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Le groupoide de Galois de Py et son irréductibilité

Guy Casale*

Résumé. Dans cetarticle, nous calculons le groupoide de Galois de la premiere équation de Pain-
levé. Nous proposons ensuite une définition de réductibilité pour les feuilletages holomorphes
singuliers et montrons que la réductibilité peut se lire sur le groupoide de Galois du feuilletage.
Nous obtenons un résultat d’irréductibilité du feuilletage sous-jacent a la premicre équation de
Painlevé.

Abstract. In this article, the Galois groupoid of the first Painlevé equation is computed. This
computation uses E. Cartan’s classification of structural equations of pseudogroups acting on €2
and the degeneration of the first Painlevé equation on an elliptic equation (y” = 6v?). Moreover
a definition of reducibility for singular holomorphic foliations is proposed and a characterization
of reducible foliations on theirs Galois groupoids is given. It is applied to prove the foliation-
irreducibility of the first Painlevé equation.
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Introduction

Le groupoide de Galois d'un feuilletage a été introduit par B. Malgrange dans [18].
Cette définition concerne les feuilletages holomorphes (singuliers) sur une variété
C-analytique lisse. Cet objet est la « cloture de Zariski » du pseudo-groupe d’holo-
nomie du feuilletage dans le sens suivant. Soient (X, ¥) une variété C-analytique
lisse portant un feuilletage ¥ . Les champs de vecteurs locaux tangents a # forment
un faisceau en algebres de Lie de champs de vecteurs. Le pseudo-groupe de trans-
formations de X engendré par ces champs de vecteurs est appelé le pseudo-groupe
tangent du feuilletage et noté Tan(F ). Ce pseudo-groupe intervient notamment dans
la construction des transports holonomes. Le pseudo-groupe tangent n’est pas décrit
par un systeme d’équations aux dérivées partielles, ceci malgré le fait que le faisceau
de champs de vecteurs dont 1l est 1ssu soit décrit par un systeme d’équations aux dé-
rivées partielles linéaires. Ce phénomene est bien connu sur les groupes algébriques
ou le groupe de Lie intégrant une sous-algebre de Lie n’est pas toujours un groupe
algébrique. La définition proposée par B. Malgrange est basée sur 1’absence de « troi-
sieme théoréme de Lie » pour les D-groupoides de Lie (pseudo-groupes décrits par
des e.d.p. algébriques ; définition 1.16). La définition du groupoide de Galois est la
suivante (nous renvoyons en 1.25 pour une définition plus précise).

Définition. Le groupoide de Galois d’un feuilletage est le plus petit £-groupoide de
Lie contenant le pseudo-groupe tangent du feuilletage.

Dans [18], B. Malgrange montre que cette définition généralise le groupe de Galois
différentiel d’une connexion linéaire intégrable.

Dans le cas d’un germe de feuilletage de codimension un, une étude complete
des relations entre le groupoide de Galois, la transcendance des intégrales premicres
et les structures géoméiriques singulicres transverses au feuilletage est faite dans
[5]. L’outil principal de cette étude est la construction de suites de Godbillon—Vey
méromorphes spéciales.

Enoncé des résultats. Dans cet article, nous étudions le feuilletage de la variété
algébrique € (muni de son anneau structural C[x, v, ¥']) donné par la premidre



Vol. 83 (2008) Le groupoide de Galois de P; et son irréductibilité 473

équation de Painlevé :
d* )
o= 6y° + x.

Nous noterons P; cette équation et

Y

Xi= by g (67 x)
L™ % 7 ay ¥ ay’
le champ de vecteurs décrivant le feuilletage associé. Dans un premier temps, nous

calculons son groupoide de Galois et obtenons le résultat suivant :

Théoréeme 2.1. Le groupoide de Galois de Py est le groupoide d’invariance de la
forme y = ix,dx ~ndy ~dy'. Ses solutions sont les germes de transformations de
C3, T, satisfaisant les équations Ty = y.

Sans précisions supplémentaires, le groupoide de Galois de Py désignera toujours
le groupoide de Galois de X1 sur C* d’anneau de coordonnées C[x, v, ¥'].

Remarque. Considérons C* muni de I’anneau des fonctions entidres. Le groupoide de
Galois de X sur cette espace est strictement plus petit que celui de X sur C[x, y, »'].
Calculé sur une transversale, 1l est réduit aux identités.

Nous donnons ensuite un résultat de type irréductibilité de X1 dontla preuve utilise
de maniere essentielle la connaissance du groupoide de Galois de X 1. Les feuilletages
plus simples que les feuilletages de codimension deux sont les feuilletages donnés
par des équations linéaires et les feuilletages de codimension un. Nous dirons qu’un
feuilletage de codimension deux est réductible s1 I'on peut construire deux mntégrales
premieres locales en utilisant seulement des intégrales premiéres locales de feuille-
tages plus simples (définition 3.3). Plus précisement, pour la premiere ¢quation de
Painlevé, le théoréme 2.1 nous permet d’obtenir le résultat d’irréductibilité suivant :
Théoreme 3.4. Il n’existe pas d’extension différentielle K, de (C(x, v, y"), 2, aa—y, aiy,)
contenant une intégrale premiére de X1, construite de la maniére suivante :

(C(xsya yl):KOCchcKTL

avec
— K41 algébrique sur K,
— ou Kip1 = Ki(h1, ..., hp) avec dhj = Y hiof, of € K; @ Q)5 et dof =
—Y ok A a)f,
—ou Kir1 = Ki((h) avecdh no =0, w € K; ®Qé3 etw Adw =0,
Le corps K (h) désigne le corps engendré par 2 et K({k)) le corps différentiel

engendré par /. Le théoreme que nous montrons est en fait un peu plus général que
celui-ci mais nécessite la mise en place du vocabulaire approprié.
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Théories de Galois différentielles et irréductibilité. A la fin du dix-neuviéme
sidcle, les idées d’F. Galois ont été étendues aux équations différentielles linéaires
par . Picard [26] puis ont &té complétées par E. Vessiot [36]. Dans les années 1950,
E. Kolchin développe cette théorie du point de vue des extensions de corps différentiels
[1]. [15].

Dans [7], J. Drach avance une théorie de Galois pour les équations différentielles
non-linéaires. Malgré les erreurs qui invalident la plupart de ses définitions, il donne
des indications pour calculer le groupoide de Galois de divers feuilletages [9], [10]
et notament [8] dont cet article suit la démarche. Dans [37], E. Vessiot esquisse une
définition semblable a celle de B. Malgrange. Elle est a 'origine de la définition
du groupe de Galois infinitésimal de H. Umemura [32], [33]. Bien qu’ils aient un
« ancétre » commun, I’équivalence du groupoide de Galois et du groupe de Galois
infinitésimal n’est encore qu’ une conjecture.

Les premicres tentatives de calcul du groupoide de Galois de la premicre équa-
tion de Painlevé sont dis a P. Painlevé [25] et J. Drach [8]. Utilisant une définition
basée sur des résultats érronés, J. Drach donne les directions a suivre pour prouver
le théoreme 2.1. En faisant appel a la classification locale des pseudo-groupes de Lie
agissant sur C2, établie par S. Lie, il affirme que la nature du groupoide de Galois est
décrit par un systeme d’équations aux dérivées partielles (dit « résolvant ») admettant
une solution rationnelle. Il affirme ensuite que la dégénérescence de Py sur I’équation
elliptique y” = 6y? peut servir & montrer ’absence de solutions rationnelles aux
équations résolvantes. Le premier point n’est pas justifié et le deuxieéme est entaché
d’erreurs.

Dans les articles précédemment cités, les auteurs affirment que le théoreme 2.1
implique I'irréductibilité « absolue » de 1’équation sans méme définir cette irréduc-
tibilité. Dans les Legons de Stockholm [23], P. Painlevé définit une notion de réduc-
tibilité d’une solution d’une équation différentielle. Une équation est dite réductible
si toutes ses solutions le sont. I1 donne ensuite une caractérisation des équations sans
singularités mobiles du second ordre réductibles : 1a solution générale dépend semi-
transcendentalement des constantes d’intégrations. En d’autres termes, I’équation
admet une intégrale premiére rationnelle en les variables dépendantes.

Cette définition est tres restrictive comme le montre P. Painlevé dans la remarque
28 de [24]. Elle a néanmoins I’intérét de faire apparaitre les différences entre la réduc-
tibilité¢ d’une équation (ou du feuilletage sous-jacent) et celle d’une solution particu-
ligre. L’étude de la réducubilité des solutions particulieres des équations de Painleve
est’ceuvre de 1’école japonaise. H. Umemura [31] et K. Nishioka [21] donnent un cri-
tere permettant de trouver les familles a un parametre de solutions réductibles d une
dquation du second ordre et I’appliquent a I’étude de 1a premiere équation de Painlevé.
A la suite de ces articles, Murata [20], Watanabe [38], [39], Noumi—Okamoto [22]
et Umemura—Watanabe [34], [35] trouvent les solutions réductibles non algébriques
des autres équations de Painlevé.
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Ces résultats prouvent I'irréductibilité (au sens des Lecgons de Stokholm) des
solutions des équations de Painlevé pour des valeurs génériques des parametres. Dans
[24], P. Painlevé souligne la nature restrictive de sa définition et pose la question des
rapports entre une définition de I’ irréductibilité du feuilletage sous-jacent a I’équation
et la tentative de théorie de Galois de J. Drach.

Dans cet article, nous proposons une définition de feuilletages réductibles. L.a défi-
nition porte sur les feuilletages de codimension deux mais il est facile de 1’ étendre aux
feuilletages de codimension quelconque. Elle met I’accent sur la nature de certaines
intégrales premieres du feuilletage. Les intégrales premieres les moins « transcen-
dantes » permettent de comprendre grossiecrement la maniere dont la solution générale
dépend des constantes d’intégration. Un des intéréts de cette définition est de pouvoir
se lire sur le groupoide de Galois du feuilletage. Nous suivons les résultats partiels
de J. Drach pour calculer le groupoide de Galois de P; et prouver son irréductibilité.

Dans I’état actuel, 1a réductibilité au sens des feuilletages ne permet pas de définir
la réductibilit¢ d’une solution particuliere. D une maniére plus générale, les relations
entre le type de transcendance d’une solution et celui des intégrales premieres sont
difficiles a saisir. Pour les feuilletages de codimension un, un théoréme de M. Singer
[30] dit que s1 une feuilletage du plan admet une solution Liouvillienne alors soit elle
est algébrique soit le feuilletage admet une intégrale premiere Liouvillienne.

Organisation de Particle. Dans la premicre partie, nous rappelons les définitions
nécessaires a la compréhension des résultats et des preuves présentés. Nous commen-
¢ons par un rapide rappel de la construction des espaces de jets et des plus importantes
des propriétés de leurs sous-variétés. Pour plus de détails, nous renvoyons aux livres
de I.F. Ritt [28] et de J.-F. Pommaret [27] dans le cadre algébrique et a B. Malgrange
[19] dans le cadre analytique.

Nous rappelons ensuite les définitions de D-groupoides de Lie et de leurs al-
gebres de Lie. Ces objets formalisent les notions de pseudo-groupes de Lie algé-
briques de transformations et de leurs algebres de Lie de champs de vecteurs. IIs sont
étudiés depuis S. Lie et E. Cartan sous le nom de « groupes infinis de Lie » ou de
«pseudo-groupes de Lie » sous des hypotheses supplémentaires de régularité. L’ étude
de la structure d’un D-groupoide de Lie passe par la compréhension de sa forme de
Maurer—Cartan. Cette forme généralise la forme de Maurer—Cartan d’un groupe de
Lie et satisfait des ¢quations de structures semblables [13], [29].

Enfin, nous donnons la définition du groupoide de Galois d’un feuilletage. Nous
définissons les formes invariantes transverses du groupoide de Galois d’un feuilletage
et montrons comment construire des suites de Godbillon—Vey « spéciales » a partir
de ces formes. Cette partie se termine avec I’énoncé d’un résultat (théoréme 1.36)
donnant une description sommaire des suites de Godbillon—Vey possibles pour un
feuilletage défini par une 2-forme fermée. Ce résultat est une conséquence de la
preuve donnée par E. Cartan de 1a classification des pseudo-groupes agissant sur C2.
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Nous redonnons la preuve de Cartan en annexe.

Dans la deuxieme partie, nous calculons le groupoide de Galois de Pp. D’apres
le théoreme 1.36, le théoreme 2.1 est vrai si trois conditions sont vérifiées. Premiere-
ment, il n’existe pas d’intégrale premiere rationnelle du feuilletage. Deuxiemement, il
n’existe pas de feuilletage de codimension un contenant le feuilletage. Troisiemement,
il n’existe pas de slz-connexion sur le fibré conormal au feuilletage. Chacune de ces
conditions se réécrit sous la forme d’un systeme d’équations aux dérivées partielles
ne devant pas avoir de solutions algébriques. Pour montrer que ces équations n’ont
pas de solutions, nous utilisons la dégénérescence de X sur Xo = % +y’ % + 6y2 aiy/

a travers la famille X, = % + 3/ % + (6y* + an)aiy,. La famille de champs de
vecteurs X, étant triviale pour « € C — 0, les équations a étudier se prolongent
rationnellement au parametre. En les développant le long de {« = 0}, on obtient une
suite de systemes d’équations aux dérivées partielles plus simples. Chacun des trois
systemes d’e.d.p. donné par le théoreme 1.36 est tudié dans un paragraphe propre.

