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On the space of metrics with invertible Dirac operator

Mattias Dahl

Abstract. On a compact spin manifold we study the space of Riemannian metrics for which
the Dirac operator is invertible. The first main result is a surgery theorem stating that such
a metric can be extended over the trace of a surgery of codimension at least three. We then
prove that, if non-empty, the space of metrics with invertible Dirac operators is disconnected
in dimensions = 0,1,3,7 mod 8, n > 5. As corollaries follow results on the existence
of metrics with harmonic spinors by Hitchin and Bér. Finally we use computations of the eta
invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply connected
manifolds with a cyclic group action. In particular this applies to spheres of all dimensions
n = 3.

Mathematics Subject Classification (2000). 53C27, 57R65, 58J05, 58]50.

Keywords. Eigenvalues of the Dirac operator, surgery.

1. Introduction

Let (M, g) be a Riemannian spin manifold, we will always assume that such a mani-
fold comes equipped with an orientation and a spin structure. We denote by M~ the
same manifold with the opposite orientation. The Dirac operator D? is a first order
elliptic differential operator acting on smooth sections of the spinor bundle X M. If
M has a boundary we will only consider Riemannian metrics on M which have a
product structure in a neighbourhood of the boundary.

For a Riemannian manifold (M, g) with boundary 0 M we denote by (M, g) the
same manifold with the half-infinite cylinder ([0, co) x dM, dx* + glaa) attached
along the boundary (here we abuse notation slightly by using the same symbol g for
the metric on M and the metric on My,). If M 1is closed, that is compact with no
boundary, we set (M, g) = (M, g).

We denote by C5°(X M) the space of compactly supported smooth sections of
M. On a complete Riemannian manifold (M, g) we denote by LZ(ZM) and
HY(ZM) the completions of C§® (X M) with respect to the L?-norm || - || and the first
Sobolev norm.
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If (M, g) is compact without boundary the operator D% has a self-adjoint exten-
sion to L2(X M) with domain H1(X M). This is a Fredholm operator with discrete
spectrum [13, Chapter 3, §5]. If (M, g) is compact with non-empty boundary we
consider the Dirac operator D% on the manifold (M, g) with cylindrical ends. In
this case we also have a self-adjoint extension (o L*(T Mxo) with domain H(Z M),
see |6, Section 3.6.2].

Now suppose (M, g) is compact, possibly with boundary. The operator D¢ is
invertible with a bounded inverse if and only if it has a spectral gap around 0, that is
if there is an & > 0 such that || D2¢||* > ¢|l¢||* forall p € L*(TMo).

Definition. Let M be a compact spin manifold. We define R™ (M) to be the set
of Riemannian metrics g on M for which D¢ is invertible with a bounded inverse.
By RP*(M) we denote the set of Riemannian metrics on M with positive scalar
curvature.

Let R(M) be set of all Riemannian metrics on M. If M 1s a closed spin mani-
fold, then R™ (M) is an open subset of R(M) in the C'-topology, and if R"™ (M)
is non-empty, then it is dense in R(M) in the C*¥-topology for all k > 1, see [4,
Proposition 3.2].

Proposition 1.1. If g € R™ (M) then glaym € R™ (M.

Proof. Suppose that the Dirac operator for g|sa 1s not invertible. Then there is a
¢ # 0 such that D# lav = (. If we extend ¢ to the cylindrical end of (M, g) by
parallel transport in the normal direction and then multiply with a cut-off function
having small gradient we can construct compactly supported » on M, for which
| D& yr||2/||4])? is arbitrarily small. O

Definition 1.2. Let M, N be compact spin manifolds without boundary.

(1) Metrics g%, ¢l € R™ (M) are called isotopic if there 1s a smooth path of metrics
g € R™(M),t e R,suchthatg, = g fort <Oand g, = g' fort > 1.

(2} Metrics g ¢l e R™(M) are called concordant if there is a metric g €
RIIIV([O’ 1] X M) SUCh that §|{E}XM = gI,i — O’ 1.

(3) Metrics g° € R™ (M), g' € R™(N), are called bordant if there is a manifold
W and a metric " € R™(W) so that (W, g¥) = (M, g®) L (N~ g).

[t 1s immediate that 1sotopy 1s an equivalence relation, that concordance and bor-
dance also are equivalence relations will follow from Proposition 2.1.

The Dirac operator is intimately related to the scalar curvature. From the Lich-
nerowicz formula (D#)? = (V#)*V# + I scal® it follows that RP*°(M) C R™ (M).
There are corresponding relations psc-isotopic/psc-concordant/psc-bordant for met-
rics in RP**(M). The Lichnerowicz formula implies that if two metrics are psc-
isotopic/psc-concordant/psc-bordant then they are isotopic/concordant/bordant.
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The principal idea of this paper is to study the space R™ (M) using techniques
from the study of RP**(M). In Section 2 we will look at ways of constructing Rie-
mannian manifolds with invertible Dirac operator, the most powerful of which will
be the extension of a metric with invertible Dirac operator to the trace of a surgery
of codimension at least 3. The main result of the paper is in Section 3 where we
use the Index Theorem to detect non-concordant metrics in R™ (M) in dimensions
n=0,1,3,7 mod 8 n > 5. The construction of these non-concordant metrics
uses known examples of “exotic” metrics in RP*°(S™) which do not bound metrics in
RPS( D1y This result shows that if R™™ (M) is non-empty, then it is disconnected,
which unifies and strengthens results by Hitchin and Biir on the existence of metrics
with non-trivial harmonic spinors.

