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A volume maximizing canonical surface in 3-space

Ingrid C. Bauer and Fabrizio Catanese

Abstract. Answering a question posed by Enriques, we construct a minimal smooth algebraic
surface S of general type over the complex numbers with K2 45 and pg 4, and with
birational canonical map. The canonical system \K$\ has a fixed part and the degree of the
canonical image is 19, The surface we construct is rigid, S is indeed a ball quotient. It is
obtained as an Abelian covering of the plane branched over an arrangement of lines already
considered by Hirzebruch, and it is the first such example which is regular (q 0).

Mathematics Subject Classification (2000). 14J25, 14J29, 14J80.
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Introduction

At the onset of surface theory surfaces in 3-space, and especially canonical surfaces

in 3-space, occupied a central role.

In particular, this study led to the famous Noether inequality K1 > 2pg — 4,
while Castelnuovo observed that if the canonical map of a minimal smooth surface
S is birational (obviously then pg > 4) the inequality K2 >3pg — 7 must hold true.

These are the lower bounds for surface geography, but upper bounds pi ayed a decisive

role in the investigations of the last 30 years, leading to the so called Bogomolov-
Miyaoka-Yau inequality

K2 < 9* := 9(pg -q + 0

(cf. [BPV], Chapter VII, Section 4).
For instance, the BMY inequality gives a hypothetical upper bound for a question

raised by F. Enriques (cf. [Enr], Chapter VIII, p. 284).

Problem. Which are the possible values of K1, in particular which is the highest
possible value of K2 for minimal surfaces with geometric genus pg 4 having a

birational canonical map (so-called simple canonical surfaces)?
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In fact, Enriques even conjectured that the highest possible value for K2 should
be 24, based on the conjecture that the expected number of moduli should be strictly
positive. The second author showed in [Cat2] that this bound does not hold true,

constructing simple canonical surfaces with geometric genus pg 4 and 11 <
K2 < 28 (in these examples K2 equals the 'canonical degree', i.e., the degree of the
canonical image). This bound was improved by C. Liedtke (cf. [Lie]) who showed
the existence of a simple canonical surface with />,, 4 and K2 31 (and canonical
degree 12).

Simple canonical surfaces have K2 > 5, and for 5 < K2 < 7 they were
constructed by Enriques, Franchetta, Kodaira, Maxwell, and for 6 < K2 < 16 by Burniat,
while Ciliberto was able to show for 5 < K2 < 10 the existence of simple canonical
surfaces with ordinary singularities (cf. [Enr], [Fran], [Max], [Kod], [Bur], [Cil]).

If we try to go up with K2, the BMY inequality tells us that K2 < 45, and that,

if equality holds, then necessarily S is regular (q(S) 0).
The main result of this paper is the following

Main Theorem. There exists a minimal smooth algebraic surface S ofgeneral type
over the complex numbers with K2 45 and. pg 4, and with birational canonical

map. S is rigid, the Canonical system has a fixed part and the degree of the

canonical image is 19.

More precisely, consider the smooth CL/5)2-Galois covers of Pg branched on a

complete quadrangle. These are 4 ball quotients Si, i 1,2, 3,4, with x(Si) 5,

K2 - 45 andqt(S3) 0, q(S,) 2 for i 1, 2,4.
For S3 the canonical system [JT^J has a fixed part T, the movable part \M\ :=

I Ks:, — TI has 5 base points, and the canonical map <pg t S3 -- -> E is birational onto
a surface E of degree 19.

Finally, the first homology groups are asfollows:

Hi(S3, Z) (Z/5)4, //|i.V. Z) (Z/5)2 © Z4, i f 3.

Tire rigidity of S is due to the fact that, by Yau's proof of the inequality K 2 < 9/
it follows (cf. also [Miy]) that K2 9/ if and only if the universal covering of S is

the 2-dimensional complex ball TY-
It was for long time extremely hard to give direct algebro geometric constructions

of such ball quotients, until a breakthrough came via the explicit constructions by
Hirzebruch as Kummer coverings of the complex projective plane branched in a

coniiguration of lines ([Hir]). These examples were extended and generalized in the
book [BHH], which amply describes three examples of such (compact) ball quotients.
The configurations occurring are quite classical: a complete quadrangle, the Hesse

configuration and the dual Hesse configuration. Even if it is possible to determine
the numerical data which a configuration has to fulfill in order to give rise to a ball
quotient, it is less easy to compute the holomorphic invariants.
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In fact, already the determination of the irregularities q of the Hirzebruch examples
and of some étale quotients of them required further work by M.-N. Ishida (cf. [Ishl],
[Ish2]), but no regular examples were indeed found (except Mumford's fake projective
plane, whose construction however was not so explicit as Hirzebruch's one, see

