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Smooth divisors of projective hypersurfaces

Philippe Ellia, Davide Franco and Laurent Gruson

Abstract. Let X C P" be a smooth codimension 2 subvariety. We first prove a “positivity
lemma” (Lemma 1.1) which is a direct application of the positivity of Nx(—1). Then we first
derive two consequences:

1) Roughly speaking the family of “biliaison classes” of smooth subvarieties of P lying on
a hypersurface of degree s is limited.

2) The family of smooth codimension 2 subvarieties of IP® lying on a hypersurface of degree s
is limited.

The resultin 1) is not effective, but 2) is. Then we obtain precise inequalities connecting the
usual numerical invariants of a smooth subcanonical subvariety X < P", n > 5 (the degree d,
the integer ¢ such that wy =~ @x(e), the least degree, s, of a hypersurface containing X). In
particular we prove: s > r + 1 if X 1s not a complete intersection.

Mathematics Subject Classification (2000). 14MO7, 14M10, 14C20.

Keywords. Smooth codimension two subvarieties, projective space,complete intersections,
positivity.

Introduction

We work over an algebraically closed field of arbitrary characteristic.
Ellingsrud—Peskine ([7]) proved that smooth surfaces in P* are subject to strong
limitations. Their whole argument is derived from the fact that the sectional genus of
surfaces of degree d lying on a hypersurface of degree s varies in an interval of length
w. The aim of the present paper is to show that for smooth codimension two
subvarieties of P*, n > 5, one can get a similar result with an interval whose length
depends only on s. The main point is Lemma 1.1 whose proof is a direct application
of the positivity of Nx(—1) (where Ny is the normal bundle of X in P"). As a
consequence of Lemma 1.1 (Remark 1.3) we get a series of (n — 3) inequalities the
first one of which being Lemme 1 of [7]. The second (Theorem 1.4) was obtained in a
preliminary version ([5]) by an essentially equivalent but more geometric argument.

Then we first derive two consequences:
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1) Roughly speaking (Theorem 2.1, Remark 2.5) the family of *“biliaison classes”
of smooth subvarieties of P° lying on a hypersurface of degree s is limited.

2) The family of smooth codimension two subvarieties of P® lying on a hypersur-
face of degree s is limited (Theorem 1.4).

The result quoted in 1) is not effective, but 2) is.

In the 1ast section we try to obtain precise inequalities connecting the usual numer-
ical invariants of a smooth subcanonical subvariety X of P, n > 5 (the degree d, the
integer ¢ such that wy >~ @x(e), the least degree, s, of a hypersurface containing X ).
In particular we prove (Theorem 3.9): s > n + 1.

1. Positivity lemma and some consequences

Lemma 1.1 (Positivity lemma). Let F be a rank two vector bundle on a smooth
connected variety X of dimension m and let L be an invertible sheaf such that
WY(F @ L) #0. Put

l—ci(FYt+c(F)t2 ’

in Ao (X)[[t]], where A (X) is the Chow ring of X and t is an indeterminate. Assume
that F is globally generated. Then the u;’s can be represented by pseudo-effective
cycles (see |9], 2.2.B), in particular u,, has non-negative degree.

Proof. Set Q@ := P(F) (in Grothendieck notation Proj(Sym/#')) and denote by
p: @ — X the projection. The Chow ring of @ is
Ay (X)[x]
(2 — e1(F) x 4 c2(F))

(where the indeterminate x corresponds to the tautological quotient of p*(F)) and
the Gysin map p,: A.(Q) — A,(X) sends @ + Sx to 8. By hypothesis, there 1s an
effective divisor D of first Chern class x 4+ ¢1(L). Since F is globally generated x 1s
nef and D - x' is pseudo-effective. Then p, (D - x') = po(x*t! + 1 (L)x?) = u; (by
the formula giving the Gysin map), so u; is pseudo-effective. O

We will apply the lemma in the following situation:

X is a subvariety of codimension two of P" (i.e.n = m + 2)and F = Nx(—1).
One knows that F is globally generated because it is a quotient of 7p»(—1), which is
globally generated on P”. Then we will consider two cases separately:

(1} n=25.
(2) wxy = Ox(e) for some integer ¢ (by [2] this is always satisfied if n > 6).
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Recall that in the last situation we have an exact sequence
0—> 0 —FE— Ixte+n—+1)—0,

where E is a rank 2 vector bundle on P"* with Chem classes ¢1(E) = ¢ +n + 1,
cp(E) =deg(X),and that Ny = £ ® Oy.

