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Generalized Property R and the Schoenflies Conjecture

Martin Scharlemann™*

Abstract. There is a relation between the generalized Property R Conjecture and the Schoenflies
Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof
of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence
of new progress on the generalized Property R Conjecture.

Mathematics Subject Classification (2000). 57Q25, 57N13.

Keywords. Schoenflies Conjecture, Heegaard splitting, framed surgery, critical level embed-
ding, Property R.

1. Introduction and preliminaries

The Schoenflies Conjecture asks whether every PL (or, equivalently, smooth) 3-sphere
in §* divides the 4-sphere into two PL balls. The appeal of the conjecture is at least
3-fold:

+ The topological version (for locally flat embeddings) is known to be true in
every dimension. Both the PL and the smooth versions (when properly phrased,
to avoid problems with exotic structures) are known to be true in every other
dimension.

« If the Schoenflies Conjecture is false, then there is no hope for a PL prime
decomposition theorem for 4-manifolds, for it would imply that there are PL
4-manifolds X and Y, not themselves 4-spheres, so that X # ¥ = s,

+ 'The Schoenflies Conjecture is weaker than the still unsolved 4-dimensional PL
Poincaré Conjecture, and so might be more accessible.

Little explicit progress has been made on the Schoenflies Conjecture for several
decades, a time which has nonetheless seen rapid progress in our understanding of both
3- and 4-dimensional manifolds. Here we outline how the Schoenflies Conjecture
is connected to another important problem on the border between classical 3- and

*Research partially supported by a National Science Foundation grant. Thanks also to Catalonia’s Centre
Recerca Matematica for their extraordinary hospitality while this work was being completed
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4-dimensional topology, namely the generalized Property R Conjecture. We show
how at least some of the last two decades of progress in combinatorial 3-dimensional
topology, particularly sutured manifold theory, can be used to extend the proof of the
Schoenflies Conjecture from what are called genus 2 embeddings of S2 in S* to genus 3
embeddings. In some sense this is a small advance, but it has some philosophical
interest: genus 2 surfaces have long been known to have special properties (e.g.
the hyperelliptic involution) that are not shared by higher genus surfaces. That this
approach works for genus 3 suggests that the special properties of genus 2 surfaces are
not needed and so are not a barrier to success for arbitrary, higher genus embeddings.

We work in the PL category throughout. All manifolds discussed are orientable.

2. Generalized Property R

Recall the famous Property R theorem, proven in a somewhat stronger form by David
(Gabai [Ga2]:

Theorem 2.1 (Property R). If O-framed surgery on a knot K < S vields S' x $?
then K is the unknot.

It is well known (indeed it is perhaps the original motivation for the Property R
Conjecture) that Property R has an immediate consequence for the handlebody struc-
ture of 4-manifolds:

Corollary 2.2. Suppose U* is a homology 4-sphere and has a handle structure
containing exactly one 2-handle and no 3-handles. Then U is the 4-sphere.

Remark. Itisimmediate that U4 is in fact a homotopy 4-sphere, since the dual handle
structure would have no 1-handles and U* is simply connected. But this property
plays no role in the proof.

Proof. Since U has a handle structure with no 3-handles, dually it has a handle
structure with no 1-handles. In order for U to be connected, this dual handle structure
must then have exactly one O-handle, so the original handle structure has a single 4-
handle.

Let U_ C U be the union of all 0- and 1-handles of U and M = oU_. U_ can
be thought of as the regular neighborhood of a graph or, collapsing a maximal tree in
that graph, as the regular neighborhood of a bouquet of circles. The 4-dimensional
regular neighborhood of a circle in an orientable 4-manifold is ST x D3, so U_ is
the boundary connected sum g, (S I'x D?), some n > 0. (Explicitly, the number of
summands » is one more than the difference between the number of 1-handles and
O-handles, i.e. 1 — x, where x is the Euler characteristic of the graph.) It follows
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that M = #,(S! x $?) and, in particular, Hy(M) = Z". Now consider the closed
complement U, of U_ in U. Viathe dual handle structure, U is obtained by attaching
a single 2-handle to B4, so it deformation retracts to a 2-sphere and, in particular,
H(Uy) = Z. Since U is a homology 4-sphere and H>(U_) = 0, it follows from the
Mayer—Vietoris sequence

Hy(U) =0 — (M) — Hy(Uy) © Hy(U-) — Hy(U) =0

that Z = Hy(Uy) = Z", son =1and M = S! x §2.

On the other hand, U, whose handle structure (dual to that from U) consists of
a 0-handle and a 2-handle, is visibly the trace of surgery on a knot in S, namely the
attaching map of the 2-handle. The framing of the surgery is zero, since the generator
of Hy(Uy) is represented by % x $7 < S! x §2 = M and this class visibly has trivial
self-intersection. Since the result of O-framed surgery on the knot is M = S! x 52,
the knot is trivial by Property R (Theorem 2.1) so Uy is simply S? x D?.

Hence U 1is the boundary union sl x p3 Us 5?2 x D2, Of course the same is true
of §%, since the closed complement of a neighborhood of the standard 2-sphere in
S*is ST x D3. So we see that U can be obtained from S* by removing the standard
ST x D? and pasting it back in, perhaps differently. But it is well known (and is
usefully extended to all 4-dimensional handlebodies by Laudenbach and Poenaru
[LP]) that any automorphism of S! x % extends to an automorphism of ST x D3, so
the gluing homeomorphism extends across S' x D? to give a homeomorphism of U
with §%, m

The generalized Property R conjecture (cf. Kirby Problem 1.82) says this:

Conjecture 1 (Generalized Property R). Suppose L is a framed link of # > 1 com-
ponents in %, and surgery on L via the specified framing yields #,(S! x $2). Then
there is a sequence of handle slides on L (cf. [Ki]) that converts L into a O-framed
unlink.

In the case » = 1 no slides are possible, so Conjecture 1 does indeed directly
generalize Theorem 2.1. On the other hand, for n > 1 it is certainly necessary to
include the possibility of handle slides. Tor if one starts with the O-framed unlink
of n-components and does a series of possibly complicated handle-slides, the result
will be a possibly complicated framed link L of n-components. The result of doing
the specified framed surgery on L will necessarily be the same (cf. [Ki]) as for the
original unlink, namely #, (S' x $?), but L itself is no longer the unlink. The example
L 1s still consistent with Conjecture 1 since simply reversing the sequence of handle
slides will convert L back to the framed unlink. So in some sense Conjecture 1 is the
broadest plausible generalization of Theorem 2.1.

The generalized Property R Conjecture naturally leads to a generalized Corol-
lary 2.2:
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Proposition 2.3. Suppose Conjecture 1 is true. Then any homology 4-sphere U with
a handle structure containing no 3-handles is S*.

Proof. Again focus on the 3-manifold M that separates UU_ (the manifold after the O
and 1-handles are attached) from its closed complement U/ in U. The dual handle
structure on U shows that I/ is constructed by attaching some 2-handles to B*. On
the other hand, the original handle structure shows that I/ _ is the regular neighborhood
of a graph, so, as before for some n, U_ = §,(S! x D¥) and M = #,(S! x §%).
In particular Ho(M) = Z". Since U 1s a homology 4-sphere and Ha(U_) = 0, it
follows as before from the Mayer—Vietoris sequence that H, (U, ) = Z". Hence Uy
must be obtained from B* by attaching exactly » 2-handles. Then the generalized
Property R conjecture would imply that Uy = 1, (S? x D?). Tt is shown in [LP] that
any automorphism of #,(S! x %) = 84,(S! x D?) extends to an automorphism of
1.(ST x D?). (This is not quite stated explicitly in [LLP] beyond the observation on
p. 342, “mark that no diffecomorphism of X# was needed here!”). Hence the only
manifold that can be obtained by gluing U to U_ along M is S%. O

The proposition suggests this possibly weaker conjecture:

Conjecture 2 (Weak generalized Property R conjecture). Suppose attaching n
2-handles to B* gives a manifold W whose boundary is #,(S! x $?). Then W =
1.(S x D?).

We have then:

Proposition 2.4, Theweak generalized Property R conjecture (Conjecture 2) is equiv-
alent to the conjecture that any homology 4-sphere U with a handle structure con-
taining no 3-handles is S*.

