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Curvature integrals on the real Milnor fibre

Nicolas Dutertre

Abstract. Let /3lP,+1 ibe a polynomial with an isolated critical point at 0 and let

ft : E"+1 —» H be a one-parameter deformation of /. We study the differential geometry of the
real Milnor fiber Cf Z/1 (0) PI B"^1. More precisely, we express the limits

where s„-k is the {n — F)-th symmetric function of curvature, in terms of the following averages
of topological degrees:

where Gkn+1 is the Grassmann manifold of ©dimensional planes through the origin of E"+1.
When 0 is an algebraically isolated critical point, we study the limits

where the f%-| are positive extrinsic curvature functions. We prove that these limits are finite
and that they are bounded in terms of the Milnor-Teissier numbers of the complexification of /,

Mathematics Subject Classification (2000). 14P25, 58K15, 53C65.

Keywords. Real Milnor fibre, curvatures, topological degree.

1. Introduction

Let/: "+1 -> C be a polynomial such thai /(()) 0 and 0 is an isolated singularity
in /"'(()). Let CEX /_1(L) fi Bfl+2 be the Milnor fibre of this singularity. It can
be viewed as a 2«-dimensional manifold with boundary in R2n+2 and therefore, with
each point of its interior, we can associate a curvature, namely the Lipschitz-Killing
curvature introduced by Fenchel in [Fe]. Let us recall what this curvature is. Given
a point x belonging to a smooth -dimensional manifold V in IR/V and a unit normal
vector V to V af.v, we will denote by % the orthogonal projection from F to the (p+1 )-
dimensional vector space spanned by TXV and v. The image of this projection is a

lim lim —g / dx,
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hypersurface non-singular at M., we denote by K(x, nv(V)) its Gaussian curvature
at x. The Lipschitz-Killing curvature at x is

LK(x) c(N, p) J A'i v. ,t..( \' i i ilc.
JNUXV

where NUXV is the unitary normal space of V at x and where c(N, p) depends only
on N and p. When V is an open bounded subset of a complex hypersurface in C"+1,
Langevin [Lai], [La3] gave a nice way to compute fv LK(x)dx using Morse theory
and orthogonal projections on complex lines. More precisely, for almost all complex
lines L c CP", the restriction to V of the orthogonal projection on L admits only
non-degenerate critical points. Denoting by \p( V, L)\ the number of these critical
points, we have the following equality, called the exchange formula:

I (- l)nL K (x)dx c(n) I \p(V,L)\dL,
Jy hjp«

where c(n) depends only on //. Such a result is interesting because it provides a link
between the differential geometry and the intersection theory.

Applying this principle to the Milnor fibre, Langevin [Lai] obtained

I (-l)nLK(x)dx =c(n) I /mG. /. i

Jjgjf JCP"

A lemma due to Teissier [Te2] asserts that, as e and k tend to 0, the number |/m G L) \

tends to p^n+'; + p{n\ where is the Milnor number of / at 0 and /r(n) the

first Milnor-Teissier number, namely the Milnor number of / restricted to a generic
hyperplane section at 0. These last two numbers are integers, furthermore /fM
depends only on the topological type of the germ of f~l (0) at the origin. Combining
these two results, Langevin [Lai] proved that

lim lim f (-1fL K (x) dx - vol(S2n)(p (n+1] + p(n)
s^oi^ojq 2 ;

Thus Langevin's formula states that the asymptotic behaviour of the Lipschitz-Killing
curvature of Çsx, more precisely the "amount" of curvature that concentrates around
the singularity, is described in terms of analytic invariants of this singularity.

Similar formulas for the other symmetric functions of curvature were announced

by Griffiths [Gr] and proved by Loeser [Lo], who showed

lim lim — 2/, f cn_k(ÇlCk)^4' ]+p{"~k\ k <= {1, «},
elk Jcsk

where cn-k(Qç} is the (n — /v )-(h Chcrn l'orm on C, / 1

(k), <j> is the Kahler form
on C"+l, e(n, k) is an universal constant depending only on n and k and /r("+1_A')



Vol. 83 (2008) Curvature integrals on the real M ilnor fibre 243

denotes the A-th Milnor-Teissier number [Tel]. Ulis lastnumber is tlie Milnornumber
of / restricted to a generic plane of codimension A. One should mention that Loeser's

paper concerns a more general situation from which the above formulas are special
cases.

Adding up these equalities with alternating signs simplifies, and we get

1 + (-1 )V("+1: E hm lim f c„-k(QCl) A /A,
H " "• h

and we recover Kemiedy's formula [Ke] for the Euler characteristic of the Milnor
fibre:

E '1ITI, lin! ~jr~ f c„-k(Q.cj a cpk.

k=0 JCx

All these results concern curvatures of the complex Milnor fibre. Let us focus now
on the real situation whose study was initiated by Risler [Ri] and the author [Du2],

Let / : Bf+1 —K be a polynomial such that / (0) 0 and 0 is an isolated critical
point of/. Let J) : ]R/!+l -*»- M be a one-parameter deformation of/such that/f_1(0)
is smootli near 0 for t small. 'Hie real Milnor fibre Cf is ff (0) fl 5"+1, where \t\

is much smaller than e in such a way that ft~l(0) is transverse to 3B"+l S". This
definition is different from the complex one. Actually, we could have defined the

complex Milnor fibre as the set/"' (0) D /i2"+2, / <A s. However, this is not usual
because this set has the same homotopy type as namely the homotopy type of
a wedge of //^12 spheres S", and complex geometers only consider deformations

given by / X. In the real case, the topology of| does depend on the deformation,
which explains our definition of the real Milnor fibre.

Risler proved that Imp^o\K(x)\dx (where K is the curvature, i.e.

the Jacobian determinant of the Gauss map) was finite and that it was bounded from
above by

V°E ^
lim lim I |LK(x)\dx - vol(£"+/r('^(/c)).

where /c (resp. ftyc) is the complexification of / (resp. ft).
In [Du2], we studied lim. ^o hm;^o ./<•• Kdvt for a deformation f, given by

ft(x) F{t, /), where (r, x) is a coordinate system for K"+i and F : R"+i ^ M

is a polynomial such that for all x e M"+i, fix) F(0, x). We assumed that the

mapping II : —k M'!+2 defined by II (F. |^,..., had an isolated

zero at the origin. This implies that VF, the gradient vector of F, has an isolated zero
at the origin as well. For t / o, the set ff1 (0) is smooth in a neighborhood of 0 (see

[Du2], Lemma 3.1) and the real Milnor fibre Cf is a smooth manifold with boundary



244 N. Dutertre CMH

(possibly empty). Orientating it by V/t> we proved a real version of Langevin's
formula ([Du2], Theorem 5.3):

lim lim / K (x)dx -]- vol(S"! [ deg0 V F+deg0 S}+\ deg0V(f\H)dH,
e^O f-^Q+Jq 2 2JQ'i+i

lim lim f K(x)dx -I Vol(S")[deg0 VF-deg0 + ^ f deg0V(f\H)dH.
e^Ot->0-Jcf 2 2JGnn+1

Here G"+] denotes the Grassmann manifold of «-dimensional vector spaces inM"+l

and dego // (resp. degoV /•', dego (./' I // is the topological degree of - around a

small sphere (resp.
' "

In that paper, we adapted to the real case the method developed by Langevin. We
needed the following real version of the exchange theorem. If V is an open bounded
subset of a smooth oriented hypersurface in F:" (hen, for almost all lines L c MP'1,

the restriction to V of the orthogonal projection on L admits only non-degenerate
critical points. To each of these points one can assign an index, the local topological
degree of (he Gauss mapping at the point. Let /r V, L be the sum of all these indices.
We have (see [La3], [LS])

I K(x)dx I //(V. Lull..
Jv 4MP"

Applied to Cf, this formula gives

I K(x)dx I in() /.!,//..
Jcf Jw"

'Iben we showed that, as e and t tend to zero, n. (Cf, L) tends to — deg0 V F±deg0 II +
deg0 Vtf[z±)? where L1 is the orthogonal of L. Note that unlike the complex case
this last term does depend on L.

The purpose of this paper is to give real versions of the Grifhths-Loeser formulas
and of Keimedy's formula. We will use the following notations:

• for k g (0...., «}, G^l+1 is the Grassmann manifold of A-dimensional linear

subspaces in M"+1 and g„+i,A- is its volume,

• for k g {0,..., «}, n is the k-th symmetric function of curvature,

• for k g N, hi- is the volume of the Ä -dimensional unit ball and o/( is the volume
of the /c-dimensional unit sphere.
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Figure 1. The exchange principle.

With the same assumptions as in the previous paragraph, we shall prove that (Theorem

7.1): for k e {1, n — 1},

Ok 1 f—— lim lim -—r / s,,-k(x) dx
\k)on s-^0f^0 bkek Jce

1 f deg0V(f\K)dK +
1 f deg0V(f\H)dH.

gn+l,n-k+2 J&nn^[+- gn + hn-k JMf
Furthermore,

lim lim —f so(x)dx — f deg0 V(f\K) dK + 1.
bnÉ" Jcf gn+1,2 Jg;i+1

From this and degree formulas for / (C[) due to Fukui [Fu], we will deduce the

following Gauss-Bonnet formula for the real Milnor fibre (Corollary 7.2): if n is

even,
nß I f

x(Cf Trr~ lin( Äni -—^ / %-iW dx>
(2*H b2*e2k Jcf

and if n is odd,

n—1

X (Cf Y2 TTT ' llll,11 7
^TTT f Sn-2k-l(x) dx.

Sa ^2k+l)°n ^0f^0è2,+ lS2A+l Jc?
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In the complex case, all the curvatures involved have a constant sign, whereas

in the real case the sign of the symmetric functions of curvature may vary. However,

Langevin and Shifrin [LS] defined, for a hypersurface V c M"+1, a sequence
of positive curvatures ho, hn such that ho(x) 1 and hn(x) |/f(.t)| for all

x V. Moreover they proved that these curvatures satisfied the same reproducibility
formulas as the We will work with them in order to get generalizations of

Risler's inequality. More precisely, adding the assumption that / admits an
algebraically isolated critical point at the origin, we shall show that (Theorem 7.1): for
k G {1 « - I},

lim lim —-r [ h„_k(x) dx < jén~k+1 '

(Jb) + fi("~'ï ' (/ci*
{k)o„. B^Ot^O bk£k Jcf

Furthermore,

lim lim
o b„e-[ ho(x) dx < (J {1)(fe) + ti-(0)(/ci-

ie" Jehl

order to establish our results, we use a method for the computation of
fy Sn-k(x)dx and l\ li, kix)dx. where V is a smooth bounded hypersurface in
R"+l, due to Langevin and Shifrin [LS]. Let us explain briefly this method. The main
idea is to refine the exchange principle by studying generic projections on higher
dimensional vector spaces. Let P e 0 < k < n — 1 and let ^i> ' V —> /' be

the restriction of the orthogonal projection on P. Genetically the set Tp of critical
values of Tip is almost everywhere a /,-dimensional manifold. With each regular point
y in Tp, we can associate two "curvature" indices /.(y) e Z and //( v) e N. The

integrals Jv s„-j;(x)dx and fv hn_k(x)dx are related to these indices as follows:

/ sn_k(x) dx c(n, k) / I /
Jv Jak++\ \JrP J

/ h„-k(x)dx c(n, k) / I / ß(y)dy\dP.
Jv Jg^XJ \JrP J

Our strategy is to apply Langevin and Shifrin's machinery to the variety Co f~l (0).
Since / is algebraic, Tp is a semi-algebraic set of dimension k (or empty) in the

neighborhood of 0. There exists a semi-algebraic set W> c Tp of dimension less

than k such that the indices X(y) and q (y are constant on each connected component
of Tp \ Wp. Writing Tp \ W> uXj and denoting by Xj and fjJ the common

values of X(y) and // t y i on each Xj, we get

/' /• p n b!')
I s, kix)dx fill, k I / y Xj • —7 dP,
Jmm Jam. bk?khek Jcgm n+1
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if. f ^ p voKXfnsf)
y I hn_k(x) dx =c(n. k) I Y ß. • dP.

