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Witt groups of sheaves on topological spaces

Jon Woolf

Abstract. This paper investigates the Witt groups of triangulated categories of sheaves (of
modules over a ring R in which 2 is invertible) equipped with Poincaré-Verdier duality. We
consider two main cases, that of perfect complexes of sheaves on locally compact Hausdorff

spaces and that of cohomologically constructible complexes of sheaves on polyhedra. We
show that the Witt groups of the latter form a generalised homology theory for polyhedra and

continuous maps. Under certain restrictions on the ring R, we identify these constructible Witt
groups of a finite simplicial complex with Ranicki's free symmetric L-groups. Witt spaces are
the natural class of spaces for which the rational intersection homology groups have Poincaré

duality. When the ring R is the rationals we identify the constructible Witt groups with the

4-periodic colimit of the bordism groups of PL Witt spaces. This allows us to interpret L-classes
of singular spaces as stable homology operations from thé constructible Witt groups to rational
homology.

Mathematics Subject Classification (2000). 32S60, 19G99, 55U3Q, 57Q20.

Keywords. Witt groups, Witt spaces, intersection cohomology, L-theory, topology of singular
spaces.

1. Introduction

This paper investigates the Witt groups of triangulated categories of sheaves of R-
modules equipped with Poincaré-Verdier duality. We will be most interested in the

case when R Q, however the main results in §3 and §4 hold for any commutative
regular Noetherian ring, of finite Krull dimension, in which 2 is invertible. (By 'regular'

we mean that R has finite global dimension and that every finitely generated
module satisfies Auslander's condition.) We consider two main cases, that of perfect
complexes of sheaves on locally compact Hausdorff spaces and that of cohomologically

constructible complexes of sheaves on polyhedra. We show that the Witt groups
of the latter, the constructible Witt groups, form a generalised homology theory for
polyhedra and continuous maps.

When every finitely generated /(-module can be resolved by a finite complex of
finitely generated free /(-modules we identify the constructible Witt groups of a finite
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simplicial complex K with Ranicki's free symmetric L-groups H*(K\ L'(R)} [25,
Proposition 14.5].

When R Q we show that every Witt space has a natural L-theory, or Witt,
orientation and we identify the constructible Witt groups with the 4-periodic colimit
of the bordism groups of Witt spaces introduced in [28]. This answers Problem 6 in
[10, §IX], It also allows us to interpret L-classes of singular spaces as stable homology
operations from the constructible Witt groups to rational homology. Before giving
further details we put these results into context.

Witt groups and L-theory. In his 1937 paper [32] Witt studied symmetric bilinear
forms over a held k, in particular defining what is now known as the Witt group
W(k) - the set of isometry classes of symmetric bilinear forms (equipped with
direct sum) modulo the stable equivalence relation generated by (hose forms with a

Lagrangian subspace. (Witt also showed that the tensor product gives W(k) a natural

ring structure, but we will ignore this for the present.) By analogy we can dehne the

Witt group W(R) of any commutative ring R - see e.g. [22], [23], Ulis algebraic
construction has been generalised to provide invariants in both algebraic geometry
and in algebraic topology.

In algebraic geometry, Knebusch dehned the Witt group W(S) of a scheme S

in [21] by considering symmetric bilinear forms on locally-free coherent sheaves

(vector bundles) on S. In this context the classical Witt group W(R) of a ring R

arises as W(Spec R). Knebusch's dehnitions can be used to dehne the Witt group of
any exact category with duality. In a more recent development [3] Balmer extended
this to define the Witt groups of any triangulated category T with duality. To obtain a

good theory he requires that 2 be invertible, i.e., that the morphisms between any two
objects are a Z[ 4 j-module not merely an Abelian group. Balmer's Witt groups are a

collection W (T of Abelian groups indexed by Z, but which tum out to be naturally
4-periodic, i.e., Wl (T) W!+4(T). In a series of papers Balmer and others, notably
Gille and Walter, have studied these groups for the derived category Dlf (5) of locally-
free coherent sheaves on a scheme. Knebusch's Witt group W (S) is isomorphic to
Balmer's zero'th Witt group Vk0(Dlf(S)). Much of this work is summarised in [4, §5],
which also contains a compendious bibliography. Of particular note is [18] in which it
is shown that the Witt groups of the derived category of locally-free coherent sheaves

on a regular scheme are representable in both the stable and unstable A1 -homotopy
categories.

In algebraic topology, the development by Browder, Novikov, Sullivan and Wall
of the surgery theory of high-dimensional manifolds in the 1960s culminated in
the introduction by Wall [30] of the surgery obstruction groups L*(R). These

L-groups are dehned for any ring with involution R and are 4-periodic, i.e. L*(R)
L*+4(R). Mishchenko and Ranicki also dehned symmetric L-groups L*(R), with
L°(R) W(R) the classical Witt group. If 2 is invertible in R then Li (R Ll (R),
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and

LiiR) " VI't /)"(Spec /\'i!.

Th@ L-groups of a ring with involution can be interpreted as the invariants associated

to a point in a wider topological theory. More precisely, given a simplicial complex K
and ring R with involution, Ranicki has shown how to associate to it certain algebraic
objects, called (R, K)-modules. Using a combinatorial version of Poincaré duality
he constructs a 'weak chain duality' on the category of chain complexes of (R, K)-
modules and defines the symmetric L-groups of K to be the ' algebraic bordism groups '

of 'symmetric Poincaré complexes' in this category. Furthermore he constructs a

symmetric L-theory spectrum V(R) whose homotopy groups are the symmetric L-
groups of R. This spectrum corresponds to a generalised homology theory whose

homology groups //, K: L'i R)) are (he symmetric L-groups of K. L-theory plays
an important rôle in surgery theory and the classification of manifolds. The definitive
account of this work is [25],

In short, in both algebraic geometry and algebraic topology one can dehne
generalised homology theories (in the sense appropriate to each subject) for which the
classical Witt group appears as hie zero'th group of a point. It is important to realise
that the dualities involved are rather different in these two cases; in algebraic geometry

one only has to extend vector space (free f?-module) duality to vector bundles

(locally-free coherent sheaves), but in topology one requires some form of Poincaré

duality. There is another way to extend Witt groups in algebraic geometry where,
rather than considering vector bundles, one considers the derived category of coherent
sheaves equipped with Serre duality - see [4, Example 78].

Ibis paper draws from both these theories in that we apply Balmer's techniques,
which arose in algebraic geometry, to obtain a new description of symmetric L-theory
for polyhedra.

Survey of results. In slightly more detail, the contents of the paper are as follows.
We begin, in §2, by surveying the basic definitions and properties of Balmer's Witt
groups of a triangulated category with duality. We elucidate the connection between

symmetric isomorphisms in a triangulated category with duality and Verdier dual

pairings, which are the analogue of symmetric bilinear forms. Ibis section also

contains a new treatment of the appropriate functors between categories with duality,
namely functors which are symmetrically self-dual.

We apply this theory in §3 to construct Witt groups of sheaves on topological
spaces. Suppose X is a locally compact, locally connected Hausdorff space which
is countable at infinity and R a commutative regular Noetherian ring of finite Krull
dimension. Under these conditions there is a (contravariant) Poincaré-Verdier duality
functor from the derived category of sheaves of R-modules on X to itself (see [14,
Chapter 3]). If we restrict to the triangulated subcategory of perfect complexes then it
is an equivalence, and we have a triangulated category with duality in the sense of [1].
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With the further assumption that 2 is invertible, we show that its Witt groups W'' (X)
form a homotopy-invariant functor which satisfies all the axioms of a generalised
homology theory apart from possibly excision.

Let K be a simplicial complex. Its realisation is naturally stratified (see §4.2), and

we denote this stratified space by /C.y. We can restrict our attention from the perfect
complexes to the triangulated subcategory of complexes which are cohomologically
constructible with respect to the stratification. This subcategory is also preserved
by Poincaré-Verdier duality. Its Witt groups, which we dub the constructible Witt
groups of K and denote "PfffK), form a generalised homology theory for simplicial
complexes and simplicial maps. Simplicial approximation then allows us to obtain
a generalised homology theory for compact polyhedra and continuous maps. The
section ends with a brief discussion of equivariant generalisations and of related
theories defined by altering the constructibiJily condition.

In §4 we relate the constructible Witt groups IT) (K) of a finite simplicial complex
K to Ranicki's free symmetric L-groups I1., K : IL" R)) by exhibiting a natural
transformation from the latter to the former. If every finitely generated R-module has a

finite resolution by finitely generated free R-modules then a theorem of Walter's [31,
Theorem 5.3] shows that the natural transformation induces an isomorphism of point
groups. Hence we obtain isomorphic generalised homology theories for simplicial
complexes.

Finally, §5 explains the geometric nature of the rational (R Q) theory. We
review Siegel's work [28] on the bordism groups of PL Witt spaces and construct a

natural transformation fromWitt bordism to the constructible Witt groups which is, in
sufficiently high dimensions, an isomorphism. Phrased another way, the constructible
Witt groups are the 4-periodic colimit of the Witt bordism groups. We use this

geometric description, and an adaptation of the construction of L-classes in [24,
§20], to view L-classes as homology operations from the bordism groups of Witt
spaces, or, by the identification of the previous section, from the constructible Witt
groups, to rational homology.

