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Cohomologie Lp et pincement

Pierre Pansu*

Résumé. On donne un critère optimal d'annulation de la torsion en cohomologie Lp pour les

variétés riemanniennes à courbure sectionnelle négative pincée. II en résulte que certains espaces
homogènes à courbure négative ne sontpas quasiisométriques à des variétés plus pincées qu'eux.

Abstract. A shaip vanishing theorem for the Lp cohomology torsion of Riemannian manifolds
with pinched negative curvature is given. It follows that certain negatively curved homogeneous
spaces cannot be quasiisometric to better pinched manifolds.

Mathematics Subject Classification (2000). 43A15, 43A80, 46E35, 53C20, 53C30, 58A14.

Mots clés. Cohomologie Lp, courbure négative, espace homogène, espace de Besov.

Keywords. Lp-cohomology, negative curvature, homogenèous space, Bésov space.

1. Introduction

1.1. Motivation : un problème de pincement. D'un théorème de M. Berger et
W. Klingenberg, [Be], il résulte que si V est un espace symétrique de rang un de type
compact à courbure non constante (i.e. un espace projectif complexe CP'", m > 2,

un espace projectif quaternionien BP, m > 2, ou le plan projectif des octaves de

Cayley CaP2), V n'admet pas de métrique à courbure comprise entre S et 1 si S >
On se pose un problème analogue en courbure négative. Si —1 < <5 < 0, on dit

qu'une variété riemannienne est S-pincée s'il existe a > 0 tel que sa courbure soit

comprise entre —a et Sa.

Par exemple, l'espace hyperbolique réel est —1-pincé. Les espaces symétriques
de rang un de type non compact à courbure non constante sont —|-pincés. Il s'agit
des espaces hyperboliques complexes CHm, m > 2, des espaces hyperboliques qua-
ternioniens MHm, m > 2, et du plan hyperbolique des octaves de Cayley Ca H2.

Le problème du pincement optimal consiste à déterminer quel est le meilleur
pincement possible pour une métrique sur une variété donnée. Pour les variétés

simplement connexes (et donc difféomorphes à l'espace hyperbolique réel), il convient de

*Pierre Pansu est partiellement soutenu par le réseau européen CODY et le projet ANR "Cannon'" (ANR-06-
BLAN-0366).
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se restreindre à des métriques comparables à une métrique de référence, par exemple,
qui lui sont quasiisométriques. On rappelle que deux variétés riemarmiennes M et N
sont dites quasiisométriques s'il existe une application / : M -> N et des constantes
C et L telles que l'image de / soit C-dense dans N et pour tous points x, y g M,

-C + i < d(f(x), f (y)) < Ld(x, y) + C.

Question. Soit M une variété riemannieime <5-pincée. Existe-t'il une variété rieman-
nienne N quasiisométrique à M et /v-pincée avec S' < SI

Dans cet article, on détermine le pincement optimal pour des familles d'espaces
homogènes riemanniens. Voici un exemple. Soit G2 4 _ i le produit semi-direct de K3

par K défini par le groupe à un paramètre d'automorphismes de M3 engendré par la
matrice

"1 0 {fi
0 1 0

v0 0 2)

La métrique riemannieime qui en coordonnées exponentielles t (sur le facteur M), v,
y et f (sur le facteur K3) s'écrit

ils' dt~ t</.v~ + dy2 + f Uilz2

est invariante à gauche. On vérifie aisément (voir par exemple [He]) que cette métrique
est -pincée.

Théorème 1. Soit S < — Aucune variété riemannienne S-pincée n'est quasi-
isométrique à G24 _ i.

La preuve utilise la torsion en eohomologie Lp. C'est un espace vectoriel, noté
T2'p(M), défini pour p > 1. Pour une variété simplement connexe à courbure négative,

le nombre

T(M) mi{p > 1 ; T2'P(M) £ 0}

est un invariant de quasiisométrie. Un théorème de comparaison (théorème A) entraîne

que si dim M 4 et si M est <5-pincée, alors T (M) > 1 + 2V—<5. Un calcul direct
(théorème B) montre que pour le produit semi-direct G9 _ i, la torsion Tl p est non

' ' 4
nulle pour 2 < p < 4, d'où

T(G2 4,_i)=2.

La minoration du pincement s'en déduit immédiatement.
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1.2. Un problème ouvert. A ma connaissance, le problème du pincement optimal
pour les espaces symétriques — | -pinces est toujours ouvert. Pourtant, le plan
hyperbolique complexe CH2 est infiniment voisin de G0 _i. Il peut-être vu comme

' ' 4

un groupe de Lie résoluble muni d'une métrique invariante à gauche. Ce groupe est

le produit semi-direct du groupe de Heisenberg par M engendré par la dérivation de

/ioo\ „ rmatrice oio Toutefois
\ 0 0 2 /

/v;://-i 4,

si bien que le théorème de comparaison ne donne pas de borne optimale pour le

pincement des variétés riemanniennes N quasiisométriques au plan hyperbolique
complexe. Il y a donc une limitation essentielle dans la méthode.

Le problème restreint où l'on suppose que la variété inconnue N revêt une variété
riemannienne compacte a été résolu par M. Ville [V] en dimension 4, par L. Hernandez

[Hz], S. T. Yau et E Zheng, [YZ] pour les espaces hyperboliques complexes, par
N. Mok, Y. T. Siu et S. K. Yeung [MSY], J. Jost et S. T. Yau [JY| pour les autres

espaces symétriques de rang 1.

1.3. Cohomologie Lp. Soit M une variété riemannienne. Soit j> > 1 un réel. On
note LPQ*(M) l'espace de Banach des formes différentielles Lp et Q*'P(M)
Lp D d~lLp l'espace des formes différentielles Lp dont la différentielle extérieure
est aussi Lp. La cohomologie du complexe (Q*'P(M), d) s'appelle la cohomologie
Lp de M. Elle est intéressante surtout si M est non compacte.

Par définition, la cohomologie Lp est invariante par difféomorphisme bilipschit-
zien. Dans la classe des variétés simplement connexes à courbure négative ou nulle,
c'est un invariant de quasiisométrie (cf. [G2]).

En toute généralité, la cohomologie Lp se décompose en cohomologie réduite et
torsion

0 T*fP —s. H*'p R*'p * 0

où la cohomologie réduite est R*'p ker d/ im <i et la torsion est T*'p im d/ im4.
La cohomologie réduite (parfois notée WjtÇ) est un espace de Banach sur lequel les

isométries de M agissent isométriquement. La torsion est non séparée.
Par exemple, la cohomologie Lp de la droite réelle est entièrement de torsion. La

cohomologie Lp du plan hyperbolique est entièrement réduite. Néanmoins, cohomologie

réduite et torsion coexistent souvent.

1.4. Pincement de la courbure. En degrés k >1, la cohomologie Lp est liée de

façon optimale au pincement de la courbure.

Théorème A. Soient 8 g] — 1, 0[ un réel n et k 2 n — 1 des entiers. Notons

q(n, 8, k) 1 +
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Soit M une variété riemannienne complète de dimension n, simplement connexe,
dont la courbure sectionnelle K satisfait —1<K<8. Alors

Tk'p(M) 0, i.e. Hk'p(M) est séparé pour le p < q(n, 8, k - 1).

Hk'p (M) 0 pour 1 < p < q (n, 8, k).

Ce résultat, annoncé dans [PI], est un raffinement de celui de H. Donnelly et
F. Xavier, [DX], concernant l'annulation de la cohomologie L2 réduite. La condition
d'annulation de la torsion est optimale. D'abord, pour l'espace hyperbolique (8 -1)
en tout degré, voir en 29. Mais il y a d'autres exemples. Soient n et p des entiers tels

que 2 < p < n — 1 et 5 g] — 1, 0[. Soit Gßt„,s le produit semi-direct M % M"-1
où a est une matrice diagonale avec seulement deux valeurs propres distinctes 1 et

v^8 < 1 de multiplicités p — 1 et n — p Alors le groupe de Lie possède une
métrique riemannienne invariante à gauche <5-pincéé.

Théorème B. Soient n et k 2, — 1 des entiers.