Proof. The proof of Proposition 2.3 really required only Conjecture 2, so only the
converse needs to be proved.

Suppose we know that any homology 4-sphere with a handle structure containing
no 3-handles is S*. Suppose W is a 4-manifold constructed by attaching » 2-handles
to B* and dW is #,(S! x S%). Consider the exact sequence of the pair (W, 8 W):

0 = Hy(W, 3W) — Ho(3W) — Ho(W)
S (W, W) — W) — Hi (W) =0.

Since the last two non-trivial terms are both Z", the inclusion induces an isomorphism
of the first two non-trivial terms, Hy (W) — Ho(W) = Z". Attach V = b, (ST x D?)
to W by a homeomorphism of their boundaries and call the result UU. (There is an
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obvious homeomorphism of boundaries, and any other one will give the same 4-mani-
fold, per [LP]). Then the Mayer—Vietoris sequence for the pair (W, V') shows that U
is a homology 4-sphere hence, under our assumption, I/ = S%,

V < U 1is just a regular neighborhood of the wedge of n circles I'. Since U
is simply connected, I" is homotopic to a standard (i.e. planar) wedge of circles in
U whose complement is §,(S? x D?). In dimension 4, homotopy of 1-complexes
implies isotopy (apply general position to the level-preserving map 1" x [ — U x [)
so in fact W =2 1,,(S? x D?) as required. O

Setting aside conjecture, here 1s a concrete extension of Property R:

Proposition 2.5. Suppose a 2-handle is attached to a genus n 4-dimensional handle-
body N = 1, (S x D?) and the resulting 4-manifold N_ has boundary#,_1(S! x 5?).
Then N_ = t,_1(S' x D?).

Proof. The proof is by induction on »n; when n = 1 this is Property R. Suppose then
thatzn > Tandlet K  3(h,(S' x D)) = #,(S! x $%) be the attaching map for the 4-
dimensional 2-handle. The hypothesis is then that surgery on K yields #,_1(S' x 5?),
a reducible manifold. But examining the possibilities in [Sch2] we see that this is
possible only if #, (ST x §%) — K is itself reducible, so in particular one of the non-
separating 2-spheres {x} x S? is disjoint from K. Following [LP], this 2-sphere
bounds a 3-ball in N. Split N along this 3-ball, converting N to 1,_1(S! x D?) and
IN_ to#,;_2(ST x §%). By inductive hypothesis, the split open N_ is fi, 2(S! x D?)
so originally N_ = t1,_1(S! x D?). O

Remark. Experts will note that, rather than use [Sch2], one can substitute the some-
what simpler [Gal]: If n > 1 then Hy(#,(S' x §?) — n(K)) # 0. Since both co-
and O-framed surgery on K (or on a companion solid torus if #,(S' x $?) — n(K)
is toroidal) yield reducible (hence non-taut) 3-manifolds, from [Gal] it follows that
#,(S! x §%) — n(K) is itself not taut, hence is reducible.

3. Application: Heegaard unions

Let H" = 1,(S! x D?) denote a 3-dimensional genus s orientable handlebody and
J" = t,(S! x D?) denote a 4-dimensional genus # orientable handlebody. H* and
J" can also be thought of as regular neighborhoods in, respectively, R® and R* of
any graph I" with Euler characteristic x(1') =1 — n.

Definition 3.1. Suppose, for some pg, p1, p2 € N, H is embedded into both d.J#1
and 0J72 so that its complement in each 3J7 i = 1, 2 is also a handlebody. Then
the 4-manifold W = J#1 Ugey J*? is called the Heegaard union of the J* along
H . See Figure 1.
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Jr

copies of H H=H®™
jrz
Figure 1

The term Heegaard union comes from the fact that H® is half of a Heegaard
splitting of both 3/ and dJ#2. Moreover, if W is such a Heegaard union, then
(0 JFPL—HPY Uy preq (0 JP2—HF) 1s a Heegaard splitting of 9 W. The construction here
1s tangentially related to the construction in [BC, 2.4] of a 4-dimensional cobordism
between three Heegaard-split 3-manifolds. Indeed, if two of the three 3-manifolds
in the Birman—Craggs construction are of the form #; (ST x S?) and are then filled in
with copies of # (S! x D?) the result is a Heegaard union.

Lemma 3.2. If a Heegaard union W = J°1 U J*2 is a rational homology ball, then
PO = P1 T P2.

Proof. 'The first and second homology groups (rational coefficients) of W are trivial,
so the result follows from the Mayer—Vietoris sequence of W = J#1 Ugeq J#2:

Hy(W) =0 — H{(H?) — Hi(JPY) @ H{(J"?) - Hy (W) =0. O

Proposition 3.3. Suppose a Heegaard union W = JP' Ugeo JP2 is a homology ball
and 8W = S3. If the weak generalized Property R conjecture (Conjecture 2) is true
for min{p1, p2} components, then W = B*.

Proof. Suppose with no loss of generality that p; < pp. Let J; denote J#,i = 1,2
and Hy denote H*. Consider the genus po Heegaard splitting of dJ; given by
HoUyp, (02 — Hy). According to Waldhausen [Wa] there 1s only one such Heegaard
splitting of 9 J; up to homeomorphism, obtained as follows: Regard J; as the product
of the interval with a genus py 3-dimensional handlebody . Then H x {0} C
d(H x I) = adJp and 0J, — (H x {0}) are both 3-dimensional handlebodies. The
resulting Heegaard splitting of d./; is called the product splitting. It can be regarded
as the natural Heegaard splitting of 8 J; = #,, (S x §2). Any other Heegaard splitting
(e.g. the genus py splitting at hand) is homeomorphic to a stabilization of this standard
splitting.

As proven in [LP] and noted above, any automorphism of ¢/, extends over J;
itself, so we may as well assume that the Heegaard splitting Hy Uyg, (8J2 — Hp)
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actually is a stabilization of the product splitting. In particular, and most dramatically,
if po = p2 then no stabilization is required, so J; is just Hy x [ and W = J;. Much
the same 1s true if pg = p2 + 1: most of Hy 1s just I, so its attachment to J; has no
effect on the topology of Ji. The single stabilization changes the picture slightly, and
is best conveyed by considering what the effect would be of attaching a 4-ball to J;
not along one side of the minimal genus splitting of 8 B* (i.e. along B® ¢ $%), which
clearly leaves J; unchanged, but rather along one side of the once-stabilized splitting
of 8 B*. That is, B* is attached to J1 along a solid torus, unknotted in 9 B*. But this
is exactly a description of attaching a 2-handle to J1. So W can be viewed as J; with
a single 2-handle attached. In the general situation, in which the product splitting is
stabilized pg — p; times, W is homeomorphic to J; with pg — py 2-handles attached.
The result now follows from Lemma 3.2 and Proposition 2.4. O

Remark. The link along which the 2-handles are attached has p; components and,
viewed in S, is part of a genus py Heegaard splitting. So its tunnel number can be
calculated: p1 — 1 tunnels are needed to connect the link into a genus p1 handlebody,
and another py — p1 are needed to make it half of a Heegaard splitting. Hence the
tunnel number 1s pp — 1. This fact may be useful, but anyway explains why [Sch1]
could be done just knowing Property R for tunnel number one knots.

Corollary 3.4. Suppose a Heegaard union W = J°1 Ugeo J2 is a homology ball
and W = $3, If po <3then W = B*.

Proof. By Lemma 3.2, p1 4 p2 < 3, hence min{p1, p2} < 1. The result then follows
from Proposition 3.3 and Theorem 2.1. O

4. Handlebody structure on 3-manifold complements

Suppose M < S*is a connected closed PL or smooth 3-submanifold. In this section
we discuss the handlebody structure of each complementary component of M.

It is a classical result (cf. [KL]) that M can be isotoped so that it is in the form of
a rectified critical level embedding. We briefly review what that means.