Connections with other work. The isomorphism between certain constructible Witt
groups and free symmetric L-groups constructed in §4 makes it apparent that this paper
is closely related to Ranicki's work on L-theory. Our sheaf-theoretic approach has

the virtues that it is technically simpler (at least for those familiar with sheaves and

derived categories) and that it directly connects L-theory with the large body of work
on intersection homology, Self-dual complexes of sheaves and characteristic classes

for singular spaces.
This is not the first attempt to give a sheaf-theoretic description of L-theory. One

could loosely describe Sections 3 and 4 as a triangulated version of Hutt's unpublished

paper [20], in which he considers the symmetric and quadratic L-groups of
the category of complexes of sheaves with Poincaré-Verdier duality. However, there
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are important differences. By working directly with complexes, rather than in the
derived category, Hütt obtains distinct quadratic and symmetric L-groups. Using the

triangulated approach we require the restriction that 2 is invertible. (Although it is

possible to dehne Witt groups for triangulated categories of sheaves even when 2 is

not invertible, there is no known proof of the long exact sequence of a pair in this

case, and it seems doubtful that we would obtain a good theory, see [4, §1.5].) This
means that we obtain only one theory, since the quadratic and symmetric L-groups
agree when 2 is invertible. From the point of view of topology, in which we are

most interested in L"(Z) or h'(Z[jTi(X)]% the restriction to rings in which 2 is

invertible is perhaps unfortunate. However, in compensation for this restriction, the

triangulated theory is considerably simpler and less hddly to dehne. Hie proofs are

quite formal, often based on nothing more than well-known properties of functors
between triangulated categories of sheaves. A case in point is the proof of excision
for Witt groups of constructible sheaves in §3.5. We do not require any of the

machinery of micro-supports involved in Hutt's work, and thus we are able to obtain a

generalised homology theory for polyhedra and continuous maps without requiring
any assumptions of smoothness.

There is also a close relation, particularly in terms of technique, to Cappell and

Shaneson's work on self-dual complexes of sheaves, see [12], and to Youssin's more
formal version [34] for triangulated categories, in which he similarly dehnes a cobor-
dism relation on self-dual objects in a derived category with duality. However, this
cobordism relation, see [12, §2] for the case of sheaves and more generally [34,
Definition 6.1], is stronger than the relation ofWitt-equivalence introduced by Balmer [1,
Definition 2.13] which we use. Another difference is that Cappell and Shaneson work
with a fixed stratification. For this reason one would not expect their cobordism groups
to form a generalised homology theory. To obtain a topologically invariant theory we
take a limit over all stratifications compatible with a given PL structure. Taking into
account these differences, and using [1, Remark 4.25], we see that Cappell and Shane-

son's cobordism group is a quotient of the Witt group of the triangulated subcategory
of complexes of sheaves which are constructible with respect to a fixed stratification.
In particular, their cobordism groups are always freely generated Abelian groups (see

[12, Theorem 4.7] and [34, Corollary 7.5]) whereas ours can, and frequently do, have

torsion. The relationship between Balmer's Witt groups and Youssin's cobordism

groups is discussed in more detail in [11], (A potential source of confusion is that
Youssin calls his cobordism groups Witt groups. However, it should be noted that
these Witt groups are not the same as Balmer's and, moreover, Youssin's cobordism

group of the derived category of R-modules is not in general the Witt group of the

ring R.)

A large part of [12], and also of [6], is concerned with the computation of
(intersection cohomology) signatures and, more generally, L-classes, which they show

are invariant under their cobordism relation [12, Proposition 5.2]-. Since their cobor-
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dism group is a quotient of our Witt group (provided we use a fixed stratification)
it follows that L-classes are also well defined on the Witt group. We give a direct
geometric construction in §5.2 showing that the L-classes arise as stable homology
operations from the constructible Witt groups to ordinary rational homology. See

also the construction of L-classes for singular varieties in [11],
Further information on the connections between surgery and L-theory, self-dual

sheaves and Witt spaces can be found in the excellent survey [19]. The reader is also

referred to [5], particularly §4, in which a bordism group of self-dual sheaves is

constructed. Ute bordism relation has both a geometric and an algebraic component,
the latter of which is similar to the cobordism relation in 112]. There is a natural

map from the bordism groups of Witt spaces to (through which the signature
factorises) but it is not immediately clear how the two theories are related.

Acknowledgments. I would like to thank Andrew Ranicki for suggesting the topic
of this paper to me and for patiently reading preliminary drafts and correcting my
many misapprehensions. I would also like to thank the referee and Jörg Schiirmann
for their helpful comments and corrections.

2. Balmer's Witt groups

2.1. Definitions. Let A be a triangulated category. We will assume that it satisfies

the enriched octahedral axiom discussed in [8, Remarque 1.1.13] and [3]. As
noted in these references, this is satisfied by all known examples of triangulated
categories, in particular by derived categories. It also passes to triangulated
subcategories and localisations. The shift functor will be denoted E and exact triangles
written A -A 33 Hi* G EA Throughout we assume that 2 is invertible, i.e., given
a e Hom(A, 3B) there exists a' with a 2a'.

Following Balmer [1, Definition 2.2] we say a pair I), T) is a S-duality, where
5 ±1, if

Otill D is an additive functor D : A H» Aop such that for any exact triangle A ->
ß y Dß Da SDy

33 -> G —* E A the triangle DG —> D33 —» DA > ED(5 is exact and

r\
(2) <$> is an isomorphism of functors id —» D with <b>;.4 E4>a and satisfying

the coherence relation

D(l\\ o I'/,., k1/m (1)

(from which it follows that o I)dy, id/,; We will give another

interpretation of this coherence relation in Example 2.9.

The shift functor in a triangulated category is additive but not triangulated; we
must change an odd number of signs of morphisms to regain an exact triangle from the
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shift of an exact triangle. With this in mind, it is not difficult to see that (LD. —8<L>) is

a (—8)-duality. We will call this the shifted duality. Note that the rth shifted duality
of a 1-duality I). T) is a (—1)' -duality given by

(X'7>. (-ir(r+1J/icb).

(In fact it is easy to check that whenever (I). d>) is a 3-duality then so is (D, — <1>)

so the sign (—)' ('"+W2<h is purely conventional. Nevertheless, it turns out to be the

more natural choice for reasons which will become apparent in Lemma 2.1 below.)
These shifted dualities will give us the higher Witt groups.

Ot

Fix a 1-duality (I). T) on A. A morphism A —> DA is symmetric if the diagram

A ' DA

DA
commutes. More generally, we say a morphism is symmetric of dimension r if it
is symmetric for the rth shifted duality. If a is an isomorphism we say that A is

symmetrically self-dual via a. Symmetric morphisms a and ß are said to be isometric
if there is a commutative diagram

A

£

DA

Dr\

in which r\ is an isomorphism.

Lemma 2.1 (Balmer [1, Theorem 2.6]). Leta: A H* DA be a symmetric morphism.
Then for any choice IB of cone on a we can choose a symmetric morphism ß of
dimension 1 such that

A ' -s» DA

D2A DA db

—> LA

-*LD2ADa >;/>, >;/)/

(whose rows are exact triangles) commutes. Furthermore, if 33' and 0 are different
choicesfor the cone on a and the completing symmetric morphism, then ß and ß' are
isometric.

Note that ß is always an isomorphism so that repeating the coning construction
starting with ß gives zero.
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We define the rth monoid of symmetric morphisms Sym''(A, I), 4>) to be the

set of isometry classes of symmetric morphisms of dimension r equipped with the

addition arising from direct sum. Taking the cone of a symmetric morphism defines

a coboundary operator

Sym' (A, D, 4>) Sym'+1(A, D, #)
with d2 0.

Definition 2.2 (Cf. Balmer [1, Definition 2.13]). The rth Witt group VT' t'A, D, <h) is

the quotient of the monoid

ker (d: Sym' (A, D, <h) Symr+1 (A, D, <!>.))

by the submonoid im (d : Symr_1(A, I), #) -* Sym' (A, I), #)). Usually we
suppress D and T and simply write Wr (A). The quotient is a group, with —a representing
the additive inverse of the class of a.

The Witt groups of any triangulated category with duality are naturally 4-periodic.
If a : A -> DA is a symmetric morphism for (D, 4>), then the shift Ya: -if
ED4 YrDYA is symmetric for (ED, <t>) which is the second shifted duality of
(D, <I>i. This defines an isomorphism

Wr(A, D, 4>) A Wr+2(A, D, -<h)

which, when repeated, yields the 4-periodicity Wik, D, <t>*j W +4(A, I), T).

2.2. Internal structures and symmetric forms. In linear algebra we are familiar
with the correspondence between (symmetric) bilinear forms and (symmetric) maps
from a vector space to its dual. A similar interpretation is possible for the symmetric

morphisms defined above, provided we add extra structure to our triangulated
category.

First, we require that A be a symmetric monoidal category. In other words we
have an (additive) tensor product <g> : A x A —> A and functorial isomorphisms
ge*m : A® B 5 <g> A, and there is a unit 1 G A with 1 ® A A for all A. Second,
there should be an internal horn functor

Hom(—, -): Aop x A - A

which is compatible with the tensor product in that

Hom(^4. Hom(t8, C)) A Hom(A ® äB, G)

for all A, 33 and G. This should be related to morphisms in A by a functor F from A
to Abelian groups with Hom(—, — A f o Hom(—, —).