Je;. n
" A

' ' ' '

M4lYJ hek

where is the ball of radius i in P. Applying Fubini's theorem leads to

lim -
'

- f l (,v i dx ein. k) [ Y %f ®k(Xf, 0) dP,
«D bké Jclw} gl ^ * J

lim -L f hn_k(x) dx c(n. k) f Y ,j,f ®k(Xf, 0) dP.
£^obkek Jcim Htlj

We recall that 0/:(Xj, 0) is the density of Xj, which does exist for Xj is semi-

algebraic (see [KR]). The remainder of the method is technical and difficult to present
briefly. We use the Cauchy-Crofton formula for the density due to Comte [Co], the
fact that tlie 's are related to Morse critical points of some projections and some

identifications between flag varieties in order to express frk+\ y if ®k(Xf,0)dP
n+1 J J J

in terms of mean-values of Euler characteristics of affine sections of Cq. Using
degree formulas for Euler characteristics, these last mean-values are easily seen to be

mean-values of topological degrees.
The method for h„-k is roughly the same; instead of degree formulas for Euler

characteristics, we use Teissier's lemma [Te2] which enables us to bound genetically
a number of critical points in terms of tire Milnor-Teissier numbers.

The last step is to prove that

lim lim f y kix\,lx lim
'

v kix)dx.
' •ü'< Je: /qjyoj

If Iflim lim —r I hn-k(x)dx lim —r f hn-k(x) dx.
e.->01->0 eA Jcf e^-0 e Jc|\{0}

Throughout tire paper, we will use the following notations and conventions (some
of them have already appeared in this introduction):

• ok is the volume of Sk, bk is the volume of the unit ball in R*.

• ^fL'i ® ''1C Grassmann manifold of /^-dimensional linear spaces in Rw+l,gt!+i,k
is its volume (see [Sa] for an explicit expression of g„+i,a->.

• 4J,
_ I

is the affine grassmaimian of /v-dimensional affine spaces in IF:"+1

• If H is a linear subspace of M"+1, GkH is the Grassmarm manifold of A -dimen-
sional linear spaces in H, II1- is its orthogonal, Bn is the ball of radius e

centered at 0 in PI. If K c H is a linear subspace of H, K1 " is the orthogonal
of K in H.
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• If vi,..., vq are vectors in M'!+1, S paru »j vq) is the linear space spanned

by ui vq.

• If X c 1R""1"1, Sing(X) is the singular set of X, X is its topological closure, X is

its interior and Bd(X) is its boundary.

• If M c M"+1 is a submanifold, Fra(M) is the set of adapted frames for M.

• A universal constant that we do not want to specify will be denoted by "est".

• We will often say orthogonal projection for (he restriction of an orthogonal
projection to a submanifold in M"+1.

The paper is organized as follows: in Section 2, we present the background in
differential geometry necessary for our work. In Section 3, we study generic projections
and polar varieties. In Section 4, we give the relations between topological degrees
and Euler characteristics. Section 5 is devoted to the proof of the formulas dealing
with linwo ^ Jpe\® A r'.vW.v and linwo fq\{0} hn-k{x)dx. Section 6

relates lime^o lini^o fq sn-k(x)dx and lma„_0 li«W) fq C-vW.v to

the previous limits. The real versions of the Griffiths-Loeser formulas and of Kennedy's

formula are given in Section 7.

Several authors have worked on this subject of curvatures and invariants of
singularities. Besides the ones already stated in the introduction, one can also mention
the following papers: [G-B.T], [La2], [LL], [ST], [Ne], [Va] in the complex case and

[BiryGGMI, [Du3] in the real case.

The author is grateful to Georges Comte for valuable discussions on this topic and

to David Trotman for his careful reading of this manuscript.

2. Differential geometric preliminaries

In this section, we recall differential geometric results obtained by Langevin and

Shifrin [LS] (see also [LR]). We will restrict ourselves to the case of a smooth oriented
hypersurface.

Let V c IP."+1 be an oriented hypersurface of class C2. A moving frame on an

open subset U c Vn is a set of smooth mappings e,- : U M"+1 such that for each

x in U, <. 11 v ;...., <?„ (x) form an orthonormal basis for TXV and e11+i(x) is the unit
normal vector in Nx V <TX V)x orienting V. Let a>i be (he 1-form dual to e-, (note
that a>,1+1 0) and let be defined by dei J2 w'1CTe <7e; is seen as a

-valued 1-form. We have wq {de{, ej), where denotes the usual scalar

product in R'!+I (note that cm;j —cojj).
Hie (Gaussian) curvature K is the Jacobian determinant of the Gauss map y : V ->
y(x) e„+i(x). We can consider den+\ as an endomorphism of TXV and we
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have

KdV Ka>\ A • • • A o)n {den+i)*(a>i) A A (den+i)*(m„),

where {de„+i)*: (TXV)* -> (TXV)* is the transpose map of den+1- Since den+j
Z)"=i©«+l,i«i, we find that fori g {1 ,n},(deri+i)*(coi) a>i(den+i) <W+U
and that

n n

KdV Ka>\ A A Wn /\^ o>n J j 1) • I •

i 1 i 1

The endomorphism rie„+i of TXV is self-adjoint and its eigenvalues k\ kn

are called the principal curvatures of V at v. The symmetric functions of curvature
so(.x) s„ (x) are defined as the coefficients of the following polynomial:

n n

det i Id • tdi, I tx fl'1 + J2 Si (x) t'
i=1 i=0

We note that sn is the curvature K and that ^o(-*) 1- Langevin and Shifrin give a

geometric interpretation of the other symmetric functions.
Let x g V and let / e GqT v be a q-plane (q 1 n). Let L be the (q + 1>-

plane / © y(x). Let (e\,. eq) be a direct orthonormal basis of /, we orientate L
choosing (jj yLx as a direct orthonormal basis. The section Ffll can
be viewed as a hypersurface in L. Let K (x, I) be its curvature at x. Note that if we
change the orientation of I, the orientation of L is reversed and so K (x, I) does not
change.

Proposition 2.1. Letx e V and let l g (!* r. We have

•V-V! (" ' / Kex. lull.
\C1J Sn.q JGj^y

Proof. The proof is given in [LS], p560. We repeat it here with more details. Let

ei,..., eq; eq+i, e„ ; en+\ be an adapted frame for V D L c V c K"+1 (i.e.

e\ eq are tangent to L D L and e\, e„ to V Let us denote by E the tangent
space TXV and by A : E -x E the linear map den+1 : TXV -x Tx V. The y-vectors
e/j A • • • A 1 < ii <s • • < iq < n, form an orthonormal basis of the space AqE
and we have

Aq A(e\ A > • • A eq) K (x, l)(e i A • • • A eq) + ^ ,1^,% A • • • A eiq.
Û 1

: • • •

Let (ui,., vn) be an orthonormal basis of eigenvectors of A, each v, being associated

with the eigenvalue kj. The y-vectors u,-, A - • • aw, 1 < ii < • • • < iq < «,form
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an orthonormal basis of eigenvectors of AqA, each a • • • a a being associated

with the eigenvalue ht. Let )q denote the usual scalar product in aqE. We
have

Aq A(ei A • • • À eq)

^2 &f A • • • A eq, vh A • • • A viq)q Aq A(vh, viq),
l<i\<~'<iq<n

^2 A • • • A eq, Vix A • • • A viq)qkh ...kiqvh A • • • A Viq,

l<i'l <"-<iq<n

hence,

Ki.x.h J2 (ei A • • • A eq, % A • • • A viq)\kh .kiq,
\<i\<"-<iq<n

y (detI I, •./,w
\<i\<"'<iq<n

We can write

1(1, vh A vi) dl -kh ...ki,L E (L
J<'i,v 1<i'i ««••<!»<„

where 1(1, a • • • a i>;?) (det [{«|, .<
)2 does not depend on the choice

of the direct orthonormal basis (e\,, eq) of I. Since GqT v is SO(TxV) -invariant,
the integral

I hl.f: .*'• I'; ill
Tx V

does not depend on the g-vectorujj a- ••aa. This gives the result, the multiplicative
constant being computed by taking V S".

By analogy, Langevin and Shifrin [LS] (see also [LR]) define other curvature
functions Iiq hn on V.

Definition 2.2. For q 0,... n and for all x e V,

TA 1

hq(x)= i — / Ki.x.h ,11.

\flj 8n,q JGj-^y

Note that for all x e V, hn(x) |j^(v)| k„(x)| and //ni.vi 1. In order
to study the functions sq and hq, we need a general version of Meusnier's theorem
about surfaces. Let x e V and let L be a (q + 1)-affine plane (q 0 n)
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passing through x, L (fi TXV, whose direction is the (q + l)-vector plane I. Let 777

be the orthogonal projection on 1 and let (e\ eq) be a direct orthonormal basis

of TX(V n /. We orientate L in such a way that (n- jrpyÇ.x)) is a direct
basis for I. The section V n L is a hypersurface of L, we denote by K(x, V n L) its
curvature. It does not depend on the orientation chosen for TX(V ni).
Proposition 2.3.

K(x, Txv n L) UïrfyOôM4 • K{x. v n L),

{Here TXV n L is seen as a q-veetor plane in TXV as in Proposition 2.1.)

Proof. Hie proof for q n — is given in [LS], p. 561. We prove the general case.

