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Prescription du spectre du laplacien de Hodge-de Rham dans une
classe conforme

Pierre Jammes

Résumé. Sur toute variété compacte de dimension n > 5, on prescrit le volume et toute partie
finie du spectre du laplacien de Hodge-de Rham (sans multiplicité) en restriction aux formes de

degré/? g [2,« —2], en excluant/? m/2 si« est pair, et en imposant à la métrique d'appartenir
à une classe conforme donnée. On sait que pour n < 4, ainsi que pour p 0,1, ti — 1, n, et

p n/2 si n est pair, on ne peut pas prescrire simultanément le spectre, le volume et la classe

Conforme.

Abstract. For any compact manifold of dimension n > 5, we prescribe the volume and any
finite part of the spectrum of the Hodge Laplacian (without multiplicity) acting on differential
forms of degree p G [2, n — 2.| (except for p n/2 if n is even), within a given conformai
class. When n < 4 and when p 0, 1, n — 1, n, and p n/2 if n is even, this simultaneous

prescription of the volume, the spectrum and the conformai class is known to be impossible.

Mathematics Subject Classification (2000). 58J50, 58C40, 53A30.

Mots clés. Formes différentielles, laplacien de Hodge-de Rham, prescription de spectre, géométrie

conforme.

1. Introduction

Étant donnée une suite finie croissante de réels strictement positifs 0 < Ai < À? <
< A/., Y. Colin de Verdière a montré dans [CdV87] qu'on peut trouver sur toute

variété compacte de dimension supérieure ou égale à 3 une métrique riemannienne
telle que le spectre du laplacien agissant sur les fonctions commence par la suite

(A, )f=1, et J. Lohkamp a amélioré ce résultat en montrant dans [Lo96] qu'on pouvait
prescrire le volume et certains invariants de courbure en même temps que le spectre.
Dans le cas où la suite (A, )f=1 est strictement croissante, c'est-à-dire en supposant

que les valeurs propres prescrites sont simples, des résultats du même type ont été

obtenus pour d'autres opérateurs: M. Dahl prescrit dans [Da05] le début du spectre de

l'opérateur de Dirac sur les variétés compactes et P. Guérini a montré dans [Gu04] que
sur les variétés compactes et les domaines euclidiens, on peut prescrire simultanément
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Ie volume et toute partie finie du spectre du laplacien de Hodge-de Rham, qui agit
sur les formes différentielles.

Notre but est de montrer, dans le cas du laplacien de Hodge-de Rham, que si

on munit une variété compacte M" de dimension n d'une métrique riemannienne g
quelconque, on peut obtenir le volume et la partie finie du spectre (sans multiplicité)
souhaités en effectuant uniquement des déformations conformes à partir de g. Il faut
noter qu'une telle prescription simultanée du spectre, du volume et de la classe
conforme est spécifique aux formes différentielles. Elle est impossible pour le laplacien
agissant sur les fonctions: si on fixe le volume et la classe conforme sur une variété

compacte donnée, on ne peut pas rendre les valeurs propres arbitrairement grandes
([ËSI86], [Ko93]). Sous les mêmes contraintes, on ne peut pas rendre les valeurs

propres non nulles de l'opérateur de Dirac arbitrairement petites ([L086], [Am03]),
Dans le cas des formes différentielles, on se heurte au problème que le spectre des

1-formes contient le Spectre des fonctions, et pour les formes de degré n/2 quand n

est pair il y a une obstruction du même type que pour l'opérateur de Dirac (cf. [Ja06],
ainsi que la remarque 1.7 ci-dessous). On va montrer qu'on peut prescrire le spectre

pour les autres degrés. La comparaison de ces différents résultats permet de mesurer
la rigidité qu'apporte le fait de fixer le volume et la classe conforme: on frôle les

limites des possibilités de prescription.
Précisons quelques notations: Si (M", g) est une variété riemannienne compacte

orientable de dimension n, le laplacien Ap agissant sur l'espace Qp (M) des p-formes
différentielles est défini par À dS+ùd où S désigne la codifférentielle, et son spectre
sera noté

0 lp,o(M, g) < kp,i(M, g) < XP2(M, g) < • • • (1.1)

où les valeurs propres non nulles sont répétées s'il y a multiplicité. La multiplicité
de la valeur propre nulle, si elle existe, est un invariant topologique: c'est le nombre
de Betti bp(M).