Lemma 1.2. Let X C P3 be a smooth codimension two subvariety of degree d lying
on a hypersurface = of degree s. Denote by m the sectional genus of X and assume
that X ¢ Sing%. Then one has

O<p:i=ds*—4ds+d)—sQ2r —=2) <s(s = 1)°.

Proof. The computations are made in Num(X) = A(X)/(numerical equivalence)
(so Num?(X) ~ Z). We denote by C; the Chem classes of Nx(—1), by & (resp. k)
the class of Ox(1) (resp. wy). Finally y will denote the element co(Nx(—s)) €
Num?(X).

Since X ¢ SingX, we have h%(Nx (s —e —n — 1)) = h%(N3(s)) # 0 hence we
may apply Lemma 1.1 with ' = Nxy(—1) and L = Ox(s — ¢ — n) and the u;’s are
pseudo-effective.

We have

= (s —DHhCp — Cy = (s — 1)?h> —y
and
w3 = (s — Dh(C? — C) — C1Cy = (s — 1*K® — (s — Dk + Cp)y.

We know that C; = 4h + k and y = (s? — 6s +d)h? — shk (this follows expressing
this ¢, in function of ¢3(Ny) which is dh? by the self intersection formula). The
relation 13 > 0 is equivalent (in Z) to:

0<(s—D —[(s+3)h+k]-[(s*> =65 +Dh* — shk]
= —[d(s +3) = 21s + 11> — (d — 9s)h*k + shk>.
Let us write 22k as a function of

(s> —6s +d)h> —

A

Wk =

Apply “Hodge index” to the hyperplane section of X : setting 8 = (h2k)2—h>-(hk?) >
0, we get (with d = h?)
,  (RPR)?P 8

hk .
d d
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We partially eliminate 42k

5 s{, » d 58
0<—dld(s+3)—2ls+1]+4h k[—(d—9s)—|—g((s —6S—|—d);—?)i|—g.

This yields

2 I 58
0<—dld(s+3)—21s+d]+ h7k S(S+3)_E -

We eliminate h2k:

d
0 < —d[d(s+3)—21s+d]+[(s2—6s+d)d—u](s+3—dﬁ) —Sg,
S
this can be written
3 d u? 8
O<G—-1)d—pl2s —-34+—)4+———.
s ds d
Now muluply by s/d:
3 s(2s —3) a* 5%
0<s(s—1) —,u[l—l— p +ﬁ_8ﬁ
The relation u, > 0 implies that 2 < d(s — 1)?, so,
2
OSS(S—I)?’—M—I—%[—S(ZS—?))—I—%] —5%
2
= (s—1)° —u+%[(s—l)2—s(25—3)]— %[(s— 1)2—%} —5%.
Finally
2
()Ss(s—l)3—u—%(Sz—s—l)—%[(s—l)z—%} —5%,
and the lemma follows. (.

The last lemma will be used in Section 2.
In the second case let s = min{z : F%(Ix () # 0} and ¢ = min(s, e + n), and
notice that hO(N; (g)) > 0. Apply the positivity lemma with . = Ox(¢ — e — n).

Then the u;’s can be computed in A, (P") = % (by abuse of notation we consider

u; as an integer instead of an element of Zt') and the positivity lemma applied to
X NPit2 says that #; > 0 fori < n — 2. Let s; be the Segre classes of £(—1). One
hasu; = ci(L)-s;_1+s;. It s > e+ nonehas L >~ @, u; = s;; this case is not new
([8]), so we focus on the other case (g = s).
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Remark 1.3. The u; are computed by induction on i by ug = 1, uy = s — 1,
ui=(e+n—Nu_1 —(d—e—n)u;_3.

Set 7 := d — s(e + n + 1) + s2, then the first u;’s are: w2 = (s — 1)? — z,
3 =(s— 13 —z(e+n+s—2)and uy :u%—z(e—l—n — 1)2.

We have the non trivial inequalities u; > 0,2 <i < n — 2. The first 1s included
in Lemme 1 of [7], the second immediately implies the following theorem in the case
n = 5 (see also [5]).

