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Logarithmic plurigenera of smooth affine surfaces with finite
Picard groups
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Dedicated to Professor Hisao Yoshihara

on the occasion ofhis sixtieth birthday

Abstract. Let S be a smooth complex affine surface with finite Picard group. We prove that
if ic(S) 1 (resp. ic(S) 2), then Pt(S) > 0 (resp. P${S) > 0) and determine the surface S

when ic(S) > 0 and Pg(S) 0. Moreover, we prove that if Pic(S) (0), T(S, Osï* C and

Py(S) 0, then S C2.
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1. Introduction

Throughout the present article, we work over the field of complex numbers C.
In [19] and [30], Kuramoto and Tsunoda considered the problem finding the

smallest positive integer m such that Pm (X) > 0 for a smooth open algebraic surface

X with k (X) > 0, where (X) and k(X) denote respectively the logarithmic
ingénus and the logarithmic Kodaira dimension of X. It follows from [30, Theorem 3.3]
that a smooth affine surface S has non-negative logarithmic Kodaira dimension if and

only if Pn(S) > 0. Recently, in [17] and [18], the author studied the problem for
Q-homology planes minus non-empty reduced algebraic curves, homology planes
and complements of projective plane curves. In particular, we have the following
results.

Theorem A (cf. [18, Theorem 1.1] Let X be a <Q>-hotnology plane (for the
definition, see Definition 2.6) and Ç a non-empty reduced algebraic curve on X. Then

k(X — C) —oo ifand only if P2CÏÏ — C) 0.

Theorem B (cf. [18, Theorem 1.3]). Let S be a homology plane (for the definition,
see Definition 2.6). Then S C2 ifand only if PtiS) 0.
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Theorem C (cf. [17, Theorem 1.1] and [18, Theorem 1.2] Let B c P2 be a

Cnot necessarily irreducible) plane curve, Then k(P2 — B) —oo if and only if
Pß(P2 — B) 0. Moreover.; ific{P2 — B) > 0 and P2(P2 — B) =0, then B can be

constructed as either Orevkov's cun>e Ci or Orevkov's cur\>e C| {for the definitions,
see [26], [29]).

In the present article, we shall study logarithmic plurigenera of smooth affine
surfaces with finite Picard groups. In Section 2, we recall some results on open
algebraic surfaces which will be used later. Moreover, we prove that every smooth

affine surface with ic > 0 and lb 0 is rational (cf. Lemma 2.9). In Sections 3 and 4,

we shall prove the following result.

Theorem 1.1. Let S be a smooth affine surface with finite Picard group. Then the

following assertions hold true.

(1) Ifk(S) 1, then P2(S) > 0.

(2) Ifk(S) 2, then P6(S) > 0.

(3) The surface S is isomorphic to the surface Y[2,4,4} (see [2, (8.53), (8.54)]) if
and only ifk(S) > 0 and P6(S) 0.

Here we recall the surface 7{2,4,4}. Let Vq P1 x P1. Let l\, i2 and £3 be

three distinct irreducible curves with §4 ~ £, where £ is a liber of a lixed ruling on Vq,

and let £\, l2, and £3 be three distinct curves with fj ~ Mo, where Mq is a minimal
section of Vq. Set Pi := £1 n £1, lb := t n £ 1, lb t2 n £3 and If := £3 ft £3. Let
Mo: V\ Vo be the blowing-up with centers Pi P4. Set £1 := /iff l(Pi) and

£4 := Pq (Pf)- Let/ii : V2 V] be the blowing-up with centers Q\ := 1

and Q2 := £4n^(£3). Set V := V2 and D := p\(Ei + £1 • /'Ô'V' |'L + £;)))•
Uten the surface Y[2,4,4} is the surface V — D.

In Section 5, we shall prove the following results.

Theorem 1.2. Let X be a smooth affine surface with finite Picard group and C a

non-empty reduced algebraic curve on X. Then k(X — C) —00 if and only if
P2(X - C) 0.

Theorem 1.3. Let S Spec A be a smooth affine surface with Pic(S) (0). Then

the following assertions hold true.

(1) k(S) —00 ifand only if P2(S) 0.

(2) Assume further that A* *, where A* denotes the multiplicative group con¬

sisting ofinvertible elements ofA and C* C — {0}. Then S C2 ifand only

ifP2(S)= 0.
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By [23, Lemma 1.1 (1)1. the Picard group of every Q-homology plane is Unite.

In particular, the Picard group of every homology plane is trivial. So, Theorem 1.2

(resp. Theorem 1.3) includes Theorem A (resp. Theorem B).

Acknowledgment. The author expresses his sincere thanks to the referee for the

careful reading and suggestions which improve the paper. The author was supported
by Grant-in-Aid for Scientific Research (No. 17740005) from JSPS and by Grant for
Promotion of Niigata University Research Projects.

2. Preliminary results

Given a connected smooth quasi-projective variety S, we denote by Pg(S) (resp.

Pn($) (n > 2), k(S)) the logarithmic geometric genus of S (resp. the logarithmic
«-genus of S, the logarithmic Kodaira dimension of S), For the definitions, see

[9], [21], By a (—«j-curve, we mean a smooth complete rational curve with self-
intersection number (—«). A reduced effective divisor I) is called an SNC-divisor
(resp. NC-divisor) if D has only simple normal crossings (resp. normal crossings).
For a Q-divisor G W cq (',, where the Ci are irreducible components of G and

cr,: g Q, we write as |_GJ where [cqj is the greatest integer < cq. For
an effective divisor F, we denote by #F the number of all irreducible components in
S upp /•'.

We recall some basic notions in the theory of peeling (cf. [21, Chapter 2]). Let
V, D) be a pair of a smooth projective surface V and an SNC-divisor D on V. We

call such a pair (V, D) an SNC-pair. A connected curve T consisting of irreducible

components of D (a connected curve in D, for short) is a twig if the dual graph of T
is a linear chain and T meets D — T in a single point at one of the end components
of T. A connected curve R (resp. F) in I) is a rod (resp. fork) if R (resp. /•') is a

connected component of D and the dual graph of R (resp. /•') is a linear chain (resp.
the dual graph of the exceptional curves of the minimal resolution of a non-cyclic
quotient singularity). A connected curve E in I) is rational (resp. admissible) if each

irreducible component of E is rational (resp. if there are no (—1)-curves in Supp E
and the intersection matrix of E is negative definite). An admissible rational twig
T in D is maximal if T is not extended to an admissible rational twig with more
irreducible components of D.

