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A volume maximizing canonical surface in 3-space

Ingrid C. Bauer and Fabrizio Catanese

Abstract. Answering a question posed by Enriques, we construct a minimal smooth algebraic
surface § of general type over the complex numbers with K2 = 45 and pg = 4, and with
birational canonical map. The canonical system |Kg| has a fixed part and the degree of the
canonical image is 19. The surface we construct is rigid, S is indeed a ball quotient. It is
obtained as an Abelian covering of the plane branched over an arrangement of lines already
considered by Hirzebruch, and it is the first such example which is regular (¢ = 0).

Mathematics Subject Classification (2000). 14J25, 14J29, 14J80.

Keywords. Regular ball quotients, configurations of lines.

Introduction

At the onset of surface theory surfaces in 3-space, and especially canonical surfaces
in 3-space, occupied a central role.

In particular, this study led to the famous Noether inequality K? > 2ps — 4,
while Castelnuovo observed that if the canonical map of a minimal smooth surface
S is birational (obviously then p, > 4) the inequality K 23 pe — 7 must hold true.

These are the lower bounds for surface geography, but upper bounds played a deci-
sive role in the investigations of the last 30 years, leading to the so called Bogomolov—
Miyaoka—Yau inequality

K?<9% :=9%p,—q+1)

(cf. [BPV], Chapter VII, Section 4).
For instance, the BMY inequality gives a hypothetical upper bound for a question
raised by F. Enriques (cf. [Enr], Chapter VIII, p. 284).

Problem. Which are the possible values of KZ, in particular which is the highest
possible value of K2 for minimal surfaces with geometric genus pe = 4 having a
birational canonical map (so-called simple canonical surfaces)?
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In fact, Enriques even conjectured that the highest possible value for K2 should
be 24, based on the conjecture that the expected number of moduli should be strictly
positive. The second author showed in [Cai2] that this bound does not hold true,
constructing simple canonical surfaces with geometric genus p, = 4 and 11 <
K? < 28 (in these examples KZ equals the *canonical degree’, i.e., the degree of the
canonical image). This bound was improved by C. Liedtke (cf. [Lie]) who showed
the existence of a simple canonical surface with p, = 4 and K? = 31 (and canonical
degree 12).

Simple canonical surfaces have K2 > 5, and for 5 < K? < 7 they were con-
structed by Enriques, Franchetta, Kodaira, Maxwell, and for 6 < K? < 16 by Burniat,
while Ciliberto was able to show for 5 < K? < 10 the existence of simple canonical
surfaces with ordinary singularities (cf. [Enr], [Fran], [Max], [Kod], [Bur], [Cil]).

If we try to go up with K2, the BMY inequality tells us that K? < 45, and that,
if equality holds, then necessarily S is regular (g(S5) = 0).

The main result of this paper is the following

Main Theorem. There exists a minimal smooth algebraic surface S of general type
over the complex numbers with K* = 45 and p, = 4, and with birational canonical
map. S is rigid, the canonical system |Kg| has a fixed part and the degree of the
canonical image is 19.

More precisely, consider the smooth (Z/5)*-Galois covers of ]P’% branched on a
complete quadrangle. These are 4 ball quotients S;, 1 = 1,2,3,4, with x(S;) =5,
K =45and q($3) =0, q(S) =2fori =1,2,4

For S3 the canonical system |Ks;| has a fixed part \V, the movable part |M| 1=
| K5, — | has 5 base points, and the canonical map ¢x : S3 ——» X is birational onto
a surface % of degree 19,

Finally, the first homology groups are as follows:

H\(S3,7) = (Z/5)*,  Hi(S:,Z) 2 (Z/5* DL, i +£3.

The rigidity of S is due to the fact that, by Yau’s proof of the inequality K* < 9y,
it follows (cf. also [Miy]) that K 2 — 9y ifand only if the universal covering of § is
the 2-dimensional complex ball 2B,

[t was for long time extremely hard to give direct algebro geometric constructions
of such ball quotients, until a breakthrough came via the explicit constructions by
Hirzebruch as Kummer coverings of the complex projective plane branched in a
configuration of lines ([Hir]). These examples were extended and generalized in the
book [BHH], which amply describes three examples of such (compact) ball quotients.
The configurations occurring are quite classical: a complete quadrangle, the Hesse
configuration and the dual Hesse configuration. Even if it 1s possible to determine
the numerical data which a configuration has to fulfill in order to give rise to a ball
quotient, it is less easy to compute the holomorphic invariants.
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In fact, already the determination of the irregularities ¢ of the Hirzebruch examples
and of some étale quotients of them required further work by M.-N. Ishida (cf. [Ish1],
[Ish2]), butnoregular examples were indeed found (except Mumford’s fake projective
plane, whose construction however was not so explicit as Hirzebruch’s one, see
[Muml]).