Theorem 1.4 (Speciality theorem). Let X C P*, n = 5, be a smooth subvariety of
codimension two with wx =~ Ox(e). Let ¥ C P" denote a hypersurface of degree s
containing X. If X is not a complete intersection then:

() Ifn=>5ex=< % —3—sandd < S(S—l)[(2—1)2—4] Y

o ) (s=D%—n+1 s[(s=1)2—n+1]
(11) 1'fnz6.e§—\/m n—l—landdﬁ—«/m + 1.

Proof. (i) Byus > 0: (s — 1) > z(e +n + s — 2). Observe that, since X is not
a complete intersection, 7 = c2(E(—e —n — 1 + s) 1s the degree of a codimension
two subscheme which is not a complete intersection. By [12], z > » — 1. It follows
that (s — 1)® > (n — 1)(e + n + s — 2), which gives the bound on e. By uy > 0:
d <s(n—1+4e)+ 1 and this gives the bound on 4.

(i1) The proof is similar using ©4 > 0 instead of u3 > 0. O

2. Application to the biliaison classes of codimension two subvarieties of P°

We recall that a family & of coherent sheaves over an algebraic variety S 1s limited if
there exists an algebraic variety 7' and a coherent sheaf & over 7' x S such that for
any member § of @ there exists a geometric point ¢ € 7" such that § is isomorphic to
the fiber #; of ¥ overt.

Theorem 2.1. Fix an integer s > 0. The family of sheaves Ix x([£]), where

* X is any integral hypersurface of degree s in P3,
* dis any integer and X is a smooth threefold of degree d lying on %,

is limited.

Remark 2.2. The corresponding statement for P* is

e falseforn = 3 (for L = P! x P!, a quadric in P2, one gets the sheaves O (a, —a)
if d 1s even),

¢ unknown for n = 4,

» superseded by the speciality theorem (1.4) for n > 6.
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Since the degree of X is bounded when X C Sing2, the family of the sheaves
Iy s, with X C Sing2, is clearly limited. Hence in the following we will assume
X ¢ Sing>.

Let C (resp. ) denote the intersection of X (resp. X)) with a general P3 in PP,

Lemma 2.3. The sheaves Ic,s([2]) form a limited family.

Proof. Due to the existence of Grothendieck Quot scheme, it suffices to show that:
(1) the Hilbert polynomials of these sheaves constitute a finite set,

(2) there exists an integer N depending only on s such that Iy s([£] + N) is
Castelnuovo-regular.

(1) By a direct computation we have

et = (15 ) - (5) 5

where p = d(s?> —4s +d) —s(2x —2), ¢ = < — [2]. (If 5 divides d, just compare
x (Ic.s(d/s)) with x (It s(d/s)) where I is the complete intersection of S with a
surface of degree d/s). We conclude with Lemma 1.2,

(2) We set IC,S([%D —=: ¥ and notice that, for degree reasons, F (s — 1) ® Oy

is Castelnuovo-regular for H a general plane in P3. Also (since 2°(F (—1)) = 0) we
have

s—1 s—1
ROF (s —10) £ Y W(F k)@ 0p) < Y (sk+1),
k=0 k=0

ie., h%(F (s — 1)) is bounded uniformly in s. It follows that h'(F (s — 1)) is bounded
uniformly in s (since h° and x are and K2 (F (s — 1)) = 0), say by M. By a classical
argument &' is strictly decreasing after the regularity of the general plane section
([14]) and we deduce that h X (F (s — 1 + M)) = 0,50 F is (s + M)-regular. O

Lemma 2.4. Let ® be a family of sheaves on P" with the following properties:
(1) any ¥ € D is locally of depth > 2;

(2) for a general hyperplane H C P" the family of the restrictions of the members
of & is limited;

(3) hO(F) is bounded uniformly in ¥ € &.
Then © is limited.

Proof. By the second assumption we know that the set of the Hilbert polynomials of
Flu (F € ®)is finite, so it will be sufficient to prove the following
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Claim. h'(¥) is bounded uniformly in ¥ € .