Several questions concerning the relationship between RPSS(M) and R™ (M) can
be formulated. For simply-connected manifolds the solution of the Gromov—Lawson
conjecture tells that these spaces are non-empty at the same time, is it further true
that the inclusion RPC (M) — R™(M) is surjective on mg? Is the inclusion even a
homotopy equivalence? To formulate these questions for manifolds with non-trivial
fundamental group 7 the space R™ (M) should be defined as the set of metrics for
which all Dirac operators with coefficients in flat C*sr-bundles over M are invertible.
Since the Gromov-Lawson—Rosenberg conjecture 1s known to fail for some groups
it seems unclear what to expect of the inclusion RP**(M) — R™ (M) in general.

In Section 4 we leave the study of R™ (M). Instead we use computations of the
eta invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply
connected manifolds with a cyclic group action. In particular we find metrics with
harmonic spinors on spheres of all dimensions n > 5.

2. Constructions

In this section we will study three constructions of new Riemannian manifolds with
invertible Dirac operators from old ones.

2.1. Attachingisometric boundary components. Let M be a manifold with bound-
ary 9M. Suppose that the boundary is a disjoint union 8M = atM ud~M UM
where 8T M = N and 9~ M = N~ for some compact spin manifold N and where
3% M might be empty.

Suppose g € R™ (M) is such that g|y+y; = gls—as = # for some metric i on N.
Fort = 0 let (M’, g)) be (M, g) with the cylinder ([0, ] x N, dx* + h) attached by
{0} x N along 3 M and by {¢t} x N along 3~ M. The manifolds M’ depend on ¢ but
are all diffeomorphic so we identify them.
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Proposition 2.1. Let (M, g;) be constructed from (M, g) as above. Then there is
T > 0sothat g; € R™(M") forallt > T.

Note that the manifold M is not assumed to be connected.

Proof. Since g € R™ (M) there is €2 > 0 so that | D8¢||* > &2||¢|? for all ¢ €
L3 (X Mx). Set e = & and choose T > 0 so that t > T implies I% < &,
Letr > T and take ¢ € Cg°(ZM[). Let x: [0,f] x N — [0, 1] be a smooth

function such that y = 1 near {0} x N, x = Onear {t} x N, and | grad x| < % A
straight-forward computation shows that

1De* > LD(xe)|* + 2D — x)¢) > — 3| grad x|*|g|*

SO
D@l n = 31D n + 312 = 00 o1 w — 2@l v

We define the spinor field v € C§°(Mx) as follows. On M and on [0, 00) X oM
we set ¢ = @. At 8T M we first attach ([0, 1] x N, dxZ + h) along {0} x N and set
Yr = x ¢ on this piece, followed by ¢ = 0 on the half-infinite cylinder attached along
{r} x N. In the same way we attach ([0, 7] x N, dx*+hyatd—M along {r} x N and
there we set v = (1 — x )¢ followed by ¢ = 0 on the half-infinite cylinder attached
along {0} x N. Using the above estimate we get

1D@l3y = 1Dl + 1D9Iy ooy 50ar + 1P, w
> 1Dl + 1D91 ooy 5031
1 2 1 2 6 2

+ 21D o v + 2 I1DAL = )@ 0.0 — 2@ o, n
(1Dl + 1D ooy 5001

DGO o, 15w + 1D = 0000 w) — 2l
=3I DY, — el

g

> Sl — Sllely,

g 2
= 5 (lellas + 195 seyseaonr + Ix @l men + 1= X0@l0.15w)

A%

4] 2
~ Sliglld,

A%

£ 2 1 2 6 2

Sllss +1911Ty soyra0ps + 319 0f0750w) — Slellze
£

(5 — Sl

2
38||(P||Méo~

A%

Since CS°(E ML) is dense in L?(X ML) this shows that g/ € R™(M’). O
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Proposition 2.1 has the following corollary.
Corollary 2.2. Concordance and bordance are equivalence relations.

2.2. Generalized cylinders. Let M be a compact spin manifold of dimension n
and let g; be a smooth curve of metrics on M parametrized by ¢ € I, where [ is
an interval. The product M = I x M equipped with the metric g = dt? + g, is
called a generalized cylinder over M. We are going to recall some facts about the
spinor bundle and the Dirac operator on a generalized cylinder. All these facts are
conveniently collected in [5].

The spin structure on M induces in a unique way a spin structure on M. The spinor
bundle on (M, g) is related to the spinor bundle on (M, g;) by 2z, x)]\_d 2ZxMifn

is even and E(i )M ¥, M if n is odd. Denote Clifford multiplication on £ M by -
and Clifford multiplication on XM by e.. If niseven wehave X e ¢ = v - X - ¢

andifnisodd X e ¢ = v - X -pforg € Y*M. Here v = 9, is the normal of
{t} x Min (M, g).
Let ¢ be a section of 2 M. The Dirac operators on M and M are related by

v-Dfp = (D% + LH — V). (1)
Here H is the mean curvature of {r} x M in (M, 2),

H = _% trgr (gr) ’ (2)

and if » is odd the operator D4 acts on sections of £ M by ( e

and define the operator D7 by D¢ = 37 e

is an orthonormal basis of 7M. The commutator of Vf and D4 is given by [5,
Equation (23)]

[VE. D¥ |p = —1D% p + | grad® (trg, (8:)) o ¢ — 1 divE™ () ec 0. (3)

Now suppose g, T € [0, 1], 1s a smooth curve of metrics in R™ (M) with g, = g¢
for r near 0 and g, = g; for  near 1. Define metrics g on M, = [0,¢] x M by
g = dt* + g, ¢ for t > 0. Since the M; are all diffeomorphic we identify them
as M.