[Mum]).
Idie example of [BHH] we are interested in here is the (Z/5Z)5-covering S of P2

branched exactly in a complete quadrangle A. This surface has the invariants K2

45•125 and y 5 • 125. It is clear that an étale (Z/5Z)3 quotient or, equivalently, a

smooth (Z/5Z)2 covering of P2 branched exactly in a complete quadrangle has the
invariants K2 45 and / — 5. Since, as we observed, y pg — q + 1, we have to
produce an example of a surface S which is regular (i.e., q 0) in order to get the
desired example of a surface with K1 =45 and pg 4. In fact, we will show that

up to isomorphisms there are exactly four smooth surfaces with K2 45, y 5,
obtained as (Z/5Z)2 coverings of P2 branched exactly in a complete quadrangle: but

only one of them is regular (has q 0).
The main ingredient of our investigation is the theory ofAbelian Galois coverings,

developed by Pardini (cf. [Par]), but apparently not sufficiently known. Since the

treatment by Pardini is very algebraic, and at some points not so explicit, we devote

Section 1 to explain the structure theorem for such Abelian coverings, and especially
the relation occurring between the topological data (which allow to construct the

examples) and the explicit determination of the character sheaves (or eigensheaves)
of the covering (these determine not only the topological but also the holomorphic
invariants of the constructed surface).

Sections 2 and 3 are devoted to the construction of our surfaces, and to the

investigation of the symmetries of our construction. Ulis study allows us to classify all
the examples up to isomorphisms.

Section 4 is devoted to the study of the canonical map of S3, while in Section 5

we give a description of the fundamental group jti(S) of our surfaces, from which
one can calculate the first homology group II\ <S, Z).

1. Abelian covers

In this section we shall recall the structure theorem for normal Abelian Galois ramified
coverings. We shall give a more direct presentation than the one in the original paper
by R. Pardini (cf. [Par]). This will tum out to be more suitable for our purposes.

Let X, Y be normal projective varieties, assume Y to be smooth and let n : X -> Y
be a finite Galois cover with Abelian Galois group G. By the theorem on the purity
of the branch locus the critical set of tt is a divisor R, the ramification divisor, whose

image D := jt(R) is called the branch divisor. In the case where also X is smooth

we have the following result (cf. [Catl], Proposition 1.1).
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Proposition 1.1. If X is smooth, then R is a normal crossing divisor with smooth

components. Moreover, ifx g X, then the stabilizer of x is the direct sum of the

stabilizers of the components of R passing through x and these last groups are cyclic.

We may assume without loss of generality, and will assume in the following,
that Y is smooth and D is a normal crossing divisor.

We remark that jt factors canonically as

Xf

where X' is maximal such that p' : X' —Y is unramihed. In fact, one takes X' :=
X/ G', where G' is the subgroup of G generated by the stabilizers G x of points x g X.

Definition 1.2. jt is called totally ramified iff p' is an isomorphism (i.e., G G').

Observe that jt is necessarily totally ramified if Y has a trivial algebraic
fundamental group.

Now, 7i is determined by the surjective homomorphism <fi\ jt\(Y — D) G,
which factors through <p: H\(Y — D, Z) -> G, since G is assumed to be Abelian.

We denote by G* the group of characters of G, and we shall use the additive
notation for the group operation in G* Recall that jt is flat (for this it suffices that Y

is smooth and X is normal) and that the action of G induces a splitting of the direct
image of Ox into eigensheaves

iffOx (yjy) ^x '

xeG*

where G acts on the invertible sheaf X f1 via the character y.
Note that JL\ Oy and denote by /. a divisor associated to the eigensheaf I, x

(thuSoC, =0(LX)).
We shall show how

(1) one calculates H\(Y — D, Z);
(2) one calculates the character sheaves Xx 0(LX in terms of the surjective

homomorphism q>: H\(Y — D, Z) —G.
Consider the exact sequence

0 -+ K Hi(Y - D, Z) -fc If (T, Z) -> 0. (1)

Remark 1.3. If jt is totally ramified, cp\ K : K G is surjective.
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Following the arguments in [Catl] we obtain

Proposition 1.4.

K kei(Hi(Y - D) -* HfY)) coker(r : H2n~2(Y) h- H2n~2(D)).

In particular, ifH\(Y, Z) 0, then

H\(Y - I), Z) coker(r : H2n~2(Y) -> H2"-2(D)).

Proof. Let V be an open tubular neighbourhood of D and denote by 9 V its boundary.
Then we have the exact sequence

> H2"-2(Y) He H2"-2(D) -+ H2n~\Y, V) H2n-\Y) hf • • •

Observing that H2n-l(Y, V) //, Y - D. Z), we see that

K ker(tfi(7 - D, Z) -* HfY, Z))
k

coker (r : H2"~2(Y) h H2,1-2(D) 0|/), |Z).
/ 1

Remark 1.5. Applying Hom:; • G) to the short exact sequence (1) above we get

0 Hom(//| Y. Z), G) Hom( //|(T - D, Z), G) h- Horn(K, G)

-* Ext^/fiCF, Z), G) -> Ex^lHfY - D. Z). G) Ext^^T, G) ^ 0.

