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Cohomologie L? et pincement

Pierre Pansu*

Résumé. On donne un critere optimal d’annulation de la torsion en cohomologie L? pour les
variétés riemanniennes a courbure sectionnelle négative pincée. Il en résulte que certains espaces
homogeénes a courbure négative ne sont pas quasiisométriques a des variétés plus pincées qu’eux.

Abstract. A sharp vanishing theorem for the L? cohomology torsion of Riemannian manifolds
with pinched negative curvature is given. It follows that certain negatively curved homogeneous
spaces cannot be quasiisometric to better pinched manifolds.

Mathematics Subject Classification (2000). 43A15, 43A80, 46E35, 53C20, 53C30, 58A14.

Mots clés. Cohomologie L7, courbure négative, espace homogene, espace de Besov.

Keywords. L?-cohomology, negative curvature, homogeneous space, Besov space.

1. Introduction

1.1. Motivation : un probléme de pincement. D’un théor¢me de M. Berger et
W. Klingenberg, [Be], il résulte que si V est un espace symétrique de rang un de type
compact a courbure non constante (i.e. un espace projectif complexe CP™, m > 2,
un espace projectif quaternionien HP™, m > 2, ou le plan projectif des octaves de
Cayley CaP?), V n’admet pas de métrique A courbure comprise entre 8 et 1 si 8 > %.

On se pose un probleme analogue en courbure négative. S1 —1 < & < (), on dit
qu’une variété riemannienne est d-pincée §’1l existe a > 0 tel que sa courbure soit
comprise entre —a et da.

Par exemple, I’espace hyperbolique réel est —1-pincé. Les espaces symétriques
de rang un de type non compact a courbure non constante sont —%—pincés. I s’agit
des espaces hyperboliques complexes CH", m > 2, des espaces hyperboliques qua-
ternioniens HH™, m > 2, et du plan hyperbolique des octaves de Cayley CaH?.

Le probleme du pincement optimal consiste a déterminer quel est le meilleur
pincement possible pour une métrique sur une variét¢ donnée. Pour les vari€iés sim-
plement connexes (et donc difféomorphes a I'espace hyperbolique réel), il convient de

*Pierre Pansu est partiellement soutenu par le réseau européen CODY et le projet ANR “Cannon” (ANR-06-
BLAN-0366).
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se restreindre a des métriques comparables 2 une métrique de référence, par exemple,
qui lui sont quasiisométriques. On rappelle que deux variétés riemanniennes M et N
sont dites quasiisométrigues s’1l existe une application f: M — N et des constanies
C et L telles que I'image de f soit C-dense dans N et pour tous points x, y € M,

1
—-C+ 7= d(f(x), f(¥)) < Ld(x,y) +C.

Question. Soit M une variété riemannienne §-pincée. Existe-t’il une variété rieman-
nienne N quasiisométrique a M et §’-pincée avec 8’ < § 7

Dans cet article, on détermine le pincement optimal pour des familles d’espaces
homogeénes riemanniens. Voici un exemple. Soit G, 4 1 le produit semi-direct de R?

par R défini par le groupe 2 un paramétre d’automorphismes de R? engendré par la
matrice

1 0 0
01 0
0 0 2
La métrique riemannienne qui en coordonnées exponentielles ¢ (sur le facteur R), x,
y et z (sur le facteur R3) s’écrit

ds? = di® + ¥ (dx? + dy®) + e¥d7?

estinvariante a gauche. On vérifie aisément (voir par exemple [He]) que cette métrique
est — %-pincée.

Théoréme 1. Soit 6 < —%. Aucune variété riemannienne §-pincée n’est quasi-
isométrigue a G 1.
q 274>_Z

La preuve utilise la forsion en cohomologie L¥. C’est un espace vectoriel, noté
TP (M), défini pour p > 1. Pour une variété simplement connexe i courbure néga-
tive, le nombre

T(M)=inf{p > 1: T*P(M) # 0}

estuninvariantde quasiisométrie. Un théoréme de comparaison (théoréme A) entraine
que sidimM = 4 et si M est d-pincée, alors T (M) = 1 + 2/ —4. Un calcul direct
(théoreme B) montre que pour le produit semi-direct G, 4 L la torsion 7% est non

nulle pour 2 < p < 4,d’ou
T(G2’4,_4_1t) =

La minoration du pincement s’en déduit immédiatement.
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1.2. Un probléme ouvert. A ma connaissance, le probléeme du pincement optimal
pour les espaces symétriques —%-pincés est toujours ouvert. Pourtant, le plan hy-

perbolique complexe CH? est infiniment voisin de G,y 1. Il peut-&tre vu comme

un groupe de Lie résoluble muni d’une métrique invariante a gauche. Ce groupe est
le produit semi-direct du groupe de Heisenberg par R engendré par la dérivation de

) 100 i
matrice (8 (1) g) Toutefois

T(CH?) =4,

st bien que le théoréme de comparaison ne donne pas de borne optimale pour le
pincement des variétés riemanniennes N quasiisométriques au plan hyperbolique
complexe. Il y a donc une limitation essentielle dans la méthode.

Le probléme restreint ou 1’on suppose que la variété inconnue N revét une variéié
riemannienne compacte a été résolu par M. Ville [V] en dimension 4, par .. Hernandez
[Hz], S. T. Yau et F. Zheng, [YZ] pour les espaces hyperboliques complexes, par
N. Mok, Y. T. Siu et S. K. Yeung [MSY], I. Jost et S. T. Yau [JY] pour les autres
espaces symétriques de rang 1.

1.3. Cohomologie L?. Soit M une variété riemannienne. Soit p > 1 un réel. On
note L?Q*(M) I’espace de Banach des formes différentielles L7 et Q*7(M) =
L? Nd~'L? I’espace des formes différentielles L7 dont la différentielle extéricure
est aussi L2, La cohomologie du complexe (Q*? (M), d) s appelle la cohomologie
L? de M. Elle est intéressante surtout si M est non compacte.

Par définition, la cohomologie L¥ est invariante par difféomorphisme bilipschit-
zien. Dans la classe des variéiés simplement connexes a courbure négative ou nulle,
¢’est un invariant de quasiisométrie (cf. [G2]).

En toute généralité, la cohomologie L7 se décompose en cohomologie réduite et
torsion

0— 7% > H"?  R™F 5 (),

o la cohomologie réduite est R# =ker d/imd etlatorsionest T*? =imd/imd.
La cohomologie réduite (parfois notée H (’;)) est un espace de Banach sur lequel les
isométries de M agissent isométriquement. La torsion est non séparée.

Par exemple, la cohomologie L? de la droite réelle est enticrement de torsion. La
cohomologie L du plan hyperbolique est entierement réduite. Néanmoins, cohomo-
logie réduite et torsion coexistent souvent.

1.4. Pincement de la courbure. En degrés k > 1, la cohomologie L? est liée de
fagon optimale au pincement de la courbure.

Théoreme A. Soientd €] — 1,0l unréel netk =2,...,n — 1des entiers. Notons
q(n, 8, k) =1+ 2=%=1/=5
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Soit M une variété riemannienne complete de dimension n, simplement connexe,
dont la courbure sectionnelle K satisfait —1 < K < 6. Alors

TP (MY =0, ie. H“F(M)estséparé pourl < p < q(n, 8,k —1).
HP (MY =0 pourl < p<gqn, s k).

Ce résultat, annoncé dans [P1], est un raffinement de celui de H. Donnelly et
F. Xavier, [DX], concernant I’annulation de la cohomologie L? réduite. La condition
d’annulation de la torsion est optimale. D’ abord, pour1’espace hyperbolique (§ = —1)
en tout degré, voir en 29, Mais il y a d’autres exemples. Soient » et u des entiers tels
que2 < pu <n—1letd e]—1,0[ Soit G, , s le produit semi-direct R x, R"~!
ol « est une matrice diagonale avec seulement deux valeurs propres distinctes 1 et
V=8 < 1 de multiplicités p« — 1 et n — ju. Alors le groupe de Lie G, 5 5 possede une
métrique riemannienne invariante a gauche S-pincée.

Théoreme B. Scoientnetk =2,...,n — 1 des entiers.

