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Le groupoïde de Galois de P\ et son irréductibilité

Guy Casait©

Résumé. Dans cet article, nous calculons le groupoïde de Galois de la première équation de Pain-
levé. Nous proposons ensuite une définition de réductibilité pour les feuilletages holomorphes
singuliers et montrons que la réductibilité peut se lire sur le groupoïde de Galois du feuilletage.
Nous obtenons un résultat d'irréductibilité du feuilletage sous-jacent à la première équation de

Painlevé.:

Abstract. In this article, the Galois groupoid of the first Painlevé equation is computed. This
computation uses E. Cartan's classification ofstructural equations of pseudogroups acting on C2

and the degeneration of the first Painlevé equation on an elliptic equation (y" 6y~). Moreover
a definition of reducibility for singular holomorphic foliations is proposed and a characterization
of reducible foliations on theirs Galois groupoids is given. It is applied to prove the foliation-
irreducibility of the first Painlevé equation.
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Introduction

Le groupoïde de Galois d'un feuilletage a été introduit par B. Malgrange dans [18].
Cette définition concerne les feuilletages holomorphes (singuliers) sur une variété

C-analytique lisse. Cet objet est la « clôture de Zariski » du pseudo-groupe d'holo-
nomie du feuilletage dans le sens suivant. Soient (X, F) une variété C-analytique
lisse portant un feuilletage F. Les champs de vecteurs locaux tangents à F forment
un faisceau en algèbres de Lie de champs de vecteurs. Le pseudo-groupe de

transformations de X engendré par ces champs de vecteurs est appelé le pseudo-groupe

tangent du feuilletage et noté F«n(F Ce pseudo-groupe intervient notamment dans

la construction des transports holonomes. Le pseudo-groupe tangent n'est pas décrit

par un système d'équations aux dérivées partielles, ceci malgré le fait que le faisceau
de champs de vecteurs dont il est issu soit décrit par un système d'équations aux
dérivées partielles linéaires. Ce phénomène est bien connu sur les groupes algébriques
où le groupe de Lie intégrant une sous-algèbre de Lie n'est pas toujours un groupe
algébrique, La définition proposée par B. Malgrange est basée sur l'absence de «

troisième théorème de Lie » pour les ,0-groupoïdcs de Lie (pseudo-groupes décrits par
des e.d.p. algébriques ; définition 1.16). La définition du groupoïde de Galois est la
suivante (nous renvoyons en 1.25 pour une définition plus précise).

Définition. Le groupoïde de Galois d'un feuilletage est le plus petit F-groupoïde de

Lie contenant le pseudo-groupe tangent du feuilletage.

Dans [18], B. Malgrange montre que cette définition généralise le groupe de Galois
différentiel d'une connexion linéaire intégrable.

Dans le cas d'un germe de feuilletage de codimension un, une étude complète
des relations entre le groupoïde de Galois, la transcendance des intégrales premières
et les structures géométriques singulières transverses au feuilletage est faite dans

[5]. L'outil principal de cette étude est la construction de suites de Godbillon-Vey
méromorphes spéciales.

Énoncé des résultats. Dans cet article, nous étudions le feuilletage de la variété

algébrique C3 (muni de son armeau structural C[.v, yf y']) donné par la première
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équation de Painlevé :

dy o" "At •*
Nous noterons Pi cette équation et

3 ,3 » .3
a

^ -v
a

^ ^ -v ^dx ay dy

le champ de vecteurs décrivant le feuilletage associé. Dans un premier temps, nous
calculons son groupoïde de Galois et obtenons le résultat suivant :

Théorème 2.1. Le groupoïde de Galois de Pi est le groupoïde d'invariance de la

forme y ix\dx a dy A dy'. Ses solutions sont les germes de transformations de

C3, T, satisfaisant les équations Y*y y.

Sans précisions supplémentaires, le groupoïde de Galois de Pi désignera toujours
le groupoïde de Galois de X\ sur C3 d'anneau de coordonnées C[.v, y y'].

Remarque. Considérons C3 muni de l'anneau des fonctions entières. Le groupoïde de

Galois de X i sur cette espace est strictement plus petit que celui de X \ sur <C[x, y, y'].
Calculé sur une transversale, il est réduit aux identités.

Nous donnons ensuite un résultat de type irréductibilité de Xi dont la preuve utilise
de manière essentielle la connaissance du groupoïde de Galois de X\. Les feuilletages
plus simples que les feuilletages de codimension deux sont les feuilletages donnés

par des équations linéaires et les feuilletages de codimension un. Nous dirons qu'un
feuilletage de codimension deux est réductible si l'on peut construire deux intégrales
premières locales en utilisant seulement des intégrales premières locales de feuilletages

plus simples (définition 3.3). Plus précisément, pour la première équation de

Painlevé, le théorème 2.1 nous permet d'obtenir le résultat d'irréductibilité suivant :

Théorème 3.4. Il n'existepas d'extension différentielle Kn de (C(x, y, y')„ JL,
contenant une intégrale première de X\, construite de la manière suivante :

C(x, y, y') *o C Ki c • • • C K„

avec

- Kj+\ algébrique sur Ki,
- ou Kj+i KjXhi, hp) avec dhj Jfhkcoj, cJt g Kj ® et daft —

~ 12 À

- ou Pj:+i Ki({h)) avec dh A a> 0, a> G Kj ® G1
-, eta> A da> 0.

Le corps K (h) désigne le corps engendré par h et K((h)) le corps différentiel
engendré par h. Le théorème que nous montrons est en fait un peu plus général que
celui-ci mais nécessite la mise en place du vocabulaire approprié.
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Théories de Galois différentielles et irréductibilité. À la fin du dix-neuvième
siècle, les idées d'É. Galois ont été étendues aux équations différentielles linéaires

par É. Picard [26] puis ont été complétées par E. Vessiot [36]. Dans les années 1950,
E. Kolchin développe cette théorie du point de vue des extensions de corps différentiels
[1], [15].

Dans [7], J. Drach avance une théorie de Galois pour les équations différentielles
non-linéaires. Malgré les erreurs qui invalident la plupart de ses déûnitions, il donne
des indications pour calculer le groupoïde de Galois de divers feuilletages [9], [10]
et notament [8] dont cet article suit la démarche. Dans [37], E. Vessiot esquisse une
définition semblable à celle de B. Malgrange, Elle est à l'origine de la définition
du groupe de Galois infinitésimal de H. Umemura [32], [33]. Bien qu'ils aient un
« ancêtre » commun, l'équivalence du groupoïde de Galois et du groupe de Galois
inhnitésimal n'est encore qu'une conjecture.

Les premières tentatives de calcul du groupoïde de Galois de la première équation

de Painlevé sont dûs à P. Painlevé [25] et J. Drach [8]. Utilisant une définition
basée sur des résultats érronés, J. Drach dorme les directions à suivre pour prouver
le théorème 2.1. En faisant appel à la classification locale des pseudo-groupes de Lie
agissant sur C2, établie par S. Lie, il affirme que la nature du groupoïde de Galois est
décrit par un système d'équations aux dérivées partielles (dit « résolvant ») admettant

une solution rationnelle. Il affirme ensuite que la dégénérescence de Pi sur l'équation
elliptique y" 6y2 peut servir à montrer l'absence de solutions rationnelles aux
équations résolvantes. Le premier point n'est pas justifié et le deuxième est entaché

d'erreurs.

Dans les articles précédemment cités, les auteurs affirment que le théorème 2.1

implique l'irréductibilité « absolue » de l'équation sans même définir cette irréductibilité.

Dans les Leçons de Stockholm [23], P. Painlevé définit une notion de réduc-
tibilité d'une solution d'une équation différentielle. Une équation est dite réductible
si toutes ses solutions le sont. Il domie ensuite une caractérisation des équations sans

singularités mobiles du second ordre réductibles : la solution générale dépend semi-
transcendentalement des constantes d'intégrations. En d'autres termes, l'équation
admet une intégrale première rationnelle en les variables dépendantes.

Cette définition est très restrictive comme le montre P. Painlevé dans la remarque
28 de [24]. Elle a néanmoins l'intérêt de faire apparaître les différences entre la réduc-
tibilité d'une équation (ou du feuilletage sous-jacent) et celle d'une solution particulière.

L'étude de la réductibilité des solutions particulières des équations de Painlevé

est l'œuvre de l'école japonaise. H. Umemura [31] et K. Nishioka [21] donnent un
critère permettant de trouver les familles à un paramètre de solutions réductibles d'une
équation du second ordre et l'appliquent à l'étude de la première équation de Painlevé.
À la suite de ces articles, Murata [20], Watanabe [38], [39], Noumi-Okamoto [22]
et Umemura-Watanabe [34], [35] trouvent les solutions réductibles non algébriques
des autres équations de Painlevé.
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Ces résultats prouvent l'irréductibilité (au sens des Leçons de Stokholm) des

solutions des équations de Painlevé pour des valeurs génériques des paramètres. Dans

[24], P. Painlevé souligne la nature restrictive de sa définition et pose la question des

rapports entre une définition de l'irréductibilité du feuilletage sous-jacent à l'équation
et la tentative de théorie de Galois de J. Drach.

Dans cet article, nous proposons une définition de feuilletages réductibles. La
définition porte sur les feuilletages de codimension deux mais il est facile de l'étendre aux
feuilletages de codimension quelconque. Elle met l'accent sur la nature de certaines

intégrales premières du feuilletage. Les intégrales premières les moins « transcendantes

» permettent de comprendre grossièrement la manière dont la solution générale
dépend des constantes d'intégration. Un des intérêts de cette définition est de pouvoir
se lire sur le groupoïde de Galois du feuilletage. Nous suivons les résultats partiels
de J. Drach pour calculer le groupoïde de Galois de P\ et prouver son irréductibilité.

Dans l'état actuel, la réductibilité au sens des feuilletages ne permet pas de définir
la réductibilité d'une solution particulière. D'une manière plus générale, les relations
entre le type de transcendance d'une solution et celui des intégrales premières sont
difficiles à saisir. Pour les feuilletages de codimension un, un théorème de M. Singer
[30] dit que si une feuilletage du plan admet une solution Liouvillienne alors soit elle
est algébrique soit le feuilletage admet une intégrale première Liouvillienne.

Organisation de l'article. Dans la première partie, nous rappelons les définitions
nécessaires à la compréhension des résultats et des preuves présentés. Nous commençons

par un rapide rappel de la construction des espaces de jets et des plus importantes
des propriétés de leurs sous-variétéS. Pour plus de détails, nous renvoyons aux livres
de J.F. Ritt [28] et de J.-F. Pommaret [27] dans le cadre algébrique et à B. Malgrange
[19] dans le cadre analytique.

Nous rappelons ensuite les définitions de D-groupoïdes de Lie et de leurs al-

gèbres de Lie. Ces objets formalisent les notions de pseudo-groupes de Lie
algébriques de transformations et de leurs algèbres de Lie de champs de vecteurs. Ils sont
étudiés depuis S. Lie et É. Cartan sous le nom de « groupes infinis de Lie » ou de

« pseudo-groupes de Lie » sous des hypothèses supplémentaires de régularité. L'étude
de la structure d'un 7)-groupoïde de Lie passe par la compréhension de sa forme de

Maurer-Cartan. Cette forme généralise la forme de Maurer-Cartan d'un groupe de

Lie et satisfait des équations de structures semblables [13], [29].
Enfin, nous donnons la définition du groupoïde de Galois d'un feuilletage. Nous

définissons les formes invariantes transverses du groupoïde de Galois d'un feuilletage
et montrons comment construire des suites de Godbillon-Vey « spéciales m à partir
de ces formes. Cette partie se termine avec l'énoncé d'un résultat (théorème 1.36)
donnant une description sommaire des suites de Godbillon-Vey possibles pour un
feuilletage défini par une 2-forme fermée. Ce résultat est une conséquence de la

preuve donnée par É. Cartan de la classification des pseudo-groupes agissant sur C2.
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Nous redonnons la preuve de Cartan en annexe.
Dans la deuxième partie, nous calculons le groupoïde de Galois de P\. D'après

le théorème 1.36, le théorème 2.1 est vrai si trois conditions sont vérifiées. Premièrement,

il n'existe pas d'intégrale première rationnelle du feuilletage. Deuxièmement, il
n'existe pas de feuilletage de codimension un contenant le feuilletage. Troisièmement,
il n'existe pas de xL-connexion sur le hbré conormal au feuilletage. Chacune de ces

conditions se réécrit sous la forme d'un système d'équations aux dérivées partielles
ne devant pas avoir de solutions algébriques. Pour montrer que ces équations n'ont
pas de solutions, nous utilisons la dégénérescence de X\ sur M, ^ + föy2^
à travers la famille Xa ^ + (6y* + a5x)-^j. La famille de champs de

vecteurs Xa étant triviale pour a e C — 0, les équations à étudier se prolongent
rationnellement au paramètre. En les développant le long de {a 0}, on obtient une
suite de systèmes d'équations aux dérivées partielles plus simples. Chacun des trois

systèmes d'e.d.p. donné par le théorème 1.36 est étudié dans un paragraphe propre.
Dans la dernière partie, nous définissons une propriété de réductibilité pour les

feuilletages. Cette propriété signifie que l'on peut construire un système d'intégrales

premières du feuilletage en utilisant successivement des intégrales premières
de feuilletages plus simples. Dans le cas d'un feuilletage de codimension deux, les

extensions de corps différentiels que nous considérerons comme plus simples que
l'extension du corps des fonctions rationnelles par un système de deux intégrales
premières indépendantes seront :

- les extensions algébriques,

- les extensions fortement normales (au sens de Kolchin [15]),

- les extensions par une intégrale première d'un feuilletage de codimension un,

- les extension fortement normales relatives en codimension un (voir définition

3.1 et [6])
Ce demier type d'extension signifie de manière grossière que relativement à la
projection sur C donnée par une intégrale première, le feuilletage que l'on considère est
de codimension un et qu'il admet une intégrale première dans une extension fortement

normale. Nous utilisons le type d'une extension de corps différentiels introduit
par Kolchin ([15]) à partir d'un analogue différentiel du polynôme de Hilbert pour
mesurer la taille de la partie transverse du groupoïde de Galois d'un feuilletage
réductible. Nous montrons que les feuilletages réductibles de codimension deux ont un
groupoïde de Galois « petit » (Le sa partie transverse est de type linéaire) et que le

groupoïde de Galois de /j est plus « gros » (i.e. de type quadratique).