The example of [BHH] we are interested in here is the (Z/ 5Z)° -covering S of P2
branched exactly in a complete quadrangle A. This surface has the invariants K% =
45-125 and x = 5-125. Itis clear that an étale (Z/5Z)> quotient or, equivalently, a
smooth (Z/5Z)? covering of P? branched exactly in a complete quadrangle has the
invariants K% = 45 and ¥ = 5. Since, as we observed, y = Pe —q + 1, we have to
produce an example of a surface S which is regular (i.e., ¢ = 0) in order to get the
desired example of a surface with K2 = 45 and p, = 4. In fact, we will show that
up (o isomorphisms there are exactly four smooth surfaces with K2 = 45, y = 5,
obtained as (Z/5Z)? coverings of P? branched exactly in a complete quadrangle: but
only one of them is regular (has ¢ = 0).

The main ingredient of our investigation is the theory of Abelian Galois coverings,
developed by Pardini (cf. [Par]), but apparently not sufficiently known. Since the
treatment by Pardini is very algebraic, and at some points not so explicit, we devote
Section 1 to explain the structure theorem for such Abelian coverings, and especially
the relation occurring between the topological data (which allow to construct the
examples) and the explicit determination of the character sheaves (or eigensheaves)
of the covering (these determine not only the topological but also the holomorphic
invariants of the constructed surface).

Sections 2 and 3 are devoted to the construction of our surfaces, and to the inves-
tigation of the symmetries of our construction. This study allows us to classify all
the examples up to isomorphisms.

Section 4 is devoted to the study of the canonical map of S3, while in Section 5
we give a description of the fundamental group 71 (S) of our surfaces, from which
one can calculate the first homology group (S, Z).

1. Abelian covers

In this section we shall recall the structure theorem for normal Abelian Galois ramified
coverings. We shall give a more direct presentation than the one in the original paper
by R. Pardini (cf. [Par]). This will turn out to be more suitable for our purposes.

Let X, Y be normal projective varieties, assume ¥ tobe smoothandletz: X — Y
be a finite Galois cover with Abelian Galois group G. By the theorem on the purity
of the branch locus the critical set of 7 1s a divisor R, the ramification divisor, whose
image D := w(R) is called the branch divisor. In the case where also X is smooth
we have the following result (cf. [Catl], Proposition 1.1).
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Proposition 1.1. If X is smooth, then R is a normal crossing divisor with smooth
components. Moreover, if x € X, then the stabilizer of x is the direct sum of the
stabilizers of the components of R passing through x and these last groups are cyclic.

We may assume without loss of generality, and will assume in the following,

that ¥ is smooth and D is a normal crossing divisor.
We remark that 7 factors canonically as

X i Y
Wy S
X/

where X’ is maximal such that p’: X’ — Y is unramified. In fact, one takes X’ :=
X /G, where G’ is the subgroup of G generated by the stabilizers G of points x € X.

Definition 1.2. = is called rotally ramified iff p’ is an isomorphism (i.e., G = G’).

Observe that 7 is necessarily totally ramified if ¥ has a trivial algebraic funda-
mental group.

Now, 7 1s determined by the surjective homomorphism ¢: 71(Y — D) — G,
which factors through ¢ : Hi(Y — D, Z) — G, since G is assumed to be Abelian.

We denote by G* the group of characters of G, and we shall use the additive
notation for the group operation in G* . Recall that 77 is flat (for this it suffices that ¥
is smooth and X 1s normal) and that the action of G induces a splitting of the direct
image of Oy into eigensheaves

TL'*(QX = @ oC_ly

x€GH

where G acts on the invertible sheaf Ji;l via the character y.
Note that £1 = @y and denote by L , a divisor associated to the eigensheaf £,
(thus £, = O(L,)).
We shall show how
(1) one calculates Hi(Y — D, 7Z);
(2) one calculates the character sheaves £, = O(Ly) in terms of the surjective
homomorphism ¢ . Hi(Y — D, Z) — G.
Consider the exact sequence

00— K—->HhY-D,7Z)— Hi(Y,Z) — 0. (1)

Remark 1.3. If 7 is totally ramified, ¢ |K : K — G is surjective.
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Following the arguments in [Catl] we obtain

Proposition 1.4.
K =ker(H; (Y — D) — Hi(Y)) = coker(r: H?2(¥Y) - H?2(D)).

In particulay, if H1(Y, Z) = 0, then
Hi(Y — D,7Z) = coker(r: H"=2(Y) - H>2(D)).

Proof. Let V be an open tubular neighbourhood of D and denote by 9V its boundary.
Then we have the exact sequence

e HPHY) —» HPHD) —» Y, V) — 1PN Y) — -
Observing that H**~1(Y, V) = H{(Y — D, Z), we see that

K =ker(H1(Y — D, Z) — (Y, 7))

k
> coker (r: H»2(Y) — H¥~2(D) EB[D,-]Z). 0
i=1

Remark 1.5. Applying Homz( -, G) to the short exact sequence (1) above we get

0 — Hom(H(Y,Z), G) — Hom(H,(Y — D, Z), G) — Hom(K, G)
— Ext!(H{(Y,Z), G) — Ext!(Hi(Y — D, Z), G) — Ext'(K, G) — 0.