Dgr) Letgr = drgr
1gf(el,ej)elofv o whereeq, ..., e,

Proposition 2.3. Suppose (M, g;) is constructed from M and g. as above. Then
there exists T > O such that gy € Ri“"(M)fOr allt > T.

Proof. Since g is defined for t in a compact interval and since g, € R™ (M) there
is a constant C > 0 so that

%f |qo|2dvgfsf |DE 2 s, @)
M M
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|Lirg, (307 < C 5

Tl (80" = C, (5)

|ge (0, dv87, dv¥7)| < C, (6)

|< - %@gr(p + %gradgr (trg, (&) oz ¢ — %divgr (&r) or @, 90)|

(7)
< C(IV¥ 9l* + ],
\% scals” | < C. (8)
Sete = % and choose 1" > 0 so that
1 2C*4+204+3 C
— B + (9)

AC ~ At 12
fort > T.
Take r > T. Weextend g, tot € Rby setting g, = gofort < Oand g, = g1
for v > 1. Then (Moo, &) = (R x M,d7? + gryy). Take ¢ € CP(EMy). From
(1) we get

2 = 2, = 2

D& "+ [VErg|" = (v D% — 5H g
+ (D51, Vi) + (g, DEg).

When we integrate over M« this gives
ID$||* < 2|| D% p||* + 2[|% Holl*
_ _ _ (10)
+[_ ((Dg’/’qo,vgt(p) oL (ng(p, Dgr/z(m) dvé
Moo

We are going to estimate the terms on the left-hand side of this inequality. Define the
function 6, = g, (3;dv87, dv®"). Then 9, dvs7/t = %Qf/tdvgf/f. For the last term in
(10) we have

f_ ((Dgf/fgﬁ, V;?’fgo) + (nggo, Dgf/rqD)) Adv8
Moo
T} M
:[ (8,/ (Dgf/tgo, gp)dvgf/’ _f <Dgr/r§0’ qo)afdvgf/f) drt
R {thxM [T}« M
- [ avE perip g vk
Mo

- fﬂ (F(D51 9, ¢)0css + ([V§, DS, ) dv®,
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so (10) becomes

D8/ ||* < 2| DE | + 2| 2 Ho)|

o [_ (% (Dgf/tqga W)Q‘C/t + <[V§r, Dgf/f](p, (p)) dl)gt.

Mo
Since dr (ge/1) = 1&r/¢ it follows from (6), (3) and (7) that
‘f _ (F(D% 9, )0 + ([VE, DS/ ]p, @) dv®
Mo
C C
< 5 (IDF701 + llgl?) + — (V¥ g l1* + llell?)

By (8) and the Lichnerowicz formula on (M, g;) we have

||V8r/t¢||2:[/ |Vgr/t(p|2dvgr/tdt
R J{r}xM

— [ [ (|Dgr/t(p|2 _ %Scalé’r/t |§0|2) A8/t dt
R J{t}xM
< | D* 1|2 + Cllo)*.

From (2} and (5) we get ‘%H|2 < t% SO

5]
2 %

C
< 72“@”2'

Inserting (12), (13) and (14) into (11) we get
= C
I D&/t p||* < 2| D% o||* + zf—znqon2
C
o (1D p|1* + lle|1?)

C
+— (1D |1 + Cllgll* + llel?)

or

_ 3C & e
D% | > l(l — —) D8l gp||? — (— ) 2
D> ¢l|” = 5 > | | 2T, el

From (9) we get 1 — 3 > 050 (4) tells us that

_ 1 3CN\ 1 (N Gy
iz (5(1-50) g~ (@ + =) ot

_(1 2C% +2C 43 C)H 7
~\2c 41 2 )1
> ellpll*.

457

(11)

(12)

(13)

(14)
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Since C3°(E M~ is dense in L2 (X Mo) we conclude that g, € R™(M). O

The following corollary is immediate.
Corollary 2.4. Isotopic metrics are concordant.

2.3. Surgery. We are now going to construct a metric with invertible Dirac operator
on the trace of a surgery of codimension > 3 given such a metric on the original
manifold.

Let M be a closed spin manifold of dimension n and let S*~" x D™ — M be an
embedding. Let X be the image of S*~™ x {0}. Let W be the trace of the surgery on
M along ¥, this is constructed by attaching D"~ x D" to M x [0, 1] at the image
of "7 x D™ x {1} — M x {1} and then smoothing the corner where the attaching
takes place. The trace W is a spin manifold with boundary M U (M )~ where M 1s
the spin manifold obtained from M by surgery along .

Proposition 25 Assume that W has been constructed fmm M as above withm > 3.
Suppose g € R™(M). Then there is a metric g% € R™ (W) such that g% |y = ¢.