Hence an Abelian covering of Y ramified in I) is uniquely determined by a surjective
morphism q>\ K -> G if and only if Hom( If Y), G) 0 and Fxl'(//|(T). G)
Fxl1 II\ Y — G) is injective. Ulis happens, for instance, if II\ Y. Z) 0, or
more generally if H\ Y. Z) is a finite group whose exponent is relatively prime to the

exponent of G.

Let us determine the character sheaves of the Abelian covering determined by
</?: H\{Y — D, Z) -> G.

Let x £ G* be a character of G, i.e., / :G->Cc C\ where C is cyclic. Then

X induces a surjective morphism y o f : H\(Y — D, Z) -* C, whence a factorization
of n as

Z := A'/(ken / o f))
where nx : Z -> Y is a cyclic covering with group C.
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Remark 1.6. Xx(Z) Xx( X), and we are reduced (o calculate (he character sheaves

for cyclic coverings.

Write D IJ =] l), as a union of smooth irreducible components and denote

by Si the image of a small loop around A in II\(Y - I), Z).
Let d be the order of C and let us identify C with Z/d; then we have the well

known formula (cf. the proof of Proposition 4.5 of [Ba-Ca])

k

0Y(dLx) &y(^2(/ °(p)(Si) A:)-
i 1

Remark 1.7. We remark that the above linear equivalence

k

dl.x <r»SnIh.
i=1

depends only on x ° AI A) and does not uniquely determine the character sheaf Xx.
In fact, if Xx g Pic(F) satishes the above equation, then also I. x @ // does, for each
retorsion sheaf ï] G Pic (F). If i/ corresponds to an element a G Honii II\ Y, Z), Z/r/Z),
then ® is the character sheaf of the cyclic covering corresponding to % mf+eim p,
where p: Hy{Y - D, Z) -* »,CF,Z). Clearly (x o<p + aop)\K (j ° jj)|K.

The observation that p is surjective shows however once more that Xx is uniquely
determined by (p.

Choosing a fixed system of representatives of Z/rfZ, e.g., Z/r/Z {0,..., d — 1},

we get then a unique representation

k k

dLx £(X o cpXSÔDi A,: A:. 0 < A,- < d - 1.

i=1 i=1

We will now use the above approach in order to write explicit equations for X as

a subvariety in the geometric vector bundle corresponding to the locally free sheaf

©/!.<;• - :i

Remark 1.8. Let / : > C Zfd, \ (1 C 2,/d' be two characters of G.
Then ord(y + /') l.c.m.iv/, d') =: M. Write M as M k • d k' • d'. Consider
the linear equivalences

k k

dLx m 22(x o <p)(Si)Di =J2A<Di-
i=1 /=1

k k

d'Lx, m 22(x' ° <p)(Si)Di J2 A; A.
i=1 i=1
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and

k k

M(LX+XÔ m + /) 8fm>Di E(l*Ai + mod {M)) Di
i=1 /=1

Since moreover 0 < A. A; + VA- .< 2M, we may write (identifying the divisor

Lx wiili die divisor Jfx=i yr A:) e ©f=IQA)

k

Lx + ^z' ~~ ^z+z' A'
i=1

where e|,^ ;= 1 if AA, + A'A- > M and := 0 otherwise.

The above equality is equivalent (as shown in [Par]) to the existence of the

multiplication maps

/iz,z':°^z ® °^z' ^z+z'

which correspond to global sections of £x <g> ./y ® whose divisor is exactly

equal to exDx A
Let in fact o\. e YiX, 0(A)) be a section with div(ov) A and set

t / -j

Then | J; oi
x / is a global section of JLX <g> £x> <g> / :i. yielding the multiplication

maps.
These sections dehne equations for the natural embedding

i:X^W:= © VU;1).
zeG*\{l}

In fact, let wx be a fibre coordinate of VU;1): then i(X) is dehned by the

equations
e"

WX WX' Y[v°vX X
WX + X'-

We infer the following

Corollary 1.9. If Y and the Dj '$ are defined over afield K, then also X is defined
over K.
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2. The construction

We consider in P2 P2 a complete quadrangle À, i.e., the union of the six lines

through four points I'o I\ in general position.
Let 7i : Y := P2(Po /Y) —> P2 be the Del Pezzo surface of degree 5 which

is the blow up of the plane in the points Pq, Denote by Eo,.... /Y the

exceptional curves. Moreover, for j 1, 2, 3, let I:. := H — Eo — Ej, where II is

the total transform in Y of a line on P2, and let Lj : // JyLi Ä + Ej. I.e., L'-

is the strict transform of the line in P2 through I'o and Pj, whereas Lj is the strict
transform of the line in P2 through E; and JB|, where {i, j, k} {1,2, 3}.

The divisor L\ + L% © A + L\ + U2 + + L'o + P\ + E? + Po on Y has simple
normal crossings and we shall denote it by D.