L'espace des p-formes coexactes est stable par le laplacien, et on notera

0 < fJ-p,i(M, g) < g) < (1.2)

le spectre du laplacien restreint à cet espace. Par théorie de Hodge, le spectre

(kpj(M, g))i>i est la réunion de (ppj(M, g))i et (/V'-i.AM. g)),. De plus, si M
n'a pas de bord, on a aussi ppj (M, g) ßn_p_ij (M, g) pour tout p et i, le spectre

complet du laplacien se déduit alors des ppj (M, g) pour p < Ce sont donc

ces valeurs propres qu'on va chercher à prescrire. On exclut le cas p 0 puisque
(poj(M, g)) est le spectre des fonctions, pour lequel la prescription est impossible
comme on l'a déjà remarqué. On écarte aussi le cas p pour lequel on ne peut
pas rendre les valeurs propres arbitrairement petites (voir remarque 1.7). En particulier,

si la dimension de M vérifie n < 4, la prescription dans une classe conforme et
à volume fixé d'une valeur propre quelconque est impossible, quel que soit le degré.
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Compte tenu de ces remarques, en supposant que n > 5 et en notant k l'entier tel

que n 2k + 3 ou 2k + 4, on va prescrire toute partie finie des ppj(M, g) pour
1 < p <k.

Théorème 1.3. Soit M une variété compacte, connexe, orientable et sans bord de

dimension n 2k + 3 ou 2k + 4 où k g N*., C une classe conforme de métriques
riemanniennes sur M, Vq un réel strictement positif et N > 1 un entier. On se donne

pour tout entier p g {1,,.., k} une suite de réels 0 < 17,0 < 17,.2 < • • • < v/;.,v.
Il existe une métrique g g C telle que

• ßpj (M, g) vpj pour tout I < N et p G {1 k};

' m - u'.V-fl > sup; (17... );

Vol (M, g) Vq.

Remarque 1.4. La minoration pk+1,1 (M, .g) » sup ,{17,./} assure qu'on a l'égalité
Xk+ij(M, g) n-kj\(M, g) pour 1 < N. On peut donc prescrire les N premières
valeurs propres des (k + l)-formes, les formes propres correspondantes étant alors

exactes, de valeurs propres égales à (pkj (M, g))fli- Si n est impair, on prescrit ainsi
le spectre en tout degré 2 < p < n— 2. En dimension paire, le degré p n/2 k+2
fait exception. En degré 1 et « — 1 on ne prescrit pas arbitrairement le début du

spectre car on ne contrôle pas les g), mais on peut assurer que les valeurs

Ri,1 vi,n sont contenues dans (kij(M, g));> 1 et (l„_ij(M, g));>i.

Remarque 1.5. Les valeurs propres Xpj (M, g) prescrites sont simples, ou de

multiplicité 2 si on fait en sorte que vpj vp-ij pour des valeurs quelconques de 1 et j.
Le problème de prescrire arbitrairement la multiplicité ne serait-ce que d'une valeur

propre reste à notre connaissance ouvert, tant pour le laplacien de Hodge-de Rham

que pour l'opérateur de Dirac.
Une étape clef de la démonstration du théorème 1.3 consiste à montrer que sur

la sphère, on peut prescrire une valeur propre, toutes les autres valeurs propres étant
arbitrairement grandes, le volume étant majoré et la classe conforme étant fixée. On

va montrer un résultat équivalent, à savoir qu'on peut faire tendre une valeur propre
non nulle vers zéro en déformant la sphère de manière conforme, les autres valeurs

propres étant minorées et le volume étant fixé:

Lemme 1.6. Soit n > 5 un entier, k l'entier tel que n 2k + 3 ou n 2k + 4 et C
une classe conforme sur S". Pour tout réel V > 0 et tout entier 1 < p < k il existe

une famille de métriques i c ;. 1 contenue dans C et une constante c > 0 telles

que PppiS'k gf) < «, pPa(Sn, ge) > c, ßqj(Sn, g£) > c pour 1 < q < k + 1,

q ^p,etVol(S\gs) V.

Remarque 1.7. Ce lemme ne se généralise pas aux formes différentielles de

degré k + 1; on montre en effet dans [Ja06] qu'une inégalité de Sobolev permet de
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minorer uniformément /r,ff 1,1 (M, g) Vol(M, g)2ln sur une classe conforme par une
constante strictement positive. C'est la raison pour laquelle on ne peut pas prescrire

Pk+u {M*, g) dans le théorème 1.3.

Remarque 1.8. Le problème de faire tendre des valeurs propres vers 0 dans une
classe conforme à volume fixé avait été posé par B. Colbois dans [Co04] et était
resté ouvert. Le lemme 1.6 y répond partiellement et la technique utilisée permet
d'obtenir un grand nombre de petite valeurs propres sur une variété quelconque (voir
remarque 2.5). Ce problème est totalement résolu par le théorème 1.3 et les résultats
de ]Ja06|.

Le lemme î .6 sera démontré dans la section 2, et le théorème 1.3 dans la section 3.

Je remercie Bruno Colbois pour de nombreuses discussions autour de ce sujet,
ainsi que le rapporteur de l'article dont les remarques ont permis de corriger une

erreur et d'améliorer le texte.