The proof is similar to the proof of Theorem 1.2 in [4]. We need to introduce
some notation. Suppose X is a submanifold of a Riemannian manifold Y. For 0 < r
define the distance sphere and the distance tube around X as Sx(r) = {x € Y |
dist(x, X) =r}and Ux(r) = {x € Y | dist(x, X) < r}. For O < r; < r define the
annular region around X as Ax(r1,m) ={x € Y | r; < dist(x, X) < m}. Letv be
the outward pointing unit normal of Sx(r) and let d A be the volume form of Sy (r).
In [4, Lemma 2.4] the following lemma is proved in the case where X is compact,
the proof also works in the formulation here.

Lemma 2.6. Let Y be a Riemannian spin manifold and let X C Y be a complete
submanifold of codimension > 3 which has a uniform lower bound on the injectivity
radius of its normal exponential map and for which the second fundamental form of
Sx (r) is bounded for fixed r.

Then there exists 0 < R < 1 so that for any 0 < r < %R” and any smooth

spinor field ¢ defined on Ax (r, 2r)'1Y satisfying

* fse0) \p|2 dA is finite for all p € [r. 2r)YY ] and defines a differentiable
function of p,
* [y REVV0, @) dA is finite and non-negative for all p € [r, (2r)'/11],
it holds that
Lt it
”(/QHAX(F 2r) < 10r 3/ ||¢||Ax(r,(2r)1/“)'
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Proof of Proposition 2.5. Since g € R™ (M) there is an £% > 0 so that
2 2
ID2pll” > e%lg]] (15)

forall ¢ € L2(EM). Proposition 2.1 of [4] tells us that there is a constant Sy < 0 so
that for every S7 > O there is a metric g’ on M which is conformal to g and has the
following properties:

« ¢’ isarbitrarily close to g in the C!-topology on the space of Riemannian metrics,
. scal? > Sgonallof M,
. scal®’ > 251 ona neighbourhood Uy of 2.

The eigenvalues of D?# depend continuously on the Riemannian metric with respect
to the C'-topology, see for example [3, Proposition 7.1]. We can therefore find a
metric g’ satisfying the above properties with $; = —8Sp while (15) holds with the
same value of ¢2. Since g and g’ are conformal and the dimension of the kerel of the
Dirac operator is a conformal invariant we get that g and g’ are isotopic and bordant.
So if we prove the theorem for g" we will also prove it for g. We replace our original
g with g’

Let » > O be a constant so small that

« Un(2r) C Uy,

. (2r)1/11 < R, where R comes from Lemma 2.6 applied to £ C M,

« (2r)/11 < R, where R comes from Lemma 2.6 appliecd toR x £ C R x M,

o 45714 < g8,

Let V be the trace of the surgery along X C Ux(r), this trace is a manifold with
boundary and codimension 2 comers. We divide the boundary of V into a “horizontal”
part and a “vertical” part. The horizontal part consists of Uy (r) U (U)™ where U
is Uy (r) after surgery along X. The vertical part is the cylinder [0, 1] x dUx (r).
The vertical and horizontal parts meet in the two corners, which are diffeomorphic to
3Usx (r). From [10] we know that we can extend the metric g on M to a metric ¢V on
V without decreasing scalar curvature too much. This construction can be performed
close to the surgery sphere and we get a metric on V with the following properties:

« ¢V is a product metric near the horizontal part of the boundary,
« gV restricts to g on the horizontal part Us: (r) of the boundary,

« ¢V restricts to dx? + g on a neighbourhood = [0, 1] x Ax(r — 8, r) of the
vertical part of the boundary,

v
¢« scal® > S;onV.
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Define (W, ¢%) = ([0, 1] x (M — Us;(r)), dx* + g) U (V, ¢¥) where the union is
taken along the common boundary [0, 1] X aUx(r).

We first prove that g = g% i € R”“’(M ). For a contradiction assume that there
is a non-trivial harmonic spinor field ¢ on (M g). Let x: M — [0, 1] be a cut-
off function with xy = Oon Ug(r), x = 1 on M — Uz(2r), and | grad x| < 2

~ r
We can consider x also a cut-off function on M since it has support contained in

M—-U=M-U. Set tr = yxo. The spinor ficld ¥ is supported in M — U where
g = g and can be considered a spinor field also for (M, g).

Since scal? = scal®’ > S on U and scal® = scal® > 2871 on Ax(r, 2r), most
of the norm of ¢ will be concentrated away from these sets. Lemma 2.2 of [4] (a
straight-forward application of the Lichnerowicz formula) tells us that

__ = 2
loIE gy < —S lgl3; = 5ol
and it follows that
2
1913 = W 3—usen = 1005 _goas ey = 31915 (16)

Next we are going to show that ¢ has even less norm concentrated in the annular
region Ay (r, 2r) when compared to the larger annular region Ay (r, 2r)Y1y | This
will follow from Lemma 2.6 and the fact that ¢ is harmonic. To apply this lemma we
need to show that

Re[ (VEp, ) dA >0 (17)
Sx(p)
forall p € [r, (2r)1/1], Choose such a p and set M = U U Ax(r, p). Then Misa

manifold w1th boundary IM = Ss:(p) and scal® > S; on M. Trom the Lichnerowicz
formula we get