Let e'y e'q\ e'ii+{: e'q+2,..., e'n+] be an adapted frame for V n L c L c K"+l

(eq+2' • • • ' e'n+i are normal 1° Id in a neighborhood of x. Furthermore we take

p' — ni(y)— havee<?+] llxfiyir wenave

K(x.VnL) f\co'a f\0)'q+u
a=l a=l

since e'q+1 is normal to F H L in L. Hence

K{x,V PL) /\co'q+xJx){e\,...,e'q).
a=l

Now let m 1%; «u-i: <%+2. • - •. %+t be an adapted frame for V D(TXV n L) c
V c M"+1 such that er/ e'r/ al x lor 1 <a<q. We have

q q

K(x,TxV HL) /\coa /\
a=l a=l

hence
q

K(x, Tx V n L) /\ Cùq+Ua(x)(e\ e'q).
Ot — \

For each 1 < a < q, a>n+l.a is equal to (de„+e'a) at x. Since {en+\, e'a) 0, we
obtain

«+1

(4%4-3 {Ä®) dr;/. <7, 1 (^/ r.j, ^ {^n+l
ß=q+1

—(en + C eg + l/ß,a)? + l {%F1' e4+l)ftV+l,Q"

because (de'a,e'n) —{fiep e'a) 0 for ß > g + 2, the vectors being constant.
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We can state reproducibility formulas for the functions sq and hq.

Proposition 2.4. Let V c M"+l be a bounded hypersurface. Then:

I y, i.v dx est / / K(x, V n L)dx 1 dL.
JV JAlXl Wyni /
I hg(x)dx est / (I \K(x< V D L)\dx) dL.

Jv J&t+\ \JvnL J

Proof. The case q n — 1 is proved in [LS], p577. We adapt this proof to the general
case. Consider the incidence relation

{(*, L) G y X All\ I * G L}

and the bundle of adapted frames

((x, ^_|_i * * * > ^n+l)' (*> ^1' &q-\-l> • • > ^n+l))

GFra(A^+|) x I ra. V J,

such that <?i #p ss% || is a frame lor V n L.
We have to compute the density d»vnz a dL where dvVn, is the volume element

on VOL and dL is the invariant measure on Aqn t}. We have

dry I AO)a r a 1, q.

and (see [Sa], p. 202)

dL yyco- A yyj A yy^+1 j> p - 1 P J ?+2,..., « +1.

But rw- is equal to Xx'=?+i M • (remember that cw„+i 0), hence we get

dvynL A dL det ffdL «a-)1 «+iäfe« A A ft)» ; A A 6)»+i
I «+Äsfes»+1 '

For each j8, we have

h+i
{de'ß.e'j) ,/rr. ^ {(j,et)e^j

t=q-\-1

n+1 n

^ (ej, ^ {<?;, mod (cwi, <«„).
£ =-q "I-1 t=q-1-1
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This implies that

dvyr\L a dL det [|*|, e.ß)\ «+!sis#
I ij+2<r<n+l I

x I det [(e-, et)] 4+wm Ydvv A A Mß,r A A A,, > -,
I 4+2<IT«+1 I ' x ' v s ' '*

hence

dvyr\LAdL det [(fe; éA-)l spst» |? dvy A h mrj A /\ eo'
>

I L J
?+2<!<n + l I / \ ' / \ ?T '2

By a result on orthogonal matrices, we get

dvvnL AdL \ {e'q+l, en+\)\q+ldvv A f\o>ßj A [\ü)'q+l j.
We see that /\ a>ßj, ß 1 q,t q + 1, «is the measure <i/ of the space
Ci'i r. Moreover, A ^+i y > i + 2 « + 1, is the measure dp of the space

^ ' v, i / •• FinalA'

K(x, V n L) dx dL
'VOLIJL

- f f f \{e'q+i,en+i}\dp\\(e'q+l,e/1+i)\qK(x,V C\ L)dLdx.
J\ J i ß yJGlf^y^ /

From Proposition 2.3 we have \{e'a+l, en+\)\qK(x, V n L) K{.r, 7'v V n L
K(x, /) with / TXV n L. Furthermore, the integral

L l
Nx(VHL)

where e'q+l is an unit vector of p, does not depend neither on NX(V HL) nor on en+i
and is equal to

L \{e(p), W I dp,
Jn+\-q

where w is an unit vector in 1 q and e(p) an unit vector of p. This implies the
result for K. The same argument holds lor \ K\

Langevin and Shifrin's idea is to relate fv sq (x)dx and fv hq (x)dx to polar varieties

of generic projections and to generalize somehow the exchange formulas. First
we recall some results on polar varieties. Let P e fA+,, k 1,...,m, and let

Tip : V -> P be the orthogonal projection on P. We denote by Hp the set of critical
points of Tip and F/> Tip (Hp) the set of critical values. Usually Hp is called a

polar set or polar variety.
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Lemma 2.5. For almost all P g G^l+l, Ep is a smooth (k — \)-dimensional sub-

manifold of V (or is empty).

Proof. We can refer to Mather's work [Ma] on generic projections. Here we give an
alternative proof due to Slavskii [SI]. We can assume that V {x g R"+l | f(x) 0}
where / : R"+1 —M is C2 and Vf does not vanish on V. Let us put q n + 1 — k
and let us consider

F : M"+1 x (R"+1)4 -> IT+1,

(x, r, vq) (/, (V/, wi), (Vf. Vq}).

Since V is non-singular, it is easy to see that dF(x. rp,,. t, vq) has rank q + 1 if
F(x, i>i..... Vq) 0. The set F_1(0) is then a smooth manifold of dimension

n(q + 1). Lei 7t : K*+1 x (1R'!+1)? be the projection (x. uj,. vq) \-y
(ui Vq). Sard's theorem implies that almost all (yi, vq) are regular values

of 71 |/r-i(0), which means that F_1(0) n 7r_1((wi, vq)) is a smooth manifold of
dimension«— q k — 1 for almost all (t>i vq). ButF~1(0)n7r~1((yi vq))
is exactly Sp where P [Span(ui,.... ft)]*1. °
Lemma 2.6. For almost all P g Gkn+l, the set

Ep {x g Ep I 7tp|ep is not regular at x}

is a union ofsubmanifolds ofEp of codimension greater than or equal to 1 (when
E p is not empty).
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Proof (due to Slavskii [SI]), Let Çsfj vq) be a regular value of the map tt i ,01

defined in the previous lemma and let P be ISpanOj (;,7 ] -L. We have

Ep {.* g FJ,+1 I f (x) 0, (Vf(x), vi) • • • <V/(.v), vq) 0 and there is

w g Span(ui, vq) such that (V(V/(v), v£. w) 0 for i g {1,..., q}}.

The last condition is equivalent to

det [ Y Ü vfvf =0 where it; (u/, u"+1).
L dxadxß 1 -1 • ;?

a,ß=l r

Let us call 4a — K -
*

the space of symmetric (q x <y)-matrices and let ß,- cl 2
1

lp+q
be the subset of matrices with corank i,i 1, q. It is a submanifold of M 2 of
codimension '-f1. Let ßo be the set of matrices in Sq with determinant zero, ßo is

equal to ULi We can write

Ep {x G M"+1 I fix) 0, (Vfix), Oi> • • • <V/(.v), vq) 0,

[V'+i fon)L 2sa,ß=l dxadxß i j Jl <i,j<q J*

Let Ey be the critical set of tt i(0, and lei tl F 1

(0) \ E-. The mapping

"+1 n2d'fjx)
,>./] dX:«dxß

<h: /•' 'dl! > [ Y " "
1 j

is regular on U. This is due to the fact that on U the vectors with n + 1 components

ui Uq, defined by

« + 1 sM f " + 1 di f
m " dx./,)x,tXU: S ilx/.ix,.. )'

a=l
'()Xfy ()x ] àXij 'àXîi

» 1

are linearly independent. Locally the set ßo <b
1

(ßo) n K has the same structure
as ßo, that is for all i G {0 q}, ß/ <L_1(ß(:) n K is a submanifold of Ï1 of
codimension Letß. c ß; be the subset where x\^. is not regular. From Sard'sLetßJ. c ß, be the subset where tt |^ isi
theorem, n(ß! > has measure zero and tlien À tt(Eot) U Uf=i ^(ß.) has measure

zero. If t r i rq i ^ A then tt~1((vi vq)) n ß,- is a submanifold of dimension

k — 1 — (i-y1). Since Ep tt
1

u n,,.., vq)) n ßo, the lemma is proved.

In the following preliminary results, we will assume that V is a smooth bounded

semi-algebraic variety.
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Lemma 2.7. For almostall P g Gkn+V Y P is a semi-algebraicset ofdimension k —I.

Proof. The set Tp is semi-algebraic as the projection of the semi-algebraic set Ep.
Moreover dim Yp < dim E P k — 1. Letx be a point in Sp \ Ep, From the previous
lemma, there exists a semi-algebraic neighborhood Ux ofx,Ux c Ep \ Ep, on which
7Tp is a diffeomorphism and then dim nP(Ux) k — 1. But nP(Ux) is included in
Tp hence dim Tp is greater than or equal to k — 1.

VWe dehne now an index associated with each point i e Ep c Ep. For this, we

consider the normal section V n (P © y (x)) and the orthogonal projection ny(
of this section on the line oriented by y(x).

Lemma 2.8. The point x is a non-degenerate critical point ofjiy(x)

Proof. It is clearly critical. We can assume that V is defined by {/ 0} around x.
Let us choose coordinates fxj.... ,xn) around x such that P1 {x4+i

x„+i 0} {q « + 1 — k) and such that Vv> | i.vi. In that case, a

local coordinates system at x for V n (P1 © y (x)) is given by (xf, xq). The

implicit function theorem together with some derivative computations shows that
ijçj p 3^ f T

Wy.(X)
' is non-degenerate at x if and only if det |:..v f • v >J( ,<(i

0. Writing
P1 Spani t'i vq) where Vi G {1 q}, ty Vxt and keeping the notations
of Lemma 2.6, we see that

fl2 f "+1 a2ff *>- E r1"^-OXjOXj z—' OXafXß J
J a,ß=l a P

Since X ^ Sp, we conclude that det [gp^(.r)]1<;. f().
We dehne z'p(x) to be the number of positive eigenvalues of 7Ty,x).

Lemma 2.9. We have (—l)^"' sign if (x, PL).

Proof According to [Du2] Lemma 2.3, one has

sign K(x, P1) (-\)q sign —— (x) V • (-Yf~ip^ti
VÄ+1 /

keeping the above coordinate system. But, in that system, ^ (x) is equal to
|| V fix) ||, which is strictly positive.

Following Langevin and Shifrin, we can define the q-length and the oriented

y-length of V (ibis terminology appears in [LR]).



Figure 3. The index i p(x).

Definition 2.10. For each q g {0 « — 1}, for almost all P G (!'] \. we set

m + (P)= ^ (-i)'X-)) r/y
lp xp\zPlx)=y

and

m(P) f tl(7Tp\zpyl(y)dy.
JrP

We define

Li(V)
1 f m + (P)dP,«v -

g„+ii?+1
and

Lq(V)
1 f in(P) cl P.

