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Smooth divisors of projective hypersurfaces

Philippe Ellia, Davide Franco and Laurent Gruson

Abstract. Let X C JP be a smooth codimension 2 subvariety. We first prove a "positivity
lemma" (Lemma 1.1) which is a direct application of the positivity of Nx{— 1). Then we first
derive two consequences:

1) Roughly speaking the family of "biliaison classes" of smooth subvarieties o.f P5 lying on
a hypersurface of degree s is limited.

2) The family ofsmooth codimension 2 subvarieties ofJ*lying on a hypersurface of degree s

is limited.
The result in 1) is not effective, but 2) is. Then we obtain precise inequalities connecting the

usual numerical invariants of a smooth subcanonical subvariety X C n > 5 (the degree d,
the integer e such that o>x — Âïfij? the least degree, s, of a hypersm'face containing X). In
particular we prove: 5 > n + 1 if X is not a complete intersection.

Mathematics Subject Classification (2000). 14M07, 14M10, 14C20.

Keywords. Smooth codimension two: subvarieties, projective space,complete intersections,
positivity.

Introduction

We work over an algebraically closed held of arbitrary characteristic.

Ellingsrud-Peskine ([7]) proved that smooth surfaces in P4 are subject to strong
limitations. Their whole argument is derived from the fact that the sectional genus of
surfaces of degree d lying on a hypersurface of degree .v varies in an interval of length

—T -. The aim of the present paper is to show that for smooth codimension two
subvarieties of P", n > 5, one can get a similar result with an interval whose length
depends only on .v. The main point is Lemma 1.1 whose proof is a direct application
of the positivity of #ff—1) (where N.\ is the normal bundle of X in P"). As a

consequence of Lemma 1.1 (Remark 1.3) we get a series of (n — 3) inequalities the

first one of which being Lemme 1 of [7]. The second (Theorem 1.4) was obtained in a

preliminary version ([5]) by an essentially equivalent but more geometric argument.
Then we first derive two consequences:
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1) Roughly speaking (Theorem 2.1, Remark 2.5) the family of "biliaison classes"

of smooth subvarieties of P5 lying on a hypersurface of degree is is limited.
2) The family of smooth codimension two subvarieties of P6 lying on a hypersurface

of degree 5 is limited (Theorem 1.4).
The result quoted in 1) is not effective, but 2) is.

In the last section we try to obtain precise inequalities connecting the usual numerical

invariants of a smooth subcanonical subvariety X of P", n > 5 (the degree d, the

integer s such that a>x — &x{e), the least degree, s, of a hypersurface containing X).
In particular we prove (Theorem 3.9): # > n + 1.

1. Positivity lemma and some consequences

Lemma 1.1 (Positivity lemma). Let F be a rank two vector bundle on a smooth
connected variety X of dimension m and let L be an invertible sheaf such that
h°(F 0 L) £ 0. Put

in A* (X) [[f ]], where A* (X) is the Chow ring ofX and t is an indeterminate. Assume
that F is globally generated. Then the a, 's can be represented by pseudo-effective
cycles {see [9], 2.2.B), in particular um has non-negative degree.

Proof Set Q := P(F) (in Grothendieck notation ProjiSym/•')) and denote by

p: Q -> X the projection. The Chow ring of Q is

A j X |.v I

(x- — a i /•' X + r-l /•'!!

(where the indeterminate x corresponds to the tautological quotient of p*(F)) and

the Gysin map p,f : AffQ) -> ApX) sends a + ßx to ß. By hypothesis, there is an
effective divisor D of hrst Chern class x + c\(L). Since F is globally generated x is

uef and I) x' is pseudo-effective. Then p.ßl) x' i pffxl+l + c\(L)xl) sg (by
the formula giving (he Gysin map), so m, is pseudo-effective.

We will apply the lemma in the following situation:
X is a subvariety of codimension two of P" (i.e. n m + 2) and F Nx(— 1).

One knows that F is globally generated because it is a quotient of T « (—1), which is

globally generated on P". Then we will consider two cases separately:

(1) « 5.

(2) a>x Ox(e) for some integers (by [2] this is always satished if « > 6).