2. Petites valeurs propres dans une classe conforme

2.1. Quasi-isométries et extrema conformes du spectre. Commençons par
rappeler le lemme suivant, dû à J. Dodziuk, qui permet de comparer les spectres de

deux métriques dont on connaît le rapport de quasi-isométrie et que nous utiliserons
à plusieurs reprises au cours des démonstrations du théorème 1.3 et du lemme 1.6 :

Lemme 2.1 ([Do82]). Soit g et g deux métriques riemanniennes sur une variété

compacte M de dimension n, et r une constante strictement positive. Si les deux

métriques vérifient yg < g < rg, alors

g) g; A,p^(M, g) <. r hp k(M, g),

pour tout entiers k > 0 et p g [0, «].

Une première conséquence du lemme de Dodziuk est qu'il suffit de démontrer le
lemme 1.6 pour une classe conforme particulière, le résultat général s'en déduira :

supposons que le lemme soit vrai pour une classe conforme Ç, et donnons-nous une
autre classe conforme (", ainsi que deux métriques g g C et g' g C, un réel V > 0 et

un entier p g [1,ä]. Le lemme 1.6 nous dit que pour tout s > 0 et tout r > 1, il existe

une fonction h g C^iM) strictement positive telle que ppj(M,h2g) < r~1_3"é,
h2g) > r3"+!e, fiq^(M, h2g) > r3"+1c pour tout 0 < p < k + 1, q ^ p,

et Vol(.1/. h2g) V.
Par compacité de M, il existe une constante r > 1 telle que ^g < g' < rg. Or, les

métriques h1g et h2g' sont liées par le même rapport de quasi-isométrie que g êt g',
c'est-à-dire que \h2g < h2g' < rh2g. On en déduit alors que pp,\(M,h2g') <
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x~2e, ppp(M,h2g') > x2c, fjLq^i(M,h2gr) > x2c pour q ^ p et x~"V <
Vol (M, h2g < r" V. Après renormalisation du volume par homothétie, on a

Ppj (M, h2 g') < s, Pp^iM. h2g') > c, pqyi(M, h2g') > c et Vol (M, h2g) V, et
donc le lemme 1.6 est vrai pour la classe conforme C.

2.2. Construction d'une petite valeur propre sur la sphère. On va maintenant
aborder la démonstration du lemme 1.6, qui se déroule en deux étapes. Dans un
premier temps on va montrer qu'on peut obtenir une petite valeur propre de degré

p g iL 4] dans une classe conforme donnée et à volume fixé. On vérifiera ensuite

que c'est bien la seule petite valeur propre.
Le principe de la construction de cette petite valeur propre est le suivant: on plonge

une sphère Sp dans S" et on écrase la métrique en dehors d'un voisinage tubulaire
de SP, On peut alors choisir une forme test qui a un petit quotient de Rayleigh en

prolongeant la forme volume de Sp.

On fixe donc un entier p g [1, k], et on considère un plongementf : SpxB"~p
S" où Bn~p est la boule de dimension n — p, l'image de i étant un voisinage tubulaire
d'une sous-variété de S" difféomorphe à Sp. Dans la suite, on identifiera Sp x B"~p
avec son image par i qu'on notera £2. On identifiera aussi les formes volumes dv$p

et dvBn~p de Sp et B"~p avec leur relevé sur £2.

Comme on l'a montré au paragraphe 2.1, il suffit de montrer le lemme pour la
classe conforme d' un métrique particulière de S" qu'on choisit comme suit : on muni
B"~p d'une métrique euclidienne de rayon R, Sp d'une métrique quelconque, £2 de

la métrique produit associée, et S" d'une métrique g qui prolonge la métrique sur £2.

On choisit R suffisamment petit pour qu'on puisse choisir g telle que Vol (5", g)
V, et on va montrer qu'on peut trouver une métrique ge conforme à g telle que
l+P.i(S>\gs) < e etVoKS«, gs) V.

On note r la coordonnée radiale sur B"~p et on se donne une fonction continue

/ sur Bn~p qui ne dépend que de r telle que /(0) 1, f(R) 0. On construit
une p-forme test at sur £2 en posant m fdvsp, et on l'étend en une p-forme sur
S" par a 0 en dehors de £2. On définit une nouvelle métrique g h2g où h est

une autre fonction ne dépendant que de r dans £2, et constante en dehors. Sur £2, la
forme a> vérifie dm f'âr A dug et (—1 )"L'+1^+1<S&> *d(fhn~2pdvB) 0 car
dr A dug 0.

Précisons le choix de / et de la nouvelle métrique. On veut contracter la métrique
dans un domaine de S" qui contient le support de f. Étant donné un réel 0 - ri <P 1,

on choisit la fonction h telle que /AO) 1, /A 1 /; cl qui vaut q en dehors de

Sp x Bn~p. On découpe l'intervalle [0, R] en quatre intervalles /,: [('~41),R, 'f | et

on pose :

h(r) 1 sur I\\
• Zl(r) q sur /3, /4;
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f(r) 1 surfi et/2;

• f(r) =0 sur I4.

On prolonge h sur h et / sur h de manière lisse et monotone (voir figure 1).