ën + l,q+l

Furthermore, we set L+(V) L„(V) vol(V). We call L+(V) the oriented

g-length of V and Lq(V) the ^-length of V.

First we note that m+(P) and m /') are well de lined because dim ttp £ 'p) < n — 2

and almost all y in F P are regular values of tt p | For such a y, <TTP\^f,)
1

(y) is a

0-dimensional semi-algebraic set, hence a finite number of points. We also note that

Lq (V) fv K(x)dx and Lq( V) fv ]Ä"(X] Idx by the exchange formula.
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In order to relate the oriented g-length (resp. the q-length) to the curvature sq

(resp. hq), we have to study the local situation at a point in Y./> \Y,'p. Let us consider

an(n—q +1 )-affineplaneL (0 < q < n — 1). Generically V fi /. is a smooth (n — q)~
dimensional manifold. Let P be a (q + l)-vector plane containing the orthogonal
of the direction of L. The intersection / P fi /. is an affine line in /'. In L, let

7T^ : V C\ L 1 be the orthogonal projection on I.

Lemma 2.11. A point x in (Hp \ H'p) n L is a critical point ofn^.

Proof. Let us assume that V {f 0} near x. We can choose a coordinate system
such that P {x^+i xTl+\ 0} and L {x\ a\ xq aq). In
that case x is a critical point of Tip if and only if V/(x) is a linear combination of

e\,.... eq+i (ei Vx,:). In L, x is a critical point of nf if and only if eq+\ is a

linear combination of e\,.,.. eq and V/ (x). We conclude using the fact that V/ (x
is not in the vector space spanned by ei,..,, eq since V and L intersect transversally
at x.

Lemma 2.12. Such a point x is non-degenerate for nf. Moreover,

sign A'ix. V /.) (-l)':pfe).

Proof With the notations of the previous lemma, x is non-degenerate for nf if and

only if
r92/(.*)"

det
Bxid.Xj j

7^0.
q+2<i,j<ri + l

In the frame (<q < r ~-~(x), eg+2, • • •, e„+1) with coordinate system

!vl • • !»> s Xq Xq^] Xq+2, • XHp |

P1 is the set {xi 0,..., xq 0, x'q+l 0} and (^| is equal to Vx^+1 (x),
i.e. / (x). As in Lemma 2.8, we see that

92/(X)
det

dx-i i)xj
#0,

since x f H'p. Finally, tjpW sign K fx. /' » sign K(x, TXV n L) for
PL TXV n L. We conclude with Proposition 2.3.

We need a last lemma which describes the structure of I>.
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Lemma 2.13. There exists a semi-algebraic set Wp c I> with dim Wp < k — 1

such that the following functions in y>

are defined and Constant on each connected component ofFp \ Wp and such that
Fi* \ Wp is a smooth manifold ofdimension k — 1.

Proof. Let

Since Sing(rp), jTp(Hp), 7rp(Bd(Ep)) and Bd(rp) are semi-algebraic sets of
dimension less than k — 1, dim Wp < k — 1. Moreover, Wp is a closed set in P
which contains Bd(rp hence Fp \ Wp is an open set in Tp included in I>. The
Set Fp \ Wp is a smooth (k — 1 )-dimensional manifold for Sing(rp) c Wp and the

two functions are well-defined because 7rp(Ep) c Wp. Let y be a point Fp \WP
and let {jej4 be (7rp|£F)_1(y). For each j g {1, ny}, we can choose

an open neighborhood IJj c Ep such that np \ n. is a diffeomorphism and such that

(_lyp(v) (_pyp(-v> for each x G |j. (the function K(x, P1) is continuous inx).
Let A be the following set:

It is a compact subset of Ep, hence np(A) is compact in F p. The point y does not
belong to 7rp (A), for otherwise it would belong to up (Bd(Ep There exists an open
neighborhood V of y in Fp which does not intersect np(A). Since y is an interior
point of Tp, we can choose V open in I>. Then the two functions are constant on

We can state now reproducibility formulas for the oriented q-length Lj and the

(/-length Lq.

Proposition 2.14. For q g {0 n} we have

^2 (-1)lp{x) and $ (ttpIep)
1

(y).
v I xp\-zp(x)=y

Wp Sing(rp) U 7ip(Ep) U 7ip(Bd(Sp)) U Bd(Tp).

vn(fp \ Wp).

and
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Proof. For q n, this is just the Cauchy-Crofton formula because Lq( V n L)
Lo(V n I.) jï{V n L}. For q < n — 1, we have

L+(V) f f £ ' i' '/.V'//'-9 ftuli+ife irpV.,. '%ti 4- I,q -f~ i J cP J r p I IM H+t p * I *7> I (*}=.?

But it is clear that

f J2 (-l|MiV)) dy £ y; (-1$*®) dy.
' Vp x I jrp|Epfy)=y Vp\Wp x I a.p|E^(x)=y

Let us decompose Tp \ W> into the finite union of its connected components, i.e.,

Fp\Wp [J Xj'. For each j, let us denote by kf' the common value

x. I xp\xp(x)=y

We have

Fp x I Jrp|£p(.ï)=y 7

The Cauchy-Crofton formula in P gives

YoliXfi est / ÜtfnftÄ
and so

u
L+(V) est f +l( f J24' S(X? n /)rf/ dP-

H + l j
Let y be a point in Xj fi /. If F fi L is smooth, where L is the (n —q +1)-affine plane

P1 © /, then each preimage * of v by tt xp is a non-degenerate critical point of the

orthogonal projection nj- : V C\L /, l'or y y np{"L'p). furthermore (' —i)',"Al
Sign K (x, V n L). Flence we get

J2 • uxf n /) Y si§n Kix- vnL')-
j x \ x non degenerate

critical point of Ttjf

Let F be the flag variety of pairs (P,/), P g ('lV\ and t g A]p. The mapping

(P, /) h-> (L, /) where L P1 © / enables us to identify F with the flag variety of
pairs (L, /), L g J^|+1 and l g C>\. Since for almost all L g Annf_\+l, V n L is

smooth, we find

Lim estjj V sign K(,. v n D) it
I— T. y I r non dooonorflta'^re+l L ^ x I x non degenerate

critical point of 7tf

dL.
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But we have

I V) sign K(x, V n L))dl f K(x, V n L)dx L+(V n L),
JCt^ ^ ' / J ViT v I v nnn 'L x I x non degenerate

critical point of nf1

"0
fVHL

by the exchange formula and the fact that for almost all / -e <?ju xj- is a Morse
function.

Theorem 2.15. For q G {0, «},

L n\ Or,

s„-q(x)dx I I —L+(V).
V W Oq

q

f h„_q(x)dx= l" )^Lq(V}<
Jv VIJ %

Proof. By the reproducibility formula for s„-q, we have that

I sn-„(x) dx est / / K(v. V n L)dx dL.
Jv *K7\+l

Hence, by the previous proposition, fv sn _,7 (x)dx is equal to est /.+( V We compute
the constant by taking V S".

This theorem leads to a geometric interpretation of fv hn-q(x)dx as explained
in [LR], p. 597. Moreover, in [LS] and [LR], it is stated in the C2-case. In that
situation, Lemma 2.7 relies on deep results of Mather on generic projections [Ma].
The semi-algebraic case allows an easier proof.

3. Generic projections and polar varieties

Let / : K"+1 IR be a polynomial such that / (0) 0 and 0 is an isolated critical
point of /. Let Co be f~l (0). For any (n + 1 — <?)-vector plane H, 1 < q < n — 1,

we denote by ttu _
: Co -* H1 the orthogonal projection on H1. We set also If for

the (« + 1 — £/)-affine plane parallel to H and passing through y g //1 (IIa H).
Let / be a vector line in H and let f be the line parallel to / passing through y. We

H vwill denote by jr{
' 1 Co n If ly the orthogonal projection on lv. We will show

that for a "generic" choice of H and /, the following property holds: the function
admits only Morse critical points in Co n Hy n B"+l for 0 < [y| « <<:. 1. We

will establish this result studying generic projections and polar varieties.
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Lemma 3.1. For almost all H g G"^_\~q, 1 < q < n — 1, f\h has an isolated
critical point at 0.

Proof. Lei G be the map defined by

G ; R"+1 x (Rw+1)? -* M'i+1

ix, ni %} (f ; (x, vi)...., (x. vq)).

The set G_1(0)\({0} x (M"+1))? is a smooth manifold of dimension« — y+ (« + l)y.
Then we use the projection on (E,i + I)'7 and tlie Bertini-Sard theorem [BCR] and we
choose H [Span(«i tV"}. We conclude recalling that V( f \ u 0} c
{/lff=0}.

^

The following results are proved in the same way as Lenunas 2.5, 2.6 and 2.7,

considering the smooth manifold Co \ {0}.

Lemma 3.2. For almost all H e G"^[~q, 1 < q < « — 1, 2#j. is a smooth

(q — 1 )-dimensional or empty semi-algebraic set in the neighborhood of 0 is

the critical set ofjrH±

Corollary 3.3. For almost all H g G-'^r]~q, 1 < q < n — 1, Tgi tth t X/y i is

a (q — lydimensional or empty semi-algebraic set in the neighborhood of 0.

In the sequel, we fix a generic (« + 1 — y )-plane II satisfying Lemmas 3.1, 3.2
and Corollary 3.3. We will assume that H {x a R"+1 ] jtj • • • xq 0} and

so iiHr c.v! (xi,..., xq). Therefore the set is

{x G Co I rank(V/, e\,..., eq) < q + 1}.

For all 1 G GlH, there exists v G S" n II such that the orthogonal projection II —> 1

is given by (v. x) u*(x). We will work with Sn n H and u*. For all v G Sn n II,
we dehne

Tv {.x g M"+l I fix) 0 and rank(V/(x), e\, eq, v) < q + 2}.

It is clear that 0 g 7j,.

Proposition 3.4. For almost all v g Sn n H,TV \ "EH± is a smooth q-ditnensional
or empty semi-algebraic set in the neighborhood of 0.

Proof. Let G be the map defined by

G: Mf,+1 x (1r+l-qf-q -> R"-«+1,

(ß, Hq+2 Mfl+l) t-# (f; (Vf, uq+2) (V/, m„+i)),:
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where for i g {q + 2 n + 1}, m§ (0 0; wf+1. • • •. u"+1). If * $ Sgd
then there exists j g {q + 1 n + 1} such that §p(x) f 0. Hence X G~1(0) \
[^// x (1R"+1 Y is a smooth [(« -y)(n + 1 —y)+y |-dimcnsional or empty semi-

algebraic set Letv: M"+1 x(Kf'+1~r)"~? —> (W+i ~q)n~q be the projection. Bythe
Bertini-Sard theorem, almost every (uq+2,... ,:wn+i) S is a regular
value of v\x which means that XDv"' ((uq+2,.... m,i+i)) is a smooth q-dimensional
or empty semi-algebraic set. We choose v in |Span(«,7+2...., M„+i)|JTi.S'"n//.