1 T G (F) t
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Recall that in the last situation we have an exact sequence

0 Ö -* E He Ix(e + n + 1) -* 0,

where F is a rank 2 vector bundle on P" with Chern classes c\{E) <? + « +
ei(E) deg(X), and that Nx E <g>

Lemma 1.2. Let XcP3k(i smooth eodimension Wo subvariety ofdegree d lying
on a hypersurfaee E of degree s. Denote by n the sectional genus ofX and assume
that X (ft SingE. Then one has

0 < p := d(s2 — 4s + d) — s(2tt — 2) < s(s — l)3.

Proof. The computations are made in Num(X) A(X)/(numerical equivalence)
(so Num3(X) ~ If. We denote by Q the Chem classes of Nx(—1), by h (resp. k)
the class of &x( 1) (resp. a>x)- Finally f will denote the element c2(Nx(—s)) g
Num2(X).

Since X <f_ SingE. we have h°(Nx(s — e — n — 1)) h0(N^{s)) jè 0 hence we

may apply Lemma 1.1 with F Nx(—l) and L &x(s — e — n) and the m, 's are

pseudo-effective.
We have

and

U2 (s- Y)hCx -C2 (s - ifh2 - y

u3 (s - r)fo(Cf - C2) - CiC2 (s - 1 )3h3 - ((s - 1 )h + Ci)y.

We know that C\ 4h + k and y (s2 — 6.v + d)h2 — shk (this follows expressing
this C2 in function of c2(Nx) which is dh2 by the self intersection formula), lire
relation u3 > 0 is equivalent (in Z) to:

0 < (s — 1 )3h3 - B> + 3)h + k] [(52 -6s + d)h2 - shk]

-[d{s + 3) - 21# + 1]/î3 - (d - 9s)h2k + shk2.

Let us write Irk as a function of p :

2 (sA — 6s + d)h — fjh k —

v

Apply "Hodge index" to the hyperplane section of X : setting <5 (h:k)2i3 (hk2) >
0, we get (witli d h3J

urWXrl
d d
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We partially eliminate Irk:

0 < —d[d(s + 3) — 21s + 1] + h2k

"lliis yields

0 < —d\d(s + 3) — 21^ + d] + h2k

We eliminate h2k:

— (d - 9s) + — (sz — 6s + d) - — —
sS

d

u
s(s + 3) - '

d.

0 < —d[d(s + If — 21-v + <7] + [(s — 6s + d)d — /r] I j + 3

sS

d

//
d

this can be written

d
6<(s-\Yd-ii[2s-3 + -) + - -•ds d

11 s 8

Now multiply by s fd:

0 < rljy — 1) — n 1 +
s (2s - 3)

d

2 2
U S

+ Y~Sd2'

The relation u2 > 0 implies that n < d(s — 1) so,

0 < s(s ~ l )3 — fj + —
d

a-s(2s-3)+'~-
d.

s1

(s- l)3 - l)2 - s(2s - 3,| - lj
a a a _ d2'

Finally

0 < s(s 1 )3 // —(s~ — s — I —
d d

(s ~ D2 - fa. \i2'
and the lemma follows.

The last lemma will be used in Section 2.

In the second case let s nun{/ : h°(Ix(t) # 0} and q iniiK.v, e + n), and

notice that tr(N\(qJ) > 0. Apply the positivity lemma with L Ox(q — e — n).
Then the m, 's can be computed in A*(P" |pj- (by abuse of notation we consider

iii as an integer instead of an element of Z/' and the positivity lemma applied to
X n P,+2 says that m, > 0 for i < n — 2. Let $% be the Segre classes of IÀ 11. One

hasM; ci(L) 'Sj-1 +Sj. I f v > e + n onehasL 22 0,m Si ; this case is not new
([8]), so we focus on the other case (q s).
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Remark 1.3. The u- are computed by induction on i by «o 1, «i s — 1,

h i (e + n — — (d — e — n)iii-%.
Set z := d — s(e + n + 1) + s2, then the first m,'s are: mi (s — l)2 — z?

ut (s — l)3 — z(e + n + s — Ï) and 114 w| — z(e + n — l)2.
We have the non trivial inequalities m > 0, 2 < i < n — 2. The first is included

in Lemme 1 of [7], the second immediately implies the following theorem in the case

n 5 (see also [5]).

