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On the space of metrics with invertible Dirac operator

Mattias Dahl

Abstract. On a compact spin manifold we study the space of Riemannian metrics for which
the Dirac operator is invertible. The first main result is a surgery theorem stating that such

a metric can be extended over the trace of a surgery of codimension at least three. We then

prove that, if non-empty, the space of metrics with invertible Dirac operators is disconnected
in dimensions n 0,1, 3, 7 mod 8, n > 5. As corollaries follow results on the existence
of metrics with harmonic spinors by Hitchin and Bär. Finally we use computations of the eta
invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply connected
manifolds with a cyclic group action. In particular this applies to spheres of all dimensions
n > 5.

Mathematics Subject Classification (2000). 53C27, 57R65, 58J05, 58J50.

Keywords. Eigenvalues of the Dirac operator, surgery.

1. Introduction

Let (M. g) be a Riemannian spin manifold, we will always assume that such a manifold

comes equipped with an orientation and a spin structure. We denote by M~ the

same manifold with the opposite orientation. The Dirac operator D8 is a first order

elliptic differential operator acting on smooth sections of the spinor bundle EM. If
M has a boundary we will only consider Riemannian metrics on M which have a

product structure in a neighbourhood of the boundary.
For a Riemannian manifold (M, g) with boundary 3M we denote by g) the

same manifold with the half-infinite cylinder ([0, oo) x 3M, éx2 F g'tgjrJ attached

along the boundary (here we abuse notation slightly by using the same symbol g for
the metric on M and the metric on M00). If M is closed, that is compact with no
boundary, we set (M®, g) (M, g).

We denote by CJ°(2M) the space of compactly supported smooth sections of
EM. On a complete Riemannian manifold (M, g) we denote by L2(EM) and
H1 (EM) the completions of C (EM) with respect to the L2-norm || • || and the first
Sobolev norm.
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If (M, g) is compact without boundary the operator D8 has a self-adjoint extension

to L2(EM) wilh domain //1 (LM). This is a Fredholm operator with discrete

spectrum [13, Chapter 3, §5], If (Mi g) is compact with non-empty boundary we
consider the Dirac operator D8 on the manifold (M0o, g) with cylindrical ends. In
this case we also have a self-adjoint extension to L2 £Moot with domain H1 £
see [6, Section 3.6.2],

Now suppose (M, g) is compact, possibly with boundary. The operator D8 is

invertible with a bounded inverse if and only if it has a spectral gap around 0, that is

if there is an e > 0 such that ||D4VII2 > '-IMI2 for all ip g L2(SMco).

Definition. Let M be a compact spin manifold. We dehne Rinv(M) to be the set

of Riemannian metrics g on M for which D8 is invertible with a bounded inverse.

By /\psc(;W) we denote the set of Riemannian metrics on M with positive scalar

curvature.

Let R(M) be set of all Riemannian metrics on M. If M is a closed spin manifold,

then Rim(M) is an open subset of R(M) in the C1 -topology, and if R'"y(M)
is non-empty, then it is dense in R(M) in the ("'"-topology for all k > I, see [4,

Proposition 3.2],

Proposition 1.1. Ifg « Rim(M) then g\dM g Rinv(3M).

Proof. Suppose that the Dirac operator for g\^M is not invertible. Then there is a

q> 0 such that Dg][dMq) 0. If we extend </> to the cylindrical end of (Mw, g) by
parallel transport in the normal direction and then multiply with a cut-off function
having small gradient we can construct compactly supported f on Mf°r which

11 h>8 11® /11 f 112 is arbitrarily small.

Definition 1.2. Let M, N be compact spin manifolds without boundary.

(1) Metrics g0, g1 e Rmv(M) are called isotopic if there is a smooth path of metrics

gt G RmY(M), t g M, such that g, g° for t < 0 and gt g1 for t > 1.

(2) Metrics g0, g1 g RmY(M) are called concordant if there is a metric g g
Rinv([0, 1] x M) such that g|{,:}>:M g',i 0, 1.

(3) Metrics g0 g Rim/(M), g1 g Rmv(N), are called bordant if there is a manifold
W and a metric gH g Rnw( W) so that 3< W, gw) (M, g°j u (N~. g1).

It is immediate that isotopy is an equivalence relation, that concordance and bor-
dance also are equivalence relations will follow from Proposition 2.1.

Idle Dirac operator is intimately related to the scalar curvature. From the Lich-
nerowicz formula (D8)2 (V*) ' V® + \ seal» it follows that RPsc(M) c Rmv(M).
There are corresponding relations psc-isotopic/psc-concordant/psc-bordant for metrics

in Rpsc(M). The Lichnerowicz formula implies that if two metrics are psc-
isotopic/psc-concordant/psc-bordant then they are isotopic/concordant/bordant.
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The principal idea of this paper is to study the space RmY(M) using techniques
from the study of Rpsc(M). In Section 2 we will look at ways of constructing Rie-
mannian manifolds with invertible Dirac operator, the most powerful of which will
be the extension of a metric with invertible Dirac operator to the trace of a surgery
of codimension at least 3. The main result of the paper is in Section 3 where we
use the Index Theorem to detect non-concordant metrics in RmY(M) in dimensions
n m 0, 1, 3, 7 mod 8, n > 5. The construction of these non-concordant metrics
uses known examples of "exotic" metrics in Rpsc(S") which do not bound metrics in
RPSC(D'1+1). This result shows that if RmY (A4) is non-empty, then it is discomiected,
which unifies and strengthens results by Hitchin and Bär on the existence of metrics
with non-trivial harmonic spinors.

