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Generalized Property R and the Schoenflies Conjecture

Martin Scharlemann*

Abstract. There is a relation between the generalized Property R Conjecture and the Schoenflies

Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof
of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence

of new progress on the generalized Property R Conjecture.
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1. Introduction and preliminaries

The Schoenflies Conjecture asks whether every PL (or, equivalently, smooth) 3-sphere
in .S'4 divides the 4-sphere into two PL balls. The appeal of the conjecture is at least
3-fold:

• The topological version (for locally flat embeddings) is known to be true in
every dimension. Both the PL and the smooth versions (when properly phrased,
to avoid problems with exotic structures) are known to be true in every other
dimension.

• If the Schoenflies Conjecture is false, then there is no hope for a PL prime
decomposition theorem for 4-manifolds, for it would imply that there are PL
4-manifolds X and Y, not themselves 4-spheres, so that X # Y S4.

• The Schoenflies Conjecture is weaker than the still unsolved 4-dimensional PL
Poincaré Conjecture, and so might be more accessible.

Little explicit progress has been made on the Schoenflies Conjecture for several

decades, a time which has nonetheless seen rapid progress in ourunderstanding ofboth
3- and 4-dimensional manifolds. Here we outline how the Schoenflies Conjecture
is connected to another important problem on the border between classical 3- and

*Research partially supported by a National Science Foundation grant. Thanks also to Catalonia's Centre
Recerca Matemàtica for their extraordinary hospitality while this work was being completed
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4-dimensional topology, namely the generalized Property R Conjecture. We show
how at least some of the last two decades of progress in combinatorial 3-dimensional

topology, particularly sutured manifold theory, can be used to extend the proof of the

Schoenlhes Conjecture from what are called genus 2 embeddings of S3 in .S'4 to genus 3

embeddings. In some sense this is a small advance, but it has some philosophical
interest: genus 2 surfaces have long been known to have special properties (e.g.
the hyperelliptic involution) that are not shared by higher genus surfaces. That this
approach works for genus 3 suggests that the special properties of genus 2 surfaces are

not needed and so are not a barrier to success for arbitrary, higher genus embeddings.
We work in the PL category throughout. All manifolds discussed are orientable.

2. Generalized Property R

Recall the famous Property R theorem, proven in a somewhat stronger form by David
Gabai [Ga2]:

Theorem 2.1 (Property R). If 0-frarned surgery on a knot K c S3 yields S1 x S2

then K is the unknot.

It is well known (indeed it is perhaps the original motivation for the Property R

Conjecture) that Property R has an immediate consequence for the handlebody structure

of 4-manifolds:

Corollary 2.2. Suppose U4 is a homology 4-sphere and has a handle structure
containing exactly one 2-handle and no 3-handles. Then U is the 4-sphere.

Remark. It is immediate that U4 is in fact a homotopy 4-sphere, since the dual handle
structure would have no 1-handles and U4 is simply connected. But this property
plays no role in the proof.

Proof. Since U has a handle structure with no 3-handles, dually it has a handle
structure with no 1-handles. In order for U to be connected, this dual handle structure
must then have exactly one 0-handle, so the original handle structure has a single 4-
handle.

Let U- c U be the union of all 0- and 1-handles of U and M 3f/_. £/_ can
be thought of as the regular neighborhood of a graph or, collapsing a maximal tree in
that graph, as the regular neighborhood of a bouquet of circles. The 4-dimensional
regular neighborhood of a circle in an orientable 4-manifold is .S'1 x fl3, so £/_ is

the boundary connected sum t|„(S1 x D3), some n > 0. (Explicitly, the number of
summands n is one more than the difference between the number of 1 -handles and

0-handles, i.e. 1 — y, where / is the Euler characteristic of the graph.) It follows
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that M #n(S1 x S2) and, in particular, Ih_(M) TT, Now consider the closed

complement U+ of f/_ in U. Via the dual handle structure, U+ is obtained by attaching
a single 2-handle to B4, so it deformation retracts to a 2-sphere and, in particular,
H2(U+) Z. Since U is a homology 4-sphere and liAlI- 0, it follows from the

Mayer-Vietoris sequence

H3(U) 0 ^ H2(M) H2(U+) © fhjUJ) — H2(U) 0

that Z H2(U+) Z", so « 1 and M S1 x S2.

On the other hand, U+, whose handle structure (dual to that from U) consists of
a (©handle and a 2-handle, is visibly the trace of surgery on a knot in S3, namely the

attaching map of the 2-handle. The framing of the surgery is zero, since the generator
of Ih (U+) is represented by * x .S'2 : .S'1 x S2 M and this class visibly has trivial
self-intersection. Since the result of 0-framed surgery on the knot is M S1 x S2,

the knot is trivial by Property R (Theorem 2.1) so U+ is simply S2 x I)2

Hence U is the boundary union .S'1 x JP U3 S2 x I)2. Of course the same is true
of S4, since the closed complement of a neighborhood of the standard 2-sphere in
.S'4 is S1 x D3. So we see that U can be obtained from .S'4 by removing the standard
S1 x I)2 and pasting it back in, perhaps differently. But it is well known (and is

usefully extended to all 4-dimensional handlebodies by Laudenbach and Poenaru

[LP]) that any automorphism of .S'1 x S2 extends to an automorphism of S1 x D3, so

the gluing homeomorphism extends across .S'1 x I)- to give a homeomorphism of U
with S4.

Hie generalized Property R conjecture (cf. Kirby Problem 1.82) says this:

Conjecture 1 (Generalized Property R). Suppose L is a framed link of n > 1

components in S3, and surgery on L via the specified framing yields #„ S1 x S2:). Then
there is a sequence of handle slides on L (cf. [Ki] that converts L into a 0-framed
unlink.

In the case n 1 no slides are possible, so Conjecture 1 does indeed directly
generalize Theorem 2.1. On the other hand, for n > 1 it is certainly necessary to
include the possibility of handle slides. For if one starts with the 0-framed unlink
of «-components and does a series of possibly complicated handle-slides, the result
will be a possibly complicated framed link L of «-components. The result of doing
the specified framed surgery on L will necessarily be the same (cf. [Ki]) as for the

original unlink, namely #,, .S*1 x S % but L itself is no longer the unlink. The example
L is still consistent with Conjecture 1 since simply reversing the sequence of handle
slides will convert L back to the framed unlink. So in some sense Conjecture 1 is the
broadest plausible generalization of Theorem 2.1.

Hie generalized Property R Conjecture naturally leads to a generalized Corollary

2.2:
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Proposition 2.3. Suppose Conjecture 1 is true. Then any homology 4-sphere U with
a handle structure containing no 3-handles is S4.

Proof. Again focus on the 3-manifold M that separates C/_ (the manifold after the 0

and 1 -handles are attached) from its closed complement U+ in U. The dual handle

structure on U shows that U+ is constructed by attaching some 2-handles to B4. On
the other hand, the original handle structure shows that 6L is the regular neighborhood
of a graph, so, as before for some n. 11- ^„(S1 x />' and M #„ (5"1 x S2).

In particular H2(M) Z". Since U is a homology 4-sphere and I1) < BL 0, it
follows as before from the Mayer-Vietoris sequence that 8gf£7+j S Z" Hence U+
must be obtained from B4 by attaching exactly n 2-handles. Then the generalized
Property R conjecture would imply that U+ (S2 x D2). It is shown in [LP] that

any automorphism of #„ (S1 x S2) 3tjK (S1 x £>3) extends to an automorphism of
jfe (S1 x D3). (This is not quite stated explicitly in [LP] beyond the observation on

p. 342, "mark that no diffeomorphism of Xp was needed here!"). Hence (he only
manifold that can be obtained by gluing ll+ to 11- along M is .S'4.

Hie proposition suggests this possibly weaker conjecture:

Conjecture 2 (Weak generalized Property R conjecture). Suppose attaching n

2-handles to B4 gives a manifold VP whose boundary is #„ S1 x S2). Then VP

US2xD2),

We have then:

Proposition 2.4. The weak generalized Property R conjecture (Conjecture 2) is equivalent

to the conjecture that any homology 4-sphere U with a handle structure
containing no 3-handles is S4.