Let {Tx} (resp. R,j}, {F„}) be the set of all admissible rational maximal twigs
(resp. all admissible rational rods, all admissible rational forks), where no irreducible

components of Tx 's belong to R,, 's or Fv's. Then there exists a unique decomposition
of D as a sum of effective Q-divisors D D# 4 Bk(Z>) such that the following two
conditions (1) and (2) are satisfied:

(1) SuppfBk( I))) Ux Tk) U U„ Rß) U Uv Fv).
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(2) (L># + Ky Z) 0 for every irreducible component Z of Supp(Bk(D)).

We call the Q-divisor Ii k D the bark of D and say that D# is produced by the peeling
of A
Lemma 2.1. Let V, D) be an SNC-pair. Then we have

h°(V. n(I) + Kv)) h°(V, Ln(D# + Ky)J)

for every integer n > 0.

Proof. See [21, Lemma 3.10.1 (p. 106)].

Definition 2.2. A morphism f from a smooth algebraic surface to a smooth algebraic
curve is called a P1 -fibration if a general fiber of f is isomorphic to P1. Similarly, an

Al-fibration and a C*-fibration are defined, where C* A1 — {0}. A Calibration is
said to be untwisted if it is a Zariski-locally trivial fibration on a non-empty Zariski

open subset of the base. Otherwise, it is said to be twisted.

Lemma 2.3. Let S be a smooth affine rational surface with k(S) 1. Then there
exists a C* -fibration f: S —*• T onto a smooth rational curve T.

Proof. See [10, Theorem (2.3)]. (See also [21, Theorem 1.7.1 (p. 201)].)

For a topological space T, e(T) denotes the topological Euler characteristic of T.
We recall some well-known results on the topological Euler characteristics of some
affine surfaces (cf. Lemmas 2.4 and 2.5).

Lemma 2.4. Let S be a smooth affine surface. Then the following assertions hold
true.

(1) If k(S) 2, then e(S) > 0.

(2) Ific(S) 0 or 1, then e(S) > 0.

Proof. (1) See [24, Theorem 1.4], (See also [5].)
(2) It follows from [5, Section 5] that if e(S) < 0, then ic(S) —oo. So the

assertion follows.

The following result is usually called the Suzuki-Zaidenberg formula (cf. [32,
Lenuna 3.2] and [3]).

Lemma 2.5. Let S be a smooth affine surface and f: S T a morphism onto a

smooth cun>e T. Then

e(S) e{T)e(f) + ~ e(f)),
i



Vol. 83 (2008) Logarithmic plurigenera of affine surfaces with finite Picard groups 551

where f is a generalfiber ofcp and the summation is over all the singular fibers of (p.

Further, e(fi > e(f for all i and the equality holds ifand only ifeither f A1 or
amf(fit)Kd /

We recall some results on Q-homology planes.

Definition 2.6. A smooth algebraic surface S is called a Q-homology plane (resp. a

homology plane) if II, (S; Q) (0) (resp. //; (S; Z) (0)) for any positive integer i.

It is well-known that every Q-homology plane is affine and rational (see [2], [27],
[7], [6]).

Lemma 2.7. Let S be a Q-homology plane and fi\ S -> T a C*-fibration onto
a smooth curve T. Then T is isomorphic to P1 or A1. Moreover, the following
assertions hold true.

(1) IfT P1, then <p is untwisted, all fibers off are irreducible and there exists

exactly one fiber f with /re(j A1 (all the other fibers are isomorphic to C*, if
taken with reduced structure).

(2) If T A1 and <f> is untwisted, then all fibers off are irreducible exceptfor one

singular fiber which consists of two irreducible components. IfT A1 and

fi is twisted, then all fibers are irreducible and there exists exactly one fiber f
with /red A1 (all the otherfibers are isomorphic to C*, if taken with reduced

structure).

(3) IfS is a homology plane, then T P'.

Proof. The assertions (1) and (2) follow from [23, Lemma 1.4], The assertion (3)
follows from [4, Theorems 3 and 4],

We shall prove some results on smooth affine surfaces with pg 0 or Pi 0 (cf.
Lemmas 2.8 and 2.9).

Lemma 2.8. Let S be a smooth affine rational surface with pg(S) 0 and with finite
Picard group. Then the following assertions hold true.

(1) Ific(S) > 0, then e(S) 0 or 1. Moreover, e(S) 1 if and only if S is a

Q-homology plane.

(2) Ific(S) 2, then e(S) 1. In particular, S is a Q-homology plane.

Proof. Let (V, D) be an SNC-pair such that V — D S and let D W'=| I),
be the decomposition of D into irreducible components, where r #D. Since
Pic (A) I'ici V — DI is finite, we have r > p(V), where p(V) denotes the Picard
number of V. Since pg(S) h°(V. D + K v) 0 and V is a rational surface, we
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infer from [20, Lemma 1.2.1.3] that D, F [ l'or 1 </'</- and the dual graph of D
is a tree. So, D is simply connected and e(D) 1 + r. Tims,

ffiS) e(V) - e(D) p(V) r • I 1.

Lemma 2.4 implies that e(S) 0 or 1 (resp. e(S) 1) provided k(S) 0 or 1

(resp. k(S) 2). Suppose that e(S) 1. Then r p(V) and so the natural

homomorphism II2 V : Q) —> H2(D ; Q) is an isomorphism. By [22, Lemma 2.1

(3)], S is a Q-homology plane.

Lemma 2.9. Let S be a smooth affine surface with k(S) > 0 and P2{S) 0. Then
S is a rational surface.

Proof. Let S be a smooth affine surface with k(S) > 0. It suffices to show that

P2(S) > 0 if S is not a rational surface. Let (V. D) be an SNC-pair such that
V — D S. We treat the following four cases separately.

Case 1. k(V) 2. It then follows that Pi(V) > 0 (see [1, Theorem 9.1]). Hence,

HS) > P2(V) > 0.

Case 2. V is an irrational mied surface. In this case, there exists an 1PJ-libration

p : V ->• B onto a smooth projective curve B with g(B) h1 L, 0y)(> 0), where

g(B) denotes the genus of B. Let D' Vj('=| I), (£ > 0) be the sum ofall components
of D that are not über components of p. Since ic(S) k (V — D) > 0, we have

(F D) (F I)') > 2 for a über F of p. It then follows from [20, Lemmas 1.2.3.1

and 1.2.3.2] that ic(V — D') > 0. By [28, Proposition 2.2], we have P2{V — D') > 0,
here we note that the divisor D' is semi-stable in the sense of [28] because it is

an SNC-divisor and contains no rational curves. Hence, /') (S) If V — /)) >
P2(V - D') > 0.

Case 3. k(V) =0. If P2(V) > 0, then P2(S) > P2(V) > 0. So we may assume that

P2(V) 0. Then V is a hyperelliptic surface and so there exists an elliptic fibration

/ : V —* E onto a smooth projective elliptic curve E. Since V — D S is affine, D
contains an irreducible curve T>\ ffiat is not a fiber component of /. Then g( I)i > 0,

i.e., Di is semi-stable in the sense of [28], Since ic(V - l)\ > /< V) 0, we have

P2(V - Di) > 0 by [28, Proposition 2.2], Hence, P2(S) > P2(V — D\) > 0.