Informally, the embedding M C S*is in the form of a critical level embedding if
it has a handle structure in which each handle 1s horizontal with respect to the natural
height function on S*, and M intersects each region of S* between handle levels in
a vertical collar of the boundary of the part of M that lies below (or, symmetrically,
above). More formally, regard S* as the boundary of D% x [—1,1], so S4 consists
of two 4-balls D* x +1 (called the poles) added to the ends of S* x [—1,1]. Let
p: 82 x[—1,1] — [—1, 1] be the natural projection. For —1 < ¢ < 1 denote p~1(¢)
by S?. Then M C $* x [—1,1] ¢ $*is a critical level embedding if there are a
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collectiont; < t < -+ < ¢, of values in (—1, 1) and a collection of closed surfaces
Fi,...,F, c §sothat

(1) p(M) =[n,t:] C (-1, 1).
(2) Foreach1 <i <n—1,MN(S® x (ti. tix1)) = Fi x (4, ti41).
(3) M NS, = B with boundary Fi.

(4 Foreach2 <i <n, F; 18 thained from F;_1 by a j-surgery, some 0<jy = 3.
That is, there is a 3-ball D’/ x D3~/ < $? incident to F;_; in D7 x D3~/ and
F; is obtained from F;_1 by replacing 8 D/ x D*~/ with D/ x 9D~/

(5) Foreach2 <i <n, M N Sf: 1s the trace of the surgery above. That is, 1t is the
union of F;_;, F; and D7 x D3/,

Such an embedding gives rise to a handle structure on M with » handles added
successively at levels 11, ..., . j is the index of the handle D/ x D3~/ A critical
level embedding is called recrified if, for 0 < j < 2, each handle of index j occurs
at a lower level than each handle of index j + 1. Furthermore, all O- and 1-handles
lie below S and all 2- and 3-handles lie above S3. See Figure 2.

all 0- & 1-handles attached above

— ]
Q S3 x {0}
_/

all 2- & 3-handles attached below

Q/ D* south pole

Figure 2

\/

Note that the surface M N SS’ is a Heegaard surface for M, since all 0- and 1-
handles lie on one side (namely 1n 3 x [—1, 0]) and all 2- and 3-handles lie on the
other (S3 x [0, 1]). In particular, M N SS is connected. It is easy to see, [Schl,
Lemma 1.4], though not completely obvious, that if the first 1-handle attached to the
boundary of a 0-handle is incident to the 0-handle at only one end, then the handles
cancel and there is a rectified embedding of M in which neither handle appears. So,
minimizing the number of handles, we will henceforth assume that the first 1-handle
incident to each O-handle is incident to it in both ends. Equally important is the dual
to this remark: the boundary of the core of any 2-handle is essential in the surface to
which the 2-handle is attached. To summarize:
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Lemma 4.1. Any rectified critical level embedding of M may be isotoped rel M N Sg
to a rectified critical level embedding with no more (but perhaps fewer) handles of
any index, such that

« the first 1-handle incident to each O-handle is incident to it in both ends, and
¢ the core of any 2-handle attached in Sf is a compressing disk for M N Sf_g.

We will henceforth consider only rectified critical level embeddings with these
two properties.

Definition 4.2. The genus of the embedding of M in S* is the genus of the Heegaard
surface M N SS.

It will be important to understand how a rectified critical level embedding induces
a handlebody structure on each of its closed complementary components X and Y. Let
X denote the component of S* — M that contains the south pole D* x {—1}. For each
generict € (=1, 1) let ¥, (resp. X; . M, )bethepartof ¥ (resp. X, M) lying below
level ¢ or, more formally, the 4-manifold ¥ N(S? x [—1, ¢]) (resp. X N(S3 x[—1, t]), 3-
manifold M N(S? x[—1, t]). Symmetrically, let Y, (resp. X;", M;") be the part of ¥
(resp. X, M) lying above level ¢, that is, the 4-manifold with boundary ¥ N(S? x [z, 1])
(resp. XN (S3 x [#, 1]), 3-manifold with boundary M N (S3 x [, 1])). Finally, let ¥}*,
(resp. X/, M) be the part of Y (resp. X, M) lying at level ¢, that is the 3-manifold
with boundary ¥ N S? (resp. X N S2, closed surface M N S?). Thus 3 Y, is the union of
M7 and Y} If t; < t < t;41 then 9M; = dM;" = M} = F; c S} and Y;* consists
of a collection of closed complementary components of F; in S?. Each component
of F; in S is incident to ¥;* on exactly one side and to X;* on the other.

Clearly as long as no #; lies between the values ¢ < ¢/, then Y,fﬂE = Ytjf, since the
region between them is just a collar on part of the boundary. On the other hand, for
each ¢, consider the relation between Y, _ . and ¥, | .. We know that 77 is obtained
from F;_; by doing j-surgery along a j-disk in S* — F;_y. If that j-handle lies on
the ¥ side of F;_1 (in the sphere Sg_g) then Y7, . is homeomorphic to just ¥;*_, with
that j-handle removed. So Y. is still just Y, with a collar added to part of its
boundary, but only to the complement of the j-handle in ¥ .. Hence it is still true

that Y, =¥, .. Onthe other hand, if the j-handle lies on the X side of F;_1, then
Y; +. 18 homeomorphic to ¥, but with a (4-dimensional) j-handle added, namely
the product of the interval [7;, £; +¢] with the 3-dimensional j-handle added to M, _,
in S;.

We have then the general rule, sometimes called the rising water rule (cf. Figure 3):
Lemma 4.3. (1) If the j-surgery at level t; has its core in Y, then Y. =Y, _ ..

(2) If the j-surgery at levelt; hasits corein X, then Y, =Y, witha j-handle
attached.
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X handle added to X X

handle on Y side

Figure 3

Of course the symmeiric statements hold for X. Note that since X contains
the south pole, X;_, = B* whereas Yi,—e = ¥. Just as Mg is a Heegaard surface
for M, Xy and Y are connected 4-manifolds, constructed from just O- and 1-handles.
In other words, there are integers ny,ny, > 0 so that Xy = h”x(Sl x D3) and
Yo = tin, (S? x D).

Each handle in M corresponds to a handle of the same index in exactly one of
X, or ¥, , so there is a connection between sy, ny and the genus g of M3: The
critical level embedding defines a handlebody structure on M, with 2 0-handles and
b 1-handles, where

b—a+1=g¢g.

If a > g then there would be at least one O-handle in the critical level embedding
which is first incident to a 1-handle on a single one of its ends, violating the Handle
Cancellation Lemma 4.1. So

a<g.

Let ay, ay (resp. by, by) denote the number of 0- (resp. 1-) handles in the critical
level embedding whose cores lie in X and Y. We have from above that a, +a, =
a,by +by =b,ny, =by —ayand ny = by — a, + 1. (The asymmetry is explained
by noting that the south pole is a O-handle for X.) It follows that

nx—l—ny = &

Another way of counting n, and », is this: Suppose a 1-handle at critical level ¢
has its core lying in X, say. If the ends of the 1-handle lie in distinct components of
F;_1 then the 1-handle adds a 1-handle to ¥ but nothing to its genus. In contrast, if
the ends of the 1-handle lie on the same component of F;_; thenitadds 1 to the genus
of Y. A count of the total number of the latter sort of 1-handles lying in X (resp. ¥)
gives ny (resp. ny).

For everything that has been said about X~ and Y~ there is a dual statement for
X% and YT, easily obtained by just inverting the height function. The result is that,
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beyond the standard 4-dimensional duality of handle structures on X and on Y, there
is a kind of 3-dimensional duality between handles in X and handles in Y, induced
by the 3-dimensional duality of handles in M. See Figure 4.

Figure 4

To be concrete; X ar 1s also a solid 4-dimensional handlebody. To determine 1its
genus, consider the core of each 2-handle, say at critical height #; > 0. If the core of
the 2-handle lies on the X side of F;_; then the cocore lies on the Y side of F; so it
corresponds to a 1-handle in X . This 1-handle adds genus to X if and only if the
boundary of the 2-handle is non-separating in F;_j.

To see how this occurs, consider the “dual rule” to Lemma 4.3. That is, suppose
again that F; is obtained from F;_; by doing j-surgery along a j-disk in S? — F;_;
and ask how Y, and Y., differ. If the j-surgery at level 4 has its core in Y,
then, viewed from above instead of below, there is a corresponding 3 — 7 surgery
with its core in X. So, following the argument of Lemma 4.3, th_g = Y;ng with a
(3 — j)-handle attached. On the other hand, if the core of the j-handle liesin X, YT
1s unchanged. This might be called the descending hydrogen rule (cf. Figure 5).