Several questions concerning the relationship between Rpsc(M) and RmY(M) can
be formulated, For simply-connected manifolds the solution of the Gromov-Lawson
conjecture tells that these spaces are non-empty at the same time, is it further true
that the inclusion Rpsc(M) RmY(M) is surjective on ttq! Is the inclusion even a

homotopy equivalence? To formulate these questions for manifolds with non-trivial
fundamental group tt the space RmY(M) should be defined as the set of metrics for
which all Dirac operators with coefficients in flat C*tt-bundles over M are invertible.
Since the Gromov-Lawson-Rosenberg conjecture is known to fail for some groups
it seems unclear what to expect of the inclusion Rpsc(M) -* RinY(M) in general.

In Section 4 we leave the study of RmY(M). Instead we use computations of the

eta invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply
connected manifolds with a cyclic group action. In particular we find metrics with
harmonic spinors on spheres of all dimensions n > 5.

2. Constructions

In this section we will study three constructions of new Riemannian manifolds with
invertible Dirac operators from old ones.

2.1. Attaching isometric boundary components. Let M be a manifold with boundary

8M. Suppose that the boundary is a disjoint union 8 M 8+M u 8~M u 9°M
where 8+M N and 8~ M S N~ for some compact spin manifold N and where
9° M might be empty.

Suppose g g RmY(M) is such that gja+M sU~M A for some metric h on N.
For t >. 0 let (AT, g't) be (M, g) with the cylinder ([0, t] x N, dx2 + /?) attached by
{0} x N along d+M and by {/} x N along 8~ M. The manifolds M' depend on t but

are all diffeomorphic so we identify them.
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Proposition 2.1. Let (M', g't) be constructed from (M, g) as above. Then there is

T > 0 so that gf g R'"Y (Mr) for all t >T.

Note that the manifold M is not assumed to be connected.

Proof. Since g g Rmv(M) there is #S > 0 so that \\Dg(p\\2 > eg|M|2 for all q> g
L2(EM0o). Set e Ç and choose T > 0 so that t > T implies jj < Ç.

Let t ps T and take (p G Çg9 i YMf n Let x ' [0. Û X N [0, 1] be a smooth

function such that / ' near {()} x N, y =0 near {/} x N, and | grad y1 < 2. A
straight-forward computation shows that

\Dcp\2 > ||D(xmf + \\D({ 1 - x)<P) f ~ §1 gradx|2|^|2

so

H^llfojJxV fc y\\D(xV)\\[0j]%N + — X)<P)\\[oj]y:y ~

We dehne the spinor held f G Cq°(M0o) as follows. On M and on [0, oo) x 9°M
we set f q>. At d+M we hrst attach ([0, f] x N, dx2 + h) along {0} x N and set
i,// yep on hais piece, followed by f 0 on the half-infinite cylinder attached along
{t} x N. In the same way we attach ([0, f] x N, dx2 + h) at d~M along {r} x N and
there Wb PKf *CI~ ijf followed by f =0 on hie half-infinite cylinder attached

along {0} x Ah Using the above estimate we get

WD(P\\2m^ l\Dç\\i + \\D<p ll[oiOO)M0oM + llö^llfo,i]xjv

> II^VIIM + II Hp,oô)>:3°M

+ ill'^Clrtll^tfe# + illÄfP - X)w)llfo.rjxjy ~~ ^[[^ilpÄA

- ll-O^II[0,r»)>:9°M

+ WK^)'l|.ilaSr + m(l ~ x)#nf>4sJ?) ~ ji\\(p\\M!x

-èiiwl^-fJi^
> - ^Iflliç,

%(IMIM + ll^llfo,Qe:).x#M + il^Hpstpià1 +" IC ~~ X.l^llfojixw)

-$n*ii^
S f"{tJ9\\m + ~ pWl%,

>(f-f)Mlk
> e\\<P\\2M' ^iV1oo

Since qf (EM^) is dense in L2(LM'00) this shows that g', g Rim(M%
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Proposition 2.1 has the following corollary.

Corollary 2.2. Concordance and bordance are equivalence relations.

2.2. Generalized cylinders. Let M be a compact spin manifold of dimension n

and let gr be a smooth curve of metrics on M parametrized by r g I, where I is

an interval. The product M I x M equipped with the metric g dr2 + gr is

called a generalized cylinder over M. We are going to recall some facts about the

spinor bundle and the Dirac operator on a generalized cylinder. All these facts are

conveniently collected in [5 |.

The spin structure on M induces in a unique way a spin structure on M. The spinor
bundle on (M, g) is related to the spinor bundle on (M, gT) by S(Ta\M SjM if n

is even and E^ x)M E.,M if n is odd. Denote Clifford multiplication on EM by •

and Clifford multiplication on EM by *r. If « is even we have X »x q> v X q>

and if n is odd X *r cp ±v X (p for (p g E±M. Here v 3r is the normal of
{r} x M in (M, g).

Let q> be a section of EM. The Dirac operators on M and M are related by

and if«is odd the operator DSz acts on sections of EM by (Dq _ Letgr ihgr
and dehne die operator Dgr by <p J2" ;=i 8x (ei > ej)ei *t ^ej V where e\. e„

is an orthonormal basis of TM. Hie commutator of Vf and Dgl is given by [5,
Equation (23)]

[V,L D8r](/> -\T)grqi + I gracL" (tra.ig; ü *r <p - \ div^(g,) *r <p. (3)

Now suppose gr, t g [0,1], is a smooth curve of metrics in Rmv(M) with gT go

for r near 0 and gr gi for r near 1. Dehne metrics gt on M, [0, / ] x M by

gt dr2 + gr// for t > 0. Since the Mt are all diffeomorphic we identify them

as M.

Proposition 2.3. Suppose (M, gt is constructed from M and gr as above. Then

there exists T > 0 such that gt g Rmv(M) for all t > T.

