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Prescription du spectre du laplacien de Hodge—de Rham dans une
classe conforme

Pierre Jammes

Résumé. Sur toute variété compacte de dimension n > 5, on prescrit le volume et toute partie
finie du spectre du laplacien de Hodge—de Rham (sans multiplicit€) en restriction aux formes de
degré p € [2, n —2], en excluant p = n/2 sin estpair, et en imposant a la métrique d’appartenir
a une classe conforme donnée. On sait que pour n < 4, ainsi que pour p = 0,1, n — 1,n, et
p = n/2 sin est pair, on ne peut pas prescrire simultanément le spectre, le volume et la classe
conforme.

Abstract. For any compact manifold of dimension n > 5, we prescribe the volume and any
finite part of the spectrum of the Hodge Laplacian (without multiplicity) acting on differential
forms of degree p € [2,n — 2] (except for p = n/2 if n is even), within a given conformal
class. Whenn <4 and when p =0,1,n — 1,n, and p = r/2 if » is even, this simultaneous
prescription of the volume, the spectrum and the conformal class is known to be impossible.

Mathematics Subject Classification (2000). 58150, 58C40, 53A30.

Mots clés. Formes différentielles, laplacien de Hodge—de Rham, prescription de spectre, géomé-
trie conforme.

1. Introduction

Ftant donnée une suite finie croissante de réels strictement positifs 0 < A1 < Ay <

- < Ak, Y. Colin de Verdiere a montré dans [CdV87] qu’on peut trouver sur toute
variété compacte de dimension supéricure ou égale a 3 une métrique riemannienne
telle que le spectre du laplacien agissant sur les fonctions commence par la suite
(A )5{:1 , et J. Lohkamp a amélioré ce résultat en montrant dans [Lo96] qu’on pouvait
prescrire le volume et certains invariants de courbure en méme temps que le spectre.
Dans le cas ou la suite (A,-)le est strictement croissante, ¢’est-a-dire en supposant
que les valeurs propres prescrites sont simples, des résultats du méme type ont été
obtenus pour d’autres opérateurs: M. Dahl prescrit dans [Da05] le début du spectre de
I’opérateur de Dirac sur les variétés compactes et P. Guérini a montré dans [Gu0O4] que
sur les variétés compactes et les domaines euclidiens, on peut prescrire simultanément
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le volume et toute partie finie du spectre du laplacien de Hodge—de Rham, qui agit
sur les formes différentielles.

Notre but est de montrer, dans le cas du laplacien de Hodge—de Rham, que si
on munit une variété compacte M” de dimension » d’une métrique riemannienne g
quelconque, on peut obtenir le volume et la partie finie du spectre (sans multiplicité)
souhaités en effectuant uniquement des déformations conformes a partir de g. 1l faut
noter qu’une telle prescription simultanée du spectre, du volume et de la classe con-
forme est spécifique aux formes différentielles. Elle est impossible pour le laplacien
agissant sur les fonctions: si on fixe le volume et la classe conforme sur une variété
compacte donnée, on ne peut pas rendre les valeurs propres arbitrairement grandes
([ESI86], [K093]). Sous les mémes contraintes, on ne peut pas rendre les valeurs
propres non nulles de I'opérateur de Dirac arbitrairement petites ([Lo86], [AmO3]).
Dans le cas des formes différentielles, on se heurte au probleme que le spectre des
1-formes contient le spectre des fonctions, et pour les formes de degré n/2 quand n
est pair 1l y a une obstruction du méme type que pour I’opérateur de Dirac (cf. [Ja06],
ainsi que la remarque 1.7 ci-dessous). On va montrer qu’on peut prescrire le spectre
pour les autres degrés. La comparaison de ces différents résultats permet de mesurer
la rigidité qu’apporte le fait de fixer le volume et la classe conforme: on frole les
limites des possibilités de prescription.

Précisons quelques notations: Si (M™, g) est une variété riemannienne compacte
orientable de dimension n, le laplacien A? agissant sur I’espace 27 (M) des p-formes
différentielles est défini par A = dé+8d ot 8 désigne la codiftérentielle, et son spectre
sera noté

0 =hpo(M.g) < Ap1(M,g) <hpa(M,g) <--- (1.1)

ou les valeurs propres non nulles sont répétées s’il y a multiplicité. La multiplicité
de la valeur propre nulle, si1 elle existe, est un invariant topologique: ¢’est le nombre
de Betti b,(M).