Figure 1

Le quotient de Rayleigh de la forme m pour la métrique g est

Rica) J
2 f h" 2p |dû)|idug
g JS"

\co 5 /J S»

hn~2p\œ\ldVe

I hn 2p 21 f'dr A dr.v/1div
_ ±s*

f h"-2p\f\2dvg
JS"

La fonction f est nulle en dehors de h, par conséquent

n—2p—2 f l/'lW) f l/fdug
R{é) 3 < r]"-2p (2.3)

/ h"-2p\f\2dvg /
Jsn Jre

(2.2)

rel 1

Dans l'inégalité (2.3), le quotient du membre de gauche est uniformément majoré par
rapport I if. On a supposé que p < k, donc n — 2p — 2 est strictement positif. En
choisissant r\ suffisamment petit, on obtient une fonction h et une métrique g:: h2g
telle que R(a>) «j e, et par conséquent /ir,q (M, ge) < è car la forme test est cofermée
et la sphère S" n'a pas de cohomologie en degré p. Le volume de S" ne fait que
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diminuer lorsque y tend vers zéro. Si on le normalise par une homothétie on obtient
une métrique gE telle que VolCS" gj) V, la petite valeur propre restant inférieure
à e, ce qui conclut la première partie de la démonstration du lemme 1.6.

Remarque 2.4. En dehors du domaines % la métrique ne subit qu'une homothétie.
Cette propriété simplifiera la prescription du spectre.

Remarque 2.5. Le procédé que nous venons de décrire se généralise aisément pour
construire un grand nombre de petites valeurs propres pour plusieurs degrés
simultanément sur une variété compacte M quelconque : à partir d'un nombre arbitraire
de sphères plongées dans M, on peut construire autant de formes test dont le quotient

de Rayleigh tend vers zéro quand on écrase la métrique en dehors de voisinages
tubulaires tous disjoints de ces sphères. Cependant, si la variété a des nombres de

Betti non nuls, on ne contrôle pas précisément le nombre de petites valeurs propres
non nulles obtenu.

2.3. Contrôle du nombre de petites valeurs propres. Pour achever la
démonstration du lemme 1.6, on doit s'assurer que la petite valeur propre construite au

paragraphe précédent est bien la seule. Nous allons pour cela faire appel à un lemme
dû à J. McGowan qui permet, étant donne un recouvrement de la variété par des

ouverts à bords lisses, de minorer une partie du spectre de la variété en fonction du

spectre des ouverts du recouvrement et de leurs intersections. Sur les domaines de

la variété, le spectre que nous considérerons sera toujours celui du laplacien agissant
sur les formes vérifiant la condition de bord absolue, qui généralise la condition de

Neumann, à savoir :

k*T n
(2.6)

I 0,

où j : 3M «h*- M désigne l'inclusion canonique, v la normale au bord et iv le produit
intérieur par v.

Lemme 2.7. Soit (M, g) une variété compacte de dimension n, 0mLj un
recouvrement de M par des ouverts n'ayant pas d'intersections d'ordre supérieur ou égal
à 3 et pi une partition de l'unité relative à (IfyjfLj. D existe des constantes a, b > 0

ne dépendant que de n telles que

n
Pq,kJM, g) >

È(- + E (^-m)(- + -0',: l,: >Âj

avec kq 1 + ]T, dim .JC1 II; D Ü/) où -Kq désigne l'espace des y-formes

harmoniques avec condition de bord absolue, p-, nqj (Üi), mj pq-i,\(0 D Ü/) et

ep sup,: H V« iL.
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Ce leirnne a été démontré dans [Mc93] pour les 1 -formes pour un recouvrement fini
quelconque, et G. Gentile et V. Pagliara ont remarqué dans [GP95] qu'il se généralise
aux formes de degré quelconque si on suppose que les ouverts du recouvrement n'ont
pas d'intersection d'ordre supérieur ou égal à 3.

Nous allons appliquer ce lemme au recouvrement constitué des deux ouverts

Ui formé de l'intérieur de G et lh formé de S" privé des points de G tels que

r < --p. Par commodité, on appliquera le lemme 2.7 pour la métrique ge au lieu de

gE. Comme Voit.S'", ge) reste uniformément minoré quand e -> 0, cela ne change

pas significativement le résultat.
Le nombre kq du lemme 2.7 vaut 2 pour f p et i pour les autres degrés

q < k + 1. Par conséquent, la minoration des termes $i i, /o et — du lemme 2.7
CP

permettrait de conclure la démonstration.
On peut noter qu'au cours de la déformation conforme créant la petite valeur

propre, l'intersection Pî(J% ne subit qu'une homothétie. En choisissant une partition
de l'unité indépendante de gs, le rapport jjy dans le lemme 2.7 est invariant par
homothétie, il est donc indépendant de e. Par ailleurs, la métrique sur U% subit une
homothétie qui fait tendre son spectre non nul vers l'inhni.