Proof. The proof of Proposition 2.3 really required only Conjecture 2, so only the

converse needs to be proved.

Suppose we know that any homology 4-sphere with a handle structure containing
no 3-handles is S4. Suppose W is a 4-manifold constructed by attaching n 2-handles

to B4 and 3W is iï-niS1 x S2). Consider the exact sequence of the pair (W. 3 VP):

0 H3(W, 3VP) -fc H2(dW) Hr H2(W)

-* //2iVP. 3 VP) -> ll\ 13 VP) //, (VP I 0.

Since the last two non-trivial terms are both Z", the inclusion induces an isomorphism
of the first two non-trivial terms, H2 (3 VP) —> H2(W) Z". Attach V |.ft(S1xD3)
to VP by a homeomorphism of their boundaries and call the result U. (There is an
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obvious homeomorphism of boundaries, and any other one will give the same 4-mani-
fold, per [LP]). Then the Mayer-Vietoris sequence for the pair (W. V) shows that U
is a homology 4-sphere hence, under our assumption, U S4.

V c U is just a regular neighborhood of the wedge of « circles F. Since U
is simply connected, T is homotopic to a standard (i.e. planar) wedge of circles in
U whose complement is Hn(S2 X D2). In dimension 4, homotopy of 1-complexes
implies isotopy (apply general position to the level-preserving map F
so in fact W %t(S2 x D2) as required.

Setting aside conjecture, here is a concrete extension of Property R:

Proposition 2.5. Suppose d 2-handle is attached to a genus n 4-dimensional handle-

body N jiniS1 xD3] and the resulting 4-manifoldN- has boundary xS2).
Then .V " it.S'1 x IV).

Proof. The proof is by induction on n ; when n 1 this is Property R. Suppose then
that« > 1 and let /F c ih;,. i.S'1 x I)3)) #„{Sl x S2) be the attaching map for the 4-
dimensional 2-handle. The hypothesis is (lien that surgery on K yields#,, _i f .S*1 xS2),
a reducible manifold. But examining tire possibilities in [Sch2] we see that this is

possible only if #,, (S1 x S2) — K is itself reducible, so in particular one of the non-
separating 2-spheres {*} x S2 is disjoint from K. Following [LP], this 2-sphere
bounds a 3-ball in N. Split N along this 3-ball, converting N to ;„_i (S1 x D3) and

dN- to #,, 2
-S*1 x S2). By inductive hypothesis, the split open AG is "„—21 -S*1 x D3)

so originally N- \\„-i(S1 x D3).

Remark. Experts will note that, rather than use [Sch2], one can substitute the somewhat

simpler [Gal]: If « 5» 1 then H2(#n(Sl x S2) — r](K)) ^ 0. Since both 00-
and 0-framed surgery on K (or on a companion solid torus if x S2) — q(K)
is toroidal) yield reducible (hence non-taut) 3-manifolds, from [Gal] it follows that
#ra(# x S2) - 1} K is itself not taut, hence is reducible.

3. Application: Heegaard unions

Let H* 1foiS1 x D2) denote a 3-dimensional genus « orientable handlebody and

J" [{„(S1 x D3) denote a 4-dimensional genus « orientable handlebody. H" and

J" can also be thought of as regular neighborhoods in, respectively, R3 and R4 of
any graph F with Euler characteristic y <F 1 — «.

Definition 3.1. Suppose, for some po- Pl. Pi t N, llf"' is embedded into both 3 Jpx

and ii.V'1 so that its complement in each %Jm, i 1, 2 is also a handlebody. Then
the 4-manifold W Jpl Uhpo -V'1 is called the Heegaard union of the JPi along
HPo. See Figure 1.
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copies c

JP2

jPi

H Hm

Figure 1

The term Heegaard union comes from the fact that Hp0 is half of a Heegaard
splitting of both 8//M and dJP2. Moreover, if W is such a Heegaard union, then

9 JPi — Ilp,f) Ug //.o (3 J pl—Hpo) is a Heegaard splitting of 3 VF. Ibe construction here
is tangentially related to the construction in [BC, 2.4] of a 4-dimensional cobordism
between three Heegaard-split 3-manifolds. Indeed, if two of the three 3-manifolds
in the Birman-Craggs construction are of the form #,; (S x: S and are then blled in
with copies of #,• («S11 x /) ') the result is a Heegaard union.

Lemma 3.2. If a Heegaard union W JPI U Jp2 is a rational homology ball then

Po Pi + Pi-

Proof. The brst and second homology groups (rational coefficients) of IT are trivial,
so the result follows from the Mayer-Vietoris sequence of W JP1 U//«, JP1:

H2(W) 0 -> Hi(Hm) -t, Hi(Jpl) © Hi(Jp2) fli(W) 0.

Proposition 3.3. Suppose a Heegaard union W JPI JP2 is a homology ball
and 3 W S3. If the weak generalized Property R conjecture Conjecture 2) is true

for minjpi, p2} components, then W B4.

Proof. Suppose with no loss of generality that pi < p2. Let J\ denote JPi,i 1,2
and Ho denote IP"'. Consider the genus po Heegaard splitting of dJ2 given by
H0 U ,-(//„ (3/2 — Ho). According to Waldhausen [Wa] tliere is only one such Heegaard
splitting of 3/2 up to homeomorphism, obtained as follows: Regard J2 as the product
of the interval with a genus p2 3-dimensional handlebody //. Hien H x {0} c
3(H x I) 3/2 and dJ2 — ill x {0}) are both 3-dimensional handlebodies. The

resulting Heegaard splitting of dJ2 is called the product splitting. It can be regarded
as the natural Heegaard splitting of 8/2 #/:,2 (' S1 x .S'2 Any other Heegaard splitting
(e.g. the genus po splitting at hand) is homeomorphic to a stabilization of this standard

splitting.
As proven in [LP] and noted above, any automorphism of dJ2 extends over J2

itself, so we may as well assume that the Heegaard splitting Hq U(8/2 — Hq)
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actually is a stabilization of the product splitting. In particular, and most dramatically,
if po f>2 then no stabilization is required, so Jt is just Ho x I and W J\. Much
the same is true if po P2 + L most of Ho is just H, so its attachment to J\ has no
effect on the topology of J\. The single stabilization changes the picture slightly, and

is best conveyed by considering what the effect would be of attaching a 4-ball to J\
not along one side of the minimal genus splitting of SB4 (i.e. along /> c S3), which
clearly leaves J\ unchanged, but rather along one side of the once-stabilized splitting
of SB4. That is, B4 is attached to J\ along a solid torus, unknotted in SB4. But this
is exactly a description of attaching a 2-handle to J\. So VP can be viewed as J\ with
a single 2-handle attached. In the general situation, in which the product splitting is

stabilized po — P2 times, W is homeomorphic to Jj with po — pi 2-handles attached.

The result now follows from Lemma 3.2 and Proposition 2.4.

Remark. The link along which the 2-handles are attached has p\ components and,
viewed in S3, is part of a genus po Heegaard splitting. So its tunnel number can be

calculated: pi — 1 tunnels are needed to connect tire link into a genus p\ handlebody,
and another po — pj are needed to make it half of a Heegaard splitting. Hence the
tunnel number is po — 1. This fact may be useful, but anyway explains why [Sehl]
could be done just knowing Property R for tunnel number one knots.

Corollary 3.4. Suppose a Heegaard union W Jpx Uhpo Jm is a homology ball
andSW S3. If po < 3 then W B4.

Proof. By Lemma 3.2, pi + P2 < 3, hence minjpi, pf\ < 1. The result then follows
from Proposition 3.3 and Theorem 2.1.

4. Handlebody structure on 3-manifold complements

Suppose M c S4 is a connected closed PL or smooth 3-submanifold. In this section

we discuss the handlebody structure of each complementary component of M.
It is a classical result (cf. [KL]) that M can be isotoped so that it is in tire form of

a rectified critical tmel embedding. We briefly review what that means.