(1) Pour l'espace hyperbolique réel, Tk'p(RH") 0 si et seulement si p
(2) Soit 8 g] — 1, 0[ un réel. Si k p et

s t ^ t l + («-l"^qin, o, k — 1 < p < 1 H =—,k - 2 + v' -<5

alors i'k-' ft/',,.,.-.' i # 0, Le, Hk'p(Gß>ny$) n'est pas séparé.

Par conséquent, pour tout p 2 n 1. GIÂt,ug n 'est pas quasiisométrique
à une variété 8'-pincée avec 8' < 8.

Ce résultat, qui élabore sur [KS] et [Kl], a été annoncé dans [P3].

1.5. Cas des espaces symétriques de rang un. Les espaces symétriques de rang
1 de type non compact à courbure non constante sont —1 /4-pincés. Alors que ce
sont de bons candidats pour tester l'optimalité du théorème A (la preuve ne comporte
aucune perte quand on l'applique à ces espaces pour les valeurs adéquates de k), le
calcul révèle que leur cohomologie Lp reste séparée au-delà des intervalles domiés

par le théorème A. Cela résulte de la non commutativité de leur unipotent maximal,
voir [P2],

1.6. Méthode. Une variété riemannienne M à courbure sectionnelle négative
ressemble à un produit. En effet, le flot ft de l'opposé du gradient d'une fonction de

Busemann h réalise un difféomorphisme de M sur H x E. ou II b~l (®J est une
horosphère. Par exemple, pour l'espace homogène G\ 4 _i (resp. le plan liyperbo-

lique complexe CH2), b(t) —t, H K3 (resp. H groupe d'Heisenberg). Les
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orbites du flot <f>t sont des géodésiques asymptotes en +oo, i.e. aboutissant en un
même point à l'infini, en provenance de tous les autres points à l'infini (voir figure).

On montre que si la courbure est suffisamment pincée (i.e., sous les hypothèses
du théorème A), toute A-forme fermée Lp a> possède une valeur au bord

Cûno lim (bfCO.
t—+OÖ '

De plus, & est la différentielle d'une forme Lp si et seulement si 0. Par

conséquent, l'application valeur au bord induit une injection de Hk'p dans un espace
séparé, donc Hk,p est séparé.

Inversement, pour les espaces homogènes Ga-.«.,s, on construit explicitement des

classes de cohomologie non nulles, en utilisant la structure de produit semi-direct. Il
faut se méfier de la formule de Ktinneth, qui n'est pas vraie en présence de torsion,
même pour les produits directs. Après des préliminaires (dualité de Poincaré, annulation

de la cohomologie Lp réduite des groupes abéliens), on introduit et on construit
des classes de torsion non nulles particulières, dites robustes, qui restent non nulles
après produit cartésien. La nature semi-directe du produit &k,nj- "" a,, E exige
la construction de classes robustes adaptées à la graduation de l'algèbre extérieure de
Ef,_1 par les espaces propres de la dérivation a. Puis on effectue le produit cartésien
de ces classes avec des classes de cohomologie à support compact de E. On obtient
ainsi un intervalle ouvert de valeurs de p pour lesquelles Tk'p(Gk,nj) A 0. Pour

l'espace hyperbolique réel, il y a exactement une valeur de p en chaque degré > 1

pour laquelle Tk'p CE//" A 0. On le montre en effectuant le produit cartésien d'une
classe de torsion robuste de E avec une classe de cohomologie à support compact
del*"3«

1.7. Remerciements. Je tiens à remercier D. Rugina pour les nombreuses conversations

que nous avons eues autour de la cohomologie Lp,V. Goldshtein et M. Troyanov,

pour leurs marques d'intérêt et leur manuscrit [GT] qui a été une source d'inspiration.
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2. Annulation de la torsion

2.1. Fonctions de Busemann. Soit M une variété riemannienne simplement connexe
à courbure sectionnelle négative pincée. On se donne une fonction de Busemann b.

C'est une fonction, obtenue comme limite de distances à des points, qui possède les

propriétés suivantes.

(1) b est lisse, son gradient est partout de norme 1.

(2) Les lignes de gradient de b sont des géodésiques convergeant en +oo vers un
même point du bord à l'infini de M.

(3) Les propriétés de contraction du flot 'j>t de — Vb sont contrôlées par la courbure
sectionnelle.

Exemple 1. Cas de l'espace hyperbolique réel. Dans ce cas, tout plan totalement
géodésique contenant une ligne de gradient de b est stable par <pt. Orthogonalement
à ses orbites, ept est une homothétie de rapport : UptTig — r) e~2t(g — b2).

Autrement dit, (pt contracte de la même façon dans toutes les directions autour d'une
orbite. (pt multiplie les volumes par le facteur où n dim M. Si co est une
A-forme différentielle sur M, elle se décompose uniquement en co ß + y A db de

sorte que i^ß 0, içy =0. Alors

| cftßm ekt\ß\(Mx)% VPÎY IM =e»-^\y\((pt{x))-

La formule de changement de variables donne

|(ßfß\P =e(kp-n+1)t f \ß\p, f \tfy\P eP-1)P-»+1Ù f |y|/\
Jm Jm Jm JM

Autrement dit, le flot <pt contracte ou dilate exponentiellement la norme Lp des In ¬

formes différentielles, transversalement à ses orbites, suivant que p est inférieur ou

supérieur à S-p-.

Exemple 2. Cas de l'espace hyperbolique complexe. Dans ce cas, toute ligne de

gradient est contenue dans une droite complexe, totalement géodésique, de courbure
sectionnelle — 1, stable par ß,. Tangentiellement à cette droite, et orthogonalement à

l'orbite, <pt est une homothétie de rapport e~'. Tout plan contenant Ç mais orthogonal
à la droite complexe, s'exponentie en une surface totalement géodésique à courbure
sectionnelle —1, stable par <pt, donc, dans ces directions, <pt est une homothétie de

rapport e~L2. Par conséquent, <pt multiplie les volumes par e~"lt, où m dimeM

j dim M. Si o> est une À-forme différentielle sur M, elle se décompose uniquement
en co ß + y A db de sorte que i^ß 0, iç y =0, puis ß se décompose à son tour en

ß < -\- ri a Jdb, où ./ désigne la structure complexe, et inp 0, (,/ç >i 0. Alors

ekt'2\cUt(x)), VPVn\(x)
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Remarquer que \fi*Jdb\ e '.11 s'ensuit que

I Ififef f
I

JM JM

I 14>*r] A Jdb\p e((M)p-2m)t/2 f |)? A _

Jm JM

Autrement dit, le flot fit contracte (resp. dilate) exponentiellement la norme Lp de

toutes les A-formes différentielles, transversalement à ses orbites, si p < j
(resp. si p > j~). Lorsque < p < la situation mérite plus d'attention.

2.2. Champs de vecteurs (k, p)-contractants. Les exemples ci-dessus suggèrent
la définition suivante.

Définition 3. Soit M une variété riemannienne. Soit $ un champ de vecteurs complet
sur M, soit fi, son flot. Soit p > 1 un réel, soit A un entier inférieur à la dimension de

M. On dit que % est (A, p)-contractant si fi, diminue exponentiellement la norme Lp
des A-formes transversalement à Plus précisément, on note .lac(fit) le jacobien de

fit, et on demande qu'il existe des constantes C et // .> 0 telles que, pour tout .v g M
et toute A-forme fi g AkT*M telle que q/l 0,

\tffi\(x) -Iae,(</;;!1 ' < Ce-^\ß\(fit(.x))

pour tout t > 0.

On dit que £ est (A, p)-dilatant si —f est (A, p)-contractant.