Pour minorer :/%jl (Sn, ge) à l'aide du lemme 2.7 il reste donc à minorer le spectre
de Ui, pour lequel une difficulté apparaît : la métrique sur ce domaine n'est pas ûxe

puisqu'on l'écrase sur un voisinage du bord, et il n'est pas clair a priori que cette
déformation ne produise pas de petites valeurs propres : on a vu précédemment que
si une telle déformation se produit ailleurs que près du bord, elle peut effectivement
faire tendre une valeur propre vers zéro.

Fait 2.8. Il existe une constante c > 0 indépendante du choix de hE telle que

/i?,l(G, hEg) » c, pour tout 1 < q < k + 1.

Démonstration. On utilise une nouvelle fois le lemme de Dodziuk pour se ramener
à une classe conforme particulière en identifiant B"~p à la réunion d'un cylindre
[0,1] x S" p 1

(muni d'une métrique produit) et d'un hémisphère (voir figure 2),
en munissant Sp de sa métrique canonique et G de la métrique produit.

On recouvre G par deux domaines, G i défini comme le produit de Sp et de réunion
de l'hémisphère et de [0, Jj m Sn~p~l, et G2 formé de [0,1] x Sn~p~l x Sp. On

va minorer le spectre sur chacun des deux domaines et en déduire une minoration
sur G. On ne peut pas appliquer le lemme de McGowan pour minorer la totalité du

spectre non nul car la cohomologie des intersections des domaines est non triviale,
mais dans cette situation on peut en adapter la démonstration pour obtenir un résultat

plus précis.

Remarquons d'abord que la métrique sur Gi est fixe, son spectre est donc
uniformément minoré par rapport à e. On doit ensuite minorer le spectre de G2. Sur

ce domaine, la métrique g est le produit des métriques canoniques de [0,1], Sp et
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S"~p~l. Elle est donc invariante sous l'action des groupes d'isométries SO(p +1) et
SO(n — p) des sphères Sp et S"~p~l, et il en est de même pour la métrique h2g. Or,

on peut montrer (voir [Ja04], théorème 1.18 et section 4) que lorsque le cercle agit

par isométrie sur une variété compacte, il existe une constante dépendant uniquement
de la longueur maximale des orbites telle que si une valeur propre est inférieure à

cette constante, les formes propres correspondantes sont invariantes sous l'action du
cercle. Le groupe SO {p + 1) x SO (n — p) étant engendré par des cercles dont la

longueur des orbites est uniformément majorée par rapport à s, on peut se restreindre
aux formes invariantes par cette action. Remarquons en outre que les seules formes
invariantes de la sphère sont les fonctions constantes et les multiples de la forme
volume canonique.

M

Ol
Figure 2

Ces remarques nous permettent de nous ramener à un problème unidimensionnel:
une forme propre de (LE. h2g) de degré compris entre 1 et k -f 1 et dont la valeur

propre est petite est nécessairement de la forme

cd f (t)dvsp ouû) j'u !ch\7 a dt. (2.9)

où / est une fonction sur [0, 1] et dv$p la forme volume de Sp, qu'on identifie
avec leur relevé à 0,2- L'image de cd par d étant aussi invariante, on peut affirmer

que f(t)dvsp a dt est fermée. Comme il suffit de minorer le spectre des formes

coexactes, on va raisonner sur © f(t)dvSP.
On va calculer explicitement le laplacien de w en fonction de / et h, puis en

déduire que © ne peut pas être une forme propre de valeur propre petite non nulle.
Remarquons d'abord que d * co d (h(t)n 2/ /'(/k1i\, ,• •. a dt) 0, c'est-à-dire

que 8co 0. On a par ailleurs dco ./"'(/kl/ A dcyx donc

d * dœ (-1 )"~1 d( f'h"~Zp~2)dujwpw-i
(2 10)

(—1 )p[hn~2p-2f" + (n -2p- 2)f'h'h"-2p-3]dvs„-P-i A d t

et finalement

A© 8àco -[h~2f" + (n - 2p - 2)f'h'h-3]dvSp. (2.11)
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Le même calcul montre que sur la variété s"~2p~] x [0,1] munie de la métrique
h2g' où g' est la métrique produit, la fonction / vérifie À/ th /'" + (n —

2p — 2)f'h'lr '). Si où est une forme propre de valeur propre k > 0, alors / est une
fonction propre sur (S'"~2/'~1 x [0, 1j, h2g') de même valeur propre. Or, si on choisit
la famille hE de sorte qu'elle tende simplement vers la fonction caractéristique de

[0,1/2], on sait que cette déformation ne produit pas de petites valeurs propres non
nulles pour les fonctions (c'est un corollaire immédiat du théorème III.3 de [CdV86]).
Le spectre non nul de fL est donc bien uniformément minoré.