0= fA«Dg)%o, @) dv®
M
= fA«vé)*v%, @) dvé +§fA scal® || dv®
M M

> [VEpl% — fA<V§go, ) dA + 1Stlloll%,
oM

SO
Re [ (Vip.pda= [ (VEp.g)da = Lsilelly
oM oM

and (17) follows since S7 > 0. We now apply Lemma 2.6, which tells us that

101520y < 1021015y sy
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Using this estimate we compute

IDE |3, = 1D% (xp)lI% = |l grad x - ol %

4 2 1/4 2
< r_2||(p||AE(r’2r) < 40r / ||(/9||A2(r,(2r)1/11)

<407 ol
which together with (16) and the assumption on r tells us that
1Dl < 45r V1wl < ef Iy

and this contradicts (15).

Let (Wao, %) be (W, g¥) with half-infinite cylindrical ends attached. Since D8
and D# are both invertible we conclude that the essential spectrum of D8 " on W4 has
a gap around 0, see for example [6, Proposition 3.24]. To prove that g% € R™ (W)
it thus remains to show that 0 is not an eigenvalue of D# 4 on Wx, that is to show
that there are no harmonic spinors in L2(X W),

To get a contradiction assume that ¢ € L*(XWao) is a non-trivial harmonic
spinor field. Then ¢ is smooth and the pointwise norm decays exponentially on the
cylindrical ends, see for example [6, Lemma 3.21].

Let V& be V' with the horizontal part of the boundary extended by half-infinite
cylinders. Then (Wao, ¢%) = R x (M — Ux(r)), dx*> 4+ g) U (Vo g¥) where the
union is taken along the common boundary R x dUx(r). Set ¥ = (x o w )@ where
x 18 the cut-off function on M defined above and 7 : R x M — M 1s the natural
projection. The spinor field ¢ is supported in W, — Vo = R x (M — Ux(r)) where
g% = dx* + g so we can consider ¢ to be a spinor field on (R x M, dx* + g).

From [4, Lemma 2.2] applied to Voo U Ag, 5 (r, 2r) C W it follows that

1 1lar > Sl - (18)

We now apply Lemma 2.6 to R x ¥ € R x M. This can be done since |¢| decays
exponentially and since the positive scalar curvature on V,, makes the computation
for Equation (17) work also in this case. The conclusion 1s that

2 5/2 2
oW hg, 502y < 1072015, oty

Using this, (18) and the assumption on r we compute

2 w
IDFEY R 4 = 1D (x@) |5, = Il grad x - @l

4 2 /4. 12
= r_2||(p”AR><E(r,2F) = 40r H(‘D“A]sz(r,@r)l/“)

<40r' el < 457w,

2
< &8 |1Y il
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which is a contradiction since the lower bound (15) holds also for the product Dirac

operator D4*+5 We conclude that the spectrum of D# " has a gap around 0, and
this finishes the proof of the proposition. L]

3. Detecting components of R™ (M) using the index

The alpha invariant of an n-dimensional compact spin manifold M without boundary
is an element ¢ (M) € K O, (R) which only depends on the spin bordism class of M.
The Index Theorem of Atiyah and Singer relates the alpha invariant of M to an index-
quantity defined using the kernel of the Dirac operator defined with respect to some
metric. In particular we have the following

Proposition 3.1. Suppose M is a closed spin manifold with a metric g for which D%
is invertible. Then a(M) = Q.

The first and obvious conclusion is that R™ (M) is empty if «(M) # 0. We are
going to use the alpha invariant to distinguish non-bordant metrics in R™ (M), for
this we need some specific manifolds with non-zero alpha invariant specified in the
following theorem.

Theorem 3.2. Forn = 4k +3, k > 1, there are (n + 1)-dimensional spin manifolds
Y, i € Z, with boundary 8Y' = S*, and metrics g¥ € RP(Y)), i € Z, so that
(Y Ugn (Y/)T) = ¢, (i — j) where ¢, # 0.

Forn =8k orn =8k + 1, k =1, there are (n + 1)-dimensional spin manifolds
Yi i =0, 1, with boundary 8Y' = S", and metrics g¥ € RPC(Y'), i =0, 1, so that
a (Y1 Ugn (Y9)™) £0.

Proof. Tn dimensions n = 4k + 3, manifolds (¥, g¥') with the required properties
are constructed in [13, Example 7.6, p. 328] using methods of [9].

Forn = 8k and n = 8k + 1 let Y be the disc D"+! and let g¥" be a positive
scalar curvature metric on ¥ which is equal to the standard metric g° " on the bound-
ary S™ and 1s product in a neighbourhood of the boundary. Let X be a homotopy
(n 4+ 1)-sphere with non-vanishing «-invariant, see [13, Theorem 2.18, p. 93], and let
fo, f1: D™ — ¥ be two disjoint embedded discs. Let W be T with the interiors of
Ffo(D™y and 1 (D" removed, then W is a simply connected /-cobordism with
boundary consisting of two components oW = fo(S") and ;W = f1(S"). By the
h-Cobordism Theorem there 1s a diffeomorphism

(F,id, £): ([0, 1] x 8oW, {0} x oW, {1} x 3o W) — (W, 3o W, 8; W).
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Define ¥! to be T with the interior of f1(D"*!) removed and identify 8¥' with
S" using f1. Then Y' = W Ugw fo(D"1). On W weset g7 = (F~1)*(dx? +
(fy ) ey and on fo(D™1) we set o¥ = (fo_l)*gyo. Since g¥* restricts to ¢ on
S™ the definitions of g¥ ' fit together to a smooth metric of positive scalar curvature
on Y1l Finally

a(Y Ugn (Y9)7) = a((Z —int A1D"1)) Up sy AD™THT) = a(Z) #0
and we are done. O

Define i € RP(S™) by hi = g7 |gn.