Theorem 1.4 (Speciality theorem). Let X c P", n > 5, be a smooth subvariety of
codimension two with a>x — Ox(e)- Let S c P" denote a hypersurface ofdegree s

containing X. IfM is not a complete intersection then:

(i) Ifn 5: # < 3 .v and d < + \

(ill Ifn > 6: # < - n + 1 and d < dO-W^+i] +J ~ — s/n—\ — s/n—l

Proof, (i) By 113 > 0: (s — l)3 > z(e + n + s — 2). Observe that, since X is not
a complete intersection, s ci(E(—e — n — 1 + s) is the degree of a codimension
two subscheme which is not a complete intersection. By [12], 2 > n — 1. It follows
that (s — l )3 > (n — IJfJ# + n + s — 2), which gives the bound on <?. By 112 > 0:
d <s{n — 1 + e) + 1 and this gives the bound on d.

(ii) The proof is similar using 114 > 0 instead of «3 >0.

2. Application to the biliaison classes of codimension two subvarieties of P5

We recall that a family T of coherent sheaves over an algebraic variety S is limited if
there exists an algebraic variety T and a coherent sheaf 3~ over T x S such that for

any member f of T there exists a geometric point t g T such that f is isomorphic to
the über Tt of F over t.

Theorem 2.1. Fix an integer s »0. The family ofsheaves where

• E is any integral hypersurface ofdegree s in P3,

• d is any integer and X is a smooth threefold ofdegree d lying on E,

is limited.

Remark 2.2. The corresponding statement for P" is

• false for n 3 (for E P1 x P1, a quadric in P3, one gets die sheaves Ö (a, —a)

if d is even),
• unknown for n 4,
• superseded by die speciality theorem (1.4) for // > 6.
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Since the degree of X is bounded when X c SingE, the family of the sheaves

Z&jgt, with X c SingE. is clearly limited. Hence in the following we will assume
X t SingE.

Let C (resp. S) denote the intersection of X (resp. E) with a general P3 in P5.

Lemma 2.3. The sheaves Ic,s([j]) form a limitedfamily.

Proof. Due to the existence of Grothendieck Quot scheme, it suffices to show that:

(1) the Hilbert polynomials of these sheaves constitute a finite set,

(2) there exists an integer N depending only on s such that F\'..v([L] + X) is

Castelnuovo-regular.

(1) By a direct computation we have

where p d(s2 - 4s + d) — s(2n — 2), e | — [|], (If s divides d, just compare
x(Ic.s(dfs)) with x(Zr,s(d/s)) where F is the complete intersection of S with a

surface of degree d/s). We conclude with Lemma 1.2.

(2) We set Ic.x([f]) =: 3? and notice that, for degree reasons, F is - 1)0 O//
is Castelnuovo-regular for H a general plane in P3. Also (since h°(F (—1)) 0) we
have

5—1 5—1

ä%F(ä - In < J2 h°(F(k) ® Oui < + 1),
k- 0 k :()

i.e., h°(!F<s — I is bounded uniformly in s. It follows that hl{T is — 1)) is bounded

uniformly in s (since h° and / are and IrOF is — 1)) 0), say by M. By a classical

argument h1 is strictly decreasing after the regularity of the general plane section

([14]) and we deduce that hl{F (s — 1 + M)) 0, so F is (s + M)-regular.

Lemma 2.4. Let h be a family ofsheaves on P" with the following properties:

111 any F <b is locally of depth > 2;

(2) for a general hyperplane H c P" the family of the restrictions of the members

of<L is limited;

(3) A°(F) is bounded uniformly in Fed1.
Then h is limited.

Proof. By the second assumption we know that the set of the Hilbert polynomials of
FIh (T e (b) is finite, so it will be sufficient to prove the following
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Claim. /?1 (F) is bounded uniformly in F g 4>.

In fact, by assumption (2) we know that the //'(F)'S are bounded uniformly in
F g <b when; > 2 because of the inequality h1 (F) < /? ' "1 F(k)|//. So,from
(1), (3) and our claim, it follows that |x(F)| is bounded uniformly in F G T>. So

the Hilbert polynomial /V of F is such that Py(0) and /', (.v +1) — /', t.v > form
a finite set (F g <b), which implies that the set {Py : F g 4>} is finite. A uniform
bound on the regularity of F is obtained exactly as in the previous lemma.