[’espace des p-formes coexactes est stable par le laplacien, et on notera

0<pp1M,g) <pprM,g) <--- (1.2)

le spectre du laplacien restreint a cet espace. Par théorie de Hodge, le spectre
(Ap.i(M, g))i=1 estlaréunion de (pp, (M, g)); et (pp—1,:(M, g))i. Deplus, si M
n’a pas de bord, on a aussi p,, ; (M, g) = py—p—1,;(M, g) pour tout p eti, le spectre
complet du laplacien se déduit alors des pp ; (M, g) pour p < ”2;1 Ce sont donc
ces valeurs propres qu’on va chercher a prescrire. On exclut le cas p = 0 puisque
(o, (M, g)) est le spectre des fonctions, pour lequel la prescription est impossible
comme on 1’a déja remarqué. On écarte aussile cas p = [%] pour lequel on ne peut
pas rendre les valeurs propres arbitrairement petites (voir remarque 1.7). En partic-
ulier, si la dimension de M vérifie n < 4, la prescription dans une classe conforme et
a volume fixé d’une valeur propre quelconque est impossible, quel que soit le degré.
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Compte tenu de ces remarques, en supposant que » > 5 et en notant k£ 1’entier tel
que n = 2k + 3 ou 2k + 4, on va prescrire toute partie finie des p, ; (M, g) pour
l<p=<k

Théoréme 1.3. Soit M une variété compacte, connexe, orientable et sans bord de
dimension n = 2k + 3 ou 2k + 4 ot k € N*, C une classe conforme de métriques
riemanniennes sur M, Vo un réel strictement positif et N > 1 un entier. On se donne
pour tout entier p € {1, ..., kjunesuitederéels 0 < v, 1 < v, 2 <--- < vpN.

Il existe une métrique g € C telle que

o ppi(M,g)=v,;pourtouti <Netpel{l, ... k}h

* Mit1,1(M, g) > sup, {vp i}
« Vol(M, g) = V.

Remarque 1.4. Laminoration pj111(M, g) > suppﬁi{vp,i} assure qu’on a 1’égalité
Ae1.i(M, g2) = pri (M, g) pour i < N. On peut donc prescrire les N premicres
valeurs propres des (k 4 1)-formes, les formes propres correspondantes étant alors
exactes, de valeurs propres égales a (p4y i (M, g))fi {- Sin estimpair, on prescrit ainsi
le spectre en tout degré 2 < p < n—2. Endimension paire, ledegré p = n/2 = k42
fait exception. En degré 1 et n — 1 on ne prescrit pas arbitrairement le début du
spectre car on ne contrdle pas les wo; (M, g), mais on peut assurer que les valeurs
V11, .., V1N sont contenues dans (A1, (M, 2))i>1 el (Ap—1,: (M, 2))i>1.

Remarque 1.5. Les valeurs propres A, ; (M, g) prescrites sont simples, ou de mul-
tiplicit€ 2 si on fait en sorte que v, ; = v,—1,; pour des valeurs quelconques de i et j.
Le probleme de prescrire arbitrairement la multiplicité ne serait-ce que d’une valeur
propre reste a notre connaissance ouvert, tant pour le laplacien de Hodge—de Rham
que pour 1’opérateur de Dirac.

Une étape clef de la démonstration du théoreme 1.3 consiste a montrer que sur
la sphere, on peut prescrire une valeur propre, toutes les autres valeurs propres étant
arbitrairement grandes, le volume étant majoré et la classe conforme étant fixée. On
va montrer un résultat équivalent, a savoir qu’on peut faire tendre une valeur propre
non nulle vers zéro en déformant la sphére de manicre conforme, les autres valeurs
propres étant minorées et le volume étant fixé:

Lemme 1.6. Soit n > 5un entier, k 'entiertel que n =2k +3oun =2k +4etC
une classe conforme sur S”. Pour tout réel V > 0 et tout entier 1 < p < k il existe
une famille de métriques (g: o<1 contenue dans C et une constante ¢ > O telles
que Iuvp,l(Sn’ g:) < &, Mp,Z(Sn’ g:) > ¢, Mq,l(Sn’ g:) »cpourl < g < k+1,
g = p,et Vol(§", g.) = V.

Remarque 1.7. Ce lemme ne se généralise pas aux formes différentielles de de-
gré k + 1; on montre en effet dans [Ja06] qu'une inégalité de Sobolev permet de
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minorer uniformément 1y 1(M, g) Vol(M, 2)%/" sur une classe conforme par une
constante strictement positive. C’est 1a raison pour laquelle on ne peut pas prescrire
Hi1,i (M, g) dans le théoréme 1.3.

Remarque 1.8. Le probléme de faire tendre des valeurs propres vers 0 dans une
classe conforme a volume fixé avait été posé par B. Colbois dans [Co04] et était
resté ouvert. Le lemme 1.6 y répond partiellement et la technique utilisée permet
d’obtenir un grand nombre de petite valeurs propres sur une variété quelconque (voir
remarque 2.5). Ce probléme est totalement résolu par le théoreme 1.3 et les résultats
de [Ja06].

Le lemme 1.6 sera démontré dans la section 2, et le théoréme 1.3 dans la section 3.

Je remercie Bruno Colbois pour de nombreuses discussions autour de ce sujet,
ainsi que le rapporteur de article dont les remarques ont permis de corriger une
erreur et d’améliorer le texte.