Finally we require that the duality is internal, i.e., it is represented by a dualising
object I) with respect to the internal horn, so that DA HoiniA, ID).
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Remark 2.3. We can express the internal horn in terms of the tensor product and

duality as

Hom(<A, JB) Hom(<A, D~33) Hom(,A <S> D33. 33) D(A ® 1)33). (2)

An immediate consequence is thatHom(l, A) D(\ 0 DA) D2A A. In
particular the dualising object is isomorphic to the dual of the unit: 33 Hom(l, 33)

Dl.

In the presence of this extra structure we see that there is an isomorphism

© : Hom(<A, D33) A Hom(<A, Hom(<S, 33)) Hom(<A ® 33. 33).

The following lemma expresses the key properties of this correspondence.

Lemma 2.4. The following diagrams commute:

A® 33

D l33 ® A

Proof. Exercise!

A® 33

a®ß

A' ® 33'

DA ® A

A ® DA

It follows that this correspondence takes symmetric morphisms to symmetric bilinear

forms, that is ß e Horn A ®A. 33) witli ß o a,4,4 ß. Symmetric isomorphisms
in Horn (A, DA) correspond to non-degenerate symmetric bilinear forms, which, in
this context, are forms ß with the property that

ß o (y ® 8) 0 for all S <(=)> y 0.

We will also say that a pairing A ® 33 33 which corresponds to an isomorphism
A -> D33 is a Verdier dual pairing. In particular, symmetric isomorphisms yield
Verdier dual pairings.

Remark 2.5. In §3, when we look at Witt groups of Sheaves on a topological space,
the relevant triangulated categories will possess all of this additional structure.

In linear algebra we are used to the situation in which the unit 1 and dualising object
33 are naturally isomorphic, so that a bilinear form is a map from the tensor product
of an object with itself to the unit. Furthermore there are natural isomorphisms

D(A®m DA ® D33.

so that (2) becomes the more familiar Homi A, 33) DA ® 33. Neither of these

further properties will hold in the examples we consider in §3.
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2.3. Functors and duality. What functorial properties do the Witt groups have?

A general triangulated functor F : A hp B between triangulated categories with
5-dualities will not preserve symmetric morphisms, and so cannot be expected to
induce a map of Witt groups. The functor should be 'symmetrically self-dual' too.

Note that the functor category Funct(A, B) whose objects are triangulated functors
from A to B and whose morphisms are natural transformations inherits a 5-duality

DawF := At a F o Dß (3)

where %,b
functors) %j id

There is an associated natural transformation (of morphisms of
which applied to a functor F is the natural transformationD2AS.J

<bA3(F)(~) ° ££(-)) o F(<FA(-)).

Note that using the commutative square

1*1

(4)

F

&m(F)

DlF-

fDl

^ D2fd2
n2 Fcb B A

we also have a #(F(-».
Remark 2.6. Here we must be careful about the meaning of S -duality since

Funct(A, B) is not naturally triangulated. (This unfortunate situation arises because

the cone on a morphism is not functorial, or, put another way, there is not necessarily
a functor which is the cone on a morphism of functors.) However, Funct(A, B) is

additive, has a well-defined shift operator and we can identify 'exact triangles' to be

diagrams of functors F G H SF such that

FiA Gi>A -

is an exact triangle in B for any A G A.

FIA > Y. FA

We dehne a symmetric morphism offunctors to be a morphism of functors, i.e. a

natural transformation, T : F > y I such that

commutes in Funct(A, B), As before we dehne symmetric morphisms of functors of
non-zero dimension using the shifted dualities on Funct(A, B).



Vol. 83 (2008) Witt groups of sheaves on topological spaces 299

Remark 2.7, The definition of a symmetric isomorphism of functors is equivalent

to Baimer's definition of a morphism of triangulated categories with duality
in [4, Definition 67]. He specifies that F commute with duality via an isomorphism
rj : Fl); -$ Dm F such that

— „o

B%F —-—s- D^FD-h** D%i;

commutes. Given such an rj we can dehne a symmetric isomorphism

F 3 FD% 3 DbFD&,

and, conversely, given a symmetric isomorphism we can dehne such an rj.

Proposition 2.8. A symmetric isomorphism offunctors T : F —> £''Da,bF: of
dimension r induces a map of Witt groups

W*(F) : W*(A) W*+r(B).

If hi Can be expressed as the boundary of a symmetric natural transformation of
dimension r + 1, i.e., it fits into a diagram in Funct(A, B) of the form ofthat in
Lemma 2.1, then the induced map of Witt groups is zero.

Proof. We consider the case * r 0 since all the others are similar. Choose

a symmetric isomorphism a : A —> D A representing a class in W°(A). We can
construct a diagram

whose top row is an isomorphism F -A -> IF F A and whose bottom row is its
dual. The lower triangle commutes because is symmetric from F to DajF. The

upper triangle commutes because 4> is a natural transformation and the righthand
square commutes because a is symmetric. Hence we have constructed a symmetric
isomorphism FA H» £%F<A representing a class in W0(B), This is independent of
the choice of representative a.

If hie symmetric natural transformation is a boundary we can explicitly construct
a diagram expressing the isomorphism FA -> D^FA as a boundary, and hence

representing zero in the Witt group of A.

-> F DA

>7At
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Example 2.9. For any triangulated category A with <5-duality the natural transformation

4>£:: Ma hp 23| is a symmetric isomorphism of functors because

(-D^a^A ° ^Atâ-Cidâ)) ÏA) D& (4)Af-C>A<A)) ö ® 4A(A)
itl l)~ A o 4>a(«A)

4>a(^)

using the definitions (3) and (4) and the coherence relation (1). Conversely if 4a is

symmetric then it satisfies the coherence relation (1). In other words the coherence
relation precisely encodes the symmetry of the natural transformation 4a- Yet another

way of phrasing this is that the identity functor is symmetrically self-dual via 4%

Lemma 2.10. If one is given symmetric natural transformations F -> D%mF and
G -> Dm.cG then they can be composed (in two ways, which agree) to obtain a

symmetric natural transformation

G o F o D%ßF -> D&,e(G o F)

where, since

D$,eG o Z>A,BF D. G ° ßg o F o /)A
and

JF:g,e(0 « F) I) o G o F o ÖA.«

the final arrow arisesfrom id -ac ö|. A similar remark holds for symmetric natural
transformations ofother dimensions.

Proof. Exercise!

Remark 2.11. It follows from Example 2.9 and Lemma 2.10 that there is a category
whose objects are triangulated categories with duality and whose morphisms are

symmetrically sell-dual functors between them.

2.4. Exact triples and long exact sequences

Definition 2.12. Recall that a full triangulated subcategory A c B is thick if, whenever

33 ® 33' £ A, then 33. 33' g A.

Hie importance of this concept is that if A is a thick subcategory the quotient
category B/A, which has the same objects as B but in which all morphisms in A
become invertible, inherits a triangulated structure (with respect to which the natural
functor B —* B/A is triangulated). In this situation we say that

A -> B H- B/A (5)
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is an exact triple of triangulated categories. If, in addition, B has a duality which

preserves the subcategory A then A and B/Â inherit dualities and the inclusion and

quotient functors are naturally symmetrically self-dual. We say (5) is an exact triple
of triangulated categories with duality.

Theorem 2.13 (Balmer [4, Theorem 73]). Suppose A -* B —* B/Ais an exact triple
of triangulated categories with duality in each ofwhich 2 is invertible. Then there is

a long exact sequence ofWitt groups

» Wr (A) -fc Wr(E) -> W'(B/A) -* Wr+1(A) -* • • •

3. Witt groups of sheaves on a topological space

Throughout this section all topological spaces will be assumed to be Hausdorff, locally
compact, locally connected and countable at infinity. We consider Witt groups of
sheaves of /Amodules on such spaces, where R is a commutative regular Noetherian

ring of finite Krull dimension in which 2 is invertible.

3.1. Perfect complexes of sheaves. The bounded derived category D( X) of sheaves

of /^-modules over a space X is a triangulated category. The left derived functor ®£
of the tensor product of sheaves (obtained by taking flat resolutions) makes D(X into
a symmetric monoidal category. The unit is the constant sheaf with stalk R, which we
denote by Ox- The right derived functor RHom(—, — of sheaf horn is an internal
horn for this category. It is related to the morphisms in Ijj(X) via taking the zero'th
hypercohomology, i.e.,

Hom(g, F] H°(X: RHom(g, F)).
These structures satisfy the properties described in §2.2. Furthermore everything is

enriched over the category of Ä-modules.
'Hie bounded derived category comes equipped with a dualising object :Dx

PlOpt where p: X —> pi [14, Chapter 3]. However, although there is a natural
transformation

4>x : id Hi*- RHom(RHom(—, Dx), F>x) (6)

it is not in general an isomorphism. Indeed, even over a point and when R is a held
we require finite dimensionality for a vector space to be isomorphic to its double dual.
To fix this we pass to a subcategory. One choice of such a subcategory is the perfect
derived category IPPFJ,,

Definition 3.1 (Verdier [29]). Let x X and U be a paracompact neighbourhood
of x. Given 8 G B(JEj let

L(U; 8) V(U: I)
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be a projective resolution where 6 —> 1 is an injective resolution of 8. We say 8 is

perfect if, given U, we can find V c U such that the restriction factorises

l.il': 8)
restnct'°'' * IxV: 8)

Lu,v

via a bounded complex I.r \\> of projective modules of hnite type.