To prove the claim we look at the exact sequence

//"(F //. A n H\F(-k- 1)) -* Hl(!F(-k)) ->

There is an integer k~o independent of F so that /?0' f F | // (~k0)) ü /i1(F|//(—A-o».
Since F is locally of depth > 2 we also know Hl(fF(-k)) 0 for k ;» 0,
and so for k > ko by using the above exact sequence. Then we have h1 (F) <

/n.

Proof of Theorem 2.1. From Lemma 2.3 we know that the family of sheaves

•£x£([j]IpO is limited for a general P3 c P5. We conclude applying two times
Lemma 2.4.

Remark 2.5. (1) If we consider the class of ideals Ix.x (as in the theorem) modulo the

equivalence relation identifying two sheaves I, $ if I is isomorphic to some twist of %,

we could call them "biliaison classes"(on a specified hypersurface): iflx.r ~ Fr.x
then E YJ and X' and X can be linked in E to the Same variety. Then (roughly
speaking) the theorem says that when the degree of the specified hypersurface remains
bounded, the set of the corresponding biliaison classes is limited.

(2) In contrast with the case n > 6, we notice that for any s >2 one can find ACM,
non complete intersection varieties of arbitrary large degree lying on a hypersurface
of degree s<

Corollary 2.6 (compare with [3]). The family of smooth threefold in P3 which are
not ofgeneral type is limited.

Proof. According to [3] (proof of Theorem 4.3) we may restrict to the threefolds

lying on a hypersurface of degree 12, so we may fix .v. Consider the corresponding
family of sheaves F 2x,s([f]), as in Theorem 2.1. Then a>x is a quotient of

.Komilx.s, a>x) MomCF, ®s([f ])). Since the family T is limited we can find
an integer k (independent of X) such that KomCF, o>y_ (k)) is globally generated. So

if X is not of general type one must have - < k, hence d < s (k + 1).
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3. Application to subcanonical codimension two subvarieties of P"„, n > 5

Notation. We are now in case 2 of Section 1, so A is the zero-locus of a rank two
vector bundle E of Chem classes (> + n + \,d). For sake of simplicity we consider

theChernpolynomial e(X) X2 -C, X + C2 of E(-1 )\ Let A Cf-4C2beits
discriminant. We set p ^/C2 and write 1 — Ci X + C2 X2 1 — 2p • ch t X + p2X2
with the convention that / - 0 if \ • 0 and t id, 0 < 8 < jt, it A < 0 (in this

way ch t cos 8, sh t i sin©). Then the roots of X2 — C\X + C2 are b pë,
a pe~'. Finally we set a </z.

If sk is the A-tli Segre class of E(—1), i.e.

» Wst#' tw+dx*^
one deduces from 1 — C\ X + C2A2 (1 — petX)(I — pe~fX), after a partial
decomposition, the formula pk sh(sAh"^1)f (to be replaced by pk(k + 1) if A 0)
and

,Js - 1 shkt sh(k — 111~
uk p

p sh/ sh t

(to be replaced by iik pk \ k
1

— (k - 1)] if A 0).

Lemma3.1. Let f, g and v befunctions definedby fix) g(x).

and v(x) fckil.

(1) If A 3» 0, then there exists a unique a e]0, +co[ such that f(a) p/(s — 1).

(2) If A c 0, then there exists a unique a e]0, j — 1[ such that g(a) p/(s — 1).

(3) IfA 0, then there exists a unique a > n — 3 such that v(a) p/(s — 1),

Proof. (1) The function / is strictly decreasing on ]0, +oo[. Moreover, if A > 0,

limA^+oo f{x) ë. Since A > 0, E is not stable and 2s < e + n + 1. Since
0 < z e(s — 1), we have s — 1 < a hence s — 1 < a pe~', ë < We
conclude that there exists a unique a such that fia p/is — 1 >.

(2) In this case is g is strictly decreasing on ]0, j — 1[ and we conclude.