Case 4. k(V) 1. Iben, there exists an elliptic fibration / : V B onto a smooth

projective curve B. We may assume that P2(V) 0 (cf. Case 3). Iben pg(V) 0

and g(B) < 1. We note that D contains an irreducible component I)\ that is not
a fiber component of / because S V — D is affine. Assume that g(B) 1.

Then, g(Di) > 1. Hence, by using the same argument as in Case 3, we know that

P2(S) > P2(V - DO > 0.
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Assume that g(B) 0. By the canonical bundle formula for elliptic libralions,
we know thai Pp V) > Oif/(0y) > 1. So, we may assume further that x(<9 y 0.

Then hl(V,&y) 1. Let a: V E be the Albanese mapping of V, where E is

a smooth projective elliptic curve. Then, by using the same argument as in the case

g(B) 1, we know that Pi(S) > 0.

Hie proof of Lemma 2.9 is thus completed.

Now, we recall some results on log del Pezzo surfaces of rank one. Let V be a

normal projective surface with only quotient singular points, let n : V —*• V be the

minimal resolution of the singularities on V and let D be the reduced exceptional
divisor with respect to n. We often denote {V, D) and V interchangeably. Since V
has only quotient singular points, D is an SNC-divisor and D# + Ky x*(K-) (for
the definition of IE, see before Lemma 2.1).

Definition 2.10. Tlie above surface V (or the above pair (V, D)) is called a log del
Pezzo surface if the anticanonical divisor -K- is ample. A log del Pezzo surface is
said to have rank one if its Picard number equals one. In the present article, we call
a log del Pezzo surface of rank one an PDP 1 -surface.

Hereafter in the present section, we assume that V is an LDP1-surface and we use
the same notation as above.

Lemma 2.11. With the same notation and assumptions as above, the following
assertions hold true.

(1) —(D# + Ky) is a nef and big Q-Cartier divisor. Moreover, for any irreducible
curve F, —(D# + Ky • F) 0 ifand only if F is a component ofD.

(2) Any (-n)-curve with n > 2 on V is a component of D.

(3) V is a rational surface.

Proof. See [34, Lemma 1.1].

Lemma 2.12. There is no (—1 )-curve E on V such that the divisor E + D has

negative definite intersection matrix.

Proof. See [33, Lemma 1.4],

By Lemma 2.11 (1), if C is an irreducible curve not contained in Supp D, then
-(C-D# + Ky) takes value in {n/p \ n g N}, where p is the smallest positive integer
such that pD# is an integral divisor. So we can find an irreducible curve C such
that —(C-D# + Ky) attains the smallest positive value. We denote the set of such
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irreducible curves by MV( V. D). The pair V. 29$ is said to be of the hrst kind if there
exits an irreducible curve C G M Vi V, D) such that |C + D + Ky \ i=- 0. Otherwise,
the pair V, D) is said to be of the second kind.

Lemma 2.13. Assume that (V, D) is of thefirst kind and that V has a singular point
P that is not a rational double point. Then the following assertions hold true.

(1) Let C g MV( V, D) be an irreducible curve such that \C + D + Ky | ^ 0. Then

there exists a unique decomposition of D as a sum ofeffective integral divisors
D D' + !)" such that the following two conditions are satisfied:

(i) (C • D() (D" Di) (Ky Di) 0 for any component Dj of D'.

(ii) C + D" + Kv ~ 0.

(2) The singular point P is a cyclic quotient singular point and the other singular
points on V are rational double points.

Proof. Hie assertion (1) follows from [33, Lemma 2.1], We prove the assertion (2).
With the same notation as in the assertion (1), we know that Supp D' n Supp D" 0

and each connected component of D' can be contracted to a rational double point.
By the hypothesis that P is not a rational double point, we have D" f- 0. Since
C + D" + Ky ~ 0, |C + Ky \ \ - D"\ =0. So C is a smooth rational curve and

(C • D") (C • — C — Ky} — 2. Further, for every irreducible component Dj of
D", we have (Dj C + D" — Dj) (/), • —Ky — D,) 2. Flence we know that
D" 7T~l(P) and D" is a linear chain of smooth rational curves.

Lemma 2.14. Assume that (V. D) is of the second kind and p(V) > 3. Then every
irreducible curve C g MV(V, D) is a (—1 ficurve.

Proof. See [33, Lemma 2.2] and [8, Proposition 3.6].

Lemma 2.15. Let T : V P1 be a P1 -fibration. Assume that there exists a singular
fiber F whose configuration is given as one of (i) and (ii) in Figure 1 and that C g

MV(V, />), where C is the unique (—1 )-cur\>e in Supp /•'. Then each singularfiber
of<& consists of (—2)-cur\>es and i I i-curves, say E\ and £2 (possibly E\ Ef),
and Ej g MVfV, D)fori L 2.

Proof. See [33, Lemma 1.6 (3)].
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-2 -2 -2 -2-1
-1 -2

(i) (ii)

Figure 1

3. Proof of the assertion (1) of Theorem 1.1

In this section, we shall prove the assertion (1) of Theorem 1.1.

Let S be a smooth affine surface with k(S) 1 and with finite Picard group.
If S is not a rational surface, then P> S) > 1 by Lemma 2.9. So we may assume
that S is a rational surface. Further, we may assume that pg(S) 0. Lemma 2.8

(1) then implies that ci.SO 0 or 1 and e(S) 1 if and only if S is a Q-homology
plane. By Lemma 2.3, there exists a C*-fibration r/> : S —T onto a smooth rational
curve T. The C ' -libration q> is extended to a P1 -libration <b : V —P1. where V is a

smooth projective rational surface such that D := V — S is an SNC-divisor. Since

Pg(S) 0 and S is a rational surface, D is a tree of smooth rational curves by [20,
Lemma 1.2.1.3].

The following lemma can be proved by using the same argument as in [18, Section

3], For the sake of completeness, we shall reproduce the proof.

Lemma 3.1. With the same notation and assumptions as above, assumefurther that

ri.S) 0. Then P2(S) > 0.

Proof. Since e(S) 0, it follows from Lemma 2.5 that every fiber of f is isomorphic
to C* if taken with reduced structure. We shall consider the following two cases

separately.

Case 1. <p is twisted. In this case, D contains exactly one irreducible component II
that is not a fiber component of T. The curve II is then a 2-section of T and hence

II P1 is a double covering. Since H P1, there exist two branch points
Qu Qi P^oftblff. Set Fi := <î>-l(Qi) iot i 1,2.