Hence an Abelian covering of ¥ ramified in D is uniquely determined by a surjective
morphism ¢: K — G if and only if Hom(H(Y), G) = 0 and Ext!(H(Y), G) —
Ext/(Hi(Y — D), G) is injective. This happens, for instance, if Hy(Y,Z) = 0, or
more generally if f11(Y, Z) is a finite group whose exponent is relatively prime to the
exponent of G.

Let us determine the character sheaves of the Abelian covering determined by
p: (Y — D, Z) — G.

Let x € G* be a character of G, i.e., x : G — C C C*, where C is cyclic. Then
x induces a surjective morphism y o ¢: Hj(¥ — D, Z) — C, whence a factorization

of 7 as
m

X Y

T~

Z = X/(ker(x o))

where 7, : Z — Y is a cyclic covering with group C.
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Remark 1.6. £, (Z) = £,(X), and we are reduced to calculate the character sheaves
for cyclic coverings.

Write D = U{.‘Zl D; as a union of smooth irreducible components and denote
by §; the image of a small loop around D; in Hi(Y — D, Z).

Let d be the order of C and let us identify C with Z/d; then we have the well
known formula (cf. the proof of Proposition 4.5 of [Ba-Ca])

k
Or(dLy) = 0y (Y (x o 9)(8) D;).

i=l1

Remark 1.7. We remark that the above linear equivalence

k
dLy =) (x o)) Di,
i=1

depends only on x o (¢|K) and does not uniquely determine the character sheaf £, .
Infact,if £, € Pic(Y) satisfies the above equation, then also £, &7 does, for each d-
torsion sheaf n € Pic(Y). If n corresponds to an element v € Hom(H (Y, Z), Z/dZ),
then £, @n is the character sheaf of the cyclic covering corresponding to y c¢+ao p,
where p: H\(Y — D,Z) - H1(Y,Z). Clearly (xy co + o p)|K = (x c¢)|K.

The observation that p 18 surjective shows however once more that /£, is uniquely
determined by ¢.

Choosing a fixed system of representatives of Z/dZ, e.g., Z/dZ = {0, ..., d — 1},
we get then a unique representation

k k

dLy = (xo@))Di =Y AD;, 0<Aj<d—1.
i=1 i=1

We will now use the above approach in order to write explicit equations for X as
a subvariety in the geometric vector bundle corresponding to the locally free sheaf

D, oy Lx-

Remark 1.8. let x: G — C=Z/d, x': G — C = Z/d’ be two characters of G.
Thenord(x + x/) =Lem.(d,d’) = M. Write M as M = x -d =)' - d’. Consider
the linear equivalences

k k
dLy =) (X o@)(8)D; =y AiD:.
i=1 i=1

k k
d'Ly =) (X' o0)6)Di =)  AD;.
i=1 i=1
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and

k k

M(Lysy) =3 (0 +x) e )6 D; = ((hA; + &' A}) mod (M) - D;.
i=1 i=1

Since moreover 0 < AA; + A'Al < 2M, we may write (identifying the divisor
L with the divisor ( YF_; 21 D;) € @, QD))

k

_ X'y
Lyt Ly =Lypy =2 e Di,
i=1

I I
where eﬁ;x = Lif AA; + VA > M and G;();x := 0 otherwise.

The above equality is equivalent (as shown in [Par]) to the existence of the mul-
tiplication maps

ot Ly @ °C;f1 - °C;J1rx’

~1

which correspond to global sections of £, ® £, & °Cx by

equal to YF_, eé;X/Di.
Letin facto; € I'(X, @(D;)) be a section with div(s;) = D; and set

» whose divisor is exactly

N & 4
€X)X/ e GDL +
Ei
Then []; o, ©* is a global section of &£, ® L/ ® L
maps.
These sections define equations for the natural embedding

-1

era yielding the multiplication

iX>w.= @ v,
XeGH\(1)

In fact, let w, be a fibre coordinate of V(oﬁ;l): then :(X) is defined by the
equations

e’

— HX
wywyr =1, 0" wyyy

We infer the following

Corollary 1.9. If Y and the D;’s are defined over a field K, then also X is defined
over K.
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2. The construction

We consider in P? = IP% a complete quadrangle A, 1.¢., the union of the six lines
through four points Py, ..., P35 in general position.

Letw: Y 1= P2(Py. ..., P3) — P2 be the Del Pezzo surface of degree 5 which
is the blow up of the plane in the points Py, ..., P3s. Denote by FEog, ..., E3 the
exceptional curves. Moreover, for j =1,2,3,let L} := H — Eo — E;, where H is
the total transform in ¥ of a line on P2, and let L; := H — Y0 E; + E;. Le., L
is the strict transform of the line in P? through Py and P;, whereas L; is the strict
transform of the line in P? through E; and Ej, where {i, j, k} = {1, 2, 3}.

The divisor L1 + Ly + L3+ L)+ L5+ L5+ Eg+ E1 + Ex + E3 on Y has simple
normal crossings and we shall denote it by D.

Remark 2.1. It is well known that H>(Y, Z) is freely generated by H, Eq. ..., Es.