To summarize all possibilities:

Lemma 4.4, Suppose F; is obtained from F; _1 by doing j-surgery along a j-disk in
3 —Fi_y.

(1) Ifthe j-surgery at level t; has its core in Y, then
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4 Yt,'_—l—s = Yti_—s’
© X 4. = X, _ witha j-handle attached,
« Y =Y, witha (3 — j)-handle attached,
v X = X

(2) If the j-surgery at level t; has its core in X, then
« Yy, =Y, witha j-handle attached,
* Xie = Xis
¢ Ytj_—s = Ytj_—l—s’

« X=X witha (3 — j)-handle attached.

handle on X side Y X
& handle added to ¥
Y X
Figure 5

Here is a simple example of how this 3-dimensional duality can be useful:

Proposition 4.5, Suppose there is a rectified critical level embedding of M = S?
in S* so that the O- and 1-handles, as they are successively attached, all lie on the
X-side. Then X = B*,

Proof. Following Lemma4.4, X hasno O or 1-handles, soitonly has 2- and 3-handles.
Dually (in the standard 4-dimensional handle duality of X'), X can be constructed with
only 1 and 2-handles. Neither of these statements, in itself, is enough to show that X
is a 4-ball.

Consider, however, what the given information tells us about ¥, following
Lemma 4.4 applied to the construction of Y from above: The possible 2- and 3-handles
in the construction of X from below correspond respectively to 1- and O-handles in
the construction of ¥ from above. Similarly, the lack of 0- and 1-handles (beyond the
south pole) for X constructed from below corresponds to a lack of 3- and 2-handles
for ¥ when constructed from above. Hence ¥ has only 0- and 1-handles, i.c. itis a
4-dimensional handlebody. On the other hand, because it is the complement of S3 in
S* it is a homotopy 4-ball, so the handlebody must be of genus 0, i.e. Y is a 4-ball.
Then its complement X is also a 4-ball. O
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5. Two proofs of the genus 2 Schoenflies Conjecture

Informed by the ideas above, we present two proofs of the genus 2 Schoenflies
Conjecture. The first 1s similar in spirit (though different in detail) to the original
proof of [Schl]. The second uses a different approach, one that aims to simplify the
picture by reimbedding X or Y.

Here is a more general statement, relevant to the classical approach:

Proposition 5.1. Suppose a 3-sphere M has a genus g rectified critical level embed-
ding in S* with at most two 0-handles or at most two 3-handles. If the generalized
Property R conjecture is true for links of g — 1 components then M divides S* into
two PL 4-balls.

Proof. Perhaps inverting the height function, assume withoutloss of generality that M
has at most two 3-handles. The roles of X and Y can be interchanged by passing the
lowest O-handle over the south pole, so we can also assume without loss of generality
that the first (that is, the lowest) 3-handle for M lies in ¥ and so represents the addition
of a 3-handle to X. The second 3-handle (and so the last handle) of M either lies in X
or in ¥, but these options are isotopic by passing the handle over the north pole. So,
via an isotopy of this handle, we can choose whether both 3-handles of M lie in ¥
(and so represent attaching of 3-handles to X and not Y) or one each liesin X and Y.
See Figure 6.

X
i L

Now consider the genera ny and ny of the 4-dimensional handlebodies X, ¥y,
with ¢ = ny +ny. If ny = 0 then X, is a 4-ball. X 1s obtained from this 4-ball
by attaching some number of 2 and 3-handles, and also a 4-handle if the north pole
of % lies in X. There are as many, total, of 2- and 4-handles as there are 3-handles
(since X 1s a homotopy 4-ball) and the argument of the previous paragraph ensures
that we can arrange 1t so that X contains at most one 3-handle. Viewed dually, this
means that X can be constructed from 8X = S° with no 3-handles, and at most one
each of 1- and 2-handles. The result then follows from Corollary 2.2.

Figure 6
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Itn, > 1thenn, < g—1and, first arranging as above so that ¥ has no 3-handles,
the result again follows from the proof of Proposition 2.3. O

Corollary 5.2 ([Schl]). Each complementary component of a genus 2 embedding of
M = S%in S*is a4-ball.

Proof. As noted above, we can assume that the number a of 0-handles in the rectified
embedding of M is no larger than g = 2. Proposition 5.1 then shows the result
follows from Property R, via Corollary 2.2 . O

The reimbedding proof of the genus 2 Schoenflies Conjecture begins with a more
general claim that follows from our results above for Heegaard unions:

Proposition 5.3. Suppose M = S° has a rectified critical level embedding in S
so that Y (resp. X{) is a handlebody of genus po. If the generalized Property R
conjecture is true for [po/2] components then Y = B* (resp. X = B*).

Proof. It was noted above that ¥, is a 4-dimensional handlebody and My 1s a 3-
dimensional handlebody. The latter fact, and the hypothesis, imply that My U Y7 isa
Heegaard splitting of dY,,". Viewing the critical level embedding from the top down
we symmetrically see that YOJr 1s a 4-dimensional handlebody and ¥ 1s a Heegaard
union of ¥ and Yy along Y.

Let p1, p2 denote the genera of ¥, and Y(;r respectively. Since M is a 3-sphere,
each complementary component of M is a homotopy 4-ball. In particular, following
lemma 3.2, p1 + p2 = po. The result now follows from Proposition 3.3. O

Proposition 5.3 suggests a clear strategy for a proof of the general Schoenflies
Conjecture, assuming the generalized Property R Conjecture: Given arectified critical
level embedding of M = S% in §*, try to reimbed X (or Y), still a rectified critical
level embedding, so that afterwards, either the 3-manifold X E’)‘ or its complement Y, 5" 18
a handlebody, or at least more closely resembles a handlebody. For even if a series of
reimbeddings, first of X, then of its new complement Y’, then of the new complement
of Y', etc, eventually leads to a handlebody cross-section at height 0, we are finished.
Indeed, once one of the complementary components of the multiply reimbedded M
is a 4-ball, we have that both are, hence the previous complementary components,
in succession, leading back to the original X and Y are all 4-balls. (This is more
formally explained in the proof of Corollary 8.2.) What follows is a proof of the
genus 2 Schoenflies Conjecture built on this strategy.

In order to be as flexible as possible in reimbedding X or Y we first prove a techni-
cal lemma which roughly shows that, at the expense of some vertical rearrangement
of the 3-handles (or, dually, the O-handles), the core of a 2-handle (resp, the cocore of
a 1-handle) can be moved rel its boundary to another position without affecting the
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isotopy class of M or even the embedding of M below the specified 2-handle (resp.
above the specified 1-handle).
Suppose, as above, M is a rectified critical level embedded S> in S%.

Lemma 5.4 (Prairic-Dog Lemma). Let E C Sg — F;_1 be the core of the 2-handle
added to F;_y at critical level t; > O and let t be a generic height such that t;_1 <
t<t. Let E' C Sg — Fi_1 be another disk on the same side as E, with 9 E' isotopic

10 3E in F;_1. Then there is a proper isotopy of M in S® x [t, 1] so that afterwards
e the new embedding M’ of S is still a rectified critical level embedding,
o the critical levels and their indices are the same for M and M’,
s the core of the 2-handle ar critical level t; is E', and

o for any generic level t below the level of the first 3-handle, M = M,™.

Proof. With no loss we take 0L’ parallel (hence disjoint) from 9 E. Let k be the
number of 2-handles above level ; and n = |E N E’|. The proof is by induction on
the pair (k, n), lexicographically ordered.

Case 1. kK = n = (0. In this case, the 2-handle attached at level ¢; is the last 2-handle
attached and £’ is disjoint from £, Then the union of £ and £’ (and a collar between
their boundaries) is a 2-sphere in S3 — F;_q:if it bounds a 3-ball in S® — F;_; then
the disks are isotopic and there is nothing to prove. If it does not bound a 3-ball, let
S be the parallel reducing sphere for S® — F; and B C S be the ball it bounds on the
side that does not contain the component to which £ and E’ are attached. Since 1
is the highest 2-handle, each component of F; M B is a sphere and each is eventually
capped off above ¢; by a 3-handle.