In fact, by assumption (2) we know that the hi(F)’s are bounded uniformly in
F e & wheni > 2because of the inequality ' (F) < 3 .0 i~ F (k)| . So, from
(1), (3) and our claim, it follows that | ¥ (¥ )| is bounded ﬁniformly mF e b, So
the Hilbert polynomial P¢ of ¥ is such that P# (0) and (Pg(x 4+ 1) — Py (x)) form
a finite set (¥ € &), which implies that the set { Py : F € P} is finite. A uniform
bound on the regularity of # is obtained exactly as in the previous lemma.

To prove the claim we look at the exact sequence
HY(F g (—k) — HY(F (—k — 1)) » H(F(—k) — H'(F|g(—k).

Thereis aninteger kg independent of  so that k%(F | ;7 (—kg)) = 0 = k1 (F |z (—ko)).
Since ¥ is locally of depth > 2 we also know HYF(=k)) = 0 for k > 0,
and so for k > ko by using the above exact sequence. Then we have Al(F) <

RN (F (=), O

Proof of Theorem 2.1. From Lemma 2.3 we know that the family of sheaves
Ty, x([£]lps) is limited for a general P> ¢ P5. We conclude applying two times
Lemma 2.4. 0O

Remark 2.5. (1) If we consider the class of ideals Ix x; (as in the theorem) modulo the
equivalencerelation identifying two sheaves I, ¢ if T is isomorphic to some twistof &,
we could call them “biliaison classes”(on a specified hypersurface): if Ix x ~ Iy y
then ¥ = ¥’ and X’ and X can be linked in X to the same variety. Then (roughly
speaking) the theorem says that when the degree of the specified hypersurface remains
bounded, the set of the corresponding biliaison classes is limited.

(2) In contrast with the case n > 6, wenotice that for any s > 2 one can find ACM,
non complete intersection varieties of arbitrary large degree lying on a hypersurface
of degree s.

Corollary 2.6 (compare with [3]). The family of smooth threefold in P> which are
not of general type is limited.

Proof. According to [3] (proof of Theorem 4.3) we may restrict to the threefolds
lying on a hypersurface of degree 12, so we may fix s. Consider the corresponding
family of sheaves F = Ix x([2]), as in Theorem 2.1. Then wy is a quotient of

Hom(Ix s, wy) = Hom(F , wyx([2])). Since the family @ is limited we can find
an integer & (independent of X ) such that Aom(F , wx (k)) 1s globally generated. So
if X is not of general type one must have [£] < k, hence d < s(k + 1). O

N
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3. Application to subcanonical codimension two subvarieties of P*,n > §

Notation. We are now in case 2 of Section 1, so X is the zero-locus of a rank two
vector bundle £ of Chern classes (¢ +n + 1, d). For sake of simplicity we consider
the Chern polynomial ¢(X) = X? — C1X 4+ Cy of E(—=1)*. Let A = C% —4C; beits
discriminant. We set p = +/C; and write 1 —C1 X + X2 = 1—2p-chr- X 4+ p?X?
with the convention that ¢t > Oif A > OQandt =i6,0 < 0 < w,if A < 0 (in this
way cht = cos@, sht = isin6). Then the roots of X* — C1X + Co are b = pé’,
a = pe” !, Finally we set o = /z.
If si 1s the k-th Segre class of E(—1),1.e.

1
= X*
1— 1 X + CoX2 gs’c

one deduces from 1 — C1X + C2X? = (1 — pe! X)(1 — pe~'X), after a partial
decomposition, the formula sy = p* EEDL (16 he replaced by pf (k4 1) if A = 0)
and

[s—Lshkt shk—1)
g =p .

p sht shr

(10 be replaced by ug = pF[k=L — (k= 1)]if A =0).

Lemma3.1. Let f, g and v be functions defined by f(x) = % glx) = w
(x+1)
s,

and v(x) =
(1) If A > O, then there exists a unique « €10, +o0| such that f(«) = p/(s —1).
(2) If A < 0, then there exists a unique « €]0, % — 1[ such that g(a) = p/(s — 1).

(3) If A =0, then there exists a unique o« > n — 3 such that vie) = p/{s — 1).

Proof. (1) The function f is strictly decreasing on |0, +00[. Moreover, if A > 0,
limy 100 f(x) = €. Since A > 0, E is not stable and 25 < e +n + 1. Since
0O<z=els—1),wehaves —1 < ahences —1 <a =pe’, e < L. We

conclude that there exists a unique « such that f(¢) = p/(s — 1). ’

(2) In this case is g is strictly decreasing on 0, Z — 1[ and we conclude.