For the rings which we allow the following are equivalent [29, Proposition 1.7]:

(lj g is perfect;

(2) for any x e X and neighbourhood U of % there exists a smaller neighbourhood
V such that, for any n G Z, the restriction H"(U\ 8) —> II" V: 8 has a finitely
generated image;

(3) for any x g X and neighbourhood U of x tliere exists a smaller neighbourhood
V such that, for any n g Z, the extension II" { V ; 8) —* I1" (U ; 8) has a hnitely
generated image.

We recall some of the properties of perfect complexes.

Proposition 3.2 (Barthel [7, §10]). Thefull subcategory Bp (X) ofperfect complexes
is a triangulated subcategory ofB(X). It contains the constant sheaf Ox and the

dualising object £>x and is preser\>ed by RHomt J&jf), Furthermore the natural
transformation 0/(6) becomes an isomorphism when restricted to Tt)p(X).

Proposition 3.3 (Verdier [29, Corollary 1.5]). Suppose f:X -> Y is a proper
map. Then the derived pushforwardRf*: D(W) D(F) takes perfect complexes to

perfect complexes.

In order to obtain a theory which is functorial we will need to further restrict
our attention to objects of ÏS? (X) which have compact cohomological support in the

following sense:

Definition 3.4. The cohomological support of a bounded complex of sheaves is

defined to be the union of the supports of its cohomology sheaves. This is clearly a

quasi-isomorphism invariant.

It is an easy exercise to check that the full subcategory Bn:iX) of objects with
compact cohomological support is triangulated and preserved by duality. In addition,
the natural transformation R f > R/,ä; becomes an isomorphism when restricted to
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objects with compact cohomological support and, by Proposition 3.3, we obtain a

functor

R./i =R./*: D?(X) ^Df(F).

Definition 3.5. The perfect Witt group W/' (X) of X is defined to be the Witt group
W~r(Wc (X)). Note die switch to homological indexing reflecting the fact that the

perfect Witt groups will turn out to be covariant functors.

3.2. Functoriality. What are the functorial properties of the perfect Witt groups
Wf (X)? To answer this question we study the relationship between Verdier dual

pairings and the pushforward with proper support R/i where ,/' : V -> Y is a

continuous map. First we give a criterion for a map 6 —> P to be an isomorphism

hill),
Lemma 3.6. A map 8 —fs P is an isomorphism in D(X) if and only if for all open
U in X the induced map Rpp*8 - Rp,.TrP in D(pt) is an isomorphism, where

pt X.

Proof. This follows from the fact that a map in is an isomorphism if, and only
if, it induces isomorphisms on all cohomology sheaves.

Lemma 3.7. Given a map a : 8<g>LP £>x there is an induced map

Rpp*8®LRpa*P Rpa*{S®LP) -* RP\i*P>x -> <©p,

P 1

in Dp(pt) for each open V in X, where pt <— U ^ X and thefinal map arisesfrom
the identification i*£)x 3>u pltDpt and the unit Rp\pl id of the adjunction.
The map a is a Verdier dual pairing, i.e. induces an isomorphism 8 ->> DT, if and

only if the induced map is a Verdier dual pairing for every open U.

Proof. This follows directly from the criterion in Lemma 3.6.

Lemma 3.8. Given a Verdier dualpairing a: 8®L!F -> 3)x and a map f:X~+¥
there is an induced Verdier dual pairing

Rf*8®LRf\!F -fc Rf\(8®LP) Rfi-Dx Dy

Proof. This follows directly from Lemma 3.7 since restriction to an open commutes
with both R/* and R/i.
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Proposition 3.9. For any f : X —> Y there is a symmetric natural transformation

Xf : R/r Hf- DRfiD offunctors PP(X) PP(F) which is an isomorphism when
restricted to objects in Pf (J). This induces maps

U Wf(X) -> Wf(Y)

satisfying (f » g)* & g* and id* id.

Proof. Given 8 G PP(X) there is a natural Verdier dual pairing 8®LD8 —> Dx
corresponding to the isomorphism 8 —D28. By Lemma 3.8 this yields a Verdier
dual pairing

Rf*8®LRfD8 £>y

corresponding to a natural isomorphism R/*S ->• L)R f\D8. We define tire required
natural transformation xf on 8 by precomposing witli Rf\8 -k R/*g, which is an

isomorphism if 8 has compact cohomological support. Symmetry follows from the

symmetry of the natural transformation id -> D2 (see Example 2.9).
The induced map /* : Wf (X) —> Wf (Y) is defined as in §2.3. Its properties

follow easily.

Remark 3.10. If we consider the Will groups of Pp X) rather than Pf (X) we obtain
a theory 'with closed supports' which is functorial under proper maps.

3.3. Homotopy invariance

Proposition 3.11. Suppose h : X xI -> Y is a homotopy between fz X -> Y and

g: X -> Y. Then the induced maps /* and gefront Wf (X) to Wf (Y) agree.

Proof. We have maps

X x (0,1)(—U- X x [0,1] - - ' X x {0,1}

p

X.

As q is a projection with smooth fibre of dimension 1 we have q * <23f X 138)x soo,ö•
Starting with tire standard Verdier dual pairing 8®LD8 -> -Dx for 8 G Bf (X) we
obtain a map

q*8®Lq*D8=q*(8®L8) -> q*3Dx X
1

Pv ,u.i

This defines a symmetric natural transformation q* Yi Dq*D{ofdimension — 1

of functors from Pf (X) to P(X x (0,1 It is easy to check that q* preserves perfect
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complexes so that the image is in the full triangulated subcategory liA (X x (0, 1

It follows from Proposition 3.9 that we also have a symmetric natural transformation

Xi K'! -* DRi\D of functors from BP(X x (0, 1)) to W'iX x [0, 1]), By
Lemma 2.10 we can compose the two to obtain a symmetric natural transformation

Rm/* -* X,~lDRuq*D

of dimension — 1. Note that this will not be an isomorphism, but that we can explicitly
identify the coboundary to be the natural isomorphism Rj*j*q* —> I) Rj*j*q*) D
given by the matrix

(&x $
V 0 -<PxJ

with respect to tire decomposition corresponding to die two components of X x {0,1}.
Composing with the symmetric natural isomorphism //, we exhibit x/ ® (—Xg) as a

coboundary. Hence, by the last part of Proposition 2.8, we have f* — g* 0.

3.4. Relative Witt groups and long exact sequences. Suppose j : A X is a

closed inclusion. Then Rjj : Df (A) —> ïd'ÀX) is the inclusion of a thick subcategory.
It follows from §2.4 that we have an exact triple of triangulated categories with duality

Df(A) -> Df(X) D?(X)/B>?(A),

Definition 3.12. We define the relative Witt group W,p (X, A) to be the (—r )th Witt

group of De (X )/D^ (A).

An immediate consequence of Balmer's theorem (Theorem 2.13) is that we obtain
a long exact sequence

> WP(A) -p WP(X) WP(X, A) W^iA) -P-" m

Remark 3.13. The functoriality and homotopy invariance of the perfect Witt groups
can be extended to the relative groups.

3.5. Constructibility and excision. The axiom of a generalised homology theory
with which we have not yet dealt is excision. We would like to know that if U c
A° c X (with U open and A closed) then the map

W£(X -U, A-U) - W£ (X, A)

induced by inclusion of pairs is an isomorphism. The simplest proof would be to
show that the functor

Bfpr - U)M(A -U)^ Bf (X)/B? (A)
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induced from extension by zero is an equivalence. Unfortunately, this does not seem

easy (and indeed may not be true without further assumptions). This is the same

difficulty confronted in Hutt's paper [20] and we resolve it in a similar way, by
restricting both the types of space and of sheaves that we consider.

Henceforth all our spaces and maps will be (topologically) stratified in the sense

of [17, §1], A space A with a given stratification S will be denoted by Xs, Let
Dc(As) denote the full triangulated subcategory of D( X consisting of complexes of
sheaves whose cohomology is constructible with respect to S (in the sense of [17,
§1]). Recall from [17, §1] that for any stratified space Xs

(1) is triangulated;

(2) jyfXs) c mx):
(3) the dualising object £>x e Dc(As);.

(4) duality preserves Dc(As),

It follows that both and the full subcategory B|(%£) of objects with compact
cohomological support are triangulated categories with duality.

Definition 3.14. For a stratified space A y we define the constructible Witt groups
H'rïA.y) WAmxsÈ-

If / : Xs Yr is a stratified map then it induces a functor R/* : W(Xs) -*
W(Yt) with a left adjoint /*: Dc(Fr) -> D'"(A.y) and, dually, R./j with a right
adjoint /!. The natural map R/j R/* becomes an isomorphism on 1DF( A.y). For
the special case of a complementary pair of open and closed inclusions

Us^Xs^ As

we obtain 'glueing data' :

U>. R/t p y
W(US) - - Dc(A5;. DXAs)

i*=r K /, U/

obeying the usual relations, see, for example, [15, Chapter 5 §3.9.1].