Proposition 3.5. Let it be the subset of \ where the mapping nHi : Tv \
XHi_ -* H L is not regular. For almost all v g STi/L the set TJ, is a union ofsmooth

semi-algebraic sets of codimension greater than or equal to 1 in the neighborhood
of 0.

Proof. Let v g S" n II be a generic vector for the previous proposition and let

(uq.|_2,..., «„+) be a in —f/ )-tuple such (hat 0 g [Span(M?_|_2,..., M„+i)]1nS'!n//.
The set Ij is described as follows:

T'v {.r i Zffi I f(x) 0, (V/(x), uq+2) (V/(x), un+\) 0,

there is m oil such that (V/(x). w) 0 and

(V{Vf[x), w) 0 for i G {q + 2, + 1}}.

But at x Tv\ XH±, v belongs to Vectt V/n <*|....., eq) hence (V/(x), u) 7t 0

for otherwise (a, u) 0. If we write the element w ot // as a linear combination
of v and the ufs, we see that at x g Tv \ XH.±, {V/(x), w) 0 if and only if
w g Vect(H?+2, îf:n+i). Therefore

% {* i sh1 I ./'V) 0, (Vfißt), aq+2) (V/(x), «„+1) 0, there

is w g Vect(Mg+2. Un+1) such that <V/(x), w) 0 and

(V(Vf{x), Ui), w) — 0 for i g {q + 2 « + 1}}.

We conclude mimicking Lemma 2.6.

Corollary 3.6. For almost all v g S" D //, jiHL(Tf) is a semi-algebraic set of H1
ofdimension at most q — lin the neighborhood of 0.

Proof. It is clear.

Lemma 3.7. For almost all v g S" H H, f\Hn{v*=0] admits an isolated criticalpoint
at 0.
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Proof. Let us consider the following mapping:

G : R"+1 x M«,+2,

(x, v) if: ,V| xq, ?f:\ ,t}).

Since /|# has an isolated critical point, for all .r g /_1(0) n II \ {0}, there exists

j G {q +1 » • 11 such that J| i.vi # 0. WededucethatG-1(0)\({0}xM"+1-«)
is a smooth manifold of dimension 2n — 2q and we conclude using a projection.

Corollary 3.8. For almost all H g G"nf ~q, 1 <q <n — 1, for almost all l G Glf/,

the following properties hold: there exists a semi-algebraic set A c H1 which
contains 0 and ofdimension smaller than or equal toq — 1 in the neighborhood of 0,

there exists 0 < e' « 1 such thatfor all 0 < # < rf there exists 0 < y? <<:; $ such

that for all y g //l \ A with 0 < |y] < y& Cq n Hy n S"+l is a manifold with

boundary and nl
,y admits only Morse critical points in Co n If fl 5"+!.

Proof We choose H generic for Lemmas 3.1, 3.2 and Corollary 3.3. Therefore jfjj»
has an isolated critical point and there exists 0 < s' -C 1 such that for all 0 < e < e',
Co H H n Sg is smootli. By transversality, there exists 0 < y' -c e such that for all y
with 0 < I y I < yCo n Hy n S" is also smootli. Then we take v g .S'" ri II generic for
Propositions 3.4 and 3.5 and we set I Span(u). Let A be Yn n ttn (T'). It is a

semi-algebraic set in H1 of dimension at most q — 1 in the neighborhood of 0, which
means that there exists 0 < y" -c 1 such that A n Bp"1 n IS1 is a semi-algebraic

set of dimension at most q — 1. We set ye min fyf y"). If y g H1 \ A and
0 < I y ] < ye then Co fl If PI ß"+1 is a smooth manifold with boundary because

v çé Y n and Co fl If Pi Sf is smooth. Furthermore nf'y is Morse in B"+1 since

y£*(Tf).
'

We will need also this lemma:

Lemma 3.9. For almost all l g Gl+1 with I _L If f\nei has an isolated critical
point at 0.

Proof. Let G be the mapping defined by

G : R"+] x _* 14,

ffs w\:..., Wq-1) Hfc (/: (x, W\) (x, wq-1>).

As usual, for almost all {w\ t%-i) g (K?)®_1, Co fl {{u;i,.rj 0,

{wq_i,x) 0} is smootli of codimension q outside If But if y f 0 belongs
to H n Cq n {(u>i, x) 0,..., (voq_i, x) 0} then rank(V/(.r), ê\, eq)
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q + 1 and therefore rank(V /(.*), w\, wq_i q since Span(tui,..... wq_i c
Span(ei, ...,eq). We choose I in such a way that H ®l [Span(wi, wq_ j )]-*-.

The second part of our study on polar varieties consists in localizing the results

on polar varieties of Section 2. Let k be in {0,.... n — 1} and let P be in Gjjij Let
up-. Cq -> P be the orthogonal projection on P. We recall that Ep is the set if
critical points of up and I> ,TpT/>,t

Lemma 3.10. For almost all P g j, Ep \ {0} is a k-dimensional submanifold
in the neighborhood of 0.

Proof. See Lemma 2.5.

Lemma 3.11. For almost all P G G^f\, the set

Ep {.r g Ep j 7Tp|sp is not regular at x}

is a union of submanifolds of*Lp of codimension greater than or equal to 1 in the

neighborhood of 0.

Proof. See Lemma 2.6.

Lemma 3.12. For almost all P g j, Tp is a semi-algebraic set ofdimension k

in the neighborhood of 0.

Proof. See Lemma 2.7.

With the definition of ip (x) given in Section 2, we have:

Lemma 3.13. For almost all P g Gkrff j, there exists a Semi-algebraic set Wp c Lp
ofdimension smaller than k in the neighborhood of 0 such that Fp\Wp is a smooth

k-dimensional manifold in the neighborhood of 0 and thefollowing functions in y,

£ (_i)»« and ö(7rp|Ep)-i(V),
-V I np\-£.p(x)=y

are defined and constant on each connected component ofFp\ Wp whose closure
contains 0.

Proof. Apply Lemma 2.13 to the manifold Go fl B"~~1 \ {0}.

In the rest of this section, we assume that / admits an algebraically isolated critical
point and we will denote by /<g its complexification (the same notation will be used

for the complexification of any real algebraic mapping or set). Let us recall first two
general lemmas.
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Lemma 3.14. Let N c M c KiV be analytic sets and let Np and Mç be their
respective complexifications. Assume that Mp \ Mc is a smooth complex manifold
of dimension K. Let jz : RN -> Rp, with I' < K, be an analytic mapping and let

ne be its complexification. Then for almost all a g Rp, Tt^la) n Me \ Np is a
smooth manifold ofdimension K — P andn~l (a) P\ M \ N is a smooth manifold of
dimension K — P (or empty).

Proof. Let Sc be the critical set of #c|McWc a"h let S be the critical set of x\m\n-
Then t%(Sc) has at most dimension P — 1 and jTpÇSp) n Rp is a subanalytic set of
dimension at most P — 1, which contains ~(S

Lemma 3.15. Let g (gi gn) ' W -> W be an analytic mapping such that 0

is algebraically isolated in g_1(0). Then, for all sufficiently small regular values S

of g

tig
(ftC- • • • * Snp)

Proof. Let IL (resp. rgc) be the discriminant of g (resp. gc); IL is included in
H M". If S does not belong to TV H M" then <5 is also a regular value of gc and

the result is clear. If <5 e (IL.., n M") \ T, 8 is a regular value Of g and the function
A. {Jg~j (À) is locally constant around <5. Since dim rgcniR" < n, there are regular
values of jgg in the neighborhood of <5 in Wl.

Using these two lemmas and the machinery developed in the first part of this
section, we obtain:

Corollary 3.16. For almost all H e G'^\~q, 1 <q<n — 1, for almost all'1 G GlH.

the properties of Corollary 3.8 hold. Furthermore, CacC HycC\ 5j?("+1) is à smooth

manifold with boundary and the projection n£'yc Coc n Hyc n Bg{n+l) -> lyc
H V

admits only non-degenerate critical points. The number ofcritical points ofrvj is
H vsmaller than or equal to the number ofcritical points ofjilc %

4. Euler characteristics and topological degrees

Let g: (K'Vfl, 0) — (IP:, 0) be an analytic function with an isolated critical point
at 0. Let us assume that g|{A,=0} has also an isolated critical point.

Lemma 4.1. The function x\ lg-i(0)\{0} has no critical point in a neighborhood of 0.
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Proof. Using the Curve Selection Lemma, it is easy to prove that the critical set of
ViU 1,0, lies in (v| =0}. Similarly the critical set of g|{aj=o} lies in g ~ (0). Hence
these two critical sets are the same,

This lemma implies that 0 is an isolated root of the mapping G : (R/v+1, 0) -*
«»+'. au « fe«. süf«,....
Theorem 4.2. Let <5, 0 < |<5| <<C e 1, £><? a regular value of x\ -i(0)\{0}- Then, if
N — 1 is even, we have

X (lrHm n {.VI 5} n Bf+1) 1 - dego Vg - sign(<5) • deg0 G,

x({g > 0} n fa 5} n 5f+1) - x({g < 0} n fa 5} n sf+1)
deg0 V (g|{.Vl=0})-

IfN — 1 is odd, we have

x{g~lm n {v, S} n #f+1) 1 - dego V(g|{,1=0}),

x ({g > 0} n fa 5} n Bf+1) - x ({g < 0} n fa 8}n if+1)
deg0 VS + sign(^) • deg0 G.

Proof. litis is an immediate consequence of Fukui's formula [Fu]. See [Du2], The-

orem 3.2 for details.

We will use these results in the following form:

Corollary 4.3. Let 8, 0 < <5 «; e <^C 1, be a regular value ofx\], -i(0)\{0}- Then, if
N — 1 is even, we have

x{g-1(0)G{xl =ä}nßf+1) + x(g-1(0)n{x1 -5}nBf+1) 2-2deg0Vg,

X{{g > 0} n fa 0} n sf - x {ig < 0}n fa 0} n sf 2dego v(g|{,1=0}).