2. Petites valeurs propres dans une classe conforme

2.1. Quasi-isométries et extrema conformes du spectre. Commengons par rap-
peler le lemme suivant, di a J. Dodziuk, qui permet de comparer les spectres de
deux métriques dont on connait le rapport de quasi-isométrie et que nous utiliserons
a plusieurs reprises au cours des démonstrations du théoreme 1.3 et du lemme 1.6 ;

Lemme 2.1 ([Do82]). Soit ¢ et ¢ deux métriques riemanniennes sur une variété
compacte M de dimension x, ¢t T une constante strictement positive. Si les deux
métriques vérifient %g < g < g, alors

1

A, @) < (M, ) < T k(M g),

pour tout entiers £ > O et p € [0, n].

Une premiere conséquence du lemme de Dodziuk est qu’il suffit de démontrer le
lemme 1.6 pour une classe conforme particuliere, le résultat général s’en déduira :
supposons que le lemme soit vrai pour une classe conforme C, et donnons-nous une
autre classe conforme C”, ainsi que deux métriques g € Cetg’ € C’,unréel V > Oet
unentier p € [1, k]. Lelemme 1.6 nous dit que pour toute > Oettoutt > 1,1l existe
une fonction 7 € C*®(M) strictement positive telle que 1, 1(M, h%g) < t71731¢,
ppa(M, h?g) > 3" e p, (M, h?g) > 3 FHepourtouwt 0 < p <k +1,q # p,
et Vol(M, h?g) = V.

Par compacité de M, il existe une constante t > 1 telle que % g <g' <t1g Orles
métriques ~2g et h2g’ sont lides par le méme rapport de quasi-isométrie que g et g/,
c’est-d-dire que 1h?g < h?g’ < th?g. On en déduit alors que 1, 1(M, h%g') <
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72, upa(M, gy > i, pya (M, hg) > tlcpour g # pet "V <
Vol(M, h*g) < t"V. Apres renormalisation du volume par homothétie, on a
pp 1 (M, B2 < &, iy 2(M,h?g") > ¢, g1 (M, h*g’) > cet Vol(M, h*g) = V, el
donc le lemme 1.6 est vrai pour la classe conforme C’,

2.2. Construction d’une petite valeur propre sur la sphere. On va maintenant
aborder la démonstration du lemme 1.6, qui se déroule en deux étapes. Dans un
premier temps on va montrer qu’on peut obtenir une petite valeur propre de degré
p € [1, k] dans une classe conforme donnée et a volume fixé. On vérifiera ensuite
que ¢’est bien la seule petite valeur propre.

Le principe de la construction de cette petite valeur propre est le suivant: on plonge
une sphere S? dans S” et on écrase la métrique en dehors d’un voisinage tubulaire
de S?. On peut alors choisir une forme test qui a un petit quotient de Rayleigh en
prolongeant la forme volume de S”.

On fixe donc unentier p € [1, k], etonconsideére unplongement: : S¥ x B"7# —
S™ ot B"~? est la boule de dimension n — p, I’image de ¢ étant un voisinage tubulaire
d’une sous-variété de S” difféomorphe a S”. Dans la suite, on identifiera S¥ x B"~7
avec son image par ¢ qu’on notera 2. On identifiera aussi les formes volumes dvgr
etdvgn—r de S? et B" 77 avec leur relevé sur €2.

Comme on I’a montré au paragraphe 2.1, 1l suffit de montrer le lemme pour la
classe conforme d’un métrique particuliére de $™ qu’on choisit comme suit : on muni
B"~F d’une métrique euclidienne de rayon R, ¥ d’une métrique quelconque, €2 de
la métrique produit associée, et S* d’une métrique g qui prolonge la métrique sur €2.
On choisit R suffisamment petit pour qu’on puisse choisir g telle que Vol(S™, g) =
V., et on va montrer qu’on peut trouver une métrique g. conforme a g telle que
Hp1(S", go) < e et VOI(S™, g.) = V.

On note r la coordonnée radiale sur B*~7 et on se donne une fonction continue
f sur B"77 qui ne dépend que de r telle que f(0) = 1, f(R) = 0. On construit
une p-forme test o sur €2 en posant @ = fdvge, et on I'étend en une p-forme sur
S"™ par @ = O en dehors de 2. On définit une nouvelle métrique g = hg ou h est
une autre fonction ne dépendant que de r dans €2, et constante en dehors. Sur €2, la
forme w vérifie dw = f’dr A dvs et (— D" P+HD+1§0 = xd(f"~?Pdvg) = 0 car
dr Advg =0.

Précisons le choix de f et de la nouvelle métrique. On veut contracter la métrique
dans un domaine de S” qui contient le support de f’. Etant donné unréel 0 < 5 < 1,
on choisit la fonction 7 telle que 7(0) = 1, A(1) = » et qui vaut n en dehors de
S? x B"7#, On découpe I'intervalle [0, R] en quatre intervalles I; = [(l _41)R, %] et
on pose :

¢« hir)=1sur Iy;

« h(r) =nsur I3, Iy;
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o f(r)=1surletl;
¢« f(r)=0sur /4.

On prolonge £ sur I et f sur I3 de maniére lisse et monotone (voir figure 1).