Dans la dernicre partie, nous définissons une propriété¢ de réductibilité pour les
feuilletages. Cette propriété signifie que 'on peut construire un systeme d’inté-
grales premiéres du feuilletage en utilisant successivement des intégrales premieres
de feuilletages plus simples. Dans le cas d’un feuilletage de codimension deux, les
extensions de corps différentiels que nous considererons comme plus simples que
I’extension du corps des fonctions rationnelles par un systeme de deux intégrales
premieres indépendantes seront :

— les extensions algébriques,

— les extensions fortement normales (au sens de Kolchin [15]),

— les extensions par une intégrale premicre d’un feuilletage de codimension un,

— les extension fortement normales relatives en codimension un (voir défini-

tion 3.1 et [6])

Ce demier type d’extension signifie de maniere grossiére que relativement a la pro-
jection sur € donnée par une intégrale premiere, le feuilletage que I'on considere est
de codimension un et qu’il admet une intégrale premicre dans une extension forte-
ment normale. Nous utilisons le type d’une extension de corps différentiels introduit
par Kolchin ([15]) a partir d’un analogue différentiel du polyndme de Hilbert pour
mesurer la taille de la partie transverse du groupoide de Galois d’un feuilletage ré-
ductible. Nous montrons que les feuilletages réductibles de codimension deux ont un
groupoide de Galois « petit » (i.e sa parti¢ transverse est de type lindaire) et que le
eroupoide de Galois de P est plus « gros » (i.e. de type quadratique).

Remerciements. Ce travail a été effectué pendant un séjour post-doctoral a1’ Univer-
sité¢ de Tokyo, je remercie Kazuo Okamoto et Hitedaka Sakai pour leur accueil. Je re-
mercie également Hirosh1 Umemura pour son invitation a Nagoya, son enthousiasme
et son intérét pour ce travail et Bernard Malgrange dont les nombreux commentaires
ont été précieux.
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1. Le groupoide de Galois d’un feuilletage algébrique

La notion de D-groupoide de Lie introduite par B. Malgrange dans [18] formalise
I'idée de pseudo-groupe de Lie singulier. Ces objets, sous certaines conditions de
régularité, ont été étudiés par divers auteurs [16], [12], [13], [29] 4 1a suite de S. Lie
et . Cartan.

Dans cette partie, nous rappelons les résultats élémentaires sur les D-groupoides
de Lie. Pour les détails nous renvoyons a B. Malgrange [18] et a J.-F. Pommaret [27].

1.1. Espaces de jets et D-variétés. Avant de donner les constructions algébriques
de ces espaces, rappelons ce qu’est le jet (d’ordre ¢) d’un germe de section d’un
fibré. Considérons p: C"t? — C" la projection sur les n premieres coordonnées.
Une section locale de p est donnée par une fonction analytique s : C* — C? sur un
ouvert de C". En un point xg € C", cette fonction s’ écrit

¢ — Z (X—xo)a

aelNt

avec s* € C?, (x —x0)* =[] (xi — x0)% eta! = []i_; o!. Le jet d’ordre g de
s en xq est la série tronquée :

x — x0)%
Jis = Z sa—( — 0) X
aeN?
lo| =g
L’espace des jets d’ordre g de sections g, a pour coordonnées les s*. Les propriétés
essencielles de ces espaces seront rappelées dans le cadre algébrique.

Cette construction géométrique permet d’obtenir les espaces de jets de sections de
submersions p: Z — X entre variétés lisses que nous noterons g, (Z, x). Pour élargir
cette construction dans certaines situations singulieres, on procede de la manicre
suivante.

Soit X une variété algébrique lisse sur C et Z — X une variété algébrique sur X.
Nous dirons « Z sur X », ou indifféremment « Z au-dessus de X », pour une variété
Z munie d’une application dominante Z — X. Nous noterons J,(Z, x) 1’espace des
jets d’ordre g de sections de Z sur X. Ces espaces sont des espaces affines au-dessus
de Z. Rappelons bricvement comment on les construit.

Commencons par construire J; (X x (C%() ou X est affine de dimension » telle qu’il
existe un revétement d’ un ouvert de C* par X non ramifié. Nous noterons xq, ..., x,
des coordonnées sur C" et celles induites sur X et vy, ..., yy celles de CN, L’espace
Jy (X x C ) est alors défini comme I’espace X x CV muni du faisceau d’anneaux

OJQ(XXC )—CQXx@N[y,] l<i<N,eeN' I<|el=a1+ -+, <q.
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Ces espaces de jets sont munis de dérivations D; de @ T (X5 CH,) dans O Tgr (XX

définies par
+e€;

Dj(xi) =38i;, Dyyf =y ',

¢; étant le multi-indice de poids 1 dont la seul composante non nulle est la j-iéme.
Soit Z une variété affine au-dessus de X (plongée dans X x C¥) décrite par un

idéal I. L’espace des jets J,(Z,x) est le sous-espace de J, (X x C;VX) défini au-
dessus de Z par I’idéal Z| w|<q P*1. Nous noterons 7, le faisceau quotient sur
Z. C’est le faisceau des équations aux dérivées partielles d’ordre ¢ portant sur les
sections de Z sur X. Ces espaces ne dépendent ni des coordonnées choisies sur X ni
du plongement de Z. Lorsque X et Z ne sont pas affines, on construit les espaces de
jets par recollement des constructions locales. Ces espaces sont munis de projections
naturelles

7d ™ T (Zyx) — T(Z%).

Lorsque Z est le fibré trivial X x Y, nous noterons J, (X — Y) I'espace des jets de
sections de X x Y sur X i.e. d’applications X — Y.

Exemple 1.1. 1équation x? — y? = 0 décrit Z < C? qui se projete sur X = {y = 0}.

L’espace J1(Z, x) est décrit, dans 3, par les équations o — y2 =0etx —yy =0.
Dans Oy, (z,4) on a y2(y? = 1) = 0. L'espace J2(Z;x) est décrit, dans 4, par les
équations précédentes plus 1 — y? — yy” = 0.Ona y’y” = O dans 'anncau O ,(z, ;).
Plus généralement on montre que dans 9, (z ) ona y?+1yl@=1 =g,

Remarque 1.2. Dans le cas lisse, la construction usuelle des espaces de jets donne des
varic¢tés algcbriques 7, (Z, x) munis de leurs faisceaux structuraux Qg 7z, ). Dans ce
cas, les dérivations D; de Oy, dans Oy, s’interpretent comme champs de vecteurs
sur Z,. La distribution engendrée par ces champs est appelée ditribution de contact.
Ici suivant [18], nous considérons comme espace de jets J,(Z,x) 'espace Z
annel€ par I'image direct du faisceau Oy, (z ) par la projection &,(Z£,x) — Z.

Lemme 1.3. Les constructions des espaces de jets et du tangent relatif (ou « vertical »)
commutent i.e. il existe un isomorphisme canonique

T (Jq(Z/X))/X it Jg ((TZ/X)/X).

Preyve. Cette formule n’est qu’une version de la commutativité des dérivations par-
tielles. Vérifions la lorsque Z est affine au-dessus de X. La construction du tangent
relatif se fait de la manidre suivante. On plonge Z dans X x €V et on note I I’idéal
définissant I’'image de Z. Soient 71, . . ., zy des coordonnées sur C¥ le tangent relatif
de X x CV est I’espace vectoriel trivial sur cet espace : (X x CV) x C¥ avec les
coordonnées dzq, ..., dzy surles fibres. Pour f € Ox[z1,...,zy]onnoteradf la
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fonction ) g—édzi. Le tangent relatf de Z sur X est I'espace vectoriel sur Z défim
par'idéal I +4d1.

Quand X estunrevétementnon ramifié d'un ouvertde C",I’espace J1 (T Z,x)/ X)
est défini par les équations suivantes :

D;d idz; 2 (dz)
f= Zaxjazl ’+ZaZkazZ +Zazl(zz)

pour toutes les équations f € /. D’un autre coté, I'espace 7'(J1(Z,x)), x est définie
par les équations :

40T = Zaxjaz, l+28z:<3zzjd +Z

L’isomorphisme pour ¢ = 1 est donné par (dz;)9 =d (z? ). Des formules analogues
donnent les isomorphismes pour g > 1. Ll

On définit 1’espace des jets (d’ordre infini) de sections de Z sur X comme la
pro-variété affine sur Z
J(Z,x) = 1<1_f2 Jo(Zrx),

C’est-a-dire Z annelée par O(z,x) = lim Oy (z,4). Ces anncaux sont filirés par
— 7T
I’ordre des équations et sont munis d’une connexion

D: Osizp) — 95z,0) ®oy 2

définie en coordonnées locales par Df = Y D; f ® dx;.

On a alors la définition suivante de « systemes d’équations différentielles portant
sur les sections de Z sur X » appelés par la suite D-sous-variétés de J(Z, x) ou plus
brievement D -variétés.

Définition 1.4. Une D-(sous)-variété de J(Z,x) est une sous-variété Y définie par
un faisceau d’idéaux I de Oy (z,y) tel que :

(1) I estpseudo-cohérent, i.e. lesidéaux I, = I N Oy, (z,x) sont cohérents,
(2) I estdifférentiel, i.e. DI C I%.

Le faisceau d’anneaux de ¥, Oy = Oj(z,y)/ T est donc muni d’une connexion
induite D: Oy — Oy Qpy 52%( On pourra définir les D-variétés générales : on
recollera des espaces définis comme ci-dessus en respectant les connexions. Nous
n’en aurons pas besoin.,

Une solution locale (resp. formelle) de Y en un point x € X est un morphisme f
de Oy dans @g‘gfx (resp. Ox ) au-dessus de la restriction Ox — @?}fx (resp. Ox x)
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et différentiel i.e. d o f = f o D. Les solutions correspondent aux sections de Z
vérifiant les équations différentielles définissant Y.

L’exemple 1.1 donne un premier exemple de D-variété, elle est définie par une
équation d’ordre 0. La D-variété suivante est définie par une équation d’ordre 1.

Exemple 1.5. 1 espace Z sur X est C? de coordonnées x, y que I’on projete sur 1’axe
des x. Soit ¥ < J(Z,x) définie par I’idéal différentiellement engendré par xy’ — y.
Parmi les équations de ¥, on trouve xy” = 0 ainsi que y”? = 0. Dans Oy, y” est
un nilpotent et est un élément de @ x-torsion. En fait, tous les y{@) sont de torsion
et de carré nul. La D-variété réduite de Y est décrite par I'idéal différentiellement
engendré par xy’ — y et y”. Les solutions de ces deux espaces sont y(x) = Ax avec
r e C.

Soit Y, une sous-variété de J,(Z,x) définie par un idéal /,. Le prolongement
d’ordre 1 de Y, estla sous-variété de J,+1(Z, x) définie parI’idéal 1,+>_ D; I,.Cette
variélé sera notée prq Y, et sonidéal pryl,. On définit par itération les prolongements
d’ordre k, pr;l,. Les prolongement successifs de Y, et la D-variété Y définie par
Ui prid, sont en général assez difficile & comprendre a partir de 1’idéal 1,. Ceci
essentiellement parce que Jrgg +SprS I, n’est pas toujours égal a I, comme le montre
I’exemple classique suivant.

Exemple 1.6. Prenons Z = C* de coordonnées x1, x2, X3, vetZ — C31a projection
sur les trois premicres coordonnées. Considérons 1'idéal [; engendré par les deux
équations X1y = y(LOO ot X5y = yOLO 4 o 3OO0 Contrairement 2 17, yrlzprlh
contient y©.0:D

Pour finir, rappelons les résultats suivants sur les D-variéiés.

Lemme 1.7 (Ritt [28]). Si I est un idéal différentiel alors son radical 1 red o5t aussi
différentiel.

Lemme 1.8 ([18]). Si Y est une D-variété réduite, Oy est sans torsion sur Ox.

Théoreme 1.9 (Ritt—Raudenbush [28]). Soit Y une D-variété réduite définie par I
et Iy = I N Oy,z,x) Uidéal des équations d’ordre q. 1l existe un entier q tel que I
soit l'idéal différentiel réduir engendré par 1.

Théoreme 1.10 ([28]). Soir Y une D-variété réduite définie par I et Y, l’espace
défini par Iy = I 0 Oy (z,x)- 1l existe un entier q et une hypersurface S C Y, tels
que par chague points de %, — S passe une solution convergente.
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Dans le cas ou la D-variét€ est définie par des équations différentielles ordinaires,
i.e. X = C, une hypersurface S décrite par le théoréme précédent est donnée par
I"hypersurface des conditions initiales ne satisfaisant pas les hypotheses du théoreme
d’existence de solutions de Cauchy.

Ces théoremes ont été généralisés par B. Malgrange dans la situation mixte d’une
variété analytique Z sur X analytique lisse et % définie par des équations aux dérivées
partielles polynomiales en les dérivées. Nous n’utiliserons pas ce résultat ici et nous
renvoyons le lecteur intéressé a [27] ainsi qu’a [19].

1.2. D-groupoides de Lie algébriques et D-algébres de Lie

1.2.1. D-groupoides de Lie algébriques. Nous allons maintenant rappeler la dé-
finition de D-groupoide de Lie algébrique sur une variété algébrique lisse X sur C.
L’espace J,(X — X) et son ouvert J;(X — X) des jets inversibles (défini par
det(y? ) # 0) seront notés J; et J; lorsqu’aucune confusion ne pourra étre faite
sur X.

