Let x € K and let y € Asymp(x). Then Asymp(y) C Asymp(x).

Proof. Let z be in Asymp(y). Let ¢ and ¢ € # such that lim, FeMW(x) = y and
lim, F¥"™(y) = z. Let us build by induction x € s such that lim, FX" (x) = z.

Let n be in N*, We assume that y (¢) is constructed for ¢ < r such that, for every
q < Hn,

FX9(g) e V,(g) and F*P(x) e V,(z).
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Since lim, F¥™(y) = z, there exists ko such that
FV®) gy e Vi(g) and F7%(y) e V,(z).

Then (F¥%))=1(V,(g)) is an open neighborhood of g and (F¥®0))=1(V, (2)) is
an open neighborhood of y. Since lim, F ?)(x) = v, there exists o such that
Y (ko) + ¢(lo) > x(n — 1), and

Fe0l(e) e (FVE)H(Vi(g)) and  FP0N(x) & (FPHNTH(V,(2)
Hence if we take x (n) = (ko) + @ (lp), we have:

FX"(g) € V,(g), (17)
FXM(x) € Vy(2). (18)

This finishes our construction.
Equation (17) implies that y is in 4 and (18) gives us that lim,, F*(x) = z,
hence z € Asymp(x), 0

Lemma 9. Let K be a compact setand T : K — P(K) a map such that:
(1) forall x € K, T(x) is closed and non-empty;

(2) forallx e K andally € T(x), T(y) C T(x).

Let x € K, then there exists y € T (x) such that y € T(y).

Proposition 13 is then a consequence of this lemma with 7 = Asymp.

Proof of Lemma 9. The proof of this lemma is given by Zorn’s lemma. Let x be in
K, we denote by 8 the set {1T'(v), y € T(x)}. B is ordered by the inclusion. Let
(T})ier be a totally ordered family of 8. Let us define Tw = [ ;o7 1i. I T is
empty, since each 7T; is closed and K is compact there exists a finite subset Ip C [
such that (7);,, i = #. Since (T})iey, is totally ordered there exists ip € Io such that
Tio =Nic 1, 11> but Tiy is non-empty thus Tog # 0.

Let y bein T, then y € T; for all 1 € [. This implies by the second hypothesis
that y € T(x) and T (y) € B. Besides I'(y) C T; foralli € I;then T(y) C Tw.
We obtain that 7' (y) is an under-bound for the family (7;);e¢;.

We have proved that every totally ordered family admits an under-bound. Hence,
by Zorn’s lemma, there exists an element 7, € 8 which is minimal for the inclusion.
Let y be in T3, (we recall that all elements of 8 are non-empty subsets of K). We
have y € T (x) by the second hypothesis then T(y) € 8 and T'(y) C T3. Since Ty,
1s minimal in B, T'(y) =1, and y € T (y). O
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