By making small modifications to our previous arguments we can show that the

constructible Witt groups are functorial under stratified maps, and are stratified ho-

motopy invariants. (Stratified maps /, y : Xs Y/ are stratified homotopic if there
is a homotopy h from f to g which is a stratified map

h: Ax [0, 1] Yj

where the stratification of A x [0,1] is the product of the given stratification of A and

the obvious stratification of [0,1] by the interior and endpoints.) Closed stratified
inclusions induce long exact sequences involving the relative groups Wf(A, A)
W,(D[:(A)/D-(A)3.
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Lemma 3.15. IfUs C 4,1 C Xs are stratified inclusions (with U open and A closed)
then we have an équivalence

DAXs-U'si Ri*
s~ DfiXs)

Dï(As-Us) WM
where j : X — U "-* X.

Proof. We have j *R/* id and there is a triangle

Rnr -> id -£• R—s> ERqr

in JÇPC) where i\U<-^X. Since U C /I we see thai Rqr 0 as an endofunctor
of D^X^/D^As) and so Rj+f id too.

We immediately obtain

Corollary 3.16. The constructible Witt groups satisfy excision for stratified maps.

3.6. Constructible Witt groups of polyhedra. Let K be a simplicial complex. Its
realisation is naturally stratified (see §4.2), and we denote this stratified space by Ks.
(Tire underlying topological space is just the realisation | K | but we want to remember
the stratification.) We write DC{K$) for tire constructible derived category of sheaves

on Ks. lire realisation of a simplicial map K —> /. is a stratified map with respect
to these natural stratifications. Furthermore

Lemma 3.17. Ifsimplicial maps f, g: K —* L are contiguous then their realisations

I/I and |gj are stratified homotopic.

Proof. We can reduce to the case when K consists of a single simplex. Interpolating
linearly between / and g then gives the desired stratified homotopy.

Since the constructible Witt groups are stratified homotopy invariant functors (see

§3.5) it follows from this lemma that we obtain combinatorial homotopy invariant
functors K >—> WI(Ks) from the category of simplicial complexes and simplicial
maps.

Theorem 3.18. For a commutative regular Noetherian ring R of finite Krull
dimension in which 2 is'{avertible the constructible Witt groups form a Combinatorial
generalised homology theory on simplicial complexes and maps.

Proof. We have already seen that the constructible Witt groups dehne combinatorial
homotopy invariant functors. It remains to check that they satisfy excision and that
there is a relative long exact sequence associated to any pair. Excision follows from
Corollary 3.16 since the realisation of a simplicial map is stratified. The long exact

sequences for pairs arise as in §3.4.
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Note that whenever K ' is a refinement of a simplicial complex K then there is an
induced inclusion ïf(Ks) «- W(K'S) of triangulated categories with duality.

Definition 3.19. Suppose X is a compact polyhedron, i.e. a compact Hausdorff
topological space with a chosen family of compatible triangulations, any two of which
have a common refinement. We define the constructible derived category

DffX! C0lim|^|=xDc(^).

This is a triangulated category and inherits a duality. (It is unfortunate, but seemingly

unavoidable, that the term 'triangulated' is used here in both the geometric and

categorical senses.) We denote the Witt groups of this category by W;(X) and call
them the constructible Witt groups of X. They are independent of any particular
triangulation. In fact

Theorem 3.20. For a commutative regular Noethericin ring R offinite Krull dimension

in winch 2 is invertible the constructible Witt groups Wf { i form a generalised
homology theory on compact polyhedra and continuous maps. In particular they are
homotopy invariantfunctors.

Proof. First of all we need to consider functoriality. Suppose / : X Y is a

continuous map of compact polyhedra. Given any triangulations K and L of X
and Y respectively the simplicial approximation theorem says that we can find a

refinement K' and a simplicial approximation K' L of /. Furthermore any
two such approximations are combinatorially homotopic. Since the constructible
Witt groups of simplicial complexes are combinatorial homotopy invariant functors
it follows that the constructible Witt groups of polyhedra are homotopy invariant
functors.

Excision and the existence of long exact sequences for pairs now follow from the

combinatorial analogues.

Remark 3.21. Note that it follows that it K is a triangulation of the compact
polyhedron X then the inclusion Wc(Ks) «Ht DfiX) induces isomorphisms Wf(Ks)
Wf{X) for all /.

Remark 3.22. Since constructible sheaves are perfect Bfpf) includes in Bf (X) and

thence there are maps WfiX) -> Wf (X). The extent to which these fail to be

isomorphisms measures the failure of the perfect Witt groups to be a generalised
homology theory. Indeed, since the direct sum of two sheaves is locally constant
if, and only if, both summands are locally constant, we see that BC(K) is a thick
subcategory of Bf (X). It follows from Theorem 2.13 that there is a long exact

sequence

> Wf A' - Wf(X) W"':(Bf (X)/3f.(X)) W^iX) -* • • •
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relating the constructible and perfect Witt groups of a polyhedron. Unfortunately I
do not know of an example in which the relative term is non-zero.

3.7. Products. In this section we assume that R is a held. For any stratified space,
and thence for a polyhedron X, the derived tensor product ®L preserves constructible
complexes. Thus given polyhedra X and Y we can dehne an external tensor product

M: Djpf); x D^F) -* Bfp£ x Y%

(g,F) H* p*8®Lq*F,

where p and q are the projections onto X and Y respectively.
The product category B§ (X) x 0£ Y) inherits a product duality given by 8, !F v->

(Dx8, Ih'-F). The dualising object /)v r £>x ® <£>p (this is essentially the

Kiinneth theorem-see [17, §1.12] or [10, p. 181]). Hence, using [27, Corollary 2.0.4],
we have

D(8 g :f • RHom(g ® .7*. f)x v »

RHom(g i)r)
RHomfÉ, 3)x) ^ RHom(7r, SDy)

D8 ® DT.

In other words M intertwines the product duality with the standard Poincaré-Verdier
duality on 0£(X x Y). It follows that the external tensor product is a map of categories
with duality and so induces maps

Wf(X) x Wf(F) > U';. ,(.¥ x Y).

These are easily seen to factorise through the tensor product so that we have a graded
product

U'u.w 0 ii'l( Y) ^ II';tX x Y).

In particular W^(X) is always a W^ipt)-module. This product can be extended to
relative groups.

3.8. Generalisations and related theories. We briefly touch upon some of the

possible generalisations and other theories which can be constructed using similar
techniques. The first remark is that everytiling can be done equivariantly. Suppose that
a group G acts (piecewise-linearly) upon a polyhedron X. Then there is an equivariant
constructible derived category DG,C(20 of sheaves on X (see [9]), equipped with an

equivariant Poincaré-Verdier duality. The G-equivariant constructible Witt groups
of X are the Witt groups of this category. Rewriting our previous arguments, using
the technology of functors between equivariantly constructible derived categories of
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sheaves developed in [9], we see that these are functorial for equivariant maps, are

equivariant homotopy invariants etc. (The hard work is in the construction of the

equivariant derived category, once we have that the definition and properties of the

Witt groups are routine.)
In a different direction, we can dehne new theories by restricting the allowed

stratifications. For a complex algebraic variety V the Witt groups of the derived

category DJ~C(V) of sheaves whose cohomology is constructible with respect to a

stratification of V by complex algebraic varieties are considered in [33], [11]. The
Riemann-Hilbert correspondence provides us with an alternative description for these

groups as the Witt groups of the derived category of regular holonomic .©-modules

on V.
One can also study the constructible Witt groups VF; Xs of a stratified space

(with fixed stratification) in their own right, rather than using them as a tool to obtain
a stratification-invariant theory as we have done. This is the approach taken in [12],
where they obtain a powerful 'decomposition theorem up to cobordism' [12, Theorem

4.7] by identifying a set of generators of their cobordism group which correspond
to irreducible self-dual perverse sheaves supported on the strata.

4. L-theory and constructible Witt groups

We relate the constructible Witt groups of a simplicial complex to the free symmetric
L-groups, showing that, under certain conditions, they are isomorphic.

In this section R will be a commutative ring and K a finite simplicial complex.

4.1. (R, lÇ|-modules and L-theory. In [26] Ranicki and Weiss dehne an R. K)-
module to be a finitely generated free R-module A with a direct sum decomposition

A ® A(or)
oeK

into free R-modules. A map of R, AT)-modules is an /\-module morphism a: A ->
B such that

a(A(cr)) C©5(r).
x >a

(Here we regard a < r ifa is a face of r.) More concisely, ifwe regard K as a category
with objects the simplices and morphisms the face inclusions, then an i R, ATI-module
is a functor from Kop to free R-modules and a map of (R, /f i-modules is a natural
transformation. The category (R, A'i-Mod of R, ^ j-modules is a full subcategory
of the functor category Funct(jkop, A"-Mod).
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Example 4.1. Define a chain complex A(2Q of R, AA-modules by

A (X)i(o)
I R, i — dim a,
I 0, i — dim ct.

Thus A (X)(U) is the group of simplicial cochains on U re-graded as a chain complex.
The differentials are the coboundary maps.