A
I g = = em s,
f '
h \\
7 e
0 I I I I -
h X I £ I3 2k 14 R
Figure 1
Le quotient de Rayleigh de la forme @ pour la métrique g est
—2p—21 4,2
Ideo|| 3 f W Aol dvg
R(w) = 5 =
leollz / "2 oo 2du,
" (2.2)
[ : W22 e A duge|? dug
f W22 f 2 dwg
La fonction f’ est nulle en dehors de /3, par conséquent
i ( f If’lzdvg) f [f'*dv,
R(a)) — FEIS < T]n—zp—2 FEI3 . (2.3)

[h”_2p|f|2dvg - f dv,
i rely

Dans I’inégalité (2.3), le quotient du membre de gauche est uniformément majoré par
rapport a 7. On a supposé que p < k, donc n — 2p — 2 est strictement positif. En
choisissant n suffisamment petit, on obtient une fonction %, et une métrique g, = hg g
telle que R(w) < &, et par conséquent ., 1(M, g.) < & car la forme test est cofermée
et la spheére $” n’a pas de cohomologie en degré p. Le volume de S™ ne fait que
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diminuer lorsque 7 tend vers zéro. Si on le normalise par une homothétie on obtient
une métrique g, telle que Vol(S", g.) = V, la petite valeur propre restant inféricure
a &, ce qui conclut la premiere partie de la démonstration du lemme 1.6,

Remarque 2.4. En dehors du domaines €2, la métrique ne subit qu une homothétie.
Cette propricté simplifiera la prescription du spectre.

Remarque 2.5. Le procédé que nous venons de décrire se généralise aisément pour
construire un grand nombre de petites valeurs propres pour plusieurs degrés simul-
tanément sur une variété¢ compacte M quelconque : a partir d’un nombre arbitraire
de spheéres plongées dans M, on peut construire autant de formes test dont le quo-
tient de Rayleigh tend vers zéro quand on écrase la métrique en dehors de voisinages
tubulaires tous disjoints de ces spheres. Cependant, si la variéié a des nombres de
Betti non nuls, on ne contrdle pas précisément le nombre de petites valeurs propres
non nulles obtenu.

2.3. Controle du nombre de petites valeurs propres. Pour achever la démon-
stration du lemme 1.6, on doit s’assurer que la petite valeur propre construite au
paragraphe précédent est bien la seule. Nous allons pour cela faire appel a un lemme
di a J. McGowan qui permet, étant donné un recouvrement de la variété par des
ouverts a bords lisses, de minorer une partie du spectre de la variéi€ en fonction du
spectre des ouverts du recouvrement et de leurs intersections. Sur les domaines de
la variété, le spectre que nous considérerons sera toujours celui du laplacien agissant
sur les formes vérifiant la condition de bord absolue, qui généralise la condition de

Neumann, a Savoir ;

% _ 0

S e (2.6)
J*do =0,

ouj : dIM — M désigne I’'inclusion canonique, v 1a normale au bord et v, le produit
intéricur par v.

Lemme 2.7. Soit (M, g) une variété compacte de dimension n, (Ui)iK: | un recou-
vrement de M par des ouverts n’ayant pas d’intersections d’ordre supé€rieur ou égal
a 3 et p; une partition de 1’unité relative a (U; )iK: 1~ 1l existe des constantes a, b > 0
ne dépendant que de n telles que

a

Y1+ ¥ (L))

i=l1 Uil #0

Mqk, (M, g) >

avec k, = 14 3, ;dim #9(U; N U;) ou #9 désigne I"espace des g-formes har-
moniques avec condition de bord absolue, p; = i, 1(U;), pi; = pg—1.1(U; NU;) et
cp = sup; IV il
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Celemme a ét€ démontré dans [Mc93] pour les 1-formes pour unrecouvrement fini
quelconque, et G. Gentile et V. Pagliara ont remarqué dans [GP95] qu’il se généralise
aux formes de degré quelconque s1 on suppose que les ouverts du recouvrement n’ ont
pas d’intersection d’ordre supérieur ou égal a 3.

Nous allons appliquer ce lemme au recouvrement constitué des deux ouverts
U, formé de l'intéricur de 2 et U, formé de S" privé des points de 2 tels que
r < ?ZTR. Par commodité, on appliquera le lemme 2.7 pour la métrique g, au lieu de
g.. Comme Vol(S™, g.) reste uniformément minoré quand ¢ — 0, cela ne change
pas significativement le résultat.

Le nombre k; du lemme 2.7 vaut 2 pour ¢ = p et 1 pour les autres degrés
g < k + 1. Par conséquent, la minoration des termes 1, p2 et ’“fj—;z du lemme 2.7
permettrait de conclure la démonstration.

On peut noter qu’au cours de la déformation conforme créant la petite valeur
propre, I'intersection /1N U3 ne subit qu une homothétie. En choisissant une partition
de I'unité indépendante de g, le rapport % dans le lemme 2.7 est invariant par
homothétie, 1l est donc indépendant de &. Par ailleurs, la métrique sur Uz subit une
homothétie qui fait tendre son spectre non nul vers 1’ infini.