Ces espaces sont naturellement munis de deux projections sur X, la source s etle
but t, correspondant aux projections de X x X sur le premier et le deuxiéme facteur,
d’une composition partielle associative

c: (Jy, 1) xx (Jy,8) = Uy

induite par la composition des applications formelles de X dans elle-méme et d’une
application identité
e: X — J,

donnée par les jets d’ordre g de I'identité. L'espace des jets inversibles est de plus
muni d’une inversion
it J;—>J;

induite par I'inversion des difféomorphismes formels de X. Ces applications font de

J; un groupoide agissant sur X. Elles sont compatibles aux projections naturelles
w et donne une structure de groupoide sur J* = lim J7, ¢’est-a-dire sur X x X
e

muni de I’anneau @+ = lim (9;;.
—_

Définition 1.11. Un sous-groupoide de J;' est une sous-variét€ ¥, donnée par un
faisceau cohérent d’idéaux [, satisfaisant :

(1) 1, C kere* (Y, contient les éléments neutres) ;

(2) i*I, C I, (Y, eststable par inversion) ;

(3) ¢*1, Cnfl, + 7)1, (Y, eststable par composition) ;
7 désignant les projections de (J,, 1) xx (Jy, s) sur J,.
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[exemple 1.5 est un sous-groupoide de J". La troisieme inclusion est donnée par
1I’égalité
txr' —)=xy7 —z=(xy -+ 7 —2).

1
Exemple 1.12. La sous-variété de J; décrite par % = 0 est aussi un sous-groupoide
car " i 1
w8 ] & 5, ¥
C (? = ?y + ?

H #
Une variante de cet exemple est la variété décrite par );—, + yy — % = 0 qui donne
un sous-groupoide de J;"(C — 0 — C — 0).

On a la version algébrique d’un résultat classique de géométrie différentielle.

Proposition 1.13 ([18]). Si ¥, un sous-groupoide de J; alors pr\Y, est un sous-
groupoide de J, .

Remarque 1.14. Soient Y, un sous-groupoide définie par [, et ¥ la D-variété définie
par I = (Jprl,. Notons ¥, la sous-variété définie par I N Oy A priori Y, n’est
pas un sous-groupoide de J;‘(X — X ) mais seulement en dehors d’une sous-variété
S i.e Y, estun sous-groupoide de Jq*(X -S> X-29

Cette remarque montre que la définition naturelle suivante : « une D-variété Y est
un sous-groupoide de J* s’il existe k tel que pour tout g > k'Y, est un sous-groupoide
de J; » est ugs restrictive. De plus certains pseudo-groupes de transformations,
comme les pseudo-groupes d’invariances de fonctions rationnelles, ne rentrent dans
le cadre de cette définition qu’en dehors d’une sous-variété fermée de codimension
au moins un (dans le cas précédent : le lieu d’indétermination).

Définition 1.15. Soit S une hypersurface de X. Un sous-groupoide de J;/(X — X)
a singularités sur S est une sous-vari€té fermée donnée par un faisceau cohérent
d’idéaux I, telle que la trace de la variété sur J7(X — S — X — ) décrive un
sous-groupoide.

L’exemple 1.12 est un sous-groupoide a singularité en 0.
Définition 1.16. Un D-groupoide de Lie sur X est une D-variété réduite Y de
J*donnée par un idéal I vérifiant : il existe une hypersurface S de X et un entier k

tels que pour tout g > & , Y, est un sous-groupoide de J; & singularités sur S.

Remarque 1.17. Dans les conditions de la définition précedente, pour tout entier ¢,
Y, estun sous-groupoide singulier. En effet fixons un entier gg tel que Y,, soit un
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groupoide singulier sur S et prenons g < gg. Par définition JquO est dominant donc
surjectif en dehors d’un ensemble algébrique S’ de ¥,. on a donc

c(Yg — (S U S U IS xx Yy — (S UnT IS U 1)) C 1l Yy © Yy

Des arguments classiques (voir par exemple la preuve du lemme 4.3.3 de [18])
montrent alors que Y, est un groupoide a singularit€s sur une sous-variété S de
X contenant S.

Nous allons rappeler quelques résultats surI’action d un £-groupoide de Lie Y sur
J* par composition au but. Nous noterons cy la restriction de ¢ sur (J*, 1) xx (Y. s)
a valeurs dans J*,

Définition 1.18. Uninvariant différenticl d’ordre g pour % estune fonctionrationnelle
F sur J telle que F ocy = F o ( désignant la premicre projectionde J; x x ¥,
sur J*).

q

Remarque 1.19. N’importe quelle fonction sur X que ’on remonte sur J; par la
projection source est un invariant.

Pour le groupoide de I’exemple 1.5, % est un invariant différentiel. Pour ceux de

I’exemple 1.12, la fraction ?—f,/ (resp. i—/,/ + y;/) est un invariant différentiel du premier
(resp. deuxi¢me) groupoide.

On dira qu’un ensemble d’invariants différentiels {F} }1<; <, définis sur un ouvert
de Zariski U forment un systeme complet d’invariants pour Y si Y est la D-variété
réduite définie par I’adhérence de Zariski de la £-variété définie par les équations
F; — F; oeos au-dessus de U.

Le théoréme suivant est prouvé d’une maniére analogue au théoréme de Chevalley—
Kolchin dans ([27], pp. 467469, proposition 2.36 du chapitre 3). Il résulte aussi
de I'existence d’un quotient générique pour une relation d’équivalence ([11], théo-
réme 8.1).

Théoréeme 1.20 ([27], [11]). Si Y estun D-groupoide de Lie agissant sur une variété
X alors il admet un systeme complet d’invariants différentiels.

Dans le contexte de cet article, le théoreme 8.1 de [11] s’ applique comme suit. On
se place sur Jq* (¢ assez grand pour que Y, satisfasse aux hypotheses du théoréme de
Ritt—Raudenbush) et on considere la relation d’équivalence o ~ p si s(x) = s(f) et
poa~le Y4 Le résultat précédent donne I’existence d’un ouvert de Zariski U C J*
et d’une variété quotient de U par la relation d’équivalence. En tirant en arricre
des fonctions rationnelles du quotient, on obtient un systeme complet d’invariants
différentiels.
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1.2.2. D-algebres de Lie. Une D-algebre de Lie sur X est un faisceau d’algébres
de Lie de champs de vecteurs défini par un systeme d’équations aux dérivées par-
tielles. La définition que nous allons rappeler met 1’accent sur les équations définissant
1’algebre.

Un espace vectoriel V sur X est défini de la maniere suivante. Lorsque X estaffine,
un espace vectoriel est un sous-espace d’un espace vectoriel trivial X x C* défini par
des équations lin€aires sur les fibres. Lorsque X n’est pas affine, on demande que V
soit localement de 1a forme précédente et que les recollements soient linéaires sur les
fibres. Cette définition autorise les fibres a changer de dimension.,

Les espaces J,(TX,x) sont des espaces vectoriels sur X. Nous noterons
Lin(J,(TX,x)) le Ox-module des fonctions linéaires sur les fibres. Nous allons
construire un crochet sur les sections des espaces J, (T X, x) généralisant le crochet
de Lie des sections de T'X. Ce crochet est le crochet de Spencer et la construction
que nous allons donner est celle de [18].

Nous noterons R, (X) (ou juste R,) I’espace des reperes d’ordre g sur X qui
s’identifie au sous-espace de J; défini en fixant une valeur a I’application source. Cet
espace est un fibré principal sur X via la projection but de groupe structural le groupe
des jets d’ordre ¢ de biholomorphismes de (C", 0) noté I';. L’application A: R, x
R, — J7 quiadeuxreplres ry el s, associe le jet s, or, ! s’identifie au quotient sous
I’action diagonale de I’ g sur les deux facteurs. L’application tangente relativement a
la premi€re projectionest T'A: T(Ry x Ry) g, — T(J),x. Sarestriction le long de
la diagonale, i.e. sur T (R; x Ry)/R,|diag, €st & valeurs dans T (J ), x|ia. Faisons les
identifications suivantes, 7(R,; X R;)/r, |diag ~ T Ry par la deuxi€me projection et
T(J;)/th ~ J,(T'X,x) par le lemme 1.3. On obtient ainsi une fléche A: TR, —
J;(T'X;x). Cest le quotient de T R, sous I'action induite de I'j. Ceci permet de
projeter le crochet de Lie de T' R, sur un crochet sur les sections de J,(T' X, x). C’est
le crochet de Spencer. On a les formules suivante pour ce crochet ([16]) :

[figu, gjgv] = fgiglu, v]1+ f Ly(g) jgv — g Lo(f) jyu

avec f et g dans Oy, u et v des germes de champs de vecteurs sur X, j, désigne la
prise de jet d’ordre g et L, la dérivée de Lie le long de u.

Définitions 1.21. Une sous-algebre de Lie de J, (T X, x ) est un sous-espace vectoriel
dont les sections analytiques locales sont stables sous le crochet de Spencer.

Un D-(sous)-espace vectoriel £ de J(T X, x) est une D-variété définie par des
équations lin€aires, i.e. dans Lin(J, (T X,x)).

Une D-(sous)-algebre de Lie £ de J(T X, x) est un D-espace vectoriel tel que
les espaces £, soient des sous-algebres de Lie de J,(T X, x).

On construit une algebre de Lie LY, a partir d’un groupoide de Lie singulier Y,
en considérant le tangent relatif a la projection source 1'Y, /X lig ou son image dans
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J,(T'X,x) (par le lemme 1.3). La stabilité des sections du linéaris€ sous le crochet de
Spencer est une conséquence de la stabilité de 1a variété Y, sous la composition. Nous
renvoyons a [18] pour les détails ainsi que pour la preuve de la proposition sutvanie.

Proposition 1.22 ([18]). Si ¥ est un D-groupoide de Lie, son tangent vertical le long
de Uidentité TY , xlia C J(I'X,x) est une D-algebre de Lie. Elle sera notée LY.

1.2.3. Le groupoide de Galois d’un feuilletage

Définition 1.23. Un feuilletage (singulier) de X est une D-algébre de Lie F sans
torsion sur X dont 1’idéal I est différenticllement engendré par les équations Iy =
I N Orxy dordre 0.

Remarque 1.24. Une D-algtbre de Lie n’est pas toujours la D-algebre de Lie
d’un D-groupoide de Lie. Prenons par exemple un feuilletage F de codimension d.
D’apres le théoreme 1.20, s°1l existe un D-groupoide de Lie dont F est la D-algebre
de Lie alors le feuilletage admet 4 intégrales premieres rationnelles indépendantes.

Un feuilletage sans intégrales premicres rationnelles est donc un exemple de D-
algebre de Lie ne provenant pas d’un £-groupoide de Lie.

La définition suivante généralise le groupe de Galois différentiel d une équation
linéaire.

Définition 1.25 ([18]). Soit £ un feuilletage sur X. Le groupoide de Galois de &
est le plus petit D-groupoide de Lie dont la D-algebre de Lie contient le feuilletage.
Il sera noté Gal(F).

Autrement dit Gal(F ) est le plus petit D-groupoide de Lie contenant le pseudo-
groupe Tan(I'). Par commodité, nous posons la définition suivante.

Définition 1.26. Soit F un feuilletage sur X. Un D-groupoide de Lie préservant le
feuilletage dont la £ -algebre de Lie contient le feuilletage sera dit admissible pour & .

Les &-groupoides de Lie admissibles pour £ sont les D-groupoides de Lie
contenant Gal(¥ ). La connaissance d’équations aux dérivées partielles satisfaites
par les intégrales premicres du feuilletage permet de construire des majorants de
Gal(F). Ce type de construction de D-groupoides admissibles sera expliquée et
utilisée dans la derni¢re partie de cet article.

[l existe toujours un D-groupoide de Lie admissible pour F : le groupoide Aut(F )
des transformations préservant le feuilletage. Celui-ci est aussi appelé pseudo-groupe
des transformations basiques ou groupoide basique. Si F est décrit par les 1-formes
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=3 wf(x)dxk,i =1, ..., p,les équations engendrant différentiablement 1’idéal
de Aut(F) sont :

> signto)( 3wl Yuf P w0 =0

oeX(E)

oul =1,..., p, E parcourt les sous-ensembles de cardinalité p + 1 de {1, ..., n}
et X(I7) est le groupe des permutations de F. La notation o (z) désigne 1’image sous
o du i-¢me plus petit élément de F et sign est la signature.

Nous préférerons 1'écriture plus synthétique y*mg A w1 A -+ - A wp = 0.

1.3. Forme de Maurer—Cartan d’un £D-groupoide de Lie et suites de Godbillon-
Vey d’un feuilletage. La forme de Maurer—Cartan d’un groupoide de Lie est une
1-forme sur le groupoide invariant sous I’action du groupoide sur lui-méme par com-
position au but. Pour un &D-groupoide de Lie, la forme de Maurer—Cartan provient
de la restriction de celle de J*.

1.3.1. Forme de Maurer-Cartan de J*. L’espace J; n’agit pas sur son espace
tangent et la forme de Maurer—Cartan provient de l’actlon de J'\; sur le tangent
de J;.

Plus précisement, la structure de groupoide de J q* donnée par la composition

¢ (50 xx (JFs) — I

se prolonge en une structure de groupoide sur I'espace J;(J} ) des jets de

4 /sou
sections de la projection source se projetant sur les sections de J; (X x X jsource). Ce

groupoide agitnaturellement sur 7" J ;‘ p— Cette action se comprend plus facilement

en utilisant la présentation suivante. Soit ¢ une section analytique locale de J; pa—

sur un ouvert U/ dont la composante ¢g d’ordre O est inversible. Par les formules de
composition, elle induit un difféomorphisme de I'ouvert de J; des jets de but dans
U sur I’ouvert des jets de but dans ¢o(U). Le difféomorphisme induit sur le tangent
de J Qf," ne dépend que du premier jet de la section et donne 1’action.