Remerciements. Ce travail a étéeffectué pendantun séjour post-doctoral à l'Université

de Tokyo, je remercie Kazuo Okamoto et Hitedaka Sakai pour leur accueil. Je

remercie également Hiroshi Umemura pour son invitation à Nagoya, son enthousiasme

et son intérêt pour ce travail et Bernard Malgrange dont les nombreux commentaires
ont été précieux.
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1. Le groupoïde de Galois d'un feuilletage algébrique

La notion de £»-groupoïde de Lie introduite par B. Malgrange dans [18] formalise
l'idée de pseudo-groupe de Lie singulier. Ces objets, sous certaines conditions de

régularité, ont été étudiés par divers auteurs [16], [12], [13], [29] à la suite de S. Lie
et É. Cartan.

Dans cette partie, nous rappelons les résultats élémentaires sur les 3)-group*)ïdes
de Lie. Pour les détails nous renvoyons à B. Malgrange [18] et à J.-F. Pommaret [27].

1.1. Espaces de jets et (D-variétés. Avant de donner les constructions algébriques
de ces espaces, rappelons ce qu'est le jet (d'ordre q) d'un germe de section d'un
fibré. Considérons p: C'1+p -* C" la projection sur les « premières coordonnées.
Une section locale de p est donnée par une fonction analytique s : C" -» Cp sur un
ouvert de C". En un point xq g C", cette fonction s'écrit

avec s" G Cp, (x — xq)" n"=i(*i — X0j)a' et a\ f ]"., et,-!. Le jet d'ordre q de

.v en xq est la série tronquée :

L'espace des jets d'ordre q de sections $q a pour coordonnées les s". Les propriétés
essencielles de ces espaces seront rappelées dans le cadre algébrique.

Cette construction géométrique permet d'obtenir les espaces de jets de sections de

submersions/?: Z A entre variétés lisses que nous noterons Z, x) Pour élargir
cette construction dans certaines situations singulières, on procède de la manière
suivante.

Soit A une variété algébrique lisse sur C et Z -> X une variété algébrique sur X.
Nous dirons « Z sur X », ou indifféremment « Z au-dessus de X », pour une variété
Z munie d'une application dominante Z -» X. Nous noterons Jq(Z/x) l'espace des

jets d'ordre q de sections de Z sur X. Ces espaces sont des espaces affines au-dessus

de Z. Rappelons brièvement comment on les construit.
Commençons par construire Jq(X xC^x) où A est affine de dimension« telle qu'il

existe un revêtement d'un ouvert de C" par A non ramifié. Nous noterons xi,, xn
des coordonnées sur C" et celles induites sur A et vi yp celles de CN, L'espace

Jq(X x C^) est alors défini comme l'espace A x CN muni du faisceau d'anneaux

®Jq(Xy,g^t) - ]• 1 < Z < AL G N", 1 < |or| — et% H b an < q.
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Ces espaces de jets sont munis de dérivations A de 0 JqiX) CN ^ans ® j +ï(Xy<cn >

définies par

ACri) %. Dj^ yfMK

j étant le multi-indice de poids 1 dont la seul composante non nulle est la j-ième.
Soit Z une variété affine au-dessus de X (plongée dans X x C*) décrite par un

idéal /. L'espace des jets Jq(Z/X) est le sous-espace de Jq(X x C'xx) défini au-

dessus de Z par l'idéal DaI. Nous noterons 0jq(zfX) le faisceau quotient sur
Z. C'est le faisceau des équations aux dérivées partielles d'ordre q portant sur les

Sections de Z sur X. Ces espaces ne dépendent ni des coordonnées choisies sur X ni
du plongement de Z. Lorsque X et Z ne sont pas affines, on construit les espaces de

jets par recollement des constructions locales. Ces espaces sont munis de projections
naturelles

jt«+s : Jq+s(Z/x) Jq(Z/x).

Lorsque Z est le libré trivial X x Y, nous noterons Jq(X Y) l'espace des jets de

sections delxF sur X i.e. d'applications X Y.

Exemple 1.1. L'équation x2— y2 0 décrit Z c C2 qui se projeté sur X {y 0}.
L'espace J\(Z/X) est décrit, dans C3, par les équations x2 — y2 0 et x — yy' 0.

Dans 0j^Z/x) on a ï2&/2 ~~ 1 0. L'espace JïiZ/x) est décrit, dans C4, par les

équations précédentes plus 1 — y'2 — yy" 0. On a y3y" 0 dans l'anneau 0/2:(Z/x)<

Plus généralement on montre que dans 0jq{z/x) on a y'/+l y!V/_l ' 0.

Remarque 1.2. Dans le cas lisse, la construction usuelle des espaces de jets donne des

variétés algébriques $q(Z/X) munis de leurs faisceaux structuraux (9$ r/ K\. Dans ce

cas, les dérivations D\ de Oj dans 0/4+1 s'interprètent comme champs de vecteurs

sur %q. La distribution engendrée par ces champs est appelée ditribution de contact.
Ici suivant j 18], nous considérons comme espace de jets Jq(Z/x) l'espace Z

annelé par l'image direct du faisceau &$q(Z/x) Par la projection $q(Z/x) -+ Z.

Lemme 1.3. Les constructions des espaces de jets et du tangent relatif (ou « vertical »)
commutent i.e. il existe un isomorphisms, canonique

T(Jq(Z/x))/x~Jq((TZ/x)/x).

Preuve. Cette formule n'est qu'une version de la commutativité des dérivations
partielles. Vérifions la lorsque Z est affine au-dessus de X. La construction du tangent
relatif se fait de la manière suivante. On plonge Z dans X x CN et on note I l'idéal
définissant l'image de Z. Soient zn des coordonnées sur Cw, le tangent relatif
de X x CN est l'espace vectoriel trivial sur cet espace : (X x CN) x CN avec les

coordonnées dz i,..., dzN sur les fibres. Pour / g Ox[z\, 2a?] on notera df la
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fonction ^-dzi Le tangent relatif de Z sur X est l'espace vectoriel sur Z défini

par l'idéal I + dl.
Quand X es t un revêtement non ramifié d'un ouvert de C" J'espace ,l\ ((TZ/ x)/X)

est défini par les équations suivantes :

D"> f - E +E +S
i J i,k i

pour toutes les équations / e I. D'un autre coté, l'espace T<.l\ (Z/ x))/x est définie

par les équations :

4 n t V ^2/ J V d J I 4f f/v'D>/ Ç + ç Safci ' Ai + s ter'«8 '
l J ltK l

L'isomorphisme pour g 1 est donné par (dzi)} Des formules analogues
dorment les isomorphismes pour g > 1.

On définit l'espace des jets (d'ordre infini) de sections de Z sur X comme la

pro-variété affine sur Z
J(«%x5 lim Jq(Zfx),

<—71

c'est-à-dire Z annulée par ()/. z. v- üm Ot,rz..x-- Ces anneaux sont filtrés par

l'ordre des équations et sont munis d'une connexion

D - ()'/ .v :
> °HZ/x) ®>®x

définie en coordomiées locales par Df £ D; / 0 ifa§.
On a alors la définition suivante de « systèmes d'équations différentielles portant

sur les sections de Z sur X» appelés parla suite ©-sous-variétés de J(Z/X) ou plus
brièvement ©-variétés.

Définition 1.4. Une ©-(sous)-'variété de J(Zgx) est une sous-variété % définie par
un faisceau d'idéaux Z de Oj{z/x) tel fiue :

(1) 1 est pseudo-cohérent, i.e. les idéaux Iq Z n Ö ,jjz/x) sont cohérents,

(2) Z est différentiel, i.e. DZ c ZQlx.

Le faisceau d'anneaux de %, (9g (9j(z/X)/I est donc muni d'une connexion

induite J?1 #j -> ®0X £%» On pourra définir les .©-variétés générales : on
recollera des espaces définis comme ci-dessus en respectant les connexions. Nous
n'en aurons pas besoin.

Une solution locale (resp. formelle) de % en un point x & X est un morphisme /
de dans (9x (resp. Ox.x) au-dessus de la restriction (9x 0x (resP- ^x.x)
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et différentiel i.e. <1 J' / s D. Les solutions correspondent aux sections de Z
vérifiant les équations différentielles définissant %.

L'exemple 1.1 donne un premier exemple de D-variété, elle est définie par une

équation d'ordre 0. La i)-variélé suivante est définie par une équation d'ordre 1.

Exemple 1.5. L'espace Z sur X est C2 de coordonnées .r, y que l'on projeté sur l'axe
des t. Soit y, c J(Z/x) définie par l'idéal différentiellement engendré par xy' — v.
Parmi les équations de y, on trouve xy" 0 ainsi que y"2 0. Dans Oy, y" est

un nilpotent et est un élément de &x -torsion. En fait, tous les vq] sont de torsion
et de carré nul. La ,'D-variété réduite de % est décrite par l'idéal différentiellement
engendré par xy' — y et y". Les solutions de ces deux espaces sont y (y) Xx avec
X eC.

Soit Yq une sous-variété de Jq(Z/x) définie par un idéal Iq. Le prolongement
d'ordre 1 de Yq est la sous-variété de Jq+1 (Z/x) définie par l'idéal Iq + J2 h Cette
variété sera notée p^ Yq et son idéal pr, Iq. On définit par itération les prolongements
d'ordre k, prkIq. Les prolongement successifs de Yq et la D-variété y définie par
Ui-prk-Iq sonl en général assez difficile à comprendre à partir de l'idéal lq. Ceci

essentiellement parce que 7rq+spisIq n'est pas toujours égal à Iq comme le montre
l'exemple classique suivant.

Exemple 1.6. Prenons Z C4 de coordonnées Jfs. .v.ï y et Z -fe C3 la projection
sur les trois premières coordonnées. Considérons l'idéal 7i engendré par les deux

équations Xi y yn-°-0) et X2 y y(0,1,0) -t-xiy40,0,1^. Contrairement à Ii,7r2prlI\
contient y0'0'1).

Pour finir, rappelons les résultats suivants sur les £>-variétés.

Lemme 1.7 (Ritt [28]). Si. I est un idéal différentiel alors son radical Imd est aussi,

différentiel

Lemme 1.8 ([18]), Si y est une D-variété réduite, Oy, est sans torsion sur &x

Théorème 1.9 (Ritt-Raudenbush [28]). Soit y. une D-variété réduite définie par I
et lq I n Oj^Z/x) l'idéal des équations d'ordre q. Il existe un entier q tel que I
soit l'idéal différentiel réduit engendré par Iq.

Théorème 1.10 ([28]). Soit y une D-variété réduite définie par 1 et yq l'espace
défini par Iq I n Ojq(Z/xï- H existe un entier q et une hypersurface S c yq tels

que par chaque points de yq — S passe une solution convergente.
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Dans le cas où la ID-variété est définie par des équations différentielles ordinaires,
i.e. X C, une hypersurface S décrite par le théorème précédent est donnée par
l'hypersurface des conditions initiales ne satisfaisant pas les hypothèses du théorème
d'existence de solutions de Cauchy.

Ces théorèmes ont été généralisés par B. Malgrange dans la situation mixte d'une
variété analytique Z sur X analytique lisse et % définie par des équations aux dérivées

partielles polynomials en les dérivées. Nous n'utiliserons pas ce résultat ici et nous

renvoyons le lecteur intéressé à [27] ainsi qu'à [19].

1.2. D-groupoïdes de Lie algébriques et D-algèhres de Lie

1.2.1. JD-groupoïdes de Lie algébriques. Nous allons maintenant rappeler la
définition de £>-groupoïde de Lie algébrique sur une variété algébrique lisse X sur C.

L'espace Jq(X X) et son ouvert Jq(X —> X) des jets inversibles (défini par
deti. V:

' Y 0) seront notés Jq et /* lorsqu'aucune confusion ne pourra être faite
sur X.

Ces espaces sont naturellement munis de deux projections sur X, la source s et le
but t, correspondant aux projections de X x X sur le premier et le deuxième facteur,
d'une composition partielle associative

C (Jq, t) Xj Jq, s) *' Jq

induite par la composition des applications formelles de X dans elle-même et d'une
application identité

c:X >

donnée par les jets d'ordre q de l'identité. L'espace des jets inversibles est de plus
muni d'une inversion

; • T* _> /*1 • Jq Jq

induite par l'inversion des difféomorphismes formels de X. Ces applications font de

J* un groupoïde agissant sur X. Elles sont compatibles aux projections naturelles

nq+s et donne une structure de groupoïde sur J* lim J*, c'est-à-dire sur X x %

muni de l'anneau öj* lim öj*.