Pour minorer 44 i, (S", g¢) al’aide du lemme 2.7 il reste donc a minorer le spectre
de Uy, pour lequel une difficulté apparait : la métrique sur ce domaine n’est pas fixe
puisqu’on I’écrase sur un voisinage du bord, et il n’est pas clair a priori que cette
déformation ne produise pas de petites valeurs propres : on a vu précédemment que
si une telle déformation se produit ailleurs que pres du bord, elle peut effectivement
faire tendre une valeur propre vers zéro.

Fait 2.8. Il existe une constante ¢ > 0 indépendante du choix de /4. telle que
pga (R, h2g) > c,pourtout 1 < g < k+1.

Démonstration. On utilise une nouvelle fois le lemme de Dodziuk pour se ramener
a une classe conforme particuliere en identifiant B"~7 a la réunion d’un cylindre
[0, 1] x S 7~ (muni d’une métrique produit) et d'un hémisphere (voir figure 2),
en munissant S¥ de sa métrique canonique et €2 de la métrique produit.

On recouvre €2 par deux domaines, €21 défini comme le produit de S¥ et de réunion
de I’hémisphere et de [0, %] x SPP=1 et Q) formé de [0, 1] x S*~P~1 x $7. On
va minorer le spectre sur chacun des deux domaines et en déduire une minoration
sur 2. On ne peut pas appliquer le lemme de McGowan pour minorer la totalité du
spectre non nul car la cohomologie des intersections des domaines est non triviale,
mais dans cette situation on peut en adapter la démonstration pour obtenir un résultat
plus précis.

Remarquons d’abord que la métrique sur €21 est fixe, son spectre est donc uni-
formément minoré par rapport a . On doit ensuite minorer le spectre de €2;. Sur
ce domaine, la métrique g est le produit des métriques canoniques de [0, 1], S7 et
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$"—P=1 Elle est donc invariante sous I’action des groupes d’isométries SO(p+1) et
SO(n — p) des spheres S7 et S"~#~1 et il en est de méme pour la métrique hZg. Or,
on peut montrer (voir [Ja04], théoreme 1.18 et section 4) que lorsque le cercle agit
par isométrie sur une variét€ compacte, il existe une constante dépendant uniquement
de la longueur maximale des orbites telle que si une valeur propre est inférieure a
cette constante, les formes propres correspondantes sont invariantes sous 1’action du
cercle. Le groupe SO(p 4+ 1) x SO(n — p) étant engendré par des cercles dont la
longueur des orbites est uniformément majorée par rapport a &, on peut se restreindre
aux formes invariantes par cette action. Remarquons en outre que les seules formes
invariantes de la sphére sont les fonctions constantes et les multiples de la forme
volume canonique.

£27

g

-
- -

Figure 2

Ces remarques nous permettent de nous ramener a un probleme unidimensionnel:
une forme propre de (€23, h%g) de degré compris entre 1 et kK + 1 et dont la valeur
propre est petite est nécessairement de la forme

w = f(t)dvsr ouw = f(t)dvsr A dt, (2.9)

ou f est une fonction sur [0, 1] et dvgr la forme volume de S¥, qu’on identifie
avec leur relevé a Q2. L’'image de @ par d étant aussi invariante, on peut affirmer
que f(t)dvgr A dt est fermée. Comme il suffit de minorer le spectre des formes
coexactes, on va raisonner sur @ = f(f)dvgse.

On va calculer explicitement le laplacien de @ en fonction de f et ki, puis en
déduire que @ ne peut pas étre une forme propre de valeur propre petite non nulle.
Remarquons d’abord que d * @ = d(h(t)”‘sz(t)den_p_l A dt) = 0, c’est-a-dire
que dew = 0. On a par ailleurs dw = f'(1)dt A dvgp, done

dsdo = (=D NP2 D dvgnp

(2.10)
= (—D)P[R" P24 4 (n—2p — ) RT3 dvognp Ade

et finalement

Aw=8dw=—[h"2f"+(n—2p—2fhh>|dvss. 2.11)
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Le méme calcul montre que sur la variété $"~27=! x [0, 1] munie de la métrique
h*g’ ou ¢ est la métrique produit, la fonction f vérifie Af = —(h™>f" + (n —
2p —2)f'Wh™?). Si w est une forme propre de valeur propre A > 0, alors f est une
fonction propre sur (SP=2r—-1 [0, 1], h%g’) de méme valeur propre. Or, sion choisit
la famille /. de sorte qu’elle tende simplement vers la fonction caractéristique de
[0, 1/2], on sait que cette déformation ne produit pas de petites valeurs propres non
nulles pour les fonctions (¢’est un corollaire immédiat du théoreme I11.3 de [CdV86]).
Le spectre non nul de 2, est donc bien uniformément minor¢.