Since
k

Hi(Y — D, 7) = coker(r: H"2(Y) - H> (D) = @[D,-]Z), (2)
i=1

where r is given by the intersection matrix

H Ey E FE E;
Lt 1 1 0 0
Lylt 1 0 1 0
Lyt 1 0 o0 1
Lyt 0o 0o 1 1
L1 0o 1 0 1
Ly |1 0 1 1 0
Eo| 0 -1 0 0 0
Ef|0 0 -1 0 0
B0 0 0 -1 0
B30 0 0 0 -1

we obtain
3 3 3
(Y — D, 7) = (@Zei o @Zli ® @Zl{)/HZ(Y, 7,
i=0 i=1 i=0

where ¢; (resp. [;, I) is a (small) simple loop oriented counterclockwise around £;
(resp. L;, L}). Le., H{(Y — D, Z) has generators e, ..., e3, 1,1, 3, 1], 5, I5 and
the relations are eg = I + 15 + I3, ¢; = Il +1; + [; (here and in the following,
{i, .k} ={1,2,3}), > I' + > I; = 0. In particular, I/1(Y — D, Z) is free of rank 5.
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We want to construct a smooth Galois cover p: § — Y with group (Z./57)%
branched exactly in D.

Such a Galois cover is determined by a surjective homomorphism ¢: Z° =
Hi(Y — D, Z) — (Z/5Z)* with certain conditions ensuring that S is smooth and that
the covering branches exactly in D.

We write

x- Z-
="} =u, Iy =1 | =: v, =7
@(l;) (yi) ui, ;) (wj) i wlen) =t ep
Wherexi,yi,zj,wj < {0, ,4} = Z/SZ

Remark 2.2. It obviously follows from Remark 2.1 that each ¢ is determined by
the u;’s, v;’s and that Zi Ui + Zj v; =0,

In order to calculate the invariants (i.e., pg, K %, g) of the Galois covering given
by the homomorphism ¢, we have to calculate for each character x € ((Z/5Z)%)* the
eigensheaf £, .

Before doing this let us work out first the two sets of conditions ensuring that our
covering 1s

1) branched exactlyin D = Ly + Lo+ L3+ L]+ L, + L+ Eo+ E1 + Ex + E3;
and that
2) S is smooth.

Lemma 2.3. 1) If for all i, u;, v, Y up, € = u; + v; + vg are different from zero
in (Z/SZ)Z, then the covering p:. S — Y is branched exactly in Ly, Ly, L3, Ly, L’z,
L3, Ey, ..., Ea.

2) If the following pairs of vectors in (Z./57)*

(ui,vi) forie{l, 2,3}

(1, u1 +ux+wuz), (uo, w1 +uy+us), (us, uy +uy +uz),

(u1, 1+ v2 4+ v3), (2, uz + v1 + v3), (43, u3 + vy + v2, Jori =23,

(u1 + vy + v3, vy),

(up +v1 +uv3, ) fori =1,3

(us +wvp +uvp,v) fori=1,2

are linearly independent, then S is smooth.

Proof. 1)1s obvious.

2) follows from the fact that S given by the homomorphism ¢ is smooth if and only
if the following condition holds: let Dy, Dy be two non trivial irreducible subdivisors
of the branch divisor of p: S — Y and let d; a small loop around D;, then ¢(dy) and
@(dy) are not in the same cyclic subgroup of (Z/ 57)2. O
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Remark 2.4. Let p: S — Y be a (Z/5Z)%-Galois cover with «; and v; satistying
the two conditions of the above lemma. Then S is a smooth minimal surface with
K % =45 and y = 5. In fact, since the canonical divisor K 1s the pull back of the
rational divisor

—3H+Y E +4/5) E;+4/5Y (Lj+L})=9/5H -3/5) E

we get K2 = (92 —4 - 3%) = 45. Moreover, by the Noether’s formula it suffices to
compute that the Euler number e(S) = 15. In fact, we get 25 times the Euler number
of P? blown up in 4 points, minus 20 times the Euler number of 10 P'’s plus 16 times
the Euler number of 15 points: i.e., 25 .7 — 400 + 240 = 15.

We are interested to find such surfaces with ¢ = 0, because then they will have
geometric genus equal to 4.

Given a character x = (a, b) € (Z/5Z)%, let us determine £ y = Lab)-
By the results of Section 1, we get

Proposition 2.5. Denoting by [z] the residue class of z modulo 5, we have the fol-
lowing formulae:

3 3 3
SLy =) xUDLi+ ) x(UDLi+ Y x(e)E;.