If N — 1 is odd, we have

x (g_1(0) n {V! 0} n Sf) 2 - 2deg0 V(g|Ul=0}),

[x {{# > 0} n fa 8}n Bf+1) - x ({g < 0} n fa 5} n Bf+1 )]

+ [x {{g > 0} n fa =-8} n Bf '1 - x ({g < 0} n fa -5} n Bf+1 )]
2 dego Vg-

Proof. It is easy. However the reader will find in [Dul], Theorem 5.2, the argument
necessary for the proof of the second point of the case N — 1 even.
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5. Integrals on the singular level

We recall that / : M"4 ' —.IP! is a polynomial such that /(0) 0 and 0 is an isolated
critical point of /. Let Co be /-1(0) and let Cq be Co n B"+1. In this section, we

express

— f
'kBk Jc{

in terms of mean values of topological degrees, and we bound from above

lim j I sn-k(x)dx, 1 < k < n,
bkek Jc|\{0}

1 flim r / h„-b(x)dx' J k
:e^O bkek Jc|\{0}

in terms of the Milnor-Teissier numbers of /ç,

5.1. Study of First we study the case 1 < k < n. From Theorem 2.15,

I sn-k(x)dx • -inco \ {o}>-
c|\{0} W Qk

We keep the notations of Sections 2 and 3: P G GkA],np: Cq —> P is the orthogonal
projection on P, Sp is the polar variety and Fj> ttpi Et> We will write

m+'B / Y 1 for 0 < « « 1.
JrpnB° VlÄ-Hv ;

Here B1' is the ball of radius e in P. Then, we have

-i +>£

/.: rCf \ loi —-— / -
bke

I I f m+'B
—L+(0O \ {()}) / —J dP.
k£ 8n+l,k+l bkek

n+1

rpWitli the notations of Lemma 3.13, let us write I> \ W> [_/ X ' in the neighborhood

ofO. Moreover, on each Xj' the integer XL-rp|E tß)=;y(~ wfaetey g Xja
does not depend on y. We will denote it by kf. Then the following equality holds:

rP rP

"1+,E £ kj ' VOl(X/ n ££ ' / l'X'i n 1 n Be

1=1 1=1 AP

hence,

r rp
1+-^— I yP n f n Rp

*p j=i
m ' Y a.' (pcf n I n s di.
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ButE-ix; • QXf n / n Bf) is generically the number of critical points of the

orthogonal projection nf |: Cg D L fl B"+l —> 1 where L I'1 © /. By Bezout's

theorem, this number is smaller than or equal to D deg /(deg / — )"~k. Since

Xj' n Bf c Bp, there exists a constant est such that /»+"" < est D ek and

'

k
' < est D, this last term does not depend neither on P nor on e. We cart apply

Fubini's theorem to get

1 1 /' 77I~f'S

n rLt(CP, \ {()} / lim F
»0 bkek g«+u+l JGff[ *-*0 bkek

1 f ^ vol(XfnBf)
/ Vjtf - lim 1 dl'.

Sn+l,k+l J-Gkn\\ bke

Each set Xj is semi-algebraic of dimension k, hence by the Kurduka-Raby tlieorem
[KR], we obtain the following proposition:

Proposition 5.1. Fork g {1 n — 1}, lim.^o 0Q» \ {®}) AÉ8? and equals

— f £-l.k+l jGk+\ —1

he

rp

'Xf • &k(Xf.0)dP.
gn+l.k+l

J

Now we have to compute ®k(Xj, 0) for a generic (k + 1)-plane P. We will
use the Cauchy-Crofton formula for the density due to Comte [Co], which can be

summarized in this way in tire semi-algebraic case:

Proposition 5.2. Let X be a semi-algebraic set in M'v whose closure contains 0,

d -dimensional in the neighborhood of 0. For every d-dimensional vector plane Q in
!iV, we denote byriQ-.X—^Q the orthogonal projection on Q. There exists a dense

open semi-algebraic Set Sx in GdN such thatfor all Q g Sx, the following holds:

(1) The complement of the discriminant ofiiQ is a dense open semi-algebraic Set

of Q. We call local polar profiles its connected components whose closure

contains 0. We denote them by K(f KpQ.

(2) For all i g {1 hq}, the cardinal of the fibre does not depend on y

if y g and y i:s close enough to 0. We call this integer multiplicity of the

polar profile and denote it by ef.
Moreover, we have

nQ

&d(X, 0) — / Y ef ®d(Kf, 0) dQ.
gN,d
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Applied to X?, this gives

"P.Q.j

®k(Xf, 0) / V eff ®k(Kf:V, 0)dQ,
H,t Joi '

t/ KJ p I _ j

P O P owhere the À s are the polar prohles and the tfp'S are the multiplicities of
J JH

Xf h» Q. Hence for a hxed P, we obtain

rp 1 p rP nP,Q,j

kf eff .®k(Kf/,0)dQ.
' f \PW.%(x[,o) —| VV

JML MT,'""uP;=l i=l

Now let us ûx a A--plane Q m P and let us set / (J As in Section 3, we
denote by ly the line parallel to / passing by y and Hy the (n — k + 1)-affine plane
P1 © A. For v g Af/e close to 0 (i.e. |v| <C «), t ,-r

' '? 1

< v i is included in
J J il J

Xj and tlierefore is disjoint from np(Sjj (see ffie notations in Sections 2 and 3).

Each point in nß 1[(tt( '^)-1 (y)| is anon-degenerate critical point of the projection
H v

Jtj : Cq njïyH* fc (by Corollary 3.8, we can assume that Cq Pi //, is smooth).
Let Q,, be the connected components, whose closure contains 0, of the

P ocomplement of the union of the discriminants of the projections ?r • A These

connected components are the non-empty intersections f~jy=i Afi) where ij ranges in

{1,..., «jygj. The set U/Li fc a dense semi-algebraic set in Q. For each

ß G {1 a}, Qß is equal to fj | ß/jCJ£f,f A, Let yß be a point in Ûp closerP,Q

to 0, then using Lemma 2.12 we have

E kf 4f E si§n K(x' con
• • I r-i ^ts-P,Q x I x non degenerate
w I % 1JJ ' critical point of 7il

p

Let us denote by Iß this integer depending only on ß. Since

(-hiKj'r.lh ]T ®k(Qß, 0),

f I

we get

£ 0,(^,0)
>'< ß I »ßcrff

E E ^4iQ-®k(^ß,o)

Y^Iß-@k(Qß, 0).

fcf W i*i ttßCKj'ß
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Finally this gives

rp i
J2 Af • ®k(Xf, 0) /

_ F Iß mk(Qß, 0) riß,
j 2

J (jp ß

and

lim-\L+(q\{0})
1 f f Tlß.@k(üß,0)do)dP.

c_,o bkek m+i.k+i-giPuJ^xiKhi.ß /
The mapping Q -> I O1 identifies G(P, k) with G(P, 1), hence

lim
;

'
/.<«!•„ \m

1 f,,(f E h &s<Qß' ®dl) dP-
e+o bkek gn+i,k+i -Sk+ui Ja'+l \Joiy J

Let F' be the flag variety of pairs (/'. /), P e ('/j and / e ('•)>. The mapping

(P, 1) —> ill, I) where H P1 ® J and P II1 © / enables us to identify W' witli
the flag variety of pairs (H, /), H e C^'+1 and / i GlH. Witli the notations used

above, we see that II1 O c P. Finally, we find

lim r-Wcq \ {0})
1 f f IDj ri/) dH,

s^obkek g»+i,Jt+] -gk+hi JanBi>i+1 \Jg1h J

where Ihj is defined as follows. There exists a semi-algebraic set Ê c H1 of
dimension smaller than k such that, if II1 \ È U/Li is the decomposition of
II1 \ È into its connected components, then for yß close to 0 m Qß, the following
sum:

E sign K (x, Cq Pi Hyp)
x I x non degenerate

critical point of 7tl
'yß

does not depend on the choice of yß. Denoting it by Iß, we set

IIIJ yir-(-h<nr.Jh.
ß

By Corollary 3.8, we know that for almost every pair ill, /), there exists a semi-

algebraic set A c PI1, dim A < k, such that for all y $ A close enough to 0, Cq n Hy
H V

is a smooth manifold with boundary and it} : ft lly > ly is a Morse function.
In that case, if n — k is even, one has

E si§n KC*. co n Hy) x(Hync°)-x(Hync*n &(*•y =8}).
x I x non degenerate

critical point of



Figure 4. The case n 2 and k 1.

272 N. Dutertre CMH

If n — k is odd, one has

J2 sign K(x.C%nHy)
x I x non degenerate

critical point of 7tl
,y

- {x(Hy n n {/ > 0}) - x(//v n n {/ < 0})}

+ ri5fn{/>0}n {71^^ 5})

- x(fy n n {/ < 0} n 8})}.

H vHere S is a small regular value of 7T,
' (|<5| <Ç v|). These two equalities require some

explanations. By Lemma 2.3 in [Du2], we can relate the sign of K (x, C'| n //v to the
// v H vMorse index of 7T?

' at v. Then we can apply Morse theory to ttj
'

: C{) Li IIX ly
as is done in the proof of Lemma 5.1 in [Du2], However, as in this lemma, we have

to take care about the critical points on /_1(0) n Hy n S" and on //, n S". If we
write I Span(ù), then by Lemma 3.7, /|//n}u*=0} has an isolated critical point at 0.

This implies that v*\ cgrw has an isolated critical point at 0 by Lemma 4.1. But with
H 0

our notations, tF|cjflür is '
: Cq n Ho —> Iq. We can apply the same arguments

as [Dul], Lemma 4.1, to get rid of these critical points on the boundary.

We will study in detail the case n — k even. Since dim À < k, the set U^Lj
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is dense in H1 and then

=4?>L Ç/(Hw n cs,ei(ÎV 01

f / Y x{Hyßr\ClC\{7i?'yß =8})®k(Qß,0)dldH.
gn + l,k+l gk+ld Jg^-L1+1 Jg^

ß

IM us compute the Second tenu on the right-hand side. The manifold with boundary

ffy,J')Cf)f){7T!
,yß

S} has dimension n-k-l, which is odd. Its Euler characteristic
is half the Euler characteristic of its boundary. If m and <5 are sufficiently small,
this last Euler characteristic is the Euler characteristic of M H Ci Ff {v* 0}. By
Lemma 3.1 and Lemma 3.7, f \h and f\nc\v=o\ have an isolated critical point at
the origin. Denoting H n {o* 0} by I1 (the orthogonal of / in H) and applying
Corollary 4.3, we get

x(Hyß n q n 5}) l - deg0 v(/|/lff).
Since 0) 1, we have

1 f f T.x(HvßnCs0n {n' S})&k(Qß, 0) didH
gn+hk+l-gk+hX Jgm m yp

1
1 f f degg yC/T|v« %MäH

gn+l,A+l ' gfc+1,1 7G"y("+1 Jojj

1
1 f deg0V f \K)dKdH.

g« +U+l • IlTU *«3Ç^+1 JG"Hk

Let g be the flag variety of pairs (H, K), H e G"£i+l and K m Gn£ This variety
is a bundle over öjjf» each fibre being a G\+]. Hence, we find

I I deg0V(f\K)dKdH f f deg0V (f\K) didK
f s~iTl—k£ 1 / /~ifl—k / —k f

n+\ J(jH n+l J(jk+\

lA+1,1 f deg0V(f\K)dK.
°>m

So our second term equals

1
1 f deg0V(f\K)dK.