—_

n—

(1) Pour espace hyperbolique réel, TP (RH™) # 0 si et seulement si p = 1
(2) Soitb €]l — 1,0l unréel Sik = p et

14+ (n—1—k+=3
k—2+/=8

alors TP (G, 5) # 0, i.e. HYP(G, . 5) n’est pas séparé.

gn,d,k—1) <p<1+

Par conséquent, pour tout pp = 2,...,n — 1, Gy 5 n'est pas quasiisomeétrique
@ une variété 8'-pincée avec 8’ < 8.

Ce résultat, qui €labore sur [KS] et [K1], a été annoncé dans [P3].

1.5. Cas des espaces symétriques de rang un. Les espaces symétriques de rang
1 de type non compact a courbure non constante sont —1/4-pincés. Alors que ce
sont de bons candidats pour tester I’optimalité du théoréme A (la preuve ne comporte
aucune perte quand on I’applique a ces espaces pour les valeurs adéquates de k), le
calcul révele que leur cohomologie L7 reste séparée au-dela des intervalles donnés
par le théoreme A. Cela résulte de la non commutativité de leur unipotent maximal,
voir [P2].

1.6. Méthode. Une variété riemannienne M a courbure sectionnelle négative res-
semble a un produit. En effet, le flot ¢; de 1’opposé du gradient d’une fonction de
Busemann » réalise un difféomorphisme de M sur i x R, ou H = b=1(0) est une
horosphere. Par exemple, pour I"espace homogene G 4 1 (resp. le plan hyperbo-

lique complexe CH?), b(f) = —t, H = R? (resp. H = groupe d’Heisenberg). Les
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orbites du flot ¢, sont des géodésiques asymptotes en +oc¢, i.e. aboutissant en un
méme point a I’infini, en provenance de tous les autres points a I’infini (voir figure).

‘horosphéres

géodésiques

On montre que si la courbure est suffisamment pincée (i.e., sous les hypotheses
du théoréme A), toute k-forme fermée L¥ o possede une valeur au bord
: *
= t—1>11:|-noo et
De plus, w est la différentielle d’une forme L7 si et seulement si w, = 0. Par
conséquent, I’application valeur au bord induit une injection de H%? dans un espace
séparé, donc H%? est séparé.

Inversement, pour les espaces homogenes Gy ,, 5, on construit explicitement des
classes de cohomologie non nulles, en utilisant la structure de produit semi-direct. 11
faut se méfier de la formule de Kiinneth, qui n’est pas vraie en présence de torsion,
méme pour les produits directs. Apres des préliminaires (dualité de Poincaré, annula-
tion de la cohomologie L# réduite des groupes abéliens), on introduit et on construit
des classes de torsion non nulles particulieres, dites robustes, qui restent non nulles
apres produit cartésien. La nature semi-directe du produit G , s = R %, R exige
la construction de classes robustes adaptées a la graduation de 1’algebre extérieure de
R*~1 par les espaces propres de la dérivation . Puis on effectue le produit cartésien
de ces classes avec des classes de cohomologie a support compact de R. On obtient
ainsi un intervalle ouvert de valeurs de p pour lesquelles TP (Gins) # 0. Pour
I’espace hyperbolique réel, il y a exactement une valeur de p en chaque degré > 1
pour laquelle 752 (RH™) # 0. On le montre en effectuant le produit cartésien d’une
classe (}e torsion robuste de R avec une classe de cohomologie 4 support compact
de R"~°,

1.7. Remerciements. Je tiens a remercier D. Rugina pour les nombreuses conversa-
tions que nous avons eues autour de lacohomologie L#, V. Goldshtein et M. Troyanov,
pour leurs marques d’intérét et leur manuscrit [GT] qui a été une source d’inspiration,
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2. Annulation de la torsion

2.1. Fonctions de Busemann. Soit M une variété riemannienne simplement connexe
a courbure sectionnelle négative pincée. On se donne une fonction de Busemann b.
C’est une fonction, obtenue comme limite de distances a des points, qui possede les
propriétés suivantes.

(1) & estlisse, son gradient est partout de norme 1.

(2) Les lignes de gradient de b sont des géodésiques convergeant en 00 vers un
méme point du bord a I’infini de M.

(3) Les propriéiés de contraction du flot ¢; de —V b sont contrdlées par la courbure
sectionnelle.

Exemple 1. Cas de ’espace hyperbolique réel. Dans ce cas, tout plan totalement
gcéodésique contenant une ligne de gradient de b est stable par ¢;. Orthogonalement
a ses orbites, ¢; est une homothétie de rapport e : () *(g — b?) = e~ H (g — b?).
Autrement dit, ¢; contracte de la méme facon dans toutes les directions autour d’une
orbite. ¢; multiplie les volumes par le facteur e="~D? ot n = dim M. Si w est une
k-forme différentielle sur M, elle se décompose uniquementen w = p + v A db de
sorte que g =0, gy = 0. Alors

197 BI(x) = e |Bl(pe(x)), 1y I(x) = e® "V (e (x)).

La formule de changement de variables donne

f |¢I*}3|p :e(kp—n+l)tf Iﬁlp, f |¢;*V|p :e((k—l)p—n+1)tf |y|p.
M M M M

Autrement dit, le flot ¢, contracte ou dilate exponentiellement la norme L7 des k-
formes différentielles, transversalement a ses orbites, suivant que p est inférieur ou
supérieur a %

Exemple 2. Cas de I’espace hyperbolique complexe. Dans ce cas, toute ligne de
gradient est contenue dans une droite complexe, totalement géodésique, de courbure
sectionnelle —1, stable par ¢;. Tangentiellement a cette droite, et orthogonalement a
I’orbite, ¢ est une homothétie de rapport ¢! Tout plan contenant & mais orthogonal
a la droite complexe, s’exponentie en une surface totalement géodésique a courbure
sectionnelle —1, stable par ¢y, dong, dans ces directions, ¢; est unc homothétie de
rapport ¢ ~'/2. Par conséquent, ¢, multiplie les volumes par e, ot m = dimeM =
% dim M. Si w est une k-forme différentielle sur M, elle se décompose uniquement
enw = B4y Adbdesorte que (¢ = 0,1y = 0, puis B se décompose a son tour en
B =c¢e+nAJdb,ouJ désigne la structure complexe, et tje€ = 0, t7gn = 0. Alors

prel(x) = M2 el (g (x)),  Idinl(x) = e* V2] (g (x)).
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Remarquer que ¢ Jdb| = e~". 11 s’ensuit que

f el = elbrmamis2 [ el?,

M M

f lpfn A Jdb|P = e“"“)P—Zm)f/zf In A JdbP.
M M

Autrement dit, le flot ¢; contracte (resp. dilate) exponentiellement la norme L? de

toutes les k-formes différentielles, transversalement a ses orbites, si p < % =

(resp. si p > ZT’”). Lorsque kz% < p < ZT'”, la situation mérite plus d’attention.
2.2. Champs de vecteurs (k, p)-contractants. Les exemples ci-dessus suggerent
la définition suivante.

Définition 3. Soit M une variété riemannienne. Soit £ un champ de vecteurs complet
sur M, soit ¢, son flot. Soit p > 1 un réel, soit k un entier inférieur a la dimension de
M. On dit que & est (k, p)-contractant si ¢, diminue exponentiellement la norme L?
des k-formes transversalement a &. Plus précisément, on note Jac(¢y) le jacobien de
¢:, et on demande qu’il existe des constantes C et n > 0 telles que, pour tout x € M
et toute k-forme B € A¥T*M telle que zp = 0,

|7 Bl(x) Taca ()P < Ce™|Bl(¢s(x))

pour tout > 0.
On dit que & est (k, p)-dilatant si —§ est (k, p)-contractant.

Exemple 4. Cas des produits semi-directs G = H x4 R. Ici, H estun groupe de Lie,
o une dérivation de 1’algebre de Lie de H qui engendre un groupe i un parametre ¢'®
d’automorphismes de H{, et G = [ x R muni de la multiplication

(h, O, 1) = (he™ (W), 1 +17).

On utilise le champ de vecteurs invariant a gauche & = % qui engendre 1’action 2
droite du facteur R. Alors les formes différentielles annulées par ¢¢ s’identifient aux
formes différentielles sur ' dépendant de ¢. Notons sp(«) ’ensemble des valeurs
propres de « répétées autant de fois que leurs multiplicités. Le flot ¢, agit sur les k-
formes transverses avec pour valeurs propres les nombres e ~'*, ol A décrit les sommes
de k éléments de sp(«r). Par conséquent, & est (k, p)-contractant si et seulement si les
parties réelles de toutes ces sommes sont strictement supérieures a “ETO‘).