Exemple 4. Cas des produits semi-directs G H x„ M. Ici, Il est un groupe de Lie,
a une dérivation de l'algèbre de Lie de H qui engendre un groupe à un paramètre eta

d'automorphismes de IL et G H x K muni de la multiplication

(h, t)(h', t') (h:eta(hr), t + f).
On utilise le champ de vecteurs invariant à gauche § qui engendre l'action à

droite du facteur M. Alors les formes différentielles annulées par q- s'identifient aux
formes différentielles sur H dépendant de t. Notons sp(a) l'ensemble des valeurs

propres de a répétées autant de fois que leurs multiplicités. Le flot fit agit sur les A-

formes transverses avec pour valeurs propres les nombres e~tk, où X décrit les sommes
de A éléments de sp(a). Par conséquent, § est (A, p)-contractant si et seulement si les

parties réelles de toutes ces sommes sont strictement supérieures à

Proposition 5. Soit M une variété riemannienne complète de dimension n, simplement

connexe, dont la courbure sectionnelle K satisfait —1 < K < 8 < 0. Soit § un

champ de vecteurs de Busemann. Si. k 0 « — 1 et si p > 1 satisfait

n — k — 1 ,— n A l

p < q(n,S,k) 1-| V—S, (resp. p > 1 H
A A'V—<5
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alors le çhamp f est (k, p)-contractant (resp. (h, p)-dilatant).

Preuve, Notons le flot de §. Ses trajectoires sont des géodésiques parcourues à

vitesse L Soit x e M. La quantité à majorer est

n(t,x) p log - logdet(d(f)t).

Elle satisfait, pour tous s et t, n(t + s, x) n(s, (ptix)) + n(t, x).
Notons rt le transport parallèle de (pt(x) à x le long de la géodésique s (f>s (x).

Alors Xfclcpt préserve 1'hyperplan orthogonal à §(x). Notons J(t) sa matrice dans une
base orthonormée de t(x)-1-, de sorte que n(t,x) plog ||AA/(t)|| — logdet(/(0),

Comme § est un gradient, la matrice U(t) J'(t), seconde forme
fondamentale des hypersurfaces de niveau, est symétrique. Comme les colonnes de / sont
des champs de Jacobi, la matrice U(t) satisfait l'équation de Riccati

U' + U2 + R 0

où R est la matrice de l'opérateur de courbure v i-> R(v, |j|r. Classiquement (voir
par exemple [BK], [CE]), on en tire une estimation des valeurs propres Àj k,,_ i

de U,
< ••• < _ 1 < 1.

Comme /(0) I est l'identité, J(t) I + tU(0) + o(t) donc ||AA/(f)|| < 1 +
| /'] f] 4DA f/(0) |[ H-(/ où lDkU désigne l'extension de U comme dérivation de l'algèbre
extérieure. On peut donc majorer la dérivée à droite

"'W !V-vl 5 p\\£)kU(Ö)H — ttU(0)
ot

n—1 n—1

<p( J2
i=n—k i=1

n—1 n—k—1

=(p-k)( ;- nXi
i=n—k i=1

< k(p - 1) - (n - k — 1, v V

En dérivant l'équation n(t + s, x) n(s, (f>t(x)) + n(t, x), on trouve que n'(t+,x)
«'(0+, </>, x < k(p — 1) — (n — k — l)v'—<5 pour tout t. En intégrant, il vient pour
tout t M,

||||(AA^)|A^r
avec rj (n — k — Ijh/^S — k(p — 1). Si // > 0, i.e. si la courbure est suffisamment

pincée, on conclut que § est (k, p) -contractant.
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Si on remplace § par — les valeurs propres À; de la seconde forme fondamentale
sont remplacées par m -kn-i qui satisfont

-1 < fil < • • • < Mn-1 <

La nouvelle fonction ii{t, x) ??(—/, x). satisfait

n—1 n—1

«/(o+) < p( im) - "i2fii
i =n—k i=1

n —1 n—k— 1

o-1)( XI/i,;) ~ XI ^
i=n—k i=1

< A-(p - 1)(-^) + (n - 1 - 1).

Il vient

|(A*^lA*ê±||*<û"''Jae(&)

avec ^ A(p—l)y—<5—n+A+1. Si s> 0, on conclut que § est (k, p)-dilatant.

Remarque 6 (Cas limite). Si p q (n, S, k), le flot fa diminue au sens large la norme
Lp des A-formes transverses, au sens où

\\(Akdfa)lAkl:l\\P <Jc\C(fa).

Remarque 7 (Cas d'égalité). Dans l'argument ci-dessus, les inégalités sont optimales
dans le cas où les valeurs propres ne premient que deux valeurs. Il est facile, à l'aide
de [He], de faire la liste des espaces homogènes à courbure sectionnelle strictement

négative pour lesquels les valeurs propres premient exactement deux valeurs égales

aux bontés de la courbure sectionnelle. En voici deux familles particulières.

Exemple 8. Les espacés symétriques de rang un. La courbure sectionnelle varie
entre —1 et —1/4. Les valeurs propres sont 1/2 (avec multiplicité 2m — 2 pour
l'espace hyperbolique complexe CH"1, m > 2, 4/7? — 4 pour l'espace hyperbolique
quatemionien Uli'", m > 2, 8 pour le plan hyperbolique des octaves de Cayley
Ca LI2), et 1 avec multiplicité complémentaire, soit respectivement 1, 3 et 7.

Exemple 9. Une famille d'espaces homogènes. Soient 1 < ti -c n des entiers et
8 g] — 1, 0[. Soit (lle produit semi-direct G R"~ Arj IE où a est une
matrice diagonale avec seulement deux valeurs propres distinctes 1 et v —<5 < 1 de

multiplicités /i — 1 et n — p La métrique invariante dt2 + e2tdx ù + e2t^~^dy2 (où
x regroupe les // — 1 premières coordonnées de IE"~' et y les n — // suivantes) a une
courbure sectionnelle comprise entre — 1 et — <5.
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2.3. Valeur au bord

Proposition 10. Soit M une variété riemannienne, soit f- un champ de vecteurs
complet sur M, de flot ft.
(1) On suppose que f est (1 — 1, p)-contractant et que sa norme est bornée. Alors

toute k-forme fermée Lp m possède une valeur au bord

û>oo lini 'j>', c>.
f—+00 '

et a> — cooo est la différentielle d'une forme Lp.

(2) Si § est (k - 1, p)- et (k — 2, pj-contractant, et si. m dß où ß g Lp, alors
(Poo 0.

(3) Si | est (k — 1, p)- et (k, p)-contractant, alors m^ 0.

Par conséquent,

(4) Si. £ est (k — 1, p)- et (k — 2, p)-contractcmt, Tk'p(M) 0.

(5) Si | est (k — 1, /?)- <?f (À-, p)-contractant, Hk,p(M) 0.

Preuve. D'après la formule de Cartan, la dérivée de Lie L^m ^(f>?a>\t=o estégale à

t .(!> (h )<: (•> \ + I dm).

Supposons que dm 0. En intégrant l'identité il vient

d J flftçmdsj.

Si f est borné, \\^m\\ip < ||§||z,«IMIz+- Si de plus § est (k — 1, p)-contractant, il
existe C et rj > 0 tels que < G <?v|Mlz+. Par conséquent, l'intégrale

n+oo
Bm l <j)'j:..mds

J0

converge dans Lp. On note

mon m + dBa> lim (iffm.
î—> +oo

Il s'agit d'une limite au sens des distributions. Si la limite est nulle, alors m

d(—Bcù) au sens des distributions. Cela entraîne que — Bm g Qk et que sa

différentielle est m, donc que la classe de cohomologie Lp de m est nulle.



Vol. 83 (2008) Cohomologie Lp et pincement 337

Si £ est de plus (k — 2, p)-contractant, on peut aussi définir un opérateur B borné

sur les formes Lp de degré k — 1. Soit a une (k — 1)-forme Lp telle que dß m. Il
vient

4>*ß ß I 't>: i ,">ds
J0

</^ j (p*l^ßds^j + j (j>*i^(dß) ds,

qui tend vers dBß + Bco quand t tend vers +oo. Mais comme f est (k, p)-contractant,
(ß*ß tend vers 0. On trouve que ß —dBß — Bco, d'où

(•> dß —cIBcO Cl) — (Orç,

d'où cûqo 0.

Cela prouve que dLp est exactement le noyau de l'application valeur au bord, de

Qk'p(M) D ker d dans l'espace vectoriel topologique des formes différentielles sur
M à coefficients distributions. Par conséquent, il est fermé, donc Tk'p(M) 0.

Supposons que $ est (k — 1, p)-et (k, p )-contractant. Soit m une À-forme fermée
Lp. On écrit co ß + db A y où i%ß 0 ,içy =0. Alors cßfß et cßfy tendent vers 0

dans Lp, donc <fifco tend vers 0 dans Lp, donc co^ 0, d'où co dLp. Cela prouve
que Hk'p(M) 0.