Nous noterons T ¢ cette action :

) *
T¢i (TJ;/SO 1) Xx (Jl ( 4 /sourc ) s) =T, 4 /source”

Cetteactioninduitune actionde J ', sur T'J, pr— par I"inclusion canonique J°, ; C

N : :
L o — )et donne un isomorphisme

TTY o laxx iy =TT}

g /source ' ¢ /source
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Apres identification de T'J q* Jsou | id avec J,(T'X,x), I'image de la premiere projec-

tion donne une application

OF TJ;/SOUICe — J,(TX,x)

invariante sous g +1

Définition 1.27. Cette forme est la forme de Maurer—Cartan de J ;' ;.
Les formes construites ainsi étant compatibles aux projections zrq k, la forme
induite sur J* sera appelée forme de Maurer—Cartan de J*.

Remarque 1.28. Fixons un point xg € X et identifions la sous-variété des jets de
source xq avec I’espace des reperes, R, (X) ainsi que J, (T'X /x )|y, avec J,(x (C", 0))
I’espace des jets d’ordre ¢ de champs de vecteurs en 0. On obtient alors une forme sur
R, (X) a valeurs dans J,(x (C", 0)) invariante sous I’action de J* 1" Nous noterons

Olxy : TRy (X) — J4(x(C",0))
cette forme.

Il existe un second crochet sur J, (T X, x) différent du crochet de Spencer. I est a
valeurs dans J,_1(T X, x). C’est le crochet fibre a fibre. Il est défini en coordonnées
locales par les formules

{u, v} = jg—1lu, v]

ol u et v sont des jets en un point x € X, # et v sont des champs formels en x les
prolongeant, [ , ] est le crochet de Lie et s, est la prise du jet d’ordre g — 1.

La forme de Maurer—Cartan vérifie des équations de structure reliant la différen-
tielle relative a la projection source et le crochet fibre a fibre sur J,(T'X,x) :

d/syr 10 = ——{G) |1,
ou zrg_l est la projection de J,(TX,x) sur J,_1(T X,x). Nous renvoyons a [13],
[29] pour plus de détails.

Ces équations se restreignent aux espaces de jets de source fixée. En choisissant
une base de I'espace vectoriel des jets d’ordre ¢ de champs de vecteurs en xg et
en écrivant © |y, en coordonnées, on obtient une tamille de 1-formes invariantes sur

R,(X). En choisissant la base monomiale = o 83 on obtient une suite de formes 6
satisfaisant aux identtés différentielles ;

ZQ%@““J + 3 (@l et

B1Bl1=1
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pour || < g—1et (%) =T] (Oﬂfi) sic; > B; etzéro sinon. Nous les appellerons formes
de Cartan d’ordre ¢ et les identités précédentes équations de structures d’ordre g.

Le groupe algébrique des jets d’ordre ¢ 4+ 1 de source et but xg, Fg 41 agit sur
R, (X) par composition a la source. La composition au but commutant avec la compo-
sition a la source, I g 41 transforme des formes invariantes en des formes invariantes
satisfaisant les mémes identit¢s différentielles. Soit ¢ un ¢lémentde I'7, |, notons s,
I’action par composition a la source sur R, (X) et ¢* celle sur J,(x(C",0)). Onala
formule suivante :

S;®|xo = (P* 2 ®|xo'

1.3.2. Forme de Maurer—Cartande Y. Considérons maintenant % un £-groupoide
de Lie agissant sur X.

Définition 1.29. La restriction de © sur ¥,41 est a valeurs dans le sous-espace
vectoriel LY, :

Oy: Ty x — LYy C Jy(TX)x).

C’est la forme de Maurer—Cartan d’ordre ¢ de Y.

Dans la suite nous nous restreindrons a I’étude des D-groupoides de Lie transitifs
et travaillerons dans le cadre de la définition suivante.

Définition 1.30. Soit ¥ un D-groupoide de Lie sur X transitif. Fixons une source xo
réguliere pour Y (i.e. hors du lieu singulier donné dans la définition 1.16) et notons
R, (¥) I'espace des jets de Y de source x¢. On définit une forme invariante sur &, (%)
en restreignant la forme de Maurer—Cartan :

Oyl TRy (Y) — J4(x(C", 0)).

Les orbites de I’action de Y, 41 sur R,(X) sont les sous-vari€tés décrites par le
théoréme 1.20. Une orbite particuliere est donnée par R, (Y) mais le groupe F;‘ 41
agissant par composition en xg mélangentces orbites. Larestriction de ® sur une orbite
permet de construire un systeme de formes invariantes satisfaisant des équations de
structures particulieres.

1.3.3. Suites de Godbillon—Vey générales

Définition 1.31. Une suite de Godbillon—Vey pour un feuilletage de codimension
p est une suite de 1-formes rationnelles {7 € {1, ..., p},a € N} telles que

{a)?; : € {1, ..., p}} définissent le feuilletage et

dof = Za)JO /\a)?+6j + Z (g)a)f A a)?_ﬂ-l_ej
J 5181=1
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o [0 2 - - -
avec (ﬁ) =] (ﬁi) sia; > B et zéro sinon.

Proposition 1.32. Soit F un feuilletage singulier de X. Quitte a se placer sur X > X
une variété finie au-dessus d’un ouvert de Zariski de X, il existe roujours une suite
de Godbillon—Vey pour F .

Cette proposition est classique, nous allons en donner une preuve utilisant les
constructions précédentes. Nous allons d’abord construire ces formes sur le D-
groupoide de Lie Aut(F) et les descendre ensuite sur X.

Preuve. Un feuilletage F définit un D-groupoide de Lie Aut(F) : le groupoide des
transformations locales préservant le feuilletage. Pour tout entier g, ¥, C
T'Aut(F), /Sourcel ig et Iaction de Aut(F') par composition au but permet de pro-

longer ¥, en un sous-espace vectoriel ﬁ, de TAU(F )y jsonrce

Soit xg un point régulier de ¥ (i.e. au voisinage duquel ¥ est facteur direct).
C’est aussi un point régulier de Aut(F ). Les jets solutions de Aut(¥ '), de source xg
forment une sous-variété de R, (X) noté R, (F).

Définition 1.33. Les formes sur R, (¥) s’annulant sur ?A’; seront dites transverses
aF.

On construit une forme transverse de la maniere suivante. Soit Ng la D-algebre
de Lie de Aut(F) et soit w: Ng |y, — Vy le quotient par F |, .

Définition 1.34. La projection,
7o OpuF)lag: TRy (F) =V

est une forme transverse au feuilletage. Flle sera notée © ¢

Le crochet sur la fibre de N+ en xg induit un crochet sur V. La forme transverse
vérifie les équations de structure induites :

1
dOgp = —5{@}”3®?}~

Soit p la codimension du feuilletage. L’espace Vectoriel V, s’identifiea J, (x (C7, 0)).
En écrivant © # |, dans la base monomiale = il a sur Jq( x (C?,0)), on obtient une
suite de 1-formes invariantes transverses a & ; 9“ 1 <i<p, «c NP satisfaisant
les équations de structures d’ordre ¢ en dimension p.

Soit X — X une vari€t¢ au-dessus d’un ouvert de Zariski dense de X tel qu 1l
existe une sectlon f: X > X xx R, (¥) de la projection but. Les formes 90 s’an-
nulent sur % Par construction, ce feuilletage sur Ro(F) = X est F. La suite
{f = f*6} est une suite de Godbillon-Vey pour ¥ . L]
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1.3.4. Suites de Godbillon—Vey spéciales

Définition 1.35. Soient Y un £ -groupoide de Lie transitif admissible pour un feuille-
tage F et X > X une variét€ au-dessus d’un ouvert de Zariski de X tel qu 1l existe
une section f: X > X xx R, (Y) de la projection but. Les formes o = f*0
seront appellées suite de Godbillon—Vey spdciale associde a Y

Dans le cas trivial ¥ = Aut(F ), 1a suite de Godbillon—Vey obtenue est dite géné-
rale. Lorsque ¥ = Gal(F ), nous dirons qu’elle est minimale. Les cas intermédiaires
sont dits spéciaux. Dans la suite de cet article, nous regarderons particulierement
le cas X = C>. On peut toujours choisir une section 2 coefficients algébriques de la
projection but et construire ainsi une suite de formes  coefficients algébriques sur €3,

L’objet de cet article est I’étude d’un feuilletage de codimension deux. La clas-
sification locale des pseudo-groupes de Lie réguliers agissant sur €2 a été donnée
par S. Lie [17]. Dans [3], I:. Cartan donne une preuve de la classification de S. Lie
en utilisant ses équations de structure. Appliquée a la détermination des équations de
structure possibles pour les formes a valeurs dans J, (x (C%,0)), 1a preuve de Cartan
permet d’obtenir le résultat suivant.

Théoréme 1.36. Soit ¥ un feuilletage de C" de codimension deux, défini par une
2-forme fermée y. Le D-groupoide de Lie Inv(y) d’invariance de cette forme est
un D-groupoide de Lie admissible pour ¥ . Si le groupoide de Galois de F est
strictement plus petit que Inv(y ) alors on est dans un des cas suivant :

— Gal(F) est intransitif : F admet une intégrale premiere rationnelle,

— Gal(F) est imprimitif en codimension un . il existe une 1-forme a coefficients
algébriques intégrable s’ annulant sur ¥,

Gal(F ) est transversalement affine : il existe un vecteur de 1-formes a co-
0

efficients algébriques Q¥ = (25) définissant le feuilletage et une matrice de
2

L-formes & coefficients algébrigues Q' de trace nulle telle que :
A = Q' A QY e Q! =@l A QL

Un tel feuilletage induir en dehors du lieu singulier de Gal(¥F ) un feuilletage
admettant un atlas dont les recollements transverses sont des transformations
affines preservant le volume. Une telle suite sera appelée suite de Godbillon—
Vey de type asly ou encore asly-suite.

Nous donnons en annexe la preuve de Cartan de ce théoreme.
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2. Le groupoide de Galois de Py

2,
Le feuilletage associé a la premiere équation de Painlevé, % = 6y? + x, est donné
par le champ de vecteurs
d d 0
X1=— '— 4 (6y* —
1=ty 3y + (6y +X)8y,

sur €3 avec les coordonnées (x, v, v').
Ce champ de vecteurs étant de divergence nulle, le feuilletage est défini par la
2-forme fermée y = ix,dx A dy A dy'.

Théoreme 2.1. Le groupoide de Galois de Py est le D-groupoide de Lie Inv(y)
laissant la forme y invariante.

On considerera la déformation triviale suivante du champ X1 :

d , 0 5 5 0
Xo=—+yY—+ 0Oy +0 X)B_y” a # 0.

dx dy
Ce champ est de poids —1 sous I’action de
o d d d
E=x——-2y— -3y — —a—
ax dy ay’ do
¢’est-a-dire que [, X, ] = —X,. Le flot de £ donne une équivalence orbitale entre

les différents champs X, tant que « # 0. Lorsque « = 0, la premiere équation de
Painlevé dégénere sur une équation particulierement simple.

L’organisation des calculs se fera suivant les idées de J. Drach [8]. Soit 7, la
projection algébrique de C* x C, sur C* donnée par le flot de T :

7
(X, y, V', o) = (ax, % y—3 1)-
(04 (04

Supposons qu’un des trois systemes d’équations aux dérivées partielles donné par le
théoreme 1.36 admette une solution algébrique. En considérant leurs images inverses
par r,, et en développant les équations et la solution en puissances de o, on obtient une
suite de systemes plus simples ayant encore des solutions algébriques. Ces équations
sont de 1a forme XoR = . On les étudiera dans les coordonnées adaptées x, y, u =
y/2 _ 4y3.

Nous noterons px( . ) le poids d’une fonction ou d’une forme homogéne sous %
etdeg, . . les degrés par rapport aux variables «, b, . .. ayant chacune le degré 1.

Un polyndme P(x, v, ¥') se prolonge en une fraction de poids nul sur C> x Cy

par
’

L ) e Clx, v,y @)

*
i P:P(ax = P
[0% ’a29a3
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eten un polyndme en x, y, y' et « homogéne pour X en multipliant par une puissance
convenable de «. Nous prolongerons les formes de €, a dx+b dy+cdy, aC> x C,
par (mya)adx + (7 b) i% + (}e) i—y;. Une forme intégrable ne se prolongera pas en
une forme intégrable mais seulement intégrable modulo do.

Le feuilletage donné par le champ X est défini par les deux 1-formes y'dy’ —
(6v% + x)dy et f% — dx. Nous noterons

d
a)(l) =vdy — (6y2 + oesx)dy et a)(z) = —): —dx
y

leurs prolongements au parametre o« et 00(1)|0, a)g lo (resp. a)(l)ll, a)g |1) les restrictions a
{e = 0} (resp. a {« = 1}). Ces formes forment les vecteurs QY. QYo et QY1.

2.1. Etude préliminaire de I’équation réduite Xo. Le champ de vecteurs

Xo = o + V' + 637
0= ax y8y yay’

admet une intégrale premidre rationnelle # = y”?> — 4y et une autre transcendante
X — f L_Jy. Nous utiliserons souvent les formules suivantes :

4y3 +u
n+l1 n N3
o (s22) ") = (rea2) e
X y Y

4+ n+l1 47 1)27 2
Xo ((7x+201,—24y—/3) ):(7x+201/_24y_) (n+ 1)27u®

(1

y ¥ y e ot

Lemme 2.2. Si 1o est une 1-forme polynomiale, intégrable, telle que no(Xo) = O et
Lx,dno = 0 alors

1
mo = fndu ou no = fw)(udx = @xy® +5)dy + (¥ + 20y ).