Suppose that Supp(If) Pi S -f 0 l'or i 1 or 2. Since D is connected and

#(Supp (Fi) Pi H) 1, (Fi |x)red contains an affine line. Ulis is a contradiction. So,

Supp (Fi) c Supp I) lor i 1,2 and hence T is contained in C* as a Zariski open
subset. Since k(T) > ic(C*) 0, it follows from [19, Proposition 1] that PiiS) > 0.

Case 2. f is untwisted. In this case, D contains exactly two sections II\ and II) of '!>

and each component of D — (H\ + Hf) is a fiber component of T. Since I) is a tree
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of smooth rational curves, we may assume that (ED — E) > 3 for any (—l)-curve
E c Supp (D — (H\ + II})) (i.e., (V, D) is minimal along übers (cf. [4, p. 87])).

Claim 1. (Hi • H2) 0.

Proof. Suppose that (H\ • II)) > 0. Let /' be a point of II\ n and set Fp :=
<b_1(<I>(.P)). Since I) is a connected SNC-divisor and Supp i'i> fl If n II) -= {/'},
Supp (Fp) contains no components of D. Then, Supp Fp n S A1, a contradiction.
Hence, (Hi Hf) =0.

Claim 2. Let F be a fiber of F. Then F is reducible ifand only if F \$(f 0) is a

singularfiber off.

Proof. The "if" part is clear because every singular fiber of f is multiple. We shall

prove the "only if" part. Suppose that F is a reducible fiber of d>. Then F contains a

(—1 )-curve F. We note that, if the coefficient of F in F equals one, then [2, Lemma
(7.3)] implies that (E Fred — F) 1 and F contains another (—l)-curve. Suppose
that Supp F c Supp D. Then F meets both If and II) because II\ and II) are
Sections of T and (E D — E) > 3. Then the coefficient of F in F equals one and

hence F has another (—1)-curve E'. Then (E' D - E') (E' • Fred — Er) < 2,

a contradiction. Suppose that F\s(f 0) is not a singular fiber of f. Let Fo be the

component of F with Fo n S f 0. Since the coefficient of Fo in F equals one,
F has a (—1)-curve other than Fo. So we may assume that F F Fo. Then F is a

component of D. Since If and II) are sections of F and (F • D — E) > 3, we know
that F meets both If and /p. So (Fo • If) (Fo • Hi) 0. Since Fols C* and

Supp (Fred — Fo) c S Lipp I). S Lipp I) is not connected, a contradiction. Therefore,
we know that F|s(# 0) is a singular fiber of è.

Claim 3. Let f be a singularfiber off and let F be thefiber of T containing f. Then

the weighted dual graph o/Fred Ir linear. Moreover, F has exactly one (—1 )-curve,

say E, Supp (Fred — F) consists of two connected components and (F|s)red

Proof. The fiber F has exactly one irreducible component, say Fo, with Fo Pi .S' /.
If F contains no components meeting both If and II), then (lie assertions follow
from [2, Lemma (7.6)]. Suppose that F contains a component Fi meeting both If
and II). Then Fo f F\. Since Fols Fred — Fo is not connected. This is a

contradiction because D is connected.

Let Mi ft,..., mrfr be all the singular fibers of f with respective multiplicities

mi,.... mr, where fi C* (1 < i < r), and let Fj (1 < i < r) be the fiber of <b

containing ;«j fi. Let F, f\ (1 < i < r) be the closure of /; (mi f )red in V.

Claim 4. (1) T A1.

(2) r > 2.
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Proof. (1) If T P1, then I) cannot be connected by Claims 1 and 3. This is a

contradiction. If T P1 \ (.v points} (,v > 2), then I) contains a loop of (smooth rational)
curves. So, pg(S) h°(V. D + Kv) » 0, which contradicts our assumption.

(2) Suppose that r < 1. Since f is untwisted, S contains C* x C* as a Zariski
open subset. Then

0 k(C* x C*) > k(S) 1,

which is a contradiction. Hence, r > 2.

Set Po := P1 \ T and Fq := (I'o). By Claim 2, If is irreducible. Let
(Fi)red - Ei Ylj. :\ :; (1 < Î < r) be the decomposition of (F,)red - Ei into
irreducible components. Then,

r n

i'o + II \ -f //2 + E(Er'v )-
1=1 1=1

Since (Hi • H%) 0 by Claim 1, we obtain a birational morphism p : V -& Ffl onto

a Hirzebmch surface Ff( of degree a such that II\ := p(H\) and Ih := p(H2) are

sections of a PJ -hbration <b op~1 : ¥„ —> P1 and (B\ Hi) 0. Since (H\ - Hi) 0,

we may assume that HI[ < 0. Then, II\ is a minimal section and Hi ' - H\ + al,
where I is a fiber of the P1-hbration T> o p~l. Moreover, we may assume that

(Hf) (Mi) —ö» namely, V is obtained from Fa by starting the blowing-ups
with centers at points on FI2 or fibers of <b o p~l, while no points on II\ are blown

up.
Since Kfa ^ —2H\ — (a. + 2)1 ^ -Hi — Hi — 2i, we have

r fj r

Kv - -Hi - p*(Hi.) -2Fo + J2(+ YlkiEi'
i=1 j=1 /=1

where /./ > 0 and 0 for 1 < i < r and 1 <j <r<;. We set

i- t'i r
p*(H2) III -r E(E PijCij +' y JpEj

i=1 7=1 1=1

and
r,

Fj y etij j + m i Ej
j=1

for 1 < i < r. Since I) /'o + II\ + II1 + X!!:=i(IZ/!=i we have

r r\ r
I) + Kv - Y, " Wj + Itfy) + ^(X,: - - F0.

1=1 7=1 1=1
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By Claim 2, the weighted dual graph of JP| (1 < i < r) looks like the one given in
[20, p. 79], As seen from [20,1.4.9.3 (p. 80)], we know that

n
f). ~ iiij + 1 )Cij + (kt — m +1 )Ei

j=i
for 1 < / < r. Then,

r r r

D+Kp^j2n-J2 E> -Fo~(r-1m -J2Ei-
i=l i=1 i=1

Since r > 2 by Claim4 (2) and Ël§ < WkM < M for i 1 r, we have

r r
2(D + Kv) ~ 2(r - 1 )F0 ~ 2 £ Et ~ (r - 2)F0 + - ZSß > 0.

ï=1 i=l

ITerefore, P2(S) >0.

Remark 3.2. As seen from the proof of Lemma 3.1, we know that a smooth affine
surface with /7 1 and e 0 has positive logarithmic bigenus.

In the following lemma, we shall treat the case e(S) 1.

Lemma 3.3. With the same notation and assumptions as above, assumefurther that

e(S) 1. Then P2(S) > 0.

Proof. We shall consider the following two cases separately.