(3) In this case is v is strictly decreasing on ]0, +c»o[ so we have a unique a e

]0, +oo[ such that v(a) p/fs — 1). By Lemma 1.1 (see also the end of Notation),
vin — 3) > p/is — 1), hence a > n — 3.
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Lemma 3.2. With notations as above we have:

379

a s - 1 P e + n •— s

sht sh at slut/ • I n shjef -f 2)?

a s — 1 p e + n — s

sin 6 sin sin(o? + Iff sin(o? + 2)0
e + n — s p l—la+2 - + 1 + 2

a a a

if A > 0;

if A < 0;

if A 0.

Proof. First assume that A > 0. By definition js e(s — 1). Inserting .v — 1

I sh'gf
f

Z P
sir (eft)

— 2 cht
sh(o't)

+ 1 P
sh iptf) sh(ct — l)t

_sh2(o' + l)r sh(or + 1 )t.

sir (at) shja — 1 )/ "
p sh t

sh2(ar + I )i sh(a + l)f. .shfc/ + l)f _

.sh2(o? + l)r sh(ct + l)t

For the last equality check that sh(o' + l)f + sh(or — l)t 2 ch t sh(ort), Finally

i »11 \uti »ilvu — i )i [j »H i
2

W*

For this check that sh2(o:t — sh(ct — l)t • shu/ + l)t slr't/1. We conclude that

a p
sht sh(a + l)f

"Ihis proves the first three equalities. For the last one:

p s — 1 2p ch t — (s — 1)

sh(cf + 1 )t sh at 2 sh(cr + 1 )i ch t — sh at

To conclude observe that 2p ch t e+n — 1 and2sh(a+l)t ch /—sh at sh(or+2)t.
The proof in case A < 0 is similar. If À 0, observe that z e(s — 1)

(s — p — l)2, hence a p — s + 1.

Remark 3.3. Observe that when A < 0 and # e + n, then sin (a + 2)0 0.

Proposition 3.4. Keeping notations as above, we have, for n > 5:

i_ t±a
e + n — s < (n — 1) "-4(s — I)«-4

and

d < «fi + (n — l)-^4(s — I)"-4].
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Proof. First of all we assume that A > 0 and we observe that /('/ log sh / is

concave. Since at ]-t + g^(a + 1 )t we have f(at) f{^t + gLf^(a + l)t) >

§/(?) + ,1 ./'<<<* + 1)0- Taking the exponentials we hnd

J_ «— 1

sllcrr > (slit) a (sh(cf + l)f) a (+)

Similarly, writing at XLlt + ^p| (a+2) t and exponentiating the inequality coming
from the concavity of f(t) we get

2

sh at > (sh t) «+1 (sh (a + 2)t) «+1. (++)

By Lemma 3.2, ^ hence (+) gives

J_ a—1

s — 1 > (a )» (p) a

and (++) gives
: 3 «Aj — 1 > (a) a+i (e + n — s:),a+1

from which it follows that

— 1 a —2 a+1
p < o {s — 1) a-1, e + n — s < a «-1 (s — l)«-1,

9 —2 a+1
and hnally d + e + n < s(l + o «-1 (s — l)«-i

—2 a+1
In order to conclude the case À > 0 it suffices to show that a «-1 (s — 1) «-1 <

(// — — IJw-L Since z cr2 > « — 1 we have ^~21} < ^prp, and hence
—2 a+1 //„_i\2v_3_ ,/„_i\2X_L_

o «-1 (j — 1) «-1 (i—|L.j a-i f-Y i j < a-i (g _ ] we are hone because

a > n — 3.

The case A < 0 (A 0) can be proved the same way by using f(t) log sin t

(f (t) log t) which is concave as well for t e]0, n [.

In some sense the next proposition improves Theorem 1.4, except in the case

A > 0 where the bound depends on A, hence on ë.

Proposition 3.5. Let X c P", « > 4, be a smooth codimension two subvariety with
a>x — IfX is not a complete intersection, then the following holds.

(1) IfA > 0, then d < M2s2 + sM\rK, where M

(2) IfA < 0, then d < M2s(s — 1) + ë.