Proof. Since gr is defined for r in a compact interval and since gr G Riav(M) there
is a constant G > 0 so that

v • Dgq> (Dft + § H -Xg)<p. (1)

Here II is the mean curvature of {r} x M in (M, g),

' ~ 2n (èr) • (2)

(4)
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|^tr#r(gr)|2<C, (5)

\gv(dTdvgt, dvgT)\ <C, (6)

j| - \DëTq> + | gradgr (trgî(gr)) •, # \ divgT (gr) *r #. #}|

< CÇlV^ff -H Iff},
11 scalgr | < C, (8)

Set $ 4=r and choose T > 0 so that

1 2C2 + 2C + 3 C

4c^—*—+? (9>

for t > T.
Take t > T. We extend gr to r g M by setting gr go for r < 0 and gr gi

for r > 1. Then {Mcn-gt) (B x M.dx2 + gr/t)> Take # G Cq°ÇLM00). From
(1) we get

\DgfJ'ç\2 + |vf'#|2 |(v • I)g< - jH)(p\2

+ {DSr/'(p, Vf#) + (Vf#, DgTftq)).

When we integrate over this gives

l|ö»%#<2||ög^||2 + 2|||i7Mä
/•

„ - - - (10)
+ ({Dg«f<<p, Vf#} + (Vf'#, Dg*«(p)) dvSt.

JMqo

We are going to estimate the terms on the left-hand side of this inequality. Define the

function 9X gr (dTdvgT, dvgr Then dTdvgd' ]'/, tdrgl For the last term in
(10) we have

ly{D%Xl'(p, Vf#} + (Vf#, DgTt'(p)) rfu*
JMqo

I (dr(Dgil'cp, q>) — (\ygt, Dgxlt~\(p, xp)} dvgVdx
JTS. J {rJxjH

f |3r f (DgT/'(p, (p.) dvgt/> — J (Dgt/'<p, (p)dxdvgtf> \ dx
Jm \ J{r)xM 4{r}>:M /

— I ([Vg>,Dgxn<P.<p)dvg'
JMoo

— f (j(DgTJ'(p, (p)9T/t + ([Vf, I)'' •' |#. #}) <7i)gf,
t/Moo
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so (10) becomes

\\DS*"(P\\2 < 2\\lß'q>\\2 + 2\\±Hq>f

t}>:M
1 I n\\ 112< \\D^'<f>\\z + c\\(Pr

I i2 rFrom (2) and (5) we get | \H\ < ^ so

n

2 t
Inserting (12), (13) and (14) into (11) we get

C

t
WD^'çf < 2\\D^(pf + 2^\

+ §(l|ögt/^ll2-HMI2)

+ 'T(\\D^'p\\2 + C\\(p\\2 + \\(p\\2)

or
- m if 3 C\ 0 m (C C2 + C

\\D <p\\ > j(l - UD^'tpf " (jy +
21

From (9) we get 1 — ^ > 0 so (4) tells us tliat

0 ,1/ 3C\ 1 (C C2 + C

2t)c \t2 2t
1 2C2 + 2C + 3 C

2C 4t fi
12

(11)

(12)

- L (j(D8l/c(p, <p)6y/t + ([Vf', DSr2']tp, cp)) dv8'.
JMoo

Since 9r(gr/t) jSr/t it follows from (6), (3) and (7) that

I q>)9T/t + ([V|r, I)8"- ' Jp.t p}) dv8'
JMoo

< ~ (IID^H2 + ii^H2) + j (IIV^H2 + ||p||2).

By (8) and the Lichnerowicz formula on (M, gr) we have

||V»#ff=[ I \Vg*i><p\2dv«n>dt

ni l)g*/t(p |2 —.
1

seal"' ' \(p\~) dvgT/rdt
1

<^M2- (14)



458 M. Dahl CMH

Since (\~ft E.V/^ 5 is dense in L2(EM0o) we conclude that gt g

The following corollary is immediate.

Corollary 2.4. Isotopic metrics are concordant.

2.3. Surgery. We are now going to construct a metric with invertible Dirac operator
on the trace of a surgery of codimension > 3 given such a metric on the original
manifold.

Let M be a closed spin manifold of dimension n and let S"~"' x Dm —> M be an

embedding. Let E be the image ot x {0}. Let W be the trace of the surgery on
M along E, this is constructed by attaching x Dm to M x [0,1] at the image
of S"~m x I)'" x {1} — M x {1} and then smoothing the corner where the attaching
takes place. The trace W is a spin manifold with boundary M u (M)~ where M is

the spin manifold obtained from M by surgery along E.

Proposition 2.5. Assume that W has been constructedfrom M as above with m > 3.

Suppose g g Rmv(M). Then there is a metric gw g Rinv(VF) such that gw |m g-

The proof is similar to the proof of Theorem 1.2 in [4], We need to introduce
some notation. Suppose X is a submanifold of a Riemannian manifold Y. For 0 < r
dehne the distance sphere and (he distance tube around X as Sx<r) {x g Y

disti.v. X) r} and Ux(r) |.v Y disti.v. X) < r}. For 0 < r\ < r2 dehne the
annular region around X as Ax(r\, n) {.r G Y \ r\ < disKx, X) < ry Let v be

the outward pointing unit normal of Sx,(r) and let dA be the volume form of Sx, (>

In [4, Lemma 2.4] the following lenuna is proved in the case where X is compact,
the proof also works in the formulation here.

Lemma 2.6. Let Y be a Riemannian spin manifold and let X c Y be a complete
submanifold of codimension > 3 which has a uniform lower bound on the injectivity
radius of its normal exponential map andfor which the secondfundamentalform of
Sx(r) is boundedforfixed r.