Proposition 5. Soit M une variété riemannienne compleéte de dimension n, simple-
ment connexe, dont la courbure sectionnelle K satisfait —1 < K < § < 0. Soit & un
champ de vectreurs de Busemann. Sik =0, ...,n—1etsi p > 1 satisfait

k—1 n—k—1

n_
<qn s k)y=1+——
p<q( ) P

: v =8, (resp.p>1+

)
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alors le champ & est (k, p)-contractant (resp. (k, p)-dilatant).

Preuve. Notons ¢; le flot de &. Ses trajectoires sont des géodésiques parcourues a
vitesse 1. Soit x € M. La quantité a majorer est

n(t, x) = plog |(A*dey) are || — log det(depy).

Elle satisfait, pour tous s et 7, n(t + 5, x) = n(s, ¢ (x)) + n(z, x).

Notons t; le transport parallele de ¢y (x) a x le long de la géodésique s +— ¢ (x).
Alors t;d ¢, préserve I’hyperplan orthogonal a £ (x). Notons J (¢) sa matrice dans une
base orthonormée de &(x)*, de sorte que n(t,x) = plog IAXT ()| — logdet(J(1)).

Comme & est un gradient, la matrice U (r) = J ()L (1), seconde forme fonda-
mentale des hypersurfaces de niveau, est symétrique. Comme les colonnes de J sont
des champs de Jacobi, la matrice U (r) satisfait I’équation de Riccati

U'+U>+R=0

ou R est la matrice de I’opérateur de courbure v — R(v, &)&. Classiquement (voir
par exemple [BK], [CE]), on en tire une estimation des valeurs propres Aq, ..., Ap—1
de U,

Vs <o =ho <1

Comme J(0) = I est identité, J(z) = I + tU(0) + o(r) donc |[A*T ()| < 1 +
1| |DXU(0)||+o(1) obt DXU désigne I’extension de U comme dérivation de 1”algebre
extérieure. On peut donc majorer la dérivée a droite

! on k
n(0+) = a—t(O,X) < pllD U0)]| —ua U(0)

n—1 n—1
<o X ) -2
i=n—*k i=1
n—1 n—k—1

== X M) 2w

i=n—k i=1

<kp—1)—(n—k—1V=5.

En dérivant I’'équation n(t + s, x) = a(s, ¢:(x)) +n(t, x), on trouve que A’ (t+, x) =
7' (04, ¢ (x)) < k(p —1) — (n — k — 1)4/=35 pour tout ¢. En intégrant, il vient pour
tout ¢ € IR,

ICARdepy)pre L1I1P < e Tac(dhy),

avecn = (n—k—1)x/—86 —k(p —1). Sinp = 0, 1.e. sila courbure est suffisamment
pincée, on conclut que & est (k, p)-contractant.
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Sionremplace & par —§&, les valeurs propres A; de la seconde forme fondamentale
sont remplacées par p; = —A,—; qui satisfont

—l=m = Zpup1 £ -6

La nouvelle fonction 7 (t, x) = n(—t, x) satisfait

A'(0+) < p( nz—l Mi) — HZ_IM
i=n—k i=1
= (=1 3 i) 3
i=n—k i=1

<k(p—D(==8)+n—k—1).

I1 vient /
(AR e 17 < € Tac(dy)

avecn’ = k(p—1)/—8—n+k+1.Sin’ > 0,onconclutque £ est (k, p)-dilatant. O

Remarque 6 (Cas limite). Sip = q(n, 8, k), le flot ¢y diminue au sens large la norme
L¥ des k-formes transverses, au sens ou

1A d ) ake L IP < Tac(ehy).

Remarque 7 (Cas d’égalité). Dans1’argument ci-dessus, les inégalités sont optimales
dans le cas ou les valeurs propres ne prennent que deux valeurs. 11 est facile, a I’aide
de [He], de faire la liste des espaces homogenes a courbure sectionnelle strictement
négative pour lesquels les valeurs propres prennent exactement deux valeurs égales
aux bornes de la courbure sectionnelle. En voici deux familles particulieres.

Exemple 8. Les espaces symétriques de rang un. La courbure sectionnelle varie
entre —1 et —1/4. Les valeurs propres sont 1/2 (avec multiplicité 2m — 2 pour
I’espace hyperbolique complexe CH™, m > 2, 4m — 4 pour I’espace hyperbolique
quaternionien HH”, m > 2, 8 pour le plan hyperbolique des octaves de Cayley
CaH?), et 1 avec multiplicité complémentaire, soit respectivement 1, 3 et 7.

Exemple 9. Une famille d’espaces homogeénes. Soient 1 < p < n des entiers et
5 €] — 1,0[. Soit G, 5 le produit semi-direct G = R*! %, R ol « est une
matrice diagonale avec seulement deux valeurs propres distinctes 1 et /—3 < 1 de
multiplicités z« — 1 et n — . La métrique invariante 42 + e dx? + 2¥=34y2 (ol
x regroupe les ;¢ — 1 premicres coordonnées de R*~! et y les n — p suivantes) a une
courbure sectionnelle comprise entre —1 et —48.
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2.3. Valeur au bord
Proposition 10. Soit M une variété riemannienne, soit & un champ de vecteurs
complet sur M, de flor ¢.

(1) On suppose que & est (k — 1, p)-contractant et gue sa norme est bornée. Alors

toute k-forme fermée L o posséde une valeur au bord

. *
Wao = liM @
i =40 qbt '

et w — wo est la différentielle d’une forme LY.

(2) Si & est(k—1, p)-et (k—2, p)-contractant, et si v = dp oi B € L?, alors

(3) Si & est (k—1, p)- et (k, p)-contractant, alors we = 0.
Par conséquent,

(4) Si & est (k— 1, p)- et (k — 2, p)-contractant, T*? (M) = Q.

(3) Si € est (k—1, p)- et (k, p)-contractant, H*? (M) = 0.

Preuve. D’apres la formule de Cartan, la dérivée de Lie Lew = %qb[* w|i=0 estégale a
cﬁ%‘a) = d(l,ga)) + Lg(da)).

Supposons que dow = 0. En mtégrant I'identité %gb;"a) = ¢ Lew, 1l vient

S1& estborné, ||ieow|lrr < ||§|lzo||le] rr. Side plus & est (k — 1, p)-contractant, il
existe C et > O tels que ||¢pftzw|[rr < Ce™|w| . Par conséquent, I’intégrale

Bw = prewds
0

converge dans L?. On note

Wog =+ dBow = t_l)iinooqbfa).
Il s’agit d’une limite au sens des distributions. Si la limite est nulle, alors @ =
d(—Bw) au sens des distributions. Cela entraine que —Bw € Q17 (M), et que sa
différentielle est w, donc que la classe de cohomologie L? de w est nulle.



Vol. 83 (2008) Cohomologie L et pincement 337

Si & est de plus (k — 2, p)-contractant, on peut aussi définir un opérateur B borné
sur les formes L? de degré k — 1. Soit & une (k — 1)-forme L7 telle que df = w. 1l
vient

t
- [O bt Lo ds

t f
:d( / ¢§fteﬁd8)+ | #iecdp) as
0

qui tend vers d B + Bo quand ¢ tend vers +cc. Mais comme & est (k, p)-contractant,
¢/ P tend vers 0. On trouve que g = —dBp — B, d’ou

w=df = —dBow = ® — 0,

d’oll wy = 0.

Cela prouve que d L? est exactement le noyau de 1’application valeur au bord, de
QFP (M) Nker d dans I’espace vectoriel topologique des formes différenticlles sur
M a coefficients distributions. Par conséquent, il est fermé, donc TP (M) = 0.

Supposons que & est (kK — 1, p)- et (k, p)-contractant. Soit @ une k-forme fermée
L? Onécritew =p+db Ay ouef =0,y =0.Alors ¢ B et ¢y tendent vers 0
dans L?, donc ¢; @ tend vers 0 dans L?, donc w~, = 0, d’olt w € dL?. Cela prouve
que H5? (M) = 0. O

Remarque 11. Plus généralement, sous des hypothéses adéquates, I’opérateur B dé-
finit une homotopie du complexe 2*# (M) sur un complexe de formes différentielles
invariantes par le flot ¢;. Ce point de vue est développé dans [GKS], [P2].