Définition 1.11. Un sous-groupoïde de J* est une sous-variété Yq donnée par un
faisceau cohérent d'idéaux Iq satisfaisant :

(1) Iq c ker C Yq contient les éléments neutres) ;

(2) i*Iq c Iq Yq est stable par inversion) ;

(3) c*Iq C jrfly + n^Iq Yq est stable par composition) ;

71 désignant les projections de Jq, t) x.y (J;/. s) sur Jq.
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L'exemple 1.5 est un sous-groupoïde de ./*. La troisième inclusion est domiée par
l'égalité

c*(xz' - z) - z (xy' - y)z + (yzf - z$-

v//
Exemple 1.12» La sous-variété de /2* décrite par y 0 est aussi un sous-groupoïde
car

V V 1

Une variante de cet exemple est la variété décrite par y + y — ± 0 qui dorme

un sous-groupoïde de /*(C — 0 -> C — 0).

On a la version algébrique d'un résultat classique de géométrie différentielle.

Proposition 1.13 ([18]). Si Yq un sous-groupoïde de J* alors pr, Yr/ est un sous-

groupoïde de J*+i-

Remarque 1.14. Soient Yq un sous-groupoïde définie par Iq et y la <0-varié lé définie

par I U prsIq. Notons yq la sous-variété définie par I Cï&jyA priori yq n'est

pas un sous-groupoïde de Jq(X -> X) mais seulement en dehors d'une sous-variété
S i.e. y,r/ est un sous-groupoïde de Jq(X - S X — S)

Cette remarque montre que la définition naturelle suivante ; << une <0 -variété y est

un sous-groupoïde de J* s'il existe k tel que pour tout q >kyq est un sous-groupoïde
de Jq » est très restrictive. De plus certains pseudo-groupes de transformations,
comme les pseudo-groupes d'invariances de fonctions rationnelles, ne rentrent dans

le cadre de cette définition qu'en dehors d'une sous-variété fermée de codimension
au moins un (dans le cas précédent : le lieu d'indétermination).

Définition 1.15. Soit S une hypersurface de X. Un sous-groupoïde de Jq(X X)
à singularités sur S est une sous-variété fermée donnée par un faisceau cohérent
d'idéaux Iq telle que la trace de la variété sur J*(X — S -> X — S) décrive un
sous-groupoïde.

L'exemple 1.12 est un sous-groupoïde à singularité en 0.

Définition 1.16. Un £>-groupoïde de Lie sur X est une D-variété réduite y de

./ " donnée par un idéal I vérifiant : il existe une hypersurface S de X et un entier k
tels que pour tout q > k ,yq est un sous-groupoïde de /* à singularités sur S.

Remarque 1.17. Dans les conditions de la définition précédente, pour tout entier q,
yq est un sous-groupoïde singulier. En effet fixons un entier qo tel que yqo soit un
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groupoïde singulier sur S et prenons q < qo. Par définition nf est dominant donc

surjectif en dehors d'un ensemble algébrique S' de yq. on a donc

c(Uq - u u 7r2~l5') xv y-i - P' U nlls U 7Î_2~1 ^)) Ç c yq.

Des arguments classiques (voir par exemple la preuve du lemme 4.3.3 de [18])
montrent alors que yq est un groupoïde à singularités sur une sous-variété S de

X contenant S.

Nous allons rappeler quelques résultats sur 1 ' action d'un !D -groupoïde de Lie y sur

/* par composition au but. Nous noterons cgr la restriction de c sur (/*, t) xx (%. s)
à valeurs dans /*.

Définition 1.18. Uninvariant différentiel d'ordre q pour y estune fonction rationnelle
F sur J* telle que F o ûj F on (jr désignant la première projection de J* x \ yq
sur J*).

Remarque 1.19. N'importe quelle fonction sur X que l'on remonte sur J* par la

projection source est un invariant.

Pour le groupoïde de l'exemple 1.5, y est un invariant différentiel. Pour ceux de

v4 y/t y/
l'exemple 1.12, la fraction — (resp. V -

v
est un invariant différentiel du premier

(resp. deuxième) groupoïde.
On dira qu'un ensemble d'invariants différentiels {F( }i<( <p définis sur un ouvert

de Zariski U forment un système complet d'invariants pour y si y, est la D-variété
réduite définie par l'adhérence de Zariski de la D-variété définie par les équations
Fi — Fi Q.é 9s au-dessus de U.

Le théorème suivant est prouvé d'une manière analogue au théorème de Chevalley-
Kolchin dans ([27], pp. 467-469, proposition 2.36 du chapitre 3). Il résulte aussi

de l'existence d'un quotient générique pour une relation d'équivalence ([11],
théorème 8.1).

Théorème 1.20 ([27], [11]). Si y est un £> -groupoïde de Lie agissant sur une variété
X alors il admet un système complet d'invariants différentiels.

Dans le contexte de cet article, le théorème 8.1 de [11] s'applique comme suit. On
se place sur J * {q assez grand pour que yq satisfasse aux hypothèses du théorème de

Ritt-Raudenbush) et on considère la relation d'équivalence a ~ ß si s (a) s(ß) et
ß o a~l g yq. Le résultat précédent donne l'existence d'un ouvert de Zariski U c J*
et d'une variété quotient de U par la relation d'équivalence. En tirant en arrière
des fonctions rationnelles du quotient, on obtient un système complet d'invariants
différentiels.
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1.2.2. D-algèbres de Lie. Une ©-algèbre de Lie sur X est un faisceau d'algèbres
de Lie de champs de vecteurs défini par un système d'équations aux dérivées
partielles. La définition que nous allons rappeler met 1 ' accent sur les équations définissant

l'algèbre.
Un espace vectoriel V sur X est défini de la manière suivante. Lorsque X est affine,

un espace vectoriel est un sous-espace d'un espace vectoriel trivial X x C" défini par
des équations linéaires sur les fibres. Lorsque X n'est pas affine, on demande que V
soit localement de la forme précédente et que les recollements soient linéaires sur les

fibres. Cette définition autorise les fibres à changer de dimension.
Les espaces Jq(TX/x) sont des espaces vectoriels sur X. Nous noterons

JLin(Jq(TX/x)) le Ö,v-module des fonctions linéaires sur les fibres. Nous allons
construire un crochet sur les sections des espaces Jq(TX/x) généralisant le crochet
de Lie des sections de l'X. Ce crochet est le crochet de Spencer et la construction

que nous allons donner est celle de [18].
Nous noterons Rq(X) (ou juste Rq) l'espace des repères d'ordre q sur X qui

s'identifie au sous-espace de J* défini en fixant une valeur à l'application source. Cet

espace est un fibré principal sur X via la projection but de groupe structural le groupe
des jets d'ordre q de biholomorphismes de (C". 0) noté L". L'application À : Rq x
Rq -> J* qui à deux repères rq et sq associe le jet sq or~l s'identifie au quotient sous

l'action diagonale de L" sur les deux facteurs. L'application tangente relativement à

la première projection est Tk : T(Rqx Rq)/xq —> T(J*)/x- Sa restriction le long de

la diagonale, i.e. sur T(Rq x Rq)/Rq Idiag, est à valeurs dans T(Jq )/xlid- Faisons les

identifications suivantes, T(Rq x Rq)/Rq Idiag ~ !'Rq par la deuxième projection et

T(Jq)/xlid ^ Jq(TX/x) parlelemme 1.3. On obtient ainsi une flèche X: TRq
Jq(TX/x)- C'est le quotient de TRq sous l'action induite de F". Ceci permet de

projeter le crochet de Lie de TRq sur un crochet sur les sections de Jq(TX/x)- C'est
le crochet de Spencer. On a les formules suivante pour ce crochet ([16]) :

l/jqtl- gjqV] fgjq[u, u] + f Lu(g) jqv - g Lv(f jqll

avec / et g dans (9x, m et 0 des germes de champs de vecteurs sur X, jq désigne la

prise de jet d'ordre q et Lu la dérivée de Lie le long de u.

Définitions 1.21. Une Sous-algèbre de Lie de Jq(TX/x) est un sous-espace vectoriel
dont les sections analytiques locales sont stables sous le crochet de Spencer.

Lin D-(soiis)-cspace vectoriel X. de J(TX/x) est une .©-variété définie par des

équations linéaires, i.e. dans Xin(Jq(TX/x))
Une ©-(sous)-algèbre de Lie X de J(TX/x) est un ©-espace vectoriel tel que

les espaces Xq soient des sous-algèbres de Lie de Jq(TX/x).

On construit une algèbre de Lie LYq h partir d'un groupoïde de Lie singulier Yq

en considérant le tangent relatif à la projection source T Yq, A,
| l(j ou son image dans
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Jq{TXfx) (parle lemme 1.3). La stabilité des sections du linéarisé sous le crochet de

Spencer est une conséquence de la stabilité de la variété Yq sous la composition. Nous

renvoyons à [18] pour les détails ainsi que pour la preuve de la proposition suivante.

Proposition 1.22 ([18]). Si % est un S)-groupoïde de Lie, son tangent vertical le long
de l'identité T%/Xc J(TX/x) est une D-algèbre de Lie. Elle sera notée l.%.

1.2.3. Le groupoïde de Galois d'un feuilletage

Définition 1.23. Un feuilletage (singulier) de X est une .©-algèbre de Lie F sans

torsion sur X dont l'idéal 1 est différentiellement engendré par les équations Iq
I n öj^TX/x) d'ordre 0.

Remarque 1.24. Une ©-algèbre de Lie n'est pas toujours la ©-algèbre de Lie
d'un ©-groupoïde de Lie. Prenons par exemple un feuilletage F de codimension d.

D'après le théorème 1.20, s'il existe un ©-groupoïde de Lie dont F est la ©-algèbre
de Lie alors le feuilletage admet d intégrales premières rationnelles indépendantes.

Un feuilletage sans intégrales premières rationnelles est donc un exemple de ©-
algèbre de Lie ne provenant pas d'un ©-groupoïde de Lie.

La définition suivante généralise le groupe de Galois différentiel d'une équation
linéaire.

Définition 1.25 ([18]), Soit F un feuilletage sur X. Le groupoïde de Galois de F
est le plus petit ©-groupoïde de Lie dont la ©-algèbre de Lie contient le feuilletage.
II sera noté Ga/(F),

Autrement dit Gfl/(F) est le plus petit ©-groupoïde de Lie contenant le pseudogroupe

Tan(F). Par commodité, nous posons la définition suivante.

Définition 1.26. Soit F un feuilletage sur X. Un ©-groupoïde de Lie préservant le

feuilletage dont la ©-algèbre de Lie contient le feuilletage sera dit admissible pour F.

Les ©-groupoïdes de Lie admissibles pour F sont les ©-groupoïdes de Lie
contenant GaHE). La connaissance d'équations aux dérivées partielles satisfaites

par les intégrales premières du feuilletage pennet de construire des majorants de

Gfl/(F). Ce type de construction de ©-groupoïdes admissibles sera expliquée et
utilisée dans la dernière partie de cet article.

Il existe toujours un ©-groupoïde de Lie admissible pour F : le groupoïde Aut(F)
des transformations préservant le feuilletage. Celui-ci est aussi appelé pseudo-groupe
des transformations basiques ou groupoïde basique. Si F est décrit par les 1-formes
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coj J2 w\(x)dxk, i 1 p, les équations engendrant différentiablement l'idéal
de AufifFl sont :

22 sign(or) (v)vJCT(1J)
(2)

(-x).,. uq(jD+1)(.r) =0
cr.e£(.£)

où I 1, p, E parcourt les sous-ensembles de cardinalité p + 1 de {1 «}
et E( E) est le groupe des permutations de E. La notation o(i) désigne l'image sous

a du i-ème plus petit élément de E et sign est la signature.
Nous préférerons l'écriture plus synthétique y*m A A • • • A a>p 0.

1.3. Forme de Maurer-Cartan d'un D-groupoïde de Lie et suites de Godbillon-
Vey d'un feuilletage. La forme de Maurer-Cartan d'un groupoïde de Lie est une
1-forme sur le groupoïde invariant sous l'action du groupoïde sur lui-même par
composition au but. Pour un .©-groupoïde de Lie, la forme de Maurer-Cartan provient
de la restriction de celle de /*.

1.3.1. Forme de Maurer-Cartan de J*. L'espace J* n'agit pas sur son espace

tangent et la forme de Maurer-Cartan provient de l'action de /*+] sur le tangent

de/;.
Plus précisément, la structure de groupoïde de f* domiée par la composition

e:(/;,ï)xx(/;,L)^/;.
se prolonge en une structure de groupoïde sur l'espace ./; -/,yi

/SOLircc
des jets de

sections de la projection source se projetant sur les sections de /f (X x X/source)- Ce

groupoïde agit naturellement sur T ^;/source- Cette action se comprend plus facilement

en utilisant la présentation suivante. Soit q> une section analytique locale de /;/source
sur un ouvert U dont la composante q>o d'ordre 0 est inversible. Par les formules de

composition, elle induit un difféomorphisme de l'ouvert de J* des jets de but dans

U sur l'ouvert des jets de but dans (po(U). Le difféomorphisme induit sur le tangent
de J* ne dépend que du premier jet de la section et donne l'action.