Proof. (1) By Lemma 3.2

p shla + I )t

s i shar
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and
sh {a + l)t sh(« — 2 )t

shcrf ~~ sh(« — 3 )t
since a > n — 3 (Lemma 3.1). One can check that

sh(/7 — 2)1 n 2
< e

so

and

sh(« — 3)t n — 3
'

/> « — 2
< rs — 1 n — 3

p n — 2
a — <(s- 1) -.

e n — 3

Then we have

w := a — (s — 1) < (j — 1)

and

n — 2
1

— 3

— 1 s

n — 3 n — 3

d (a + l)(fe + 1) (s + w)2 + \/~K(s + w).

Finally we get d <s V + §•

(2) First assume A < 0. By Lemma 3.2 we have < ^-.indeed
is decreasing on 0 < ,v • .t. It follows that p < M(s — 1). Since p -Job

— e — n, we get the result taking into account the inequality s{e + n +1 — s < d

U > 0),
Hie case À 0 follows directly from if > 0 (see Remark 1.3), taking into

account the inequality s(e + n + 1 — s) < d.

Remark 3.6. Observe the limiting (n -> +oo) case of Proposition 3.5 (1): d <
s2 + vVÄ, which can occur only for X a complete intersection ui l.h- h.

The aim of the remaining of the paper is to improve the bound .v > // - 1 of [12]
(resp. s > n ii 5 < n < 6, [4]). We will distinguish several cases according to the

sign of the discriminant, A, of A.

Proposition 3.7. Let X c P", n > 4, be a smooth subvariety of codimemion two.
Assume that X is not a complete intersection.

(1) IfA > 0, then s — 1 > (« — 3)VW ~ 1 and e > (2n — 4)*Jn — 1 — n.

(2) //' A • and e + n + 1 > 2s, then s — 1 > ^(n — 3)V" — 1 Ärf e >
— (2« — 4)V" — 1 — s»
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Proof. (1) Assume first À > 0. By Lemma 3.2 we have ^ ' > a. Since

o > V« — 1 and a > n — 3, we get the result. In the same way, from Lemma 3.2,
e+na~s sh(s^J"~ > a + 2 > n — 1, hence e + n —s > (n — 1)V« — 1 and the result
follows.

Assume now A 0. We have z (s — a — l)2. Since z > « — 1, it follows
that a + 1 — s > V« — 1 (note that a + 1 > .v it A is not a complete intersection),
so a > s — 1 + V« — 1 and we get 5 — 1 > (* — 1 + V« — 1) hence .v — 1 >

(« — 3)V« — 1. We conclude as above since g+"~^ =: m + 2 > n — L
(2) By Lemma 3.2, P|"7'v S1°^^>8. The assumption e + n + 1 > 2,v implies

that sin (or + 2)6 > stnaf. This in turn implies aß % (we have (or + 2)0 <
cf. Dehnition 3.1). By Lemma 3.2, Since sine«/sinx is decreasing,

we get: ^ : ^
hence > 1 > : n n — Î. The proof for e is similar

using sin^fw of Lemma 3.2.

Lemma3.8. LetX c P« > 6,bea$moothsubvarietyofcodimensiontwo. Assume
that A < 0 and e + n + 1 — 2s < 0.

(i) Ifn > 6, then s > n + 2.

(ii) fa > 8, v > 3«/2.

Proof, (i) If « > 6, then <?>«. + 2 ([8]), hence (n + 2) + n + 1 < <? + « + 1 < 2j,
thus s > « + 2.

(ii) As above using <? > 2« — 1 (|8], Corollary 3.4 (i)).

Theorem 3.9. Let X c P", « > 4, be a smooth codimension two subvariety. Assume

thatch(k) 0. Ifn < 6 assume that X is subcanonical. Ifh0(Ix(n)) j=. 0, then X
is a complete intersection.

Proof. For the case n 4 we refer to [6].
If n 5, by [4] we may assume that s 5, and by [1], c > 3. From a3 > 0 (see

Remark 1.3) we get: z < he. z < 5. In fact 4 < z < 5, since z > n — 1

([12]). Arguing as in [4], Lemma 2.6, every irreducible component of Zrea appears
witli multiplicity, hence Z is eitlier a multiplicity z stmcture 011 a linear subspace or
is contained in a cubic hypersurface. Hie last case is not possible ([12]). In the first
case by [10] (or also [11] observing that the proof of the main theorem works in the

case of a codimension two linear subspace of P5), Z is a complete intersection.