Idie category (R, A')-Mod is additive and has a natural chain duality in the sense

of [25, Definition 1.1], i.e. a functor T which takes an R, AT )-module to a bounded

complex of (R, A' l-modules:

T(A) HomR(Hom(R!A:)(A(A), A), R)

(with the R, A' )-module stmcture given by

T(A)i(a)
I HomÄ(A(r), R). i dimo.
10, if dirtiCTi

and a natural transformation g : T2 1 satisfying

(1) e(TA) o (T(;e(Aj) 1 and

(2) e(A) is a chain equivalence.

I R, r er,

I 0, r t-a.

Example 4.2. For a e K dehne an R, Ki-rnodule C0 by

Ca(r)

Then TCa is the chain complex of' R, A")-modules witli

(TCa)i( r)
R, r < er and i — dimr,
0, otherwise.

and differentials given by the coboundary maps.

We will write Com(/?, K) for the category ofbounded chain complexes of R, K)-
modules and chain maps. Since we are working with chain complexes, and not
cochain complexes as elsewhere in this paper, £ will denote the right shift functor,
i.e., for A Com(R, K) we have (£A); A,_i. The chain duality T extends to a

duality on Com(Ä, K) with £ o T T o £_1 (see [25, p. 26]).
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Definition 4.3. An n -dimensional symmetric Poincaré complex is an element A e
Com(ft, K) together with a collection of maps

{<ps g Uom(TA, S4'"" A) : # > 0}

such that 0o is an (ft, K )-module chain equivalence (iL®. fa(o) is a quasi-isomorphism
of chain complexes of ft-modules for each a) and, for .v > 0,

tf>, + h-'ciX* Mi o v -M 0 &+1 + 4>s+1 ° dTA.

The idea is that ft, is an ft, ft [-module chain equivalence which is symmetric up to
a homotopy <i>\, which in tum is symmetric up to a homotopy f>2, and so on.

Definition 4.4. 'Thefree symmetric L-group H„(K; L"(R)) is an Abelian group
generated by the «-dimensional symmetric Poincaré complexes modulo the algebraic
cobordism relation defined in [25, Definition 1.7]. It is the homology group of the

symmetric L-theory spectrum L'( R) in [25, Proposition 14.5].

A simplicial map / : K -> L induces a pushforward /* from i R, A' j-Mod to
R. L)-Mod given by

(f*A)(a)= © A(t)
f(T)=0

or, equivalently considering A g Funct(^Top, /f-Mod), by composing with the map
/op. KoP LoP This yidds a map ^. fl i K. //, (/.; JL*(i?>), making
the free symmetric L-groups functorial. In fact they form a generalised homology
theory - see [25, §12-14],

4.2. Combinatorial and constructible sheaves. In order to relate the free
symmetric L-groups to the constructible Witt groups we need to establish a relationship
between (R, /T)-modules and constructible sheaves. This is done by relating both to
combinatorial sheaves on K, which we now describe.

We can topologise K by defining a subset of simplices to be open if, and only if, it
is upwardly closed, i.e., a set U is open if, and only if, r g U whenever there is some

a < r with er g U. liiere is a unique smallest open set containing any simplex ct,
namely the star st(Vr [Jr >0 r. The stars form a base for this topology.

We will use the term combinatorial sheaf on K to describe a sheaf of finitely
generated ft-modules in this topology and denote the category of combinatorial sheaves

by Shift

Lemma 4.5. Combinatorial sheaves are precisely functors from K to the category
offinitely generated R-modules. Maps of combinatorial sheaves are natural

transformations.
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Proof. A combinatorial sheaf 8 is equivalent to the following data: a finitely generated

/\-module 8 (sI(Vt)) for each basic open set stOr) and a set of compatible maps
fcislio i -¥ g(st(r)), one for each inclusion st(r) c st(cr). Since st(r) c st(cr) if,
and only if, r > a it is clear that the assignment

a i-> 8 (st(cr

dehnes a functor. Conversely, a functor defines a combinatorial sheaf. The final
statement follows easily.

The geometric realisation 1t(\ of K has a natural stratification with strata the S0

where Sa |cr | — | do \. As in §3.6, when we want to emphasize that | K | is a stratified

space we denote it by We say a sheaf 8 of finitely generated /Nmodules on Ks
is constructible if (he restriction 8\s„ is constant for each a g K and denote the

subcategory of constructible sheaves of finitely generated /^-modules by Sil f K <).

There is a continuous map s: Ks K given by x ia where x g S0.

Lemma 4.6. The category of combinatorial sheaves on K is equivalent, indeed

isomorphic, to the category ofconstructible sheaves on Ks via:

ShKs 7^ ShK.
s*

Proof. For 8 e Shc(^5) we have (s*8)0 .vgistto o g(|st(CT)|) and for 7 e
Sh(W) we have (s*!F)x =7Fa 7 (st(cr)) where x G Sa. In particular, note
that s*3T is a constructible sheaf. Hence we have, on the one hand, (s.i.s*"JT)0

i*F( 1 st(cr)]) 7(sl(a !Fa and, on the other, (s*srS)x (s*8)a S(|st(cr)|)
where x g S0. Now there is clearly a map

g(|St(CT)|) -> 8X

and, since | s (Or | is a union of contractible strata on each of which 8 is constant, it is

an isomorphism. Hence and .v are both the identity.

The pullback s* extends to a triangulated functor

s*:B(K) ->WfKs) (8)

where TS)(K) is the bounded derived category of Sh(/T). Note that we do not need,

or claim, that this is an equivalence because W(Ks) consists of cohomologically
constructible complexes and is not necessarily equivalent to DiSlf'iW^
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4.3. From L-groups to Witt groups. We now explain how to construct a natural
transformation from the free symmetric L-groups to the constructible Witt groups.

Lemma 4.7. There is afully faithful functor from < R. /©-Modop to Sh K which takes

an R, K)-module A to the combinatorial sheaf A with

A(U) © Hom(A(o©, R)
aeU

(with restriction maps given by the Obvious projections). Furthermore thisfunctor is

natural in the sense that it takes the pushforward /*A ofan (R. K)-module under a

simplicial map f to the pushforward f*A of the corresponding combinatorial sheaf.

Proof. Ulis follows immediately from the above description of the category of
combinatorial sheaves as functors from K to /©Mod and the fact that < R. /©-modules
form a full subcategory of FuncK /©p. it-Mod),

Clearly we can extend this to a functor taking chain complexes of (R. /©-modules
to cochain complexes of combinatorial sheaves. Composing this with the functor (8)
from D(i© to D© /©) we obtain a functor

F : Com(fi, K)°p -* DC(KS).

Suppose that R is regular, Noetherian and of finite Krull dimension so that there
is a Poincaré-Verdier duality functor I) : D© /©)"p —> D©/©). Then we have

Lemma 4.8. The functor F commutes with duality, i.e., F of - I) F.

Proof. The statement of the lemma needs clarification since the Poincaré-Verdier
dual is only defined up to isomorphism in D©/©). Thus, in order to make sense

of the statement, we need to specify representative complexes of sheaves for each

D a F (A), Note that it is sufficient to do this for each R, /©-module of the form Ca

with

r r \ - \R' r
Co (©) — j

10, t fk a.

and that it suffices to prove that F o T(Ca) /) /"(a) for each a K.
We have F(C0) ],f Oks where j : © p-» Ks is (he inclusion and (9ks the

constant sheaf with stalk R on Ks. Hence I)®F (Co is isomorphic to the pushforward
7*<©|ö"1 of the dualising complex on | äj We can choose to represent it by the complex
s*C of sheaves where G~l is the combinatorial sheaf with

C ©sti m {/-chains on st(r) n ct}

and with the boundary maps as differentials (see [17, §1.12]). From Example 4.2 we
see this is precisely F o T(Ca
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Suppose now, in addition to R being regular, Noetherian and of finite Krull dimension,

that 2 is invertible so that the constructible Witt groups form a generalised
homology theory by Theorem 3.20.

Theorem 4.9. F induces a natural transformation //*(—: L'(R)) -* U';'i >.

Proof. We sketch the proof leaving the reader to check the details. Recall that the free

symmetric L-group H„ (K ; V< R is given by the cobordism classes of n-dimensional
symmetric Poincaré complexes in Conn R. K). Using Lemma 4.8 we see that an n-
dimensional symmetric Poincaré complex maps under F to a complex of sheaves

in Dc(Ks) equipped with a morphism to the (—n)th shift of its Poincaré-Verdier
dual. The conditions in Definition 4.3 guarantee that this map will be a symmetric
isomorphism. Thus it generates a class in Wf(Ks). Furthermore we can check that
cobordant symmetric Poincaré complexes give rise to the same class in W:-(Ks).

Naturality follows from (he last part of Lemma 4.7.

Corollary 4.10. Assume that R is a regular Noetherian ring offinite Krull dimension

in which 2 is invertible and further that we can resolve any finitely generated
R-module by a finite complex offinitely generated free R-modules. Then for a finite
simplicial complex K there is a natural isomorphism H*(K ; V(R)) -» Wf(K).

Proof. The free symmetric L-groups are a generalised homology theory. By
Theorem 3.20 the assumption on R guarantees that (he constructible Witt groups are
defined and are also a generalised homology theory. Since F is a finite simplicial
complex it is sufficient to check that we obtain an isomorphism for a point.

Let T be the triangulated category obtained by inverting chain equivalences in the

category Com(F, pt) of complexes of finitely generated free F-modules. Walter's
theorem [3f, Theorem 5.3] tells us that

H*(pt:h'{R)) W-"(T).