=1 = i=0
3 3
SLias) = ¥ _laxi +by;Li + Y _lazi + bw; L] + [a(x + x3 4 x3)
i=1 i=1
3

+b(y1 + y2 + y)Eo + ) _alx +zj + 26) + b(i + wj + w)lE;.
i=l1

3. The symmetries of the construction

Definition 3.1. A six-tuple & := (u1, us, u3, v1, va, v3) € ((Z/5Z)* \ {O) is said
to be admissible if and only if

uy+uy+uz+vy4+v2+uvy3 =0,

and moreover the two conditions of Lemma 2.3 are satisfied, 1.¢.:
a) for all i, u;, vi, > up, € = u;j + v; + vi are different from zero in (Z/57)%;
b) the pairs of vectors listed in Lemma 2.3, 2) are linearly independent in (Z/ 57)2.
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Remark 3.2. We have seen in the previous section that an admissible six-tuple &l
induces a smooth Galois cover p: S — Y with Galois group (Z/ 57)%. Moreover, S
1s a minimal surface of general type with K § =45and x = 5. We recall that S 1s a
ball quotient, hence rigid.

Using MAGMA one sees that there are exactly 201600 admissible six-tuples. But
of course a lot of them will lead to isomorphic surfaces. In order to understand how
many non isomorphic surfaces (with p, = 4) we will get by this construction, we
have to understand the symmetries.

Two admissible six-tuples &, L’ obviously give isomorphic surfaces if there is an
automorphism ¢ € G1(2, Z/5Z) such that ¢» (1) = L', On the other hand the group of
biholomorphic automorphisms of P\ {L1, L, Ls, L, LY, L5} equals S5 (cf. [Ter]).
The action of G5 on the set of admissible six tuples is generated by the following
transformations:

(01): (uy, up, us, vy, v2, v3) = (U1, us+vi+v2, Uz +vi+v3, Uy +ur+us, vy, v3);

(02): (1, u2, u3,v1, 02, v3) = (u3+vi+v, w2, ur+ve+uvs, vy, ui+ur+us, v3);
(03): (u1, u2, u3, v1, v2, v3) — (wp+v1+vs, us+vi+ve, uz, vy, v2, u1+ur+u3);
(04): (uy, up, us, vy, v2, v3) — (U1, Uz, u3, u1+vr+v3, up+vy+v3, uz3+v;+v2).

It is easy to see that these four transpositions generate the action of a group
isomorphic to Ss.

We consider now the group § acting on the set of admissible six-tuples 4, which
is generated by &5 and GlI(2, Z/5Z). Then § 1s a quotient of G1(2, Z/5Z) x S5 (the
actions commute, being given by multiplication on the right, respectively on the left).
A MAGMA computation, reproduced in the appendix, reveals that ¢ has four orbits
on 4 (indeed, the simple minded idea is to calculate the cardinality of these 4 orbits,
and see that their sum equals the cardinality of the set of admissible six-tuples).

Representatives for these orbits are

w=((0)- () (0)-6)-6) -3

1Y)

&
1
e U N
TN
< =

=
=
|
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The orbit of 4; has length 28800, whereas the orbits of £,, 45, £, have respective
length 57600.

In particular we see that § = GI(2, Z/5Z) x Ss.

We have moreover:

Theorem 3.3. Let S; be the minimal smooth surface of general type with K* = 45
and y = 5 obtained from the covering induced by the admissible six-tuple 1l;, where
i €{1,2,3,4}. Thenwe have that Sz is regular (i.e., g(S3) = 0), whereas g(S;) = 2
fori # 3.

In particular, S3 is the unique minimal surface with K = 45 and pe = 4 obtained
as a (Z/5Z)?-cover of P? branched exactly in a complete quadrangle of the complex
projective plane.

Proof. We will calculate the geometric genus of S = S3, using the formula

HY(S,05(Ks) = @) H (Y, 0r(Ky) ® Liap)-
{a.beG*

Applying Proposition 2.5 we obtain the following table for the divisors L, p yielding
the character sheaves L, p) = Oy (Lyp):

Lia,p) a=20 a= a= a= =
b=0 2H—-—E\—Ey | 2ZH—E{—Ep | 3H—Eqy—2E1 | 3H — Eq — 2E;
—E;3 —E, — Ej )
b=1 H H 3H —Eg— E1 3H—-Ey— E1 3H - Eg — E4
—E> — B3 —2E) — En —E> — 3
b=2 2H —FE| — E3 2H—-FE1—Ey | 2H—-—Eg— E1 3H—-Ey— E; 3H - 2Ey — Eq
—E; ) —Ey— Ej3 —E> — I3
b=13 2H—-E>»—E3 | 3H—Eyg—E| | 2H — Ey— E3 2H — Ej 4H — 2Ey — E;
—E, —E3 —2E, —2E;3
b=4 3H—-E{—-Ey | 2H—Eqg—E3 | 3H—Eqg—Ey | 3H—-2Eq—E; | 3H -2Ey— E;
—2E3 —E> —2FE3 —E>y— E3 )

We see immediately that HY(Y, 0y (Ky) ® Lgpy) = 0forall (a,b) & {(2,1),
(3,2),(1,3), 4, 1)} and H°(Y, Oy (Ky) ® Lgpn) =Clora,b) €{(2,1),3,2),
(1,3), (4, 1)}, 1.e., pe(S3) = 4. This proves the claim for S3.

The geometric genus of the remaining surfaces 1s calculated 1n exactly the same

way.