Informally, the embedding M c .S'4 is in the form of a critical level embedding if
it has a handle structure in which each handle is horizontal with respect to the natural

height function on .S'4, and M intersects each region of .S'4 between handle levels in
a vertical collar of the boundary of the part of M that lies below (or, symmetrically,
above). More formally, regard .S'4 as the boundary of D4 x [—1,1], so .S'4 consists

of two 4-balls I)4 x +1 (called the poles) added to the ends of S3 x [—1,1], Let

p: .S'3 x I. 11 -> [—1,1 ] be the natural projection. For — 1 < t < 1 denote p~l{t)
by S3. Then M c S3 x [—1,1] C .S'4 is a critical level embedding if there are a



428 M. Scharlemann CMH

collection t\ < tj < • • < tn of values in (—1,1) and a collection of closed surfaces

F\..... F, c S3 so that

(1) p(M) [ti, i„]c(-l, l).
(2) For each 1 < i < n — 1, M n (S3 x (h, f;+i)) Vï x (?;, t;+1).

(3) M n Sf B3 witli boundary Fi,
(4) For each 2 <i < m, I) is obtained from I)_ i by a j-surgery, some 0 < j <3.

That is, there is a 3-ball /)' x I) 7 c S3 incident to F_i in <)/F x I) and

F is obtained from F-i by replacing dD3 x l) x ' with /)' x ;i/)3

(5) For each 2 < i <n, M C\S3. is the trace of the surgery above. That is, it is the

union of F;_i, F: and /T x D3~F

Such an embedding gives rise to a handle structure on M with n handles added

successively at levels tn. j is the index of the handle I)J x l)3~K A critical
level embedding is called rectified if, for 0 < j < 2, each handle of index j occurs
at a lower level than each handle of index j + 1, Furthermore, all 0- and 1-handles
lie below and all 2- and 3-handles lie above ift See Figure 2.

a

I)4 north pole

all 0- & 1-handles attached above

S3 x {0}

all 2- & 3-handles attached below

D4 south pole

Figure 2

Note that the surface M fl is a Heegaard surface for M, since all 0- and 1-

handles lie on one side (namely in S3 x [—1, 0]) and all 2- and 3-handles lie on the

other (S3 x [0,1]). In particular, M n .S'(3 is connected. It is easy to See, [Sehl,
Lemma 1.4], though not completely obvious, that if the first 1-handle attached to the

boundary of a 0-handle is incident to the 0-handle at only one end, then the handles
cancel and there is a rectified embedding of M in which neither handle appears. So,

minimizing the number of handles, we will henceforth assume that the first 1-handle
incident to each 0-handle is incident to it in both ends. Equally important is the dual
to this remark: the boundary of the core of any 2-handle is essential in the surface to
which the 2-handle is attached. To summarize:
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Lemma 4.1. Any rectified critical level embedding ofM may be isotoped rel M n J|
to a rectified critical level embedding with no more (but perhaps fewer) handles: of
any index, such that

> the first 1 -handle incident to each 0-handle is incident to it in both ends, and

• the core ofany 2-handle attached in Sf is a compressing diskfor M n Sf_si

We will henceforth consider only rectified critical level embeddings with these

two properties.

Definition 4.2. The genus of the embedding of M in S4 is the genus of the Heegaard
surface M n Sq.

It will be important to understand how a rectified critical level embedding induces

a handlebody structure on each of its closed complementary components X and Y. Let
X denote the component of S4 — M that contains the south pole D x | 1 j. For each

generier g (—1,1) let Yt~, (resp. Xf, Mf be the part of Y (resp. X, M) lying below
levelr or, more formally, the 4-manifold 7n(S3 x [—1, /]) (resp. XDfS3 x[—1, f]), 3-

manifold M D (S3 x [- 1, t]). Symmetrically, let Yt+, (resp. Xf, Mf be the part of Y

(resp. X, M) lying above level t, that is, the 4-manifold with boundary Yn(.S'3 x [ /, 11

(resp. lnfS3x [/, 1]), 3-manifold with boundary M D (S3 x [r, 1])). Finally, let Yf,
(resp. Xf. Mf) be the part of Y (resp. X, M) lying at level t, that is the 3-manifold
with boundary Y D Sf (resp. In Sf, closed surface M D Sf Thus 3 Yf is the union of
Mf and Yf, If f < t < r,-+\ then dMf 3 Mf Mf f| c Sf and Yf consists

of a collection of closed complementary components of Fi in Sf. Each component
of Fi in Sf is incident to Yf on exactly one side and to Xf on the other.

Clearly as long as no u lies between the values t < f, tlien Yf" — Yf, since the

region between them is just a collar on part of the boundary. On the other hand, for
each ij, consider the relation between Yf_e and Ytf „. We know that /•', is obtained

from If _ I by doing j-surgery along a j-disk in .S'3 — /•} _ |. If that j -handle lies on
the Y side of Fi-1 (in the sphere Sf._E) then Yf+!:. is homeomorphic to just Yf_;. with
that j-handle removed. So Yf+;. is still just Yf_s with a collar added to part of its

boundary, but only to the complement of the j -handle in Yf_,,. Hence it is still true

that Yf+e S Yf_s. On the other hand, if the j -handle lies on the X side of F, _ j, then

Yf+I. is homeomorphic to Yf_;. but with a (4-dimensional) j -handle added, namely
the product of the interval [§, tj + s] witli the 3-dimensional j -handle added to Mf_s
in Sf.

We have then the general rule, sometimes called the rising water rule (cf. Figure 3):

Lemma 4.3. (1) If the j-surgery at level f has its core in Y, then Yf+S Yf_B.

(2) If the j -surgery at level t{ has its core in X, then Yf+e Yf_E with a j-handle
attached.
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handle added tö X

Figure 3

Of course the symmetric statements hold for X. Note that since X contains
the south pole, Xto~>E B4 whereas Yl(,= 0. Just as Mq is a Heegaard surface

for A4, Xq and L0~ are connected 4-manifolds, constmcted fromjust 0- and 1-handles.

In other words, there are integers nx,ny > 0 so that Xo \\nx04 X D3) and

Yo bny(Sl xD3).
Each handle in Mq corresponds to a handle of the same index in exactly one of

Xq or Yq so there is a connection between nx,ny and the genus g of Mq : The
critical level embedding defines a handlebody structure on Mq with a 0-handles and
b 1-handles, where

b — a-1-1 g.

If a > g then there would be at least one 0-handle in the critical level embedding
which is first incident to a 1-handle on a single one of its ends, violating the Handle
Cancellation Lemma 4.1. So

a < g.

Let ax,ay (resp. bx, by) denote the number of 0- (resp. 1-) handles in the critical
level embedding whose cores lie in X and Y. We have from above that % + ay
a, bx + by b, nx by — ay and ny bx — ax + 1. (The asymmetry is explained
by noting that the south pole is a 0-handle for X.) It follows that

nx + fly g.

Another way of counting nx and ny is this: Suppose a 1-handle at critical level //
has its core lying in A, say. If the ends of the 1-handle lie in distinct components of
FI -1 then the 1-handle adds a 1-handle to Y but nothing to its genus. In contrast, if
the ends of the 1 -handle lie on the same component of F,- _ i then it adds 1 to the genus
of Y. A count of the total number of the latter sort of 1-handles lying in X (resp. Y

gives ny (resp. nx).
For everything that has been said about X~ and Y~ there is a dual statement for

X+ and Y+, easily obtained by just inverting the height function. The result is that,
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beyond the standard 4-dimensional duality of handle structures on X and on Y, there
is a kind of 3-dimensional duality between handles in X and handles in Y, induced

by the 3-dimensional duality of handles in M. See Figure 4.

Figure 4

To be concrete: V(| is also a solid 4-dimensional handlebody. To determine its

genus, consider the core of each 2-handle, say at critical height // > 0. If the core of
the 2-handle lies on the X side of iy_i then (he cocore lies on the Y side of /•) so it
corresponds to a 1-handle in X^j. This 1-handle adds genus to if and only if the

boundary of the 2-handle is non-separating in /•', _ i.
To see how this occurs, consider the "dual rule" to Lemma 4.3. That is, suppose

again that /•', is obtained from /",_ i by doing j-surgery along a j-disk in S3 — /•',_i
and ask how Y^_s and lj++£. differ. If the j-surgery at level f; has its core in T,
then, viewed from above instead of below, there is a corresponding 3 — j surgery
with its core in X. So, following the argument of Lemma 4.3, Yfj_:e F++f, with a

(3 — j )-handle attached. On the other hand, if the core of the j -handle lies in V, Y+
is unchanged. This might be called the descending hydrogen rule (cf. Figure 5).