Since, by assumption, every finitely generated module has a finite resolution by
finitely generated free F-modules the inclusion of T into the derived category of
finitely generated modules, i.e. into Dc(pt), is an equivalence, ffence we also have

W~n(TT) L W~n(Dc(pt)) W„c(pt) as required.

The conditions of the corollary are satisfied if, for example, F is a principal ideal
domain, a polynomial ring over a held or a Noetherian local ring and 2 is invertible
in R. In particular, they are satisfied when R Q and this is the case we study in the

next section.
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5. Rational coefficients, Witt spaces and L-classes

We work in the PL-category - all spaces in this section are polyhedra and all maps
are piecewise linear. We discuss properties of the constructible Witt groups in the

special case when the ring R is the rationals O. All coefficients in homology and

cohomology groups are also rational.
In §5.1 we interpret the corresponding generalised homology theory W£(—; Q)

geometrically as the bordism theory of Witt spaces. Then, in §5.2, we show that the

constructible Witt groups form the natural domain of definition for L-classes.

5.1. Witt spaces and bordism. Let A be an «-dimensional polyhedron. A is a (PL)
« -pseudomanifold if there is a closed subspace Y with dim Y < « — 2 such that X—Y is

an «-manifold which is dense in A. An «-pseudomanifold with (collared) boundary
is a pair (A, 3 A) such that X — dX and 3 A are pseudomanifolds, of respective
dimensions « and « — 1, and a neighbourhood of 3A in A is (PL)-homeomorphic to
3 A X [0, 1).

Remark 5.1. In terms of triangulations, A is an «-pseudomanifold if, for any
triangulation, A is the union of the «-simplices and each (« — 1 (-simplex is a face of
exactly two «-simplices. (A, 3 A) is an «-pseudomanifold with boundary if, for any
triangulation, A is the union of the «-simplices, each (« — 1 )-simplex is a face of at
most two «-simplices, and the set of (« — 1)-simplices which are the face of only one

«-simplex forms an (« — 1)-pseudomanifold 3A.

A pseudomanifold A is orientable if, and only if, A — Y is orientable. If A is an
oriented pseudomanifold we denote the oppositely oriented pseudomanifold by A.
A compact oriented «-pseudomanifold carries a fundamental class [A] e Hn(X) so

there is a well defined pairing

//< A) 0 IV (Ai * H"(X) —V|'» <Q>. (9)

Thus we can ask, for what class of pseudomanifolds is this non-degenerate, i.e., does

Poincaré duality hold? Of particular interest are those A for which local Poincaré

duality holds (from which the global version follows), namely the rational homology
manifolds.

The intersection cohomology groups IVI*(A of a pseudomanifold A were
introduced in [16] to study singular spaces. Their key property is that there is an analogous
pairing

IH1 (A) 0 IHn-'1 (A) -* H" (A) <~'m>> Q. (10)

for a compact, oriented «-pseudomanifold A, which is non-degenerate for a wider
class of spaces than (9). In particular there is an interesting class of spaces for which



Vol. 83 (2008) Witt groups of sheaves on topological spaces 317

the local (and hence the global) version of this intersection cohomology Poincaré

duality holds; these are the Witt spaces.

Definition 5.2 (Siegel [28, 1.2]). The link of a point % in an n-pseudomanifold A
is art (n — l)-pseudomanifold. It is unique up to PL-homeomorphism and is PL-
homeomorphic to the join Sd^~1 * L(x) where L(x) is a pseudomanifold, again
unique up to PL-homeomorphism, of dimension /(x) n — d(x) — 1. The pseudo-
manifold X is a Witt space if IH1<iX^2(L(xf) 0 for all x e X with /(x) even. A Witt

space with boundary is a pseudomanifold witli boundary {X, 9A) where A is a Witt
space (in which case it follows that 9X is also a Witt space).

Remark 5.3. If we stratify X, for instance by choosing a triangulation, then it is a

Witt space if, and only if, for every (2k + l)-codimensional stratum S the middle
dimensional intersection cohomology IHk(L(S)) of the link US') of the stratum
vanishes. There is no condition on strata of even codimension.

Examples 5.4. Clearly any manifold is a Witt space. Any pseudomanifold which can
be stratified with only even dimensional strata, for instance any complex projective
variety, is also a Witt space.

Definition 5.5. Given a pair (X, A) let Wilt/('A, A) be the category of Witt spaces
over(X, A) whose objects are compact oriented Witt spaces with boundary (W, 9IV).
equipped with a map of pairs / : (IV, 9W) H» (A, A). The morphisms are commuting
diagrams

(IV. 91V) (WO 9 WO

(A, A).

Definition 5.6. Objects (W, 9 W) and (WO 9 WO in Witt/(A, A) which share a common,

but oppositely oriented, boundary component V can be glued together to form
a new Witt space

(W Uy WO (9W - V) u (9 U" - V»

over (A, A).

Definition 5.7. Isomorphism classes ofWitt spaces over (AO .4) form a monoid under

disjoint union u, It is graded by dimension. The bordism group of Witt spaces
Qf111 (A, A) is the quotient of this monoid by the submonoid generated by spaces
(W, 9 W) such that there exist (WO 9W) e Witt/(A, A) and (V, 9 V) Witt/(A, A)
with

dW' 9W and WUwW' 9V



318 J. Woolf CMH

This is an Abelian group: (W, 9 W) m [0, 1] is a Witt space with boundary

ffUw(3H x[0,l]) UgWW.

Hence the class of (W, dW) u (W, $W) is zero in the bordism group.

The bordism groups of Witt spaces form a generalised homology theory in the
usual way. Siegel [28] identifies the point groups as follows. Given a 4A -dimensional
Witt space X (for k > 0) the intersection pairing

IH2k(X)®IH2k(X) -+ Q

defines a non-degenerate symmetric rational bilinear form Ij, The assignment

X t—>- [ /.V J

Witt ~

descends to an isomorphism G^.|U W (<Q>) from the bordism group of 4Ä-dimen-
sional Witt spaces for k > 0. Apart from Q^"u, all the other bordism groups vanish:

Z, i 0,

(Q), i 4k, k > 0,

0, otherwise.

(The appearance of the rational Witt group W(Q) explains the name Witt spaces.)

Remark 5.8. The structure of the rational Witt group is well-known; see, for example,
[4, Example 42] or the classic [23], It is

W(Q) Z 0 W(Zp)
primes p

where
Z2, p 2,

W(ZP) Z2 © z2. P 1 mod 4.

Z4 p 3 mod 4.

The inital Z corresponds to the signature of the form.

Siegel's result allows us to interpret the constructible Witt groups of a polyhedron
geometrically. We work relative to a fixed polyhedron X. Let f: Y - A be a

compact i -dimensional pseudomanifold over X. In [17] Goresky and MacPherson
construct an object IG(Y) e D;1 V) whose hypercohomology is the intersection

cohomology of Y. When Y is a compact oriented Witt space they also construct a

symmetric Verdier dual pairing

ie(Y) 0 ie(Y) Hr IT' Dy (11)

or, equivalently, a symmetric isomorphism IG (Y) -> S~! Dl G (Y).
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Remark 5.9. Unfortunately, there are several indexing conventions for the intersection

cohomology complex 1G (X) on a pseudomanifold X which differ by shifts. For
us IC(X) will be an extension of the constant sheaf On on the nonsingular part U of
X placed in degree 0. This is in contrast to the convention in [17] where IG (X) is an
extension of Xdim xOn. Our convention has the advantage that the /1h intersection

cohomology group is the /lb hypercohomology of 1 G{X):

1111 (X) H\X: IG(X))

For a reduced space the above symmetric isomorphism is unique up to sign
(corresponding to the two choices of orientation). We refer to this as the Goresky-
MacPherson isomorphism.

Definition 5.10. If Y hp X is a compact oriented i -dimensional Witt space over X
then the derived pushforward of the symmetric isomorphism IG (Y) -* XU' l)IC(Y)
yields a representative for a class in WOX which we denote | Y\\n. In particular, if
X is itself a Witt space, Iben it carries a Witt orientation |X|\r <S WHcim x(X),

Lemma 5.11. Suppose Z -> X is a compact oriented (i +1 -dimensioned Witt space
over X with boundary 3Z Y. Then CHr 0 g Wf(X).

Proof. This follows from Poincaré-Lefschetz duality for intersection cohomology.
More formally, let i : Z — dZ Z and j : 3Z *4ft Z be the inclusions. By
Proposition 3.9 there is a natural symmetric morphism Rq R/, of functors

W(Z — 3Z) —> D;:( Z). As in §3.3 we can explicitly identify the cone as a symmetric
isomorphism

R./,/;R/, -> XI)Rj.,j:iRiJ). (12)

Since Z — 3Z is a Witt space we have a symmetric isomorphism

IC(Z - 3Z) ->• X"i"1Die(Z - 3Z) (13)

in W{Z — 3Z). Standard results show that G(Z - 3Z) Rj*IC(dZ).
Further the symmetric isomorphism

Rj.ICrdZi > X DRj.lC 3Zs

arising from (12) and (13) is, by the uniqueness alluded to in Remark 5.9, the Goresky-
MacPherson isomorphism for 3 Z. The result follows from the second part of Proposition

2.8.