(3) In this case is v is strictly decreasing on 0, +00[ so we have a unique ¢ €
10, +-o¢[ such that v(«) = p/(s — 1). By Lemma 1.1 (see also the end of Notation),
vin —3) > p/(s —1),hence « > n — 3. O



Vol. 83 (2008) Smooth divisors of projective hypersurfaces 379

Lemma 3.2. With notations as above we have:

o s—1 P e+n—s FA >0
— — = ifA >0
sht  shot sh(w 4+ 1)t sh(a 4+ 2)t
1 _
.O :S, = — £ = .e—l—n i ifA <O
sinff  sinwf  sin(e+ 1)0  sin(a + 2)0
— —1
at2=FrT8_ P "0, ifA =0,
g g g
Proof. Tirst assume that A > 0. By definition z = e(s — 1). Inserting s — 1 =
pshot
shiat 17> WE 8ct

2! 2
= 2[ shi(et) 5 cht - sh(at) 1] _ 2[ sh®(et)  she — 1)1]
sh* (e + 1)1 sh(e + 1)1 sh®(@ + 1) sh(a + 1)t

For the last equality check that sh(« + 1)t + sh(o — 1)t = 2c¢ch¢ - sh(wt). Finally

2[ sh? (at) _sh(a—l)t]:[ psht T
sh?(« + 1)t sh(a+ 1)t shier + 1z °

For this check that sh?(«t) — sh(e — 1)t - sh(e + 1)t = sh?(z). We conclude that

o P
sht  sh(a+ Dt

This proves the first three equalities. For the last one:

0 s—1  2pcht—(s—1)

sh(w 4+ 1)t shwt 2sh(e¢+ 1)t cht —shar’

To conclude observe that2p cht = e+n—1and 2 sh(aw+1)7 ch f—sh ot = sh(a+2)1.
The proof in case A < 0 is similar. If A = 0, observe that z = e(s — 1) =
(s—p—1%henceo =p—s+1. O

Remark 3.3. Observe that when A < O and s = ¢ + #n, then sin{e + 2)8 = 0.

Proposition 3.4. Keeping notations as above, we have, forn > 5:

etn—5 <in—1y T4 —1)n4

and
1 a—2
d<s[l4+m—1)"rd(s—1)n4].



380 P. Ellia, D. Franco and L.. Gruson CMH

Proof. First of all we assume that A > 0 and we observe that f(r) = logsht is
concave. Since wt = Lt + (o + 1)t we have f(at) = f(1t + ZLw + i) >
L7+ %=L f((a + D1). Taking the exponentials we find

shat > (sh)e (sh(e + 1)1 o )

Similarly, writing «f = QLHI + % (a+2)t and exponentiating the inequality coming
from the concavity of f(f) we get

shar > (sh 1)@ (sh(a + 2)1) 5. (++)

o _ h—1 __ L etn—h
By Lemma 3.2, o= = — = sh{w+1)f — sha+2)t’

hence (+) gives

s—12 ()7 ()T

and (++) gives
s—1> (U)O’_‘ZH(E—FI’L—S)g_ﬂ

from which it follows that
- o -2 atl
p<ocel(s—1)eT, e4+n—s<ogol(s—1)oT,

72 o
In order to conclude the case A > 0 it suffices to show that o =T (s — 1)ﬁ o

a3 e
(s ? < & _11) . and hence
o n

—

(n — 1)7=4(s — 1)7%. Sincez = o2 > n — 1 we have
_ 5 1 1
aﬁ(s = 1)06_ﬂ = (“;—?2)@*1 (s—1) < (%)“*1 (s — 1) and we are done because
o >n—3.
The case A < 0 (A = () can be proved the same way by using f (1) = logsinz
(f(t) = logt) which is concave as well for r €]0, 7 [. O

In some sense the next proposition improves Theorem 1.4, except in the case
A > () where the bound depends on A, hence on e.

Proposition 3.5. Let X C P", n > 4, be a smooth codimension two subvariety with
wx == Ox(e). If X is not a complete intersection, then the following holds.