Preuve. Bcrivons g = adu + b(dy — y'dx). Si b = 0, on trouve la premiere
expression. Sinon, en écrivant la condition d’intégrabilité de g, on obtient I’équation

a 6y% a 1
~Xo () =
)TV r oy
En utilisant les formules (1), on intégre cette équation. On trouve

a 1 y

- = —— 2y).

5 o (xy +2y)

On en déduit que np = f((%;’/y/)du — %(dy — ¥'dx)). En écrivant la condition
Ix,dno = 0, on trouve que Xo f = 0, donc f est une fonction de «. En développant
1o, on trouve la seconde expression. L]
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Lemme 2.3. Le feuilletage défini par Xo n’admet pas de suite de Godbillon—Vey
rationnelle de type asly commencant par g et »)o.

Preuve. Supposons qu’il existe une matrice de 1-formes ©2'|o de trace nulle satisfai-
sant :

d2’lo = 2'lo A 2%,

aQ'o = @' A Q"o
On peut supposer en toute généralité que ces formes sont homogenes sous 2. La
premicre égalité donne

1 00 0 0
Qo = %0 dy + Awilo+ Bw;lo
y/

avec A (%) = B (}) et race A = trace B = 0.
La deuxieme égalité donne un premier systeme d’équations que nous allons résoudre :

ix,dQ2'o = [QYo(Xo), 2M0].

ou [M;, M;] est le crochet de Lie MM, — My M. Calculons les deux membres de
cette égalité ;

; 0 0

e[210x0 0] = | (12 ) 4] o+ (|1 ) 8]

En identifiant les coefficients de a)(l)lo et ceux de wg lo, on obtient les deux systemes

suivants,
Yox {00 A' 00 L, -
— , - - T A a
R Az A B A AT
T -
XoB = Lo) Bl (2a)
P
L_ y —
SiB = (g _ba ), on &cerit puis résout le systeme (2a) en utilisant les formules (1) :

Xob =0 =  b=hu),

b b ,
Xoa=sz = =g R 3
Xoc = 24 = g= _—b(x +2y/y)%,

y/2 9u2
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sous I'hypothese b #= 0 (les résultats sont analogues lorsque b est nul). On résout
ensuite I’équation (2a). Si A = (7 ¢), le systéme donne

—3c¢ 1
y’2 _SF = &= 27u3

Xod =

1 y y4
"3

On obtient une contradiction en considérant I’équation suivante :

d
iidQHo:[QHJ}—)Aﬂm}.
ax ax

En identifiant les coefficients de w(l)lo dans cette équation, on obtient

108 8A

———+-— =4, B].

y oy o dx
c’est-a-dire,

1 da dc
Yoy %
1 db da
Yoy Bz
1 dc ad
Fiy T

= ac — db, (4a)
— —2(bc +a?), (4b)
= 2(da — ¢?). (4¢)

I’ équation (4b) s’écrit 2b'(u) — %b(u) = (. La seule solution rationnelle est b = 0.

Dans ce cas a = a(u) et I'équation (4b) donne a = 0. Les équations (3) impliquent
4

c=c(u)etd = ;—32‘3 - 9%(7x + ZO% = 24%). L’ équation (4¢) se réécrit alors

7

_ 2
M)—W——QC.

20’ (
Une solution de cette équation ne pouvant pas avoir de pdle d’ordre entier en 0, elle

ne peut pas avoir de solution rationnelle. On aboutit 2 une contradiction qui prouve
le lemme. O

2.2. Le groupoide de Galois de X1 est transitif. Le résultat suivant provient de
[24], on pourra aussi consulter [8], [14].

Proposition 2.4, Le champ X1 n’a pas d’intégrale premiere rationnelle.

Preuve. Si Hy est une telle intégrale, prolongeons-la en une intégrale du champ
Xy. On peut écrire H, = Hy + Hyx + - - aprés avoir fait une division suivant



Vol. 83 (2008) Le groupoide de Galois de P; et son irréductibilité 495

les puissances croissantes et multiplié par une puissance convenable de «. On peut
supposer que Hy n’est pas constante. En développant I’équation X, H, = 0 suivant
les puissances de «, on obtient pour 0 <i <4

X, H; =0,
qui implique I; = fi(u) ot u = v2 — 4y3 et f; est rationnelle. Le coefficient de o
donne 5 folu)
XoHs +x 20 _ g
dy

Dans les coordonnées x, y, u, cette derniere équation s’ écrit

J 3 J 0 3 1) ! 3
a—l— 4y +M@ Hs +/4y° +u H5 ) = =2xfo(u)\/4y° + u

ol Hy = HY + \/4y3 +u H} et Hl € C(x, y, u). En identifiant les termes libres de
radicaux des deux membres, d une part, et ceux contenant le radical, d’autre part, on
obtient les deux €quations suivantes :

oHY 9H! ,
W + W = _2xf0(”)’ (5a)
JHY JH]
—2 + 4y’ + u)—= + 6y*Hy =0. (5b)
ax ay
En dérivant (5b) par rapport a x et en utilisant (5a), on obtient
9*HY 3*H? 2 A5
— (49" +u) — 6y = 0. (6)
dx2 dy? dy

Supposons que H5 ait un pole d’ordre n par rapporta yena € Clx, u] e , la cloture
algébrique de C[x, u]. En développant H5 en série autour de a, on 0bt1ent une série
d’équations différentielles. La premicre,

da\? 3
o — (da” +u) =0,

implique 44> = —u. La suivante donne 12(n+1) = —6a?. Ainsi H5 estun polyndme.
En €crivant Hy O — @, y" + - dans (6), on obtient n = 0 puis

HY = a(u)x +bu).
1
[’équation (5a) donne % = —2xf§(u). En dérivant (5b) par rapport a x, on ob-
1
tient % = 0, ce qui implique f; = 0. Ceci contredit le choix de H et prouve la
proposition. L
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Corollaire 2.5. Le champ X1 n’admet pas d’hypersurface algébrique invariante.

Preuve. Soit P I’équation d’une hypersurface invariante. Prolongeons P au para-
metre «. On obtient un polyndme satisfaisant

Ko = L,
On a px(L) = —1 d’une part et d’autre part comme degix,yv1(Xe) = 1 0n a
degix y,y1(L) < 1 etun calcul direct donne degg, (L) < 0. Tout ceci implique que
L est nul et donc que P aussi. ]

2.3. Le groupoide de Galois de X est transversalement primitif.

Proposition 2.6. Le feuilletage donné par X1 n’est inclus dans aucun feuilletage de
codimension un donné par une 1-forme algébrique.

Supposons qu’il existe une 1-forme algébrique » intégrable, n A dn = 0 et telle
que 77(X1) = 0.

Lemme 2.7, Une telle forme peut étre choisie polynomiale.

Preuve. Soit n une telle forme que nous normalisons n = dx + ady + bdy’. Soit
7 le lieu de ramification de cette forme sur C°. D’aprés le corollaire 2.5, Z est
transverse aux trajectoires de X1. Plagons-nous au voisinage analytique d’un point
de Z. N'importe quelle intégrale premiere au voisinage d’un point de la trajectoire
passant par p se prolonge de manicre univaluée sur un voisinage de p. La forme n
est donc univaluée sur ce voisinage. Le lieu de ramification Z est vide et la forme est
rationnelle. O

Choisissons une de ces formes et prolongeons-la au paramétre «.
Lemme 2.8 ([8]). La forme ng peut étre choisie telle que ix,dny, = 0.

Preuve. Choisissons
e = —(PY' + Q6" + &’ x))dx + Pdy + Qdy’
avec P et Q premiers entre eux. En écrivant la condition d’intégrabilité, on obtient :
OXP — PX0Q+12y0* - P2 =0.
D’apres le théoreme de Bezout, il existe donc un polynéme L tel que :

XP+12yQ0 =LP.
X0+ P=L0Q.
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En calculant les degrés, on obtient que L doit étre de degré 1 en x, y, y’ et de
poids -1 par rapport 2 ¥. Donc L = ca’x ol ¢ est une constante. En calculant les
degrés en x, on obtient ¢ = 0. Un calcul direct montre que cect implique le lemme.

Ll

Preuve de la proposition 2.6. Quitte a mulaplier par un facteur convenable, nous
pouvons supposer que iy 8’écrit ng + «np + - - - avec n; des formes polynomiales et
no # 0. Les équations

Ne(Xa) =0,

7
iXadna :O ( )

relient les formes 7 et 77;. Ecrivons la forme 77 de la maniére suivante
_ 0 1
m =adx +bwilo+ cwlp.

Le terme d’ordre O dans les équations (7) donne no(Xg) = Oetiyx,dno = 0. Ces équa-

tions sont résolues par le lemme 2.2, Celles d’ordre 1 donne no(x aiy,) +n1(Xp) =0et

ixi, dno-+ix,dni = 0. Enécrivant toutes ces équations dans labase (dx, a)? lo, a)% lo),
dy

on obtient

0
a = —Xx Uo(a—y,),

. _ 0
lxaiy/dﬁo = g w5 o,

9 (8)
Xoc = Xoa — — — g,
ox
C 1 da
RETRETG

Dans chacun des cas du lemme 2.2, nous allons prouver qu’il n’existe pas de triplet
(a, b, c) solution de ces équations tel que 1a forme 71 soit polynomiale. Ces deux cas
seront traités suivant le poids de ng.

Premier cas, pxng =0 mod 6. D apres le lemme 2.2, ng = f(u)du. Les équations
portant sur les coefficients de n deviennent

a=—2fw)y'x, (9a)

g =0, (9b)

Xoc = —12f (u)xy?, (9¢)
i 2f(u)x y ;

Xob = —— — —4f (u)xy'. (9d)

2 /

B y
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On résout (9¢) : ¢ = 2 f(u)(y — xy’). On obtient ensuite pour 1’équation (9d) :

2/ (u)y

Xob = —4f (u)xy — :
0 flxy' = 5

Dans les coordonnées x, y, u, ou b = bg + ]

b1 avec by et by des polyndmes

N 4y34u
et Xg = % + J4y3 + u%, I’équation ci-dessus se rééerit :
by b 62 2f(u
0 B &7 2@y L)
dx dy 4y’ +u Ady° +u
— 4+ @y +u)y— = -4 (w)xdy 4+ u). (10b)
0x ay

En dérivant (10a) par rapport a x et en tenant compte de la dérivée de (10b) par rapport
a y, on obtient

92h; 3 32bg 5 dbg
— — (4 — — 6y — =241 (u)y*x. 11
302 (4y” +u) RN Jfu)yx (1)

On en déduit que b est un polyndme d’ordre 1 en y puis

b
%:4fmny+qu+mw;5i:0
X

En reportant by dans (10a), on obtient
ob
4y + u)a—yl — 6y%hy = —16f (w)y* — 4a()y® + (f () — 4uf'(u))y — ua(u),

ce qui implique que le degré de by en y est inférieur 2 deux. En posant by = apy? +
a1 y! + g, on obtient le systéeme suivant

—16f"(u) = 203,
—4da(u) = —2uaq,

1 0 = —6ay,

S ) —duf'(u) = 200u,

ua(u) = uaj.

Ce systeme 1mplique I’existence d’une constante ¢ telle que f = ﬁ Or f estun
polyndme donc f est nul, ce qui contredit le choix de la forme n,.
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Deuxiéme cas, pyne = 1 mod 6. Onano = f(u)(3(x + 2%)w?|0 — u o)
d’apres le lemme 2.2. Les équations (8) donnent

= —@(y’x2 + 2yx), (12a)
5
g = —2f(wuy — %y’, (12b)
7
Xoc = —2f (w)y*x* — (§f<u> — 2f’(u>u)y’x, (12¢)
¢ flx? 2fu)
Xob = 2T g 5 xZ. (12d)

Etudions I’équation (12c¢). Le second membre étant d’ordre 2 en x, ¢ est d’ordre au
plus 3. Par homogénéité, ¢ est en fait d’ordre 2. Posons ¢ = cax% 4 ¢1x + cg. On
obtient le systéme suivant

Xocz = =2 f(u)y?,
7
Xocr = — (gf(u) — 2]”(”)”) vy —2e,

Xgcop = —cq.

On les résout successivement, ¢ = _Tlf(u)y’, ¢l = —(%f(u) — 2f’(u)u)y et
Xocog = (% Fu)=2f"(u) u) v. Cette derniere équation n’a pas de solution polynomiale
comme le montre le lemme suivant. Ceci prouve que f doit étre nulle, en contradiction
avec le choix de . Cect prouve la proposition. ]

Lemme 2.9. I n’existe pas de polynome R satisfaisant XoR = y.

Preuve. Supposons qu’il existe un tel polyndme. Comme le second membre est
d’ordre 0 en x, R s’écrit o1 (u)x + ooy, y'). En écrivant 1’équation dans les co-
ordonnées (x, y, u) on a

8R0+8R1 0
dy ax

dR!
dRax + (4y® + u)W +6y2R! = y.

B saes B 1 N 2
Ces équations impliquent (4y> +u) % +6y2R! = y—wq(u). Si R étaitun polyndme
de degré n, le premier membre de cette égalité serait de degré n + 2. Ceci est incom-

patible avec le second membre, cette équation n’a donc pas de solution polynomiale.
O]
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2.4. Le groupoide de Galois n’est pas transversalement affine

Lemme 2.10. Soir Q°1, Q!|; une suite de Godbillon—Vey de tvpe asly pour le
Seuilletage donné par X1. Pour tout vecteur de formes vérifiant a)(l)ll A a)g [ =

0
Ix,dx Ady A dy’, il existe une unique suite asly commengant par QO|1 = (w}):l )
711

Preuve. Les formes Qoll et Qlll satisfont les relations suivantes :

QO (X)) =0,
A0 = Q'y A @0y,
dQl = Q' A QM.
trace 21| = 0.