Nous noterons T e cette action :

: (^Wf) Xx - r/*w
Cette action induit une action de J*+l sur T f* ,source par l'inclusion canonique J*+l c

/source^ el donne un isomorphisme

** Jffï - Source"
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Après identification de ^^/sourcelid avec Jq(TX/x), l'image de la première projection

donne une application

^^/source-+MTX/X)

invariante sous ./*+,.

Définition 1.27. Cette forme est la forme de Maurer-Cartan de 7*+1.
Q I ]z

Les formes construites ainsi étant compatibles aux projections gif la forme
induite sur J* sera appelée forme de Maurer-Cartan de /*.

Remarque 1.28. Fixons un point xo G X et identifions la sous-variété des jets de

source vq avec l'espace des repères, Rq(X) ainsi que JqCfX/x) k3 avec Jq(x(Cn,
l'espace des jets d'ordre q de champs de vecteurs en 0. On obtient alors une forme sur

Rq(X) àvaleursdans invariante sous l'action de ./f+|. Nous noterons

0|,o :TRq(X)^ Jq(x(C\0))

cette forme.

Il existe un second crochet sur Jq (TX/x) différent du crochet de Spencer. II est à

valeurs dans Jq-\(TX/x). C'est le crochet fibre à fibre. Il est défini en coordormées
locales par les formules

{«, v] jq-i[m, il
où m et v sont des jets en un point v g X, « et v sont des champs formels en .r les

prolongeant, [, ] est le crochet de Lie et jq-\ est la prise du jet d'ordre q — 1.

La forme de Maurer-Cartan vérifie des équations de structure reliant la différentielle

relative à la projection source et le crochet fibre à fibre sur Jq{TX/x) '

d/s7Tqq_1&= --{&,&},

où îrf_| est la projection de Jq(TX/x) sur Jq_\(TX/x). Nous renvoyons à [13],
[29] pour plus de détails.

Ces équations se restreignent aux espaces de jets de source fixée. En choisissant

une base de l'espace vectoriel des jets d'ordre q de champs de vecteurs en xo et

en écrivant en coordonnées, on obtient une famille de 1-formes invariantes sur

Rq(X). En choisissant la base monomiale on obtient une suite de formes 9f
satisfaisant aux identités différentielles :

m; AC''+ E S)4^rß+"'
j mm
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pour |a| < q — 1 et H («0s' ®f 25 ßi et zéro sinon. Nous les appellerons formes
de Cartan d'ordre q et les identités précédentes équations de structures d'ordre q.

Le groupe algébrique des jets d'ordre q + 1 de source et but xq, F" +,, agit sur
Rq (X) par composition à la source. La composition au but commutant avec la composition

à la source, T^+1 transforme des formes invariantes en des formes invariantes
satisfaisant les mêmes identités différentielles. Soit q> un élément de F"+l, notons sif!

l'action par composition à la source sur Rq (X) et q>* celle sur Jq (/ (C", 0)). On a la
formule suivante :

<P* 0

1.3.2. Forme de Maurer-Cartan de %. Considérons maintenant }J. un D-groupoïde
de Lie agissant sur X.

Définition 1.29. La restriction de 0 sur %q+i est à valeurs dans le sous-espace
vectoriel L :

Ty.q/X -* L%q c Jq(TX/x).
C'est la forme de Maurer-Cartan d'ordre q de %.

Dans la suite nous nous restreindrons à l'étude des £>-groupoïdes de Lie transitifs
et travaillerons dans le cadre de la définition suivante.

Définition 1.30. Soit % un £>-groupoïde de Lie sur X transitif. Fixons une source xq
régulière pour y, (i.e. hors du lieu singulier donné dans la définition 1.16) et notons

Rq(%) l'espace des jets de % desource.ro. On définit une forme invariante sur Rq(%)
en restreignant la forme de Maurer-Cartan :

©fl%: TRqttf,) > Jq(x(C\ 0)).

Les orbites de l'action de %q+i sur Rq(X) sont les sous-variétés décrites par le
théorème 1.20. Une orbite particulière est donnée par Rq(y!) mais le groupe F^+|
agissant par composition en ro mélangent ces orbites. La restriction de 0 sur une orbite

permet de construire un système de formes invariantes satisfaisant des équations de

structures particulières.

1.3.3. Suites de Godbillon-Vey générales

Définition 1.31. Une suite de Godbillon-Vey pour un feuilletage de codimension

p est une suite de 1-formes rationnelles {a>"; i m {1,..., p}, a Np} telles que
{&>?; i g {1 p}} définissent le feuilletage et

A<,f+,' + y. o,'
j jïsm
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avec Q) H («0 si a, > ßj et zéro sinon.

Proposition 1.32. Soit F unfeuilletage singulier de X. Quitte à seplacer sur X -* X
une variété finie au-dessus d'un ouvert de Zariski de X, il existe toujours une suite
de Godbillon-Vey pour F.

Cette proposition est classique, nous allons en donner une preuve utilisant les

constructions précédentes. Nous allons d'abord construire ces formes sur le F-
groupoïde de Lie Aut(F) et les descendre ensuite sur X.

Preuve. Un feuilletage F définit un F-groupoïde de Lie Aut(F : le groupoïde des

transformations locales préservant le feuilletage. Pour tout entier q, Pq c
rAut(F)?/source|ld et l'action de Aut(F) par composition au but permet de

prolonger Fy en un sous-espace vectoriel Fy de aTAlflfF"L ^
Soit v'o un point régulier de F (i.e. au voisinage duquel F est facteur direct).

C'est aussi un point régulier de Aut(F). Les jets solutions de Aut(F)? de source xç,

forment une sous-variété de Rq(X) noté R(/<3~).

Définition 1.33. Les formes sur Rq(lF) s'amiulant sur Fg seront dites transverses
à F.

On construit une forme transverse de la manière suivante. Soit Mp la F-algèbre
de Lie de Aut(F) et soit n : Nßmlm -* & Ie quotient par Pq\m.

Définition 1.34. La projection,

TT ° ©Aut(jf)u : TRqQP) —V

est une forme transverse au feuilletage. Elle sera notée (-)

Le crochet sur la fibre de N:r en xo induit un crochet sur V. La forme transverse
vérifie les équations de structure induites :

d&p — -- {©y, ©y |

Soit p la codimension du feuilletage. L'espace vectoriel Vq s'identifie à Jq (x (Cp, 0)).
En écrivant ©yU dans la base monomiale ^ sur Jq(x(<Cp, 0», on obtient une
suite de 1-formes invariantes transverses à F : 'Ç, 1 < i < p. a eNp, satisfaisant
les équations de structures d'ordre q en dimension p.

Soit X X une variété au-dessus d'un ouvert de Zariski dense de X tel qu'il
existe une section /: X —* X RqQF) de la projection but. Les formes Sf
s'annulent sur F). Par construction, ce feuilletage sur RQ 'P) X est F. La suite

{wf f*9"} est une suite de Godbillon-Vey pour F.
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1.3.4. Suites de Godbillon-Vey spéciales

Définition 1.35. Soient % un D-groupoïde de Lie transitif admissible pour un feuilletage

F et X -> X une variété au-dessus d'un ouvert de Zariski de X tel qu'il existe

une section f: X X xi Rq(ffi) de la projection but. Les formes (y® f*9f
seront appellées suite de Godbillon-Vey spéciale associée a %

Dans le cas trivial % Aut(F), la suite de Godbillon-Vey obtenue est dite générale.

Lorsque f Gai (F), nous dirons qu'elle est minimale. Les cas intermédiaires
sont dits spéciaux. Dans la suite de cet article, nous regarderons particulièrement
le cas X C3. On peut toujours choisir une section à coefficients algébriques de la

projection but et construire ainsi une suite de formes à coefficients algébriques sur C3.

L'objet de cet article est l'étude d'un feuilletage de codimension deux. La
classification locale des pseudo-groupes de Lie réguliers agissant sur C2 a été donnée

par S. Lie [17]. Dans [3], É. Cartan donne une preuve de la classification de S. Lie
en utilisant ses équations de structure. Appliquée à la détermination des équations de

structure possibles pour les formes à valeurs dans Jq (y (C2,0)), la preuve de Cartan

permet d'obtenir le résultat suivant.

Théorème 1.36. Soit F un feuilletage de C" de codimension deux, défini par une

2-forme fermée y. Le D-groupoïde de Lie lnv(y d'invariance de cette forme est

un D -groupoïde de Lie admissible pour F. Si le groupoïde de Galois de F est
strictement plus petit que lnv(y alors on est dans un des cas suivant :

- Gal(tF) est intransitif: F admet une intégrale première rationnelle,

- Gai(F) est imprimitif en codimension un : il existe une 1-forme à coefficients
algébriques intégrable S'annulant sur F,

- Gflf(F) est transversalement affine : il existe un vecteur de l-formes à

coefficients algébriques G0 (^J) définissant le feuilletage et une matrice de
ù)2

l-form.es à coefficients algébriques G1 de trace nulle telle que :

dQ° Q1 aQ° et âQ} *= Q,1 A#,
Un tel feuilletage induit en dehors du lieu singulier de Gal(!F) un feuilletage
admettant un atlas dont les recollements transverses sont des transformations
affines préservant le volume. Une telle suite sera appelée suite de Godbillon-
Vey de type asl% ou encore ash-sidte.

Nous donnons en annexe la preuve de Cartan de ce théorème.
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2. Le groupoïde de Galois de P\

Le feuilletage associé à la première équation de Painlevé, '—3 6jr + x, est donné

par le champ de vecteurs

X1 ~ ä ^ ^ ä ^ ^ X^1TD
dx dy dy

sur C3 avec les coordonnées (x, y, y')-
Ce champ de vecteurs étant de divergence nulle, le feuilletage est défini par la

2-forme fermée y iy^dx A dy A dy'.

Théorème 2.1. Le groupoïde de Galois de P\ est le 3D-groupoïde de Lie Inv(y)
laissant la forme y invariante.

On considérera la déformation triviale suivante du champ X\ :

Xa 1T + + (6v2 + u'*x)f
>• « # 0.

dx dy dy'

Ce champ est de poids —1 sous l'action de

d d d d
E x 2v- 3v — - a—dx " dy " dy' da

c'est-à-dire que [S, Xa] —Xa. Le flot de S donne une équivalence orbitale entre
les différents champs Xa tant que a f 0. Lorsque a 0, la première équation de

Painlevé dégénère sur une équation particulièrement simple.
L'organisation des calculs se fera suivant les idées de J. Drach [8]. Soit na la

projection algébrique de C3 x Ca sur C3 donnée par le flot de S :

/ y. y?
7Ta(x, y, y', a) S ax, —, 1

V a1 as

Supposons qu'un des trois systèmes d'équations aux dérivées partielles donné par le
théorème 1.36 admette une solution algébrique. En considérant leurs images inverses

par ila et en développant les équations et la solution en puissances de a, on obtient une
suite de systèmes plus simples ayant encore des solutions algébriques. Ces équations
sont de la forme XqR *. On les étudiera dans les coordonnées adaptées x, y, «

y'2 - 4y3.
Nous noterons ps(. le poids d'une fonction ou d'une forme homogène sous E

et dega les degrés par rapport aux variables a, /;,... ayant chacune le degré 1.

Un polynôme P(x. y, y') se prolonge en une fraction de poids nul sur C3 x Ca

par

n*P P^ax, AjJ G C(x, v. y', ai
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et en un polynôme en Jtr, y,s. v' et a homogène pour £ en multipliant par une puissance
convenable de a. Nous prolongerons les formes de C3, a dx + bdy + c dy', àC xC„
par (n *a)adx + (n *b)y + (^ac)~r- Une forme intégrable ne se prolongera pas en

une forme intégrable mais seulement intégrable modulo da.
Le feuilletage donné par le champ X\ est débni par les deux 1-formes y'dy' —

(6y2 + .v idy et y — dx. Nous noterons

û/j y'dy' — (6y + a5x)dy et cJj —y — dx

leurs prolongements au paramètre a et lo, «»flo (resp. o>l \ \, o'l \ \ les restrictions à

{or 0} (resp. à {a 1}). Ces formes forment les vecteurs £2°, £2% et £2°|i.

2.1. Étude préliminaire de l'équation réduite Xo. Le champ de vecteurs

3 .3 s 3
X° -—h y — + 6 y —

dx dy dy'

admet une intégrale première rationnelle u ya — 4y3 et une autre transcendante

x — f —I--—dy. Nous utiliserons souvent les formules suivantes :
« 4yj+H •

y \"+l\ [ wy, \n(n + 1 )3i/

m
XolU + 2pj ={* + 2p;

Lemme 2.2. Si rjo est une l-forme polynomiale, intégrable, telle que ?7o(Xo) 0 et

ix0drjo 0 alors

m f (n)du ou n 0 / (m) {itdx - (2xy '
• y'niy + -(xy' + 2y)dy'^j.

Preuve. Écrivons qo a du + h (dy — y'dx). Si b 0, on trouve la première
expression. Sinon, en écrivant la condition d'intégrabilité de qo, on obtient l'équation

6y2 a 1/a\ Oy a t
-X0 (-) + =0.W yf b 2v'y' b 2Y

En utilisant les formules (1), on intègre cette équation. On trouve

a 1

- -— (xy' + 2y).
b ou

On en déduit que tjo f {{~~L^)du — y (dy — y'dx)). En écrivant la condition
ixodqo 0, on trouve que Xof 0, donc / est une fonction de u. En développant

qo, on trouve la seconde expression.
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Lemme 2.3. Le feuilletage défini par Xq n 'admet pas de suite de Godbillon-Vey
rationnelle de type asli commençant par cw°|o et tw^lo-

Preuve. Supposons qu'il existe une matrice de 1-formes Û? |o de trace nulle satisfaisant

:

dû0 |o #|a Afi0|0.
£2' o A £2

^
| o.