2.4. Preuve du théoréme A. Soit M une variété riemannienne compléte, sim-
plement connexe, a courbure négative d-pincée. Soit & < n = dim M. Notons
gn,8, k) =1+ %\/—_8 Remarquer que ¢q(n, 8, k) est une fonction décrois-
sante de k.

D’aprés la proposition 5, si p < g(n, §, k — 1), les champs de vecteurs de Buse-
mann & sont (kK — 1, p) et (k — 2, p)-contractants. La proposition 10 s applique, et
ThP(M) = 0. De méme, si p < q(n,8.k), & est (k — 1, p) et (k, p)-contractant,
donc H5P (M) = 0.

Il reste a traiter le cas limite p = gq(n, 8, k). Dans ce cas, d’aprés la remarque 6,

ICARdepy) pre 117 < Jac(ehy).

Soit K un compact de M. 1l existe une constante ¢ = c(K) telle que les images
¢ (K) pour j € Z soient deux a deux disjointes. Alors 1a suite ||o Lz g, k) est
dans £7(7Z), donc tend vers 0. L’ inégalité précédente entraine que si w est une k-forme
sur M annulée par ¢,

b5 wllieky < lollirg, k)
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qui tend vers (. Cela montre que la limite au sens des distributions @« est nulle sur
tout compact, donc est nulle. On conclut que H%# (M) = 0 aussi dans ce cas. O

Remarque 12 (Cas des produits semi-directs G = H x4 R). Dans le cas des groupes
Guon,s, le théoreme A s’applique, et la torsion L? s’annule en degré o pour tout
p<l+qgnd pu—1).

Soit G = H Xy Run produit semi direct plus général. Notons A1 < --- < A,_1les
parties réelles des valeurs propres de o répéiées autant de fois que leur multiplicité. On
suppose que A1 > 0. Onutilise le champ de vecteurs invariant a gauche £ qui engendre
’action a droite du facteur R. Le champ —§ est (k — 1, p)-contractant et (k — 2, p)-
contractant tant que p reste strictement inférieur a ﬁ La proposition 10
s applique, et on conclut que la torsion L# s’annule.

3. Exemples ou la torsion est non nulle

Ce seront des groupes de Lie, produits semi-directs de groupes abéliens par R. On
construit des formes différentielles fermées explicites en utilisant la structure produit.
Elles sont nulles en cohomologie réduite, parce que la cohomologie réduite d’un
groupe nilpotent est nulle. Pour montrer qu’elles sont non nulles en torsion L, on
utilise la dualité de Poincaré.

3.1. Dualité de Poincaré. Le¢ lemme suivant est essenticllement da a V. Goldshtein
et M. Troyanov, [GT].

Lemme 13. Soit M une variété riemannienne orientée compléte de dimension n.
Etant donné p > 1, on note p’ I’exposant conjugué, i.e. tel que % + = = 1. Soit w
une k-forme différentielle fermée et LY sur M. Alors
— w est non nulle en cohomologie LP réduite si et seulement si il existe une
(n — k)-forme fermée i € L? telle que fM w AP #£ 0.
— w est non nulle en cohomologie LP si et seulement si il existe une suite y; de
(n — k)-formes différentielles LY telles que fM w Ny = 1et|d;ll;, tend
vers ().

1
v

Preuve. Comme M est compléte, pour toute (n — 1)-forme L' dont la différentielle
est Ll, ona
f dow = 0.
M
Par conséquent, si @ € QEP(M) et € Q1752 (M),

[a)/\dw:(—l)kH/ de A .
M

M
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Siw e Q5P(M) est nulle en cohomologie L? réduite, alors il existe une suite
B; € QFLP (M) telle que dp; converge vers o dans LP. Si ¢ € Q=152 (M), il

vient
fa)/\w:lim[ dﬂj/\w:hmf Bi Adip.
M i oJM Y Y

Par conséquent, pour toute forme fermée € Q”_’“P/(M ), f yeny =0

Inversement, si @ € Q5P (M) n’est pas nulle en cohomologie réduite, alors,
d’aprés Hahn—Banach, il existe une forme linéaire continue L sur L? QK (M) qui
s’annule sur I"adhérence de 1’image & Qk=L.r (M) mais pas sur w. Par dualité de L?
et L?', il existe une forme v € LP Q" K(M) telle que pour tout y € LPQY(M),
L(y) = [,; ¥ A.SiBestlisse et a support compact, ona 0 = L(dp) = [, dB A,
i.e. dyr = 0 au sens des distributions. On conclut que v € Q*~ 152" (M) est fermée
et satisfait [, w A # 0.

Siw e Q57 (M) est nulle en cohomologie L7, ie. w = df o f € Q¥ 1P (M),
alors pour tout ¢ € Q" 1=%2" (M),

[wmp:] BAdy < Blleldyl,
M M

donc si [|dys [, tend vers 0, il en est de méme de [y, @ A ;.

Inversement, soit w € Q52 (M) une forme fermée. Si @ n’est pas nulle en coho-
mologie réduite, 1l existe une (n — k)-forme fermée € L? “telle que | yony #£0.
La suite stationnaire v; = v pour tout j convient. Supposons désormais que o
est nulle en cohomologie réduite. On définit une forme linéaire L sur aQn—k.p /(M )
comme suit. Etant donné y € dQ"~%2' (M), on choisit v € Q52" (M) tel que
diyr = y etonpose L(y) = f y @ A . Comme I'intégrale de w contre une forme
fermée est toujours nulle, le résultat ne dépend pas du choix de . Supposons qu’il
n’existe pas de suite ¢y; € Q"17FP (M) telle que [y, w A ¥ > 1et [yl tend
vers 0. Alors la forme linéaire L est continue pour la norme L7 . Par Hahn-Banach, L
se prolonge en une forme linéaire continue sur L” 'Q=k+1(M). Par dualité entre L?
et L?', il existe une (k — 1)-forme $ € L7 telle que pour tout y € LPIQ”_"‘H(M),
L(y) = (=D* [, B Ay. Si estlisse & support compact,

[ﬁAdw=<—1>"f @
M M

donc df = w au sens des distributions. Par conséquent, § € QL2 (M) et w est
nulle en cohomologie L7, O

Corollaire 14. Soit M une variété riemannienne complete de dimension n. Soit p > 1
et p = p/(p —1). Alors

REP(M)Y =0« R"™FP (M) =0, THP(M) =0« T 00 (M) = 0.
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Preuve. 1’énoncé sur la cohomologie réduite résulte immédiatement du lemme 13.
Supposons que T n=k+L.2" (M) = 0. Montrons qu’il existe une constante C telle
que pour tout Y € QP (M), il existe y € QURP(M) telle que dy = diyr et
l7ll,» < Clldgll,, . Par hypothdse, d2"~%#' (M) est fermé dans Q"~<+1:#" (M),
L opérateur d induit d: Q" 52 (M)/kerd — dQ" %P (M). C’est une bijection
continue entre espaces de Banach, donc un isomorphisme. Notons 4! son inverse,
notons C lanorme de cet opérateur. Etant donnée une (n —k)-forme @ € Qr—k.p’ (M),
soit ¢ € Q"FP (M) un représentant de la classe d—'dw € Q5P (M)/ker d de

norme presque minimum. Elle satisfait (presque)
do =dp et ||l < Clldpll .

Soit w € QK7 (M) une forme fermée, nulle en cohomologie réduite. Alors

fco/\@b:f w A Y
M M

est contrdl€e par ||dv||, /. Par conséquent, il n’existe pas de suite ¢r; de (n — k)-
formes différentielles L telles que f w@ A = 1et|ldgg|l,  tende vers 0. On
conclut que w est nulle en cohomologie L” g O

Remarque. Plus généralement, R*P (M) est 1somorphe au dual de R”_k’p/(M ). On
aimerait dire que 757 (M) = Ext(T" %12 (M), R) dans une catégorie adéquate
mais il semble y avoir des difficultés, cf. [K2].

3.2. Cohomologie réduite des groupes abéliens. On va construire des classes de
cohomologie L? non nulles. Pour montrer qu’elles appartiennent a la torsion, nous
auront besoin, au cours d’un raisonnement, de savoir que la cohomologie réduite de
R*~1 est nulle.