Enécrivant Q0 = FQO et QY = dFF14+FQY | F~!, on construit une nouvelle
suite de Godbillon—Vey. De plus o} |1 AwS|1 et @31 A&@Y]1 sont deux formes volumes
transverses invariantes sous le flot des champs de vecteurs tangents. On en déduit que

0 0 ~() ~()
w11 Ayl = cof|1 A sy

ou ¢ est une intégrale premiere rationnelle donc une constante. Calculons la trace de
QL
ddetF') dc

trace Q| =traced FF 1= """ _""_9
I det F P

et QO1, Q1 forme une asi>-suite.

Supposons maintenant qu’il existe deux aslp-suites : 2°]1, Q1|1 et 01, Q! l1.Le
groupoide de Galois du feuilletage est un sous-groupoide de Lie du groupoide définie
par une de ces suites. Or le lemme A.4 monire qu’un tel feuilletage est contenu dans
un feuilletage de codimension un, ce qui contredit la proposition 2.6. [

Proposition 2.11. Lefeuilletage donné par X | n’admet pas de suite de Godbillon—Vey
de type asl.

Lelemme 2.10 affirme que si le feuilletage donné par X1 admet une asl;-suite alors
celle-ci est rationnelle. Le lemme suivant montre qu’il en existerait une polynomiale.

dy —(6y*+x)dx )

Lemme 2.12. Si elle existe, la asly-suite commencant par §0|1 = ( dy—y'dx

doit étre polynomiale.
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Preuve. Nous allons montrer que le lieu des poles de la forme Q! |1 est une hyper-
surface invariante pour le feuilletage. Le lemme 2.5 permettra de conclure. Soit Z
I"hypersurface des poles de Q![;. On construit un systeme d’intégrales premicres
locales (en dehors de Z) en résolvant les systemes différentiels suivant :

dH = dHQY),,
doH = —3HQ);,

oun H = (g;) et o H est une matrice 2 x 2. S1 Z est transverse aux feuilles, les

intégrales premieres se prolongent a Z. Commede plus d i Ad Hy = (detd H) 25(1) IS
E’og |1, le lieu d’annulation de det @ H doit &tre invariant par le feuilletage. Ceci contredit
le corollaire 2.5. [

Corollaire 2.13. Si elle existe, la asl>-suite commencant par

o), — (y*dy* —(6y2 + x)dy)

%—dx

est composée de 1-formes a coefficients dans Clx, v, y', 1/y].

Soit 2°|1, Q! cette suite. On la prolonge au paramétre & de manidre A avoir une
asly-suite, 20, Q! pour X,. Ces 1-formes vérifient

Q¥ = Q' A Q°, (13)
aQl =l A QL. (14)
Ona py(QY) = () et px (@) = (Y /). La matrice @' que nous obtenons ainsi
possede a priori un pole le long de @ = 0. Nous allons montrer que ce pole est

nécessatrement d’ordre 0 puis conclure avec le lemme 2.3. Développons la matrice
Q! en puissance de « :

Ql=—g, +

Lemme 2.14. Sin > 0 alors on est dans un des deux cas suivants :
b
(1) 8, = (_1% 5 ) @eflo + badlo) avec a = §ukAx + 29/ et b =
Sl x +2y/y) oiceCetk =22 c 7,

(1]

(2)

Y= (Cgkg)a)(l)m avec k = 5”%13 c 7.
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Remarque 2.15. Sin > OQalorsn > 1;en effet, la seule possibilité pour n = 1 estle

cas (2) avec k = —2. En posant g = &, on obtient un champs X pl/s donnant X en

1
ﬁn/S

B = 1 etune asly-suite donnée par Q! = -5, + - ... Le corollaire 2.13 implique

que n est divisible par 5.
De méme, I'unicit€ de la aslp-suite pour X assure que B, =0s1p #1 mod 5.

T M2

T ) Nous allons distinguer deux cas suivant que 711

Preuve. Posons 2, = (
est nulle ou non nulle.

Premier cas, n11 # 0. L’égalité 2, A &, donne &, = (; _fl) n11. Comme de plus

g, A QY0 =0,

[r]

1 b/a 0 0

Considérons ensuite 1’égalité

ix, dQ' = [Q1(X,), Q'] (15)

0 — /
avee QI (X)) = L "} En calculant le coefficient de 1/«", on obtient
yﬂ, 0

: — 1 00
s = ](29):2]

Calculons les deux membres de 1’égalité

2 - 0 XoZ 0 0
o ixed 8oy = (g0 ") @aflo b aflo)

(1]

13
(s 1)) (oa+ F)aflo + Xob wflo):

&

e (892 = (F 1) @ollorvadio

En identifiant les coefficients de w(1)|0 et a)g lo de ces matrices, on obtient le systéme

—2b
}(0[1 = _;ﬁi_’
7.3 h? 1
gl = ————z
a y/2
: 2 .y . " 2
On en déduit que % est une intégrale premiere homogene de X donc % = cuk avec

c € Cet k € Z. On résout le systeme en utilisant les formules (1). En calculant le
poids de E,, a partir des formules d’un coté et a partir du poids de €2, de ’autre, on
obtient la condition sur 1’ordre du pdle en «.
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Deuxieme cas, n11 = 0. Comme E, A B, = 0et &, A Qolo = 0,onasoit &, =

(98) @10, soit B, = (1) @lo. En reprenant les équations différentielles données
par (15), on obtient le résultat annoncé. OJ

Preuve de la proposition 2.11. Nous allons maintenant calculer E,_s et aboutir a
une contradiction.
Premier cas, n11 # 0. Dans ce cas, &, est égale a (_;/b b_/f) ni1. En écrivant le

1
a3

coefficient de dans (13), on obtient

—xd
Bn_s A Q%o+ En/\( ’(“)y):o.

Ceci implique que

a b
En_5:Aa)(1)|0—|—Bn11—( ) )xdy

avec A () + B (77) = 0. En écrivant le coefficient de —L - dans (14), on obtient
1 a an 5
En ABp—5+ 8p5AEp=0

Ceci donne [A, (_;/b b_/f )] = 0, ¢’est-a-dire

B 1 b/a
A=t (—a /b —1 )
avec £ une fonction quelconque. On en déduit ensuite que
B 0 —b/a® 1 bja
B_g(—l/b 0 )—I_t(—a/b —1)

avec ¢ fonction quelconque. Considérons maintenant 1’équation différentielle portant
sur E;,_5 que 'on déduit de (15) :

: _ : _ 1 00y 01}
lXod =ip—5 +lx8iy/d g = ﬁ |:(1 0) s L-“i’L—5i| _y/ |:(0 O) ’ L-“]fli| .

Calculons les termes ci-dessus :



504 G. Casale CMH

2
o Xot+aXot —(3) L+bXot\
L4 lX()d dn—5 = ’ 2 Cl)l |0
—Z%Xok—l—yz——%Xot —Xgfb—aXpt

2 3 2
B Xpt=ay’ —(2) X z—ﬁ(é) L B it
( o ' 0 ’ yl2+u ’ ¥ a)0|0

2 2
—Xol—aXot+%y' —bXoi+ay’
b

w 2 x ,(  da__ db o
+ (—3a —a2b) 2l T EF —d(%) _da ) T ixgd By

B & 0 ab 8(b%/a) .
; - ¥ ¥ a3y
.lxi/dun—x a2y sa wilo + x ya_a % w50

3y’ 3y’ 5y 3y

R ,( da db
+(a ba)y_’zy_xy —a(% ) —da |

o [(88). 8] = (7" 73) @oflo + bello).

Parmi les équations que I’on obtient en identifiant les coefficients, on trouve les
deux équations suivantes
a b £ ab x
Yo b ¢ a® ' d (a)
= ——— — — vV —phb—{—]x
v ay'? b 4 ay’ \b

En remplacant a et » par leurs valeurs (lemme 2.14), on obtient 1’équation suivante
pour £ :

X g 3“, g _|_ C F—3 _I_ 2 y 3 ;
YT x+22yr g
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x+22
On résout cette dernicre équation en posant £ = A—— %. On a alors
cu
4 2
Xoh = Ty/'x* + (16y + 6u%) x4+ =
Y b

La fonction A est donc un polyndme en x de degré inférieur a trois. Par homogénéité
sous 2, A est de degré 2. On résout les équations portant sur les coefficients de A et
on obtient finalement

x+2% ¢ 4
y 2 ]
B ok 2 (7yx + 47x 'y d)

ou d est constante. I”équation satisfaite par ¢ est alors
3 2
v 1 1 y 1 1
Xot = — (—, —I—d) ————————— -} (28—) e
2 72 2 ’ 2 3
y y (x +23 ) Y] YEix 425

8 /
vak -2 —oX k- HL (x+22).
u y’2 3 u v/

£ =

Puisque Xof aun pdle d’ordre 2 1e long de x + 2% = 0, ¢ doit avoirun pdle d’ordre 1 :

2
11 y y
t = i t 2— t 2—
x+2%+0+1(x+ y,)+2(x‘|‘ y/)

3 2
Onaalorsf_j = —5- (48% +d) et Xot_1 = % 37> ce qui est impossible. 11’y a pas
de solution polynomiale a I’équation portant sur ¢. Il n’existe donc pas de aslp-suite

pour le feuilletage avec i1 # 0.

0 0
cu® 0

conditions Z, A Zys5+ Ep_sA By =0et B,_s A0’ |o+ B, A (

Deuxieme cas, n11 est nulle. Dans ce cas, &, = @?p. Calculons E,_s. Les
1

—xdy
0

—e () 00 00
n-5 = ( J e)w?loJr(eO)w%Io—(cuko)xdy-

En reprenant I’équation (15) et en remarquant que £, est fermde, on obtient

ived B s L 00 — 01
Xo L y,z 1 O ’ n—>5 y O 0 ’ n
qui donne

~Xoe 0\ o 0 0\ o, (00N 1 o (00), o

-—cuk O 0 1 0 O 0
:y’( 0 cuk>w1|0+ﬁ (230)0)1'0'

) = 0 donnent

9]

[r]
(1]
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Ceci donne les équations suivantes Xpe = cu*y et Xod = %, ¢’est-a-dire ¢ = cufy

et Xod = 3cukyy—,2.
Lemme 2.16. L’équation XoR = yy—,z n’a pas de solution rationnelle.

Preuve. On déduit de cette équation que X 0% = 0. D’un autre coté le poids sous

2 de R doit &tre égale a 4 done % = 0. En écrivant I’équation dans les coordonnées
x,y,u,on obtient :

oR
(4y® + u)a—l

+ 6y*R| = ————,
vy T T
ou R = Ro(y,u)+ y' Ri(y, u). Si cette équation admet une solution rationnelle, elle
s’éerit R = 4)23% avec P polynomiale. En calculant le coefficient du terme de plus
haut degré en y dans I’équation satisfaite par P, on vérific que P ne peux pas &tre
polynomiale. L

[’équation sur d n’a de solution rationnelle que si ¢ est nul, ce qui contredit
le choix de n. La matrice de 1-formes Q!|, ne peux donc pas avoir de pole en «.
Mais d’apres le lemme 2.3, elle ne peux pas ne pas avoir de pdle. 11 n’existe donc
pas de matrice de formes 2 coefficients rationnels satisfaisant les équations de Q1|,.
Ceci prouve qu’il n’existe pas de asla-suite pour le feuilletage donné par la premicre
équation de Painlevé. ]

3. Irréductibilité de P;

Dans cette section, nous allons utiliser le groupoide de Galois du feuilletage défini
par P pour montrer son irréductibilité. Nous commencerons par définir ce que nous
entendons par feuilletage réductible. En utilisant les notions de « type différentiel »
et de « degré typique de transcendance différentielle » de Kolchin, nous montrerons
ensuite que le groupoide de Galois d’un feuilletage réductible est plus petit que le
groupoide de Galois de F;.

3.1. Feuilletages réductibles. Dans [31], une solution particulieére d’une équation
différentielle d’ordre 2 est dite réductible si on peut I’exprimer rationnellement apres
avoir résolu successivement des équations différentielles linéaires (ou associ€es a
un groupe algébrique) et des équations d’ordre 1. Cette définition d’irréductibilité ne
concerne que les solutions particulieres de I’équation indépendemment de 1’ équation.
Dans I’esprit de la définition du groupoide de Galois, nous allons définir une notion
de réductibilité « globale » du feuilletage i.e. de réductibilité de la solution générale.
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Soit F un feuilletage de codimension deux. Les feuilletages que nous conside-
rerons comme plus simples que F sont les feuilletages de codimension un d’une
part et les feuilletages donnés par une connexion linéaire (ou associés a un groupe
algébrique) de 1’autre ainsi que leurs versions relatives le long d’un feuilletage de
codimension un. Dans un autre contexte, ce type d’extensions est étudié dans [6].

Sotent (K, d1, ..., dy) un corps différentiel. On notera Tk le K-espace vectoriel
engendré par les dérivations, T sondualet{dy, ..., d,}labasedualede {31, ..., d,}.

Définition 3.1 ([6]). On dira qu'une extension différentielle K C L estune extension
fortement normale de K relative en codimension g s’il existe un sous-corps ¢ de
K engendré par ¢ éléments fonctionnellement indépendants tel qu’en notant K le
corps K muni des dérivations Tx =M 0 ker 4k et Q™€ Ia cloture algébrique de Q,

I’extension K @ 02 ¢ L @ Q™2 est fortement normale.