On peut supposer en toute généralité que ces formes sont homogènes sous S. La
première égalité donne

O1 o ^ i q j dy + Ajgjj |o + B (w^lo

avec A Ç B J et trace A trace 5 0.

La deuxième égalité dorme un premier système d'équations que nous allons résoudre :

iXodQ1\0 [nl\o(Xo)Ml\o].

où [Mi, M2] est le crochet de Lie M\M2 — M2M\. Calculons les deux membres de

cette égalité :

ix0dQ'\o

[^lo^oL^lo]

2 jy/4 qJ + XqA + -K B j cwj |o + Xo B <i»210 1

0 0

l//2 0
.A lo +

0 °
1 R

1Jya 0 1' ®2 lo-

En identihant les coefficients de a>°|o et ceux de jw|[q, on obtient les deux systèmes
suivants.

„o.

X0A

X0B

0 0

>°,
'

0 0'

s A

,B

/ 0 0

"M yäB (2a)

(2a)

Si B jnf '. \, 011 écrit puis résout le système (2a) en utilisant les formules (1) :

X0b 0 b b(u).
—b —b

Xoa —J a —(x + 2y/y
yu 311

2a —b

(3)
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sous l'hypothèse b ^ 0 (les résultats sont analogues lorsque b est nul). On résout
ensuite l'équation (2a). Si A +: '' le système donne

X0d
-3c
y

n — 3 =S Cl - -/2 y'1 27»
(x + 2y/y'f - — 7x + 20^- - 24^ j

1

9M2

y j
y y

On obtient une contradiction en considérant l'équation suivante :

i cl £2
^

| o

En identifiant les coefficients de <w°|o dans cette équation, on obtient

1 dB 3A
+ — [A,B],

v' 3 v' 3,v

c'est-à-dire,

1 3 a de
- —- + — ac — ab,
y' dy' dx
1 db da j-|- — —2(be a
y' dy' dx
1 3c dd

1 2 (da — c
y' dy' dx

(4a)

(4b)

(4c)

L'équation (4b) s'écrit 2b'(a) — j^b(a) 0. La seule solution rationnelle est b 0.

Dans ce cas a ain) et l'équation (4b) donne a 0. Les équations (3) impliquent

c c{u) et cl — 9^3 (7v + 20y — 24 +3 L'équation (4c) se réécrit alors

7
2c'(u) —2c2.

9 M3

Une solution de cette équation ne pouvant pas avoir de pôle d'ordre entier en 0, elle

ne peut pas avoir de solution rationnelle. On aboutit à une contradiction qui prouve
le lemme.

2.2. Le groupoïde de Galois de X\ est transitif. Le résultat suivant provient de

[24], on pourra aussi consulter [8], [14],

Proposition 2.4. Le champ X\ n'a pas d'intégrale première rationnelle.

Preuve, Si H\ est une telle intégrale, prolongeons-la en une intégrale du champ
Xa. On peut écrire Ha Hq + M\m + *••- • après avoir fait une division suivant



Vol. 83 (2008) Le groupoïde de Galois de Pi et son irréductibilité 495

les puissances croissantes et multiplié par une puissance convenable de cf. On peut
supposer que Ho n'est pas constante. En développant l'équation XaHa 0 suivant
les puissances de a, on obtient pour 0 < i <4

Xi Ht =0,

qui implique //, J) (u) où u y, — 4y3 et /,; est rationnelle. Le coefficient de a5

donne
dfo(ll)

oy
Dans les coordormées x, y, u, cette dernière équation s'écrit

+ ,J4y -f {j4y3 + m //J j —2x/o(«)-y'4y3 + u

où Il\ //b + v^v3 + u H\ et H\ g C(x, x, m). En identifiant les termes libres de

radicaux des deux membres, d'une part, et ceux contenant le radical, d'autre part, on
obtient les deux équations suivantes :

i®! §M lv.(5a)oy ox
3 fi? d H} „—'X + (4y3 + a —X + 6v//5 0. (5b)
3x 3y

En dérivant (5b) par rapport à x et en utilisant (5a), on obtient

d2 H9 ~ 32fi° ,3ä5—f - (4/ + u)—y - Ç>\ —X - o. (6)
oxL oyL oy

Supposons que H1~ ait un pôle d'ordre n par rapport à y en a g C[x, h] alg, la clôture

algébrique de C[x, u\. En développant H9 en série autour de a, on obtient une série

d'équations différentielles. La première,

3 a \ 2
-i

— - (4ce + M) 0,
3x/

implique 4fr' —u. I.a suivante donne 12(n +1 —6a2. Ainsi //5° estunpolynôme.
En écrivant H9 an y" + * • • dans (6), on obtient n 0 puis

h9 aunx + b(u).

dH*
L'équation (5a) donne —2x/q(u). En dérivant (5b) par rapport à x, on ob-

ridHf
dx

proposition.
tient yf- 0, ce qui implique /q 0. Ceci contredit le choix de H et prouve la
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Corollaire 2.5. Le champ X\ n 'admet pas d'hypersurface algébrique invariante.

Preuve. Soit P l'équation d'une hypersurface invariante. Prolongeons P au
paramètre cf. On obtient un polynôme satisfaisant

XaP LP.

On a py,(L) —1 d'une part et d'autre part comme deg{Xty.yi}(Xa) 1 on a

V;a.v.v pl i < 1 et un calcul direct donne deg{x}(L) < 0. Tout ceci implique que
L est nul et donc que P aussi.

2.3. Le groupoïde de Galois de X \ est transversalement primitif.

Proposition 2.6. Le feuilletage donné par X \ n 'est inclus dans aucun feuilletage de

codimension un donné par une l-forme algébrique.

Supposons qu'il existe une 1-forme algébrique q intégrable, q A dq 0 et telle

que q(Xi) 0.

Lemme 2.7. Une telle forme peut être choisie polynomiale.

Preuve. Soit q une telle forme que nous normalisons q dx + a dy + b dy'. Soit
Z le lieu de ramification de cette forme sur C3. D'après le corollaire 2.5, Z est

transverse aux trajectoires de X\. Plaçons-nous au voisinage analytique d'un point
de Z. N'importe quelle intégrale première au voisinage d'un point de la trajectoire
passant par p se prolonge de manière univaluée sur un voisinage de p. La forme q

est donc univaluée sur ce voisinage. Le lieu de ramification Z est vide et la forme est
rationnelle.

Choisissons une de ces formes et prolongeons-la au paramètre a.

Lemme 2.8 ([8]). La forme qa peut être choisie telle que ixadqa 0.

Preuve. Choisissons

qa -(Py' + Q(6y2 + a5x))dx + Pdy + Qdy'

avec P et Q premiers entre eux. En écrivant la condition d'intégrabilité, on obtient :

QXP - PXQ + 12yß2 - P2 0.

D'après le théorème de Bezout, il existe donc un polynôme L tel que :

XP +12yQ LP.
XQ + P LQ.
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En calculant les degrés, on obtient que L doit être de degré 1 en x, y, y' et de

poids -1 par rapport à S. Donc L ca2x où c est une constante. En calculant les

degrés en ft on obtient c 0. Un calcul direct montre que ceci implique le lemrne,

Preuve de la proposition 2.6. Quitte à multiplier par un facteur convenable, nous

pouvons supposer que rja s'écrit rjo + arj\-\ avec m des formes polynomials et

rjo L 0. Les équations

Qa{Xa)=0,
ixadï]a 0

relient les formes ?7o et r; i. Écrivons la forme q\ de la manière suivante

r] i a dx + b cwjlo + c cw^lo-

Le terme d'ordre 0 dans les équations (7) donne rjo(-X'o) 0 et ix0dr]o 0. Ces équations

sontrésolues parle lemrne 2.2. Celles d'ordre 1 donne r}o(x gy) + ?n(^o) Oet

ix j_dqo+ix0dq\ 0. En écrivant toutes ces équations dans la base (dx, <w° |o, a^lo)»
dy;

on obtient

a

La dm

X0 c

X0b

Dans chacun des cas du lenune 2.2, nous allons prouver qu'il n'existe pas de triplet
(a, b, c) solution de ces équations tel que la forme fi, soit polynomiale. Ces deux cas

Seront traités suivant le poids de

3y
ga>2I0.

3a
Xoa - g,

dx
C 1 da

~Lä + ~~-y' dy'

(8)

Premier cas, p^rja 0 mod 6. D'après le lemrne 2.2, rj0 f(ii)du. Les équations

portant sur les coefficients de fi deviennent

a -2f(u)y'x, (9a)

g 0, (9b)

AV.r -Y2f(u)xf, (9c)

c 2 f(u)x
X»h ' - 4 / i ti ).v v (9d)

y y
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On résout (9c) : c 2J'ui m y — On obtient ensuite pour l'équation (9d) :

X0b 4fauxy' -_ 2f(fy
4y ' + il

Dans les coordonnées *, y, u, où h bo -\—-,
1

b\ avec bo et b\ des polynômes
V4v3+»

et Xq H + f4y3 + uf, l'équation ci-dessus se réécrit :

dbo db\ 6y2 2/ (u)y
+ - ö ?—b 1 --dx dy 4y3 + u <ty3 + u

— + (4y3 + 4 fui i.x 14 v + u),
dx oy

(10a)

(10b)

En dérivant (10a) par rapport à v et en tenant compte de la dérivée de (10b) par rapport
à y, on obtient

92£>O
a

92£>O 3^0
-, (4y + »! - 6v — 24/ (u)y x.

àxi dy- oy

On en déduit que bo est un polynôme d'ordre 1 en y puis

tm

dbi
bo 4/ il !.v v + a(u)x + b(u) ; 0.

dx

En reportant bo dans (10a), on obtient

(4y3 + ~ 6y2b\ -16 f(u)y4 - 4a(u)y~ + {/(«) - 4uf(u))y -dy

ce qui implique que le degré de b\ en y est inférieur à deux. En posant b\ a%yl +
oqy1 + cxq, on obtient le système suivant

—16f'(u) 2a2,
—4a(u) — 2oq,

0 —6cfo,

f(u) —4iif'(ii) 2cf2»,

ua(u) ni/].

Ce système implique l'existence d'une constante c telle que / fjn- Or / est un
polynôme donc / est nul, ce qui contredit le choix de la forme t}(/,
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Deuxième cas. 1 mod 6. On a î}.q /(«)(y(v + — a co®|o)

d'après le lemrne 2.2. Les équations (8) dorment

ftm 1
a — (yx +2yx),

g -2f(u)uy' -
Xqc -2f(u)y2x2 - I -f(u) - 2f'(u)u ly'.v.

5 /(«)

1

c f(ll) X2
X0b x- - 2X-L —

y 3 -f
%f¥) r 2
—~—m

(12a)

(12b)

(12c)

(12d)

Étudions l'équation (12c). Le second membre étant d'ordre 2 en .r, r est d'ordre au

plus 3. Par homogénéité, c est en fait d'ordre 2. Posons c o.r -j- ci* + cp. On
obtient le système suivant

'
X0c2 -2/(H).V2,

X0C1 -(]/<„> 2c,
XQCQ -Cl.

On les résout successivement, C2 l'uny'. c\ —(| f(u) — 2 f'(u)u)y et

Xqcq {^f(u)—2f'(u)u)y. Cette dernière équation n'a pas de solution polynomial e

comme le montre le lemme suivant. Ceci prouve que / doit être nulle, en contradiction
avec le choix de qa • Ceci prouve la proposition.

Lemme 2.9. Il n'existe pas de polynôme R satisfaisant X() R y.

Preuve. Supposons qu'il existe un tel polynôme. Comme le second membre est
d'ordre 0 en R s'écrit a\(u)x + ao(y, /). En écrivant l'équation dans les

coordonnées (v, y, u) on a

3 R° 3R1
_

Sy dx

dR°dx + (4y- + u) + 6y2Rl y.
ày

Ces équations impliquent (4y3 + u ^ +6v2 R1 y — oqan .Si R était un polynôme
de degré n, le premier membre de cette égalité serait de degré n + 2. Ceci est incompatible

avec le second membre, cette équation n'a donc pas de solution polynomiale.
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2.4. Le groupoïde de Galois n'est pas transversalement affine

Lemrne 2.10. Soit £2%, L!1!! une suite de Godbillon-Vey de type asl2 pour le

feuilletage donné par X\. Pour tout vecteur de formes vérifiant a>®| j A tu® 11

ixxdx A dy A dy', il existe une unique suite ash commençant par £2®[j
V®?'1

Preuve. Les formes et
1

i

1 satisfont les relations suivantes :

' ^2°|i(X1) 0,

S1!, A fi0'Il " 111, A Sä 11,

jS1!] S21!! A

trace fi1 h =0.

En écrivant |i 11 et ST2111 (iFF~1+Ff21|iF~1,onconstruitunenouvelle
suite de Godbillon-Vey. De plus coj' 11A oo\ \ \ et aq | 1A S0 11 sont deux formes volumes
transverses invariantes sous le flot des champs de vecteurs tangents. On en déduit que

co® I j A a>211 c afy 11 A m® | 1

où c est une intégrale première rationnelle donc une constante. Calculons la trace de

S^li:

oil t d(detF) de
trace fi 11 trace dit — 0

det r c

et C2°11. fi1 |i forme une «.vF-suile.