On doit maintenant déduire une minoration du spectre de ß des minorations des

spectres de O i et Lb. Pour les degrés autres que p on peut appliquer le lemme 2.7, En
degré p ce lemme ne minore que la 2e valeur propre, on va voir comment améliorer ce
résultat. On se référera implicitement au début de la section 2 de l'article [Mc93] de

J. McGowan pour les notions de théorie de Hodge et de théorie spectrale des variétés
à bord que nous utiliserons. Rappelons-en deux points techniques: tout d'abord,
comme l'a expliqué J. Dodziuk dans [Do82], il suffit pour minorer p[:_\ de trouver
une constante C > 0 telle que pour toute (p + l)-forme exacte (p, il existe une p-
forme f telle que df <•/> et < C, et par ailleurs, à l'exception des formes

harmoniques, on a pas besoin de se restreindre aux formes différentielles vérifiant les

conditions de bord.
Soit (f> une (p +1 )-forme exacte sur O. Pour tout i 1, 2, on note (p-, sa restriction

au domaine £2;. Chaque (pi est une forme exacte, donc il existe sur chacun des £2; une
forme fi telle que di/q 4h et on peut choisir f\ telle que p.pj ££2,- )\\fi\ < ||<M

Sur l'intersection £2ig « £2tH Lb, on peut déhnir la forme® fi — f\. Elle
vérifie dco tl<//2 — df1 0, on peut donc l'écrire sous la forme c» a + dß,
où a est une p-forme harmonique - avec conditions de bord absolues - de Q. 12 —
Sp x Sn~p~l x [0, q;

I et qui est donc nécessairement proportionnelle au relevé de

de v';, Cette forme s'étend naturellement en une forme harmonique (pour la métrique
g) de Q.2 — Sp x S"~p~ l x [0,1], qui est de longueur constante pour g et qu'on
notera encore a.

Soit (pi) une partition de l'unité pour le recouvrement (Oj), La forme piß (resp.

piß) qui est définie sur £212 se prolonge naturellement par 0 en dehors de £212 pour
donner une forme sur £22 (resp. £2i). On définit alors sur les domaines £2; les formes

fi par

fi fi + d(p2ß) et fi f2 — a — d(piß). (2.12)

Ces formes vérifient di/q d fi (pi pour i 1, 2, et sur £2 n, on a

f'2 ~ fl fi - f\ - a - d((p\ + pi)ß) a> — a — dß 0. (2.13)

Les formes {fi),=1j coïncident sur l'intersection £2]2, ce sont donc les restrictions
d'une forme globale sur £2 qu'on notera f, et qui vérifie df (p. Pour minorer le

spectre de £2, on doit majorer la norme de f en fonction de celle de (p, indépendam-
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ment du choix de hs„ On commence par écrire

P+lliv-a-dfm^iï1
(2.14)

2 < \\h\\2 + \\h\\2 < \Wl + d(ß2ß)f + \m-a-d(f>lß)\f
< 3 (||0i II2 + II02II2 + \\d(piß)\\2 + \\d(p2ß)\\2 + l|«f •

Dans l'inégalité précédente, chaque norme considérée est relative au domaine 0/ Sur

lequel la forme est définie. On peut majorer les premiers termes en utilisant le fait
<pe - 110! Il2 - 1101 • Pour les termes faisant intervenir a et ß, on
se ramène aux normes sur Q12 : comme les supports des formes p\ ß sont contenus
dans £2|2- leur norme ne change pas quand on se restreint à £2 ta, et en utilisant le le
fait que a est de degré p inférieur à k et qu'elle est de longueur constante pour la

métrique g on a

Vol(£22, g)
IMlflaJSt < l«lis2j < (2-15)

On peut alors majorer les termes restants de l'inégalité (2.14) en commençant par

g" l|d(#jjS) ||2 < cp\\ß\\2 + \\dßf < Wdß\\2(
-77—~ + l) - (2.16)

2 Kßp-iyii&m J

où cp sup,: llVpill^,. On majore les normes de a et dß en partant de l'égalité
a + dß (,//2 — 0i et en utilisant le fait que a est harmonique avec condition de bord
absolue, donc orthogonale aux formes exactes, ce qui donne

l|d/i||2 < Il 02- 01 II2 <2||0! Il2+ 21102II2

< —77TT +
\Mp.l(^l) +p,l(^2.)

et de la même manière,

(2.17)

«||2< — + 77+7 II0!I2- (2.18)
I1 p. 1 1 ß^(ü2)

On a donc une majoration du quotient 110112 /110112 en fonction de cp, de /+_u
des i/'/.ifO;!!/ ,.2 et du rapport ^oi(• Seuls t'p Pß2) et ^77- dép
du choix de he, et ils sont uniformément minorés.

On a finalement une minoration uniforme de p.pP M, g£) et /%;t (M, g£) pour
1 < q < k + 1, q # +, l'application du lemme 2.7 permet donc de conclure la
démonstration du lemme 1.6.
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3. Prescription du spectre

3.1. Propriétés de convergence et de stabilité du spectre. Pour prescrire le spectre

dans classe conforme, nous allons utiliser des techniques déjà mises en œuvre

par P. Guérini dans [Gu04] et que nous allons rappeler ici. Nous expliquerons
ensuite comment la construction géométrique considérée peut être réalisée de manière
conforme à partir d'une métrique quelconque.