Une extension fortement normale a un groupe de Galois. Dans [6], les dérivations
n’appartenant pas a Tx sont prises en considération pour €tudier I’extension. Ceci
permet de définir un groupe de Galois pour I'extension K C L, ¢’est un groupe
algébrique différentiel.

Exemple 3.2. Considérons le champ de vecteurs Xo = % +y’ % +6y? aiyw Ce champ

admet une intégrale premiére rationnelle # = y> — 4y et une intégrale premidre

dans une extension fortement normale relative en codimension un de C(x, v, y') :

H=x-{ \/f—%. Son groupe de Galois classique est G, (C(x)¥2). Son groupe
y u

de Galois au sens de [6] est un sous-groupe algébrique différentiel de G, (C(u)4fh)
isomorphe a (C, 4)2.

Définition 3.3. Un feuilletage ¥ de codimension deux sur C* est dit réductible s’il
existe deux integrales premiéres dans une extension différentielle K, de C(xq, ..., x;)
construite par extension successives

Clxp,....,xp)=KoC K1 C---CK,

ou les extensions intermédiaires K; C K; 1 sont
— des extensions algébriques,
— des extension fortement normales [15],
— des extensions fortement normales relatives en codimension un,
— des extensions par une intégrale premiere non constante d un feuilletage de
codimension un, i.e. K;iy1 = K;((H)) avec dH A @ = 0 pour une 1-forme
intégrable a coefficients dans K;.

Cette définition se généralise aisément aux feuilletages de codimension quel-
conque. Par exemple un feuilletage de codimension un est réductible s’il admet une
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intégrale premiere dans une extension fortement normale. Ces feuilletages sont ra-
tionnellement transversalement projectifs.
Dans le cadre de cet article, le théoreme que nous allons prouver est le suivant.

Théoréme 3.4. Le feuilletage défini par Py est irréductible.

La preuve est donnée dans la section suivante. Dans un premier temps nous prou-
vons que les feuilletages reductibles admettent des intégrales premieres satisfaisant
un « gros » systeme d’équations aux dérivées partielles. La taille de «’espace des
solutions » de ce systeme est mesuré par le « type d’une extension différentielle »
défini dans la section suivante. Le pseudo-groupe d holonomie du feuilletage fixant
les intégrales premicres locales (lorsque cela a un sens), ses élements satisfont aussi
un syteme d’e.d.p. La taille du groupoide de Galois nous donne une borne inférieure a
la taille de ce systeme d’e.d.p. Dans le cas du feuilletage donné par Py, cette borne est
supéricure a la taille de I’espace des intégrales premicres particulicres d’un feuilletage
réductible.

Dans [7] et [36] apparait une notion d’irréductibilité basée sur les considérations
précédentes.

Définition 3.5. Soient F feuilletage définie par une 2-forme fermée y sur C" et
I P(F) la D-sous-variété de J(C" — C?) définie par les composantes de la forme
dHy A dH; — y, Hy et Hy étant des coordonnées au but. Le feuilletage F est dit
réductible au sens de Drach—Vessiot ou D.V.-réductible si / P(F ) admet une D-sous-
variété propre.

La preuve de I'irréductibilité du feuilletage défini par la premiere équation de
Painlevé passe par la preuve de sa D.V.-irréductibilité.

3.2. Typesd’une extension différentielle et preuve du théoréeme 3.4. Ladéfinition
du type d’une extension de corps différentiels est basée sur un analogue différentiel
du polyndme de Hilbert pour les &D-variéiés introduit par Kolchin sous le nom de
« polyndme de transcendance différentielle » ([15], chapitre II). Rappellons d’abord
la définition du type d’une D-variété de sections de Z sur X.

Définition 3.6. Soient Z une variété sur X et ¥ une D-variété irréductible de J(Z, x ).
On définit la croissance de % comme la suite d’entiers c; = dimy Y,. Le type de Y
est le monome af” tel que ¢y ~o al’.

Dans [15], chapitre 11-12, le polyndme interpolant la suite ¢, pour de grandes
valeurs de ¢ est appellé « polyndme de transcendance différentielle ». Dans [15],
chapitre I1-13, les entiers a et b sont appelés respectivement « degré typique de trans-
cendance différentielle » et « type différentiel ». Nous utiliserons la terminologie de
la définition 3.6 sans explorer les propriéiés particulieres de a ou b.
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Exemple 3.7. La croissance de la D-variété J(C* — CP) est ¢y = p(”nfft)l. Son

type est 527

Exemple 3.8. Soient ¥ un feuilletage de codimension un de C" défini par une 1-
forme w et I P(F) la D-varidté des intégrales premicres i.e. la sous-D-variéié de
J(C" — C) définie par I’idéal différentiel engendré par les composantes de d H A w.
Lacroissance de I P(F ) estcy = £ + 1.

Exemple 3.9. Soit £ un feuilletage de codimension deux de C" donné par deux
formes w1 et wy. La D-varicté I P(F) des intégrales premicres de F est la sous-D-
variété de J(C, — €2) dont I’idéal est différentiablement engendré par les compo-
santes de dHy A w1 Awy etde dHy Awp A wy. Sacroissance est cg = (£4+2)(£41).
Si de plus le feuilletage préserve une forme volume transverse, la croissance de
la D-variété des couples d’intégrales premicres compatibles au volume est c; =
L4+ +e+1L

Exemple 3.10. Soit V un espace vectoriel muni d’une connexion V intégrable sur X .
En coordonnées locales, V = >~ (aisz —I—Ai)dx,- etla D-variété des sections platesde V
sur X estdéfinie par1’idéal différentiel engendré par les équations y;f +> (A ;‘ Vi =
() Sa croissance est constante ¢, = dimy V. Elle est indépendante de £.

La définition donnée par Kolchin dans le cadre des extensions de corps différentiels
se déduit de la définition précédente de la maniere suivante. Soient (K, 01, ..., dy)
un corps différentiel et L une extension différentielle de K. Choisissons p éléments
¥1, ..., yp engendrant différentiellement L sur K. Soit I le noyau du morphisme
KYy,...,Yy) — L. Le corps L est alors le corps des fractions de la D-variété
au-dessus de K définie par 1. Notons Y cette D-variété.

Lemme-Définition 3.11 ([15]). Le type ty,x de K C L estle type de Y. Il ne dépend
que de 'extension K C L.

Preyve. Soient yp, ..., yp etzi, ..., 2, deux systemes générateurs de L sur K. No-
tons Y et Z les D-varidtés au-dessus de K qu’ils définissent. Par définition, il existe
des fractions différentielles telles que y; = y;(z). Soit i I"ordre maximal de ces
fractions. Elles définissent une application rationnelle dominante de Y¥; sur Zg. Par
dérivations on obtient des applications dominantes de Y; 1, sur Z,, ce qui implique
c(Yire = c(Z)e. De la méme manicre, c(Z)jJrg > c(Y)y. Ceci prouve le lemme. []

Exemple 3.12. Le type d’une extension fortement normale est fini.

Exemple 3.13. Soient (K, 31, ..., 3,), wune 1-forme sur K (i.e. un élément du dual
du K-espace vectoriel engendré par les dérivations) et L. = K ({H)) une extension
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différentielle engendrée par une indéterminée H satisfaisant dH A @ = 0. Le type
i1,k estlinéaire.

Exemple 3.14. Soient K C L une extension fortement normale en codimension un et

d1, ..., 0y une base des derivations telle que Tx = Ko, + -+ K3,_1. L’extension
¢tant fortement normale par rapport a Tk, on peut trouver une base {fy, ..., Hy}de L
sur K telle que 0; H; soit algébrique sur K (Hy, ..., Hy)pourtoutietl < j <n—1.

Le type de L/K est donc linéaire.
De la méme maniere que pour le lemme 3.11, on prouve le lemme suivant.

Lemme 3.15. Soit K C K1 C Ky une suite d’extensions différentielles. Ona l’égalité
suivante !

1K, /K ~oo lKy/Ky T 1K /K-

Preyve. Soient yi, ..., y, une base différentielle de K sur K et zy, ..., 2, une base
différentielle de Ko sur K1 ; les y et les z forment une base differentielle de K7 sur
K. Notons ¥ la D-variéié sur K définie par la base des y, Z celle sur K definie
par les z et 7 celle sur K definie par les y et les z. Ces bases ne sont pas les bonnes
pour prouver le théoréme, nous allons en construire d’autres. D”apres le théoréme de
Ritt—Raudenbush, 1l existe un entier g telle que I'1déal de Z, pour £ > g soit engendre
par les derivées d’ordre £ — g des éléments de I'idéal de Z,. Les éléments de cet idéal
sont des polyndmes différentiels d’ordre inférieur a ¢ en les z a coefficients dans K.
Soit » I’ordre maximal des dérivées des y intervenant dans 1’écriture d’une base de
I'idéal de Z,. Choisissons comme nouvelle base de K» sur K les z et leurs dérivées
jusqu’a I'ordre g et pour base de K1 sur K les y et leurs dérivées jusqu’a I’ordre r.
Notons ¥, Z, 7 les D-variéiés obtenues avec ses nouvelles bases. L'égalité

c(T)e =c(Y)e+ c(Z)s

prouve le lemme, u

Lemme 3.16. Un feuilletage de codimension deux réductible est D.V.-réductible.

Preyve. 1.existence de deux intégrales premieres indépendantes dans une extension
différentielle du type réductible (définition 3.3) assure I'existence d’un idéal diffé-
rentiel dans Oy p(s). En effet, considérons une telle extension C(x, y, y") C K et
I"application O;piyy — K qui envoie Hy, Hy sur les deux intégrales premieres.
Le lemme 3.15 nous assure que le type de K est lin¢aire. Le type de [ P(F) étant
quadratique, I’application précédente a un noyau non trivial que nous noterons 1. Le
type de la D-variété définie par I est linéaire. Ll
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Preuve du théoreme 3.4. Nous allons prouver que le feuilletage n’est pas réductible
au sens de Drach et Vessiot. Considérons 1’espace J (C°> — C?). Le D-groupoide de
Lie J*(C? — C?) agit sur cet espace par composition a la source. Soit I un idéal
différentiel réduit de O 3_, 2y définissant une sous-D-variété Y de cet espace.
Nous appellerons stabilisateur de I (ou de ¥) et noterons Stab(I) (ou Stab(y)) le
D-groupoide de Lie maximal laissant % invariante. Notons csource la composition a
la source :

csource 1 (4H(C? =€), 1) x5 (J(C - CP),5) — J(@© - D),

I’idéal du stabilisateur de T est le plus petit idéal diftérentiel & C Oy (3,3 tel
qu’en dehors d’une hypersurface S ¢ € on ait les inclusions suivantes

C:OUICGI + g C I + g et C:OUI‘CGI + i*g C I + g‘

A partir de ces inclusions, on montre que J est I'idéal d’un D-groupoide de Lie
(voir par exemple [4]). Considérons I P(F) la D-variété des intégrales premieres du
feuilletage ¥ défini par P;. C’est la sous-D-variét¢ de J (C3 — C2) décrivant les
couples d’intégrales premieres. Elle est donnée par I'1déal différentiel réduit engendré
par les deux équations X1 H; et X1 H ou (Hy, H») sont des coordonnées sur 1’espace
but. Le stabilisateur de I P(F ') est le £D-groupoide de Lie Aut(F ) dont les solutions
sont les difféomorphismes formels I satisfaisant les équations différentielles I'* X A
X1 = 0. Soit I un idéal différentiel premier de Orp#) et I sa préimage dans
O 32y Le stabilisateur de I est par définition le D-groupoide de Lie Stab(Z) N
Aut(F). Plagons nous au voisinage dun point régulier de X et choisissons une
coordonnée tangente z et deux coordonnées transverses 71 ¢t £2. Dans ces coordonnées
analytiques, I’idéal I admet un systeme de générateurs ne dépendant pas de z ([4],
[5]). Tous les flots locaux de X laissent donc I invariant. Autrement dit, Stab(I) est
localement admissible, donc admissible. On obtient 1’ inclusion suivante

Gal(F) C (1 Stab(1)

Tespectif(Orpgy)

ol specCliff (O p¢#y) estl’ensemble des idéaux différentiels premiers de O p . Nous
avons déja calculé le D-groupoide de Lie Gal(F ). Les stabilisateurs des idéaux
différentiels de Oy p(#) doivent donc contenir le groupoide de Lie d’invariance de la
2-forme fermée définissant le feuilletage.

Si le feuilletage est reductible, le lemme précédent nous donne une idéal diffé-
rentiel J dans Oy p sy de type linéaire. Considérons le stabilisateur de I, Stab(1), et
le D-groupoide de Lie des transformations de C> fibrées sur 1’identité en x, Inv(x).
La projection sur I’axe des x étant transverse au feuilletage, le D -groupoide de Lie
Aut(F ) NInv(x) agit simplement transitivement sur la D-variété [ P(F ). Par consé-
quence le D-groupoide de Lie Stab(Z) N Inv(x) agit simplement sur la D-variété
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définie par I. Son type est donc linéaire. Le groupoide Stab(Z) N Inv(x) est donc
strictement plus petit que Gal(F ) NInv(x), ce qui est impossible d”apres la définition
du groupoide de Galois. Ceci prouve le théoreme. Il

Annexe. Classification de Cartan ; preuve du théoréeme 1.36

Dans cette annexe, nous reprenons les arguments de [3], pp. 134 —194, pour prouver
le théoréme suivant.