Then there exists 0 < R < 1 so that for any 0 < r < \R11 and any smooth

spinorfield q> defined on Ax(rt s 2/- >1 11
» satisfying

* Jkfi» dff ß G [r, (2r)1/11] and defines a differentiable
function of p,

* fsx(p) f) ^ infinite and non-negative for all p g [r, (2r)1/u],

it holds that
H^ll Ax(>\2r) < lOr^lkll^o
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ProofofProposition 2.5. Since g g Rmv(M) there is an e8 > 0 so that

HD^II3 >^|l]f||2 (15)

for all q> g L2(EM). Proposition 2.1 of [4] tells us that there is a constant Sq < 0 so

that for every .S) > 0 there is a metric g' ort M which is conformai to g and has the

following properties:

• g' is arbitrarily close to g in the C1 -topology on the space of Riemannian metrics,

• scalg > Sq on all of M,

• seal " > 2.S'| on a neighbourhood Uq of £.

Ihe eigenvalues of D8 depend continuously on the Riemannian metric with respect
to the (71 -topology, see for example [3, Proposition 7.1]. We can therefore find a

metric g' satisfying the above properties with Si —8So while (15) holds with the

same value of s8. Since g and g' are conformai and the dimension of the kernel of the

Dirac operator is a conformai invariant we get that g and g' are isotopic and bordant.
So if we prove the theorem for g' we will also prove it for g. We replace our original
g with f1.

Let r > 0 be a constant so small that

• Ux(2r) c U0,

• 2r )1 " R, where R comes from Lemma 2.6 applied to £ c .17,

• 2r )1 " R, where R comes from Lemma 2.6 applied to I x £ c IxM,
45rl/4 •

Let V be the trace of the surgery along £ c Ux(r), this trace is a manifold with
boundary and codimension 2 corners. We divide the boundary of V into a "horizontal"
part and a "vertical" part. The horizontal part consists of t/sfr) u (U)~ where U
is Us(r) after surgery along £. The vertical part is the cylinder [0,1] x dUx(r).
Ihe vertical and horizontal parts meet in the two comers, which are diffeomorphic to
9Us (r From [10] we know that we can extend the metric g on M to a metric gv on
L without decreasing scalar curvature too much. This construction can be perfomied
close to the surgery sphere and we get a metric on V with the following properties:

• gv is a product metric near the horizontal part of the boundary,

• gv restricts to g on the horizontal part l/x (r) of the boundary,

• gv restricts to dx2 + g on a neighbourhood L [0, 1] x Ax(r — <5, r) of the

vertical part of the boundary,

• scalg' > Si on V.
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Define (VF, gw) ([0,1] x (M — dx2 + g) U (V, gv) where the union is

taken along the common boundary [0,1] x dUy(r).
We first prove that g gw [jf Rnw(M). For a contradiction assume that there

is a non-trivial harmonic spinor held q> on (M, gj. Let y : M —[0, 1] be a cutoff

function with y 0 on t'yjn. y 1 on M — Uy(2r), and | grad y < y.
We can consider y also a cut-off function on M since it has support contained in

M — U M — U. Set Ij/ y <p. The spinor held if/ is supported in M — U where

g g and can be considered a spinor held also for (M, g).
y ~

Since scalg scalg > Si on U and scalg scalg > 2Si on Ay(r, 2r), most
of the norm of <p will be concenhated away from these sets. Lemma 2.2 of [4] (a

straight-forward application of the Lichnerowicz formula) tells us that

2 < tr«,nt _
' rijafi®'

WUAx(r,2r) ~ _ S0 M 9 M'

and it follows that

Wit > UWl-u^r) II^IIL(FuaS(x2,-i ^ iwl- «
Next we are going to show that q> has even less norm concentrated in the annular

region Ay(r, 2r) when compared to the larger annular region Ayir, (2r j1/11). This
will follow from Lemma 2.6 and the fact that q> is harmonic. To apply this lemma we
need to show that

Re / (Vg<p, (p) dA > 0 (17)
JSy(p)

for all p G [r, (2r)1/1J J. Choose such a p and set M U U Ay,(r, p). Then M is a

manifold with boundary 3M Sy(p) andscalg > Si on M. From the Lichnerowicz
formula we get

0=f ((Dê)2cp,<p)dvè
JM

I <(Vg)*Vg<p, <p) dvg + \ I scalg \ (p\2 dvg
JM JM

JdM

2

M'

Re fjV*fr$)dA= {V$<p,<p)U>
JdM JdM

and (17) follows since Si > 0. We now apply Lemma 2.6, which tells us that
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Using this estimate we compute

\\Dgni \\DHxv)\\2ä \\grädX <p\\2ä

rM<*0rl/4\\Kw,{2rm
<40rV%|||

which together with (16) and the assumption on r tells us that

\\Dgf\\i <45r1/4\\ f\\2M 2$#[I#[[|,
and this contradicts (15).

Let (Woo, be W. gw with half-inhnite cylindrical ends attached. Since D8
W

and D8 are botli invertible we conclude that the essential spectrum of Dg on W~^ has

a gap around 0, see for example [6, Proposition 3.24], To prove that g11 e R'"Y< W)
W

it thus remains to show that 0 is not an eigenvalue of Dg on Woo, that is to show
that there are no harmonic spinors in L2 (S VL-x)-

To get a contradiction assume that </> g I.2 (Y.V'/^i is a non-trivial harmonic
spinor held. Then cp is smooth and the pointwise norm decays exponentially on the

cylindrical ends, see for example [6, Lemma 3.21],
Let Vgo be V with the horizontal part of the boundary extended by half-infinite

cylinders. Then (Woo, gw (I x (M - I•'>; (r i. dx2 + g) U (V^, gv) where the

union is taken along the common boundary M x St/g(r|, Set </r </ o n.)ç where

X is the cut-off function on M dehned above and m : M x M -> M is the natural

projection. The spinor held p is supported in W00 — Loo M M fM ~ &£(/)) where
gw dx2 + g so we can consider $• to be a spinor held on (M x M, dx2 + g).