Remark 2.1. It is well known that II1 Y, Z) is freely generated by //. Eo...., £3.
Since

k

H\(Y - D, Z) coker(r : H2n-2(Y) -+ H2n-2(D) 0LA JZ), (2)
/ 1

where r is given by the intersection matrix

H Eo Ei Ei £3

L'l 1 1 1 0 0

l'2 1 1 0 1 0

L3 1 1 0 0 1

Li 1 0 0 1 1

L2 1 0 1 0 1

L3 1 0 1 1 0

Eo 0 -1 0 0 0

Ei 0 0 -1 0 0

e2 0 0 0 -1 0

E3 0 0 0 0 -1

we obtain

3 3 3

Ih {Y - D, Z) I 0 Ze; © 0 Z/; © 0 Zlty/H2{Y, Z),
ï=0 i=1 z=0

where ej (resp. /•) is a (small) simple loop oriented counterclockwise around Ej
(resp. Li, L\). I.e., II\(Y — D, Z) has generators eo, ey, /], Y, h, /J, I'2, lj and

the relations are éq l[ + V2 + 13, if V% + lj + h (here and in the following,
{?../', k} {1,2, 3}), l'i + 4' 0- In particular, Hj(F — D, Z) is free of rank 5.
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We want to construct a smooth Galois cover pi S He Y with group (Z/5Z)2
branched exactly in D.

Such a Galois cover is determined by a surjective homomorphism </> : if
H\(Y — D,Z) -> (Z/5Z)2 with certain conditions ensuring that S is smooth and that
the covering branches exactly in D.

We write

<P(k) : =: »••• <P(ïjl =: <P(e/i) =: eA,

where x,, y(-, zj, wj g {0 4} Z/5Z.

Remark 2.2. It obviously follows from Remark 2.1 that each e/, is detennined by
the iii % vfs and that ^ + JZ G Û*

hi order to calculate the invariants (i.e., pg, Kg, q) of the Galois covering given
by the homomorphism </>, we have to calculate for each character y g ((Z/5Z)2)* the

eigensheaf X.y.
Before doing this let us work out first the two sets of conditions ensuring that our

covering is

1 branched exactly in D L \ + L2 + L3 + L\ + L'2 + L'3 + Eq + E\ + E2 + £3 ;

and that

2) S is smooth.

Lemma 2.3. 1) Iffor all i, ftp Vj, W t%, e, «I + G + % at? different from zero
in then the covering p: S -> Y is branched exactly in L\, L2, £3, Z4, L^,
L'y Eq, £3.

2) If the following pairs of vectors in (Z/5Z)2

(u-iWi) forie{1,2,3},

(Ml, Ml + M2 + M3), (M2< Ml + M2 + M3) (MS- «1 + M2 + M3),

(mi. My + U2 + G)> ("2 »2 + Ui + 113), (m3, «3 + Ui + i?2- ' /öf f 2, 3,

(mi + U2 + «3, Vf),

(m2 + «1 + G, G) for i 1, 3,

(m3 + m + W2, G) for i 1,2

«re linearly independent, then S is smooth.

Proof. 1) is obvious.

2) follows from the fact that S given by the homomorphism cp is smooth if and only
if the following condition holds: let D\, /£ be two non trivial irreducible subdivisors
of the branch divisor of p : 5" -> Y and let 4i a small loop around I),, then q>(d\) and

(pidf) are not in the same cyclic subgroup of (Z/5Z)2.
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Remark 2.4. Let p: S -> Y be a (Z/5Z)2 -Galois cover with w; and vj satisfying
the two conditions of the above lemma. Then S is a smooth minimal surface with
K2s 45 and y 5. In fact, since the canonical divisor Ks is the pull back of the

rational divisor

-3H + J2Ei + 4/5 12 Ei + 4/5 + LJ> 9/5H - 3/5 12 Ei

we get K2 (92 — 4 • 32) 45. Moreover, by the Noether's formula it suffices to

compute that the Euler number e(S) 15. In fact, we get 25 times the Euler number
of P2 blown up in 4 points, minus 20 times the Euler number of 10 P^s plus 16 times
the Euler number of 15 points: i.e., 25 • 7 - 400 + 240 15.

We are interested to find such surfaces with q 0, because then they will have

geometric genus equal to 4.

Given a character y (a, b) G (Z/5Z)2, let us determine Xx £(a,h}-
By the results of Section 1, we get

Proposition 2.5. Denoting by [a] the residue class of z modulo 5, we have the

following formulae:

3 3 3

5Xx + + J2x(ei)Ej.
i=1 /=1 i=0

3 3

5 X(a,b) — +byi]Li + V[öm: +bwi]L'i + [afx\ +fe +*|
1 1 1=1

3

+ b{y\ + y2 + j&IPb + + Zj + Zk3 + biy, + wj + wk)]Ei.
1=1

3. The symmetries of the construction

Definition 3.1. A six-tuple it := (ay, u%, u3, i>j, v2, U3) g ((Z/5Z)2 \ {0})6 is said

to be admissible if and only if

ll\ + ll2 + Uj + U\ + v2 + Vj 0,

and moreover the two conditions of Lemma 2.3 are satisfied, i.e.:

a) for all i, u), u;, uk* i lH + vj + l,k are different from zero in (Z/5Z) ;

b) the pairs of vectors listed in Lemma 2.3, 2) are linearly independent in (Z/5Z)2.
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Remark 3.2. We have seen in the previous section that an admissible six-tuple it
induces a smooth Galois cover p : S -> Y with Galois group (Z/5Z)2. Moreover, S

is a minimal surface of general type with K2 45 and / 5. We recall that S is a

ball quotient, hence rigid.