Supposons maintenant qu'il existe deux a^F-suites : fi°|i, fi1^ etfi°|i, C2111. Le
groupoïde de Galois du feuilletage est un sous-groupoïde de Lie du groupoïde définie

par une de ces suites. Or le lemme A.4 montre qu'un tel feuilletage est contenu dans

un feuilletage de codimension un, ce qui contredit la proposition 2.6.

Proposition 2.11. Lefeuilletage donnépar X1 n 'admetpas de suite de Godbillon-Vey
de type ash-

Le lemme 2.10 affirme que si le feuilletage donné par X \ admet une <7 „vF-suite alors

celle-ci est rationnelle. Le lemme suivant montre qu'il en existerait une polynomiale.

Lemme 2.12. Si elle existe, la asl.2-sui.te commençant par Q°\i dy

doit être polynomiale.



Vol. 83 (2008) Le groupoïde de Galois de Pi et son irréductibilité 501

Preuve. Nous allons montrer que le lieu des pôles de la forme fi:1 h est une hyper-
surface invariante pour le feuilletage. Le lemme 2.5 permettra de conclure. Soit Z
l'hypersurface des pôles de fi111. On construit un système d'intégrales premières
locales (en dehors de Z) en résolvant les systèmes différentiels suivant :

| dH dHfi°|i,
\d3H -ann1 ii,

où H i j et <1/1 est une matrice 2 x 2. Si Z est transverse aux feuilles, les

intégrales premières se prolongent à Z. Comme de plus dH\ r-dlh (det B II 11 a
S>211, le lieu d'annulation de det 3II doit être invariant par le feuilletage. Ceci contredit
le corollaire 2.5.

Corollaire 2.13. Si elle existe, la ash-suite commençant par

fi°h y'dy' - (6r + x)dy
1

\ f~dx
est composée de l-formes à coefficients dans [.*> y, y', 1 /y'].

Soit fi° |i, fi111 cette suite, On la prolonge au paramètre a de manière à avoir une

aj/2-suite, fi°, fi1 pour Xa. Ces l-formes vérihent

dQ° fi1 A fi°, (13)

dfi^fi'Afi1, (14)

On a PE(fi°) "f) et °
~q )• La matrice fi1 que nous obtenons ainsi

possède a priori un pôle le long de a 0. Nous allons montrer que ce pôle est

nécessairement d'ordre 0 puis conclure avec le lemme 2.3. Développons la matrice
fi1 en puissance de a :

l t „ 1

Lemme 2.14. Si n > 0 alors on est dans un des deux cas suivants :

(1) E„ ^ uio>" D • L«" avec n ^uk~2(x + 2y/y''r et b

\nk 'i.v + 2y/y') où c e C et k ^8 G

(2) E„ c°t ° tö^l o avec k
1

Z.



502 G. Casale CMH

Remarque 2.15. Si n > 0 alors n > I ; en effet, la seule possibilité pour n 1 est le
cas (2) avec k —2. En posant ß a5, on obtient un champs X.giß. donnant X\ en

1 et une asl2-suite donnée par fi1 -~ß S„ H .Le corollaire 2.13 implique

que n est divisible par 5.

De même, l'unicité de la «.vÇ-suile pour .Y| assure que Ep 0 si p # 1 mod 5.

Preuve. Posons H„ Nous allons distinguer deux cas suivant que mt
est nulle ou non nulle.

Premier cas, r]n ^ 0. L'égalité E„ a E„ donne E„ ;! t?n- Comme de plus

E„a^°|o 0,

_ajy L\ 1 (a ft)ilo + b®2lo)•

Considérons ensuite l'égalité

ixJQ1 (15)

avec 4
0 -ay'
4r 0 En calculant le coefficient de 1 /a", on obtient

i XV, ' I — ,2y
Calculons les deux membres de l'égalité

00
1 0

lx0 cl iü_ n —
0

-Xg§: 0
(acw^lo + btM®lo)

+ 1« _"i «xoa + £>*?Io + Xob

b
a

2
" °b (a ®1 lo + b <A>210)-• [(?£)-3,,]

En identifiant les coefficients de ®y io et oq'lo de ces matrices, on obtient le système

-2b
XQCI

y%
'

b2 1

XQb —^.a y

On en déduit que ^ est une intégrale première homogène de Xq donc cuk avec

c g C et k g Z. On résout le système en utilisant les formules (1), En calculant le

poids de Hft à partir des formules d'un coté et à partir du poids de Qr/ de l'autre, on
obtient la condition sur l'ordre du pôle en a.
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Deuxième cas, q\\ =0. Comme S„ a 3„ 0 et 3„ a £2" o 0, on a soit E„
°

o ®i lös soit 3„ q q
cw^lo- En reprenant les équations différentielles données

par 15 on obtient le résultat annoncé,

Preuve de la proposition 2.11. Nous allons maintenant calculer S„_5 et aboutir à

une contradiction.

Premier cas, q\\ ^ 0. Dans ce cas, Sn est égale à _la/b bi\ ßo écrivant le

coefficient de -E? dans (13), on obtient

,„—5 Af2°|o+ 3„ A */v 0.

Ceci implique que

a b
E„._5 Aa>i|o + B qu ~ _^j xdy

avec A Ç + B ~ab 0. En écrivant le coefficient de Y s dans (14), on obtient

3„ A 3„_5 + Ew-5 A Sj =0

Ceci donne / 1 b/a V
-ajb -ï 0, c'est-à-dire

A t>
1 b'a

—a/b —1

avec l une fonction quelconque. On en déduit ensuite que

s1

avec t fonction quelconque. Considérons maintenant l'équation différentielle portant
sur S„_5 que l'on déduit de (15) ;

ix0d ü,i—5 + i j_d ü,i — m
' dy'

1 "/00\ / ~(oi\ w
~

y'1 À1 °J ^n—5 - y
V o o/ "

Calculons les termes ci-dessus :
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Xçt+aXot \
ix0dE„-5 [

' "s V-/ y- - 1^0^
y —2^XqX-\--^2 — ^-Xqî —Xoi—aXot

+ l bXot~ay' -ÇSJ ?r+£*><-by' \ wolo
\-X(jt-aXot+^yl -bXot+ay'

+ (b- \ (da db \
-ta i y — + xy' { -dU) ~da +1 'x°d3n '

,j_d X J if ls +*#
db ®#p \
dyf

3a
3/ I

/ y aj? 9/ /
+%

(A \ da db \
-äa)

[(%)• i-s] ' < 2 n ' qlo + t
0 -

^2 lo

+U. A) **+*KlS). s„]:

[(o o) • H«] T afb (fl®llo + M>lo)-

Parmi les équations que l'on obtient en identifiant les coefficients, on trouve les

deux équations suivantes

a b t db x
X0t 2—y + ——

b a2 v'2 dv' b
b î a~ d femXot ~ ~~a V2 ~ ~by ~ bW \b) X

En remplaçant a et b par leurs valeurs (lemme 2.14), on obtient l'équation suivante

pour I :

„ 3w l C i a 'y
0

i î» "â + w> [x +
>x + 2é y'L 27 V yy

2cH—( x ~b 2—i j y H—7r"A' z.ï x + 2—j 1

—-y.
f 2c r--2. ï \ :Ï

7/ ys •
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On résout cette dernière équation en posant t k 3lly On a alors

XqX ly'x2 + | I 6 y + 6u -^2^ X +

La fonction k est donc un polynôme en % de degré inférieur à trois. Par homogénéité
sous S, k est de degré 2. On résout les équations portant sur les coefficients de k et
on obtient finalement

i
x + 2y 9 / «H

y
3» y

où d est constante. L'équation satisfaite par t est alors

J \ i i
*0< -t h+é)s*

(:v + 2r) y
1

2 + I28,,/)
/2x + 2v

m v ILaf / *+ 4(k -IY--9—- (2| i v • 2-
u v 3 g \ y

yPuisque X(,/ a un pôle d'ordre 2 le long de.r + 2— 0,t doit avoir un pôle d'ordre 1 :

t + ÏQ + i-i x + 2—- j + ?2 x + 2—
x + 2 2)

y, y j \ y
3 2

Onaalorsf-i — ^(48y-M) etXcù-i yr y, ce qui est impossible. Il n'y a pas

de solution polynomiale à l'équation portant sur t. Il n'existe donc pas de «.vL-suite

pour le feuilletage avec rj n Y 0.

Deuxième cas, gu est nulle. Dans ce cas, H„ c®k ° cojlo. Calculons S„_5. Les

conditions E„ A S„_5 + E„_5 A E„ 0 et E„_5 A <y°|0 + E„ A 0 donnent

^n—5 —
~e °\ o, / o o\
d g )®llo+ (.«o '^lo °k fi' i *dy.

ctr 0 '

En reprenant l'équation (15) et en remarquant que 3„ est fermée, on obtient

an—5 — ,7r
00
1 0 1—5

0 1

00

qui domie

-Xoe 0 \ o. / 0 0\ o /0 0\ 1
o, / 0 0\ 0|

X0d Xoe) 0)1 lo + \Xm 0) ®2'0 + [ e 0) ^lo " (e** 0) y ^
y

-cuk 0 1

o -eu* + ^ü)®i|0-
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muii» »iuveniles /i f t: — V-J

et Xqd 3cilk-jr.

Ceci donne les équations suivantes Xge eux' et Xq cl -^f, c'est-à-dire c ciry
y/2 '

Lemme 2.16. L'équation Xc, R n'a pas de solution rationnelle.

Preuve. On déduit de cette équation que Äff 0. D'un autre coté le poids sous

E de R doit être égale à 4 donc ff 0. En écrivant l'équation dans les coordonnées

x, y. u, on obtient :

(4.V3 + II) *~7T~ + «J^l -

oy 4yJ + a

où R Ro{y, u + y7^i (y, u). Si cette équation admet une solution ratiormelle, elle
S'écrit Ri 4 3+u avec P polynomiale. En calculant le coefficient du terme de plus
haut degré en y dans l'équation satisfaite par P, on vérifie que P ne peux pas être

polynomiale.

L'équation sur d n'a de solution rationnelle que si c est nul, ce qui contredit
le choix de n. La matrice de 1-formes 711 g ne peux donc pas avoir de pôle en a.
Mais d'après le lemme 2.3, elle ne peux pas ne pas avoir de pôle. Il n'existe donc

pas de matrice de formes à coefficients rationnels satisfaisant les équations de Œ11„.

Ceci prouve qu'il n'existe pas de i/.vÇ-suite pour le feuilletage donné par la première
équation de Painlevé,

3. Irréductibilité de Pi

Dans cette section, nous allons utiliser le groupoïde de Galois du feuilletage défini

par Pi pour montrer son irréductibilité. Nous commencerons par définir ce que nous
entendons par feuilletage réductible. En utilisant les notions de « type différentiel »

et de « degré typique de transcendance différentielle» de Kolchin, nous montrerons
ensuite que le groupoïde de Galois d'un feuilletage réductible est plus petit que le

groupoïde de Galois de Pi.

3.1. Feuilletages réductibles. Dans [31], une solution particulière d'une équation
différentielle d'ordre 2 est dite réductible si on peut l'exprimer rationnellement après
avoir résolu successivement des équations différentielles linéaires (ou associées à

un groupe algébrique) et des équations d'ordre 1. Cette définition d'irréductibilité ne

concerne que les solutions particulières de l'équation indépendemment de l'équation.
Dans l'esprit de la délinition du groupoïde de Galois, nous allons définir une notion
de réductibilité « globale » du feuilletage i.e. de réductibilité de la solution générale.
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Soit K un feuilletage de codimension deux. Les feuilletages que nous considérerons

comme plus simples que !F sont les feuilletages de codimension un d'une

part et les feuilletages donnés par une coimexion linéaire (ou associés à un groupe
algébrique) de l'autre ainsi que leurs versions relatives le long d'un feuilletage de

codimension un. Dans un autre contexte, ce type d'extensions est étudié dans [6].
Soient (K. 3i 3„ un corps différentiel. On notera Tk le K-espace vectoriel

engendré par les dérivations, son dual et \d\, dn} la base duale de {3i,..., 9„}.

Définition 3.1 ([6]). On dira qu'une extension différentielle K c L est une extension
fortement normale de K relative en codimension q s'il existe un sous-corps Q de

K engendré par q éléments fonctionnellement indépendants tel qu'en notant K_ le

corps K muni des dérivations 'I'k_ D. ker dh et ßalg la clôture algébrique de Q,

l'extension K_ <g> (P1'8 Ci® ôalg est fortement normale.

Une extension fortement normale a un groupe de Galois. Dans |6|. les dérivations

n'appartenant pas à Tjç sont prises en considération pour étudier l'extension. Ceci

permet de définir un groupe de Galois pour l'extension K c L, c'est un groupe
algébrique différentiel.

Exemple 3.2. Considérons le champ de vecteurs X<> ^ + v'7^+6 v2 A-. Ce champ

admet une intégrale première rationnelle u ya — 4y3 et une intégrale première
dans une extension fortement normale relative en codimension un de C(x, y, y') :

H x — f ,dy Son groupe de Galois classique est (Gfl(C(*<)aIg). Son groupe
V4r+»

de Galois au sens de [6] est un sous-groupe algébrique différentiel de Gfl(C(M)dlff

isomorphe à +)2.