On doit maintenant déduire une minoration du spectre de €2 des minorations des
spectres de €21 et Q7. Pour les degrés autres que p on peut appliquer le lemme 2.7. En
degré p ce lemme ne minore que la 2° valeur propre, on va voir comment améliorer ce
résultat. On se référera implicitement au début de la section 2 de ’article [Mc93] de
1. McGowan pour les notions de théorie de Hodge et de théorie spectrale des variétés
a bord que nous utiliserons. Rappelons-en deux points techniques: tout d’abord,
comme I’a expliqué J. Dodziuk dans [Do82], 1l suffit pour minorer 14, 1 de trouver
une constante C > 0 telle que pour toute (p + 1)-forme exacte ¢, il existe une p-
forme ¥ telle que dyr = g et |||/ ||¢]| < C, et par ailleurs, a 1’exception des formes
harmoniques, on a pas besoin de se restreindre aux formes différentielles vérifiant les
conditions de bord.

Soit ¢ une ( p+1)-forme exacte sur £2. Pour tout/ = 1, 2, on note ¢; sa restriction
au domaine €2;. Chaque ¢; est une forme exacte, donc il existe sur chacun des €2; une
forme ; telle que dyr; = ¢;, et on peut choisir yr; telle que oy, 1(€2;) || 12 < |12

Sur 'intersection €212 = €21 M €23, on peut définir la forme @ = yrp — 1. Elle
vérifie do = diyrp — dyr; = 0, on peut donc I’écrire sous la forme w = o + dp,
ol @ est une p-forme harmonique — avec conditions de bord absolues — de Q12 =~
SP x sn=P=1 0, %] et qui est donc nécessairement proportionnelle au relevé de
dvgr. Cette forme s’étend naturellement en une forme harmonique (pour la métrique
g)de @ =~ S§7 x $"~P~1 x [0, 1], qui est de longueur constante pour g et qu’on
notera encore «.

Soit (p;) une partition de I’unité pour le recouvrement (€2;). La forme p18 (resp.
p28) qui est définie sur £212 se prolonge naturellement par O en dehors de €212 pour
donner une forme sur €2 (resp. €21). On définit alors sur les domaines €2; les formes

Wi par

g1 = Y + d(p2p) et g2 = Y2 — o — d(p1B). (2.12)
Ces formes vérifient dy; = dir; = o pour: = 1,2, et sur 21, 0na
Yo — =y — Y1 —a —d((p1 + p2)B) =w —a —dB =0. (2.13)

Les formes (fbi)izl,z coincident sur I’'intersection 212, ce sont donc les restrictions
d’une forme globale sur 2 qu’on notera v, et qui vérifie dy» = ¢. Pour minorer le
spectre de €2, on doit majorer la norme de ¢ en fonction de celle de ¢, indépendam-
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ment du choix de /.. On commence par écrire

11 < 112 4 1da)1? < (¢ + d(eaB) 1> + Il — a — d(p1 B)I1°

(2.14)
<3 (Il + 121 + (o1 I + ld(o2B) 1P + llel|?) -

Dans I’'inégalité précédente, chaque norme considérée est relative au domaine €2; sur
lequel la forme est définie. On peut majorer les premiers termes en utilisant le fait
que 1, 1 (D112 < ¢ 117 < [|#]1>. Pour les termes faisant intervenir « et 8, on
se rameéne aux normes sur 212: comme les supports des formes p; 8 sont contenus
dans €212, leur norme ne change pas quand on se restreint a €212, et en utilisant le le
fait que « est de degré p inféricur a k et qu’elle est de longueur constante pour la
métrique g on a

Vol(£2, g)

< — . 2.15
¢ = ol llerll 2, (2.15)

leellgy p2g < ol

On peut alors majorer les termes restants de 1'inégalité (2.14) en commengant par

1 C
—|ld(e;i B)]1? 2 L 1dB|2 < ||d 2(—‘) 1), 2.16
F16EBIP < colBI + 19817 < IBIP  —— + (2.16)

ou c, = sup; ||Vp; ||%o. On majore les normes de « et df en partant de I’égalité
a+dp = yrp — iy etenutilisant le fait que « est harmonique avec condition de bord
absolue, donc orthogonale aux formes exactes, ce qui donne

1B < 1z — ¥ l* < 201 lI* + 2/

<( 2 2 )II¢||2 2.17)
T\ Hpa(821)  pp1(822)

et de la méme maniére,

||a||2s( 2,2 )||¢||2. (2.18)
Mp1(21)  pp1(£22)

On a donc une majoration du quotient ||y 12 /1/¢]|* en fonction de co.de pp_1,1(€212),

des (p1p.1(2:))i=12 et du rapport \%1((%21’5). Seuls 11, 1(22) et ?;1((%21’5)) dépendent

du choix de A,, et ils sont uniformément minorés. O

On a finalement yne minoration uniforme de iy 2(M, gg) et p, 1 (M, go) pour
1 <qg <k+1, g # p, lapplication du lemme 2.7 permet donc de conclure la
démonstration du lemme 1.6.
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3. Prescription du spectre

3.1. Propriétés de convergence et de stabilité du spectre. Pour prescrire le spec-
tre dans classe conforme, nous allons utiliser des techniques déja mises en ceuvre
par P. Guérini dans [Gu04] et que nous allons rappeler ici. Nous expliquerons en-
suite comment la construction géométrique considérée peut &tre réalisée de manicre
conforme a partir d une métrique quelconque.