If all are capped off by 3-handles that lic within B, push all of M N (B x [¢, 1])
vertically down to a height just above ¢ so that afterwards, E is isotopic to £’ in
Sg, _, — M. Perform the isotopy, then push M N (B x [z, 1]) back up, so that the
3-handles are attached above height 7;. The number of 3-handles attached (namely,
the number of components of F;) is the same, so, although perhaps rearranged in
order, the critical heights at which the 3-handles are attached can be restored to the
original sct of critical heights. See Figure 7.

The picture is only a little changed if one of the components of F; lying in B 1is
eventually capped off by a 3-handle notin B. The proof is by induction on the number
of such handles. Consider the highest such handle, say at level ¢;, capping off a sphere
component S of I; N B in Sfj. Let B’ be the 3-ball component of Sg, — S that does lie

in B, i.e. the complement of the 3-handle in Sg. If there are no components of F; in

the interior of B’ then the 3-handle is isotopic to B’ via passing over the north pole.
This isotopy decreases by one the number of 3-handles not lying in B, completing the
inductive step. If some components of F; do lie in B’ note that eventually they are
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Figure 7

capped off by 3-handles lying in B’ (by choice of ¢;). Simply push M N (B’ x [¢;, 1])
down below level ; and do the pole pass described above.

Case 2. k = 0,n > 0. Consider an innermost disk £j C £’ cut off by £ in E’.
Then the union of I and the subdisk Eqg of I bounded by 3 E|, is a sphere bounding
a ball B whose interior is disjoint from £. If no component of F; lies in B, Ey can
be isotoped past E;,, reducing » by at least one and maybe more, thereby completing
the inductive step. If some components of F; lie in B, then follow the recipe given
in Case 1. For example, if all components of F; N B eventually bound 3-handles that
liein B, push M N (B x [t, 1]) vertically down to just above level ¢, do the isotopy,
then raise M N (B x [¢, 1]) back up again.

Case 3. k > 0. Depending on whether n = QO orn > 1, let S and B be the reducing
sphere and 3-balls described in cases 1) and 2) above. The inductive hypothesis and
a standard innermost disk argument tells us that any 2-handle attached above level 1;
can, starting from highest to lowest, be replaced by a 2-handle disjoint from the
sphere S. Suppose ¢; 1s the level of the first 3-handle; after the replacement the entire
product S x [z, ¢;) 18 disjoint from M. In fact, following the argument of Case 2, we
can isotope the 3-handles of M (possibly rearranging the ordering of the 3-handles)
so that all of § x [¢, 1] is disjoint from M. Then push M N (B x [z, 1]) down to
just above level 7, do the 1sotopy across B as described in Case 1 or 2, then precisely
restore the height of M N (S° x [z, 1]). O

Note that since all moves are by isotopy, X and ¥ do not change.

Lemma 5.5 (Torus Unknotting Lemma). Suppose that Y (or, symmetrically, Xg)
lies in a knotted solid torus W C Sg. Let hg: W — S x D? be an orientation-
preserving homeomorphism to the unknotted solid torus S' x D* C SS. Then there is
a reimbedding h: Y — S* 1o a rectified critical level embedding so that h(Y)N S§ =
ho(Y3) and the number of handles of each index is unchanged. For t any generic
height between the highest O-handle and lowest 3-handle, both of M. ti are unchanged.
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Proof. If 3W compresses in X J, there is nothing to prove: d-reduce W to get a 3-ball,
which can be isotoped into St x D? C S and that same isotopy can be applied at
every level of % x I ¢ §%,

So we assume that W is incompressible in X{. In each successively increasing
critical level #; > O ask whether the 2-handle attached at #; can be replaced, as in the
Prairie-Dog LLemma 5.4, by a 2-handle that lies in W. If it can be done, then do so.
This may alter the critical level embedding of M, but only above level 1; 1. If success
1s possible at the critical levels of all 2-handles, the same can be accomplished for
the 3-handles, as described in Case 2 of the proof of LLemma 5.4. Similarly, at each
successively decreasing critical level ; < O try to replace cocores of 1-handles by
disks that lie in W. If this can be done for all 1-handles, then also replace cocores
of O-handles by 3-balls in W. If success is possible for all 1- and 2-handles, hence
at all levels, then M N (0W x [—1,1]) =@ and so Y € W x [—1,1]. Then the
function g x [—1, 1Jon W x [—1, 1], restricted to Y € W x [—1, 1], 1s the required
reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that
f; > 01s the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one thatliesin W C Sf’l,. Without loss, we assume that the replacements

of lower 2-handles have been done, so ¥ N (8> x [0, —e]) € W x [0, 4 —¢]. In
particular, the core of the 2-handle must lie in X ;’l‘,_g )

Choose a disk D C X __ so that its boundary is the same as that of the core of
the 2-handle and, among all such disks, D intersects W in as few components as
possible. Aninnermost circle of DN d W then cuts off a subdisk of D whose boundary
is essential in dW (by choice of D) so, since W is knotted, the subdisk must be a
meridian disk for the solid torus W. So at the generic level f; — ¢, dW compresses
in X7_, N W. In particular, ¥;7_, lies in a 3-ball B C W. It is a classical result that
simple coning extends the homeomorphism hg|B: B — ho(B) ' x D* ¢ $3 1o
an orientation-preserving homeomorphism H : S* — $3. Define then the embedding
of ¥y into $° x [0, 1] so that &|Y N ($® x [0, — ]) = ho x [0, 4 — &] and, for
t>t—e h|Y =HI|Y.

The same argument applies symmetrically to construct 2| Y, . Either all co-cores
of 1-handles can be replaced by disks in W, in which case we afterwards simply use
ho at every level ¢ € [—1, O] or there is a highest critical level #; for which the cocore
of the associated handle on M cannot be replaced by a disk in W and we apply the
symmetric version of the construction above. O

Here then 1s an alternative proof of Corollary 5.2:

Proof. Like any surface in S°, the genus 2 surface M compresses in S3, and so it
compresses into either X or Y, say the former. Maximally compress M in X3.
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If X§ is a handlebody then Proposition 5.3 says X = B*, hence its complement
Y = B4

If X is not a handlebody, then the surface [ resulting from maximally compress-
ing the surface M into X7 consists of one or two tori. Like any surface in S3, F
compresses in S3. The torus component of F that compresses in the complement
of F bounds a solid torus W on the side on which the compressing disk lies. That
side cannot lie in X, since /' is maximally compressed in that direction, so W must
contain M and so indeed all of Y. The solid torus W is knotted, else £ would still
compress further into X§. Now apply the Torus Unknotting LLemma 5.5 to reimbed
Y in S* in a level-preserving way so that afterwards W is unknotted; in particular,
afterwards I’ does compress further into the (new) complement of Y. After per-
haps a further iteration of the argument (when £ originally consisted of two tori) we
have a level-preserving re-embedding of ¥ in §* so that afterwards its complement
is a handlebody. It follows from Proposition 5.3 then that after such a reimbedding
S* — Y = B* hence also Y = B*. m

6. Straightening connecting tubes between tori in $°

Enlightened by Corollary 3.4, observe that there is no generalized Property R obstacle
to applying Proposition 5.3 to the proof of the genus 3 Schoenflies Conjecture. All
that is needed is a sufficiently powerful version of the Torus Unknotting Lemma 5.5
that would instruct us how to reimbed some complementary component Y of a genus 3
$3 in §* so that its new complement in SS’ more closely resembles a handlebody (e.g.
it d-reduces to a surface of lower genus than X3 or ¥ did originally).

Fuelling excitement in this direction is the classic theorem of Fox [Fo] that any
compact connected 3-dimensional submanifold of S* can be reimbedded as the com-
plement of handlebodies. What seems difficult to find 1s a way to extend such a
reimbedding of Y to all of ¥, as is done in Lemma 5.5. It is crucial in the proof of
Lemma 5.5 that a solid torus has a unique meridian, whereas of course higher genus
handlebodies have infinitely many meridians.