Définition 3.3. Un feuilletage F de codimension deux sur C" est dit réductible s'il
existe deux integrales premières dans une extension différentielle Kp de C(mj %
construite par extension successives

CÇvi, x„) K0 c Ki c C Kp

où les extensions intermédiaires K, c Ki+\ sont

- des extensions algébriques,

- des extension fortement normales [15],

- des extensions fortement normales relatives en codimension un,

- des extensions par une intégrale première non constante d'un feuilletage de

codimension un, i.e. K, + \ Ki({H)) avec dll a m 0 pour une 1-forme
intégrable à coefficients dans Ki.

Cette définition se généralise aisément aux feuilletages de codimension
quelconque. Par exemple un feuilletage de codimension un est réductible s'il admet une
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intégrale première dans une extension fortement normale. Ces feuilletages sont
rationnellement transversalement projectifs.

Dans le cadre de cet article, le théorème que nous allons prouver est le suivant.

Théorème 3.4. Le feuilletage défini par P\ est irréductible.

La preuve est donnée dans la section suivante. Dans un premier temps nous prouvons

que les feuilletages réductibles admettent des intégrales premieres satisfaisant

un « gros » système d'équations aux dérivées partielles. La taille de « l'espace des

solutions » de ce système est mesuré par le « type d'une extension différentielle »

défini dans la section suivante. Le pseudo-groupe d'holonomie du feuilletage fixant
les intégrales premières locales (lorsque cela a un sens), ses éléments satisfont aussi

un sytème d'e.d.p. La taille du groupoïde de Galois nous donne une borne inférieure à

la taille de ce système d'e.d.p. Dans le cas du feuilletage donné par P\, cette borne est

supérieure à la taille de l'espace des intégrales premières particulières d'un feuilletage
réductible.

Dans [7] et [36] apparait une notion d'irréductibilité basée sur les considérations

précédentes.

Définition 3.5. Soient P feuilletage définie par une 2-forme fermée y sur C" et

I P(P) la <©-sous-variété de J(C" -* C2 définie par les composantes de la forme

dH\ a dH2 — y, H\ et II) étant des coordonnées au but. Le feuilletage P est dit
réductible au sens de Drach-Vessiot ou D.V.-réductible si IP(P) admet une D-sous-
variété propre.

La preuve de l'irréductibilité du feuilletage défini par la première équation de

Painlevé passe par la preuve de sa D.V.-irréductibilité.

3.2. Types d'une extension différentielle et preuve du théorème 3.4. La définition
du type d'une extension de corps différentiels est: basée sur un analogue différentiel
du polynôme de Hilbert pour les D-variétés introduit par Kolchin sous le nom de

«polynôme de transcendance différentielle » ([15], chapitre II). Rappelions d'abord
la définition du type d'une -©-variété de sections de Z sur X.

Définition 3.6. Soient Z une variété sur X et % une © -variété irréductible de ./ (Z/x)
On définit la croissance de % comme la suite d'entiers cg dim.g Le type de %

est le monome alb tel que % aib.

Dans [15], chapitre 11-12, le polynôme interpolant la suite cg pour de grandes
valeurs de I est appellé «polynôme de transcendance différentielle», Dans [15],
chapitre 11-13, les entiers a et b sont appelés respectivement « degré typique de
transcendance différentielle » et « type différentiel », Nous utiliserons la terminologie de

la définition 3.6 sans explorer les propriétés particulières de a ou b.
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Exemple 3.7. La croissance de la L)-varié lé J(Ç" -> Cp) est Ct • Son

type est

Exemple 3.8. Soient F un feuilletage de codimension un de C" défini par une 1-

forme &> et I P(F) la .©-variété des intégrales premières i.e. la sous-D-variété de

./(" -+ C) définie par l'idéal différentiel engendré par les composantes de d II a o>.

La croissance de tP(F) est #i l + 1.

Exemple 3.9. Soit IF un feuilletage de codimension deux de C" donné par deux
formes a>\ et a>2. La <£>-variélé IP (F) des intégrales premières de F est la sous-D-
variété de /(„ —> C2) dont l'idéal est différendahlement engendré par les composantes

de dH\ a ù)\ a «2 et de d II) acdiA cio%. Sa croissance est ce (£ + 2)(£ + 1).
Si de plus le feuilletage préserve une forme volume transverse, la croissance de

la F)-variété des couples d'intégrales premières compatibles au volume est ci
l(I + 2)(f,Fl)+I + h

Exemple 3.10. Soit V un espace vectoriel muni d'une connexion V intégrable sur X.
Encoordonnées locales, V V (y^+Aj)dxj cl la ,0-variété des sections plates de V

sur X est définie par l'idéal différentiel engendré par les équations \2' +
0 Sa croissance est constante q diinx V. Elle est indépendante de l.

La définition donnée par Kolchin dans le cadre des extensions de corps différentiels
se déduit de la définition précédente de la manière suivante. Soient (K,di 3„)
un corps différentiel et L une extension différentielle de K. Choisissons p éléments

yi Xj, engendrant différentiellement L sur K. Soit I le noyau du morphisme
K (Y YP) —> L. Le corps L est alors le corps des fractions de la F)-variété
au-dessus de K définie par I. Notons % cette F)-variété.

Lemme-Définition 3.11 ([15]). Le type îl/k de K c L est le type de %. Il ne dépend

que de l'extension K a L.

Preuve. Soient yi,..., yp et zi, • • •, Zq deux systèmes générateurs de L sur K.
Notons % et Z les cD-variétés au-dessus de K qu'ils définissent. Par définition, il existe
des fractions différentielles telles que yj(z)- Soit i l'ordre maximal de ces

fractions. Elles définissent une application rationnelle dominante de %\ sur Zo. Par

dérivations on obtient des applications dominantes de y.;+t sur Z,. ce qui implique
c(y)i+e > c(Z)t- De la même manière, c(Z) > ci y a. Ceci prouve le lemme.

Exemple 3.12. Le type d'une extension fortement normale est fini.

Exemple 3.13. Soient (K. '<)„ a> une 1-forme sur K (i.e. un élément du dual
du K -espace vectoriel engendré par les dérivations) et L K({H}) une extension
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différentielle engendrée par une indéterminée H satisfaisant dH a co 0. Le type

ti/K est linéaire.

Exemple 3.14. Soient K c L une extension fortement normale en codimension un et
§Hj dn une base des derivations telle que Tk_ KdH 1- K<),,_|. L'extension
étant fortement normale par rapport à Tk_, on peut trouver une base {ttu /f,} de /.

sur K telle que %I| soit algébrique sur K(II\, Hp) pour tout i et 1 < j <ft-L
Le type de L/K est donc linéaire.

De la même manière que pour le lemme 3.11, on prouve le lemme suivant.

Lemme3.15. Soit K r K \ r K2 une suite d'extensions différentielles. On a l'égalité
suivante :

Ogjjfï ~oo tK2/Ki + tKx/K-

Preuve. Soient yi yp une base différentielle de K \ sur K et ai z„i une base

différentielle de K) sur K\ ; les y et les z forment une base différentielle de K) sur
K. Notons y. la <£>-variété sur K définie par la base des y, Z celle sur K\ définie

par les z. et T celle sur K définie par les y et les z. Ces bases ne sont pas les bonnes

pour prouver le théorème, nous allons en construire d'autres. D'après le théorème de

Ritt-Raudenbush, il existe un entier q telle que l'idéal de Zf pour i > q soit engendre

par les dérivées d'ordre t — q des éléments de l'idéal de Zq. Les éléments de cet idéal
sont des polynômes différentiels d'ordre inférieur à q en les z à coefficients dans K1.
Soit r l'ordre maximal des dérivées des y intervenant dans l'écriture d'une base de

l'idéal de Zq. Choisissons comme nouvelle base de K? sur K1 les ~ et leurs dérivées

jusqu'à l'ordre q et pour base de K\ sur K les y et leurs dérivées jusqu'à l'ordre r.
Notons y, Z, T les 5)-variétés obtenues avec ses nouvelles bases. L'égalité

c(T)i c(ffh + c(Z)e

prouve le lemme.

Lemme 3.16. Un feuilletage de codimension deux réductible est D.V.-réductible.

Preuve. L'existence de deux intégrales premières indépendantes dans une extension
différentielle du type réductible (définition 3.3) assure l'existence d'un idéal
différentiel dans <)/1>. y En effet, considérons une telle extension C(x, y, y') c K cl
l'application 0/pçy) -v K qui envoie II\. Ily sur les deux intégrales premières.
Le lemme 3.15 nous assure que le type de K est linéaire. Le type de / P(JF étant

quadratique, l'application précédente a un noyau non trivial que nous noterons I. Le

type de la D-variété définie par 1 est linéaire.
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Preuve du théorème 3.4. Nous allons prouver que le feuilletage n'est pas réductible
au sens de Drach et Vessiot. Considérons l'espace /(G3 —> G2). Le 43-groupoïde de

Lie /*(G3 -> G3) agit sur cet espace par composition à la source. Soit I un idéal
différentiel réduit de Oj^ré rrf) définissant une sous-43-variété % de cet espace.
Nous appellerons stabilisateur de 1 (ou de %) et noterons Stabi l (ou Slabi ^ le

43-groupoïde de Lie maximal laissant % invariante. Notons cSOUrce la composition à

la source :

Source : (/*(G3 Hr G3), t) X0 (/(G3 -> G2), i) -> /(G3 -* G2),

l'idéal du stabilisateur de 1 est le plus petit idéal différentiel % c ö/qc3-^3) tel

qu'en dehors d'une hypersurface S c G3 on ait les inclusions suivantes

«source^ + $Cl + $tà C*oaIceI + i* $ C X + $.

À partir de ces inclusions, on montre que / est l'idéal d'un 43-groupoïde de Lie
(voir par exemple [4] Considérons IP P la 43 -variété des intégrales premières du

feuilletage P défini par Pi. C'est la sous-43-variété de /(G3 —> G2) décrivant les

couples d'intégrales premières. Elle est donnée par l'idéal différentiel réduit engendré

par les deux équations X\ H\ et X\H2 où (II\, fh) sont des coordonnées sur l'espace
but. Le stabilisateur de / PÇST est le 43-groupoïde de Lie Aul l (F dont les solutions
sont les difféomorphismes formels F satisfaisant les équations différentielles V*X\ a
Xi 0. Soit 1 un idéal différentiel premier de 0/p;: ï, et 1 sa préimage dans

0/(C3-s-c2) • Le stabilisateur de I est par définition le 4)-groupoïde de Lie Stab(I) D

AutlP"). Plaçons nous au voisinage d'un point régulier de Jfj et choisissons une
coordonnée tangente s et deux coordonnées transverses t\ et ti. Dans ces coordormées

analytiques, l'idéal I admet un système de générateurs ne dépendant pas de f ([4],
[5]). Tous les flots locaux de X\ laissent donc I invariant. Autrement dit, Stab(I) est
localement admissible, donc admissible. On obtient l'inclusion suivante

Gal(P) c f] Stab(I)
X especdlffWip(fyi

où specdlff (0/ /<, /-, est l'ensemble des idéaux différentiels premiers de 0/ i>, y,. Nous

avons déjà calculé le 4)-groupoïde de Lie GaHJF), Les stabilisateurs des idéaux
différentiels de 0/p(jr) doivent donc contenir le groupoïde de Lie d'invariance de la
2-forme fermée définissant le feuilletage.

Si le feuilletage est réductible, le lemme précédent nous donne une idéal
différentiel I dans &ip(S} de type linéaire. Considérons le stabilisateur de I, Stabil), et
le 43-groupoïde de Lie des transformations de G3 fibrées sur l'identité en x, Inv(x),
La projection sur l'axe des x étant transverse au feuilletage, le 43-groupoïde de Lie
Aut(F) ninv(x) agit simplement transitivement sur la 43-variété / /'( Jr). Par

conséquence le 43-groupoïde de Lie Stabil) D Inv(x) agit simplement sur la 43-variété
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définie par I. Son type est donc linéaire. Le groupoïde Stab(I) n Inv(.t) est donc
strictement plus petit que (lal(F) H Inv(.r), ce qui est impossible d'après la définition
du groupoïde de Galois. Ceci prouve le théorème.

Annexe. Classification de Cartan ; preuve du théorème 1.36

Dans cette annexe, nous reprenons les arguments de [3], pp. 134 -194, pour prouver
le théorème suivant.

Théorème 1.36. Soit F un feuilletage de C" de codimension deux, défini par une

2-forme fermée y. Le D-groupoïde de Lie Inv(y) d'invariance de cette forme est un

rD-groupoïde de Lie admissible pour F. Si le groupoïde de Galois de IF n'est pas
Inv(y) alors on est dans un des cas suivant :

- 'IF admet une intégrale première rationnelle ;

- il existe une l-forme algébrique intégrable s'annulant sur F ;

- il existé un vecteur de l-formes îl° | définissant le feuilletage et une
V®2 /

matrice de l-formes C!1 de trace nulle tels que

ein0 n1 a n° et dn^n1 au1.

Soient .to un point régulier du feuilletage, 0 - |xg la forme transverse d'ordre q de

F et 0"'h ses composantes dans la base monomiale sur Jq (y (C2, 0)). Les équations
de structures s'écrivent

"F=(XK" (XX a^i+1
b\-\-b2=b b-[+b2=b

pour a+ b < q — 1. Nous complétons ces formes en une base des formes transverses

au feuilletage sur Aut (F )?+i|xo Rq+\(F) avec des formes«"'6 pour a+b q +1
cl i 1,2 satisfaisant les équations de structures d'ordre q + 1 :

Cl-\-\. /yO.O i Q,*b~|~1 /yO.O i i 7

d0i coi A 6^ + coi A ^2 + ' ' ' ' a + b q.