Using MAGMA one sees that there are exactly 201600 admissible six-tuples. But
of course a lot of them will lead to isomorphic surfaces. In order to understand how

many non isomorphic surfaces (with pg 4) we will get by this construction, we
have to understand the symmetries.

Two admissible six-tuples it, it' obviously give isomorphic surfaces if there is an

automorphism 4> Gl(2, Z/5Z) such that 0(11) if. On the other hand the group of
biholomorphic automorphisms of P2\{Li, L%, L3, L\. L'y, L\} equals 65 (cf. [Ter]).
The action of 65 on the set of admissible six tuples is generated by the following
transformations:

(01) : («1, H2- u% Uit «2, U3) —* (m, H3 + U1+V2, U2 + V1 + V3, M1 + H2+M3, V2, U3):

(02) : (mi, a2,113• «2, vj) HP (w3 + ui +"2, «2, Hl+W2 + «3, vi, M1 + H2 + M3. V3);

(03) : («1,112,113, vi, vi, V3) > (ii2 + vi + V3, U3+vi+V2, u3, '3 m. 111 + 112 + 113)',

(04) : (hi, 112, a3. «1, V2, W3) H- (ni, Ê2,113, h 1 + V2 + V3, U2 + V1+ Ü3, M3 + U1 + U2),

It is easy to see that these four transpositions generate the action of a group
isomorphic to 65.

We consider now the group ij, acting on the set of admissible six-tuples S, which
is generated by G5 and Gl(2, Z/5Z). Then g is a quotient of Gl(2, Z/5Z) x 65 (the
actions commute, being given by multiplication on the right, respectively on the left).
A MAGMA computation, reproduced in the appendix, reveals that (j has four orbits
on S (indeed, the simple minded idea is to calculate the cardinality of these 4 orbits,
and see that their sum equals the cardinality of the set of admissible six-tuples).

Representatives for these orbits are
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The orbit of it] has length 28800, whereas the orbits of il2, ii3, il4 have respective
length 57600.

In particular we see that % Gl(2, Z/5Z) x 65.
We have moreover:

Theorem 3.3. Let Si be the minimal smooth surface ofgeneral type with K2 45

and x 5 obtainedfrom the covering induced by the admissible six-tuple it;, where
i g {1, 2, 3,4}. Then we have that S3 is regular (i.e., q($f) 0), whereas q(Si) 2

for i f 3.

In particular, S3 is the unique minimal surface with K2 45 and pg 4 obtained
as a (Z/5Z)2-cover of P2 branched exactly in a complete quadrangle of the complex
projective plane.

Proof. We will calculate the geometric genus of S S3, using the formula

H0(S,&s(Ks))= 0 //"( Y. (jyl Ky 0 I-

(a.b)eG*

Applying Proposition 2.5 we obtain the following table for the divisors La^ yielding
the character sheaves JL(a,b) Gj t 7.

h t a 0 a 1 a 2 a 3 a 4

6 0 0 2H -Ei- Es

-Es
2H -Ei - Ei 3H - Ei) - 2Ei

-Ei - Es

3 H - En - 2Ei

-ES
b 1 H H 3H - Eiy - Ei

-Ei - Es

3H - Ei) - Ei
-2E% - Es

3H - EQ - Ei

-Ei - Es

b 2 2H -Ei - E3 2H -Ei- Ei
-Es

2H - E:q - Ei

-En
3H - Ei) - Ei

-Ei - Es

3H -2E0 - Ei

-Ei - Es

6 3 2 H - Ei - Ms 3H - En - Ei

-Ei - Es.

2H - En - Es 2H - E0 4 H - 2Ê0 - Ei
-2E-i - 2Es

6 4 3ft - Ei - E2

-2£3

2H - Eiy - Es 3H - È0 - Ei

-Ei - 2E3

3H - 2Ea- Ei

-Ei - Es

3H -2Eq - Ei

-Ei

We see immediately that //°(T, <V> 1 Ky 0 X^aj>)) 0 for all (a, b) £ {(2, 1),
(3, 2), (1, 3), (4,1)} and H°(Y, 6Y(KY) ® £{a,b)) C for (a, b) g {(2,1), (3, 2),
(1, 3), (4. 1)}, i.e., Pg(S3) 4. This proves the claim for S3.

The geometric genus of the remaining surfaces is calculated in exactly the same

way.
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4. The canonical map

In the previous section we have constructed a minimal surface S of general type with
K2 45, pg 4 and q(S) 0. We want now to understand the behaviour of the
canonical map of S.