From [4, Lemma 2.2] applied to Loo U Äl> s(r, 2r) c W00 it follows that

II«Lm>!miL- (18)

We now apply Lemma 2.6 to M x E c IF x M. Tlris can be done since \<p\ decays

exponentially and since the positive scalar curvature on L^ makes the computation
for Equation (17) work also in this case. The conclusion is that

IMl|S,$<r,2r) < 1(>5/2|M|e(a(2,.}!/!!)•

Using this, (18) and the assumption on r we compute

\\Ddx~+8f \\2_xM \\DgW(X(p)\\2w^ II grad / -<p|||^

- JÏJJpIIIr.- 40rl,4ll^ll%g3i(r,(2f-)i/n)

< egH l/'ll|'xM
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which is a contradiction since the lower bound (15) holds also for the product Dirac
j 2 I W

operator /7 +". We conclude that the spectrum of D8 has a gap around 0, and

this finishes the proof of the proposition.

3. Detecting components of R"w (M) using the index

The alpha invariant of an n-dimensional compact spin manifold M without boundary
is an element a(M) g K Otl (M) which only depends on die spin bordism class of M.
The Index Theorem ofAdyah and Singer relates die alpha invariant of M to an index-
quantity defined using the kernel of die Dirac operator dehned with respect to some
metric. In particular we have the following

Proposition 3.1. Suppose M is a closed spin manifold with a metric g for which D8
is invertit le. Then a (M) 0.

Tire first and obvious conclusion is that Rmv(M) is empty if a(M) 0. We are

going to use the alpha invariant to distinguish non-bordant metrics in Rmv(M), for
this we need some specific manifolds with non-zero alpha invariant specified in the

following dieorem.

Theorem 3.2. For n 4k + 3, k > 1, there are (n + I)-dimensional spin manifolds
Y1, i g Z, with boundary 3Yl Sn, and metrics gY' g Rpsc(Y:), i g Z, so that

a(Yl Ux« {YJ)~) c„(i - j) where cn j<S 0.

For n 8k or n 8k + 1, k > 1, there are Qi + \ )-dimensional spin manifolds
Y', i 0,1, with boundary dYl S", and metrics gY g Rpsc(Yl), i 0,1, so that
a(Yl Uy* (F0)") £ 0.

Proof. In dimensions n 4k + 3, manifolds Y'. g
Y' with the required properdes

are constructed in [13, Example 7.6, p. 328] using methods of [9].

For n 8A" and n 8k + 1 let 7° be the disc D',+l and let gY be a positive
scalar curvature metric on 7° which is equal to the standard metric gs" on the boundary

S" and is product in a neighbourhood of the boundary. Let S be a lromotopy
(/? + l)-sphere wkh non-vanishing cf-invariant, see [13, Theorem 2.18, p. 93], and let
/o, f\ : D"+x -> I be two disjoint embedded discs. Let 17 be E with the interiors of
fo(D',+l and /i(D"+1) removed, then W is a simply connected /f-cobordism witii
boundary consisting of two components 3oV7 fo(S") and d\W f\(S"). By the

h-Cob(irdism The*»rem there is a diffeomorphism

(F, id, /): ([0, 1] X d0W, {0} x d0W. {1} x d0W) -> (W, d0W. dxW).
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Define F1 to be S witli the interior of f\ I)"+] removed and identify 9F1 with
Sn using fx. Then Y1 W U3oW- /o(D"+1). On W we set gyl (F~l)*(dx2 +
(fo )*gs") andon/o(D"+1) wesetg7 (Jq )*gY° Since g7 restricts to g5" on

Sn the dehnitions of g
v ht together to a smooth metric of positive scalar curvature

on F1. Finally

cAF1 US» (Y°n a((Z - int/i(D"+1)) fx(D"+lT) Ï 0

and we are done.

Dehne /?'' RPSC(S") by k' gY' \s».

Theorem 3.3. Let M be a compact spin manifold of dimension n and suppose g g

Rmv(M). Then

if n 4k + 3, k > 1, there are metrics g' Rimr(M), i g Z, such that g! is

bordant to g and g' is not concordant to for i ^ j,
• if ti 8A" or n 8A" + 1, k > 1, there is a metric g1 e Rmv(M) such that g1 is

bordant but not concordant to g.

Proof. We prove the theorem in the case n 4k + 3, the other cases are similar. Fix
i G Z. By Proposition 2.5 there is a metric g! on M # S" M which is bordant to

g u h' on M u S". Since the metric h' on S" is bordant to the empty manifold by the

bordism (Y', gY' we conclude from Corollary 2.2 that g! is bordant to g.
Denote by W, gw') the bordism between (M. g') and (M, g) we have just

constructed. The manifold W1 is diffeomorphic to the boundary connected sum of
[0, 1] x M with Yl.

Take i, j G Z and suppose the metrics g' and g7 are concordant. By Proposition

2.1 we can then find a metric with invertible Dirac operator on W" U (IT7)",
where the union is obtained by attaching the isometric boundary components (M, g)
to each other and by attaching (M. g' to (M. g7 through a concordance of the metrics.

Proposition 3.1 then tells us that a(Wl U (IT7)") 0. Since 1T! U (IT7)"
is diffeomorphic to the connected sum of S1 x M and Y' Uy» (F7 )" we get 0

</( U'' U (IT7)-) a(Sl X M)+a(Yi Us» (F7')") on F' Ux» (F7)") c„(i - j)
so i j.