To summarize all possibilities:

Lemma 4.4. Suppose F; is obtained from F,;_i by doing j -surgery along a j-disk in
S3 — Fj-\.

(1) If the j-surgery at level i% has its core in Y, then
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Y — y ~
1ti+E — 1ti-E>
r — X7- —

Xtt_e with a j-handle attached,

>',% Y^+s with a (3 — j)-handle attached,

Y+ — Y<Ati-e — /;+£"

(2) If the j-surgery at level If has its core in X, then

• Yf+e Yf~_s with a j-handle attached,

y- ~ y-tj+e — ti —By

y+ ^ y+1 tj-E — 1ti+E'
r + v+X. XY^ with a (3 — j)-handle attached.

handle on X side

X

X

handle added to Y

Figure 5

Here is a simple example of how this 3-dimensional duality can be useful:

Proposition 4.5. Suppose there is a rectified critical level embedding of M S3

in S4 so that the 0- and l-handles, as they are successively attached, all lie on the

X-side. Then X B4.

Proof. Following Lemma 4.4, X has no 0 or 1 -handles, so it only has 2- and 3-handles,

Dually (in the standard 4-dimensional handle duality of X), X can be constructed with
only 1 and 2-handles. Neither of these statements, in itself, is enough to show that X
is a 4-ball.

Consider, however, what the given information tells us about Y, following
Lemma 4.4 applied to the construction of Y from above : The possible 2- and 3-handles
in the construction of X from below correspond respectively to 1- and 0-handles in
the construction of Y from above. Similarly, the lack of 0- and l-handles (beyond the
south pole) for X constructed from below corresponds to a lack of 3- and 2-handles

for Y when constructed from above. Hence Y has only 0- and l-handles, i.e. it is a

4-dimensional handlebody. On the other hand, because it is the complement of S3 in
.S4 it is a homotopy 4-ball, so the handlebody must be of genus 0, i.e. F is a 4-ball.
Then its complement X is also a 4-ball.
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5. Two proofs of the genus 2 Schoenflies Conjecture

Informed by the ideas above, we present two proofs of the genus 2 Schoenflies

Conjecture. The first is similar in spirit (though different in detail) to the original
proof of [Sehl], The second uses a different approach, one (hat aims to simplify the

picture by reimbedding X or Y.

Here is a more general statement, relevant to the classical approach:

Proposition 5.1. Suppose a 3-sphere M has a genus g rectified critical le\>el embedding

in S4 with at most two Q-handles or at most two 3-handles. If the generalized
Property R conjecture is true for links of g — I components then M divides S4 into
two PL 4-balls.

Proof. Perhaps inverting the height function, assume without loss of generality that M
has at most two 3-handles. The roles of X and Y can be interchanged by passing the
lowest 0-handle over the south pole, so we can also assume without loss of generality
that the first (that is, the lowest) 3-handle for M lies in Y and so represents the addition
of a 3-handle to X. The second 3-handle (and so the last handle) of M either lies in X
or in T, but these options are isotopic by passing the handle over the north pole. So,

via an isotopy of this handle, we can choose whether both 3-handles of M lie in Y

(and so represent attaching of 3-handles to X and not Y) or one each lies in X and Y.

See Figure 6.

Figure 6

Now consider the genera nx and n v of the 4-dimensional handlebodies Xf. Yf.
with g nx + tiy, If n X 0 then Xjj is a 4-ball. X is obtained from this 4-ball
by attaching some number of 2 and 3-handles, and also a 4-handle if the north pole
of .S'4 lies in X. There are as many, total, of 2- and 4-handles as there are 3-handles

(since X is a homotopy 4-ball) and the argument of tire previous paragraph ensures
that we can arrange it so that X contains at most one 3-handle. Viewed dually, this
means that X can be constructed from t)X S3 with no 3-handles, and at most one
each of 1- and 2-handles. The result then follows from Corollary 2.2.
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If fi y > 1 then tiy < g — 1 and, first arranging as above so that F has no 3-handles,
the result again follows from the proof of Proposition 2.3.

Corollary 5.2 ([Sehl]). Each complementary component ofa genus 2 embedding of
M S3 in S4 is a A-ball.

Proof. As noted above, we can assume that the number a of 0-handles in the rectified
embedding of M is no larger than g 2. Proposition 5.1 then shows the result
follows from Property R, via Corollary 2.2

The reimbedding proof of the genus 2 Schoenflies Conjecture begins with a more
general claim that follows from our results above for Heegaard unions:

Proposition 5.3. Suppose M A S3 has a rectified critical le\>el embedding in S4

so that Fq" (resp. Xq) is a handlebody of genus po. If the generalized Property R

conjecture is truefor [po/2] components then Y £= B4 (resp. X B4),

Proof. It was noted above that F0~ is a 4-dimensional handlebody and Mf is a 3-

dimensional handlebody. The latter fact, and the hypothesis, imply that Mf U Fq is a

Heegaard splitting of 3 F0~. Viewing the critical level embedding from the top down
we symmetrically see that Fq1" is a 4-dimensional handlebody and F is a Heegaard
union of F0~ and Fq1" along F0*.

Let pi, P2 denote the genera of F0~ and F0+ respectively. Since M is a 3-sphere,
each complementary component of M is a homotopy 4-ball. In particular, following
lemma 3.2, pi + P2 Po- The result now follows from Proposition 3.3.

Proposition 5.3 suggests a clear strategy for a proof of the general Schoenflies

Conjecture, assuming the generalized Property R Conjecture : Given a rectified critical
level embedding of M S3 in S4, try to reimbed X (or F), still a rectified critical
level embedding, so that afterwards, either the 3-manifold J(§ or its complement Fq is

a handlebody, or at least more closely resembles a handlebody. For even ifa series of
reimbeddings, first of X, then of its hew complement Y'. then of the new complement
ofY', etc, eventually leads to a handlebody cross-section at height 0, we are finished.
Indeed, once one of the complementary components of the multiply reimbedded M
is a 4-ball, we have that both are, hence the previous complementary components,
in succession, leading back to the original X and F are all 4-balls. (This is more
formally explained in the proof of Corollary 8.2.) What follows is a proof of the

genus 2 Schoenflies Conjecture built on this strategy.
In order to be as flexible as possible in reimbedding A or F we first prove a technical

lemma which roughly shows that, at the expense of some vertical rearrangement
of the 3-handles (or, dually, the 0-handles), the core of a 2-handle (resp, the cocore of
a 1-handle) can be moved rel its boundary to another position without affecting the
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isotopy class of M or even the embedding of M below the specified 2-handle (resp.
above the specified 1-handle).

Suppose, as above, M is a rectified critical level embedded S3 in .S'4.

Lemma 5.4 (Prairie-Dog Lemma). Let E c S3. — F_i be the core of the 2-handle
added to Fi-1 at critical level r, 0 and let t be a generic height such that f,_i <
t < h. Let E' c Sf. — Fi-1 be another disk on the same side as E, with BE' isotopic
to BE in Fi-1. Then there is a proper isotopy of Mj1" in S3 x [t, 1] so that afterwards

• the new embedding M' ofS3 is still a rectified critical level embedding,

• the critical levels and their indices are the same for M and M',

• the core of the 2-handle at critical level U is E', and

• for any generic level t below the level of thefirst 2-handle, Mf M't~,

Proof With no loss we take BE' parallel (hence disjoint) from BE. Let k be the
number of 2-handles above level // and n \E C\ E'\. The proof is by induction on
the pair (k. «), lexicographically ordered.

Case 1. k h =0. In this case, the 2-handle attached at level /,• is the last 2-handle
attached and E' is disjoint from E. Then the union of E and E' (and a collar between
their boundaries) is a 2-sphere in S3 — / /_ i ; if it bounds a 3-ball in S3 — F;_ i then
the disks are isotopic and there is nothing to prove. If it does not bound a 3-ball, let
S be the parallel reducing sphere for S3 — Fi and B c I® be the ball it bounds on the
side that does not contain the component to which E and E' are attached. Since /;
is the highest 2-handle, each component of Fi n B is a sphere and each is eventually
capped off above f). by a 3-handle.