O



Vol. 83 (2008) A volume maximizing canonical surface in 3-space 399
4. The canonical map

In the previous section we have constructed a minimal surface S of general type with
K % =45, p, = 4 and ¢(S) = 0. We want now to understand the behaviour of the
canonical map of S.

For (a, b) € (Z/5)* we write
bi(a, b) := lax; + by;],
Aj(a, b) == laz; + bw;],
pola, b) = lalx1 +x2 + x3) + b(y1 + y2 + »3)1.
prla,b) :=lalxn + z; + z6) + b(yn + wj + wi)].
Then we know that

3 3 3
SLiasy =Y _dia,b)Li+ Y Aila,b)Li+ Y pala, b)Ey.
i=1 j=1 h=0

Denote by Ry, ..., Rio the ramification divisors of p: S — Y lying over L}, LY,
L3, L1,Ly, L3, Ey. ..., E3: itiseasy tosee that they are all irreducible genus 2 curves.
Further, let x; be alocal equation of R;. We already saw that 7 0(S, 05(Ky)) is the di-
rect sum of 4 one dimensional eigenspaces HY(S, Os(K$))ap) = H((Y, Oy (Ky)®
Liap) = HY(P?, Op2). Then a basis of HY(S, O5(Ks)) is given by

4-s1(ab) _A-8(ab) _4=83(ab) 4—ri(ab) _A—haab)  4-23(a.b)
{xy Ay g "y g "

_ = b
Lxgmho@l) | pdens@d) | g0y 9y (Ky) ® Lian) # O}

It is easy to compute the table giving the numbers A;, 8; and py for (a, b) €
{(2,1),(3,2),(1,3), 4, D}

(@.b)y | 61 | &2 | 83 | A1 | A2 | A3 | po | p1 | p2 | 43
(1,3) | 1 1 3 2 |4 | 4 0 4 2 4
2,H 212|143 3 0 3 4 3
@,y | 313|243 0 3 1 2 4
4,1 | 4 | 4 |1 2 | 4 0 4 3 1 2

Therefore we have the following result.

Lemma 4.1. A basis for HO(S, O5(Ky)) is given by

3.3 2.4 2 223 4 2 4 3.2 3.2 4 3.2
{X1X2x3X4X7X9, XXy Xq X5X6X7X8X10, X1X2X3X5X5X7Xg Xy, X3X4X6XSXQX10}.
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We can now prove the following

Theorem 4.2. 1) The canonical map ¢g of S has Rz as fixed part and its movable
part has five base points. We have R32 = —1 and Ks - Ry = 3. The base points
of Ks — Ry are x1 Nxg (of nipe (1. 1)), x1 Nxg (of type (1,1, 1)), x2 N xg (of type
(2.1, 1)), x3 Nx7 (of type (2. 1, 1)), x6 N xo (of type (1, 1)).

2) The canonical map is birational and its image in P* has degree 19.

In order to keep the formulation of the above theorem as simple as possible we
adopted the notation: a base point p of K — R3 on Sis of type (n1, ny, ..., np) iff p
1s a n1-tuple base point of K — R3, after one blow up the strict transform of K — R3
has a ny-tuple base point and so on.

Proof. It 1s immediate from the description of the basis of H 0(S, O5(Ks)) given in
Lemma 4.1 that R3 is exactly the fixed part of |Kg|. It is easy to see that the base
points of |K — Ra| are exactly x1 M xg, x1 N xg, x2 N x9, x3 N x7, X6 N x9. Next we
will see which kind of base points we have and whether there are still infinitely near
base points.

1) x1 N x4: locally around this point |K — R3| is given by x%xf, xlz, Fs xﬁ. The
ideal generated 1s the ideal (xq, x%), thus K — R3 has a base point of type (1, 1) in
x1 Mxyg.

2) x1 Nxg: locally around this point | K — R3] 1s given by x%, xlzxg, xlxg’ , xg. The
ideal generated is the ideal (x{’, xg), thus K — R3 has a basc point of type (1,1, 1) in
x1 M xg.

Similarly in the three remaining cases we see that:

3) |K — Ra] has a base point of type (2,1, 1) in xp N x9 (ideal (x3, x2x2)).

4) |K — R3] has a base point of type (2, 1, 1) in x3 N x7 (ideal (x3, x7, x3x7)).

5)|K — R3| has a base point of type (1, 1) in x¢ N xg (ideal (x6, x3)).

Therefore we get deg ¢px deg dpg (S) = (K — R3)* —=2-4—11 = 19. Here we use
that R3 has self intersection —1 and genus 2. It follows immediately that deg ¢px = 1
and that the canonical image has degree 19. O

The following is an answer to a question by Junho Lee.

Corollary 4.3. There exist surfaces of general type S with birational canonical map
such that the canonical system of each deformation of S has base points.

There remains finally the statement of the main theorem concerning the first
homology group of the four ball quotients which are obtained as (Z/5)%-Galois covers
of P? branched on a complete quadrangle A. This will be done in the next section.
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5. Fundamental group and first homology group of S

Let S be a surface as above with K2 = 45 and x = 3 constructed as (Z/5Z)? cover
of the plane ramified exactly over a complete quadrangle. The first aim of this section
is to find a description of the fundamental group of S.