For (a, b) g (Z/5)2 we write

Si (a, b) : [a.Xj + byi],

kj(a, b) := [azj + bwj%_

HO (a, b) := \a{x\ + xj + *3) + frfcfS + M + JtïL
/'/,(<?. fe) := [a(xh + 2/ + Zk) + + Wj + uyil-

Then we know that 3335c£(â,è) y^g)(a,èjjj 4
_

bjia.bil.; +
1 1 /i 0

Denote by 10 the ramification divisors ot p : .S' —> F lying over L[, L'2i

L'3,Li,L2, L3,Eo, ...,£3: itiseasy to see that they are all irreducible genus 2 curves.
Further, let x, be a local equation of Rj. We already saw that H°(S, Ös(K$)) is the

direct sum of4 one dimensional eigenspaces H°(S, Os(Ks)){a,b) H°((Y, &Y(KYm
£(a^) H°(P2, Öp2). Then a basis of H°(S, &s(Ks)) is given by

r 4-Sjt»4) 4-SitaM 4-S3(a,b) 4-kifa,b) 4-kiia,b) 4-Àj(a,fc)
^^2 *

2
*

3
*

4
*

5
*

6

,xf-/J3(fl'W i //". F. f-W t A') i » £{aM) £ 0}.

It is easy to compute the table giving the numbers À/, 8j and nu for (a, b) g

{(2,1), (3, 2), (1,3), (4,1)}:

(a, If h <*>3 4§ ^3 HO Ml Hi HI

(1.3) 1 i 3 2 4 4 0 4 2 4

(2,1) 2 2 1 4 3 3 0 3 4 3

(3, 2) 3 3 2 4 3 0 3 1 2 4

(4,1) 4 4 1 2 4 0 4 3 1 2

There tore we have the following result.

Lemma 4.1. A basisfor H°(S, £>s(Ks)) is given by

f33 242 223 4 2 4 32 324 3 2 1

1X2X2X3X4X7X9, X2X2X3X5X6X7X8X10, X1X2X3X5X6X7X8X9, X3X4X6X8X9X2O}.
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We can now prove the following

Theorem 4.2. 1) The canonical map fix of S has R3 as fixed part and its movable

part has five base points. We have R2 —1 and Ks If 3. The base points
of Ks — If are »j n xf (of type (1, l )i, n x% (of type (1,1,1)). n xg (of type
(2,1, 1)). ,v3 n xj (of type (2, I. In. x6 n v., (of type (1, In.

2) The canonical map is birational and its image in P3 has degree 19.

In order to keep the formulation of the above theorem as simple as possible we
adopted the notation: a base point p of K - If on .V is of type in \, «2 11 id iff P
is a « 1 -tuple base point of K — If, after one blow up the strict transform ot K - If
has a «2-tuple base point and so on.

Proof. It is immediate from the description of the basis of H°(S, Os(KsY) given in
Lemma 4.1 that R3 is exactly the fixed part ot | Ks\. It is easy to see that the base

points ot IK — If\ are exactly XJ n .*4, xj H .vs. xg n xg, x3 n xj, x<, H .V9. Next we
will see which kind of base points we have and whether there are still infinitely near
base points.

1) vi n V4: locally around this point [ÜT — R%] is given by x3x|, x2, xi, x\. The
ideal generated is the ideal (xj, x2), thus K - If has a base point of type (1,1) in

xi n X4.

2)xinxs: locally around (lus point | K - lf\ is given by x3, x2X8, xix|, xs. The
ideal generated is the ideal (x3, xs), tlius K - If has a base point of type (1,1,1) in

xj n xs.
Similarly in the tliree remaining cases we see that:

3) IK — R31 has a base point of type (2,1,1) in x-2 n xç (ideal (x|, x2Xg)).

4) IK — R31 has a base point of type (2,1,1) in x3 n xj (ideal (x|, x^, X3.X7)).

5) 1K — R31 has a base point of type (1,1) in xg n xg (ideal (xe, x|
Therefore we get deg fp deg fig (S| (K — R3)2 -2-4 — 11 19. Here we use

that R3 has self intersection — 1 and genus 2. It follows immediately that deg fix I
and that the canonical image has degree 19.

Hie following is an answer to a question by Junho Lee.

Corollary 4.3. There exist surfaces ofgeneral type S with birational canonical map
such that the canonical system of each deformation of S has base points.

There remains finally the statement of the main theorem concerning the first
homology group of the four ball quotients which are obtained as (Z/5)2-Galois covers
of P2 branched on a complete quadrangle A. This will be done in the next section.
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5. Fundamental group and first homology group of S

Let S be a surface as above with K2 45 and / 5 constructed as CZ/5Z)2 cover
of the plane ramified exactly over a complete quadrangle. Hie first aim of this section
is to find a description of the fundamental group of S.