By Corollary 2.4 this result implies in dimensions n 4k 3 that if Rmv(M
is non-empty, then it has infinitely many path-components. In dimensions n 8k,
8A" + 1 the result implies that if Rmv(M) is non-empty, then it has at least two path-
components. We conclude that in these dimensions every closed spin manifold has

a metric with non-trivial kernel of the Dirac operator, which reproves theorems by
Hitchin [12, Theorem 4.5] and Bär [3, Theorem A],
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4. Cyclic group actions and metrics with harmonic spinors

Let M be a compact simply connected spin manifold and suppose M —* N is a finite
covering with covering group G. We do not assume that the quotient N is spin or
orientable. Our goal is to find metrics on M with non-trivial harmonic spinors. The
idea is to use the eta-invariant to show that N has metrics with non-trivial harmonic
spinors for generalized spin structures, and then pull such a metric back to M. This
works under certain conditions on G and dim M, in particular we find metrics with
harmonic spinors on spheres in all dimensions.

Theorem 4.1, Let M be a compact simply connected spin manifold of dimension

n > 5 and suppose M N is a finite covering with covering group ïq (AO Z//.
(1) Ifn is odd assume that N is orientable:

(2) Ifn 2k is even assume that I 2 and that N is non-orientable with a Pin4"

structure ifk is even or with a Pin" structure ifk is odd.

Then M has a %/1-invariant metric with harmonic spinors.

Tire proof relies on work of Botvinnik and Gilkey |7|. Using results of [11] and

[2] the argument can also be made to work with other groups and other assumptions on
generalized spin structure on N. The proof will be given through a series of lemmas
in the rest of this section.

Corollary 4.2. For n > 5 there is a metric with harmonic spinors on the sphere S".

Proof. We obtain a metric with harmonic spinors on S" by applying Theorem 4.1 to
the covering S" -> P" where /'" is real projective space of dimension n. In odd
dimension P" is orientable, in even dimension P" is non-orientable and has a Pin1*1

structure as required.

4.1. Twisted spin structures and Pin structures. Following [7] we discuss twisted
spin structures and Pin structures.

4.1.1. Twisted spin groups and twisted spin structures. Let Z/2 be the group of
two elements written multiplicatively, Z/2 {±1}. Let

1 -* Z/2 -* % A G -* 1 (19)

be a central extension of a finite group G, this gives an action of Z/2 on f. The group
Spin(n) is a double cover SO(«), identifying Z/2 with the kernel of the covering
homomorphism gives an action of Z/2 on Spin(n). Dehne the twisted spin group

f(f. p. G) Spin(n) x; ,2 f where we identify (0, k) (—6, — k) for 0 Spin(n)
and k G f. The twisted spin group $(f. p., G) is a double cover of SO(n) x G.
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Let iV be an « -dimensional oriented Riemannian manifold with oriented frame
bundle SO(IV). A G)-structure on /V is a principal $(%,, ß. Oj-bundle

ß,. O' li.V and an equivariant covering $(§,, /r G)(N) -* SO(A0 which over

open sets U in a suitable open cover of A'trivializes as $(§,, //. G)xC7 ^ SO(«)xt/.
A manifold equipped witli a #($, ft G)-structure is called a #($, ß. G)-manifold.
The map ß gives an extension

1 -* Spiltm -* %{$, ß-G G -* 1,

tlirough this a ^, ß, G)-structure q, G)(N) on A' dehnes a homomorphism
ß : 77-1 (N) -> G as tlie composition of the holonomy of $(%. yu, G)(N) with ß. If
ß is the trivial homomorphism then there is a spin structure Spin(A0 on N so that

#($• G)(N) Spin(A0 xz/2 g.
Suppose M is a compact simply connected spin manifold such that M is an

oriented covering space of an oriented manifold N. Let G jt\(N) be the covering

group. In [7, Theorem 1.1] a canonical //, G)-structure on N with the property
that the map ß is an isomorphism is constructed. The extension (f,, //, G) is given
by the lift of the action of G on the frame bundle SO(M) to the spin bundle Spin(M)
and is split if and only if N is spin. The $($, ß. G)-structure on N is given by the

quotient of Spin(M) x.z/2 $ by G.

4.1.2. Spinor bundles and Dirac operators for twisted spin structures. Let N
be a compact oriented «-dimensional with a ßx G)-structure $(N). Let h be a

Riemannian metric on N. Let cf be a unitary representation of §, which is odd with
respect to the action of Z/2, that is a(—X) —a(X) for all f é We denote by
Rep°dd(g) ||1C semi_ring of odd unitary representations of Let A be the spinor
representation of Spin(«), it holds that A(—d) -A(A) for all 6 e Spin(«). Since
A (6 )<g>a (X) A —6 )<g>a (—XJ the tensor product A <g>a gives a unitary representation
of $. Let E"A' be tlie unitary vector bundle associated to $(N) via A 0 a, this is

a bundle of twisted spinors. As with ordinary spinors there is a Clifford action by
tangent vectors on XL" N, and the Levi-Civita comiection lifts to a comiection on
XL®N. The Dirac operator i)hjt acting on sections of XL" N is defined as usual.

4.1.3. Pin groups and Pin structures. The Clifford algebras Clifrl:!«! are dehned

as the universal algebra with unit generated by K" with the relations v -w + w -v
±2(w, w)t for v, w e M". The groups Pin±(«) are dehned as the multiplicative
subgroups of Clif (») generated by the unit vectors in MÄ. Dehne x ' Pin^«) —>

Z/2 by x(vi i-/, 1 (—11*' and 3d1 : Pin^t/il —O(«) by E±(.v): v h* /( v ).v •

v x_1. Then are two double coverings of O(«) which both restrict to Spin(«j —>

SO(n).
Let N be an «-dimensional Riemannian manifold with frame bundle 0{N). A

Pin111-structure on .V is a principal Pin1*1-bundle Pitr*5(N) together with an equivariant
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covering Pin±(Ai) 0(A), which over open sets U in a suitable open cover of A
trivializes as Pin± xU O (n) x U. A manifold equipped with a Pin"1"-structure

is called a Pin1*1-manifold. If the set of Pin"*1-structures on A is non-empty, then the

cohomology group //1 A: Z/2) acts simply and transitively on this set. So on a

simply connected spin manifold there are unique Pin"1"-structures given as extensions

of the unique spin structure.