Corollary 5.12. For a compact polyhedron X there are natural maps

Q)Vi"i X > Wf(X) (14)

which are isomorphisms for i > dim A.
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Proof. The existence of the maps follows directly from the above lemma. Both QJ®"
and VP/ are generalised homology theories. It follows from [2, Theorem 5.6] that

W[(pt)
i 0 mod 4,

0, i 0 mod 4.

Siegel's result then shows that (14) holds when X is a point. A standard induction
over the number of simplices in a triangulation of X completes the proof.

We can rephrase (he connection between constructible Witt groups and Witt bor-
dism as follows. Note that the product of two Witt spaces is also a Witt space and the

(external) product structure on Witt groups discussed in §3.7 arises from the evident

product

Witt/(X, A) x Witt/(7, B) Witt/(X xY.AxYUX x B). (15)

The 4-periodicity of the constructible Witt groups arises from taking the product with
the class of CP2 in f2^ltt(pt) H/j pt). It follows from the above corollary that the

sequence
Qmu(X) > ^tt(X) > Ûgp) > •••

arising from taking products with CP2 stabilises, and that

WfQQ M colinu .xU';.u(.Y) S colin.,, (16)

Thus, stably, up to Witt-equivalence, every symmetrically self-dual complex of
sheaves is 'of geometric origin', i.e. arises as the pushforward of the intersection

cohomology complex on a Witt space. Bordism invariants of Witt spaces Over X
which are stable under product with CP2 correspond to Witt-equivalence invariants
of self-dual complexes of sheaves in fifiX).

5.2. L-classes. As an example of the utility of the geometric interpretation of the

constructible Witt groups as bordism groups we show how it can be used to view
L-classes as homology operations from the rational constructible Witt groups to
rational homology. It should be noted that this is not the only way to proceed; a more
sophisticated approach to the definition of L-classes is taken in [12, §5] (based on
[13]), and this could be used to give alternative proofs of the results below. We work
in the PL category; see [16] and [6] for analogous accounts of L-classes for Whitney
stratified Witt spaces.

Mimicking the approach to defining combinatorial Pontrjagin classes for rational
homology manifolds in [24, §20] we obtain the following analogue of [24, Lemmas

20.3 and 20.4], (We have stated a relative version of the result but this is an easy
extension, see [24, p. 242].)
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Proposition 5.13. Let (W, 3 W) be an oriented n -dimensional PL Witt space with
boundary; Sl the standard PL i-sphere and f : W, 3 W) -+ (S!, p) a PL map where

p g 5'. Then for all q not in some proper closed PL subspace of Sl the fibre f (q)
is an oriented PL Witt subspace (with boundary) ofW of dimension dim W — i and
with trivial normal bundle. Furthermore, the signature cx(f~1(q)) is independent of
the choice of q and only depends on the homotopy class of f.

Hence, using simplicial approximation, we obtain a well-defined map

|(U'. 3 VI' i .V p I > Z

and thence, using the fact that the cohomotopy set [(W, 3 W), fS', p)] is a group for
2 i > n + 1 and the rationalisation

[(W, 3U't, (S\p)] 0 Q -* Hf W, dW; Q) (17)

of the Hurewicz map is an isomorphism in this range, a map

// ill'. 3U': [(W, dW),(Si,p)]®Q^Q.

By the same argument as [24, Lemma 20.4] this is a homomorphism and so defines a

class Lj (W ,3W) in HjfW, dW: Q) called the tfii L-class. The L-classes of a smooth
manifold are Poincaré dual to die Hirzebruch L-classes of the tangent bundle, see

[24, §20],
It follows from this definition that VP. 3 W) is the unique homology class

such that for any normally non-singular codimension I subspace V c (W — 3W)
Willi trivial normal bundle | V ]. LfW. 3 W)) od). Here [V] G //'( W, dW) is

'Poincaré dual' to the normally non-singular subspace V. An important consequence
(following immediately from the geometric definition of the coboundary map) is

that

3Li(W, dW) Li_i(dW) g Hi-0W) (18)

cf. the analogue for Whitney stratified Witt spaces in [6, §2],
L-classes for 2i < « + 1 can be defined, and shown to satisfy (18), by taking

products of (W. 3W) with spheres.
To compare L-classes it makes sense to work relative to a fixed base, i.e. to work

in Witt/(A, Â). The iill L-class defines a map (which we rather sloppily also refer to
as the / (h L-class but denote by Xt rather than L,

Witt/iX. A) > II iX. A),

(/; (W.dW) > (X. All ^ fJ.liW'K

Lemma 5.14. (1) For f:(W,dW)^ (X, X) we have JfidW) 0 in H;(X). In

particular the L-classes are bordism invariants of Witt spaces.
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(2) For (W, dW) and (W%dW') in Witt/(X, A) we have

Xi(WUv W>) £i{W) + JtilW')

in Hj (X, A).

Proof. (1) There is a commutative diagram of long exact sequences

Hi+i(W, dW) Hi(dW) Hi(W) • • •

ft A A

Hi+l(X. X) —^ Hi(X) Hi (X) • • •

in which//,+i(X, X) 0. By(18)wehaveL,(9W) dli+1(W)m tbat«&<5 W)
fJo(dW) UdLI+i{W) 9f*L,+iiW) 0.

(2) Consider the evaluation of £i(W Uy W') on a class in IP (X. A) represented
by a map to (SP p). This is given by taking the signature of the inverse image of
some q p under a PL map in the homotopy class of the composite

(U' Uy W', (dW - V) u (dW' - V))
" - J

(X. A t (SP p).

The hbre g~1 (q) will be the disjoint union of the Witt subspaces (g| w)~] (q) and

Ïwt1 (<?) 8fid 81 w and g | w will be homotopic to f \ w and /1 ip* respectively. The
result now follows from the fact that the signature of a disjoint union is the sum of
the signatures of the components.

Corollary 5.15. £j descends to a map A) -> //, (X, A).

Proof. We need to check that Jti vanishes on the submonoid of null-bordant spaces.
Recall that (W, DW) is null-bordant if there exists (WP DW') e Witt/(A, A) with
DW' dW, and (V. dV) g Witt/(X, X) widi W Us.p W' If. 'Iben, using
Lemma 5.14,

0 Xi(dV) A(W uaw W') £i(W) + /MU") £i(W).

Proposition 5.16. The L-ckissesform a set of stable homology operations. In other
words
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(1) (nciturality) they commute with pushforwards:

323

A)

n

>Wtil

- H*(X, A)

I*
-U

Qf»(F. B)—^ HAY, B)

where / : (Xf A) -> (F, 5) and,

(2) (stability) they commute with boundary maps:

n7iü(X, A) W4X, A)

£2Wi,{<A. II. |«,U

Furthermore they are natural with respect to products in the sense that

£2Wi,,i.\\ A) ® GWil,( F. B) - x F. A x Fu X x IF

£®£

HJX, A) ® H,iY, B) IIaX x F, A x F U X x B)

commutes, where X ©;<£, : -> I1., denotes the total L-class, and the
horizontal maps are that induced by (15) and the KUnneth isomorphism respectively.

Proof. Naturality with respect to maps follows easily from the geometric definition.
Stability is a direct consequence of (18). (Note that this notion of stability is equivalent
to the usual definition in terms of the corresponding reduced homology theory and

suspensions.)
To prove naturality of the L-classes with respect to products we proceed as

follows, For each sphere S' choose a basepoint pl and another, distinct, point
q' such that tf a q1 ql+i where A denotes the smash product. Given mapsf : (VF. 3VF) .V p and f*\ (VF', 3VF') -»• (SFpl), representing classes

respectively in H'(W, 3 VF) and II ' VF', 3 VF'), the composition

fi+j ; II' x U" > ,S'; x Sj > S: A Sj m Si+i.

of the product fl x f and the quotient represents the corresponding class in
Hi+j(W x VF', 3(VF x VF')) under the Kümieth isomorphism. Furthermore, since

q' and q' are distinct from the basepoints, we have

(/<+;)-V+i') (ZrV) x eF'rVl-
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The signature is multiplicative and it follows that

Li+j(W x W')) I/I./.mU'i • I./ ' |. /./( ll'V:.

An appeal to the Künneth theorem completes the proof of naturality with respect to
products.

We make some simple remarks about L-classes. It is clear that

nfitt(X,A) -* Hi(X, A)

vanishes fori <0 and fori > k. For VP Witt/Cpt, 0) it is easy to identify £q(W)
a(W). For i -dimensional (W, dW) e Witt/( X, A) I iie/111 I.-class £, VF) is the image
of the fundamental class of W under H(W. 3 W) —* II, (X, A). Finally, since rational
homology is torsion-free, the L-classes of any torsion element in A) must
vanish. Some computations of L-classes for singular spaces can be found in [6].

Lemma 5.17. L-classes are stable under the map -> induced by

product with CP2, i.e.

——>

mx\ q)

commutes.

Proof. Ulis follows from the naturality of the total L-class under products and
aColCP2) ct(CP2) 1.

An immediate consequence is that we can deline the L-classes of elements in the

constructible Witt groups via

W[(X) colim^oo^VCX) Hi (X; Q)

using (16). We leave the reader to prove the analogue of Proposition 5.16.
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