If all are capped off by 3-handles that lie within B, push all of M D (B x |/. 1])
vertically down to a height just above t so that afterwards, E is isotopic to E' in
S,\_B — M. Perform die isotopy, then push M D (B x |i. IJ) back up, so that the
3-handles are attached above height /;. The number of 3-handles attached (namely,
the number of components of F) is the same, so, although perhaps rearranged in
order, the critical heights at which the 3-handles are attached can be restored to the

original set of critical heights. See Figure 7.

The picture is only a little changed if one of the components of Fy lying in B is

eventually capped offby a 3-handle not in B. The proof is by induction on the number
of such handles. Consider the highest such handle, say at level fy, capping off a sphere

component S of /') D B in Sf.. Let B' be the 3-ball component of S3. — S that does lie

in B, i.e. the complement of the 3-handle in S3.. If there are no components of Fy in
the interior of B' then the 3-handle is isotopic to B' via passing over the north pole.
This isotopy decreases by one the number of 3-handles not lying in Ö, completing the

inductive step. If some components of Fy do lie in B' note that eventually they are
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Figure 7

capped off by 3-handles lying in B' (by choice of /, Simply push M n(B' X |/7, 1JJ

down below level tj and do the pole pass described above.

Case 2. k 0, n > 0. Consider an innermost disk E'0 c E' cut off by E in E'.
Then the union of E'0 and the subdisk Eq of E bounded by '<) Ii'(> is a sphere bounding
a ball B whose interior is disjoint from E. If no component of /j lies m B, Eq can
be isotoped past E'0, reducing n by at least one and maybe more, thereby completing
the inductive step. If some components of Fj lie in B, then follow the recipe given
in Case 1. For example, if all components of l) n B eventually bound 3-handles that
lie in B, push M n (B x |/, 11) vertically down to just above level t, do the isotopy,
then raise M n (B x [f, 1]) back up again.

Case 3. k > 0. Depending on whether m 0 or a > 1, let S and B be the reducing
sphere and 3-balls described in cases 1) and 2) above. The inductive hypothesis and

a standard innermost disk argument tells us that any 2-handle attached above level ft

can, starting from highest to lowest, be replaced by a 2-handle disjoint from the

sphere S. Suppose Jg is the level of the first 3-handle; after the replacement the entire

product S x [/, tj) is disjoint from M. In fact, following the argument of Case 2, we
can isotope the 3-handles of M (possibly rearranging the ordering of the 3-handles)
so that all of S X [t, 1] is disjoint from M. Then push M D (B x [t, 1]) down to

just above level t, do the isotopy across B as described in Case 1 or 2, then precisely
restore the height of M n {tr x [t, 1 J).

Note that since all moves are by isotopy, X and Y do not change.

Lemma 5.5 (Torus Unknotting Lemma). Suppose that Tq (or, symmetrically,
lies in a knotted solid torus W c Sq. Let ho : W -> S1 x D2 be an orientation-
presen>i.ng homeomorphism to the unknotted solid torus S1 x I)2 c Sq. Then there is

a reitnbedding h : Y to a rectified critical level embedding so that h(Y) n Sq

/?o(Tq) and the number of handles of each index is unchanged. For t any generic
height between the highest ()-handle and lowest 3-handle, both ofMf are unchanged.
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Proof. If 3 W compresses in Xf there is nothing to prove: 9-reduce W to get a 3-ball,
which can be isotoped into .S'1 x I)2 c Sq and that same isotopy can be applied at

every level of S3 x I c S4.

So we assume that 3 W is incompressible in Xf In each successively increasing
critical level t,- > 0 ask whether the 2-handle attached at // can be replaced, as in the

Prairie-Dog Lemma 5.4, by a 2-handle that lies in W. If it can be done, (hen do so.

"Ibis may alter the critical level embedding of M, but only above level /•• i. If success
is possible at the critical levels of all 2-handles, the same can be accomplished for
the 3-handles, as described in Case 2 of the proof of Lemma 5.4. Similarly, at each

successively decreasing critical level tj < 0 try to replace cocores of 1-handles by
disks that lie in W. If this can be done for all 1 -handles, then also replace cocores
of 0-handles by 3-balls in W. If success is possible for all 1- and 2-handles, hence

at all levels, then M n (dW x [—1,1]) 0 and so Y c W x [—1,1]. Then the

function ho x [—1, 1 ] on W x [—1,1 ], restricted to Y c W x [—1,1 ], is the required
reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that

ti > 0 is the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one that lies in W E $1 Without loss, we assume that the replacements

of lower 2-handles have been done, so FO (S3 x [0, t; — e]) c W x [0, if — g§. In
particular, the core of the 2-handle must lie in X*._e

Choose a disk D c X*_,. so that its boundary is the same as that of the core of
the 2-handle and, among all such disks, D intersects 3 W in as few components as

possible. An innermost circle of D n 3 W then cuts off a subdisk of D whose boundary
is essential in 3 W (by choice of D) so, since W is knotted, the subdisk must be a

meridian disk for the solid torus W. So at the generic level tj — e, 3 W compresses
in Xf._é D IT. In particular, Y*_,. lies in a 3-ball B c W. It is a classical result that

simple coning extends the homeomorphism ho\B : B —> ho(B) c .S'1 x I)2 c S3 to
an orientation-preserving homeomorphism H : S3 —S3. Dehne then the embedding
of Yq into S3 x [0, 1] so that h\Y n (S3 x 10,ti - e]) ho x [0, /, — r?| and, for
t > n - e,h\Yt* HIY*.

The same argument applies symmetrically to construct h \ Yf. Either all co-cores
of 1-handles can be replaced by disks in IT, in which case we afterwards simply use
ho at every level t e [—1,0] or there is a highest critical level tj for which the cocore
of the associated handle on M cannot be replaced by a disk in IT and we apply the

symmetric version of the construction above.

Here then is an alternative proof of Corollary 5.2:

Proof. Like any surface in S3, the genus 2 surface Mf compresses in S3, and so it
compresses into either X(} or Fq say the former. Maximally compress Mq in Xf
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If Xq is a handlebody then Proposition 5.3 says X B4, hence its complement
Y B4.

If Xq is not a handlebody, then the surface F resulting from maximally compressing

the surface Mh into Xq consists of one or two tori. Like any surface in S'\ F
compresses in .S'3. rrhe torus component of F that compresses in the complement
of F bounds a solid torus W on the side on which the compressing disk lies. That
side cannot lie in Xq, since F is maximally compressed in that direction, so W must
contain Mq and so indeed all of Fq The solid torus W is knotted, else F would still
compress further into Xq. Now apply the Torus Unknotting Lemma 5.5 to reimbed
Y in S4 in a level-preserving way so that afterwards W is unknotted; in particular,
afterwards F does compress further into the (new) complement of Fq After
perhaps a further iteration of the argument (when F originally consisted of two tori) we
have a level-preserving re-embedding of F in .S'4 so that afterwards its complement
is a handlebody. It follows from Proposition 5.3 then that after such a reimbedding
S4 - Y B4, hence also F B4.

6. Straightening connecting tubes between tori in .V

Enlightened by Corollary 3.4, observe that there is no generalized Property R obstacle

to applying Proposition 5.3 to the proof of the genus 3 Schoenfhes Conjecture. All
that is needed is a sufficiently powerful version of the Torus Unknotting Lemma 5.5

that would instruct us how to reimbed some complementary component F of a genus 3

S3 in .S"4 so that its new complement in .S)] more closely resembles a handlebody (e.g.
it 9-reduces to a surface of lower genus than Xq or Fq did originally).

Fuelling excitement in this direction is the classic theorem of Fox [Fo] that any
compact connected 3-dimensional submanifold of .S'3 can be reimbedded as the
complement of handlebodies. What seems difficult to find is a way to extend such a

reimbedding of Fq to all of F, as is done in Lemma 5.5. It is crucial in the proof of
Lemma 5.5 that a solid torus has a unique meridian, whereas of course higher genus
handlebodies have infinitely many meridians.