Théoreme 1.36. Soit F un feuilletage de C" de codimension deux, défini par une
2-forme fermée y. Le D-groupoide de Lie Inv(y ) d’invariance de cette forme est un
D-groupoide de Lie admissible pour F. Si le groupoide de Galois de ¥ n’est pas
Inv(y) alors on est dans un des cas suivant :

— F admet une intégrale premiere rationnelle ;

— il existe une 1-forme algébrique intégrable s’ annulant sur ¥ ;

0
— il existe un vecteur de 1-formes Q¥ = Zé) définissant le feuilletage ef une
2

matrice de 1-formes Q' de trace nulle tels que
A =Q' A QY e dQ' = Q' A QL

Soient x un point régulier du feuilletage, ® |, la forme transverse d’ordre g de

F et Qia’b ses composantes dans la base monomiale sur J,(x (C2,0)). Les dquations
de structures s’écrivent

b a b
dgg,b — a 9a1,b1 A 9a2+1,b2 9a1,b1 A Qaz,bz-l—l‘
’ 2 (01)(171) : I 2 ar)\b1)? .

a1 tary=a a1 tar=a

by+by=b b1+by=b
pour a +b < g — 1. Nous complétons ces formes en une base des formes transverses
au feuilletage sur Aut(F )y 111y = Ry41(F) avecdes formes a)f’b poura+b =qg+1
et: = 1, 2 satisfaisant les équations de structures d’ordre ¢ + 1 :

i i i

Ao = A0 Lot AP 1 atb=gq.

Ces formes @ ne sont bien définies que modulo les formes d’ordre 0. Les formes
& étant invariantes, les formes @ ne le sont que modulo les formes d’ordre 0. Soit
Y un D-groupoide de Lie transitif admissible pour ¥ et p I'entier minimal tel que
Yp # Inv(y),. Nous allons examiner les équations de structures satisfaites par les
formes invariantes sur certaines orbites de Y, |y, et en déduire successivement que
- p =2,
— si p = 2, les équations de structure sont de type asly,
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— si p = 1 il existe une combinaison lindaire des formes transverse d’ordre O
intégrable en restriction a une orbite.

Lemme A.1. Quitte a modifier la suite des formes de Cartan, les restrictions des
Jormes sur une orbite de Inv(y )|y, satisfont Qf“’b + 93’5“ = (.

Preuve, La forme t*y est une forme invariante d’ordre O. Elle est donc égale a
h 9? 0 A 93 0 oi1 & est un invariant différentiel d’ordre 1 de Inv(y) donc constant en
restriction a une orbite. La forme 6’? O A 6’3 0 est done fermé ce qui implique 911’0 -+
QS 1= h@? ey ké’g 0 avec h et k des constantes. En faisant agir le difféomorphisme
f(x1,x2) = (x1 + hx}, x2 + kx3) par composition & la source en xg, on trouve une
nouvelle suite de formes invariantes commengant par les mémes formes d’ordre O et
dont les formes d’ordre 1 sont

010 — 1o 00! 4+ k610 00 4 he) 0, 6t — k6.

La nouvelle suite que nous noterons encore £ vérifie donc 911’0 + 93 1= 0 La
restriction a Inv(y )|y, de la différentielle extérieure de cette forme est aussi nulle.
Celle-ci est égale a

G N W S L G

On en déduit que ;" + 6,1 = ho" et 6]t + 637 = —ho"°, En faisant agir
e difféomorphisme f(x1, x2) = (x1 + 5x2x7, x2 — 5Xx1x5) €N xg, ON (rouve une
le diff hisme f ( ) = (x1 + Bxox? Eovy o) r

nouvelle suite de formes invariantes satisfaisant les identités annoncées a I’ordre 2.

On construit 1a suite par récurrence. Comme

si le premier membre est nul, on a 91”+2’b + Qg‘H’b"'l — hQS’O et 9f+l’b+l + Qg’b"'z —
—hé’? . L'action d’un difféomorphisme en xg tangent a I’ordre @ + & + 2 a I’identité
permet de construire une suite vérifiant les identités anoncées a 'ordre a + b + 2. [

Soit maintenant ¥ un sous-D -groupoide de Lie transitif strict de Inv (y ) admissible
pour £ .

Lemme A.2. Siun tel D-groupoide de Lie n’admet pas d’équation du premier ordre
supplémentaire alors il admet quatre équations supplementaires d’ordre 2.

Preuve. Soit g ’ordre minimale des équations supplémantaires. Considérons sur
Jg°"|x0 la base 9})‘, 1<j<n0<|ul <g—1destormes (d’ordre g — 1) invariantes
et a);-", 1 < j < n x| = g des formes complétant les & en une base de formes
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9a+1,b —I— Qa,b—l—l

transverses. La condition = 0 sur Inv(y )|y, 1mplique que I’on peut

choisir des formes o satisfaisant a)aH g w5’ P — opoura+b=q—1.
Soit E un invariant différentiel d’ordre ¢ > 1. La forme dE = Ba)g’o +
YL oA ’ 4= ... (en n’écrivant pas les formes d’ordre ¢ — 1) est invariante

sous I’ actlon de ¥,+1. Les formes « étant invariantes modulo 9? O et Qg ’0, les coeffi-
cients B et A; sont des invariants différentiels de Y. Nous allons maintenant calculer
certains termes de la forme dd E restreint a Y, |, a partir des équations de structures.
Dans un premier temps regardons les termes contenant des formes d’ordre 1. Ils sont
de la forme y; A 6) o +y¥2 A 6? 0 + Y3 A 9 0 Les formes v; 8’expriment en fonctions
des formes & et w. Les termes d’ordre q de ces formes proviennent de la différentielle
des termes d’ordre g de dE que ’on calcule grace aux équations de structures. On
obtient :

yi = (g + DB’ + (g — DA, 0"°

+Z<2z—q—1>A @7 = g+ DAgwy + -

yy = —Ag0?’ + 24, 107"

+3 (g —i +DA_107 T + (g + DA T 4
y3=—(g+DBol" +3 (i + DAy + Ara)? +-

Comme dd EE = 0, on en déduit ’existence de trois formes identiques au formes y;
modulo les formes d’ordre O et 1 s”annulant sur Y, |,. Comme elles sont indépendan-
tes de d I/, elles proviennent d’invariants différentiels supplémentaires. En refaisant
le méme calcul pour chacune de ces nouvelles formes, on obtient qu’il existe une
forme s’annulant sur ¥, |y, ayant un A; non nul. On en déduit ensuite que I’on peut
supposer que ce coefficient est Ag puis qu’il existe g + 2 formes s’annulant sur Y, |,
donc g + 2 invariants différentiels d’ordre ¢ (¢ + 3 invariants d’ordre ¢ donnent un
invariant d’ordre ¢ — 1). Montrons maintenant que g est inféricur ou égal a deux.
Considérons les g + 2 1nvar1ants différentiels d’ordre g, E;, et leurs différentielles
dE; =Y. Al o7 + Bio?’ + .- o les A sont des invariants différentiels de Y.
Choisissons les combinaisons lin€aires de ces formes :

,0
yl_a)llq l—|—~~ et y_1—a)g +wee

Elles formentun systeme complétement intégrable de formes s annulant sur les orbites
de ¥ etsont de plus invariantes sous 1’action de Y. Ces deux conditions impliquent que
dy; =Y c’ ’kyj A k. En réduisant cette égalité modulo les formes d’ordre inférieur
ouégalag —1,onobtient 0 = ¥ ¢/ * 0 A F 4 3 I T 0P A 020 Ces
formes étant indépendantes, les coefﬁ(nents & sont tous nuls. Les formes v sont donc
fermées. Regardons maintenant la différentielle de y,. Cette forme contient le terme
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6?22 O A %Qf ~21 La deuxieme forme de ce produit extérieur ne se représente
dans dy, que multipliée par une forme d’ordre 1. La forme y, étant fermée, ce produit
extérieur doit €tre nul. Ceci implique que ¢ est inféricur ou ¢gal a deux. S’1l existe
un invariant différentiel il est donc d’ordre inférieur a deux et s’il est d’ordre 2,1l y
en a quatre. L

LemmeA.3. S’il existe un D-groupoide de Lie admissible pour F ayant un invariant
d’ordre 2 alors le feuilletage est défini par un vecteur de formes Q° et il existe une
matrice de formes Q' de trace nulle telle gue dQ° = Q1 A Q0 er dQ! = Q1 A QL.

Preuve. D’apres le lemme précédent, il y a quatre invariants différentiels d’ordre 2.
Considérons les formes données par le lemme précédent et décrivant Y|, .

1 =5 + @000 + 51010 — 00 ot
2=’ +afy’ + b2 (6" =6y ) + b -

=l +a30y" + b0 — 05 + 0]+

ya = 0% + agbl® + by (010 — 691 4 0} + - -

Ces formes étant invariantes, les coefficients a, b, ¢ sont des invariants différentiels
de Y. Ces formes formant un systeme completement intégrable, elles doivent Eire
fermées comme nous 1’avons montré au cours de la preuve du lemme précédent. En
calculant 4y modulo les formes d’ordre 0, on obtient

3
dr= 3010 681 A B0 - 3010 n B+ a0} — 9 0l

+day A 00 +20167° A 00 £ dby A 010 — 60T

+ 100 A0 =00y +dey A 0]

En examinant les termes contenant des formes d’ordre 2, on obtient les égalités
day = =3y, db; = %yl et dey = 0. En remplagant ceci dans 1'égalité précédente,
on obtient les égalités c; = 0, by = %1@ ety = _szl. Les mémes manipulations
sur
~ dy, donnent day = 2y3, dby = gyy el dey = —y; puis b3 = Fap el
€3 = _Tzal,
— dys donnent das = y4, dbz = Ftys etdes = 2y2 puis as = 0, by = Faz et
-
On en déduit que, en restriction a la sous-variété invariante Z, = {a; = b = ap =
a3y = 0}, les coetficients a, b et ¢ sont nuls. En faisant un bon choix des formes w, les
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formes restreintes s’ écrivent alors ;

2,0
yl = Cl)2 ’

y2 = ap’ + hot)’,
ys = op! + 130",
i = @) + hy0?0.
Les formes 6 restreintes satisfont les équations ;
A —ohy =200 60! 4 (hy — )6y A6y,
do)t = ot A0 — 091y + haoa A 6y,

doy? = 010 A 010 — 601y — hy0y A 6.

En vérifiant que ces formes sont fermées, on obtient 71 = iz = hs = 0. Les formes
O restreintes sur Z; = {a1 = b1 = ax = az = 0} vérifient les identités annoncées
dans la proposition. En choisissant ensuite une section f de Z; pour la projection
but, on tire les formes sur C" : Q@ = f*0O, O

Lemme A.4. Si un D-groupoide de Lie admissible pour £ admet des équations
du premier ordre supplémentaires alors il laisse un feuilletage de codimension un
invariant.

Preuve. Siun D-groupoide admissible pour ¥, ¥, est décrit par au moins une équa-
tion supplémentaire d’ordre 1, 1l admet, suivant le théoreéme 1.18 au moins un invariant
d’ordre un supplémentaire.

Nous allons examiner Y|, muni des deux formes invariantes 9? 0 ot 9; 0 quel’on

complete avec des formes a);?’z pour j = 1,2 et k4 ¢ = 1 satisfaisant les premieres
dquations de structure.

Supposons que Y1 soit définie par un invariant supplémentaire £ d’ordre 1. On
gcrit

dE = awy® + b(w]® — 03"y + cot + hOY0 + 165,

En choisissant correctement les formes o, on peut supposer A = k = 0. Les coeffi-
cients a, b et ¢ étant des invariants, la forme y = a);’o—i—b(a)%’o —a)g’l)-|—ca)(1)’1 , Obtenue
en divisant par a, est fermée. En calculant 4y modulo ¥, on obtient 52 + ¢ = 0. En
dcrivant ensuite que y est fermée, on obtient

0 =db + 0y’ + b(w1? — P — b2

En restriction 4 la sous-variéié 71 = {b = 0}, la forme 93 O est intégrable. Le pull-
back de cette forme par une section de Z; donne une forme algébrique intégrable
s’annulant sur le feuilletage.
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Supposons que ¥ soit donné par deux invariants £y et E;. Les coefficients des
formes o dans les différentielles d 7 et d X, sont des invariants. En prenant des
combinaisons linéaires de ces formes, on trouve les deux formes invariantes

1,0 0,1 0,0 0,0
V1=, —I—aa)l —|—h191 —I—k192 i

vo = (1" —wy') F b ) + 16 + k03"

En choisissant correctement les formes w, on peut supposerque iy = k1 = hyp = ko =
0. Ces formes s’ annulant sur les orbites de Y, onady; = ciyi Ayzetdys = cayr Ava.
Le calcul direct a partir des formules donne

dyy = =1 Ay2 + (da —2ay; + by) A w?’l,
dyy = (db + 2y1 —bya) A}

En se placant sur I’hypersurface 71 = {b = 0}, la forme 65) O est intégrable.
Supposons enfin que ¥ soit donnée par trois invariants. En effectuant les mani-
pulations précédentes, on obtient trois formes invariantes s’ annulant sur Y

1,0 0,0 0,0
Y1 = )y + h191 4 klgz ’

y2 = (7 — 0y') + ha8° + ka3 ?,

y3 =) + 1360 + ka6y’.

Quitte a choisir d’autres formes @, on peut supposer by = k1 = k» = kg = 0.
En calculant les différentielles et en vérifiant que ’on doit obtenir des formules
dy; =3 cij’kyj A Vi, on obtient iy = k3 = 0. En restriction a Y1, la forme QS’O est
intégrable (méme fermée). L]

Dans le cas ou ¥ admet un invariant d’ordre 0, le théoreme 1.20 prouve que le
feuilletage admet une intégrale premiere.
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