In the case « 6, we have /(z) H" > (e + n — l)2 because §4 > 0.

Since /(z) is decreasing and z > « — L /(« — 1) > (e + « — I)2, i.e. (s — l)2 >
*Jn — 1 (e + n — 1 + /; — 1. By [8]: e > n +2, so (s — l)2 > \/n — 1(2« +1) +« — 1,

but this inequality is not satisfied if .v < 11 6.
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Finally assume that 7 < «. If either A > 0, or A < 0 and e + n + 1 > 2s,

we conclude with Proposition 3.7. If A < 0 and e + « + 1 < 2s we conclude by
Lemma 3.8.

We conclude the paper with a remark concerning the asymptotic behaviour (for
« going to infinity) of the constants introduced in this paper. As an explicit example
of how our remark works we give an improvement of Theorem 3.9 (and of [12]) for
n > 8 (see Corollary 3.11).

Remark 3.10. In case A < 0, we may proceed as follows. By Lemma 3.2, s — 1

psinitf+ljö * so s — 1 ^
sin-!6».-sin(Q'+i)ö ' where 5 fV-A P sinö, 9(a + 1) < jz.

Let us denote by m (a) the minimum of the function q>(9) +j ?g on R
This minimum is reached for the solution, ß, of — -Ja 4- 1 and is an

increasing function of a. So we have s — 1 > S m (a) > S m(n — 3) > V-Amin(").

m(n — 3), where —Amm(«) is the minimal value of — A allowed by the Schwarzenberger

conditions on P'! (see [8]), It is possible to compute an approximated value of
mn := m(n — 3). For instance we have: 1115 1, 6949, ni(, 2, 2845, m-i 2, 8203,

/7/8 3, 3233 (and «140 16,1647). Since —Amin(8) 119, we get s — 1 > 19 if
n 8, which is better than 12 —

Let E be a rank two vector bundle on P" with Chern classes rj, c) (and A
c\ — 4c2 not a square). Let R Z[A]/(A2 — c\X + cz). The Schwarzenberger

condition says that e Z for § class of X., k e IL Let p be a prime
number, then we have three cases:

(1) inert (pR is prime),

(2) decomposable (R/pR — ¥p x Fp),

(3) ramihed (p | A).
Claim. If there exists a rank 2 vector bundle E of Chern classes (q, q) on P", then

for each prime p < «, the discriminant A c\ — 4c2 is a square mod p (possibly 0).

Proof. Assuming the contrary, we may suppose that n — 1 p is a prime such
that A is not a square mod p. Let f be a root of X2 — c\X + c% in F^. rIlien

Trf^2/fJJ(§(§ + 1)... (£ + p)) —A mod p, since (f + 1) ...(,£ + p) F(f) — |
where F is the Frobenius automorphism of Wp2 and Tt# 2/fp(S(F(f — |)) —A.

So, if v is the image of A in R, one has (ha( rIYÄ/;;=;(vU+ I (x+p)) is not divisible
by p and Triji?/g(^^) % (E) is not an integer. Contradiction.

By [13], pp. 134-135, one knows that there exists some prime pen such that A
is not a square mod p, when n > <"( log | A | )2 under Generalized Riemann Flypothesis

or when« > 2(|A|)a witliout restrictions. This means that |Amin(«)| > «« under

GRHor|Amn(«)i > (|)i
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Corollary 3.11. Let X c P", n > 8, be a smooth codimension two subvariety. IfX
is not a complete intersection, then s >

Proof First consider the case that A < 0. If e + n + 1 < 2s, the result follows from
Lemma 3.8. If e + n + 1 > 2s and n > 11, it follows from Proposition 3.7 because
1 + j(n — 3)V" — 1 > y • If e + « + 1 > 2s and 8 < n < 10, it follows from
Remark 3.10 since j > 20.

If A > 0, by Proposition 3.7, it is enough to check that 1 + (n - 3)V« — 1 > y
if« >8.
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