Theorem 3.3. Let M be a compact spin manifold of dimension n and suppose g €
R™(M). Then

e ifn =4k +3, k > 1, there are metrics g' € R™(M), i € Z, such that g' is
bordant to g and g' is not concordant to g’ fori # j,

e ifn=8korn=8k+ 1, k =1, there is a metric gl € R™ (M) such that g' is
bordant but not concordant to g.

Proof. We prove the theorem in the case 1 = 4k + 3, the other cases are similar. Fix
i € Z. By Proposition 2.5 there 1s a metric g on M # 5" = M which is bordant to
gUh on M U S". Since the metric 4" on S is bordant to the empty manifold by the

bordism (Y7, ¢¥") we conclude from Corollary 2.2 that g is bordant to g.

Denote by (W', g%} the bordism between (M, g') and (M, g) we have just
constructed. The manifold W' is diffeomorphic to the boundary connected sum of
[0, 1] x M with Y.

Take i, j € Z and suppose the metrics ¢’ and g/ are concordant. By Proposi-
tion 2.1 we can then find a metric with invertible Dirac operator on Wi U (W/)~,
where the union is obtained by attaching the isometric boundary components (M, g)
to each other and by attaching (M, g to (M, g/) through a concordance of the met-
rics. Proposition 3.1 then tells us that «(W U (W/)™) = 0. Since W' U (W/)~
is diffeomorphic to the connected sum of S' x M and Y’ Ugn (Y7)~™ we get 0 =
a(W U (W) =a(ST x M) +a(Y Uss (Y7)7) = a(Y Ugt (Y7)7) = eu(i — j)
SOL = j. O

By Corollary 2.4 this result implies in dimensions n = 4k + 3 that if R"™ (M)
is non-empty, then it has infinitely many path-components. In dimensions n = 8k,
8k + 1 the result implies that if R™ (M) is non-empty, then it has at least two path-
components. We conclude that in these dimensions every closed spin manifold has
a metric with non-trivial kernel of the Dirac operator, which reproves theorems by
Hitchin [12, Theorem 4.5] and Biir [3, Theorem A].
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4. Cyclic group actions and metrics with harmonic spinors

Let M be a compact simply connected spin manifold and suppose M — N i1s a finite
covering with covering group G. We do not assume that the quotient NV is spin or
orientable. Our goal is to find metrics on M with non-trivial harmonic spinors. The
idea 1s to use the eta-invariant to show that N has metrics with non-trivial harmonic
spinors for generalized spin structures, and then pull such a metric back to M. This
works under certain conditions on & and dim M, in particular we find metrics with
harmonic spinors on spheres 1n all dimensions.

Theorem 4.1. Let M be a compact simply connected spin manifold of dimension
n = 5 and suppose M — N s a finite covering with covering group m1(N) = Z/ 1.

(1) Ifn is odd assume that N is orientable.

(2) If n = 2k is even assume that | = 2 and that N is non-orientable with a Pin™
structure if k is even or with a Pin™ structure if k is odd.

Then M has a 7/l -invariant metric with harmonic spinors.

The proof relies on work of Botvinnik and Gilkey [7]. Using results of [11] and
[2] the argument can also be made to work with other groups and other assumptions on
generalized spin structure on N. The proof will be given through a series of lemmas
in the rest of this section.

Corollary 4.2. For n > 5 there is a metric with harmonic spinors on the sphere S".

Proof. We obtain a metric with harmonic spinors on S” by applying Theorem 4.1 to
the covering S* — P" where P" is real projective space of dimension n. In odd
dimension P is orientable, in even dimension P” is non-orientable and has a Pin™
structure as required. O

4.1. Twisted spin structures and Pin structures. Following [7] we discuss twisted
spin structures and Pin structures.

4.1.1. Twisted spin groups and twisted spin structures. Let Z/2 be the group of
two elements written multiplicatuvely, Z/2 = {+1}. Let

1> Z/2—>6-5 61 (19)

be a central extension of a finite group G, this gives an action of Z/2 on §. The group
Spin(n) 1s a double cover SO(n), identifying Z/2 with the kernel of the covering
homomorphism gives an action of Z/2 on Spin(n). Define the twisted spin group
F(G, o, G) = Spin(n) xz,2 § where we identify (¢, A) = (-6, —x) for & € Spin(n)
and A € . The twisted spin group %(%, i, ) is a double cover of SO(n) x G.
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Let N be an n-dimensional oriented Riemannian manifold with oriented frame
bundle SO(N). A F(4, i, G)-structure on N is a principal (%, p, G)-bundle
9(4, i, G)(N) and an equivariant covering (%, p, G)(N) — SO(N) which over
open sets U in a suitable open cover of N trivializes as $(%, i, G)xU — SO(n) x U.
A manifold equipped with a g(4, p, G)-structure is called a Z($, w1, )-manifold.
The map ¢ gives an extension