Ces formes co ne sont bien définies que modulo les formes d'ordre 0. Les formes
9 étant invariantes, les formes m ne le sont que modulo les formes d'ordre 0. Soit
% un :'û-groupoïde de Lie transitif admissible pour F et p l'entier minimal tel que
y,p fi Imv( y )/;.. Nous allons examiner les équations de structures satisfaites par les

formes invariantes sur certaines orbites de fp\x§ et en déduire successivement que

- p < 2,
- si p 2, les équations de structure sont de type asl±,
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- si p 1 il existe une combinaison linéaire des formes transverse d'ordre 0

intégrable en restriction à une orbite.

Lemrne A.l. Quitte à modifier la suite des formes de Carias, les restrictions des

formes sur une orbite de Inv(y) |XÛ satisfont 0"+1 b + ' 0.

Preuve, La forme l'y est une forme invariante d'ordre 0. Elle est donc égale à

h a &2'° où h est un invariant différentiel d'ordre 1 de Inv(y) donc constant en

restriction à une orbite. La forme d°'° A esl donc fermé ce qui implique 0b< -\-

d2"1 /jd00 + Jd0' avec h et k des constantes. En faisant agir le difféomorphisme

/(xi, ,ï2;) (vi + hx\, x-2 + fctfï par composition à la source en xq, on trouve une
nouvelle suite de formes invariantes commençant par les mêmes formes d'ordre 0 et
dont les formes d'ordre 1 sont

pL°_n|u + kef°,&l° + IUA".'4u -A-éf°.

La nouvelle suite que nous noterons encore Ô vérifie donc d/'0 + Of1 0. La
restriction à Inviy )|Xi) de la différentielle extérieure de cette forme est aussi nulle.
Celle-ci est égale à

(dp0 + $2'1 A dp0 + Cl}'1 + d20,2) A d2°'0.

On en déduit que d}'C + d}'1 ùd0,0 et d}'1 + d0,2 ~dd°'°. En faisant agir
le difféomorphisme / t.vj. ,xçi (xi + |x2Xj,x2 — §viv2) en xo, on trouve une
nouvelle suite de formes invariantes satisfaisant les identités annoncées à l'ordre 2.

On construit la suite par récurrence. Comme

d(e"+hb+e2ib+h) (0"+2*b+d2+l'b+h)Ae°'0+(e"+lMl+e2'b+2)A02O+- -,

si le premier membre csl nul. on a "j;
'

o,' ' hof" et ''j' +d2 '1

—Ad0,0. L'action d'un difféomorphisme en xo tangent à l'ordre a + h -\- 2 a l'identité
permet de construire une suite vérifiant les identités anoncées à l'ordre a + b + 2.

Soit maintenant % un sous-.î) -groupoïde de Lie transitif strict de liiv(y) admissible

pour F.

Lemme A.2. Si un tel D-groupoïde de Lie n 'admetpas d'équation du premier ordre

supplémentaire alors il admet quatre équations supplémentaires d'ordre 2.

Preuve. Soit q l'ordre minimale des équations supplémantaires. Considérons sur
J*|AY| la base 0'J, 1 < /' < n 0 <\a\< q — 1 des formes (d'ordre q — 1) invariantes

et o/J, 1 < j < n \a\ q des formes complétant les 0 en une base de formes
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transverses. La condition
1 ' +fl|'fc+1 0 surInv(y) U0 implique que l'on peut

choisir des formes a> satisfaisant a>\ + œ|'è+1 0 pour a + b g — 1.

Soit E un invariant différentiel d'ordre q > 1. La forme dE Bco|'° +
1^=0 Atöf*" + (en n'écrivant pas les formes d'ordre g — 1) est invariante

sous l'action de JL+l, Les formes ta étant invariantes modulo ' et 02 ' les coefficients

B et Ai sont des invariants différentiels de %. Nous allons maintenant calculer
certains termes de la forme ddE restreint à %(l |A-0 à partir des équations de structures.
Dans un premier temps, regardons les termes contenant des formes d'ordre 1. Ils sont
de la forme y\ Aöj'1" + y2 A&}'° + "/3 aJ2'°. Les formes y,: s'expriment en fonctions
des formes 9 et o>. Les termes d'ordre q de ces formes proviennent de la différentielle
des termes d'ordre q de dE que l'on calcule grace aux équations de structures. On
obtient :

Yi (q + i)5«2'° + (q - JM#«!'0

+ y '(2i — q — llAjmj^
'

— (q + l)Ao<Wj ^ + • • •

Y2 -Aqu>2° + 2Aq_1û)f'0

+ y^,(q ~ i + 2)A(:_]Û>|'? + (q + \)Aoco^q + • • •

K3 ~(q + l)Ba)q -)-> y l / + IjAjûjj^ + Aitwp + • •

Comme ddE 0, on en déduit l'existence de trois formes identiques au formes y,;

modulo les formes d'ordre 0 et 1 s'annulant sur |A0. Comme elles sont indépendantes

de dE, elles proviennent d'invariants différentiels supplémentaires. En refaisant
le même calcul pour chacune de ces nouvelles formes, ort obtient qu'il existe une
forme s'annulant sur y,q _tlJ ayant un A; non nul. On en déduit ensuite que l'on peut
supposer que ce coefficient est Ao puis qu'il existe q + 2 formes s'armulant sur %q Al)

donc q + 2 invariants différentiels d'ordre q {q + 3 invariants d'ordre q donnent un
invariant d'ordre q - 1). Montrons maintenant que q est inférieur ou égal à deux.
Considérons les q + 2 invariants différentiels d'ordre q, Et, et leurs différentielles

dE} J2 Ajcû+ Bio)2'0 H où les Jkj sont des invariants différentiels de }J,.

Choisissons les combinaisons linéaires de ces formes :

i,q—i q.O
Yi ù) j -t et y_i ®2 H

Elles forment un système complètement intégrable de formes s ' annulant sur les orbites
de % et sont de plus invariantes sous l'action de %. Ces deux conditions impliquent que

dyi J2 4 Yi A yk• En réduisant cette égalité modulo les formes d'ordre inférieur

ou égal kq — 1, on obtient 0 YI r!'kc^'q ' a a>kl'q~k + <f 'cq'"' ' a «|'°. Ces

formes étant indépendantes, les coefficients c sont tous nuls. Les formes y sont donc
fermées. Regardons maintenant la différentielle de y,7. Cette forme contient le terme
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g2,° A (q-i)(q-2)ßq-2,i j ^ <jgLlxjgmc forme de ce produit extérieur ne se représente
dans dyq que multipliée par une forme d'ordre 1. La forme yq étant fermée, ce produit
extérieur doit être nul. Ceci implique que q est inférieur ou égal à deux. S'il existe

un invariant différentiel il est donc d'ordre inférieur à deux et s'il est d'ordre 2, il y
en a quatre.

Lemme A.3. S'il existe un D-groupoïde de Lie admissible pour F ayant un invariant
d'ordre 2 alors le feuilletage est défini par un vecteur deformes £2° et il existe une
matrice deformes Li1 de trace nulle telle que dQ,0 121 a £2 et di21 C21 a £2!.

Preuve. D'après le lemme précédent, il y a quatre invariants différentiels d'ordre 2.

Considérons les formes données par le lemme précédent et décrivant |.(0.

2,0 a1-,Û /A1,0 AO.K A0,1
Yl — <X>2 a\@2 ^2 c^\ + * *?

2,0 .1,0 ,.1,0 .0,K .0,1
Y2 — + &2@2 v2\y\ — c^\ H" * * *

>

1,1 I .1,0 I 7 ,.1,0 .0,1\ I .1,0 I

Y3 ~ û>i + CI3&2 +^3(^1 ~ @2 + c3@2 + '**>
0,2 .1,0 7 ,.1,0 .0,K .1,0

y4 — tüj + CI4B2 "L bufil —02 c4"2 ~r •

Ces formes étant invariantes, les coefficients a, b, c sont des invariants différentiels
de %. Ces formes formant un système complètement intégrable, elles doivent être
fermées comme nous l'avons montré au cours de la preuve du lemme précédent. En
calculant dy\ modulo les formes d'ordre 0, on obtient

j aO.K 2,0 oaI.O 2,0 /al.O AO,1, AI.Odyt — (ffj — &2 A a>2' — 302 A«) +ai(6j — Bf )Aff|

+ da 1 A $2'° + 2/qojj:' /,ju + dh\ a (0Ï'0 - B^1)

+ n"','"' A (#J*° - >",A + dc\ A "jU.

En examinant les termes contenant des formes d'ordre 2, on obtient les égalités

ilai —3/2, db\ |/i et dc\ 0. En remplaçant ceci dans l'égalité précédente,

on obtient les égalités ci 0, b% =^ai et o ~r,;i • 'xs mêmes manipulations
sur

- dyI donnent da2 2/3, <//a 4/2 et de2 — y% puis Âpa2 et

c% -ya\,
1

_ o

- dy$ dorment 003 y4,dbj -7-/2 et dey 2/2 puis 04 0, £>4 ^-03 et
3

,4
On en déduit que, en restriction à la sous-variété invariante Zi {a\ b\ ai
03 0}, les coefficients a,betc sont nuls. En faisant un bon choix des formes at, les
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formes restreintes s'écrivent alors :

2.0
Y1 '

2.0 .0,0
Y2 o>i + fmßi

1.1 .0,0
Yi 0>l +

0,2 .0,0
Y4 + mÉÇ

Les formes 0 restreintes satisfont les équations :

- $2'1) 2$ï'° A ff'1 + (h2 - h] )"2 A 01,

d'^A ',;U A - 02O?1) + h.362 A 01,

del'0 ~e2° A (0Î'° - d2,V) - /'l'A A 01.

En vérifiant que ces formes sont fermées, on obtient h\ h) h3 0. Les formes
9 restreintes sur Z2 {a\ h\ a? 03 0} vérifient les identités annoncées
dans la proposition. En choisissant ensuite une section / de Z2 pour la projection
but, on tire les formes sur C" : Q /*©.

Lemrne A.4. Si un âd-groupoïde de Lie admissible pour E admet des équations
du premier ordre supplémentaires alors il laisse un feuilletage de codimension un

invariant.

Preuve. Si un D-groupoïde admissible pour 3~, y., est décrit par au moins une équation

supplémentaire d ' ordre 1, il admet, suivant le théorème 1.18 au moins un invariant
d'ordre un supplémentaire.

Nous allons examiner SflW muni des deux formes invariantes 0°'° et02'u que l'on
k icomplète avec des formes cor pour j 1, 2 et k + | 1 satisfaisant les premières

équations de structure.
Supposons que %\ soit définie par un invariant supplémentaire E d'ordre 1. On

écrit
,11,0 u, 1.0 Ojv 0,1 .0,0 ,.0,0dh aa>2 + b((op — a>2 j + coq + «0p + £02

En choisissant correctement les formes co, on peut supposer h k 0. Les coefficients

a,betc étant des invariants, la forme y ta2' fb(û>}'° —cw2'
1

)+c<sq ' 1, obtenue

en divisant par a, est fennée. En calculant dy modulo y, on obtient b2 + c 0. En
écrivant ensuite que y est fermée, on obtient

m au 1
1,0 Uf 1.0 0,1-, ,2 0,1

{) db + a>2 •• 0(ft>| — a>2 — b a>1

En restriction à la sous-variété Z\ {b 0}, la forme 02'° est intégrable. Le pull-
back de cette forme par une section de Z\ donne une forme algébrique intégrable
s'annulant sur le feuilletage.
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Supposons que y,\ soit donné par deux invariants E\ et E%iS Les coefficients des

formes œ dans les différentielles dE\ et d Ky sont des invariants. En prenant des

combinaisons linéaires de ces formes, on trouve les deux formes invariantes

1,0 0,1 aW i / Û0,0
yi a>2 + a uq +«icq' + <

s 1,0 0,1, 0,1 ûO.O fl0,0
y% (atj —a>2 + ba>l -+- +%% •

En choisissant correctement les formes«, on peut supposer que h% k\ k% /o
0. Ces formes s'amiulant sur les orbites de ^,ona<7/i (y y\ a y? el <7/2 o/i a/2.
Le calcul direct à partir des formules domie

<7/1 y\ A Yi + {da - 2ay2 + &/l) Auq'1,

<7/2 (<7ù + 2/i — byi) A uq'\

En se plaçant sur l'hypersurface Z\ {h 0}, la forme 0° 0
esl intégrable.

Supposons enfin que soit doimée par trois invariants. En effectuant les

manipulations précédentes, on obtient trois formes invariantes s'annulant sur y.\

1,0 a0,0 J ûO.O
/1 —co2 + «i(q + Â"i02 •

/ 1,0 0,1, fl0,0 ûO.O
Y2 (ö>i " ®2 + «2»! + *2^2 •

0,1 I 1 ûO.O ûO.O
yy (»] + kw\ + A. 3'A •

Quitte à choisir d'autres formes a>, on peut supposer h\ k\ ky h 0.

En calculant les différentielles et en vérifiant que l'on doit obtenir des formules

dyi Yl fiî'kyj A /a-, on obtient I12 /13 0. En restriction à Y\, la forme 9®'° est

intégrable (même fermée).

Dans le cas où % admet un invariant d'ordre 0, le théorème 1.20 prouve que le

feuilletage admet une intégrale première.
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