For genus 3 embeddings, there is indeed enough information to make such a

reimbedding strategy work. Hie key is a genus 2 analogue of the Torus Unknotting
Lemma, called the Tube Straightening Lemma. We precede it with a preparatory
lemma in 3-manifold topology, whose proof is reminiscent of that in [Ga3] or [Hi]:

Lemma 6.1. Suppose F c S3 is a genus 2 surface and k c F is a separating cun>e
in F. Denote the complementary components ofF by U and V and suppose I bounds

a disk E in V so that UUr](E) is reducible. Suppose N c V is a compact 3-manifold.
Then at least one of thefollowing must hold:
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• any simple closed cur\>e in BN that bounds a disk in S3 — N bounds a disk in

V-N,
• N can be isotoped in V to be disjointfrom E, or
• k bounds a disk in U.

Proof. Suppose some component of BN is a sphere S. Since V is irreducible, S

bounds a ball B in V. Nothing is lost by adding B to N, if N is incident to S on the

outside of B, or removing B Pi N from N, if N is incident to S on the inside of B.
So we may as well assume that 8N has no sphere components. Essentially the same

argument shows that we may take V — N to be irreducible. For if S is a reducing
sphere bounding a ball B in V, then any curve in BPdN that bounds a disk in S3 — N
bounds a disk in B — N c V — N and any curve in dN — B that bounds a disk in
V — N) U B also bounds a disk in V — N, so without loss, we may delete B P N

from N. The proof then will be by induction on —x(dN) > 0, assuming now that
V — N is irreducible.

Case L 8N does not compress in V — N. If d N does not compress in S3 — N either,
then the first conclusion holds vacuously. Suppose then that .S'3 — N is boundary-
reducible. A reducing sphere S for U U q(E) must separate the two tori that are
obtained from F by compressing along E, since otherwise one ball that S bounds
in S3 would lie entirely in U U //(/(). This implies that S intersects V in an odd
number of copies of E or, put another way, it intersects U in a planar surface P with
an odd number of boundary components lying on a regular neighborhood of k in IP
Consider then the result of 0-framed surgery on k in the manifold S3 — N: P can
be capped off to give a sphere which is non-separating in the new manifold, since a

meridian of rj(k) intersects P in an odd number of points. On the other hand, S3 — N
itself is 3-reducible. No options a)-e) in [Sch2, Theorem 6.2] are consistent with this
outcome (in particular the manifold called M' there having a non-separating sphere)
so we conclude that S3 — (N U rpk)) is either reducible or 3-reducible. In the latter

case, consider how a 3-reducing disk I) would intersect the surface F — q(k). We
know the framing of F D dq(K) is a 0-framing (since each component of F — q(k)
is a Seifert surface for k) so D D F, if non-empty, consists entirely of simple closed

curves. An Innermost disk in D cut off by the intersection (perhaps all of D) lies
either in U or V — N. But each component of F — q(K) is a once-punctured torus,
so if it compresses in U or V — N so does its boundary, i.e. a copy of k. Hence we
have that k bounds a disk in either U or V — N. Since V is irreducible, in the latter
case the disk can be isotoped to E in % thereby isotoping N in V off of IP

The same argument applies if S — (JVU q(k)) is reducible: since both U and V—N
are irreducible, such a reducing sphere must intersect F — q (k) and an innermost disk
cut off by the intersection leads to the same contradiction.

Case 2. 8N compresses in V — N. The proof is by contradiction: Choose an essential

curve I c 3N and a compressing disk D for 3 N in V — N so that I bounds a disk
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A in # - N but does not bound a disk in V - N and, among all such choices of
i, % D, \D Pi Al-is minimal. If D and A are disjoint, then let /V" /V U //(A.
If there is tlien a sphere component of dN', the ball it bounds in V can, without loss,
be deleted from N'. In any case (perhaps after deleting the ball if a sphere appears
in 9Ai'), —x(9Ai') < • /(9A'l and the inductive hypothesis holds for N'. But the

conclusion for N' implies the conclusion for N, which is contained in N' (e.g. if #
bounds a disk in V — N' it bounds a disk in V — N), so this is impossible.

If D and A are not disjoint, note that all curves of intersection must be arcs, else

an innermost disk cut off in D could be used to surger A and would lower I) n Aj.
Similarly, let A denote the disk cut off from I) by an outermost arc of D n A in D
and let 0:$r, A C V — N denote the two disks obtained by the 9-compression of
A to 9 A' along A. Both of these disks intersect D in fewer components than A
did, so by choice of £ and A the boundary of each new disk must bound a disk in
y — N (of course, if either curve is inessential in dN then it automatically bounds

a disk in dN c V), A standard innermost disk argument shows that A and A
can be taken to be disjoint; band them together via the band in dN which undoes the

9-compression by D'. To be more explicit, note that tire arc 9 D' Pi dN defined a band

move on 9A that split 9 A into 9A and 91), Undo that band move to recover
the curve 9A, now bounding a disk (namely the band sum of A and A that lies
in V — N. This contradicts our original choice of t.

Lemma 6.2 (Tube Straightening Lemma). Suppose that Y n Sq (or, symmetrically,
XdSq) lies in V c Sq, with closed complement U, and dU dV is ofgenus 2.

Suppose V contains a separating compressing disk E so that the manifold U+ obtained

from U by attaching a 2-handle along E is reducible. Then there is an embedding
ho : V —> A"3 so that ho(dE) bounds a disk in W the complement ofho(V). There is
also a reimbedding ft; Y'-* S4 to a rectified critical level embedding so that

h(Y)nsl h0(Y*),

' the number ofhandles ofeach index is unchanged, and

• for t any generic height between the highest 0-handle and lowest 3-handle, both

of Mf are unchanged.

Proof. Let ho : V S3 be the reimbedding (unique up to isotopy) that replaces the
1-handle in V that is dual to E with a handle intersecting the reducing sphere for U+
in a single point. Then after the reimbedding dE bounds a disk in the complement
of ho( V), namely the complement of E in the reducing sphere.

In each successively increasing critical level h > 0 ask whether the 2-handle
attached at h can be replaced, as in the Prairie-Dog Lemma 5.4, by a 2-handle that
lies in V. If it can, then do so. This may alter the critical level embedding of M,
but only above level t,_i. If success is possible at the critical levels of all 2-handles,
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the same can be accomplished for the 3-handles, as described in Case 2 of the proof
of Lemma 5.4. Similarly, at each successively decreasing critical level tj < 0 try
to replace cocores of 1-handles by disks that lie in V. If this can be done for all 1-

handles, then also replace cocores of 0-handles by 3-balls in V. If success is possible
for all 1- and 2-handles, hence at all levels, then M n ('<) V x [—1,1]) 0 and so
Y c V x [—1, 1], Then the function ho x [—1, 1] on V x [—1,1], restricted to
Y c V x [ — 1, 1], is the required reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that

Ij > 0 is the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one that lies in V c % Without loss, we assume that the replacements

of lower 2-handles have been done, so Y D (S3 x [0, t; — e]) c (V x [0, u — s]). In
particular, die core of the 2-handle must lie in X*._E

Now apply Lemma 6.1 using Y*_è for N. By assumption, the boundary of the

core of the 2-handle bounds no disk in V n X*_E so the first possible conclusion
of Lemma 6.1 cannot hold. If the last holds, there was nothing to prove to begin
with. (Take h identity.) Hence we conclude that the second conclusion holds:
Ff*_g can be isotoped to be disjoint from E. But once this is true, the reimbedding
ho has no effect on Y*—e'> that is, Y*^E is isotopic to ho(Y*_E). Hence we can dehne

h\(Y D (S3 x [0, 1 It) to be ho x [0, q — e] on Y n (S3 x [0, q — s]), followed by
a quick isotopy of hruY/ j to Yq-e/2 followed by the unaltered embedding above

level h — eft. Note that this unaltered embedding is not necessarily the original
embedding, because of changes made while ensuring that earlier 2-handles lie in V.

Finally, the argument can be applied symmetrically on Y H (S3 x [—1, 0]).