Remarque IL Plus généralement, sous des hypothèses adéquates, l'opérateur B
définit une homotopie du complexe (M) sur un complexe de formes différentielles
invariantes par le flot <$>t. Ce point de vue est développé dans [GKS], [P2],

2.4. Preuve du théorème A. Soit M une variété riemannienne complète,
simplement connexe, à courbure négative è-pincée. Soit k <: n dim M. Notons

q(n. S, k) 1 + Remarquer que q(ri, <5, k) est une fonction décroissante

de k.

D'après la proposition 5, si p <s q(n. S, k — 1), les champs de vecteurs de Buse-

IIIann | sont (k - 1, p) et (k — 2, p)-contractants. La proposition 10 s'applique, et
Tk'p(M) 0. De même, si p < q(n, S, k), f est (k — 1, p) et (k, p)-contractant,
donc Hk'p(M) 0.

Il reste à traiter le cas limite p q(n, 8, k). Dans ce cas, d'après la remarque 6,

\\(Akd^)\A^WP <Jac(&).

Soit K un compact de M. Il existe une constante c c(K) telle que les images

(pcj(K) pour | e 1 soient deux à deux disjointes. Alors la suite est
dans ip (Z), donc tend vers 0. L'inégalité précédente entraîne que si co est une À -forme
sur M annulée par /«•,

W^cj^WfiK) < \V'A\LP{(l>aj(K))
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qui tend vers 0. Cela montre que la limite au sens des distributions o>^ est nulle sur
tout compact, donc est nulle. On conclut que Hk'p(M) 0 aussi dans ce cas.

Remarque 12 (Cas desproduits semi-directs G H xia M). Dans le cas des groupes
Gßjus, le théorème A s'applique, et la torsion Lp s'annule en degré p pour tout

p < I + qui. S, n — 1),
Soit G H xi„P. un produil semi direct plus général. Notons k\ < < Xn_\ les

parties réelles des valeurs propres de a répétées autant de fois que leur multiplicité. On

suppose que X\ > 0. On utilise le champ de vecteurs invariant à gauche f qui engendre
l'action à droite du facteur M. Le champ —§ est (k — 1, p )-contractant et (k — 2, p)-
contractant tant que p reste strictement inférieur à ; - + iv.+ik

t
• La proposition 10

S'applique, et on conclut que la torsion Lp s'annule.

3. Exemples où la torsion est non nulle

Ce seront des groupes de Lie, produits semi-directs de groupes abéliens par M. On
construit des formes différentielles fermées explicites en utilisant la structure produit.
Elles sont nulles en cohomologie réduite, parce que la cohomologie réduite d'un
groupe nilpotent est nulle. Pour montrer qu'elles sont non nulles en torsion Lp, on
utilise la dualité de Poincaré.

3.1. Dualité de Poincaré. Le lemme suivant est essentiellement dû à V. Goldshtein
et M. Troyanov, [GT],

Lemme 13. Soit M une variété riemannienne orientée complète de dimension n.
Etant donné p > L on note p' l'exposant conjugué, i.e. tel que j- + y 1. Soit a>

une k-forme différentielle fermée et Lp sur M. Alors

- m est non nulle en cohomologie Lp réduite si et seulement si il existe une
(n — k)-forme fermée j/ e Lp telle que fMa> A \J/ f 0

- a> est non nulle en cohomologie Lp si et seulement si il existe une suite fj de

(n — kj-formes différentielles Lp telles que fMa> A j/j > 1 et \\djrf \\LP> tend

Preuve. Comme M est complète, pour toute (n - 1 )-forme L1 dont la différentielle
est L1, on a

vers 0.

f dco 0.
M

Par conséquent, si u> g Çlk,p(M) et f g Q" 1 k'p' (M),
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Si co g est nulle en cohomologie V réduite, alors il existe une suite

ßj G Qk~l'p(M) telle que dßj converge vers co dans Lp. Si ß G Q"~l~k'p (M), il

Inversement, si » û Qk'p(M) n'est pas nulle en cohomologie réduite, alors,

d'après Hahn-Banach, il existe une forme linéaire continue L sur LpQk(M) qui
s'armule sur l'adhérence de l'image dQ.k~l'p (M) mais pas sur co. Par dualité de Lp
et Lp', il existe une forme ß G LpQ"~k(M) telle que pour tout y G LpQk(M),
L(y) fM y a xjf. Si ß est lisseet à support compact, onaO L(dß) fMdßAß,
i.e. dp 0 au sens des distributions. On conclut que ß g Q"~1~k'p'(M) est fermée

et satisfait jM co A ß ß. 0.

Si co G Çlk'p(M) est nulle en cohomologie Lp, i.e. co dß où ß G Qk~1'p(M),
alors pour tout ß- G L!""1 ~k'p'(M),

donc si \\dßj ||LP/ tend vers 0, il en est de même de fM m a ißj.
Inversement, soit ® g Qk'p(M) une forme fermée. Si ® n'est pas nulle en

cohomologie réduite, il existe une (n — /v )-l'orme fermée p g Lp telle que J'M co a f 0.

La suite stationnaire ßj ß pour tout j convient. Supposons désormais que a>

est nulle en cohomologie réduite. On définit une forme linéaire L sur dÇln~k,p (M)
comme suit. Etant donné y G dQ"~k,p (M), on choisit p G Q,"~k'p (M) tel que
d ß y et on pose L(y) fM a> A ß. Comme l'intégrale de a> contre une forme
fermée est toujours nulle, le résultat ne dépend pas du choix de ß. Supposons qu'il
n'existe pas de suite fj g Q,"~l~k'p (M) telle que jM a> a ßj > 1 et || ßj ||LP> tend

vers 0. Alors la forme linéaire L est continue pour la norme Lp Par Hahn-Banach, L
se prolonge en une forme linéaire continue sur Lp Çln~k+i (M). Par dualité entre Id'
et Lp il existe une (k — l)-forme ß G Id' telle que pour tout y G Id' f2"~k+l(M),
L(y) (—1 )k jM ß a y. Si ß est lisse à support compact,

donc dß co au sens des distributions. Par conséquent, ß g Qk -''(M) et co est

Corollaire 14. Soit M une variété riemannienne complète de dimension n. Soit p > 1

et p' p/(p — 1). Alors

Rk'p(M) i- 0 «» R' A / i .V/ i 0, Tk'p(M) -:() <> Tn-k+l'p'(M) 0.

f co A ß i ß A dß < Wß\\LP\\dß\\LpA
JM JM

nulle en cohomologie Lp.
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Preuve. L'énoncé sur la cohomologie réduite résulte immédiatement du lemme 13.

Supposons que T"~k+]'p (M) 0. Montrons qu'il existe une constante C telle

que pour tout ij/ g Qli~k-p (M), il existe y g Ç2n~k-p'(M\ telle que dy df et

||y||Ly < C \\d-tjz\\LPi. Par hypothèse, dQ"~k'p'(M) est fermé dans Q"~k+l'p' (M).
L'opérateur d induit d: Qn~k'p (M)/ ker d —> d.Qn~k'p (M). C'est une bijection
continue entre espaces de Banach, donc un isomorphisme. Notons d~l son inverse,
notons C la norme de cet opérateur. Etant donnée une ('// —Ä-)-forme&> g Qn~k'p (M),
soit (f> G Q"~k'p (M) un représentant de la classe d~1dco g Q"~k'p (Mj/ketd de

norme presque minimum. Elle satisfait (presque)

dct) d(p et H^ll^y < C \\d<t>\\, -

Soit co g Çlk-p{M) une forme fermée, nulle en cohomologie réduite. Alors

I (•> <* if' I co A y
JM

'

JM

est contrôlée par \\4if\\ jji. Par conséquent, il n'existe pas de suite ijtj de (n — k)-
formes différentielles Lp' telles que fM o> a i,//y > 1 et \\â^\\jy tende vers 0. On

conclut que m est nulle en cohomologie Id'

Remarque. Plus généralement, Rk'p (M) est isomorphe au dual de R"~k'p'(M). On
aimerait dire que Tk'p(M) Ext(T"~k+l'p (M). M) dans une catégorie adéquate
mais il semble y avoir des difficultés, cf. [K2],

3.2. Cohomologie réduite des groupes abéliens. On va construire des classes de

cohomologie Lp non nulles. Pour montrer qu'elles appartiennent à la torsion, nous
auront besoin, au cours d'un raisonnement, de savoir que la cohomologie réduite de
M"-1 est nulle,

La remarque suivante apparaît entre autres dans [G2], Elle s'applique notamment
aux groupes de Lie nilpotents simplement comiexes.