(1) If A > 0, thend < M?*s* + sM~/A, where M = =2,
(2) If A <0, thend < M?s(s — 1) +.
Proof. (1) By Lemma 3.2

p  shie+ i
s—1  shat
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and
sh(o + 1)t - sh(n — 2)t
shot = shin — 3)¢
since & > n — 3 (Lemma 3.1). One can check that
sh(n — 2)t - etn — 2’
shin —3)t = n—3
S0
P _ etn -2
s—1~7 n-—3
and g
Y n—
=—=w-—-1 .
“ el (s )n -3

Then we have

n—2 s—1 s
w::a—(s—l)g(s—l)[m—l]:n_3 <n—3
and
d=(a+1DHb+1) =+ w?+VAl +w).

: 22 _
Finally we get d < (2=5)7s% 4 s+/A =3, |
(2) Firstassume A < 0. By Lemma 3.2 we have 27 = Sl;(n(?(z)lg)g ) < il

Si% is decreasing on 0 < x < 7. It follows that p < M(s — 1). Since p = +/ab =

A/d — e — n, we get the result taking into account the inequality s(e +n+1—s5) < d

, indeed

(z = 0).
The case A = 0 follows directly from u; > O (see Remark 1.3), taking into
account the inequality s(e +n 4+ 1 —5) < d. O

Remark 3.6. Observe the limiting (n — +00) case of Proposition 3.5(1); d <
s 4+ s+/A, which can occur only for X a complete intersection (a + 1, + 1).

The aim of the remaining of the paper is to improve the bound s > n — 1 of [12]
(resp. s > nif 5 < n < 6, [4]). We will distinguish several cases according to the
sign of the discriminant, A, of X.

Proposition 3.7. Let X C P", n > 4, be a smooth subvariety of codimension two.
Assume that X is not a complete intersection.
() IfFA>0,thens —1>mn—3)/n—1lande> 2n —4)/n—1—n.
Q) IfA <Oande+n+1> 25, thens —1 > 2(n —3)/n—1Land e >
202n —4/n—1—n,
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Proof. (1) Assume first A > 0. By Lemma 3.2 we have <! = S};l(ff) > «. Since

o > +/n—1and @ > n — 3, we get the result. In the same way, from Lemma 3.2,
e+g_s — Sh(sfgz) >a+2>n—1,hencee+n—s > (n—1)/n — 1 and the result
follows.

Assume now A = 0. Wehave z = (s —a — 1)2. Since z > n — 1, it follows
thata +1—s5 > /n—1(notethata + 1 > s 1f X is not a complete intersection),
SO a >S—1—|—«/n— and we get s — 1 > (” (s—l—l—«/n— ) hences — 1 >
(n — 3)4/n — 1. We conclude as above since €+g S =a+2=n-—1.

(2) By Lemma 3.2, “H2-5 = Sins(ifl‘?:g)g. The assumption ¢ + n + 1 > 2s implies

that sin(o + 2)0 > sin a{Q. This in turn implies «f < % (we have (¢ + 2)0 < 37”,
cf. Definition 3.1). By Lemma 3.2, == = Si;glagg ) Since sin orx / sin x is decreasing,
we get: = 1 > sm(n’/Zot) ,hence s — 1 > —(n — 3)4/n — 1. The proof for e is similar
using &F1=5 — SM@HD0 of [ opymg 3.2, O

Lemma3.8. Let X C P, n > 6, be a smooth subvariety of codimension two. Assume
that A < Oande+n+1—-2s <0.

() Ifn > 6, thens > n—+2,
(i) Ifn > 8, then s > 3n/2.

Proof. \)1ftn >6,thene >n+2([8]),hence (n +2)+n+1<e+n+1<2s,
thus s > n + 2.
(i1} As above using e > 2n — 1 (8], Corollary 3.4 (i)). O

Theorem 3.9. Let X C P", n > 4, be a smooth codimension two subvariety. Assume
that ch(k) = 0. If n < 6 assume that X is subcanonical. If h°(Ix(n)) # 0, then X
is a complete intersection.