Recall that foe covering p: S —> Y — P2(7:,o /L is given by the homomor-

phism q>: 7ri(P2 — Aj H1(P2 — A, Z/5Z) -» (Z/5Z)2. I.e., we have foe exact

sequence

1 -* TVi(S - R) ker(cp) -> ^(P2 - A) -> (Z/5Z)2 -* 0,

where R c S is foe rainihcation divisor of p: S —Y, i.e., R £t=i ^ • Let
a,: be a small geometric loop around Rj for each i e {1,..., 10}, and denote by
{oq,..,, aqo) the normal subgroup of tï\(S - R) generated by oq..... oqo.

Then jti(S) jti(S — R)/{ai, aio).
We hrst have to give a suitable presentation of ni (P2 — A For this we use a result

of T. Terada ([Ter]). We change foe notation and use Terada's notation (cf. Figure 1).

(m (013)

II<N \ Li (03)

L'i (23)\V L\=( 12)

<%=( 123) \

Pi (023)

/f Pi (012) L3 (02)

II U>

Figure 1. A complete quadrangle iaJ~
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Let a P2 — A and denote by p(ij) resp. p(ijk), 0 < i < j < k < 3 a small

loop starting from a around (ij) resp. around the exceptional divisor of the blow up
in (ijk) defined as in [Ter], Then Terada shows the following result.

Theorem 5.1 (Terada). wj (P2 — À, a) ils generated by p (ij), i <; j and the relations
are

[p(ij)p(ik)p(jk), p(ij)] 1,

[p(ij)p(ik)p(jk), p(ik)] 1,

[p(ij)p(ik)p(jk),p(jk)) 1, for all i < j < Ay

p(01)p(02)p(12)p(03)p(13)p(23) 1.

On the other hand, it is well known that tt\ (P2 — A) is isomorphic to the quotient
of the pure braid group of four points by its center .'P4/Z4. Let 04 be the standard

generators of Artin's braid group. Then we have

P(ij) *-lo-+\ cr-^of^oj^ &,.
We will show that p(ij)p(ik)p(jk) generates the center of IP3 tti(C2 — Z),

where Z is the union of three lines through one point. This implies, in view of the

geometric exact sequence

1 - Z3 -* IP3 -+ ^llP1 \ {0, L œ}) -> 1,

that p(ij)p(ik)p(jk) represents a simple loop around the exceptional divisor over
(ijk) in 7Ti(P2 — A).

We have in fact that p(01)p (02)p (12) a2aQ1afaoaf, is the standard generator
of the centre of -')'b according to Chow's theorem (see Corollary 1.8.4 p. 28 of [Bir]).

The remaining three cases are treated in flic same way.
We summarize our result in the following

Proposition 5.2. Let it := (hi, 112, «3. i>i, v%, 113) be an admissible six-tuple and let
S be the smooth surface constructedfrom it.

Let T : 7ri(P2 — A) (%/5)2 be the morphism given by p(01) v%, p(02) w-
|#3s P(12) 1—* Hi, p(03) 1-^ 14. p(13) 1-^ h3. p(23) H2-

Then ker <&/N, where N is the subgroup of ker T normally generated
by

p(01)5, p(02)5, p(12)5, p(02)5, p(13)5, p(23)5, (p(0L)p(02)p(12))5,

(p(02)p(03)p(23))5, (p(0L)p(03)p(13))5, (p(12)p(13)p(23))5.

From the above description of the fundamental group of S, using the method of
Reidemeister-Schreier, its abelianization II\ (5, Z) can be calculated via a MAGMA
program which is reproduced in the appendix.
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6. Appendix

The following program calculates the admissible six-tuples.

R:=Integers ;

f : =FiniteField(5) ;
V : =VectorSpace(f,2) ;

aal :=0;LVU: {@ @);
for xl In f do for yl in f do for x2 in f do for y2 in f do
for x3 in f do for y3 in f do for zl in f do
for z2 in f do for wl in f do for w2 in f do
M : {@ @);

ul:=V![xl,yl];u2:=V![x2,y2];
u3:=V![x3,y3];u4:=V![zl,wl];u5:=V![z2,w2];
u6:=-(ul+u2+u3+u4+u5) ;eO:=ul+u2+u3; el :=ul+u5+u6;
e2:=u2+u4+u6;e3:=u3+u4+u5;
R2:=[ul,u2 su3,u4,u5,u6] ;

Ul:=sub<VIeO,ul>;U2:=sub<V|eO,u2>;U3:=sub<V|eO,u3>;
TJ4 : =sub<V I ul, u4> ;U5 : =sub<V j u2 u5> ;U6 : =sub<V j u3,u6>;
U7:=sub<V j ul,el>;U8:=sub<V j u2,e2>;U9:=sub<V j u3,e3>;
Uli :=sub<VIu4,e2>;U12:=sub<V|u4,e3>;
U13:=sub<V j u5,el>;U15:=sub<V j u5,e3>;
U16:=sub<V ju6i el>;U17:=sub<V ju6,e2>;
Include(~M,Dimension(Ul)); Include(~M,Dimension(U2));
Include ~M, Dimension (U3 ; Include ~M, Dimension (U4 ;