Un premier outil est le résultat de convergence de spectre obtenu par C. Anné
et B. Colbois dans [AC95] pour les variétés compactes reliées par des anses fines.
Considérons une famille finie de variétés compactes (Mj, gj)f=l qu'on relie entre
elles par des anses fines, isométriques au produit d'une sphère (Sn~l, a2gcan) par un
intervalle (voir figure 3), En notant (M,. gE) la variété obtenue, qui est difféomorphe
à M] #M2# #Mk, on a alors :

Théorème 3.1. Si, pour p g {1, • • • n — 1}, on note p! l < p'p 2 < • • • la réunion
des spectres (pf (Mj, g,))jtl, on a pour tout i G N*

lim n-pjXM, gB) p! ;.e^O

Figure 3

Décrivons rapidement comment prescrire le spectre (les détails seront précisés au

paragraphe suivant): on commence par fixer un réel strictement positif 8 tel que

<5 < inf VP>> +1 ~ VP>1 ^ s < yQ (3 2)
p<k,t<N [ 2 1

et choisir un réel V g | \ v, 5. Vr, U-

Pour tout 1 < p < k et tout 1 < i < N, on se donne un réel ç/;./ g 117,./ —

<5. Vpj + <5] et une métrique gpj sur la sphère S" telle que Vol (S", gpj) < X et

ßß,l(Sn• gpj) G;./, toutes les autres valeurs propres de la sphère étant supérieures
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à supp ; {vpj} + S. On munit M d'une métrique telle que pip.% (M) > sup/;{vpj} + S

pour tout p compris entre 1 et n - 2, et Vol(M) V — ^T,, Vol(S", gpj). Si on
attache les sphères à M par des anses fines comme dans la figure 3, on obtient une
variété difféomorphe à M, et le théorème 3.1 nous donne alors une famille de métrique
(gs) sur M telle que Vol(M, ge) tend vers V et ppj (M, gg) tend vers Çpj pour tout p
et i quand e tend vers zéro. Les métriques gE sont singulières sur le bord des anses,
mais on verra qu'on peut les lisser sans perturber la convergence du spectre.

On peut alors utiliser l'argument de stabilité développé par Y. Colin de Verdière
dans [CdV86]. On s'appuie sur le

Lemme 3.3. Soit ('d-VL une famille d'applications continues d'une boule fermée
Bo c Y'" dans W" qui converge uniformément vers l'identité quand e tend vers 0, et

xq un point intérieur à Bq.

Si e est suffisamment petit, alors x$ est contenu dans l'image de dv.

On applique ce lemme à l'espace 1RA'W+1 avec

<&! ffo % +1 x Y\Iv-p,4 - ^ vP,i + 5] ^ RkN+1 (3.4)

pj
!'• 4i.i CI..V- • t<Ka.i • • • s|a-,w) t-fc (Vol(M, HpjiM, gs))

et xo (Vq. vi.i • • • - va-,1», • s Selon le théorème 3.1, «he converge
simplement vers l'identité quand fi -v 0. Mais comme ces applications sont continues

et que Bq est compact, le théorème de Dini garantit que la convergence est uniforme.
On peut donc trouver un jeu de paramètres V, Ç/j) et un e telle que la métrique
g£ vérifie les conclusions du théorème. Comme Pk+i.i(M, gs) tend vers une valeur
supérieure à siip/; ,• {vp_,}+<5, on peut choisir e Suffisamment petit pour que la condition

Hk+i,i(M,g) > sup^jjvp.i} soit vérifiée.

Notons qu'il est est essentiel que pour chaque valeur de p les termes de la suite

(VpßfLi soient distincts, ahn qu'on puisse choisir Bq et vo tels que xo soit à l'intérieur
de Bq.

3.2. Prescription conforme. Il reste à montrer que la construction précédente peut
être réalisée de manière conforme.

La première étape consiste, pour chaque Çpoj, à trouver la métrique gmj
correspondante sur la sphère. Pour cela, on applique le lemme 1.6 en considérant la classe

conforme de la métrique canonique, et
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On obtient une métrique gpoj telle que ßP0,i(S", gp0j) < e, les autres valeurs propres
étant supérieures à c. En posant

_ ßp0,l(Sn, gpo,i) - Algpo,i —
£ Spo,h (3-6)

on a hpoa(S"< gpoj) êmJ* el 'cs autres valeurs propres sont supérieures à c •

—s > c • > sup„ ,• {vD | HhI- Le lemme 1.6 pennet en outre de majorer

le volume de la sphère pour la métrique gpoj, et donc pour la métrique gPoj. On peut
donc choisir gpoj telle que Vol(5'", gpoj) <

On veut ensuite munir M d'une métrique pour laquelle toutes les valeurs propres
sont grandes, le volume et la classe conforme étant ûxés. C'est possible en vertu d'un
résultat de B. Colbois et A. El Soufi:

Théorème 3.7 ([CES06]). Si M estune variété riemannienne compacte de dimension
n > 4 et C une classe conforme sur M, alors

sup inf fxPti(M, g) Vol(M, g)n +oo. (3.8)

On peut donc se donner une métrique g sur M telle que

Vol (M, g) V Vo1(5", gPoj} (3.9)

Poj

et

fipoj(M, g) > sup{vp>(:} + 5 (3.10)
pj

pour tout 0 < po < n - 1.

