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The M -ellipsoid, symplectic capacities and volume

Shiri Artstein-Avidan, Vitali Milman®* and Yaron Ostrover

Abstract. In this work we bring together tools and ideology from two different fields, symplectic
geometry and asymptotic geometric analysis, to arrive at some new results. Our main result
is a dimension-independent bound for the symplectic capacity of a convex body by its volume
radius.
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1. Introduction and main result

In this work we bring together tools and ideology from two different fields, symplectic
geometry and asymptotic geometric analysis, to arrive at some new results. Our main
resultis a dimension-independent bound for the symplectic capacity of a convex body
by its volume radius. This type of inequality was first suggested by C. Viterbo, who
conjectured that among all convex bodies in R>* with a given volume, the Euclidean
ball has maximal symplectic capacity. In order to state our results we proceed with
a more formal presentation.

Consider the 2n-dimensional Euclidean space R** with the standard linear co-
ordinates (x1, ¥1, ..., X, y»). One equips this space with the standard symplectic
structure wg = Z;L:l dx; A dy;, and with the standard inner product g = (-, -).

Note that under the identification between R?" and C" these two structures are the
real and the imaginary parts of the standard Hermitian inner product in C", and
w(v, iv) = (v, v},

In [20], Viterbo investigated the relation between the classical Riemannian way of
measuring the size of sets using the canonical volume and the symplectic way using
symplectic capacities. Before we proceed let us recall the definition of symplectic
capacities and their basic properties.

*The first named author was supported by the National Science Foundation under agreement No. DMS-
0111298. The first and second named authors were supported in part by a grant from the US-Israeli BSE



360 S. Artstein-Avidan, V. Milman and Y. Ostrover CMH

Definition 1.1. A symplectic capacity on (R*", wg) associates to each subset U C
R?" a number ¢(U) e [0, co] such that the following three properties hold:

(P1) c(U) < (V) for U C V (monotonicity);
(P2) c(yr (1)) = || c(U) for ¢r € Diff (R*") such that ¢ * g = o wg (conformality);

(P3) c(B¥(r)) = c(B*(r) x C*~1) = r? (nontriviality and normalization), where
B?*(r) is the open 2k-dimensional ball of radius r.

Note that the third property disqualifies any volume-related invariant, while the
first two properties imply that every two sets U, V. < R?" such that there exists a
symplectomorphism sending U onto V, will have the same capacity. Recall that
a symplectomorphism of R¥" is a diffeomorphism which preserves the symplectic
structurei.e., ¢ € Diff (R?™) such that / * g = wg. We will denote by Symp(R*") =
Symp(R?", wg) the group of all symplectomorphisms of (R*, ag).

A priori, it is not clear that symplectic capacities exist. The celebrated non-
squeezing theorem of Gromov [5] shows that for R > r the ball Bz”(R) does not
admit a symplectic embedding into the symplectic cylinder Z>*(r) := B?(r) xC" L,
This theorem led to the following definitions:

Definition 1.2. The symplectic radius of a non-empty set U C R*" is
e 2 : 2n : 2n
cg(U) := sup{nr | there exists ¢ € Symp(R") with ¢+ (B“"(r)) C U}.
The cylindrical capacity of U is
¢#(U) :=inf {7 r* | there exists ¢ € Symp(R*") with ¢ (U) € Z*(r)}.

Note that both the symplectic radius and the cylindrical capacity satisty the ax-
ioms of Definition 1.1 by the non-squeezing theorem. Moreover, it follows from
Definition 1.1 that for every symplectic capacity ¢ and every open set U ¢ R we
have cp(U) < ¢(U) < Z(U).

The above axiomatic definition of symplectic capacities is originally due to Eke-
land and Hofer [3]. Nowadays, a variety of symplectic capacities can be constructed
in different ways. For several of the detailed discussions on symplectic capacities we
refer the reader to [2], [7], [8], [10], [12] and [21].