La remarque suivante apparait entre autres dans [G2]. Elle s’ applique notamment
aux groupes de Lie nilpotents simplement connexes.

Proposition 15. Soit G un groupe de Lie simplement connexe dont [’algébre de Lie a
un centre non frivial. Alors la cohomologie LP réduite de G est nulle en tous degrés.

Preuve. Un vecteur non nul du centre donne un champ de vecteurs de Killing & de
longueur constante. La formule

t t
(P w—w = d[ () 1gw ds —i—[o () 1gdew ds
0

montre que le flot de & agit trivialement sur la cohomologie L?. Soit « une forme
- ” . . z !
fermée L? non nulle en cohomologie réduite. 11 existe donc une forme fermée L¥
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telle que f c @A ¥ #£ 0. Comme le flot ¢, est I'identite€ en cohomologie,

/(Cbz)*w/\W:fa)/\w pour tout .
G G

On utilise maintenant le fait que I’action de R sur & par le flot de § est propre.
Soit K un compact tel que la norme L? (resp. L¥ ) de o (resp. ) dans G \ K soit
petite. Soit ¢ tel que ¢ (K) soit disjoint de K. Alors

fG (@) o A < llollo o W |y ) + 191 i 12l o)
est petit, contradiction. O

3.3. Torsion des produits directs. 1."objectif est d’étudier la torsion L# des groupes
de Lie G, s. Il s’agit de produits semi-directs. Une premiere €lape consiste a com-
prendre les produits directs, ou plus généralement, les produits riemanniens.

Soient M7 et M> deux variétés riemanniennes completes. Onnote r; : M1 x My —
M; les projections. Lorsqu’elle est vraie, la formule de Kiinneth énonce que le produit
cartésien des formes différentielles,

(o1, ) > @] X a2 = o) ATy An,
QY (M) @ QN (My) — QPP (M) x M»),

induitun isomorphisme en cohomologie L?. Sila torsion 7" (M) estidentiquement
nulle, ¢’est vrai, voir [GKS]. Mais si 757 (M7) et T (M>3) ne sont pas nulles, il en
va autrement.

Exemple 16. Pour p = 2, il existe des classes non nulles «, 8 € T12(R) telles que
a x B = 0dans H>2(R?).

Preuve. Soient ¢ = a(x) dx une 1-forme L? et f une fonction L? sur . L’équation
df = «, en Fourier, s’écrit A
iEf(€)=a(§).
Par conséquent, la classe de cohomologie L.? de « estnulle si et seulement si & +— ”i(?
est L2
Etant données des 1-formes L? « = a(x) dx, B = b(y) dy sur R et une 1-forme
L? y = yydx + y,dy sur R?, I’équation dy = « x f se traduit par

iED(E, 1) — inpy (&, m) = a&)b(n).

On la résoud en prenant

Dol m) = —ﬁ&(é)ﬁ(n), i) = o h(©hm).
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On choisit pour a = b une fonction paire, lisse, a support compact qui, au voisinage
de 0, coincide avec | log(1/|£])|~Y/2. Alors a(£)/& n’est pas dans L?(R), donc les
classes de cohomologie L? de « et A sont non nulles. En revanche, si on utilise les
coordonnées polaires § = p cosf et n = psinf, alors

log (é) = log (%) +1og cols9|) . (%)

Lo lEa@bm)P?
|Vx| S—(52+772)2

1
1
b8 (p cOS 6’)
1 -2
log (—) .
P

P
donc p, est dans L2(R?, d& dp), et il en est de méme de py. On conclut que y € L?
etdy =« x B, donc y € Q>2(R?), et la classe de & x B est nulle. O

d’ou

-1 -1

-2

[A

1
1
02 (psin@)

=<

Pour remédier a cette difficulté, on introduit une condition sur une classe de torsion
L7 appelée robustesse, qui garantit qu’elle reste non nulle aprés produit cartésien.

Soient M; et M, deux variétés riemanniennes completes. Supposons que
TRUP(My) £ Oet TR P (M) # 0.D’aprés le lemme 13, il existe des formes fermées
L7 e; sur M; et des formes L, elf’ ; telles que

f eine; =1 et |de |, tende vers 0.
M;

Laforme fermée L? w = e1 Aep sur M1 x M3 estelle nonnulle en cohomologie ? Pour
I’affirmer, 1l faudrait contrdler la norme de d (e’1 % eé j), ¢’est-a-dire non seulement

celles de de) ; et de) ;, mais aussi celles de e) ; et de e ;. On doit autoriser que

lle] ;1 tende vers I'infini, mais moins vite que [|d ey ;11 ne tend vers 0. Ceci motive la
définition suivante.

Définition 17. Soit M une variété riemannienne compléte de dimension x#. On note

HYP (M) le sous-ensemble de HSP(M) formé des classes robustes, i.e. qui con-
. c . . . . — !
tiennent une forme  ayant la propriété suivante. Il existe une suite w} e QP (M)
telle que

(1) les intégrales f @A a);- ne tendent pas vers 0 ;
(2) les normes ||a);. |, » tendent vers +o00 polynémialement en j ;

(3) les normes ||da>;. |, tendent vers 0 exponentiellement en ;.

Enfin, on note T (M) = HY? (M) N T*P (M),
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Remarque 18 (Cas ot p = 2). Des que la torsion L? est non nulle, il y a des classes
robustes. II est possible que cela persiste pour tout p, mais je ne sais pas le montrer.
J’en suis donc réduit a construire a la main ces classes robustes.

Proposition 19. Soient My et M des variéiés riemanniennes complétes. Le produit
cartésiende classes de torsion LY robustes de My et M, respectivement est une classe
robuste (et en particulier, non nulle) du produit riemannien M1 x My. Si 'une des
deux classes est de degré maximum, le résultat est plus précis : le produit cartésien
est @ nouveau une classe de torsion robuste.

Preuve. Soient w; € QK0P (M) (resp. oy € k2.2 (M) des formes fermées. Sup-
posons qu’il existe des formes ] ; € QUKLE (M) (resp. wh ;€ Qra—ker' (M,))
comme dans la définition 17. Posons o = 7{'w1 A 75w; et a); = m{w1,j AT 0, ;.
Alors w est fermée et L? et les formes a)} satisfont aux hypotheses de la définition 17,

donc la classe de cohomologie de w est dans oM TR2P 0 My).

Supposons maintenant que k1 = n1 et que w2 est de torsion. Soit ¢ une (ny — k2)-
forme fermée L¥ sur M1 x M>. La restriction de ¢ 2 presque tout facteur {x} x M»
est fermée et L?', donc pour presque tout x; € My,

f @y A Plixy)xmy = 0.
M;

11 vient

[ W NP = a)l/\[ wy AP =0,
My =M M M

autrement dit, e est de torsion. O

3.4. Torsion des groupes abéliens. A titre d’application de la notion de classe
robuste introduite au paragraphe précédent, montrons que la torsion L¥ de I’espace
euclidien est non nulle en tout degré.

Commengons par le cas de la droite réelle.

Lemme 20. L’ensemble Tol’p (R) est nonvide. Plus précisément, il existe une 1-forme
LPadt et une suite uj de fonctions lisses & support compact sur R telles que

(1) Jpujadt ne tend pas vers 0;
(2) lujlly, tend vers +00 polynomialement en j ;
(3) ||u} | ;o tend vers O exponentiellement en j.
On a de plus les propriétés suivantes :
(4) fplsa ()P ds < +00;
(5) les fonctions a et —uj sont décroissantes sur [1, +-oc[;
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(6) les fonctions a et u; sont paires et s’ annulent au voisinage de 0;
(7) |lujll po tend vers O exponentiellement en j ;
(8) pour tout € > 0, ||s1_€u}||Lp: et ||s~ uj|l, , tendent vers O exponentiellement.

Preuve. Soit y une fonction lisse et paire sur R, a support dans [—1, 1], qui vaut 1
au voisinage de 0. On pose

a(x) = (1 = x(x)x| 7 (log |x)™" i fx] = e,
a(x) = (1 = x(x))e

On définit une suite de fonctions v; paires, décroissantes sur [0, 4-00[ par

1 ;
£ S1Ion.