Recall that the covering p: S — ¥ = ]fDZ(PO, ..., P3) is given by the homomor-
phism ¢: 71(P* — A) - HYP? — A, Z/57) — (Z/57)*. 1.e., we have the exact
sequence

1 — 71(S — R) Zker(p) — m1(P? — A) — (Z/57)* — 0,

where R C S is the ramification divisor of p: § — Y, ie., R = Z}gl R;. Let
«; be a small geometric loop around R;, for each i € {1, ..., 10}, and denote by
{1, ..., oqp) the normal subgroup of 71 (S — R) generated by «q, ..., ¢1p.

Then 71 (S) = 71(S — R)/{xq, ..., &10).

We first have to give a suitable presentation of 771 (P2 — A). For this we use a result
of T. Terada ([Ter]). We change the notation and use Terada’s notation (cf. Figure 1).

L) =(12)

Py = (023)

% Py = (012) Lz = (02) V
Ly = (13)

Figure 1. A complete quadrangle in P2
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Leta € P2 — A and denote by p(ij) resp. p(ijk), 0 <i < j < k <3 asmall
loop starting from a around (z5) resp. around the exceptional divisor of the blow up
in (ijk) defined as in [Ter]. Then Terada shows the following result.

Theorem 5.1 (Terada). 71 (P2 — A, a) is generated by p(ij), i < j and the relations
are

[p(ij)p(ik)p(jk), p(ij)] =1,

lo(ij)pik)p(Gk), p(ik)] =1,

le(if)p(ik)p(jk), p(jR)] =1, foralli < j <k;
p(OD)p(02)p(12)p(03)p(13)p(23) = 1.

On the other hand, it is well known that 71 (P? — A) is isomorphic to the quotient
of the pure braid group of four points by its center P4/Z4. Let o; be the standard
generators of Artin’s braid group. Then we have

1_-1

P U e I |
p(lj)—gl Oz+1‘UJ—ZUJ—IOJ—2“OI

We will show that p(ij)p(ik)p(jk) generates the center of P = T (C2 — 7)),
where Z is the union of three lines through one point. This implies, in view of the
geometric exact sequence

1 —> 73— P35 > m(P'\ {0, 1, 00}) — 1,

that p(ij)p(ik)p(jk) represents a simple loop around the exceptional divisor over
(ijk) in 71 (P? — A).

We have in fact that p (01)p(02)p(12) = ooy ' ofooa?, is the standard generator
of the centre of 3 according to Chow’s theorem (see Corollary 1.8.4 , p. 28 of [Bir]).

The remaining three cases are treated in the same way.

We summarize our result in the following

Proposition 5.2, Let il := (uq, ua, uz, v1, v2, v3) be an admissible six-tuple and let
S be the smooth surface constructed from il

Let ®: 711 (P2 — A) — (Z/5)% be the morphism given by p(01) — v2, p(02) —
v3, p(12) = uq, p(03) = vy, p(13) = uz, p(23) — usy.

Then m1(S) = ker &/ N, where N is the subgroup of ker & normally generated

by
P01, p(02)°, p(12)°, p2)°, p(13)°, p(23)°, (p(01)p(02)p(12))°,

(0(02)p(03)p(23))°.  (P(O1)PO3)p(13))°, (p(12)p(13)p(23))".
From the above description of the fundamental group of S, using the method of

Reidemeister—Schreier, its abelianization Hy (S, Z) can be calculated via a MAGMA
program which is reproduced in the appendix.
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6. Appendix

The following program calculates the admissible six-tuples.

R:=Integers;
f:=FiniteField(5):;
V:=VectorSpace(f,2);
aal:=0;LVU:={@ @};
for x1 in £ do for vl in f do for x2 in £ do for y2 in £ do
for x3 in £ do for v3 in f do for z1 in f do

for z2 in £ do for wl in f do for w2 in f do

M:={@ @};

ul:=VI[x1,y1l];u2:=V![x2,v2];
ul:=VI[x3,y3];ud:=V![zl,wl];ub:=V![z22,w2];
ub:=—(ul+uZ2+ud+ud+ub) ;el:=ul+uz2+u3;el:=ul+ub+ub;
eZ:=u2+ud+ub;e3:=uld+ud+ub;

R2:=[ul,u2,u3,ud,ub,ub];
Ul:=sub<V|e0,ul>;U2:=sub<V|e0,u2>;U3:=sub<V|el,u3>;

U4 :=sub<V|ul,ud>;U5:=sub<V|u2,ub>;U6 :=sub<V |u3,ué>;
U7:=sub<V|ul, el>;U8:=sub<V|u2, e2>;U9 :=sub<V |u3, e3>;
Ull:=sub<V|u4d, e2>;Ul2:=sub<V|u4,e3>;
Ul3:=sub<V|ub5,el>;Ul5:=sub<V|u5,e3>;

Ul6:= u6, el>;ULl7 :=sub<V|u6, e2>;