We may now proceed with the description of Viterbo’s Conjecture and the previous
results leading to this paper. We will be interested in an inequality relating the
symplectic capacity of a convex body in R** and its volume. As mentioned above,
Viterbo [20] conjectured that among all convex bodies in R2" with a given volume,
the symplectic capacity 1s maximal for the Euclidean ball. More precisely, denoting
by Vol(K) the volume of K and abbreviating B?" for the open Euclidean unit ball
in R?*, Viterbo conjectured that:
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Conjecture 1.3. For any symplectic capacity ¢ and for any convex body K < R>"

c(K) Vol(K) /"
c(B2m) S(\/c>1(132n)) ’

with equality achieved only for symplectic images of the Euclidean ball.

Note that this conjecture trivially holds for the symplectic radius cg. The first
result in the direction of the above conjecture is due to Viterbo [20]. Using linear
methods, namely John’s ellipsoid, he proved:

Theorem 1.4 (Viterbo). For a convex body K < R*" and a symplectic capacity ¢
one has

c(K) Vol(K) \ /"
c(B2n)5y”(Vol(B2ﬂ)) ’

where vy, = 2n if K is centrally symmetric and v, = 32n for general convex bodies.

In [6], Hermann constructed starshaped domains in ]Rz”, forn > 1, with arbitrarily
small volume and fixed cylindrical capacity. Therefore, in the category of starshaped
domains the above theorem with any constant y,, independent of the body K must fail.
In addition, Hermann proved the above conjecture for a special class of convex bodies
which admit many symmetries, called convex Reinhardt domains (for definitions
see [6]).

In [1], the first and third named authors used methods from asymptotic geometric
analysis to reduce the order of the above mentioned constant y;,. They showed:

Theorem 1.5. There exists a universal constant Ay such that for every even dimension
2n, any convex body K C R*, and any symplectic capacity ¢, one has
c(K)
e B2”)

Vol(K) )1/”

< Aq(log Zn)z(m

(50, yu < A1(log 2n)?).

They also showed that for many classes of convex bodies, the logarithmic term
is not needed. Among these classes are all the £7-balls for 1 < p < o0, all zonoids
(bodies that can be approximated by Minkowski sums of segments) and other classes
of convex bodies, see [1].

In this work we use some more advanced methods from asymptotic geometric
analysis to eliminate the logarithmic factor from the above theorem and prove an
upper bound for y, that is independent of the dimension. This bound, which is the
constant Ag in Theorem 1.6 below is a universal constant and not difficult to compute
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(as was the constant A in Theorem 1.5 above). However, we avoid this computation
here, since what is of interest for us is the fact that this constant is independent of
the dimension. The question whether 1t equals 1, 1.e., Conjecture 1.3 remains open,
and cannot follow from our method. Finding dimension independent estimates is a
frequent goal in asymptotic geometric analysis, where surprising phenomena such
as concentration of measure (see e.g2. [17] and a more recent survey [4]) imply the
existence of order and structures in high dimension, despite the huge complexity
it involves. It is encouraging to see that such phenomena also exist in symplectic
geomeltry, and although this is just a first example, we hope more will follow.

We emphasize that, as in [1], we work exclusively in the category of linear sym-
plectic geometry. That is, the tools we use are purely linear and the reader should not
expect any difficult symplectic analysis. It turns out that even in this limited category
of linear symplectic transformations, there are tools which are powerful enough to
obtain a dimension independent estimate for y;, in Theorem 1.4. While this fits with
the philosophy of asymptotic geometric analysis, this is less expected from the point
of view of symplectic geometry where for strong results one expects to need highly
nonlinear objects.

More precisely, let Sp(R?™) = Sp(R?", wy) denote the group of linear symplectic
transformations of R>". We consider a more restricted notion of linearized cylindrical
capacity, which is similar to ¢Z but where the transformation v+ is taken only in
Sp(R?") namely

iy (U) := inf {7r? | there exists ¥ € Sp(R*") with ¢(U) € Z*"(r)}.

(Note that it is no longer a symplectic capacity.) Of course, it is always true that for
every symplectic capacity ¢ we have ¢ < ¢Z < o .

Our main result is that for some universal constant Ag one has y, < Ag for all ».
This follows from the following theorem, which we prove in Section 3.