4.1.4. Spinor bundles and Dirac operators for Pin structures. Let N be a compact
«-dimensional Riemannian manifold with a Pin"1"-structure Pin"1"(A). Let A be the

spinor representation of Pin"1" («), and let EA be the unitary vector bundle associated

to Pin"1"(A) via A, this is sometimes called a pinor bundle. As with ordinary spinors
there is a Clifford action by tangent vectors on E A, and the Levi-Civita connection
lifts to a connection on EA. The Dirac operator I)h acting on sections of E A is

defined as usual.

4.1.5. Pullback to the universal covering space. Let A be a compact Riemannian
manifold with universal covering space M. Assume that M is spin and that A has a

^-structure # (A) where $ #($,/x, or $ Pin"1". The pullback of #(A) to M is

given by an extension of the spin bundle over M. Incase# $.(§>, p, the pullback
of K:öfA is given by EM 0 Cd where d is the dimension of the representation a. In
case # Pin"1" the pullback of E A is given by EM. In both cases the pullback of
the Dirac operator on A defined using some metric is given by the Dirac operator on
M with the pullback metric.

Let M and A be as in Theorem 4.1. If « is odd A has a ${§,, p, G)-structure
for G Z//, and we say that (A, h) has harmonic spinors if i)hj' has a non-trivial
kernel for some a Repodd($). If « is even we say that (A. h) has harmonic spinors
if the Dirac operator Dh associated to the Pin"1"-structure has a non-trivial kernel. The

following lemma is now obvious.

Lemma 4.3. Let M and A be as in Theorem 4.1. If (A, h) has harmonic spinors
then the pullback of h to M is a Z/ l-invaricmt metric with harmonic spinors,

4.2. Positive scalar curvature on A. Using knownresults on the Gromov-Lawson-
Rosenberg conjecture we can prove the following lemma.

Lemma 4.4. Let M and A be as in Theorem 4.1. If M has no Z/ l-invariant metric
with harmonic spinors then A has a metric ofpositive scalar curvature.

Proof. The Gromov-Lawson-Rosenberg conjecture for compact manifolds with
finite fundamental group states the following [14, Conjecture 5.1]: A closed manifold
of dimension « > 5 with finite fundamental group admits a metric with positive scalar
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curvature if and only if all index obstructions associated to Dirac operators with
coefficients in flat bundles on N and its covers vanish. This conjecture is known to be true
in the situation at hand; for orientable manifolds with cyclic fundamental group by [8,
Theorem 1.1] and [15, Theorem A], for non-orientable manifolds with fundamental

group Z/2 by [14, Theorem 5.3]. So if N did not have any metric with positive scalar

curvature then the index and the kernel of some Dirac operator on a cover of N would
be non-zero. We could then take the pullback of a metric from A to M to produce a

Z/ /-invariant metric with harmonic spinors on M, a contradiction.

4.3. The eta invariant. Let M be a closed Riemannian manifold and let V be a

smooth vector bundle over M. Let P be an operator of Dirac type acting on the space
of smooth sections of V. For complex numbers z with large real part the eta function
of Atiyah, Patodi, and Singer |1] is defined as //(*. P) TtLi(P(P2)~(z+^f2). This
function has a meromorphic extension to C for which z 0 is a regular value, and

the eta invariant of P is defined as rfP) }(/;((), P) + dimker P).
For a closed Riemannian $(§.. p, G)-manifold (Aft ft) and for a s Repodd($) we

dehne rj(N, ft, a) as r](Dh'v). Let /?odd($) be the representation ring associated to
Repodd($) and let RQdd($) be the augmentation ideal consisting of virtual representations

of virtual dimension 0. The eta invariant rj(N, ft, a) is additive in a so we

may extend its definition to cf g R'm < f).
For a closed Phr1"-manifold (N, ft) we dehne q(N. ft) as q(Dh).

Lemma 4.5. Let M and N be as in Theorem 4.1. Let h°, hl be two metrics on N
and assume that M has no Z/1-invariant metric with harmonic spinors.

(1) If dim M is odd and N carries a $(%, p G)-structure then r}(N, h°,a)
1 (TV, If, a) for all a e Rgdd(g).

(2) If dim M is even and N carries a -structure then rj(N. h°) rj(N. ft1).

Proof. Let ftr, r g [0,1], be a smooth curve of metrics on N with ftr ft0 for r
near 0 and ftr ft1 for r near L Lemma 4.3 tells us that the Dirac operator of ftr
is invertible for all r. Dehne metrics ht on Aft [0, / ] x N by ft/ dr2 + hx/,
for t > 0. Using the same computation as in Proposition 2.3 we conclude that

(Aft, ft/) has invertible Dirac operator for t large enough when half-infinite cylinders
are attached at the boundary.