Case 1. f is untwisted. In this case, D contains exactly two sections H\ and lly if
«h and each component of D — (Hi + II) is a über component of (I>. As seen from
14, Section 3], we may assume that:

(i) (Hi Ih) 0.

(ii) If G is a (—1 )-curve contained in Supp (D — II\ + Hi)'), then (G D — G) > 2.

Moreover, if (G D - G) 2, then (G • Hß (G Hi) 1.

By Lemma 2.7, <j) has a singular fiber / satisfying one of the following two
conditions (a) and (b):

(a) / is irreducible and /red AÂ1.

(b) /red consists of two irreducible components f\ and f2, where f\ A1 and

f2 A1 orC*, and#(/i n f2) < 1.



Vol. 83 (2008) Logarithmic plurigenera of affine surfaces with finite Picard groups 559

Let E (resp. £)• (f 1, 2)) be the closure of / (resp. fi (i 1, 2)) in V if the
condition (a) (resp. the condition (b)) holds.

If the condition (a) holds, then E is a smooth rational curve. Moreover, by
the assumptions (i) and (ii), E must be a (—1)-curve and (E D) 1. Hence,

Pn(S) P„(V — (E + /Li for any integer n > 0. If the condition (b) holds, then

E\ is a smooth rational curve. By the assumptions (i) and (ii), we may assume that

E\ is a (—l)-curve and (E\ D) 1. Ilten, P„(S) P„(V - (E\ + D)) for any
integer n > 0.

Set S' := S\f (resp. .S" := S \ f\ if the condition (a) (resp. the condition (b))
holds. Then e(S') 0, Pic(.S") is finite and k(S') k(S) 1. We infer from
Lemma 3.1 that ÂÇS") > 0. Hence, P2(S) f%(S') > 0.

Case 2. (p is twisted. In this case, D contains exactly one component II that is not
a fiber component of 4>. lite curve II is a 2-section of (b and so (b| // : H —> P1 is

a double covering. Since H P], there exist two branch points go, <2oo(e P1) of
$>\h. Set Fo := ^"'(ôo) and Fa0 := I» By Lemma 2.7, we may assume
that Supp (I-'-x,) C Supp D and Supp (Fo) g Supp D. Uten /-'o Pi .S' is written as mofo
with fo A1. Let m / J) (1 < i < r) exhaust all singular fibers with J) C* and

m ; > 2. Let Ei be the closure of f in V and set ;= <I> '(Im/wû. 1 < i < r. As
seen from [21, p. 241], we may assume that the following conditions are satisfied:

(1) The dual graph of /', (1 < i < r) is a linear chain and Ei is a unique (—l)-curve
in Supp (Fi). The fiber /•} meets the 2-section H at the terminal components.

(2) The dual graph of Foo + H is given as in Figure 2.

(3) The dual graph of the fiber Fo is that for /W with the corresponding components
Aq, Bq, Co and with Aq either contained in Supp D or not.

We need some explanation about the condition (3) as above (cf. [21, p. 241]).

If Ao, which is the closure of fo in V, is a (—l)-curve, then P„(S) Pn(S — fo)
for any integer n > 0. Since e(S — fo) 0 and k(S — fo) 1, it follows from
Lemma 3.1 that Pifß) 3* 0. In this case, Lemma 3.3 follows. So we may assume
that (Aq) < —2 and that S is NC-minimal (for the definition, see [21, Definition 4.4.1

(p. 232)]). Then the contractions of Supp (Fo) except for Ao makes its dual graph
look like that for / with the component Aq not contained in Supp D.

-1

H
-o

Figure 2
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By virtue of the proof of [21, Theorem 4.6.5 (p. 243)], we know that

11 ^D + Ky —J + (Bq + Cq) + -F + — (Aqo + Boo) + } ,(F; ~ Ei)>
i=1

where F is a general über of d>. So,

r
2(D + Kv) ~ —F + 2(B0 + C0) + (A«, + B^) + 2F, - 2Ei),

i=1

here we note that V is a rational surface. Since 2F\. — 2F; F + (F, — 2F; > F,

for 1 < i < r, we have 2(D + Fy) > 0 if r > 1. If r 0, then

F : /•
' V ' '

• 0.
2 -1 7îî; 2

1

Then [21, Hieorem 4.6.5 (1) (p. 243)] implies that k(S) —oo, which is a

contradiction. Therefore, we know that I\ (.S >0.

Tire proof of the assertion (1) of Theorem 1.1 is thus completed.

4. Proof of the assertions (2) and (3) of Theorem 1.1

The assertion (3) of Theorem 1.1 easily follows from [2, Theorem (8.70) 1)] and
the assertions (1) and (2) of Theorem 1.1. Indeed, if S is a smooth affine surface

with k(S) > 0, with I'o( S) 0 and with finite Picard group, then !Jf] 0 by
the assertions (1) and (2) of Theorem 1.1. By [2, Theorem (8.70) 1)], S is then

isomorphic to the surface Y[2,4,4], here we note that the surface F{3, 3,3} and the
surface Y [2, 3, 6} have positive logarithmic 6-genera. From now on, we shall prove
the assertion (2) of Theorem 1.1.

Let S be a smooth affine surface with k(S) 2 and with finite Picard group. By
virtue of Lemma 2.9, we may assume that S is a rational surface. Moreover, by virtue
of Lemma 2.8 (2), we may assume further that S is a Q-homology plane.

Let V. I) I be a pair of a smooth projective rational surface and an NC-divisor I)
on V such that V - D =_ S and (E D — E) > 3 for any (-l)-curve E c Supp D.
Since S is a Q-homology plane, the divisor I) is a bee of smooth rational curves by
[23, Lemma 1.1 (1)]. In particular, D is an SNC-divisor.

Lemma 4.1. The pair V. D is almost minimal (for the definition, see [21, Chapter 2,

Section 3]).
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Proof, lite assertion can be verified by using the same argument as in the proof of
[17, Lemma 4.3],

Let D + Ky m (D + Ky)+ + (D + Ky)~ be the Zariski-Fujita decomposition of
D + Ky (see [21, p. 69]), where (D + Ky A is the nef part of D+Ky. By Lemma 4.1,
Supp ((D + Ky) c Supp D and D - (D + Ky)~ is an effective Q-Cartier divisor
(for more details, see [21, Chapter 2, Section 3]). Moreover, D# D - (D + Ky)~
(for the definition of D#, see Section 2). Since k (S) 2, it follows from Lemma 4.1

that D# + Ky is a nef and big Q-Cartier divisor.

Lemma 4.2. For an integer n > 2, set K„ := (n — 1 )Ky - [~(n — l)D#j + L-D#J

Then we have

PAS) > l-(Kv + Kn Kn) + 1. (4.1)

Proof. Since V is a rational surface and the SNC-pair {V, D) is almost minimal, the
assertion follows from [30, Proposition 3.1], where we note that the Q-divisor Dm in
[30, Proposition 3.1] is D#.