For genus 3 embeddings, there is indeed enough information to make such a
reimbedding strategy work. The key is a genus 2 analogue of the Torus Unknotting
Lemma, called the Tube Straightening Lemma. We precede it with a preparatory
lemma in 3-manifold topology, whose proof is reminiscent of that in [Ga3] or [Th]:

Lemma 6.1. Suppose F < S° is a genus 2 surface and k C F is a separating curve
in F. Denote the complementary components of F by U and V and suppose k bounds
adisk EinV sothatUUn(E) is reducible. Suppose N C V isa compact 3-manifold.
Then ar least one of the following must hold:
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e any simple closed curve in 3N that bounds a disk in S — N bounds a disk in
V—N,

* N can be isotoped in 'V to be disjoint from E, or

* kbounds a diskin U.

Proof. Suppose some component of dN is a sphere S. Since V is irreducible, S
bounds a ball B in V. Nothing is lost by adding B to N, if N is incident to S on the
outside of B, or removing B N N from N, if N is incident to S on the inside of B.
So we may as well assume that d N has no sphere components. Essentially the same
argument shows that we may take V — N to be irreducible. For if S is a reducing
sphere bounding a ball B in V, then any curve in BN 3N that bounds a disk in S* — N
bounds adiskin B — N € V — N and any curve in d N — B that bounds a disk in
(V — N) U B also bounds a disk in V — N, so without loss, we may delete B N N
from N. The proof then will be by induction on —x (dN) > 0, assuming now that
V — N is irreducible.

Case 1. N does not compress in V — N. If 8 N does not compress in S — N either,
then the first conclusion holds vacuously. Suppose then that S° — N is boundary-
reducible. A reducing sphere S for U U n(E) must separate the two tori that are
obtained from F by compressing along E, since otherwise one ball that S bounds
in $? would lie entirely in U U n(L). This implies that S intersects V in an odd
number of copies of E or, put another way, it intersects U in a planar surface P with
an odd number of boundary components lying on a regular neighborhood of k in F.
Consider then the result of O-framed surgery on k in the manifold S> — N: P can
be capped off to give a sphere which is non-separating in the new manifold, since a
meridian of (k) intersects P in an odd number of points. On the other hand, $° — N
itself is d-reducible. No options a)-e) in [Sch2, Theorem 6.2] are consistent with this
outcome (in particular the manifold called M’ there having a non-separating sphere)
so we conclude that S2 — (N U (k) is either reducible or d-reducible. In the latter
case, consider how a d-reducing disk D would intersect the surface F' — n(k). We
know the framing of F M dn(K) is a O-framing (since each component of F — (k)
is a Seifert surface for k) so D N F, if non-empty, consists entirely of simple closed
curves. An innermost disk in D cut off by the intersection (perhaps all of D) lies
either in U or V — N. But each component of I — r(K) is a once-punctured torus,
so if it compresses in U or V — N so does its boundary, i.¢. a copy of k. Hence we
have that £ bounds a disk in either U or V — N. Since V is irreducible, in the latter
case the disk can be isotoped to E in V, thereby isotoping N in V off of E.

The same argument applies if S3—(NUn(k))is reducible: sincebothU and V —N
ar¢ irreducible, such a reducing sphere must intersect /7 — n(k) and an innermost disk
cut off by the intersection leads to the same contradiction.

Case 2. 0N compresses in V — N. The proof is by contradiction: Choose an essential
curve ¥ C dN and a compressing disk D for aN in V — N so that £ bounds a disk
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D; in S — N but does not bound a disk in V — N and, among all such choices of
¢, Dy, D, |D N Dy| is minimal. If D and D, are disjoint, then let N' = N U n(D).
If there is then a sphere component of 9 N’, the ball it bounds in V can, without loss,
be deleted from N’. In any case (perhaps after deleting the ball if a sphere appears
in dN’), —x(aN") < —x(dN) and the inductive hypothesis holds for N’. But the
conclusion for N’ implies the conclusion for N, which is contained in N’ (e.g. if ¢
bounds a disk in V — N’ it bounds a disk in V — N), so this is impossible.

If D and Dy are not disjoint, note that all curves of intersection must be arcs, else
an innermost disk cut off in D could be used to surger D,y and would lower | D M Dy|.
Similarly, let D’ denote the disk cut off from D by an outermost arc of D N Dy in D
and let Dy, Dy» C V — N denote the two disks obtained by the d-compression of
Dy to 3N along D’. Both of these disks intersect D in fewer components than D,
did, so by choice of £ and D, the boundary of each new disk must bound a disk in
V — N (of course, if either curve is inessential in 0V then it automatically bounds
adiskin N C V). A standard innermost disk argument shows that Dy and Dy
can be taken to be disjoint; band them together via the band in d N which undoes the
d-compression by D', To be more explicit, note that the arc 9 D’ N 9N defined a band
move on d Dy that split d D¢ into d Dy and 0 Dyr. Undo that band move to recover
the curve d Dy, now bounding a disk (namely the band sum of D, and D) that lies
in V — N. This contradicts our original choice of £. O

Lemma 6.2 (Tube Straightening LLemma). Suppose that Y N SS (or, symmetrically,
XN SS) liesin V.C S2, with closed complement U, and U = 3V is of genus 2. Sup-
pose V contains a separating compressing disk E so that the manifold Uy obtained
from U by artaching a 2-handle along E is reducible. Then there is an embedding
ho: V. — S3 so that ho(3 E) bounds a disk in U’ the complement of ho(V). There is
also a reimbedding h: Y — S* 1o a rectified critical level embedding so that

« h(Y)NS3 = ho(YY),
« the number of handles of each index is unchanged, and

« fort any generic height between the highest O-handle and lowest 3-handle, both
of M ,i are unchanged.

Proof. Lethg: V — S be the reimbedding (unique up to isotopy) that replaces the
I-handle in V that is dual to £ with a handle intersecting the reducing sphere for U
in a single point. Then after the reimbedding d E bounds a disk in the complement
of hg(V), namely the complement of F in the reducing sphere.

In each successively increasing critical level # > 0 ask whether the 2-handle
attached at #; can be replaced, as in the Prairie-Dog Lemma 5.4, by a 2-handle that
lies in V. If it can, then do so. This may alter the critical level embedding of M,
but only above level 1;_1. If success is possible at the critical levels of all 2-handles,
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the same can be accomplished for the 3-handles, as described in Case 2 of the proof
of Lemma 5.4. Similarly, at each successively decreasing critical level ¢; < O try
to replace cocores of 1-handles by disks that lie in V. If this can be done for all 1-
handles, then also replace cocores of O-handles by 3-balls in V. If success is possible
for all 1- and 2-handles, hence at all levels, then M N (dV x [—1,1]) = @ and so
Y ¢ V x[—1,1]. Then the function i9 x [—1,1] on V x [—1, 1], restricted to
Y C V x[—1, 1], is the required reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that
t; > 01s the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one thatliesin V' C Sfl,. Without loss, we assume that the replacements

of lower 2-handles have been done, so Y N (S3 x [0, 4 —&]) < (V x [0, ; —£]). In
particular, the core of the 2-handle must lie in X __ .

Now apply Lemma 6.1 using ¥;*_, for N. By assumption, the boundary of the
core of the 2-handle bounds no disk in V' N X[ __ so the first possible conclusion
of Lemma 6.1 cannot hold. If the last holds, there was nothing to prove to begin
with. (Take /i = identity.) Hence we conclude that the second conclusion holds:
Y;'_. can be isotoped to be disjoint from E. But once this is true, the reimbedding

ho has no effecton ¥;7_; that is, ¥7__ is isotopic to ho(Y,[_.). Hence we can define

RI(Y N(S? x [0, 1) tobe hg x [0, —e] on ¥ N (S? x [0, f; — £]), followed by
a quick isotopy of ho(¥;'_,) to Y;:—g 1y followed by the unaltered embedding above
level ; — ¢/2. Note that this unaltered embedding is not necessarily the original
embedding, because of changes made while ensuring that earlier 2-handles liein V.