Include(~M,Dimension(U5)|; Include(~M,Dimension(U6));
Include(~M,Dimension(U7)); Include(~M,Dimension(U8));
Include(~M,Dimension(U9)) ;

Include(~M,Dimension(Uli)); Include(~M,Dimension(U12));
Include ~M, Dimension (U13 ; Include ~M, Dimension (U15 -,

Include (~M, Dimension (U16 -, Include (~M, Dimension (U17 -,

if M eq {@ 2 0} then aal :=aal+l; Include(~LVU,R21;R2; end if;
aal ;
end for; end for; end for; end for; end for,-end for;
end for;end for;end for;end for;

The following script calculates the length of the orbits of four admissible six-
tuples. We skip the verification that these are four distinct orbits.

G : =GeneralLinearGroup (2 f -,

1 :=LVU[1] ;

LI : {@ 1 @);
11:=1[1];12:=1[2];13:=1[3];14:=1[4];15:=1[5];16:=1[6];
eO:=11 + 12+13;el:=11 + 15 + 16 ;e2:=12 + 14 + 16;e3:=13 + 14 + 15 ;

for g in G do
Rg:=[ll*g,12 * g,13 * g,14*g,15*g,16*g];
Include(~L1,Rg);
end for;
for j in [ 1. 10] do
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for 1 in LI do
11:=1[1];12:=1[2];13:=1[3];14:=1[4];15:=1[5];16:=1[6];
eO : =11 + 12+13;el:=11 + 15 + 16 ;e2:=12 + 14 + 16 ;a3:=13 + 14 + 15;
Rnl:=[11,12,13,el,e2,e3];Rn2: [el, e2,13,15,14,eO];
Rn3:=[11,e3,e2,eO,15,16];Rn4:=[e3,12,el,14,eO,16];
Include(~L1,Rn2); Include( ~L1,RnlJ ; Include(~L1,Rn4);
Include(~L1,Rnl);
end for;
print #L1;
end for;

LVU[1];
[(0 1 0 1 {1 0),(1 2 1 2 (2 4)]
has an orbit of length 28800.

LVU[3];
[(0 1),(0 1) 1 0),(1 2), (2 4 5,(1 2)]
has an orbit of length 57600.

LVU[4]:
[(0 1) (0 1), (1,0),(1 4),(2 3),(1 1)]
has an Orbit of length 57600.

LVU[7]:
[ (0 1) (0 1),
has an orbit

(1 0) (1 1) (3 0),(0 2)]
of length 57600.

The following script calculates the abelianization of the fundamental group of S3.

G :=CyclicGroup(5);
GG:=DirectProduct(G,G);
P:=Group<x01,x02,xl2,x03,xl3,x23
x01*x02*xl2*x01*(x01*x02*xl2)"-1"
x01*x02*xl2*x02*(x01*x02*xl2)~-l"
x01*x02*xl2*xl2r* (x01*x02*xl2
x01*x03*xl3*x01* (x01*x03*xl3:) A-l3
x01*x03 *xl3 *x03 *(x01*x03*xl3)A-l*
x01*x03*xl3*xl3*(x01*x03 *Xl3)A-l"
x02*x03*x23*x02*(x02*x03*x23) A-i*
x02*x03 *x23 *x03*(x02*x03*x23)1J
x02*x03*x23*x23* (x02*x03*x23 )1J
xl2*xl3*x23*xl2:*(xl2*xl3*x23 )"-lJ
xl2*xl3*x23*xl3*(xl2*xl3*x23)1J
xl2*xl3 *x23 *x23 *(xl2 *xl3*x23)"~1J
S :=Sym(10);
ims := [ S! (1,4,2,5,3) (6,8,10,7,9), S (1,2,3,4.
S! (1,2,3,4,5), S! (1,5,4,3,2) (6,7,8,9,10), S t 6,
S! (1,2,3,4,5)];
reis := Relations(P);

| x01*x02*xl2*x03*xl3*x23,
XÔÏa-l,
x02"-l,
xl2 1,
xiïA-l,
x03"-l,
xl3"-1,
x02~-l,
x03r -1,
x2 3 " -1,
xl2 1,
xl3r -1,
x2 3 1>;

5) (6,7,8,9,10)
7,8,9,10)
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reis ;

IsSatisfied(reis, ims);
f := hom< P->S I ims >,-

K:=Kernel(f);
KK:=Rewrite(P,K);
R1:=P.1"5;
R2:=P.2"5;
R3:=P.3 ~5;
R4:=P.4"5;
R5:=P.5 ~5 ;
R6:=P.6X5;
RR1: P 1 * P 2 * P 3 )"5;
RR2:=(P.2*P.4*P.6)"5;
RR3:=(P.1*P.4*P.5)"5;
RR4: (P.3*P.5*P.6) "5;
PP1:=quo<KK|RI,R2,R3,R4,R5,R6,RR1,RR2,RR3,RR4>;
AbelianQuotient(PP1);
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