On veut maintenant attacher des sphères à M par des anses fines. Un réel / > 0

petit étant donné, on va - temporairement - déformer la métrique g de manière

non conforme en une métrique ge telle que cette métrique soit euclidienne sur k N
boules disjointes de rayon s. On peut choisir g£ telle que < gr < r(e)g,
avec r (ej -> 1 quand s 0. Comme l'ont remarqué B. Colbois et A. El Souh
dans [CES03] et [CES06], une boule euclidienne Ihm. geuc) de rayon g peut être
déformée de manière conforme en la réunion d'un cylindre de rayon e et de longueur
quelconque, et d'une sphère homothétique à la sphère canonique privée d'une boule
de rayon e: si on note r le coordonnée radiale sur B(e) et qu'on définit la fonction
hi,£ par

I S si se~~ < r < e,
hiAr) \'l ~ ~L (3.11)

i si 0 < r < ee «,
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Une fois munie de la métrique Sf ,.geuc, la partie de la boule B(e) correspondant
_Lare \ee « ,e] est isométrique à un cylindre de longueur L et de rayon e tandis

_L
que la partie correspondant are [0, m « ] est isométrique à une boule euclidienne
de rayon e. Comme cette boule peut être projetée stéréographiquement - donc de

manière conforme - sur une calotte sphérique quelconque, il existe une fonction h j.r
telle que (B(s), h] ,.yeuc) soit la réunion d'un cylindre de longueur L et d'un calotte

sphérique dont le bord s'appuie sur le bord du cylindre (voir figure 4). De plus, on peut
choisir h%;S de sorte que lorsque e tend vers zéro, la métrique de la sphère portant
la calotte soit fixée. En appliquant cette déformation sur chacune des IN boules
euclidiennes contenues dans (M, g£), la variété est isométrique à celle obtenue en
attachant kN sphères à (M, g£ par des anses de rayon e, on se trouve bien dans les

condition d'application du théorème 3.1.

Figure 4

Il reste à transplanter sur chacune des sphères la métrique gpoj qu'on a défini
précédemment. Pour cela, remarquons que dans la construction de la métrique gPnJ
à partir de la métrique canonique, il y a un ouvert K de la sphère sur lequel la
déformation conforme est une simple homothétie, dont on notera p le rapport (voir
remarque 2.4). On fixe un point m e K, et on identifie la calotte sphérique qu'on
a construit à la calotte de (Sn, p2gcan) dont le bord est centré en .r. On peut alors

déformer la métrique sur la calotte de sorte qu'elle soit isométrique à la restriction de

gpQj Si e est suffisamment petit, le bord de la calotte est entièrement contenu dans

K, il n'est donc pas déformé et la métrique globale est bien continue le long du bord.
En appliquant ces déformations sur chacune des kN boules de (M, g£), on

construit une fonction sur M telle que (M, &| ege) soit formé de (M, g>) reliés aux
kN sphères (S", gpo>i) par des anses dont le rayon tend vers zéro quand e tend vers
zéro. Le théorème 3.1 assure alors que

P/NM. h\ .g. > kr,: quand<• > 0 (3.12)

pour 1 < p < k et 1 < / < N, les autres valeurs propres tendant vers des valeurs

supérieures a sup/; / (ty./} + 5 et le volume tendant vers V.
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La famille de métrique h% sgs n'est pas conforme à la métrique initiale g. Cependant,

comme on a -p- gf. < g < r (e)ge, on a aussi

\ege < • r!' (3-13)

avec r(g) 1. On peut en outre approcher la famille de fonction (&34I1 par une
famille s//p, I, formée de fonctions lisses et telle que e~e < h p. ///p. < La
famille (h^eg) est alors constituée de métriques lisses conformes à g et vérifie

" r'j; /'i -g < /'i « < eet(s)hl£gE. (3.14)

Le lemme 2.1 assure alors que

lim ßpj(M, Ii]
^ v i lim [ipj(M, h\ ge) (3.15)

pour 1 < p < k et 1 < i < N et que les autres valeurs propres restent supérieures à

supt, ; {vpj} pour e suffisamment petit, et en outre Vol(M, J|| eg) tend vers V. Cette
construction peut être réalisée pour n'importe quelle famille (§pj) du domaine de

la fonction <I>f définie en (3.4). On est donc en mesure d'appliquer le lemme de

stabilité 3.3 et d'en déduire le théorème 1.3.
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