Finally, the argument can be applied symmetrically on ¥ N (53 x [—1,0]). O

7. Weak Fox reimbedding via unknotting and straightening

In this section we show that, for a genus 3 surface in S3 the operations of torus
unknotting and tube straightening described above suffice to give a weak version of
Fox reimbedding. That is, for a genus 3 surface F C S? there is a sequence of such
reimbeddings, not necessarily all operating on the same complementary component
of F, so that eventually a complementary component is a handlebody. Although
the context of this section appears to be 3-manifold theory, the notation is meant to
be suggestive of the eventual application to the genus 3 Schoenflies Conjecture. In
particular, the terms rorus unknotting and tube straightening as used in this section
refer to the 3-dimensional reimbedding /g given in, respectively, Lemma 5.5 and
Lemma 6.2.

Suppose F'  S? is a surface dividing S° into two components denoted X and Y.
Suppose D1 is a compressing disk for F in X giving rise to a new surface F; C S°
with complementary components X1 = X — n(D7) and Y1 = X U (D). Suppose
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Dy is a compressing disk for Fy in X or Yq, giving rise to a new surface Fy C S3
with complementary components X, and Y,. Continue to make such a series of
compressions via compressing disks D;, 1 = 1, ..., n so that each D; lies either in
X;_1 or Y;_1 (the complementary components of [j_; C S3) until all components
of I}, are spheres.

Definition 7.1. F can be straightened if there is a sequence of torus unknottings
and tube straightenings of I, as described in Lemmas 5.5 and Lemma 6.2, so that
afterwards either

+ X or Y is a handlebody, or

+ the order of the compressions Dy, ..., D, can be rearranged so that afterwards
some a 1); is inessential in F; _q and so can be eliminated from the sequence.

In the spirit of Lemma 5.4, any disk D); can be replaced by a disk D in the same
complementary component, so long as 3 D; and 8 D] are isotopic in F;_.

The following series of lemmas assumes we are given such a sequence for I/ ¢ S°,
that the sequence is as short as possible, and that the first compressing disk D1 lies
in X. There are, of course, symmetric statements if D1 C Y.

Lemma 7.2, If Dy C X then F can be straightened. More specifically, there is a
sequence of torus unknottings which convert X into a handlebody

Proof. Since X1 = X — n(Dy), the disks Dy and D3 can be thought of as disjoint
disks in X and the compressions given by D1, D> can be performed simultancously. If
any component of /5 is a sphere, one of the disks is redundant and could be removed
from the sequence of compressions. Since x (F2) = 0, we can then assume that F»
consists of one, two, or three tori, depending on how the disks Dy, D; are arranged.

The proof is by induction on the number of components in 2. Suppose £ is a
single torus; sin¢e 1t 1s in $3 it bounds a solid torus on at least one side. If a solid
torus that it bounds lies in X, then the original X was a handlebody and we are done.
If the solid torus that /> bounds lies in Y> then all of F also lies in that solid torus.
After a torus unknotting, /% also bounds a solid torus in X, and X is a handlebody,
as required.

Suppose Dj 1s separating, so on¢ of the components T of Fp is a torus. If T
bounds a solid torus in X; then we may as well have used the meridian of that torus
for Dy. This switch would lower the number of components of f7, so we can invoke
the inductive hypothesis. If, on the other hand, 7" bounds a solid torus in Y7 then all
of F' also lies in that solid torus. After perhaps a torus unknotting, 7" bounds a solid
torus in X as well, and again we could replace D by a meridian of that torus and
invoke the inductive hypothesis.
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The same argument applies if Dy is separating — just switch the order of D and
D». So the only remaining possibility is that 127 and D, are both non-separating but
together they separate I, so F, consists of two tori. If either bounds a solid torus in
X then a meridian for that solid torus could be substituted for D, thereby lowering
the number of components of /- and completing the inductive step. If neither bounds
a solid torus in X, then the solid torus W in S that one of them does bound must
contain the other torus, and so in fact W contains all of F. After a torus unknotting,
a W will, on its other side, also bound a solid torus W' C X;. After that reimbedding
we can replace Dy by a meridian of W’ and invoke the inductive hypothesis. O

Lemma 7.3. If D| C X and D, C Y| are both separating, and D, C Y C Yy (i.e
Dy does not pass through the 1-handle dual to Dy) then F can be straightened.

Proof. Since the interiors of both Dy, D, are disjoint from F, their order can be
rearranged, so there is symmetry between the two. Since D is separating there is a
torus component 77 € Fy and 71 bounds a component Wy of X; whose interior 1s
disjoint from F,. After perhaps a torus unknotting of its complement we may as well
assume that Wy is a solid torus. Eventually some compression D; will compress 71
to a sphere; if D; € Wy then we could have done D; before Dy, making Dy (coplanar
to D;) redundant, and thereby reduced the number of compressions. Thus we may
as well assume D; C Y;_1, so Wy is an unknotted solid torus. Similarly, the torus
component 73 C F; not incident to D1 bounds a solid unknotted torus W C ¥;. See
Figure 8.

Assume, with no loss of generality, that D3 C Yo, We have already seen that Ds
cannot compress 15, else the number of compressions could be reduced. It follows
that D3 either compresses 77 or it compresses the third torus 73 created from by
the compressions D1, Dy. Either case implies that the component Uy = Y, — Ws
of ¥> is reducible. Apply tube straightening to /' = U4 M Y so that the tube dual to
D1 passes through the reducing sphere of UL once. After the straightening, the disk
D; that eventually compresses 77 into Y; lies in ¥, so it can be the first compression,
making Dj redundant. O

Lemma 7.4. If Dy C X and D, C Yy are both separating and if D3 or both D4 and
Ds are towards the X side, then I can be straightened.

Proof. In this case there is not necessarily symmetry between Dy and D, but the
argument of Lemma 7.3 still applies if the compression disk for 75 lies on the X-side
rather than the Y-side or if 75 compresses before 73. So that is what we now verity:
If D3 lies on the X -side it compresses 1> or T3 into X» and we are done. On the other
hand, if D4 and Ds both lie on the X -side then since 77 compresses on the Y-side,
one of D4 or Ds is the compression disk for 73. O
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Figure 8

Lemma 7.5. If D1 C X isseparating, and Y is 0-reducible, theneither D, C Y C 1
or F can be straightened.

Proof. Consider the torus component 77 of Fy and the component W; C X it
bounds. As noted above, the interior of Wy is disjoint from #7 and so, perhaps after a
torus unknotting, we can assume that Wy is a solid torus. Moreover, the disk D; that
eventually compresses 77 lies on the ¥ -side and not in W1. Hence W is an unknotted
solid torus.

Following LLemma 7.2 we may as well assume that Dy C Y1. By assumption
Y 1s d-reducible and, after attaching a 2-handle (a neighborhood of Dy) to get 11
the resulting manifold still 1s d-reducible, via D>, It follows from the Jaco handle
addition lemma [Ja] that there is a d-reducing disk J C Y for ¥ whose boundary is
disjoint from 0 D. Take J to be non-separating, if this is possible.

If 9J lies on 77 then it is parallel to the disk D; that eventually compresses 17 so
we may as well do that compression before D1, making D1 redundant and so reducing
the number of compressions. So we henceforth suppose dJ lies on the other, genus 2
component of ¥ — d D1, and so lies on ¢ F; — T7.

If 9. 1s inessential in Fy then it is parallel to ¢ Dy in I, Thus d Dy also bounds the
disk J C Y and the union of the two gives a reducing sphere for Y7 that intersects the
I-handle dual to D in a single point. It follows that the longitude 38 D; of T7 bounds
a disk in ¥ and we are done as before.

If 9/ is essential in /7 compress Y along J to get Yy and consider the component
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W, C Yy (infact all of ¥y if J is non-separating) such that 6 Dy C ¢ Wy and 0 W,
has genus 2. The manifold er obtained by attaching n( D7) to W; has boundary the
union of two tori. W;r can also be viewed as a component of Y1 — n(J).

We claim that either D, C Y or Wj' is reducible. This is obvious if there is a
disk component of D, — J that cannot be removed by an isotopy orif dD; N J = ¢
The alternative then is that D> N J is a non-empty collection of arcs. Consider an
outermost disk D’ cut off from D, by J. We may as well assume D’ C W For if
it’s not then J is separating, D’ is a meridian of the other complementary component
(a solid torus) and we may as well have used D’ for J, thereby eliminating the case
that J is separating. With then D’ ¢ W3, compress the torus boundary component
of E)W;r along D’ to get a reducing sphere for WJJ“.