Proof. Tor the case n = 4 we refer to [6].
If n = 5, by [4] we may assume that s = 5, and by [1], ¢ > 3. From u3 > 0 (see

Remark 1.3) we get: z < e_l(_sn;?iz, ie.z <5 Infact4 <z <35,sincez >n—1
([12]). Arguing as in [4], Lemma 2.6, every irreducible component of Z,.q appears
with multiplicity, hence Z is either a multiplicity z structure on a linear subspace or
is contained in a cubic hypersurface. The last case is not possible ([12]). In the first
case by [10] (or also [11] observing that the proof of the main theorem works in the

case of a codimension two linear subspace of P> ), Z 18 a complete intersection.
2 2
In the case n = 6, we have f(z) = w > (e +n — 1)? because ug > 0.
Since f(z) isdecreasingandz > n—1, f(n — 1) > (e4+n — 1% ie. (s — 1)? >
vro—1(e+n—1)4+n—1. By[8]: e > n+2,50 (s — 2 >n—102n+1)+n—1,

but this inequality is not satisfied if s < n = 6.
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Finally assume that 7 < n. Ifeither A > 0, or A < Oand e+ n+ 1 > 2s,
we conclude with Proposition 3.7. If A < 0and e +n 4+ 1 < 2s we conclude by
Lemma 3.8. O

We conclude the paper with a remark concerning the asymptotic behaviour (for
n going to infinity) of the constants introduced in this paper. As an explicit example
of how our remark works we give an improvement of Theorem 3.9 (and of [12]) for
n > 8 (see Corollary 3.11).

Remark 3.10. Incase A < 0, we may proceed as follows. By Lemma 3.2,s — 1 =

si??ofj—?)@’ sos — 1= 5%, where § = %«/ —A =psinb,0(ad+1) <.

Letus denote by m (o) the minimum of the function ¢(6) = % on 10, aL+1 [.

This minimum is reached for the solution, g, of % = o+ 1 and is an in-
—Amin (1)
in ).

creasing function of . So we have s — 1 > dm(a) = dm(n — 3) >
m(n — 3), where —Apin(n) 1s the minimal value of —A allowed by the Schwarzen-
berger conditions on P* (see [8]). It is possible to compute an approximated value of
my .= m(n—23). For instance we have: ms = 1, 6949, mg = 2, 2845, m7 = 2, 8203,
mg = 3, 3233 (and myp = 16, 1647). Since —Apin(8) = 119, we gets — 1 > 19 if
n = 8, which is better than 12 = -8,

Let E be a rank two vector bundle on P" with Chern classes ¢, ¢ (and A =
c% — 4cp not a square). Let R = ZIX1/(X? — c1X + ¢2). The Schwarzenberger
condition says that Trgz,q(* %) € Z for & = class of X, k € Z. Let p be a prime

I
number, then we have three cases:

(1) inert (p R is prime),
(2) decomposable (R/pR =T, xT,),
(3) ramified (p | A).

Claim. If there exists a rank 2 vector bundle E of Chern classes (cy, ¢2) on P*, then
for each prime p < n, the discriminant A = c% —4cy is a square mod p (possibly Q).

Proof. Assuming the contrary, we may suppose that r — 1 = p is a prime such
that A is not a square mod p. Let & be a root of X2 — ¢ X+ ¢ in F,>. Then
Trp ,/m, (56 + 1) ... (§ +p)) = —Amod p,since (§ + 1)... (6 +p) = F(§) —§
where F is the robenius automorphism of F,» and Ter2 /E,E(F(§) —§)) = —A.
So,if x is the image of X in R, one has that Trg /7 (x(x+1) ... (x + p)) is not divisible
by p and Trogr/q (3;1117) = x (E) is not an integer. Contradiction. O

By [13], pp. 134-135, one knows that there exists some prime p < n such that A
is not a square mod p, when n > c(log | A|)? under Generalized Riemann Hypothesis
or when n > 2(]A|)? without restrictions. This means that |A pin ()| > eﬂ under

1
GRH 0r | Apin(n)] = (2)7.
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Corollary 3.11. Let X C P, n > 8, be a smooth codimension two subvariety. If X
is not a complete intersection, then s > 37”
Proof. First consider the case that A < 0. If e +n 4 1 < 2s, the result follows from
Lemma38. Ife+n+1>2sandr > 11, it follows from Proposition 3.7 because
1+ 2n—NVn—1>2 Ifedn+1>25and8 < n < 10, it follows from
Remark 3.10 since s > 20.

If A = 0, by Proposition 3.7, it is enough to check that 1 + (n — 3)4/n — 1 > 37”
ifn > 8. O
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