Proposition 15. Soit G un groupe de Lie simplement connexe dont l'algèbre de Lie a

un centre non trivial. Alors la cohomologie Lp réduite de G est nulle en tous degrés.

Preuve. Un vecteur non nul du centre donne un champ de vecteurs de Killing § de

longueur constante, La formule

((pt )*co — co d f (<f)s}*'i.çcods + / (cps)*i^dcods
Jo Jo

"

montre que le flot de f agit trivialement sur la cohomologie Lp. Soit o> une forme
fermée Lp non nulle en cohomologie réduite. 11 existe donc une forme fermée Lp \\r
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telle que JG ö A f / 0. Comme le Ilot <pt est l'identité en cohomologie,

I i r/), !: (t> *•. (•'/ / CO A lp pour tout t.
JG JG

On utilise maintenant le fait que l'action de E sur G par le flot de § est propre.
Soit K un compact tel que la norme Lp (resp. Lp de a> (resp. i// dans G \ K soit

petite. Soit t tel que soit disjoint de K. Alors

L (4>t) a> A f <
G

est petit, contradiction.

3.3. Torsion des produits directs. L'objectif est d'étudier la torsion Lp des groupes
de Lie Gßr„j. Il s'agit de produits semi-directs. Une première étape consiste à

comprendre les produits directs, ou plus généralement, les produits riemanniens.
Soient M\ et M2 deux variétés riemanniennes complètes. On note gj : M \ x My

Mf les projections. Lorsqu'elle est vraie, la formule de Künneth énonce que le produit
cartésien des formes différentielles,

(ai, a2) 1—> ai x a2 arfisi A

Q*'p(Mi) 0 n*'p(M2) > O'-O.V/i m Mi),

induit un isomorphisme en cohomologie IJ'. Si la torsion T*'p (M 1 est identiquement
nulle, c'est vrai, voir [GKS], Mais si T*'P{M\ et T*'p(M2) ne sont pas nulles, il en

va autrement.

Exemple 16. Pour p 2, il existe des classes non nulles a, ß e rL2(E) telles que
a x ß 0 dans H1:1(E2

Preuve. Soient a a(x)dx une 1-forme L2 et f une fonction L2 sur E. L'équation
df a, en Fourier, s'écrit

aim àm-
Par conséquent, la classe de cohomologie L2 de a est nulle si et seulement sh§ i-> 4AL

O 'est L1.
Etant données des 1-formes L2 a a(x) dx, ß b(y) dy sur E et une 1-forme

L2 y yxdx + yydy sur E2, l'équation dy a x ß se traduit par

ily.x (Ç; I}) - itlYy(I- ri) â(Ç)b(ri).

On la résoud en prenant

llr(fslî f) tô1 + f ' Ç + X)
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On choisit pour â b une fonction paire, lisse, à support compact qui, au voisinage
de 0, coïncide avec | log(l/|§|)|_1/2. Alors à|f[pf n'est pas dans L2(R), donc les

classes de cohomologie L2 de a et ß sont non nulles. En revanche, si on utilise les

coordonnées polaires f p cos 9 et q p sin Ô, alors

ioO=iosG'+ios
î

COS$|
> log ~

p

d'où

I ILf <

<

<

i m)Hv)\2
tf:2 + q2)2

log r
p cos B

<r
-i

-2

log
p sin &

-1
-2

donc yx est dans L2(1R2, dÇ dq), et il en est de même de yy. On conclut que y g L2

et dy a x ß, donc y G f22J(]R2), et la classe de a x ß est nulle.

Pour remédier à cette difficulté, on introduit une condition sur une classe de torsion
Lp, appelée robustesse, qui garantit qu'elle reste non nulle après produit cartésien.

Soient M\ et M2 deux variétés riemanniennes complètes. Supposons que
Tk 1 •/; (M1 0 et 'I'kl-p (Mi 0. D'après le lemme 13, il existe des formes fermées
Lp êj. sur Mj. et des formes Lp/ e\ telles que

/Jm,
A e\ 1 et II de'j "LP tende vers 0.

La forme fermée Id' o> <-| aci sur Mj x M2 est elle non nulle en cohomologie Pour

l'affirmer, il faudrait contrôler la norme de d(e[ a e'2 c'est-à-dire non seulement

celles de de[ et mais aussi celles de e't et de e'2 •. On doit autoriser que

\\e\ j H tende vers l'infini, mais moins vite que \\de'2
y

|| ne tend vers 0. Ceci motive la
définition suivante.

Définition 17. Soit M une variété riemannienne complète de dimension n. On note

Ho'p(M) le sous-ensemble de Hk'p(M) formé des classes robustes, i.e. qui
contiennent une forme «ayant la propriété suivante. Il existe une suite <1/ g Q,"~k'p (M).
telle que

(1) les intégrales fMco A co'j ne tendent pas vers 0 ;

(2) les normes ||©j jjLp tendent vers +cx) polynômialement en j ;

(3) les normes \\da>j |u, tendent vers 0 exponentiellement en j.
Enfin, on note Tk ' M i Ho'p(M) n Tk'p(M).
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Remarque 18 (Cas où p 2). Dès que la torsion L2 est non nulle, il y a des classes

robustes. Il est possible que cela persiste pour tout p, mais je ne sais pas le montrer.
J'en suis donc réduit à construire à la main ces classes robustes.

Proposition 19. Soient M \ et Mp des variétés riemanniennes complètes. Le produit
cartésien de Classes de torsion Lp robustes de M \ et Mp respectivement est une classe
robuste (et en particulier, non nulle) du produit riemannien M\ x Mx- Si l'une des

deux classes est de degré maximum, le résultat est plus précis : le produit cartésien

est a nouveau une Classe de torsion robuste.

Preuve. Soient a>\ g Qkup(Mp) (resp. m2 g 12a-' .1/2 > des formes fermées.

Supposons qu'il existe des formes co'^ g Q'n~kl'p' (Mi) (resp. a>2 j g Çln-~k2>p'(M2))

comme dans la définition 17. Posons co a <02 étxwj tt^coij a tijCozj.
Alors m est fermée et Lp et les formes col satisfont aux hypothèses de la définition 17,

donc la classe de cohomologie de co est dans Ilk 'x M%),

Supposons maintenant que h] n 1 et que C02 est de torsion. Soit 4> une («2 — k-2)-

forme fermée Lp sur M\ x M%, La restriction de 0 à presque tout facteur {*} x Mi
est fermée et LP donc pour presque tout .ri g M1,

3.4. Torsion des groupes abéliens. A titre d'application de la notion de classe

robuste introduite au paragraphe précédent, montrons que la torsion Lp de l'espace
euclidien est non nulle en tout degré.

Commençons par le cas de la droite réelle.

Lpa dt et une suite uj de fonctions lisses à support compact sur M telles que

(1) fm iija dt ne tend pas vers 0;
(2) \\iij\\LPi tendvers +00polynômialementen j;
(3) j]u'j II jp> tend vers 0 exponentiellement en j.

On a de plus les propriétés suivantes :

Lemme20. L'ensemble t}'1' (M) est non vide. Plus précisément, il existe une l-forme

(4) /M ds < +00 ;

(5) les fonctions a et —uj sont décroissantes sur [1, +oo[;
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(6) les fonctions a et uj sont paires et s'annulent au voisinage de 0 ;

(7) U&jllsp° tend vers 0 exponentiellement en j ;

(8) pour toute >0, \sx^fu'ÄLg' et \\s~"uj\\LPi tendent vers 0 exponentiellement.

Preuve. Soit / une fonction lisse et paire sur M, à support dans [—1, 1], qui vaut 1

au voisinage de 0. On pose

a(x) (1 - x(*))|.r|"(log |x|)_1 si [*J > e,

_I
a(x) (1 — / i.v i tr p sinon.