1 — Spin(n) — 4(%. 1, G) 15 G - 1,

through this a £(4, p, G)-structure (%, p, G)(N) on N defines a homomorphism
i T (N) — G as the composition of the holonomy of 4(G., e, G)(N) with p. If
@ is the trivial homomorphism then there is a spin structure Spin(N) on N so that
F(G. 1. GY(N) = Spin(N) xz,2 §-

Suppose M 1s a compact simply connected spin manifold such that M is an
oriented covering space of an oriented manifold N. Let G = 71 (N) be the covering
group. In [7, Theorem 1.1] a canonical (4%, ., &)-structure on N with the property
that the map ¢ is an isomorphism is constructed. The extension (§, u, ) is given
by the lift of the action of & on the frame bundle SO(M ) to the spin bundle Spin(M)
and is split if and only if N is spin. The (%, p, G)-structure on N is given by the
quotient of Spin(M) xz,2 4 by G.

4.1.2. Spinor bundles and Dirac operators for twisted spin structures. Let N
be a compact oriented n-dimensional with a #(G, p, G)-structure g(N). Let 42 be a
Riemannian metric on N. Let « be a unitary representation of ¢ which is odd with
respect to the action of Z/2, that 1s «(—A) = —« (i) for all A € §. We denote by
Rep°®dd(g) the semi-ring of odd unitary representations of §. Let A be the spinor
representation of Spin(n), it holds that A(—6) = —A(0) for all 6§ € Spin(n). Since
A(B)®u(r) = A(—0)@w(—A) thetensor product A®« gives a unitary representation
of 4. Let Z*N be the unitary vector bundle associated to Z(N) via A @ «, this is
a bundle of twisted spinors. As with ordinary spinors there is a Clifford action by
tangent vectors on X*N, and the Levi-Civita connection lifts to a connection on
T*N. The Dirac operator D% acting on sections of 2N is defined as usual.

4.1.3. Pin groups and Pin structures. The Clifford algebras Clif*(n) are defined
as the universal algebra with unit generated by R" with the relations v - w +w - v =
+2(v, w), for v, w € R". The groups PinT(n) are defined as the multiplicative
subgroups of Clif*(n) generated by the unit vectors in R”. Define x : Pin*(n) —
Z/2by x(v1...ve) = (=DF and BF: Pin®t(n) — O(n) by EX(x): v — y(x)x -
v-x~L. Then Z% are two double coverings of O(xn) which both restrict to Spin(n) —
SO(n).

Let N be an n-dimensional Riemannian manifold with frame bundle O(N). A
Pin*-structure on N is a principal Pin®-bundle Pin® (N ) together with an equivariant
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covering Pin*(N) — O(N), which over open sets U in a suitable open cover of N
trivializes as Pin®™ xUU — O(n) x U. A manifold equipped with a Pin®-structure
is called a Pin®-manifold. If the set of Pin®-structures on N is non-empty, then the
cohomology group H'(N; Z/2) acts simply and transitively on this set. So on a
simply connected spin manifold there are unique Pin®-structures given as extensions
of the unique spin structure.

4.1.4. Spinor bundles and Dirac operators for Pin structures. Let N be acompact
n-dimensional Riemannian manifold with a Pin®-structure Pin*(N). Let A be the
spinor representation of Pin(n), and let N be the unitary vector bundle associated
to Pin* (N) via A, this is sometimes called a pinor bundle. As with ordinary spinors
there is a Clifford action by tangent vectors on XN, and the Levi-Civita connection
lifts to a connection on ¥ N. The Dirac operator D" acting on sections of LN is
defined as usual.

4.1.5. Pullback to the universal covering space. Let N be a compact Riemannian
manifold with universal covering space M. Assume that M is spin and that N has a
g-structure Z(N) where ¢ = 9.(4, i, G) or § = Pin®, The pullback of 4(N) to M is
given by an extension of the spin bundle over M. Incase ¢ = 4(4, u, G) the pullback
of Z¥N is given by T M ® C? where d is the dimension of the representation «. In
case ¢ = Pin™ the pullback of £ N is given by ZM. In both cases the pullback of
the Dirac operator on N defined using some metric is given by the Dirac operator on
M with the pullback metric.

Let M and N be as in Theorem 4.1. If n 1s odd N has a (&, u, G)-structure
for G = Z/I, and we say that (N, &) has harmonic spinors if D has a non-trivial
kernel for some o € Rep®4(4). If n is even we say that (N, k) has harmonic spinors
if the Dirac operator D" associated to the Pin®-structure has a non-trivial kernel. The
following lemma is now obvious.

Lemma 4.3. Let M and N be as in Theorem 4.1. If (N, h) has harmonic spinors
then the pullback of h to M is a Z/ l-invariant metric with harmonic spinors.

4.2. Positivescalar curvatureon N. Usingknownresults on the Gromov—Lawson—
Rosenberg conjecture we can prove the following lemma.

Lemma 4.4. Let M and N be as in Theorem 4.1. If M has no Z/ l-invariant metric
with harmonic spinors then N has a metric of positive scalar curvature.