Un premier outil est le résultat de convergence de spectre obtenu par C. Anné
et B. Colbois dans [AC95] pour les varidtés compactes reliées par des anses fines.
Considérons une famille finie de variétés compactes (M;, gj)iK: | qu’on relie entre
elles par des anses fines, isométriques au produit d’une sphére (S" !, 2 gean) par un
intervalle (voir figure 3). En notant (M , 8¢) la variété obtenue, qui est difféomorphe
a M{#M# - - #Mg, on a alors :

Théoréme 3.1. Si, pour p € {1, --- ,n — 1}, on note ,ufp 1 = ,u;? 5 < -+ laréunion
des spectres (up (M}, g;))i,;, ona pour tout i € N*

Hm pep,i (M, ge) = 1), ;.
e—0
M

Décrivons rapidement comment prescrire le spectre (les détails seront précisés au
paragraphe suivant): on commence par fixer un réel strictement positif § tel que

Figure 3

5< inf {M} et s < Vo (3.2)
p<k,i<N 2
et choisirunréel V € [V — 8, Vo + 8].
Pourtout1 < p < kettoutl <i < N, on se donne un réel &,; € [vy; —
8,vp,; + 8] et une métrique g, ; sur la sphere S” telle que Vol(S", g,i) < % et
p1(S", gp.i) = &p.i, toutes les autres valeurs propres de la sphére étant supérieures
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asup, {vpi}+4. Onmunit M d’une métrique telle que 1oy, 1 (M) > sup,, ;{vp i} +38
pour tout p compris entre 1 et n — 2, et Vol(M) =V — Zm Vol (5", gp.i). Sion
attache les spheres a M par des anses fines comme dans la figure 3, on obtient une
variété difféomorphe a M, etle théoréme 3.1 nous donne alors une famille de métrique
(ge) sur M telle que Vol(M, g.) tend vers V et iy, i (M, g¢) tend vers &, ; pour tout p
et i quand ¢ tend vers zéro. Les métriques g. sont singulieres sur le bord des anses,
mais on verra qu’on peut les lisser sans perturber la convergence du spectre.

On peut alors utiliser I’argument de stabilité développé par Y. Colin de Verdiere
dans [CdV86]. On s’appuie sur le

Lemme 3.3. Soit ($.). une famille d’applications continues d’une boule fermée
By C R™ dans R™ qui converge uniformément vers I'identité quand & tend vers 0, et
xo un point intérieur a By.

Si e est suffisamment petit, alors xg est contenu dans I'tmage de &..

On applique ce lemme 2 1’espace R¥V*1 avec

Op: [Vo—8, Vo + 81 x [ [[vpi — 8, vp.i + 81 — RV (3.4)
P.i
(V’ 51,13 EEAY 51,N7 FERE gk,l) W Ek,N) = (VOI(M9 gé‘)’ Iu’p,i(M’ g&‘))

etxo = (Vo,vig... . ViNs Vi 1s -0 V). Selon le théoreme 3.1, &, converge
simplement vers 1’identité quand e — (. Mais comme ces applications sont continues
et que By est compact, le théoreme de Dini garantit que la convergence est uniforme.
On peut donc trouver un jeu de parametres (V, &; ;) et un & telle que la métrique
ge vérifie les conclusions du théoreme. Comme pr41,1(M, g-) tend vers une valeur
supérieure a sup,, ; {vp,i }-+4, on peut choisir & suffisamment petit pour que la condition
Hit1,1(M, g) > supp’i{vp,i} soit vérifide.

Notons qu’il est est essentiel que pour chaque valeur de p les termes de la suite
(Vp,i )f‘; 1 soient distincts, afin qu’ on puisse choisir By et xg tels que xq soit a I’ intérieur
de By.

3.2. Prescription conforme. Il reste 2 montrer que la construction précédente peut
étre réalisée de maniére conforme.

La premi¢re ¢tape consiste, pour chaque &, ;, a trouver la métrique g, ; corre-
spondante sur la sphere. Pour cela, on applique le lemme 1.6 en considérant la classe
conforme de la métrique canonique, et

< < Spo’i .
sup,, ; {vp,i} + 8

(3.5)
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On obtientune métrique g,, ; telle que 11, 1(S™, gp0.i) < &,1es autres valeurs propres
dtant supérieures a c. En posant

Hp J(Snyép,i)_
8poi = —— & Zpo,is (3.6)

Spo,i

on a ppg,1(S", gpo.i) = &pg.i» €t les autres valeurs propres sont supérieures a ¢ -

Epo,i spo,i . .
ool G = € e sup,, ;{vp.i}+4. Le lemme 1.6 permet en outre de majorer

le volume de la sphere pour la métrique gy, ,;, et donc pour la métrique gp,,;. On peut
done choisir gp, ; telle que Vol(S™, gpy. 1) < 37
On veut ensuite munir M d’une métrique pour laquelle toutes les valeurs propres

sont grandes, le volume et la classe conforme étant fixés. C’est possible en vertu d’un
résultat de B. Colbois et A. El Soufi:

Théoréme 3.7 (JCES06]). Si M estune variété riemannienne compacte de dimension
n > 4 et C une classe conforme sur M, alors

sup_inf (M, ) Vol(M, ¢)7 = +oo. (3.8)
geC0<p<”_2

On peut donc se donner une métrique g sur M telle que

Vol(M, g) =V — > " Vol(S", gpy,i) (3.9)
Poi
et
tpo1 (M, g) > supfvpi} + 9 (3.10)
y 2%

pour tout O < pg < n — 1.