On définit une suite de fonctions vj paires, décroissantes sur [0, +oo[ par

Vj(.x) 2(1 — /i.vi)2r y si |x| <

Vj(x) =2j |x| p' (log |x|)_1 si #7 < |x| < e2-7',

yui - »

Vj(x) 0 sinon

Vj(x) e P (ßJ + 1 — e 7|x|) si e2i' < [x] < e2j'(l + j

Comme p • 1. a et sa dérivée sont Lp. De plus on a sa'(s) ~ —^a(s) et il
résulte que / \p ds < +oc. Par construction, v'. est nulle sur [0, e?] et constante

sur |< '. c2'i I + / 1>1. Sur l'intervalle [<'. e2't 1 + j h]. |uj| est majorée par

const.y ^"^'(logs)-1. On calcule

pe^ pe^ pe^ (1+y-1)
I avj #0,1» / av; 1, / avj 0(/_1),

Jo Jet J
pe* pe^j (1+y-1)

I \vj\p' =2p\ / 1^:1^ 0(7), / 'V O../
Jo Jei J e^-j

l ' 0. j V]P Oij'r'^ß

/>e2i(l+f:SJ. W/= 0(jp'-le-2p'i). J \s~e Vj\p' 0(je~ep'

Äl+f)/ k-sr' o(^v^'), /
t/£-7 J g2-2;

/»e-7 pe 'l +"#=« I * "tyP Oij> e

mPi i i+y
/ Ci/ 'r 2''0.

SM
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Une approximation uj lisse et à support compact de vj convient.

Corollaire 21. Tk,p(R" j ^ 0 pour k 1, n.

Preuve, Montrons d'abord que To'p(W) est non vide.
Dans K" on note r la distance euclidienne à l'origine. Soit 6' dxj A - * • A dxn

une (ri — 1)-forme parallèle. La forme dr A 6 étant homogène de degré 0, elle s'écrit

dr A 0' h dx\ A • • • A dxn

où la fonction h est lisse en dehors de l'origine et homogène de degré 0. Elle n'est

pas identiquement nulle. Par homogénéité, \h\ et r\d h \ sont bornées.
Soient a et uj les fonctions fournies par le lemme 20. On considère les formes

différentielles a> a(r") dr et &>'• iij(rn)h0' sur M". On vérihe que

/ f+oo \ 1 ip
\\o>\\lp const.I J \a(r")\prn~l drj consLp[|jy»

est hnie, que

f co Acù'- j h1 f a(rn)uj(rn)rn~l dr C f auj
41« Js»-1 Jo Js

ne tend pas vers 0, et que

f^°° \uj(r»)\p'r»-ldr^j
>+OC

t
\Vp'

co'j IILpi const. I \uj{rn)\p'rn~l dt j const, \\iij \\Lpi

tend vers +cx) polynômialement.
On calcule

dco'j nrn~^u'j(rn)h dr A 9' + Uj(rn) dh Ai',
et on majore

/ f+oo \ lIp'
< const-(

Jo \rn-lu'j(rn)\p r"~l drJ

const. Us"-1 (-Oil lp' •

puis

\uj(rn) dh\\LPi < const.^y |r 1uj(rn)\p rn 1 drJ

const. 11S
~1

My o 11LPI,

w

qui tendent vers 0 exponentiellement, d'après le lemme 20. On conclut que co est dans

Ho'p(Rn), donc dans t}'p(Rn) puisque la cohomologie réduite est nulle.
Pour avoir le cas général, il suffit d'appliquer suffisamment de fois la proposition

19.
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3.5. Graduation des formes différentielles sur les produits semi-directs. A la
différence du cas des produits directs, une métrique riemannienne invariante à gauche
sur un produit semi-direct G H xIq, M croît exponentiellement, avec des exposants
différents suivant les directions, déterminés par les valeurs propres de la dérivation a.
Ceci affecte les propriétés de contraction du champ de vecteurs invariant à droite -f

qui engendre l'action à gauche du facteur M sur G. On a vu en section 2 comment
utiliser le flot de ce champ de vecteurs - et ses propriétés de contraction de la norme
Lp de formes différentielles - pour montrer que la torsion Lp est nulle. Les mêmes

propriétés vont évidemment jouer un rôle dans la construction de classes de torsion
non nulles.

Définition 22. Soit G H xi„ M un produit semi-direct de groupes de Lie, soit M
l'algèbre de Lie de H. Soit p > 1 un réel, soit k < dim G un entier.

(1) On décompose
AA"Jé* Ak+ © Aq © Ak_,

où Ak+ (resp. Aq, resp. Aa est la somme des espaces caractéristiques de A "a

relatifs aux valeurs propres de parties réelles supérieures (resp. égales, resp.
inférieures) à tr''.

(2) On dit que p est critique en degré k pour G si ~ est la partie réelle d'une valeur

propre de l'endomorphisme AkaT de AkM*, autrement dit, si Aq A 0.

(3) On note do, d± la différentielle extérieure composée avec le projecteur sur Aq,
aa.

La décomposition dépendant de p, on notera h+[p), ^+fj| s'il est nécessaire de

spéciher l'exposant.

Remarque 23 (Comparaison avec la définition 3). Le champ § est (k, p )-contractant
si et seulement si Ak+Ip: Aq( } 0, (k, p)-dilatant si et seulement si Ak_{p)

Ai 0. Dans ce cas, d'après la section 2, la torsion a des chances d'être nulle.

Pour construire des classes de torsion, on va donc exploiter le fait que Ak+(p) et Ak_{p)

sont simultanément non nuls.

3.6. Critère de non-nullité de la torsion. On s'inspire de la discussion des produits
directs (paragraphe 3.3). Lorsqu'on passe aux produits semi-directs G H Mq, M

et qu'on s'intéresse à un exposant p non critique, on utilise seulement le fait que
la cohomologie à support compact de la droite réelle est non nulle. D'une certaine

façon, l'opérateur d+ remplace l'opérateur d sur l'autre facteur.
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Proposition 24. Soit G H M un produit semi-direct. Soit p > 1. Soit e

une (k — 1)-forme fermée Lp sur H. On suppose qu'il existe une suite de formes
g Q"~k~1,p' (H) telle que

(1) les intégrales fH e a d+{pt)e'- ne tendent pas vers 0;

(2) la suite mj \\de:\\Lp, tend vers +oo polynômialernent;

(3) la suite nj \\dd+{p^ej\\LP' tend vers 0 exponentiellement.

Alors Ho'p(G) yè 0. Si de plus H est nilpotent, alors To'p(G) fL 0.

Preuve. Notons n : G II la projection dont les fibres sont les orbites de l'action
à droite du facteur E. Soit y une fonction lisse sur M telle que / =0 au voisinage de

—oo et x 1 au voisinage de +oo. On note %s 11 h» y(t + s).

La forme fermée m représente le produit cartésien du générateur de la cohomologie à

support compact H}, (M) et de la classe [e] g Tk~l,p(H) (qui est non nulle, en vertu
des hypothèses 1 et 3). Pour montrer que sa classe de cohomologie Lp est non nulle,
on utilise la dualité 13 avec les formes-test col définies comme suit.

Xsj( 1 - %-Sj)tp

où sj est un réel positif. Autrement dit, af- est une troncature (destinée à rendre sa

différentielle Lp') d' une forme i/q qui est Lp', mais dont la différentielle ne l'est pas.

Posons

m dy A iv*e.

fj Xin*d+e'j + (1 - xßm*d-e'j + dxi A e'j

et

Alors

Jf JH J M .///
ZIdx / eAd+e'j- / il /\ul/ I < • d ij

j e A d+e'j
H

ne tend pas vers 0. Comme d i//y n *dd+e'j,

< eßsJnj.
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D'autre part,

IId{xSj{\ ~ X-Sj)) A
{G)

I\d(Xsj) A + 11^(1 - X-Sj) A tj^pl{G)

< const. 11 (rf>sj )*d+e'j 11

(iï) +

a ll^m + u^U*?
<const.e-"A||^.||^/(ff).

Il vient

I^IUp'IS® < C (eßsi tij + e~1]Sjmj).