Theorem 1.6. There exists a universal constant Ag such that for every even dimension
2n and any convex body K < R** one has

Z 1/n
cZ (K) Vol(K)
(BT = O(Vol(Bz”))

Notation. In this paper the letters Ag, A1, A2, A3 and C are used to denote universal
positive constants which do not depend on the dimension nor on the body involved.
We denote by B?" the Euclidean unit ball in R?" . In what follows we identify R** with
C" by associating z = x + iy, where x, y € R”, to the vector (x1, y1, ..., X5, ¥n),
and consider the standard complex structure given by complex multiplication by i,
e (X1, ¥, ...y X, ¥u) = (—¥1, X1, ..., —¥n, Xz). Wedenoteby (-, -} the standard
Euclidean inner product on R*". We shall denote by ¢'? the standard action of ST onC”
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which rotates each coordinate by angle 6, i.e., €% (21, ..., za) = (%21, ..., €'%2,).
By x* we denote the hyperplane orthogonal to x with respect to the Euclidean inner
product. For two sets A, B in R*", we denote their Minkowski sum by A + B =
{a+b:a e A b e B}. Byaconvex body we shall mean a convex bounded set in
R?" with non-empty interior. Finally, since affine translations in R** are symplectic
maps, we shall assume throughout the text that any convex body K has the origin in
its interior.

Structure of the paper. The paper is organized as follows. In the next section we
describe the central ingredient in the proof, called the M-ellipsoid, which is coming
from asymptotic geometric analysis. In Section 3 we prove our main result, and in the
last section we show an additional result about convex bodies, generalizing a result
of Rogers and Shephard.

Acknowledgments. The third named author thanks Leonid Polterovich for his con-
stant support and for helpful advice regarding the text. The first and the second named
authors thank the Australian National University where part of this work was carried
out.

2. Asymptotic geometric analysis background: M -position

In this section we work in R" with the Euclidean structure, without a symplectic or
complex structure. We review some well-known theorems from asymptotic geometric
analysis which we will use in later sections. In what follows, we use the notion *“a
position of a body K™ to denote the image of the body K under a volume preserving
linear transformation. A position of a convex body is in fact equivalent to a choice of a
Euclidean structure, or, in other words, a choice of some ellipsoid as the Euclidean unit
ball. A fundamental object in asymptotic geometric analysis, which was discovered
by the second named author in relation with the reverse Brunn—Minkowski inequality,
is a special ellipsoid now called the Milman ellipsoid, abbreviated M -ellipsoid. This
ellipsoid has several essentially equivalent definitions, the simplest of which may be
the following:

Definition 2.1. An ellipsoid &g is called an M-ellipsoid (with constant C) of K if
Vol(E€g) = Vol(K) and it satisfies

Vol(K + )" < CVol(K)Y™,  and  Vol(K N &x)V/* > ¢~ vol(K)Y!/™

The fact that there exists a universal Cy such that every convex body K has an
M -ellipsoid (with constant Cyp) was proved in [14] for a symmetric body K. The
fact that the body K need not be symmetric, for the existence of an M -ellipsoid with
the properties which we use in the proof of our main result, was proved in [15] (see
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Theorem 1.5 there). A complete extension of all M-ellipsoid properties in the non-
symmetric case was performed in [16], where it was shown that the right choice of
the origin (translation) in the case of a general convex body is the barycenter (center
of mass) of the body.

This ellipsoid was invented in order to study the “reverse Brunn—Minkowski in-
equality” which is proved in [14], and we begin by recalling this inequality, which
we will strongly use in the proof of our main theorem. We then describe some further
properties of this ellipsoid. Recall that the classical Brunn—Minkowski inequality
states that if A and B are non-empty compact subsets of R”, then

Vol(A + B)* > Vol(A)" + Vol(B)Y/".

Although at first sight it seems that one cannot expect any inequality in the reverse
direction (consider, for example, two very long and thin ellipsoids pointing in or-
thogonal directions in R?), if one allows for an extra choice of “position”, a reverse
inequality is possible, which we now describe.