First suppose that dim M is odd and that N has a $(ff, //, G)-structure. Let a G

/\|:dd(ft.) be the formal difference of cf+, a~ g Repodd($) where dinio'+ dim u~.
The Atiyah-Patodi-Singer index theorem [1] tells us that

ind(Dh"a±) (dim cf±) f_ Â(g'") - e(p(N, ft1, a±) - tj(N, ft0, a±)).
Jn,
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Here ind(D/if :sp,± is tlie index of i)h,jy acting on the space of sections of the positive
half spinor bundle satisfying the Atiyah-Patodi-Singer boundary condition, A (hi is

the A differential form computed using the metric ht, and e ±1 is a constant

depending only on the dimension. Any harmonic spinor held satisfying the Atiyah-
Patodi-Singer boundary conditions extends to an L2 harmonic spinor held when

half-inhnite cylindrical ends are attached. Since ht has invertible Dirac operator we
conclude that hie index is zero. We get

r)(N, /?'. a) — r)(N, ft0, a) r](N, h1, if1") — r](N, ft1, a~)

— r)(N, h''. cf+) + q(N. ft1, a~)

E(dimo'+ — dimcf") /_ Â(gh')
'

Jn,

0,

which proves (1).

Next suppose that dim M is even and that N has a Pin±-structure. Since Nt is

then odd-dimensional there is no integral of a local index density in the index formula

for (Nt. ht), and we have

ind(Dh>) Kfz;i.V. hl) - r](N, ft0)),

where e ±1 is a constant depending only on hie dimension. Again hie index

vanishes since ht has invertible Dirac operator and we have proven (2).

4.4. Proof of Theorem 4.1. In the work [7] of Botvinnik and Gilkey hie space
RPSC(N) is studied for a compact manifold N which is either odd-dimensional with
a % %., /x, G)-structure and a finite fundamental group satisfying a certain condition
or even-dimensional with fundamental group Z/2 and a Pin±-structure. The authors

construct metrics in f?psc(Ai) with different values of the eta invariant as follows.
Assume ft G Rpsc(N). First a (disconnected) manifold (Nft') is found which
represents zero in an appropriate bordism group and has positive scalar curvature
and non-zero eta invariant. Hie disjoint union N u N' is then bordant to N and the

metric ft u ft/ of positive scalar curvature can be extended over the bordism to give
a metric ft1 G Rpsc(N). The eta invariant is hie same for psc-bordant metrics so

rj(N. ft1) t](N. ft) + t](N. ft/) ^ f)(N, ft).

ProofofTheorem 4.1. Assume that M has no Z/7 -invariant metric with harmonic
spinors. From Lemma 4.4 we know that N has a metric with positive scalar curvature.
As discussed above, the proof of Theorem 3.1 of [7] gives us two metrics on N with
different ^-invariant, which by Lemma 4.5 is impossible.



Vol. 83 (2008) On the space of metrics with invertible Dirac operator 469

References

[1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry.
I. Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. Zbl 0297.58008 MR 0397797

[2] B. Barrera-Yanez, The eta invariant of twisted products of even-dimensional manifolds
whose fundamental group is a cyclic 2 group. Differential Geom. Appl. 11 (3) (1999),
221-235. Zbl 0952.55004 MR 1726538

[3] C. Bär, Metrics with harmonic spinoff, Geom. Fund. Anal 6 (6) (1996), 899-942.
Zbl 0867.53037 MR 1421872

|41 C. Bär and M. Dahl, Surgery and the spectrum of the Dirac operator. J. Reine Angew. Math.
552 (2002), 53-76, 2002. Zbl 1017.58019 MR 1940432

[5] C, Bär, P. Gauduchon, and A. Moroianu, Generalized cylinders in semi-Riemannian and

Spin geometry. Math. Z. 249 (3) (2005), 545-580. Zbl 1068.53030 MR 2121740

[6] D. Bleecker and B. Booss-Bavnbek. Spectral invariants of operators of Dirac type on
partitioned manifolds. In Aspects ofboundary problems in analysis and geometry, Oper.
Theory Adv. Appl. 151, Birkhäuser, Basel 2004, 1-130. Zbl 1067.58017 MR 2072498

[7] B. Botvinnik and P B. Gilkey, Metrics of positive scalar curvature on spherical space
forms. Canad, J. Math. 48 (1) (1996), 64-80. Zbl 0859.58026 MR 1382476

[8] B. Botvinnik and P. B. Gilkey, The Gromov-Lawson-Rosenberg conjecture: the twisted
case. Houston J. Math. 23 (1) (1997), 143-160. Zbl 0884,53031 MR 1688827

[9] R. Carr, Construction of manifolds of positive scalar curvature. Trans. Amer. Math. Soc.

307 (1) (1988), 63-74. Zbl 0654.53049 MR 0936805

[10] P. Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with
boundary. Ann. GlobalAnal. Geom. 5 (3) (1987), 179-191. Zbl 0665.53040 MR 0962295

[11] P. B. Gilkey, The eta invariant of Pin manifolds with cyclic fundamental groups. Period.
Math. Hungern.: 36 (2-3) (1998), 139-170. Zbl 0965.58024 MR 1694601

[12] N. Hitchin, Harmonic spinors. Adv. Math. 14 (1974), 1-55. Zbl 0284.58016 MR 0358873

[13] I I. B. Lawsön, Jr. andM.-L.Michelsohn, Spin geometry, Princeton Math. Ser. 38, Princeton

University Press, Princeton, NJ, 1989. Zbl 0688.57001 MR 1031992

[14] J. Rosenberg and S. Stolz, Manifolds of positive scalar curvature. In Algebraic topology
and its applications, Math. Sei. Res, Inst. Publ. 27, Springer-Verlag, New York 1994,
241-267. Zbl 0804.57011 MR 1268192

[15] S. Stolz, Simply connected manifolds of positive scalar curvature. Ann. ofMath. (2) 136

(3) (1992), 511-540. Zbl 0784.53029 MR 1189863

Received August 22,2006

Mattias Dahl, Institutionen för Matematik, Kungl Tekniska Högskolan, 100 44 Stockholm,
Sweden

E-mail: dahl@math.kth.se


	On the space of metrics with invertible Dirac operator