On veut maintenant attacher des spheres a M par des anses fines. Unréel & > 0
petit étant donné, on va — temporairement — déformer la méirique g de manicre
non conforme en une métrique g, telle que cette métrique soit euclidienne sur kN
boules disjointes de rayon €. On peut choisir g. telle que % g < g < t(8)g,

avec 7(¢) — 1 quand ¢ — 0. Comme 1’ont remarqué B. Colbois et A. El Soufi
dans [CESO3] et [CES06], une boule cuclidienne (B(e), geue) de rayon & peut &tre
déformée de manicre conforme en la réunion d’un cylindre de rayon ¢ et de longueur
quelconque, et d’une sphere homothétique a la sphere canonique privée d’une boule
de rayon ¢: si on note r le coordonnée radiale sur B(e) et qu’on définit la fonction
thpar

e |t

Sice™ s <r <eg,
L

(3.11)

£
hie(r) =171
e

Si0 <r <ge™ =,
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Une fois munie de la métrique h%’g Zeuc, 12 partie de 1a boule B(g) correspondant

L : . . : ,
ar € [ee ¢, ¢] estisoméirique a un cylindre de longueur L et de rayon & tandis

que la partie correspondant a r € [0, se_%] est isométrique a une boule euclidienne
de rayon £. Comme cette boule peut &tre projetée stéréographiquement — donc de
maniere conforme — sur une calotte sphérique quelconque, 1l existe une fonction 42
telle que (B(e), h% - &euc) s0it la réunion d’un cylindre de longueur L et d’un calotte
sphérique dont le bord s’ appuie sur le bord du cylindre (voir figure 4). De plus, on peut
choisir A3 . de sorte que lorsque ¢ tend vers z€ro, la métrique de la sphere portant
la calotte soit fixée. En appliquant cette déformation sur chacune des kN boules
euclidiennes contenues dans (M, g.), la variété est isométrique a celle obtenue en
attachant kN spheres a (M, g.) par des anses de rayon &, on se trouve bien dans les
condition d’application du théoréme 3.1.

0 ( 0 (

(B(e).ge)  (Ble), 1] g.) (B(e), h3 )

Figure 4

Il reste a transplanter sur chacune des sphéres la métrique gp,; qu’on a défini
précédemment. Pour cela, remarquons que dans la construction de la métrique gy, ;
a partir de la métrique canonique, 1l y a un ouvert U de la sphere sur lequel la
déformation conforme est une simple homothétie, dont on notera p le rapport (voir
remarque 2.4). On fixe un point x € U, et on identifie la calotte sphérique qu’on
a construit a la calotte de (S*, p®gean) dont le bord est centré en x. On peut alors
déformer la métrique sur la calotte de sorte qu’elle soit isométrique a la restriction de
gno.i- Sl € est suffisamment petit, le bord de la calotte est entierement contenu dans
U, il n’est done pas déformé et la métrique globale est bien continue le long du bord.

En appliquant ces déformations sur chacune des kN boules de (M, g.), on con-
struit une fonction %3 . sur M telle que (M, h%}s 2. ) soit formé de (M, g.) reliés aux
kN spheres (5", gp,,i) par des anses dont le rayon tend vers zéro quand ¢ tend vers
z¢ro. Le théoreme 3.1 assure alors que

fpi (M, h3 ,g:) — & quand & — 0 (3.12)

pourl < p <ketl <i: < N, les autres valeurs propres tendant vers des valeurs
supérieures a sup,, ;{vp i} + & et le volume tendant vers V.
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La famille de métrique h% -8 West pas conforme a la métrique initiale g. Cepen-
dant, comme on a %gs < g < 1t(e)g., 0N a aussi
1

2 2 2
oy Bt < 1,8 ST 8 (3.13)

avec t(g) — 1. On peut en outre approcher la famille de fonction (A3 ), par une
famille (4 ). formée de fonctions lisses et telle que e™® < hy/hy . < €. La
famille (h4 . g) est alors constituée de métriques lisses conformes a g et vérifie

1
eft(e)

h3.8e < hj.g <eT(e)h3, 8. (3.14)

Le lemme 2.1 assure alors que
Him pup 1 (M. B og) = 1im pup i (M 15 .g0) = &p i (3.15)

pour | < p <ketl <i <N etque les autres valeurs propres restent supérieures a
sup,, ;{vp.i} pour ¢ suffisamment petit, et en outre Vol(M, hﬁagg) tend vers V. Cette
construction peut étre réalisée pour n’importe quelle famille (£, ;) du domaine de
la fonction @, définie en (3.4). On est donc en mesure d’appliquer le lemme de
stabilité 3.3 et d’en déduire le théoreme 1.3.
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