It was discovered in [14] that one can reverse the Brunn—Minkowski inequality,
up (o a universal constant factor, as follows: for every convex body K there exists a
linear transformation 7%, which is volume preserving, such that for any two bodies K
and K>, the bodies Tk, K1 and Tk, K7 satisfy an inverse Brunn—Minkowski inequality
up to some universal constant. A volume preserving linear image of a convex body
1s called a “position” of the body. It turns out that the right choice of Tk is such that
the ellipsoid r7T IB" (for the right choice of r) is an M-ellipsoid of K, which we
denote as before by &x. We then say that the body Tk K 1s in M-position (or that 1t
is an M-position of K ). Thus, a body is in M -position if a multiple of the Euclidean
ball B” is an M-ellipsoid for K. In particular, if K is in M-position then so is any
rotation/reflection of K. We remark that an M -ellipsoid of a body is far from being
unique, and a body can have many different such ellipsoids. The important fact is, as
mentioned after Definition 2.1, that there is some Cy such that every convex body has
an M -ellipsoid with constant Cy. For a detailed account about M -ellipsoids we refer
the readers o [15] and [18], where they will also find proofs of the theorems below.
The property of M-position which we use in this paper for the proof of Theorem 1.6
is the following

Theorem 2.2. There exists a universal constant C such that if K1, K» € R are two
convex bodies in M-position then

Vol(K| + K2)V" < C(Vol(K)Y™ + Vol(K2)Y™). (1)

In particular this theorem implies that for a convex body K there exists a transfor-
mation Tk, which depends solely on K, such that for any two convex bodies K and
K>, denoting K1 = Tk, (Kq), Ky = Tk, (K»), we have that (1) is satisfied. The trans-
formation Tk is the transformation which takes the ellipsoid &k to a multiple of B”.
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Therefore, it is clear that any composition of 7k with an orthogonal transformation
from the left will also satisfy this property.

This ellipsoid &g has many more well-known intriguing properties. We recall
one of them, which we will use in Section 4:

Theorem 2.3. There exists a universal constant C such that for any convex body K,
the ellipsoid &g satisfies the following: for every convex body P one has that

C I Vol(P + &)™ < Vol(P + K)V/™ < C Vol(P + &g)V/". (2)

3. Proof of the main result

We return to R** equipped with the standard symplectic structure and the standard
Euclidean inner product. We first present the main ingredient needed for the proof of
the main theorem. Using the notion of M-position, we show that every convex body
K has a linear symplectic image K’ = SK such that the couple K’ and i K satisfy
the inverse Brunn—Minkowski inequality. For this we need to recall a well-known
fact about the relation between a symplectic form and a positive definite quadratic
form. The following theorem by Williamson [22] (see also [8] and [13]) concerns
simultaneous normalization of a symplectic form and an inner product.

Williamson’s theorem. For any positive definite symmetric matrix A there exists an
element S € Sp(2n) and a diagonal matrix with positive entries D with the property
i D = Di (complex linear), such that A = STDS.

An immediate corollary (for a proof see [1]) is

Corollary 3.1. Let T be a volume preserving 2n-dimensional real matrix. Then
there exists a linear symplectic matrix S € Sp(R*™), an orthogonal transformation
W e O(2n) and a diagonal complex linear matrix D with positive entries such that

T=WDS.

This decomposition, together with Theorem 2.2, implies the following (in the
sequel we will only use the special case 6 = 7 /2, i.e., multiplication by )

Theorem 3.2. Every convex body K in R*" has a symplectic image K’ = SK, where
S € Sp(2n), such that for any 0 <0 < 2x

VOI(K)UZH < Vol(K' + eiQK’)l/Z” < A Vol(K)l/Z”,

where Ao is a universal constant.



366 S. Artstein-Avidan, V. Milman and Y. Ostrover CMH

Proof. The first inequality holds trivially for any K’ = SK since K’ C K’ + £'7K’
and S is volume preserving. Next, let K be a convex body in R**. Set K; = TK,
where T 1s a volume-preserving linear transformation which takes the body K to an
M -position. It follows from Corollary 3.1 that 77 = W DS where W is orthogonal,
S is symplectic, and D is a complex linear transformation. We set K’ = SK. The
remark after Theorem 2.2 implies that we can assume K1 = DSK where D and S are
as above, since an orthogonal image of a body in M -position is also in M -position.
Note that the rotated body ¢'? Ky is in M-position as well, since multiplication by
a complex number of module 1 1s a unitary transformation. Next, it follows from
Theorem 2.2 that

Vol(K 1 + 7 K)V2" < C(Vol(K)V* + Vol(e' K1)V = 2C Vol(K)V/?*,

where €' > 018 a universal constant. Since D is complex linear it commutes with
multiplication by ¢'?, and using also the fact that it is volume preserving we conclude
that

Vol(K' 4 ¢! K12 = Vol(Ky + ¢ K1)!/2* < 2C Vol(K) /2,

The proof is now complete. O

In order to complete the proof of the main theorem, we shall need two more
ingredients. The first 18 the following easy observation

Lemma 3.3. Let K be asymmetric convex body satisfying K = i K, andletr B** c K
be the largest multiple of the Euclidean ball contained in K. Then

¢l (K) < 2mr?.