Include ("M, Dimension(Ul)) ; Include ("M, Dimension (U2

)i

¥ ¢
Include ("M, Dimension(U3)); Include ("M, Dimension(U4)
Include ("M, Dimension (U5) ) ; Include ("M, Dimension (U6)) ;
Include ("M, Dimension (U7)) ; Include ("M, Dimension (U8)) ;
Include ("M, Dimension(U9) ) ;
Include ("M, Dimension (Ull)) ;Include ("M, Dimension(Ul2)) ;
Include ("M, Dimension (Ul3)) ;Include ("M, Dimension (Ul5)) ;
Include ("M, Dimension(Ul6)) ;Include ("M, Dimension(Ul7)) ;
if M egq {@ 2 @} then aal:=aal+l;Include("LVU,R2);R2;end if;
aal;

end for;end for;end for;end for;end for;end for;
end for;end for;end for;end for:

The following script calculates the length of the orbits of four admissible six-
tuples. We skip the verification that these are four distinct orbits.

G:=GenerallinearGroup (2, f);

1:=LVU[1];

Ll:={€@ 1 @};
11:=1[11:12:=1[2];13:=1[3];14:=1[4]1;15:=1[5];16:=1[6]:
e0:=11+12+13;el:=11+15+16;e2:=12+14+16;e3:=13+14+15;
for g in G do

Rg:=[11*g,12*g,13*g,1l4*g,15*g,16*g];

Include("L1l,Rg);

end for;

for j in [1..10] do
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for 1 in L1 do
11:=1711:12:=1[2]1;13:=1[3]1;14:=1[41;15:=1[5];16:=1[6]:
eQ:=11+12+13;e1:=11+15+16;e2:=12+14+16;e3:=13+14+15;
Rrl:=[11,12,13,el,e2,e3]:;Rn2:=[el, &2 ,13,15,14,¢e0];
Rn3:=[11,e3,e2,e0,15,16];Rnd4:=[e3,12,e1,14,e0,16];
Include("L1,Rn2) ;Include("L1,Rn3) ;Include ("L1l,Rn4);
Include("L1,Rnl) ;

end for;

print #L1;

end for;

LVvUO[1]:
[(0 1),(0 1),(1 0),(1 2),(1 2),(2 4)]
has an orbit of length 28800.

LVUO[3] :
[(Q 1),(0 1),(1 0),(1 2),(2 4),(1 2)]
has an orbit of length 57600.

LVU[4]:
[(0 1),(0 1),(1,0),(1 4),(2 3), (1 1})]
has an orbit of length 57600.

LVU[7]:
[(O0 1),(0 1),(1 0),(1 1),(3 Q), (0 2)]
has an orbit of length 57600.

The following script calculates the abelianization of the fundamental group of S3.

G:=CyclicGroup(5):;

GG:=DirectProduct (G, G) ;

P:=Group<x01,x02,x12,x03,x13,x23 | x01*x02*x12*x03*x13*x23,
x01*x02*x12*x01* (x01*x02*x12)"-1%x01"-1,

X01*x02*x12*x02* (x01*x02*x12) "-1*x02"-1,
X01*x02*x12*x12* (x01*x02*x12) "-1*x12"-1,
X01*xX03*x13*x01* (x01*x03*x13)"-1*x01"-1,
X01*x03*x13*x03* (x01*x03*x13)"-1*x03"-1,
XK01*xX03*x13*x13* (x01*x03*x13) " -1*x13"-1,
X02*xX03*x23*x02* (x02*x03*x23)"-1*x02"-1,
X02*x03*x23*x03* (x02*x03*x23) "-1*x03"-1,
X02*xX03*x23*x23* (x02*x03*x23)"-1*x23"-1,
XK12*X13*%x23*x12* (x12*x13*x23)"-1*x12"-1,
X12*xX13*x23*x13* (x12*x13*x23) " -1*x13"-1,
X12*xX13*x23*x23* (x12*x13*x23) "-1*x23"-1>;
S:=Sym(10);

ime := [ 8! (1,4,2,5,3)(6,8,10,7,9), S!(1,2,3,4,5)(6,7,8,9,10),

$1(1,2,3,4,5%), 8!(1,5,4,3,2)(6,7,8,9,10), &!(6,7,8,9,10),
81(1,2,3:,4,58)1;
rels := Relations(P);
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rels;
IsSatisfied(rels, ims);
f := hom< P->3 | ims >;

K:=Kernel (f);
KK:=Rewrite (P, K) ;

R1:=P.1"75;
R2:=P.275;
R3:=P.3"5;
R4:=P.4"5;
R5:=P.5"5;
R6:=P.6"5;
RR1:=(P.1*P.2*P.3) "5;
RR2:=(P.2*P.4*D.6) "5;
RR3:=(P.1*P.4*P.5)"5;
RR4:=(P.3*P.5*P.6)"5;

PPl::quo<KK|Rl,R2,R3,R4,R5,R6,RR1,RR2,RRB,RR4>;
AbelianQuotient (PP1) ;
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