8n + l,n—k JG" ,(*
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Let us have a look now at the first integral:

1
1 f [ Tx(HyßnC^&k(Qß,0)dldH.

gn+M+l ' gk+Ll 7g^+1 Jg\j ^

The sets Û& depend on the pair (H, I) but / /7,,( n C|p depends only on \ß
and H. We can write

r a

I — / Y x(Hyp n $&k(Qß, 0) dll
&H + U+1 gA+1,1 JG"n-\+1

1 f -/ Tx(Hyß n 0) dH.
gn+l,n-k+l Jg*~f+1 '

where, with an abuse of notation, the Qi's are the connected components ot//1\ Yn

whose closure contains 0 (nH± is the orthogonal projection on H1 and F„ x is its

discriminant).
Let us compute Y^ß=l x(Hyß F Cgj&ndQß, 0). First, replacing H1 \ YMfjl by

H1 \ CT« U —F« we can assume that for all k g {1 a}, there exists
H -1- H-1-

j g {1 or} such that — Qk %• Here the notation —X for X c H1 means the

symmetric of X by the symmetry whose center is the origin. We have

0;0) lim p voK^s n Bf} lim F Sk 11.

But vol(% n _1 is equal to ek ~1 /,.| $(^ß F Fllßl and therefore
u

%(%, 0) — lim f n Sk~l n i) dl.
oa--1^0JgIff1

Since t,(Ylß n Sf~1 n /) is smaller than or equal to 2 for all I g <?J we have

&k(Qß. 0) —f lim [ff% n^-'n / )] dl
OA-l Jg1 ^°H1

and

Yx(Hvencs0)®k(Qß,0)= — I I TxiHyßnc^iim UQßnsf-'ni^dL

On Qß, x (Hyß O Of does not depend on yß provided it is sufficiently small.
Let <?o(F/j- be the tangent cone of Vrj. at 0 (see [KR] for the delinition of

the tangent cone). Since F// ~rHJ-. C'o< Fn is an homogeneous set, i.e, if
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u 0 belongs to Cq|Th±), then M • u is included in CoirHy). Let PCo(Fn > be

its projectivisation in (ilf/ we have dim PCoir// < k — 1 for dim C'otFH±) <
dim < k. Let / be a line not belonging to PCotT/y. we can decompose it in
the following way: / /+ u {0} u 1~. We assert that there exist e e(7+) and Q.ß

such that /+ D B," : Qf-.. Let us suppose that is not true. Then for all s > 0 and

for all ß, there is xg,r in l+ such that |^<f | < e and xß.e | Hg, But for e small

enough, /+ D B'1 is not included in FH because otherwise /+ would be included
in e0(rH±) and I would belong to ICoCFja ),< Hence for s small enough, there exist

ßo ßo(e) and xgo ç
in Qßo such that xß

s
& /+ D Let I be the interval in

/+ with extremities xgo and xß0tB, It / n Vf/ =0 then, since I is connected and

I D Qfkt 7C 0, / is included in Qßll, which is impossible ß Qg(). So I n FH±

and /+ D B," n FH are not empty. Finally, for e small enough, tliere exists % in

|+ n
1

n VB±. and so 1+ c GoY n which contradicts the lact that / ß P(5o(r^i).
Our assertion is proven. It clearly implies that / c Qg U (0} U —kip.

Let us compute J2ß x(Hyß O Cg) lim^o $(F!g 0 S*-1 D1) for I ß PCo(rH±).
Since there exists ß such that / c Qg U {()} U —Qß, tliis sum is equal to

X (Hyß n CJ) + X (Hyßl D eg), where Qß/ -Qß.

Let us suppose that H {x 1 0,..., xt 0}, in that case //1 {x^+i
0,..., x,,+i 0} SpanOi Suppose that / Span(<?i) {xa -

âk 0} in Hl. Since I c Glß U {0} U Gißt, we can choose yß and jig/ of the form

yß (S, 0, 0) and vß/ —vß —(S, 0, 0), where 0 < S <£ s <C 1. Then,

we have

11y. D Cg eg n (.vi S, x2 0 .vi 0}

and

Hyßl n ég eg n {xi s, xi 0 xk 0}.

By Lemma 3.1 and Lemma 3.9, f\n and f\nei have an isolated critical point at 0.

We can apply Corollary 4.3 and get

x(HyßnCI)+x(HyßinCs0) 2—2deg0 V(/|{,.2=0,...Ä=0}) 2—2deg0

Finally, we find:

Yx(HyßnCe0)®k(Qß, 0) — f (1-deg0V (f\Hel))dl
T '

1 JgU

1 -— / degB ¥ dl
°k-1 J G1
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and

1 1- dego V(f\H®i)-dldH.
k+1 • 111 JG"7Î+1 JG1g« + l,«-A+l '«»„x nrm

Let Jf be the flag variety of pairs <K, II), K e G'^\+2 and II g Gn£k+l. This

variety is a bundle over G"+*+1, each fibre being a G]k. Hence, we have

[ f deg0V (f\He,) didH f f deg0V(f\K)dHdK
If->ti—&-I-1 f1 fn—k+2 I/^n—k+\
JO„+1 JGn+1 K

gn-k+2,n-k+l j deg0 V(/|/f) dK.
m

and

-in—k+2
Tn+1

I 1 - g" A'+2'" A'+1 f deg0 Vi/ A ),/A'
Srfi,*—A+l ' £A,1 v@J|i+2

1-- f deg0V(//)^.
g« + l.«-A+2 7gJJj|+2

We can study the case of n - k odd in the same way, using the second part of
Corollary 4.3. We have proved;

Theorem 5.3. For 1 < k < n,

lim
; kl.+ (k \ {0}) f dego V(/k) dK

#-*0 bkek g„+i,„-A+2 7g^+2

+
1 f deg0 V(/|tf <7/7. D

g« + l,n-A

Corollary 5.4. For 1 < k < n,

s, ii.vn/.v ")
1 f deg0V(f\K)dK

&-»0 Jc|\{0} \/7 OA- gn + 1,«—A+2 Ä§/+2

+ (")
1 f t

deg0 Win) dH.

It remains to consider the case k n. Here, we have

1 f vol (C0nß"+1)
lim — / So(x)dx lim -

:
„

g - ©„(Co, 0).
b„en Jemo} f-*® b,,e"
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We use the Cauchy-Crofton formula for the density:

©„(Co, o) — / yd- ®„ (Mi, o) dp,
np

t.
i r r
— f Eg«+i,« Jg;;+1 ^

where the Kfs are the polar profiles and e/'s are the multiplicities of Tip : Co —> P.
Let Tp be the discriminant of np. As before, we can assume that Fp • Fp and so

for all j G {1,.,., up}, there exits I G {1 up} such that Kf -Kf. We have
J 1

®„(Kf, 0) — / [ lim ffiff n S"-1 n 2)1 dl,
1 o„-i JG\ l^o 1 1

and

np a nPtif 1 /> »L

F4 0) — / [E#• li",i,-iA'/'n ni)
On — 1 ./fT1 L. ^ J

j 1 " 1
0 1

<7/.

Let / be a line not belonging to PC'oiTp), tlien there exist j and k in {1 }

such that Kf -Kf and such that I c Kf U Kf U {0}. Let us assume that
P {.t„+i 0} and that 1 Span(ei) {+2 • • • xn 0} in P. Let

y (S, 0), 0 3 «: j «: 1, be in Kf CM. Then — v belongs to Kf n 1.

Moreover ef is equal to §7ijf (y) and ef to $Hp 1(—y), hence ef is equal to jtC| ©

{.n <5, X2 0 x„ 0} and ef to jtC| © {xi —<5, xa 0, xn 0}. By
Corollary 4.3, we find that

ef +ef 2 - 2deg0V(/|te=o,..,„„=o}) 2 - 2deg0 V(/|/eP±),

np

Y ef lim UKf © IT1 ©i) 2 - 2deg0 V(/|/0PM,
J s—^-0

i=i
and, finally,

©„(Co, 0) 1 j f deg0 V(/\mpe) did P.
8n+l,n ' 8n,l Jg"1+1 Jg1p

The same argument as above shows that:

Theorem 5.5.

0„(CO, 0) 1 — f deg0 V(f\K) dK.
§« + 1,2 JG;l+1
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5.2. Study of hn-k- We study the case 1 < k < n. Theorem 2.15 gives

f K_k(x)dx • - /.A<rn \ {()!..
Jcixm w ok

With the notations used in Subsection 5.1.. we can prove that

1 1 r ms(P)—L,(a \ {0}) / —HT-t>k' k
$n • 1 .A • 1 Jg\hk> k

where

me(P) f U^php)~l(y)dy
Jrrmf

for 0 • .< «: 1. With the method applied in the previous subsection, we get:

Proposition 5.6. Fork g {1 n — 1}, limf^o \ {0}) exists and equals
P'kP

1 f rp

—-—I Yt4 ®k(xf,o)dP,
gtl+hk+1JGHif^

where pJ is the integer $(jtp | ep
~1 (y which does not depend on the choice of the

point y in X?, provided y is close enough to 0.

Then, everywhere replacing X.j' by // '', we obtain

lim \ {0})
1

/ f JHj didHt
®^0 bkSK g«+l,A-+l • JG*~I

where Jhj is defined as follows. There exists a semi-algebraic set É c U1 of
dimension smaller than k such that, if H1 \ É IJfcj H,6 is the decomposition of
H1 \ Ê in its connected components, then for yp close to 0 in Qp, the following
integer:

$\x I x non degenerate critical point of nj ,yß}

does not depend on the choice of yp. Denoting it by Jp, we set

Jhj Y2 Jp Witfl,«. ()'.
ß

By Corollary 3.16, we know that for almost all pairs {H, I), there exists a semi-algebraic

set A c H1, dim A < k, such that for all y not in A and close to 0, C:{) n If and

Cqc n llyn bI("+1! are smooth manifolds with boundary and itf'y : Cq fl Hy -> ly
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and 7Coc n Hyc n B?n+l) h* !yc are Morse functions. Furtliennore, the

following inequality holds:

z{x I x non degenerate critical point of nl ,y} n B"+i

< z{z I 3 non degenerate critical point of tt/'1' } n

Let us express the right hand side of the inequality in terms of the Milnor-Teissier
numbers. For convenience we will assume that H {vi 0 xk 0} and

that / Vect(<?A+i) {xk+2 0,,,,, x„+i 0}. Thus, our right-hand side is the
number of elements in

{ft 0} n {vi VI,..., xk yk} n{0 o] n
lf)xk+2 o%+3 J

where 0 < jj (yi yk) || <g e 1. Generically this is the dimension of the algebra

C{xi, x,. I

(/-.
Applying Teissier's lemma [Te] to fr]//, it follows that this dimension is equal to
lx{"~k+1Hfc) + ß^"~kXfc)- This enables us to bound Jß generically and since

Y,ß 1, we get:

Theorem 5.7. For k g {1 n — 1},

lim \ {0}) < ifn-k+]\fc) + ßin-k](fc).