Proof. Since the body K is assumed to be symmetric there are at least two contact
points x and —x which belong to 3K , the boundary of K , and to » S**~!, the boundary
of r B?". Note that the supporting hyperplanes to K at these points must be £x 4 x
since they are also supporting hyperplanes of » B?* at the tangency points. Thus,
the body K lies between the hyperplanes —x + x and x 4+ x. However, since K
is invariant under multiplication by ¢, the points £:ix are contact points for d K and
rS¥=1 as well. Thus, the body K lies also between —ix + ix+ and ix + ixT. Note
that the length of the vectors x and i x 1s r. We conclude that the projection of K onto
the plane spanned by x and ¢x is contained in a square of edge length 2r, which in
turn is contained in a disc of radius +/2r. Therefore K is contained in a cylinder of
radius /27 with base spanned by x and ix. Since this cylinder is a unitary image of
the standard symplectic cylinder Z2*(+/2r), the lemma follows. O

Remark. The factor 27 above can be replaced by 4 if we replace ¢, by ¢Z. For
this we need only to take a small step out of the linear category and use a non-linear
symplectomorphism which is essentially two-dimensional.
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The last tool we need is a famous result of Rogers and Shephard [19]. This result,
which we generalize in some sense in Section 4 below, states that for a convex body
K C R" the volume of the so called “difference body” K — K is not much larger
than the volume of the original body. They showed that one has

Vol(K — K) < 4" Vol(K). (3)
We are now in a position to prove our main result:

Proof of Theorem 1.6. Let K be a convex body in R?" and set K1 = K — K. Note
that K7 1s symmetric and by (3) we have Vol(K7) < 42" Vol(K). Tt follows from
Theorem 3.2 that there exists a symplectic map S € Sp(R**) for which Vol(SK; +
iSKy) < A%”Vol([(l). Denote K, = SKy, Kz = Ky +iK;. Thus Vol(Ky) =
Vol(K1) and Vol(K3) < A%” Vol(K7). Letr = 0 be the largest radius such that
r B*" — K3. We thus have

r¥ Vol(B*") < Vol(K3) < A3" Vol(K2) = A" Vol(K1) < (442)*" Vol(K).

On the other hand, since K3 = i K3, it follows from the monotonicity property of
symplectic capacities and from Lemma 3.3 that

ot (K) < i (Ky) = cf (Ka) < off (K3) < 2772,

Joining these two together we conclude

4 1/n
lin (K) 2 2(4A2)2(M) ’
c(B2m) Vol(B2m)
and the proof of the theorem is complete. O

4. Generalized Rogers—Shephard

In this section we again work in R" equipped only with the Euclidean structure. The
above type of reasoning led us to the following simple generalization of the theorem
of Rogers and Shephard (3) above. In this generalization, instead of considering the
Minkowski sum and the Minkowski difference of a body and itself, we consider the
sum and the difference of two different bodies, and show with the use of M-ellipsoid
that both have the same volume radius up to a universal constant.

Theorem 4.1. There exists a universal constant Az such that for any two convex
bodies A, B C R" one has

Vol(A + B)/" < Az Vol(A — BYV/™.
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Proof. In the case where one of the bodies is centrally symmetric the statement is
trivial. In the case where both of them are not symmetric, we will use the property
of the M -cllipsoid described in Theorem 2.3 above. Let €p be the M -ellipsoid of B,
which is of course centrally symmetric. We see that

Vol(A+B)Y" < CVol(A+&)Y" = CVol(A—8)V" < C*VoliA— B)Y". O

We remark that the constant in (3) is equal to 2 (if we put it in the setting of the
theorem above) whereas the constant Az in the theorem above, although universal,
may a-priori be much worse. However, A. Litvak recently found a simpler argument
for Theorem 4.1 which gives the constant Az = 4.
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