Proof. The Gromov-Lawson—Rosenberg conjecture for compact manifolds with fi-
nite fundamental group states the following [14, Conjecture 5.1]: A closed manifold
of dimension n > 5 with finite fundamental group admits a metric with positive scalar
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curvature if and only if all index obstructions associated to Dirac operators with coef-
ficients in flat bundles on N and its covers vanish. This conjecture is known to be true
in the situation at hand; for orientable manifolds with cyclic fundamental group by [&,
Theorem 1.1] and [15, Theorem A], for non-orientable manifolds with fundamental
group Z/2 by [14, Theorem 5.3]. Soif N did not have any metric with positive scalar
curvature then the index and the kernel of some Dirac operator on a cover of N would
be non-zero. We could then take the pullback of a metric from N to M to produce a
Z/ l-invariant metric with harmonic spinors on M, a contradiction. O

4.3. The eta invariant. Lct M be a closed Riemannian manifold and let V be a
smooth vector bundle over M. Let P be an operator of Dirac type acting on the space
of smooth sections of V. For complex numbers z with large real part the eta function
of Atiyah, Patodi, and Singer [1] is defined as 1(z, P) = Tr,>(P(P?)~“+1/2) This
function has a meromorphic extension to C for which z = 0 1s a regular value, and
the eta invariant of P is defined as n(P) = %(W(O, P) +dimker P).

For a closed Riemannian g(§, 4, G)-manifold (N, k) and for € Rep®¥(4) we
define (N, h, @) as n(D™). Let R°44(4) be the representation ring associated to
Rep®dd(g) and let Rgdd(g) be the augmentation ideal consisting of virtual represen-
tations of virtual dimension 0. The eta invariant n (N, A, «) is additive in « so we
may extend its definition to & € R°%(4).

For a closed Pint-manifold (N, ») we define n(N, h) as n(D").

Lemma 4.5. Let M and N be as in Theorem 4.1. Let h°, k' be two metrics on N
and assume that M has no Z/l-invariant metric with harmonic spinors.

(1) If dim M is odd and N carries a (%, p, G)-structure then n(N, WO, o) =
n(N, h', &) for all e € R3M(4).

(2) If dim M is even and N carries a PinT-structure then n(N, K% = n(N, ).

Proof. Let hy, v € [0, 1], be a smooth curve of metrics on N with i, = hO for t
near 0 and /i, = h! for v near 1. Lemma 4.3 tells us that the Dirac operator of i,
is invertible for all r. Define metrics /i; on N; = [0,7] x N by hy = dr? + heyt
for t > 0. Using the same computation as in Proposition 2.3 we conclude that
(N;, hy) has invertible Dirac operator for 7 large enough when half-infinite cylinders
are attached at the boundary.

First suppose that dim M is odd and that N has a (4, p, G)-structure. Let o €
Rgdd(g,) be the formal difference of «™, ™ € RepOdd(g,) where dimo™ = dim o ™.
The Atiyah—Patodi—Singer index theorem [1] tells us that

ind(D" "y = (dimai)f Alg™) — (N, L, a®) — n(N, KO, o).
N;
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Here ind(DE““i) is the index of DPra* acting on the space of sections of the positive
half spinor bundle satisfying the Atiyah—Patodi—Singer boundary condition, Ahy) is
the A differential form computed using the metric /;, and ¢ = =1 is a constant
depending only on the dimension. Any harmonic spinor field satisfying the Atiyah—
Patodi-Singer boundary conditions extends to an L? harmonic spinor field when
half-infinite cylindrical ends are attached. Since I, has invertible Dirac operator we
conclude that the index is zero. We get

n(N, k@) — (N, B, @) = n(N, k', at) — p(N, k!, a7)
— (N, B®, oty + (N, B, )

= e(dima™ —dima™) | Atg"
Ny

=0,

which proves (1).

Next suppose that dim M is even and that N has a Pin®-structure. Since N; is
then odd-dimensional there 1s no integral of a local index density in the index formula
for (N;, k), and we have

ind(D) = e(n(N, hY) — y(N, h%)),

where ¢ = =1 is a constant depending only on the dimension. Again the index
vanishes since /; has invertible Dirac operator and we have proven (2). O

4.4. Proof of Theorem 4.1. In the work [7] of Botvinnik and Gilkey the space
RP*(N) is studied for a compact manifold N which is either odd-dimensional with
a 4(%, pn, G)-structure and a finite fundamental group satisfying a certain condition
or even-dimensional with fundamental group Z/2 and a PinT-structure. The authors
construct metrics in RP*“(N) with different values of the eta invariant as follows.
Assume h ¢ RPS(N). First a (disconnected) manifold (N’, h’) is found which
represents zero in an appropriate bordism group and has positive scalar curvature
and non-zero eta invariant. The disjoint union N U N’ is then bordant to N and the
metric 7 U &' of positive scalar curvature can be extended over the bordism to give
a metric k! € RP°(N). The eta invariant is the same for psc-bordant metrics so
n(N, k'Y = (N, k) +n(N, k') # n(N, h).

Proof of Theorem 4.1. Assume that M has no Z/l-invariant metric with harmonic
spinors. From Lemma 4.4 we know that N has a metric with positive scalar curvature.
As discussed above, the proof of Theorem 3.1 of [7] gives us two metrics on N with
different n-invariant, which by Lemma 4.5 is impossible. 0
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