7. Weak Fox reimbedding via unknotting and straightening

In this section we show that, for a genus 3 surface in S3, the operations of torus
unknotting and tube straightening described above suffice to give a weak version of
Fox reimbedding. That is, for a genus 3 surface F c S3 there is a sequence of such

reimbeddings, not necessarily all operating on the same complementary component
of F, so that eventually a complementary component is a handlebody. Although
the context of this section appears to be 3-manifold theory, tire notation is meant to
be suggestive of the eventual application to the genus 3 Schoenflies Conjecture. In
particular, the terms torus unknotting and tube straightening as used in this section
refer to the 3-dimensional reimbedding ho given in, respectively, Lemma 5.5 and

Lemma 6.2.

Suppose F c S3 is a surface dividing .S'3 into two components denoted X and Y.

Suppose D i is a compressing disk for F in A giving rise to a new surface /•) c S3

with complementary components X\ X — q(D{) and Y\ X U q(Di). Suppose
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D) is a compressing disk for If in X\ or Y\, giving rise to a new surface F2 C S3

with complementary components X2 and lb. Continue to make such a series of
compressions via compressing disks 1),. i 1, n so that each Dj lies either in

Xi-i or Y{-1 (the complementary components of /",-1 C .S'3 until all components
of Fn are spheres.

Definition 7.1. F can be straightened if there is a sequence of torus unknottings
and tube straightenings of F, as described in Lemmas 5.5 and Lemma 6.2, so that
afterwards either

• X or Y is a handlebody, or

• the order of the compressions D1,..., Dn can be rearranged so that afterwards

some dDj is inessential in I) _ 1 and so can be eliminated from the sequence.

In the spirit of Lemma 5.4, any disk I), can be replaced by a disk I)' in the same

complementary component, so long as JU3| and 3D- are isotopic in /•',_ 1.

Hie following series of lemmas assumes we are given such a sequence for F c S3,

that the sequence is as short as possible, and that the first compressing disk D\ lies
in X. There are, of course, symmetric statements if D\ c Y.

Lemma 7.2. If D2 C X\ then F can be straightened. More specifically, there is a

sequence of torus unknottings which convert X into a handlebody

Proof. Since X\ X — q(D\), the disks l)\ and D2 can be thought of as disjoint
disks in X and the compressions given by l)\, D% can be performed simultaneously. If
any component of F2 is a sphere, one of the disks is redundant and could be removed
from the sequence of compressions. Since y Fd 0, we can then assume that Fi
consists of one, two, or three tori, depending on how the disks D\, /L are arranged.

The proof is by induction on the number of components in If. Suppose If is a

single torus; since it is in S3 it bounds a solid torus on at least one side. If a solid
torus that it bounds lies in Ab then the original X was a handlebody and we are done.

If the solid torus that If bounds lies in Y2 then all of F also lies in that solid torus.
After a torus unknotting, If also bounds a solid torus in A2 and A is a handlebody,
as required.

Suppose D\ is separating, so one of the components T of If is a torus. If T
bounds a solid torus in Ai then we may as well have used the meridian of that torus
for D1. This switch would lower the number of Components of F), so we can invoke
the inductive hypothesis. If, on the other hand, T bounds a solid torus in Y\ then all
of F also lies in that solid torus. After perhaps a torus unknotting, T bounds a solid
torus in Ai as well, and again we could replace Di by a meridian of that torus and

invoke the inductive hypothesis.
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The same argument applies if £>2 is separating - just switch the order of If and

D). So the only remaining possibility is that D\ and £>2 are both non-separating but

together they separate F, so F% consists of two tori. If either bounds a solid torus in
X2 then a meridian for that solid torus could be substituted for D%, thereby lowering
the number of components of Fg and completing the inductive step. Ifneither bounds

a solid torus in X2 then the solid torus W in S3 that one of them does bound must
contain the other torus, and so in fact W contains all of F. After a torus unknotting,
3 W will, on its other side, also bound a solid torus W c AY After that reimbedding
we can replace £>2 by a meridian of W' and invoke the inductive hypothesis.

Lemma 7.3. If D\ c X and £>2 C lj are both separating, and £>2 c Y Ç Y\ (i.e.
£>2 does not pass through the l-handle dual to D\) then F can be straightened.

Proof. Since the interiors of both If. D2 are disjoint from If their order can be

rearranged, so there is symmetry between the two. Since If is separating there is a

torus component £1 c F\ and 7j bounds a component W\ of A1 whose interior is

disjoint from £Y After perhaps a torus unknotting of its complement we may as well
assume that W\ is a solid torus. Eventually some compression 1), will compress T\
to a sphere; if I), c Wj then we could have done /), before I)\, making !)\ (coplanar
to Dj) redundant, and thereby reduced the number of compressions. Thus we may
as well assume A C T(_i, so Wj is an unknotted solid torus. Similarly, the torus

component £2 C F2 not incident to D\ bounds a solid unknotted torus W2 c £2- See

Figure 8.

Assume, with no loss of generality, that £>3 c 1Y We have already seen that £>3

cannot compress £2, else the number of compressions could be reduced. It follows
that £>3 either compresses £1 or it compresses the third torus £3 created from F by
the compressions £>1, D2. Either case implies that the component (/+ Y2 — W2

of Y2 is reducible. Apply tube straightening to U U+ n Y so that the tube dual to
£>1 passes through the reducing sphere of U+ once. After the straightening, the disk

A that eventually compresses T\ into £ lies in Y, so it can be the first compression,
making £>i redundant.

Lemma 7.4. IfD\ c X and £>2 C Y\ are both separating and if Dj or both £>4 and
D5 are towards the X side, then F can be straightened.

Proof. In this case there is not necessarily symmetry between D\ and £>2, but the

argument of Lemma 7.3 still applies if the compression disk for £3 lies on the X-side
rather than the F-side or if £2 compresses before £3. So that is what we now verify:
If D3 lies on the X-side it compresses £2 or £3 into X2 and we are done. On the other
hand, if £>4 and £>5 both lie on the A -side then since £1 compresses on the F-side,
one of D4 or £>5 is the compression disk for £3.
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Figure 8

Lemma 7.5. IfDi c X is separating, and Y is 3 -reducible, then either Dj C Y C Y\

or F can be straightened.

Proof. Consider the torus component T\ of F\ and the component Wi C X\ it
bounds. As noted above, the interior of W\ is disjoint from F\ and so, perhaps after a

torus unknotting, we can assume that W\ is a solid torus. Moreover, the disk l), that

eventually compresses 7j lies on the Y -side and not in Vl'p Hence W\ is an unknotted
solid torus.

Following Lemma 7.2 we may as well assume that D2 C Y\, By assumption
Y is 3-reducible and, after attaching a 2-handle (a neighborhood of D1) to get Y\

the resulting manifold still is 3-reducible, via jfe. It follows from the Jaco handle
addition lemma [ Ja] that there is a 3-reducing disk J c Y for Y whose boundary is

disjoint from Take J to be non-separating, if this is possible.
If 3/ lies on 7j then it is parallel to the disk I), that eventually compresses 7j so

we may as well do that compression before D\, making !)\ redundant and so reducing
the number of compressions. So we henceforth suppose 3/ lies 011 the other, genus 2

component of F — dD\, and so lies on 3/'j — 7j.
If 3/ is inessential in F\ then it is parallel to dD\ in /•'. Thus dD\ also bounds the

disk J c Y and the union of the two gives a reducing sphere for Y\ that intersects the
1-handle dual to I)\ in a single point. It follows that the longitude 3Dj of 7j bounds

a disk in Y and we are done as before.

If 3 J is essential in /•] compress Y along J to get Yj and consider the component
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W, c Y] (in fact all of Yj if J is non-separating) such that 3D\ c dWj and 3Wj
has genus 2. The manifold Wf obtained by attaching qi I)\ to Wj has boundary the

union of two tori. Wf can also be viewed as a component of Y\ — rj(J).
We claim that either £>2 C Y or Wj is reducible, This is obvious if there is a

disk component of Dq — J that cannot be removed by an isotopy or if3£)2n./ 0.
The alternative then is that £>2 D / is a non-empty collection of arcs. Consider an
outermost disk A cut off from £>2 by /. We may as well assume A c Wf. For if
it's not then ./ is separating, A is a meridian of the other complementary component
(a solid torus) and we may as well have used A for /, thereby eliminating the case
that J is separating. With then A c Wf, compress the torus boundary component
of 3 Wj along A to get a reducing sphere for Wj.