Posons sj logi iftii i //ih j Avec ce choix,

h H if* ^/n-^'rr n/p'+n
\\aa>j\\Lp' < t my. n-j

qui tend vers 0 lorsque j tend vers +oo. Le leirnne 13 entraîne alors que m est non
nulle dans Hk>p(G).

Soit a>' une (n — Ä')-forme fermée Lp sur G. Ecrivons a>' ß't + dt A y/. Alors
ß't est une forme fermée sur II qui est dans Lp' pour presque tout t g M. Supposons
H nilpotent. D'après le théorème 15, la cohomologie réduite Rk~l'p{H) est nulle.
Par conséquent, pour toute (k — 1)-forme fermée Lp e sur H, fH e A ß't 0. Il vient

/ <// a 7T*e A oJ j x'(t)dt I e A ß't 0.
JG m Jh

Ceci prouve que w dx A n*e est dans Tk'p(G), et donc que Tk'p(G) ^Q.

Remarque 25 (Double valeur au bord). Notons f le champ de vecteurs invariant à

gauche qui engendre l'action à droite du facteur K. Si on transporte i/o par son flot,
on trouve des limites distinctes, respectivement d+e'j quand t tend vers +oo et d-
quand t tend vers — oc. Cela illustre le fait que, bien que £ ne soit ni (k, p)-contractant,
ni (k, p)-dilatant, on peut définir deux valeurs au bord. Ce point de vue est développé
dans [P2],

3.7. Construction explicite de classes de cohomologie Id'. Avant de nous lancer
dans le cas général, traitons un exemple.

Exemple 26. T*'1 (G, 4 _i ^ 0 si | < p < 2.
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Preuve. Ici, H M3 avec les coordonnées x, y, z, et une matrice a diagonale, de

valeurs propres 1, 1 et 2. Lorsque | < p < 2, l'exposant conjugué p' satisfait
2 < p' < 4, d'où 2 < < 3. Sur les 1-formes, A3_( /} est engendré par dz, A

par dx et dy. On va appliquer le lemme 24 avec des fonctions à support compact e'-

qui ne dépendent que de la distance r à l'origine, et une 2-forme fermée ë e dA_,
de la forme e d(fß') où / est une fonction de r ei ß une 1-forme homogène de

degré 1.

Comme t f'(r)ß + f(r)dß, et comme dß est homogène de degré 0, \dß \ est

homogène de degré —1, d'où

\\de\\LP < const.GI/VHIitp) +
"+oe \ l/p / p-HK

< const. I
f+oa \WP / f+oo \\
I \f(r)\Pr2drj j r '/.ri 'r'drß ' jj.

Notons d Wj(r^). Alors

d'où

dc'j Wj(r2)d(r2) 2 Wj(r2)(x dx + y dy + zdz),

d+e'j 2wj(r2)zdz,

dd+e'j Aw'!{r2)(x dx + y dy + z dz) A z dz,

l/p/ /»+00

iTij \\de'j\\LPi const.IJ \rWj(r2)\pr dr

nj \\dd+e'j\\LP/ const\r2Wj'(r2)\pr~ dr j

Le plus délicat à contrôler est l'intégrale // fe* h d+e'j. Comme e'- est à

support compact, la formule de Stokes s'applique, et

lj f fß A dd+eß
Jfß

Choisir ß invariante par rotations (autour de l'origine, ou même seulement autour de

l'axe Oz) est impossible, car dr A dd+e'- s.vv/.v + ydy) A dd+e'j 0. Il faut donc

casser la symétrie, c'est pourquoi on choisit ß proportionnelle à dy. On calcule

dy A dd+e —Aw'j{r2)xz dx A dy A dz

r2w"(r2)h(x, y, |J dx A dy A dz,

où Inx. y, z) est une fonction homogène de degré 0. C'est cette fonction qui
entre comme ingrédient dans e : on prend ß h dy, d'où e d(f(r)h dy).
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Avec ce choix, il vient

±7; / é A d+e'j
m*

/ f(r)h dv A dcl+e'j
Jm1 ' J

—4 / fifr^w'Ur2) <Lr A <iv A
Af

~4( / P)f
°°

f(r)w'!{r2)r4dr.

Reste à trouver / et wj. Plutôt que de construire des fonctions adhoc, il suffit de

prendre
f+oc

f(r) ra(r3), — / /
1

"»;(/' " <//

i|i|
où a et «y sont les fonctions obtenues au lemme 20. Les propriétés 4 à 8 de ce lemme
sont là pour garantir que tij tend vers 0 exponentiellement, que ni j tend vers l'infini
au plus polynômialement et que/, ne tend pas vers 0 (voir ci-dessous).

Passons au cas général (un peu plus général que le théorème B).

Proposition 27. On considère un produit semi-direct G H yiaR où 77

est abélien. On note X.| < • • • < An-\ les parties réelles des valeurs propres de a. On

noté wk A\.4 h Ak et Wk A.„_i_a H h An-\. Si wk-i < ^ < Wk-\ et

si p est non critique en degré k — 1, alors Tk'p(G) f 0.

Preuve. Les inégalités Wk^i < Wn-i/p < Wa--i entraînent que wn,_f < wn_i/p' <
Wn-k. Etant donné 7 C {1 n — 1}. on note A; ff, el • Considérons, parmi
les parties 7 à« — A-éléments de {1 n — 1} telles que /./ > wH-\/ //, celle, notée

7o, pour laquelle Ai est minimum. Notons im le plus petit indice qui n'est pas dans

7o et im le plus grand élément de Iq. Comme Ai0 > w„_i/p' > w„_a, im <n — k
et |,im «f A{m. Posons I\ (7o U {«,„}) \ {Im}- Alors Afl < X/0 donc par déhnition
de 7q, Li, < wn_i/p'. Comme p est non critique en degré k — 1, // est non critique
en degré n — k, donc w,,_ | — p'kf 0 pour tout ensemble 7 à n — k éléments. Par

conséquent, À/j < w„-i //>'.
Soit 9' g A" ~k~1 ,K* un vecteur propre de A" ~k~1 a relatif à une valeur propre de

partie réelle //' À/,, — X(Af, et soient tf el //' g 77* des vecteurs propres relatifs à des

valeurs propres de parties réelles et /.,M respectivement. Alors (rf a öO+c/)
// A.0' mais (rj A 0')+(y) 0 donc

(ï) + if) A ((?7 + if) A d'f+iy) r] A r/ A 9'
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est non nul. Il existe donc 9 g Ak~2.}{* tel que 9 A(ïi + r)') A ((ïi + r)') Ae')+ipl) £ 0.

Soient a et uj les fonctions fournies par le lemrne 20. Posons, pour jr > 0,

vj(s) s-^UjÇs^2).
Notons wj la fonction à support compact sur [0, +oo[ dont la dérivée est ij. Dans

H M"-1, on note r la distance euclidienne à l'origine. On définit des fonctions

f rat?' et gj Wj(r2) sur H. Par construction, dgj 2iij(r"~l) dr.
On considère les formes différentielles e's gi&^mtH. On&éS w'dr2)d(r2) A

J J J

9' donc d+e'i vo'-{r2)dr\ A Ù', où on a noté

2 V" 2
2_, *t

Xi-\-ßl>\x a/p'

Comme la l'orme d(r^) est fermée,

dd+e'j w'j(rc)d(r2) A d(r^) A 9',

Comme la (n — l)-forme dir1) a d+r2 A 9 A 9' est homogène, on peut l'écrire

dir2 A d+r2 A 6 A 9' r2h(x)dx\ A A dx„-1

où la fonction h est lisse en dehors de l'origine et homogène de degré 0. Par
homogénéité, [h] et r\dh\ sont bornées.