Since Supp D is connected, so is Supp (LD#J). Set I := (LD#j • D - [0*1! and

let Ci, C%*.... Ci exhaust all irreducible components of D — [7)#J meeting LD#J.

Since D is a tree of smooth rational curves and k(V — D) 2, it follows from [21,

Corollary 2.11.1 (p. 82)] that I equals the number of the maximal admissible rational
twigs in D. For each i, 1 < i < I, the coefficient of the curve Ci in D# equals
(ai — l)/ai, where ai is an integer > 2. Let D(!) (I < / < be the maximal
admissible rational twig in D with Ci c Supp (D(!

Since D# + Ky is a nef and big Q-Cartier divisor, it follows from the Kawamata-
Viehweg vanishing theorem (see [11] and [31]) and the Riemann-Roch theorem that

h°(V, Kv + Kn - LD#j) {-(Ky + K„ ~ LD#j • Kn - \_D*\) + 1 (4.2)

for any integer n > 2. Since

n(D + Ky) > nKy - L-(« - l)D#j + LD#J Ky + Kn,

we have P„(S) h°(V, n(D + Ky)) > h°(V, Ky + Kn — LD#J) for any integer

n > 2. By (4.1) and (4.2), we know that if PAS') 0, then

(LD#J • (2« - 1)Kv - 2[-(n - 1)D#J + LD#J < 0. (4.3)

Lemma 4.3. With the same notation and assumptions as above, assumefurther that

P2(S) 0. Then the following assertions hold true.

(1) £ 3.
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(2) \JB*j is irreducible.

Proof. If £ < 2, then the dual graph of D is linear. Since k(S) 2, it follows from
[21, Corollary 2.11.1 (p. 82)] that the intersection matrix of D is negative definite,
which is a contradiction. So, £ > 3. Since !_D#J is a tree of smooth rational curves,
we know that ([D#J • [ D#J + Kv) —2. Then, by (4.3) for n 2, we have

0 > (|_D#J • 3Ky + 2D + |D#J) 21 - 6.

Hence, 1 3. This proves the assertion (1). Hie assertion (2) easily follows from
the assertion (1).

From now on, we assume that P(,{S) 0. Then Pi($) /'o.S'i 0. Set

Do := [D#J, which is a smooth irreducible rational curve by Lemma 4.3 (2). Then,
for any integer n > 2, we have

(Do 42» - \)Kv - 2\_—(n - 1)D#J + Do)

2(1-2n - 2^]
i=1

- (n - 1)1 1 - —
a-,I ' -

(4.4)

Lemma 4.4. With the same notation and assumptions as above, the weighted dual
graph of D is given as one o/(l)-(18) in Figure 3, where the weights of the vertices
corresponding to Do and (—2)-eurves of D are omitted.

Proof. We assume that a\ < a% < a\. By (4.3) and (4.4) for n 3, we have

5-£hK)J-
i=l

Since 2 < a\ < at < 03, it follows that a\ 2.

Since (D D# + Ky) {Do D# + Kv) and D and D# + Ky are big Q-Cartier
divisors, we infer from the Hodge index theorem that

0 < (Do • D# + Ky),

Since (Do • D# + Ky) (Do Dq + Ky) + 3 — V0; and a\ 2, we have

1 1 1
1 < -.

«2 03 2

In particular, we know that 3 < 02 < a3 and that if «2 3 (resp. «2 4), then

«3 >7 (resp. 03 > 5).
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(1) 0[)i (2) on, (3) o

-4
ßi

—5 -4 -3 -4 -3
O Ô o o o o o o o o o
£>2 Do Do D) Do Do Do Do

(4) o

-4
Ol (5) Oi

-5
o ô o o o o o o o ô o
O2 Do Do D4 Do De Ö4 Do O2 Oo O5

(6) m
-3 -3

o o o ô o o o o o ô o o
Oq Oq

(8)

o o o ô o o o o
Oo

(9) o (10)0 (11)

-5 -5 -5 -3 -5 -3
O O O O O O O O O O O

Oq Oq Oq

(12)

-5
(13)

-3
Oi

-3
o ô o o o o o o ô o o

Oq Ö3 D2 Oo O4 D5

(14) (15)

-3 -3 -3
o o o o o o o ô o o o o

Oo Oo

(16)

-3
(17)

-3 -3
o o ô o o o o ô o o o o

Oq OQ

(18)

o o o o ô o o o o
Oo

Figure 3
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By (4.3) and (4.4) for n 6, we know that

3

1=1

Since u\ 2 and 3 < a% < 03, we have

3

i=2

-5(1- -a;

-511- -at

and

-5(1--
o; / -1

< -4

fori 2,3. Then I —5(1 — (l/a,))| —4 fori 1, 2 and hence <73 < 5. Therefore,
(a2,a3) (4,5)or(5,5).

By using [21, Lemma 3.4.2 (p. 92)], we can determine the possible weighted dual

graphs of D — Do. Ulis proves Lemma 4.4.

Set D' := O — Do. Then D' can be contracted to three cyclic quotient singular
points.

Lemma 4.5. With the same notation and assumptions as above, the pair V, !)') is

an LDP 1-surface.

Proof. Since S V — D is a Qdiomology plane, we know that p(V) 1 + #D'.
If k(V — D') — 00, then (V. D') is an LDPl-surface by [33, Remark 1.2 (2)]. So

we shall prove that k(V — D') — 00.
Set D\ := I) 1

'! Ci). Since />, is a (-2)-curve and (D1 D' - 1),) 0,

the coefficient of D\ in (D')# equals zero. So, /7( V — D') k V — I)' — D\)) by
Lemma 2.1. We treat three cases (4), (5) and (18) as in Figure 3.

Case (4). In tins case, p(V) =l,(Ky) =3 and

1 1

D Do + -Oi + -O2 + -O3 + -O4 + -O2 + - Dfa

So (D0 • D# + Kv) 1/20 and (D# + Kvf (Kv • O0) + 91/20. By the log
Miyaoka-Yau inequality (see [13], [12]), we know that

(0 <)(D# + Kv? (Kv • Do) + ^ < 3e{V - D) 3.

Hence, (Oq) > 0. By virtue of [21, Corollary 2.11.1 (p. 82)], we know that

k(V — (D — Oi)) — 00. Therefore,

kiV - D') k(V - (D' - Oi)) ic(V - (O - Oi)) -co.
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Case (5). Since S V — D is affine, the intersection matrix of D is not negative
definite. Thenfög) > —1 and so /7 V - I) - Di)) —oo by [21, Corollary 2.11.1

(p. 82)]. Therefore,

k(V - D') k(V - (D' - k(V -(D- DiY) -oo.