_J .
vi(x) =2(1 — x(x))2e 7 si|x| <eé’,
_1 . .
vi(x) =2j x| P doglxt sied < |x| <€,
_ 25 . . . .
vix)=e (! +1—e|x]) sie? <|x| <eP(1+j7h,

vi(x) =0 sinon,

Comme p > 1, a et sa dérivée sont L. De plus on a sa'(s) ~ —%a(s) et il ré-
sulte que f |sa’(s)|P ds < —+o00. Par construction, v; est nulle sur [0, /] et constante
sur [e/, e2/(1 + j~Y]. Sur Uintervalle [e/, 2/ (1 + j~—1], |v}] est majorée par
const.j s 7= Y7 (log s)~L. On calcule

el o2 i+
f av; = o(1), f av; = 1, f av; = 0(j7h,
0 el 2]
ej 7 / 82]’ / 82j(1+j71) / 1
[ P =27, [ w17 = 00)). [ wl? = oG,
0 el 2y

ol o2
/ / A
fo v/?" =0, [j WP = 0P e,
e

82j(1+j71) 7 /7 / 1 2 T gj 7 e
/ G = 0GP e, [T = oG
14

2J

62J / / ¥ ezj(1+j71) ! 1 Yen' §
[ s =oqre i, [ ey = ogle ),
el o<l

2j

ej e
! / i dl a7
f s!= )P =0, f |s17E P = O (7 emY),
0 e

J

e (1+;71)
f s VP = 07 e,
e2i
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Une approximation «; lisse et a support compact de v; convient. 0
Corollaire 21. 752 (R") £ Opourk =1,...,n

Preuve. Montrons d”abord que Tol’p (R™) est non vide.
Dans R”, on note r la distance euclidienne a I’origine. Soit 6’ = dxy A -+ Adx,
une (n — 1)-forme parallele. La forme dr A 8 ¢tant homogene de degré 0, elle s’Scrit

dr A8 =hdxy A - Adxy

ou la fonction /4 est lisse en dehors de I'origine et homogene de degré 0. Elle n’est

Soient a et u; les fonctions fournies par le lemme 20. On considére les formes
différenticlles w = a(r™) dr et a)} = u;(r")h6’ sur R". On vérifie que

+00 ' 1/p
ol rr = const.([ la(x™)|Pr"~ dr) = const.||a||zr
0

est finie, que

+o0
[ w A a)} = [ hzf a(r”)uj(r”)r”_l dr=€ f au;
) sa—1 0 R’

ne tend pas vers 0, et que

+oc 1/p
b
|||, = const. lu; (PP P ar — const.|[u; ||, »
JUWLP ; J JILr

tend vers +o0 polyndémialement.
On calcule

dof; = nr" "\ (F"Yhdr A0+ u;(r") dh NG,

et on majore

1 /
n—=1_r e n—=1_r pon—1 e
IFa (r Yhll;» < const. A |r (r a3 dr

nl/n/

= const.||s (s)||Lp ;

puis

+o0 , 1/p/
I "yl < Const.( [ e dr)
0

—1/n

= const.||s uij () ot

qui tendent vers O exponentiellement, d’apres le lemme 20. On conclut que o est dans

P (R™), done dans T, 7 (R™) puisque la cohomologie réduite est nulle.
Pour avoir le cas général, il suffit d’appliquer suffisamment de fois la proposi-
tion 19. O
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3.5. Graduation des formes différentielles sur les produits semi-directs. A la
différence du cas des produits directs, une métrique riemannienne invariante a gauche
sur un produit semi-direct G = H ¥, R croit exponentiellement, avec des exposants
différents suivant les directions, déterminés par les valeurs propres de la dérivation «.
Ceci affecte les propriétés de contraction du champ de vecteurs invariant a droite &
qui engendre Iaction a gauche du facteur R sur . On a vu en section 2 comment
utiliser le flot de ce champ de vecteurs — et ses propriétés de contraction de la norme
L? de formes différentielles — pour montrer que la torsion L? est nulle. Les mémes
propriétés vont évidemment jouer un role dans la construction de classes de torsion
non nulles.

Définition 22, Soit G = H x4 R un produit semi-direct de groupes de Lie, soit #
I’algebre de Lie de H. Soit p > 1 un réel, soit k& < dim & un entier.

(1) On décompose
Afger = Ak @ Al @ AK,
ou A’i (resp. AL, resp. A% ) est 1a somme des espaces caractéristiques de Afa T

relatifs aux valeurs propres de parties réelles supéricures (resp. égales, resp.
inférieures) a L%

(2) Onditque p est critique en degré k pour G s1 “7“ est la partie réelle d’une valeur
propre de I’endomorphisme A¥e T de A*#*, autrement dit, si AL # 0.

(3) On note do, d+ la différentielle extérieure composée avec le projecteur sur AL,
Ak,

k

La décomposition dépendant de p, on notera A o)

spécifier I’exposant.

dy(p) §’1l est n€cessaire de

Remarque 23 (Comparaison avec la définition 3). Le champ & est (k, p)-contractant

si et seulement si A Y = AO(p) = 0, (k, p)-dilatant si et seulement si A_(p) =
A’é(p) = 0. Dans ce cas, d’apres la section 2, la torsion a des chances d’étre nulle.

Pour construire des classes de torsion, on va donc exploiter le fait que A% et A*
sont simultanément non nuls.

3.6. Critére de non-nullité de la torsion. On s’inspire de la discussion des produits
directs (paragraphe 3.3). Lorsqu’on passe aux produits semi-directs G = H x4 R
et qu'on s’intéresse a un exposant p non critique, on utilise seulement le fait que
la cohomologie a support compact de la droite réelle est non nulle. D’une certaine
facon, I'opérateur d remplace I’opérateur d sur 1’autre facteur.
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Proposition 24. Soit G = H X, R un produit semi-direct. Soit p > 1. Soit
une (k — 1)-forme fermée L¥ sur H. On suppose qu’il existe une suite de formes
¢) € QP*=LP (I telle que

(1) les intégrales | €N dipn e} ne tendent pas vers 0,
(2) la suite m; = ||de;. | ; o tend vers +00 polynomialement ;

(3) la suite nj = ||ddypr e;- |, » tend vers O exponentiellement.

Alors HSP(G) # 0. Si de plus H est nilpotent, alors TSP (G) # 0.

Preuve. Notons 7 : G — H la projection dont les fibres sont les orbites de 1’action
a droite du facteur R. Soit x une fonction lisse sur R telle que y = 0 au voisinage de
—oo et x = 1 au voisinage de +0¢. Onnote ys: 1 — x (f + ).
Posons
w=dy nm'e,

La forme fermée w représente le produit cartésien du générateur de la cohomologie a
support compact H1(R) et de la classe [¢] € T*~1:#(H) (qui est non nulle, en vertu
des hypothéses 1 et 3). Pour montrer que sa classe de cohomologie L¥ est non nulle,
on utilise la dualité 13 avec les formes-test a);. définies comme suit.

Py = ler*d+e} + (1 — X])Jr*d_e;» +dy1 A e;-
el

Ct); - ij'(l - X—sz)’ﬁj,

ou s; est un réel positf. Autrement dit, a)J’. est une troncature (destinée a rendre sa

différentielle L7 /) d’une forme yr; quiest L? ', mais dont la différentielle ne I’est pas.
Alors

/wAw}:fderij
G G
:fX1dX[ eAd+e}—f(l—X1)dxf e/\d_e;-
R H R H
:feAd+e}
H

ne tend pas vers 0. Comme dv; = n*dd €',

IA

lxs; (1 — X504l .07 ) < €Nl v iy

< ™n;.
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D’ autre part,
P
1 Cesi (1 = X=i D A Y5 5
= d ) AT )+ 1L = i) A IS
< const.(||(¢s;)*dyé; ||‘zp — [(p—s; ) d—¢ II}Ljp (H))
< const.e " % (||d.¢] ||ip T 119-¢; Hil’ ‘&

< np S; P
const.e ||de ||Lp )’

I1 vient
”C'); ”Lp’((;) <C (eusj”j + e_nsjmj)-

Posons s; = ﬁ log(nm;/un;). Avec ce choix,

||da)/||Lp" S C! m/_'L//”"I‘nn}?///L‘I‘U’

qui tend vers 0 lorsque j tend vers +o00. Le lemme 13 entraine alors que o est non
nulle dans H*?(G).