Finally, if Wj is reducible, apply tube straightening to the surface 3 Wj, replacing
the handle dual to £>i by a handle intersecting the reducing sphere once, allowing the

same conclusion as before.

Corollary 7.6. If A c X and £>2 C Y\ are both separating, and Y is d-reducible,
then F can be straightened.

Proof. Combine Lemmas 7.5 and 7.3.

Corollary 7.7. //£>, C X is separating then either

• at least two of the three non-separating compressing disks are on the Y-side
and, if Dz is separating, Y is 3-irreducible, or

• F can be straightened.

Proof. Following Lemmas 7.2,7.4, and 7.5 we may as well assume that £>2 c Y C Y\

and £>2 is non-separating. As before, let T\ be the torus component of /•) bounding
a component W\ of A1 whose interior is disjoint from F\.

If the compressing disk £>; that eventually compresses T\ lies on the X-side, then

A: C Vtj (and Vtj is a solid torus). No earlier compressing disk can be incident to
T\ so in fact A could have been done before £>1, making the latter redundant. This
reduces the number of compressions.

If, on the other hand, A lies on the Y-side then both A and £>2 are non-separating
disks lying on the 7-side, as required.

Lemma 7.8. //1)\ c X is non-separating, then either all succeeding disks Dz, £>3

are non-separating or F can be straightened.

Proof. Since £>1 is non-separating, 1\ is a genus 2 surface. Its complementary
component Y\ contains all of Y. If D) is also non-separating then £3 is a torus, for
which any compressing disk is non-separating, giving the result.
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So suppose £>2 is separating. Following Lemma 7.2 we may as well assume
/>2 C Y\, so 3 Y) consists of two tori. Hence £>3 is non-separating and compresses
one of the tori. If £>3 c 17 then £>3 could have been done before £>2, making £>2

redundant. If £>3 c X2 then the result of the compression is a sphere which could
have been viewed as a reducing sphere for Y% Apply tube straightening, using Y\

for N. After that reimbedding, £>3 c Xi Ç Xy does not pass through D2 so the

compression along £>3 could be done before the compression along £>2, making £>2

redundant.

We note in passing, though the fact will not be used, that if there are non-separating
compressing disks on both sides, they may be taken to be disjoint:

Proposition 7.9. If I)\ c X is non-separating, and Y has a non-separating d-re-

ducing disk. If then either SDf n BM 0 or F can be straightened.

Proof. Following Lenuna 7.2 we may as well assume that Dy C Y\. By assumption
Y is 3-reducible and, after attaching a 2-handle (a neighborhood of I)\ to get Y\ the

resulting manifold still 3-reducible, via I)y. It follows from the Jaco handle addition
lemma [Ja] that there is a 3-reducing disk / c Y for Y whose boundary is disjoint
from 3£>i. Take J to be non-separating, if this is possible.

Suppose first that 3/ is inessential in F\. Then the disk it bounds in F\ contains
both copies of D\ resulting from the compression of F along £>i. Put another way, J
cuts off a component Wj from Y that has torus boundary and whose interior is disjoint
from If Following, perhaps, a torus unknotting, we may assume thai Wj is a solid
torus. A standard innermost disk, outermost arc argument between / and Dy ensures
that they can be taken to be disjoint, so £>2 compresses the other, genus 2 component
of Y — r)(J). This compression, together with the compression via the meridian
of Wj, 3-reduces Y to one or two components, each with a torus boundary. After
perhaps some further torus unknottings, Y becomes then a handlebody, as required.

So suppose henceforth that 3 / is essential in F\. Compress Y along J to get Yj
and consider the component Wj c Yj (in fact all of Yj if / is non-separating) such
that 3£>i c dWj and 3Wj has genus 2. The manifold Wj obtained by attaching

rj(D1) to Wj has boundary a torus. WJ can also be viewed as a component of
>j »/«•/,.

Consider an outermost disk If of E cut off by /, or let i-f £ if £ is disjoint
from /. We may as well assume that If lies in Wj, since if J is separating and If
lies in the other component, we should have taken Ff for J. If if is inessential in Wj
then E' E is parallel to / (since E is non-separating), so 'àl)\ Pi 3£ 0 and we
are done. If if is essential in Wj then each component of Y — (r](J) U q(E')) has

interior disjoint from F and is bounded by a torus. Following some torus unknottings
we can take them to be solid tori. In that case f is a handlebody, as required.
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8. The genus 3 Schoenflies Conjecture

We now apply the results of the previous sections to complete the proof of the genus 3

Schoenflies Conjecture.

Theorem 8.1. Suppose M is a genus 3 rectified critical level embedding of S3 in S4.

Then after a series of reimbeddings of M via other genus 3 rectified critical level
embeddings, each of which changes at most one of the complementary components
of M, one of those complementary components is B4

Proof. We assume that any possible genus 3 rectified critical level reimbedding of M
that preserves at least one complementary component and simultaneously decreases

the number of handles has been done. If any further such a sequence of reimbeddings
via Lemmas 6.2 or 5.5 (reimbeddings that do not raise the number of handles) results
in M (resp. Tq) becoming a handlebody, then X (resp. Y) is B4, via Proposition 5.3.
So we assume no such further sequence exists and use the results of the previous
section to see if there are other options. With no loss of generality, assume the cocore
Di of the highest l-handle lies in and let /:j denote the core of the lowest 2-handle.

Following Lemma 7.2 we can assume that the cocore D) of the previous 1-handle
lies on the T-side and the cocore E2 of the next 1-handle lies on the side opposite the

one on which E\ lies.

Claim. Perhaps after rearranging the ordering of the handles, at least one of D\ and

Ei is non-separating.
Suppose D\ and Lj are both separating. It both If and If lie in Xf then it follows

from Corollary 7.7 that at least two of the non-separating cores of the 2-handleS and

at least two of the non-separating cocores of the 1-handles all lie 011 the T-side of
the surfaces to which they are attached. So both Tq1" and T0~ are 4-dimensional
handlebodies of genus at least 2. But the Mayer-Vietoris sequence for Tq1" T0~ glued
along T0* then contradicts H*{Y) lip B4). cf. the proof of Lemma 3.2.

On the other hand, if D\ c Xf} and E\ c T0* then, following Corollary 7.6 and

Lemma 7.5, D2 is non-separating and lies in Tq Then interchange D1 and Ih, using
the 1-handle dual to D2 as the highest 1-handle. The new arrangement establishes
the claim.

Following the claim, we can, with no loss, assume that If is non-separating. Then

according to Lemma 7.8, all of the cores of 2-handles are non-separating, so each

surface Fi at or above height t 0 are connected. Hence there is at most one 3-
handle in M and, passing this 3-handle over the north pole ifnecessary, this guarantees
that each of X and T have induced handle structures without 3-handles. Following
the comments preceding Lemma 4.4, the sum of the genera of the 4-dimensional
handlebodies Xq and T0~ is 3, so one of them, say Xf. has genus <1. X is then
obtained from the genus 0 or 1 handlebody Xf by attaching some 2-handles but no
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3-haiidles. Moreover, <)X is a sphere. If Xq) 0 (resp. genus (AT)) 1) then no
(resp. one) 24iandle must be attached, to ensure that II\ (X) liXX) 0. In the

first case, since no 2-handles (hence no handles at all) are attached, X Xf B4.

In the second case, one 2-handle is attached to Xq S1 x I)3 and so X B4, by
Corollary 2.2.

Corollary 8.2. Each complementary component of a genus 3 rectified critical level

embedding of S3 in S4 is a 4-ball.

Proof. Let M be a genus 3 rectified critical level embedding of .S'3. Following
Theorem 8.1 there is a sequence of such embeddings

M Mo, Mi, Mb» « « - » Mn

so that one of the complementary components of Mn is B4 and, furtlierinore, for each

i 0, — 1, one of the complementary components of M; is homeomorphic to
a complementary component of M„-+i. The argument is by induction on n, exploiting
the fact that the complement of B4 in S4 is B4.

Since one complementary component of M„ is B4, both complementary components

are. If n 0 we are done. For n > 1, note that since one complementary
component of M„_i is homeomorphic to a complementary component of Mn, that

complementary component is B4. This completes the inductive step.
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