Case (18). In this case, (D'f 0. So, k(V - D') k(V) —oo by Lemma 2.1.

Idie other cases can be treated similarly.

Now, we shall consider the cases (1)—(18) as in Figure 3 separately. We shall use
the same notation as in Figure 3.

Cases (1) and (9). We consider Case (1); Case (9) can be treated similarly. In this

case, p(V) =4 and (D'f (1/2)02 + (3/5)1)}. Let C be an irreducible curve in
MV( F, I)') (for the definition, see Section 2). By virtue of Lemmas 2.13 and 2.14,
we know that C is a (—l)-curve and \C + D' + KvI 0- So, (C • D,) 0 or 1 for
i 1, 2, 3. Since-(C • (D'f + Kv) 1 - (1/2)1 h2 • C) - (3/5)(C • D3) > 0, it
follows that (C • A)2) 0 or ((' l)\ 0. Tlien the intersection matrix of C + D' is

negative definite, which contradicts Lemma 2.12. Therefore, Case (1) does not take

place.

Cases (2), (3), (10) and (11). We consider Case (2); Cases (3), (10) and (11) can be

treated similarly. In this case, p(V) SandlZF)* (l/2)D2 + (2/5)D3 + (l/5)D4.
Let C be an irreducible curve in MV( F, D'). By virtue of Lemmas 2.13 and 2.14,

we know that C is a (—l)-curve and |C + D' + Ky\ 0. So, (C • D{) 0 or 1 for
i 1, 2, 3,4 and (C D3 + D\) 0 or 1. If (C Di) 0, then we know that the
intersection matrix of C + D' is negative definite, which contradicts Lemma 2.12.

So, (C • Di) 1.

Suppose that (C • D4) 0. Since the intersection matrix ol'C +1)' is not negative
definite, we know that (C • /L) (C • D3) 1. Let // : V —> V' be the contraction
of C, D{, />3, D4. Then V" P2 and (m*(D2)2) -4 + 2 + 4 + 4 6. This
is a contradiction. Hence, (C • D4) 1 and so (C • Ö3) 0. Then a divisor
F := 2C + D\ + Z>4 defines a pFfibration 4> := 4>|f | : V —> P1 and D3 is a section
of +. By virtue of Lemma 2.15, we know that (C D2) 1 (i.e., /+ is not a fiber
component of + In particular, D? is a 2-section of +. Since p(V) 5, F has a

singular fiber G other than F. Lemma 2.11 (2) implies that G E\ + E2, where E\
and .Hg are (—1 -curves and J?i • E2) 1. Then we can easily see that either E\ + D'
or E2 + D' has negative definite intersection matrix. This contradicts Lemma 2.12.

Therefore, Case (2) does not take place.

Cases (4), (5) and (12). We consider Case (4); Cases (5) and (12) can be treated

similarly. In this case, p(V) 7 and (D'f (1/2)D2. Let C be an irreducible
curve in MV(F, !)').
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Assume that \ C + D' + Ky \ 7 0. Then Lemma 2.13 implies that (C Dy) 2,

C + D2 + Ky ~ and C is a smooth rational curve. Then

(0 <;) - (C (D'f + Ky) —(C Ky) — 1

and so (C2) > 0 and -(C (D'f + Ky) > 1. Since V contains a (—1)-curve E and

— (E (D'f + Ky) < 1, we have (C2 0. So, C defines a P1 -übration <J>jg| : V ->
P1. Let Gi and G2 be the übers of containing l)\ and D2 + D4 + D5 + De,
respectively. Then G\ A Gy. #G\ > 3 and #G2 > 6. Then we have

7 p(V) > 2 + (#Gi - 1) + (#G2 - 1) > 9,

which is a contradiction. Therefore, \C + D' + Ky\ 0. In particular, (C • D;j 0

or 1 for i 1,2,..., 6. By Lemma 2.14, C is a (—1)-curve.
If (C-D2) 0, then there exists an effective divisor A with Supp A c Supp (711 +

/I3 + D4 + D5 + iy such that 2C + A defines a P1 -fibration 4>|2r+A| : I2 ^ P1 and

/L is a fiber component of T^o+ai- Ulis contradicts Lemma 2.15. So, (C • Dy 1.

Suppose that (C I)\) 1. Since the intersection matrix of C + W is not
negative definite, we know that (C • Ö3 + D4 + D5 + D(,} (C • Dj) 1 for some

j, 3 < j <6. Then F := 2C +1)\ + defines a ?'-fibration d> := : V —> P1

and D2 is a 2-section of d>. We may assume that j 3 or 4. Consider the case

j 3. Then D4 is a section of 4>. Let /•"' be the fiber of <b containing /A and /L,. By
considering Lenuna 2.11 (2), we know that /•"' E -\- /Is -h /7, where f? and

£" are (-l)-curves and (E D5) (E' D6) 1. Since -(E (D'f + Kv), ~(E' •

(D'f + Kv) > 0 and (D'f (1/2)D2, we have (E D2) (E' D2) 1. Then
G := 4/7 + 3L>6 + 2/7 + D2 + D4 defines a P1-fibration d>' := V P1

and /I3 is a section of 47 Let G' be the fiber of 4>? containing D\. 'Iben #G' > 3.

However, this contradicts p(V) =7 because p(V) > #G + #G" > 8. Consider the

case j 4. Then /I3 and /Is are sections of (b. Let /•"' be a fiber of 41 containing /L,.
By considering Lemma 2.11 (2), we know that /"' E De + /7, where E and E'
are (—1 )-curves. By using the same argument as in the case j 3, we can derive a

contradiction. Thus, we see that the case (C D1 1 does not take place.
Suppose that (C • D\ 0. Then, (C • Ö3 + D4 + D5 + De) (C Dj) 1 for

some j, 3 < j < 6. If j 3 or 6, then we can derive a contradiction by using the

same argument as in the previous paragraph. So, we may assume that j 4. Then
F := 2(C+D4 )+D3+D5 defines a P^fibrationfi) := d/F/ V =* P1, De is a section
of 4> and D2 is a 2-section of 4>. Let /•"' be the fiber of <b containing I)\. By considering
Lemma 2.11 (2), we know that F' E2+D\ + Ef where E2 and If are (—1 )-curves.
Since D2 is a 2-section of <b and —(E2 • (D'f + Ky), —(E'2 (D'f + Ky) > 0, we
know that (E2 • D2) (E'2 • D>) 1. We may assume further that (E'2 De) 1

since De is a section of 4>. Then (E2 • D') (E2 D\ + D2) 2 and so E2 + D'
has negative definite intersection matrix. This contradicts Lemma 2.12.
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Therefore, Case (4) does not take place.