Il existe un point de H où dir1) ij + //. En ce point, la (« — l)-forme 9 a
d(r2) a (dir2) a#')-Hp') est non nulle, donc h n'est pas identiquement nulle. On pose

f d(fhO),

Comme ci est à support compact,

-• j e A d+e'j j fh9 A dd+e'j

j fWj'(r2)h dir2 i A d+r2 A 9 A 9'

/» /»+00

I h2 / f (r)w'- (r2)r2r"~2 dr
JS"-2 J0

r+oo

j f (r)w'J(r2)r" dr

où C > 0. On calcule, pour r > 0,

<(r) - - lr-3,2»;(r"-"2) +
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Comme uj est décroissante sur [1, oo[, les deux termes de la somme sont de même

signe, donc

r+oo

il f(r)wj(r2)r" dr
I f+m>-/ ra(rn-l)r-3Uj(rn-l)rn drl

-u
1 f— I a(s)Uj(s)ds
4 M

a(s)uj(s) ds

qui ne tend pas vers 0. L'intégrale Jq f{r)w'!{r2)rn dr tend vers 0, donc fHe A d+e'

ne tend pas vers 0. Comme e hf'(r)dr A 6 + fdh A 9,

\\e\\Lp < const.H/lrlIlwiH) + Ilr~l f(r)\\LP{H)

"+00 \ l/p
const.

+

< const

+

const.

<U >w'ér)
y i'+oo \ 1 /p\
f | \r~^ f (r)\pr"~2 drj j
/ / f+m \l/p

.11 J \rn-la'(rn-l)\prn-2drj

(f
+00 \ l/p\

Jo \a(r»-l)\pr»-2dr\ j
f +00. f +00.

j \sa'(s)\p ds)^p + j \a(s)\p ds\
1 IP

est finie.

Comme de', 2iij(rn 1)dr A 9',
1 J

Wde'jWl,
r+oo

const./ \uj(rn~l)\p r"~l dr
J0

f+°°
const. / hi j (s) \ ds

Jo

croît polynômialement en j, d'après le lemme 20.
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Comme dd+el w'j(r2)d(r2) A d+r2 Ad',

\\dd+e'j\\LPr < const

const

+

+

tend vers 0 exponentiellement, d'après le lemme 20. De la proposition 24, il résulte

3.8. Torsion de l'espace hyperbolique réel. Lorsqu'on s'intéresse à un exposant

p critique, on utilise le fait que la cohomologie Lp de la droite réelle est non nulle,
ainsi qu'une information plus fine sur la cohomologie Lp de H, faisant jouer un rôle

important à l'opérateur do.

Proposition 28. Soit G H xaRunproduit semi-direct. Soit p un exposant critique
en degré k — 1, i.e. tel que Aq-1 ^ 0. On suppose qu'il existe une (k — ï)-fornie #
fermée et Lp sur H et une suite e'- g Qn~k'p'(H) telles que

- <?_ 0, e'j _ 0, d_e'j 0;

- fHe a e'j ne tend pas vers 0 ;

- \Wj q\\Lp *
Il e'j +ii if et \\d+e'j\\LPi tendent vers l'infini polynômialement en j ;

- \\doe'j IILP! tend vers 0 exponentiellement en j.
Alors Hk piG £ 0.

Preuve. Soient a et uj des fonctions sur K qui sont nulles sur [0, +oo[ et coïncident
sur ] — oo, 0] avec celles construites au lemme 20.

On pose cù a(t)dt A jr*e et o>'. uj(i)7i*e'j. Alors cù est fermée. Comme

e- 0, il existe une constante strictement positive v telle que

que Tk'p(G) f. 0.

o
< const.

donc m G LP(G). De même,

< const. j K
MOI^ll^.+ll^ + kuDll^*
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tend vers +00 polynômialement. On calcule

dùÊ u'At)dt A n*e'i + 11-u )7T ill '-..
J J J J J

et

\\iij(t)dt A n*e'j\\^p/

< const, j ^
+ II«t'(H))dt

tend vers 0 exponentiellement car |hd-H^y et [[»'-||/,« tendent vers 0 exponentielle-
ment. De même

\\uj(t)7i*dej ll^/(G-j < const. J \uj(t)\p'(e^Wd+e'jf^,^ +

tend vers 0 exponentiellement car \\doe']\\lP' et ||m/||£~ tendent vers 0 exponentiel-
lement.

F.nfin

I o)Ao)'i= I mii I e A e\
Jg 1 J-00 JH 1

ne tend pas vers 0. On conclut avec le lemme 13 que 0 est non nulle dans Hk'p(G).

Corollaire 29. Soit M RH* l'espace hyperbolique réel de dimension n. Pour
chaque 2 < k < n — 1,

Tk'p(M)£ 0 4» p k — 1

Preuve, Le théorème A s'applique et entraîne que, pour tout/? ^ |^j,Tk>p(M) 0.

De plus, Hk'p(M) 0 dès que p < |=f.
Réciproquement, soit e une (k — 1)-forme fermée à support compact sur Mn_1,

non nulle, Cela existe dès que k > 2. Soit e' une (n — Ä")-forme sur K"-1 telle

que J « a ï' ^ 0. Comme Ak" Aq-1, A"~k Aq~a et A"~a+i A'!"'1"1, les

conditions 0, e!_ — 0 et A-i 0 sont automatiquement satisfaites. De plus,
d+e' 0, donc la proposition 28 s'applique, et Hk'p(M) ^ 0.

Pour montrer que Rk'p(M) 0, on utilise la dualité de Poincaré, corollaire 14.

En degré k' n — k, l'exposant conjugué p' q(n, —1, C), est justement

le cas limite d'application du théorème A, donc Hn~k'p' (M) 0. En particulier,
R"~k'p'(M) OjtPoü, par dualité, Rk,^(M) 0. On conclut que Tk,p (M) 7^ 0.
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3.9. Preuve du théorème B. Le cas de l'espace hyperbolique réel a fait l'obet du

paragraphe 3.8.

Le groupe s'obtient en faisant À! • • • X„.-B *S^8,X„_ß+1 • • •

Xn_i 1. On pose k /<, il vient \\\. i k — 1, w„_i k — 1 + (n — k)*j—8.
Les exposants critiques en degré k — 1 sont les nombres de la forme wn-i/X où X est

une somme de k — 1 nombres parmi Àj,— Xn-\ Le plus petit est Le suivant

est —- >' Oh Pcut donc appliquer la proposition 27 et conclure que

Tk'P(G) p 0 pour tout p dans l'intervalle

Wn—1 Wn—\

Wk-1 Wk-2 + Xn-k
Kl n ^ l + (n-fc-l)V=â

q(n, ô. A' — 1), 1 +
A- - 2 + Ç-8

Si Gßétait quasiisométrique à une variété riemanmenne M simplement
connexe, complète, à courbure sectionnelle négative ^-pincée pour un 8' < S proche
de || alors, pour q(n, 5, p — 1) < p q{n,8',p - 1), T1'1 iC,,.^ 0 mais
le théorème A donne que Tß,p{M) 0, c'est incompatible avec l'invariance sous

quasiisométrie de la cohomologie Lp pour les espaces uniformément contractiles,
voir [G2], section 8.

Exemple 30. Cas des espaces symétriques de rang un. La construction qui précède
ne s'étend pas aux produits semi-directs C II ^,y K ou II est nilpotent non abélien.
On l'explique sur l'exemple où G est isométrique au plan H^. Dans ce cas, II est le

groupe d'Heisenberg de dimension 3. Son algèbre de Lie M admet une base (X. Y. Z)
où Z |.¥, F] est central. Dans cette base, la matrice de la dérivation a est o t o

V 0 0 2 /
Soient dx, dy, r dz - xdy les éléments de la base duale, vus comme formes
invariantes à gauche sur H. Ce sont des vecteurs propres de m, pour les valeurs

propres —1, —1 et —2. Soit p un réel, | < p < 2. On s'intéresse à la torsion en

degré 2, T2'P(G). Alors 2 < p' < 4, 1 < Xl^~ <: 2, donc est engendré par r,
A_çp/) par dx et dy.

Soit e'j une suite de fonctions sur H. Alors

de'j (Xe'j)dx + (Ye'j)dy + {Ze^x.
il. (': {Zed)r,

dd. < d(Ze'j) A r + (Ze'j)dT

En particulier, Ze —dd+e'j(X A Y).
Par conséquent,

11 11U#* — j 11

pp> •

et fH e a d+e'j doit tendre vers 0 en même temps que || dd+fj \\I P:- H n'existe donc

aucune donnée e, e'< qui satisfasse aux hypothèses du lemme 24.

De fait, T2'P(CH2) 0 pour | < p < 2, voir [P2],
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