Soit @' une (n — k)-forme fermée L sur G. Ecrivons o’ = B/ + dt A v/. Alors
B; est une forme fermée sur H qui est dans LY pour presque tout ¢ € R. Supposons
H nilpotent. T aprés le théoréme 15, la cohomologie réduite R*~1-#(H) est nulle.
Par conséquent, pour toute (k — 1)-forme fermée L? e sur H, [, ¢ A ] = 0.1 vient

[dx/\yr*e/\a)’:[x’(t)dt[ enp =0.
G R H

Ceci prouve que @ = dy A *e est dans T52(G), et done que TEP(G)Y £ 0. O

Remarque 25 (Double valeur au bord). Notons & le champ de vecteurs invariant a
gauche qui engendre I’action a droite du facteur IR. Si on transporte ; par son flot,
on trouve des limites distinctes, respectivement o e;. quand ¢ tend vers +o0 et d_ e}
quand 7 tend vers —o0. Cela illustre le fait que, bien que & ne soitni (k, p)-contractant,
ni (k, p)-dilatant, on peut définir deux valeurs au bord. Ce point de vue est développé
dans [P2].

3.7. Construction explicite de classes de cohomologie L?. Avant de nous lancer
dans le cas général, traitons un exemple.

Exemple 26. T27(G, , 1) #0si3 < p < 2.
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Preuve. Ici, H = R? avec les coordonnées x, v, z, et une matrice « diagonale, de

valeurs propres 1, 1 et 2. Lorsque % < p < 2, I'exposant conjugué p’ satisfait
2<p <4, dou < “}T?‘ < 3. Sur les 1-formes, Afr(p,) est engendré par dz, Al_(p,)

par dx et dy. On va appliquer le lemme 24 avec des fonctions a support compact e}
qui n¢ dépendent que de la distance » a I'origine, et une 2-forme fermée e € dA _,
de la forme e = d(ff) ou f est une fonction de r et S une 1-forme homogéne de
degré 1.

Comme e = f'(r)B + f(r)dB, et comme dp est homogene de degré 0, |dB| est
homogeéne de degré —1, d’ou

dellzz < const.(ll £ (M)l Lo@sy + Ir =" £/ ) 1o @s))

+00 1/p +o0
< const.(( [ 1/ (r)Pr? dr) + ( [ Ir_lf(r)|pr2dr)1/p>>.
0 0

Notons ¢} = w; (r*). Alors
de; = wi(r)d(r*) = 2w (r*)(x dx + y dy + zd2),

d+e;- — Zw;-(rz)z dz,

ddie; = 4w (r*)(x dx + ydy + zdz) Az dz,

d’ ou
400 5 . 1/p
; ’
m; = ||d€j||Lp’ = Const.([o |rwj(r )|Pr dr) ’
400 5 . 5 1/p
J "
iy = ||dd+€j||Lp/ = const.([o |7 w; (r*)|Pr dr) ,
Le plus délicat & contrbler est I'intégrale [; = [,se A d +e}. Comme ejr_ ost 4

support compact, la formule de Stokes s’applique, et

Ij:f fB Addye).
B3

Choisir £ invariante par rotations (autour de I’origine, ou méme seulement autour de
I’axe Oz) est impossible, car dr A dd+e;. = (xdx + ydy) A dd+ej’. = (. Il faut donc
casser la symétrie, ¢’est pourquoi on choisit £ proportionnelle a dy. On calcule

dy nddye; = —4w](r)xzdx ndy A dz
= rzw”(rz)h(x, v,z)dx ANdy Adz,

ouh(x,y,z) = rj‘Z est une fonction homogene de degré 0. C’est cette fonction qui
entre comme ingrédient dans e : onprend f = hdy,d’oue = d(f(r)hdy).
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Avec ce choix, il vient

+1I; = Adye’
) \[1%38 _|_€J
:f f(r)hdy/\dd.;.e}
R3

= —4[ fhzrzw}'(rz) dx ndy ndz
B3

+00
- —4( [ h2) fOOw] ) dr.
52 0

Reste a trouver f et w;. Plutdt que de construire des fonctions adhoc, il suffit de
prendre

+00
fry=ra(r®), wji(s) = —f 1=Vt dr
Is|

ou a et u; sont les fonctions obtenues au lemme 20. Les propriétés 4 a 8 de ce lemme
sont 1a pour garantir que n; tend vers 0 exponentiellement, que m; tend vers 1’infini
au plus polyndmialement et que/; ne tend pas vers O (voir ci-dessous). O

Passons au cas général (un peu plus général que le théoreme B).

Proposition 27. On considére un produit semi-direct G = H x, R o H = R*"™1
est abélien. Onnote b1 < --- < Ay_1 les parties réelles des valeurs propres de «. On
note wr = A+ +rr et We = Ayt -p 4+ Frn1. Siwp_1 < 2L « Wi_q et

si p est non critique en degré k — 1, alors Thr(G) 7= .

Preuve. Lesinégalités wy_1 < w,_1/p < Wi_1 entralnent que w,_; < w,_1/p’ <
W, _. Etant donné 7 < {1,...,n — 1}, onnote Ay = Y _,; ;. Considérons, parmi
les parties / an —k élémentsde {1, ..., n — 1} telles que A7 > wy,_1/p’, celle, notée
I, pour laquelle A; est minimum. Notons i, le plus petit indice qui n’est pas dans
o et iy le plus grand élément de Iy. Comme A, > wy,_1/p" > wy—k, im <0 —k
et &j, < Ajy. Posons I1 = (Io U {i;y}) \ {ip}. Alors Ay, < Ay, donc par définition
de lo, A;;, < wy—1/p’. Comme p est non critique en degré k — 1, p’ est non critique
en degré n — k, donc w,_1 — p’A; # O pour tout ensemble / a n — k éléments. Par
conséquent, Ay, < wy_1/p’.

Soit @ € A" k=1 3¢* un vecteur propre de A" %!« relatif 2 une valeur propre de
partie réelle ' = Ay, — Ajy,, et soient j et n” € H* des vecteurs propres relatifs a des
valeurs propres de parties réelles A;,, et A;,, respectivement. Alors (5" A 0') 1) =
n’ A6 mais (n A 0") 4y = 0donc

+0)YAN+0)YANO gy =nnng NG
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est non nul. Il existe donc 0 € AX=23¢* telque 0 A (n+1) A ((n+1") A 0) 4y # 0.
Soient a et u; les fonctions fournies par le lemme 20. Posons, pour s > 0,

vi(s) = S_l/zuj(s(”_l)/z).

Notons w; la fonction a support compact sur [0, +oo[ dont la dérivée est v;. Dans
H = R* ! on note r la distance cuclidienne 3 I’origine. On définit des fonctions
f=ralr™ et g = wj(rz) sur H. Par construction, dg; = 2u; r*1y dr.

On considare les formes différentielles ¢} = g;0 sur H.Onade; = w/,(r*)d (r)A
6’ donc dy.¢; = w;.(rz)dr_zF A6, ol on a noté

SIS
i >t a/p!
Comme la forme 4 (ri) est fermde,
ddye; = w!(r*)d(r*) Ad(ry) A O
Comme la (n — 1)-forme d(r?) A dyr® A0 A 0 est homogene, on peut I’écrire
A Adyr? A0 AO = r2h(x)dxi A - Adxa—i

ou la fonction £ est lisse en dehors de ’'origine et homogene de degré 0. Par homo-
eeénéité, || et r|dh| sont bornées.

11 existe un point de H oit d(r%) = 1 + 5. En ce point, la (n — 1)-forme 0 A
APy Ald(F®) A’ )+(p»y estnonnulle, donc i n’est pas identiquement nulle. On pose

e = d(fho).