Cases (6), 0% (15) and (17). Let n : V -> V be the contraction of D'. Then V
has a unique rational triple point and two rational double points. Namely, V is a

dP3-surface in the Sense of [34], However, by [34, Main Theorem], these cases do

not take place.

Cases (8) and (18). Let jt : V -> V be the contraction of D'. The V is a Gorenstein

log del Pezzo surface. However, by [25, Lemma 3], these cases do not take place.

Cases (13), (14) and (16). We treat Case (13); Cases (14) and (16) can be treated

similarly. In this case, p(V) =6 and

(D'f \lh + I) i + ,./h + DSI

Let C be an irreducible curve in MVf V. !)'). By virtue of Lemmas 2.13 and 2.14,

we know that C is a (-l)-curve and |C + D' + Ky\ 0. So, (C • Df) 0 or 1

(I 1 5), (C • 02 + 0%) 0 or 1 and (C • I)4 T IF) 0 or 1. Since the

intersection matrix of C + D' is not negative definite, we may assume that one of the

following six cases (i)—(vi) takes place.

(i) (C • l)\) (C D3) 1 and (C • Df) Oil'/' / 1.3.

(ii) (C • Dp) (C • D3) (C 04 1 and (C D2) (C D5) 0.

(iii) (C • Di) (C Ih) (C • DS) 1 and (C • fh) (C I)4) 0.

(iv) ÇC • Z3j) (C~ Dï) (C D4) 1,

(v) (C • Ih) (C D4) 1 and (C • Di) 0.

(vi) (C D3) (C D5) 1 and (C Dx) 0.

Case (i). Then F := 2C 4 I)\ A-1)3 defines a Pl-fibration 4> := #pj : V —> F1-'1

and D4 + D5 is contained in a fiber of 4>. This contradicts Lemma 2.15.
Case (ii). Then F := 2C + l)\ -\- D3 defines a P1 -libraiion <h := <L|/.- : V —> IF'1

and Ö5 is contained in a fiber G of 4>. By Lemma 2.11 (2), we know that G
E + Ö5 + E', where E and E' are (-l)-curves with {E D3) (E' D5) I.
Since /I4 is a 2-section of 41, we may assume that (E • D4) 1. llien — (C (D'f +
Kv) ~{E (D'f + Ky) and so E g MV(V, D'). On the other hand, since

(E D4) (E > D5) 1, we have \E + D' + Ky \ 7^ 0. This is a contradiction.
Case (iii). By using the same argument as in Case (i), we know that this case does

not take place.
Case (iv). Let a : V -> VP be the contraction of C, D\. D4 and /L. llien

W F2, a Hirzebruch surface of degree two, and := n*(D3) is the minimal
sectionofF2. Moreover, (jjl4D2)2) 7. On the otherhand, since (/r*(Ö2 )•.M2) 1,

we have jpbÇLljJ ~ aM2 + (2cf + 1 t, where Z is a fiber of the ruling on F2. Hence,
I)))2) 2a2 + 2a is even. This is a contradiction.
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Case (v). Then F := 5C + 3/T + 2D4 -\- D) J- D? defines a Pl-fibration
<b := T|/.'| : V hp Pj and D\ is contained in a fiber G of T. Since #G > 3, we have

p(V) 6 > 2 + (#F - 1) + (#G - 1) > 8.

lliis is a contradiction.
Case (vi). Then F := 2C + D3 + D5 dehnes a P1 -fibration T> := | : V P1,

l>2 and D4 are sections of <b and D\ is contained in a über G of T. By Lemma
2.11 (2), we know that G E + D\ + E', where E and E' are (—1)-curves and

(E • D\ (E' D\I 1. Since £>2 and £>4 are sections of d>, we can easily see that

one of E + D' and E' + D' has negative definite intersection matrix. This contradicts
Lemma 2.12.

Therefore, Case (13) does not take place.

Thus, we know that Cases (1)—(18) do not take place. This proves the assertion

(2) of Theorem 1.1.

Idle proof of Theorem 1.1 is thus completed.

5. Proofs of Theorems 1.2 and 1.3

In this section, we shall prove Theorems 1.2 and 1.3 by using results in previous
sections.

Proofof Theorem 1.2. Let X be a smooth affine surface with finite Picard group and

C a non-empty reduced algebraic curve on X. Set S := X - C. Then Pic(S) is finite.

It suffices to show that k(S) —00 provided IfiS) 0. Let C (J;=i A be the

decomposition of C into irreducible components.
Suppose to the contrary that k(S) > 0. Lemma 2.9 then implies that S is a

rational surface. Let V, £>) be an SNC-pair with V - D S and £> Vj=| I), the

decomposition of £> into irreducible components. Since V is a rational surface and

pg(V—D) pg(S) 0, Dis a tree of smooth rational curves by [20, Lemma 1.2.1.3],
Hence, we know that C is a disjoint union of topologically contractible curves. In
particular, e(S) e(X) — r. By virtue of Lemma 2.8, we know that e(S) 0 or 1

and e(S) 1 if k(S) 2.

Now, let V, I)') be an SNC-pair with V - D" X. Since pg(X) pg(S) 0,

D* is a tree of smooth rational curves. Let D' /L/=i be the decomposition of
D' into irreducible components. Then

e{X) e(V') - e(D') p(V') -k+\.
Since Pic(X) is finite, we have k > p(V'), So,

e(X) p(V') - A-+ 1 < 1.
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Hence, e(S) e(X) — e{C) < 1 — r < 0 because r > 1. Lemma 2.8 (1) implies that

k(S) 0 or 1. By Theorem 1.1 (1), /7(S) j- 1. Since every smooth afhne surface

with 7 0 and P2 0 has positive topological Euler characteristic by [14, Theorem
0.1] (see also [2, Section 8]), we know that k(S) f- 0. The proof of Theorem 1.2 is
thus completed.

Proofof Theorem 1.3. The assertion (2) is a consequence of the assertion (1) and the

algebraic characterization of C2 due to Fujita, Miyanishi and Sugie (see [20], [21]).
We shall prove the assertion (1). Let S Spec A be a smooth afhne surface with
Fiefs') (0). It suffices to show that PpS) > 0 provided /7(S) > 0.

If k(S) 0, then, by virtue of [2, Theorem (8.70) 3)], we know that pg(S) > 0.

Hence, > 0. If k(S) 1, then i%P5 > 0 by Theorem 1.1 (1). Suppose

that ic(S) 2 and l'y (ß) 0. By virtue of Lemmas 2.8 and 2.9, we know that S

is a O-homology plane. In particular, S is a homology plane because Fiefs') (0).
However, by Theorem B (cf. [18, Theorem 1.3]), we know that PïiS) > 0. This is a

contradiction. The proof of Theorem 1.3 is thus completed.
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