Finally, if W}" is reducible, apply tube straightening to the surface d W, , replacing
the handle dual to Dy by a handle intersecting the reducing sphere once, allowing the
same conclusion as before. O

Corollary 7.6. If D1 C X and Dy C Y are both separating, and Y is d-reducible,
then F can be straightened.

Proof. Combine Lemmas 7.5 and 7.3. O

Corollary 7.7. If Dy C X is separating then either

« ar least two of the three non-separating compressing disks are on the Y-side
and, if Dy is separating, Y is o-irreducible, or

» I' can be straightened.

Proof. Tollowing Lemmas7.2,7.4,and 7.5 we may as wellassume that D, C Y C 1
and D is non-separating. As before, let 77 be the torus component of /7 bounding
a component Wy of X1 whose interior 1s disjoint from F7.

If the compressing disk D; that eventually compresses 77 lies on the X -side, then
D; < Wy (and W is a solid torus). No earlier compressing disk can be incident to
11 so in fact D; could have been done before Dq, making the latter redundant. This
reduces the number of compressions.

If, on the other hand, D; lies on the Y -side then both D; and Dy are non-separating
disks lying on the ¥-side, as required. O

Lemma 7.8. If D1 C X is non-separating, then either all succeeding disks Dy, D
are non-separating or I can be straightened.

Proof. Since D 1s non-separating, I 1s a genus 2 surface. Its complementary
component Y1 contains all of ¥. If D> is also non-separating then F3 is a torus, for
which any compressing disk is non-separating, giving the result.
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So suppose D; is separating. Following Lemma 7.2 we may as well assume
D, C Y1, 80 dY, consists of two tori. Hence D3 1s non-separating and compresses
one of the tori. If D3 C ¥; then D3 could have been done before D3, making D;
redundant. If D3 C X then the result of the compression is a sphere which could
have been viewed as a reducing sphere for Y,. Apply tube straightening, using Y
for N. After that reimbedding, D3 C X1 € X» does not pass through D, so the
compression along Ds could be done before the compression along D;, making D,
redundant. O

We note in passing, though the fact will not be used, that if there are non-separating
compressing disks on both sides, they may be taken to be disjoint:

Proposition 7.9. If D; C X is non-separating, and Y has a non-separating o-re-
ducing disk E, then either 0D1 N 0E = () or F can be straightened.

Proof. Tollowing Lemma 7.2 we may as well assume that D, C Y;. By assumption
Y 1s d-reducible and, after attaching a 2-handle (a neighborhood of Dq) to get ¥y the
resulting manifold still d-reducible, via D;. It follows from the Jaco handle addition
lemma [Ja] that there is a d-reducing disk J C Y for ¥ whose boundary is disjoint
from 0 Dy. Take J to be non-separating, if this is possible.

Suppose first that 9.7 is inessential in /7. Then the disk it bounds in /7 contains
both copies of D1 resulting from the compression of F along D1. Put another way, J
cuts off acomponent W, from Y that has torus boundary and whose interior is disjoint
from F. Following, perhaps, a torus unknotting, we may assume that W; is a solid
torus. A standard innermost disk, outermost arc argument between J and Dy ensures
that they can be taken to be disjoint, so D> compresses the other, genus 2 component
of ¥ — n(J). This compression, together with the compression via the meridian
of Wj, d-reduces Y to one or two components, each with a torus boundary. After
perhaps some further torus unknottings, Y becomes then a handlebody, as required.

So suppose henceforth that 9.7 is essential in F;. Compress ¥ along J to get Yy
and consider the component W; C Y, (in fact all of Y, if J is non-separating) such
that D1 C dW; and W, has genus 2. The manifold W;r obtained by attaching
n(D1) to Wy has boundary a torus. Wf can also be viewed as a component of
Y1 —n(J).

Consider an outermost disk £’ of E cut off by J, or let £ = E if E is disjoint
from J. We may as well assume that £’ lies in Wy, since if J is separating and £’
lies in the other component, we should have taken £’ for J, If £’ is inessential in W
then £/ = E is parallel to J (since E is non-separating), so 3D N JE = @ and we
are done. If E’ is essential in W; then each component of ¥ — (n(J) U n(E")) has
interior disjoint from F and 1s bounded by a torus. Following some torus unknottings
we can take them to be solid tori. In that case Y is a handlebody, as required. O
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8. The genus 3 Schoenflies Conjecture

We now apply the results of the previous sections to complete the proof of the genus 3
Schoenflies Conjecture.

Theorem 8.1. Suppose M is a genus 3 rectified critical level embedding of S* in S*.
Then after a series of reimbeddings of M via other genus 3 rectified critical level
embeddings, each of which changes at most one of the complementary components
of M, one of those complementary components is B*

Proof. We assume that any possible genus 3 rectified critical level reimbedding of M
that preserves at least one complementary component and simultaneously decreases
the number of handles has been done. If any further such a sequence of reimbeddings
via Lemmas 6.2 or 5.5 (reimbeddings that do not raise the number of handles) results
in X (resp. Y1) becoming a handlebody, then X (resp. Y) is B*, via Proposition 5.3.
So we assume no such further sequence exists and use the results of the previous
section to see if there are other options. With no loss of generality, assume the cocore
D1 of the highest 1-handle lies in X § and let £y denote the core of the lowest 2-handle.

Following L.emma 7.2 we can assume that the cocore D; of the previous 1-handle
lies on the Y-side and the cocore F; of the next 1-handle lies on the side opposite the
one on which E lies.

Claim. Perhaps after rearranging the ordering of the handles, at least one of Dy and
E1 1s non-separating.

Suppose D and E arc both separating. Ifboth D and E1 lie in X}, then it follows
from Corollary 7.7 that at least two of the non-separating cores of the 2-handles and
at least two of the non-separating cocores of the 1-handles all lie on the Y-side of
the surfaces to which they are attached. So both YOJr and Y, are 4-dimensional
handlebodies of genus atleast 2. But the Mayer—Vietoris sequence for Yo+ , Yy glued
along ¥ then contradicts H,(Y) = H,.(B%), cf. the proof of Lemma 3.2.

On the other hand, if Dy C X and Ey C Y; then, following Corollary 7.6 and
Lemma 7.5, D7 is non-separating and lies in Yg‘. Then interchange Dy and D>, using
the 1-handle dual to Dy as the highest 1-handle. The new arrangement establishes
the claim.

Following the claim, we can, with no loss, assume that £ is non-separating. Then
according to Lemma 7.8, all of the cores of 2-handles are non-separating, so each
surface F; at or above height 1 = 0 are connected. Hence there is at most one 3-
handle in M and, passing this 3-handle over the north pole if necessary, this guarantees
that each of X and Y have induced handle structures without 3-handles. Following
the comments preceding Lemma 4.4, the sum of the genera of the 4-dimensional
handlebodies X, and Y, is 3, so one of them, say X, has genus < 1. X is then
obtained from the genus O or 1 handlebody X by attaching some 2-handles but no
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3-handles. Moreover, 0X is a sphere. If ( Xy ) = 0 (resp. genus(X; ) = 1) then no
(resp. one) 2-handle must be attached, to ensure that f7;(X) = > (X) = 0. In the
first case, since no 2-handles (hence no handles at all) are attached, X = X = B,
In the second case, one 2-handle is attached to X, = Sl x p3andso X = B4, by
Corollary 2.2. O

Corollary 8.2. Each complementary component of a genus 3 rectified critical level
embedding of S in S* is a 4-ball.

Proof. Let M be a genus 3 rectified critical level embedding of S*. Following The-
orem 8.1 there 1s a sequence of such embeddings

M:MO’ Ml’ MZ’H-’MH

so that one of the complementary components of M, is B* and, furthermore, for each
i =0,...,n— 1, one of the complementary components of M; is homeomorphic to
a complementary component of M; . The argument is by induction on #, exploiting
the fact that the complement of B* in S*is B*.

Since one complementary component of M, is B*, both complementary compo-
nents are. If n = 0 we are done. For n > 1, note that since one complementary
component of M, _1 1s homeomorphic to a complementary component of M,,, that
complementary component is B*. This completes the inductive step. O
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