Comme e} est a support compact,

:I:/ e/\d+e}:/ fhg/\dd_l_e}
H H

= / fw!EHhd?) Adyr? A0 A0
H

+o0
= [ h? / S eywi (ryr e =2 dr
sn—2 0
+o0
:C[ fw] )" dr
0

ou C > 0. On calcule, pour r > 0,

| _ n—1 _ _
w}/(r):_ir 3/2uj(rn 1/2)+ 5 " 4/21/!;'(7’” 1/2)‘
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Comme u; est décroissante sur [1, oc[, les deux termes de la somme sont de méme
signe, donc

1400
= Ef ra(r”_l)r_3uj(r”_1)r” dr
1

1 [t
= —[ a(s)u;(s)ds
1

+00
U f(r)w;’(rz)r” dr
1

2

= %[Ra(s)uj(s)ds

qui ne tend pas vers 0. I intégrale fol f (r)w;.’ (r3)r" dr tend vers 0, donc Jen d+e}
ne tend pas vers 0. Comme ¢ = hf'(rYdr A0 + fdh A9,

lellze < const||f (M)l ey + e~ £

+o0 I/p
- const.(( f £ ()Pt dr)
0
0 L/p
+ ([ |r_1f(r)|pr”_2dr) )
0

Econst.((f |r”—1af(rn—1)|prn—2dr)
0
40 1/p
([ e bieean) )
0

400 +x 1/p
= Const.([ 1sa’ ()| ds)1/P —|—/ |a(s)|pds>
0 0

est finie.

Comme dé; = 2u; " Ndr A0,

+o0
ldel1? , = const g (7P P ar
e — : 0 J

+00 ,
:const.f lu;(s)|F ds
0

croit polyndmialement en j, d’apres le lemme 20.
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Comme ddy e}, = w/(r*)d(r*) ndyr® A0,

+o0 ) /p
||dd+e}||Lp/ < COHSL((](; |r_luj(r”_l)|p rn_ldr)
+00 ) 1/p
- (f LT s L dr) )
0
+00 _ / 1/p
= Const.(([o s~y (5)]P ds)

tend vers 0 exponentiellement, d”apres le lemme 20. De la proposition 24, il résulte
que T57(G) #£ 0. O

3.8. Torsion de I’espace hyperbolique réel. Lorsqu’on s’intéresse a un exposant
p critique, on utilise le fait que la cohomologie L? de la droite réelle est non nulle,
ainsi qu’une information plus fine sur la cohomologie L? de H, faisant jouer un rdle
important a 1’opérateur d.

Proposition 28. Soit G = H xR un produit semi-direct. Soit p un exposant critique
en degré k — 1, i.e. tel que Ag_l # 0. On suppose qu’il existe une (k — 1)-forme e
fermée et LY sur H et une suite eJ’. e Q5P (H) telles quie
— e_ =0, e},_ =0, d_e} = {7z
— [y e A € netend pas vers 0,
— ||e;.,0||Lp/, ||e;.’+||Lpf et ||d+e}||Lpf tendent vers infini polynémialement en j ;
— ||d0e;. |, tend vers O exponentiellement en j.
Alors HYP(G) £ 0.

Preuve. Soient a et u; des fonctions sur R qui sont nulles sur [0, +o0[ et coincident
sur | — oo, 0] avec celles construites au lemme 20.
On pose @ = a(t)dt A w*e et a)} = uj(t)ﬂ*e}. Alors @ est fermée. Comme

e_ = (), il existe une constante strictement positive v telle que
0
p t p p
||CU||Lp(G) = COHSL[ la(t)|P (e” ||g+||LP(H) + ||30||LP(H)) dt,
—00

donc @ € L?(G). De méme,

0
P’ ‘o vt j P’
6510 gy < comst | T O € 1e] 412, legolly )
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tend vers 400 polynémialement. On calcule

de; = u}(t)dt Am*e) +uj(t)w*de],
et

* / P
lwjt)de nmefll? i@

0
p v
< c:onst.[_OO Iu ()] (e ||€ -I—”Lp (H) +lle JO”LP (H))dr

tend vers O exponentiellement car ||u;. || g € ||u} |z tendent vers O exponentielle-
ment. De méme

luj (1) de] 12,

0
17 Gy = Ot / O € e 12, 0+ lldoe 1y

. L? (H) LP'(H)

tend vers 0 exponentiellement car ||doe;. ;2 €t ||u;llzo0 tendent vers O exponentiel-

lement.
0
fa)/\a);:[ aujfe/\e/
G —00 H

Enfin
ne tend pas vers 0. On conclut avec le lemme 13 que o est non nulle dans H%2(G).
O

Corollaire 29. Soitr M = RH" [’espace hyperbolique réel de dimension n. Pour
chaque 2 <k <n — 1,

n—1

k—1°

TR?(M) £0 & p=

Preuve. Le théoréme A s’applique et entraine que, pour tout p # 7= 1,T ke(My = 0.
De plus, HAP(M) = 0 dés que p < =1

Réciproquement, soit ¢ une (k — 1) forme fermée a support compact sur R" 1,
non nulle. Cela existe dés que k£ > 2. Soit e} = ¢/ une (n — k)-forme sur R~ telle
que [e A e # 0. Comme AF~1 = AFTH AT—F = ALK op A7—HHT = AR eg
conditions e_ = 0, ¢/ = 0 et d_e' = 0 sont automatiquement satisfaites. De plus,
d,e’ =0, donc la proposition 28 s’applique, et H*? (M) # 0.

Pour montrer que RX? (M) = 0, on utilise la dualite de Poincaré, corollaire 14.
En degré k" = n — k, I’exposant conjugué p’ = == k = g(n, —1, k'), est justement
le cas limite d’application du théoréme A, donc H" X P'(M) = 0. En particulier,
R"FP (M) = 0,d o0, par dualité, R*7 (M) = 0.Onconclutque TP (M) £ 0. O
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3.9. Preuve du théoreme B. Le cas de I’espace hyperbolique réel a fait I’obet du
paragraphe 3.8.

Le groupe G, 5 $’obtienten faisant Ay =« - = Ay = /=8, Ap_pp1 = -+ =
A1 = 1.0nposek = p,ilvient We_y =k — 1, wy_1 =k — 1+ (n — k)/—8.
Les exposants critiques en degré k — 1 sont les nombres de la forme w,_1 /A ou A est
une somme de k — 1 nombres parmi &1, ..., A,_1. Le plus petit est %: . Le sutvant
On peut donc appliquer la proposition 27 et conclure que

Wn—1 Wp—1
Wk—2+Adn—k Wig—1"
T5P(G) # 0 pour tout p dans I’intervalle

est

:| Wp—1 Wy —1 I o i — f 1)@ |:
Wis1” Wiia+ Ay k—24++/—3 '

Si Gy, s €tait quasiisométrique a une variété riemannienne M simplement
connexe, compléte, a courbure sectionnelle négative &'-pincée pour un 8’ < § proche
de 8, alors, pour g(n, 8, u — 1) < p < qn, 8, u—1), T"P(G, ) # 0 mais
le théoréme A donne que T#7(M) = 0, c’est incompatible avec I’invariance sous
quasiisométrie de la cohomologie L? pour les espaces uniformément contractiles,
voir [(G2], section &. O

[:]q(n,&,k—l),l—l—

Exemple 30. Cas des espaces symétriques de rang un. La construction qui précede
ne s’étend pas aux produits semi-directs G = H X, R ou H est nilpotent non abélien.
On I’explique sur I’exemple ou G est isométrique au plan Hé. Dans ce cas, I estle
groupe d’Heisenberg de dimension 3. Son algebre de Lie # admetune base (X, Y, 7Z)

: . L 100
ou Z = [ X, Y] est central. Dans cette base, la matrice de la dérivation « est (8 (1) (2))

Sotent dx, dy, T = dz — xdy les éléments de la base duale, vus comme formes
invariantes a gauche sur H. Ce sont des vecteurs propres de «, pour les valeurs

propres —1, —1 et —2. Soit p un réel, % < p < 2. On s’intéresse a la torsion en
degré 2, T2P(G). Alors 2 < p' < 4,1 < t;T?‘ < 2,donc A, est engendr€ par 7,
A_(pypardxetdy.

Soit e;. une suite de fonctions sur . Alors
de; = (Xe;-)dx + (Ye;)dy + (Ze})t,
d_l_ej,- = (Ze})t,
dd+e;- = d(Ze}) AT+ (Ze;-)dr :
En particulier, Ze;. = —dd+e}(X AY).
Par conséquent,
ldeill ;< llddyeilly o,

et [ en d+e} doit tendre vers 0 en méme temps que || ddy f; ||, . Il n”’existe donc
aucune donnée e, e} qui satisfasse aux hypotheses du lemme 24,

De fait, 7> (CH?) = 0 pour 3 < p < 2, voir [P2].
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