Corollary 5.8, For k e {1,..., n — 1},

hm -L f h, kixulx < (" ^
bkek Jc|\{0} V A / ok

It remains to study the case k n, i.e. to bound 0„(Co, 0) in terms of the

Milnor-Teissier numbers. We will not go into details but just mention that using the

Cauchy-Crofton formula for the density and the fact that generically ej < e( jy)
(e(fic) is the multiplicity of /•;), we get:

Theorem 5.9.

&„(V, 0) < e{fc) tiaXft) + Bm(ft).
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6. Integrals on the Milnor fibre and on the singular level

We recall that (f, vi,.,., %+.£} is a coordinate system in M2+" and that F : R2+" -> B
is a polynomial such that for all .* e R"+1, f(x) F(0, .*). We assume that

H (F, ||p 21
i

has an isolated zero at 0 which implies that VF also

has an isolated zero at 0. We denote by ft : K"+J M the deformation given
by ft(x) F(t, x), Let C0 f'H0), q C0 n B"+l, C, ffl(0) and

cf ctn Bf1.

Proposition 6.1. For k e {1 «}, one has:

-T f sn-ic(x)dx lim — f sn-kix)dx,
3 Jcf £ ic|\{0}

-r f h„-k(x)dx lim —r f Ii, ktx\dx.
3 Ja £ Ja\{ot

lim lim -7-
*->0s->0 £ jey Jc|\{0}

Proof. We prove the result for s,,-a-. For 0 • g, we will denote by £jp the

Set Ct D {e/ < cd < e}, where ® ^Jxf + 1- .v2+1. Then for 0 •• ' « i « 1,

S S'
C0' is a smooth manifold with boundary (possibly empty). This implies that for

0 < / <g a'. is also a smootli manifold with boundary.
The proof decomposes into three steps.

First step. If 0 < e' <g e, i.e. e' o(e), then

lim —r f s„-k(x)dx lim —r f sn-k(x)dx.
ë^t0 wß Jcf\{0} £ Jcf

We have

\ f V â! v> ,/.v
' f s,. kix)dx •

' f s„_k(x)dx.
s Ja\{0} £A Jcf £A JaQ'\m

The second term of the right-hand side can be written as follows:

"T f sn-k(x)dx (— ; f sn-k(x)dx
£ Ja0'\{0} \e J \e'k Jcl \{0} J

We have proved in the previous section that linv^o pr ifi u(Ji sn_a (x) dx exists and

is hnite. Since as s tends to 0, e' and Ç tend to 0, it is easy to see that

lim -£ f sn-t(x)dk 0.
Mm
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Second step. If 0 < 11 | «: '
<<:. >.. then

-r f sn-k(x)dx lim lim — f $„_*{.*•) tlx.
ik Jcf

lim lim
s^-01-¥o e* Je

As above, we have

k

I
s
s„-k(x) dx '. j s„_k(x) dx + j — ^ \ j ^

s,,_a-(.v) d.tj.

Applying the argument of Proposition 5.1 to Cf instead of Cq \ {0}, we find that

—T. f tsn-k(x)dx
ß Jçf

< est-deg/Kdeg/f - 1)" k.

< est • deg F(deg F — 1)" k.

But deg ft is smaller than deg F, hence

\ f sn-k{x)dx
e/k Jcf

Since j) tends to 0, this proves the second step.

Third step. 110 • \t | e' « e, then

lim / sn-k(x)dx / .\ kix>dx.
Jc$e

In order to prove this equality, we will first show that

lim I K(x)dx= I K(x)dx,
I ».!<, ' Jce'

and then we will use the reproducibility formula lor (Proposition 2.4),
Let us explain briefly why the above equality is true. Let W F_1(0) and for

0 -,
' « <<:; 1. let WE,l!' W H {e' < a> < e}. For <5 such that 0 < |<5| <C A, lei
be the smooth manifold with boundary VF'"-5' fl {/ 5}. The restriction of the

projection n : ffi2+" -fr M1+n, (t. x) "M- x to the manifold Des'e is a diffeomorphism

onto CEs'e

Let us recall that for all v e S" and for x e M"+1, v*(x) (v. x). We will also

denote by v* the function M2+" —* R, (f, x) )-> (v,x). For all v G S", we define the

following polar set:

Zv {(/..vi g U' •"
I rankt V/. VF, v) < 3}.

Using techniques similar to the ones developed in Section 3 and in [Du2] p. 854-855,
we can prove the following results.
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Lemma 6.2. There exists cm open dense semi-algebraic set O in S" such thatfor all
m s s'

v g O, Zv is empty or a smooth semi-algebraic cur\>e in a neighborhood ofDf

Lemma 6.3. For all v g O, there exists W with 0 < 8' <g 0 such thatfor all 8 with
0 < I <51 < 8', the critical points of v* \ s.^ lying in the interior of-Dfe are Morse
critical points.

s

The last lemma has this direct corollary.

Lemma 6.4. For all v g O, there exists t' with 0 < f << e' such thatfor all t with

0 < [t| < t', the critical points of v* | lying in the interior of CfE are Morse

critical points.

Let Yt be the Gauss mapping:

yt: **' -* Sn.

V/fGT)

l|V//(x)||
'

Let us fix v in the open dense semi-algebraic set O \ (yo(Co n S") U yo(Co n S",)).

Let {p[, p\t} be the set of points in the interior of that are sent to v or — v

by yt. Let Ivj be defined by Y!,' deg(yt< p\) where deg(y,, p') is the local
topological degree of yt at the point pi. By the exchange formula, we have

I
/
K (x) dx

' / I, j dr.
J C 'y 2 JS"

By Bezout's theorem, | Ivj \ is lower tlian deg F (deg F — 1)" and then, by Lebesgue's
theorem,

lim / K(x)dx - I lim lv dv.'' 2JSnt^0

It remains to prove that lini,^o G.o- Observe that the set tt (/„ has a finite
number of connected components i, which are either O-dimensional or 1 -
dimensional, f urthermore these connected components do not intersect the boundary

of Cq'e because v £ /o(Go n S") U yo(Q)n S",). ffence for t such that 0 < \t\ e',
O p!

they do not: intersect the boundary of ', ' Furthermore each of the Zvj's intersects
o J

Ct ' in exactly one point and the union of these intersection points is exactly the set

{p\ p\.t}. Therefore, rt is equal to r and we can write {p\} ZvjC\ CfE ,where

pi tends to as t tends to 0. Since fort sufficiently small, deg(yf, pi) deg(yo.pf),
it is easy to conclude that lim^o h.t h.o-
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By the reproducibility formula for s,we have that for 0 < |/| <K e' e:

I sn_k(x) dx est • / S K(x,Cf'e r\L)dx\dL.
leg®' 'K+?x )L J

Using Bezout's theorem and the exchange formula, we see that

/ K(.t,Cf'e' DL)dx
lop'nz.

is bounded by a constant which does not depend neither on t nor on L. Applying
Lebesgue's theorem, we obtain

lint / sn-k(x) dx est - / lim / K(x, Cf's DL)dx)dL.
' ' /A»;;!« V^°lc«'ni ' }

Replacing M!+" by the affine subspace L in the above study, we find that

lim I K(x, Cf's' fl L) dx. I K(x, Cs/ n L) dx.
Jejuni

Ulis ends the proof of the third step and the proof of the proposition.

7. Curvature integrals on the real Milnor fibre

In this section we state our main results. First we state real versions of the Griffiths-
Loeser formulas.
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Theorem 7.1. For k e {1,— 1},

ok 1 f 1 r
——lim Inn -—j / s„_k(x)dx I deg0V (f\K) dK
(")0jf t^o bkek Jq gn+i,n-k+ 2 JGfq

+
1 f deg0V(f\H)dH,

8n+l,n—k J&|vj:

Ok
lim lim

Q)ob 0 bke

Furthermore,

l-j I hn-k(x) dx < /u("-A'+1)(/ç) + p{n~k)(M),
pf ./(•;

lim lim f so(x)dx — f deg0 V(/|;T) <7F + 1,
e-^Ot^Ojq gn + ir2jG;M

lim lim / ho(x)dx < ßil)(.fic) + M(0)(Jb) e(/ç)-
Or

Proof. Use Corollary 5.2, Theorem 5.3, Corollary 5.6, Theorem 5.7 and the results
of Section 6.

Let us recall the main result we proved in [Du2] :

—— lim lim f sn(x) dx —\deu0 VF + sign(r) deg0 7/1
gn + l,n e^Ot^O Jq

~fi+.l, ft J G
+ - / deg0V(/kWF,

gn+i,« ,/g;;+1

where the mappings F and // are defined in the introduction. Using this, Theorem 7.1

and the formula for / (('[) given in [Du2] Theorem 3.2 we obtain real versions of
Kennedy's formula, that is to say Gauss-Bonnet type formulas for the real Milnor
fibre.

Corollary 7.2. Ifn is even, then

n/2
o Ifz(Cf) V lim lint / s„_2k(x) dx.

££&)»* Jc}

If n is odd, then

ft—1

*«?>- ^(Cone - <**
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Proof. Let us prove first the case n even. Theorem 3.2 in [Du2] states that

z(Cf) 1 - deg0 VF - sign(f) deg0 H.

We have

—-— lim lim f sn(x) dx —\ deg0 VF + sign(t deg0 H1
gn+lji e->Ot^OJce

+ —*—[ deg0V(f\K)cIK.
£w + l,w

By Theorem 7.1, we know that for k e {1 2^21

o2k if if—— hrnlim- jr / s„-2k(x)dx / deg0V(f\K)dK
(4|Èn t-,0 b2kB2k lei £«+l,n—2A+2

+
1 f deg0V( fin) dH,

gn +1 ,« —2k JGffff

and that

lim lim f so(x)dx f deg0 V(/|^)r/F + 1.
-"Je. £«+i,2 Jal

Adding diese | + 1 equalities, we obtain that

«/2 I fV 7„v lim lim 7 77 / %-2*(+) dx 1 - [ deg0 VF + sign(t) deg0 //1.^ (2A>„ b2ke2k Jcs

ITe term in the right-hand side of this equality is / (Cf). If n is odd, Theorem 3.2 in
[Du2] states that

x(Cf) 1 — deg0V/.

By Theorem 7.1, we know that for k e {() '-fd} :

A'+1 lim lim f sn-2k-i(x)dx
Ga'+i)0» b2k+l$2k+i JCf

— f deg,Qv{f\K)dK
1,«—2A+1 Jg\IJi

+ [ deg0 V(/|H) dli,
£« + l,«-2A-l

and that

Mm lim f so(x)dx [ deg0 V(/|^) dK + 1.
e^0t^0jCB £« + 1,2 M
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Adding these ^ equalities, we obtain that

ft—1

E 7°»A+/ limn '"I1 7 "277T f sn-2k-i(x) dx 1 deg0 V/.
Êo WiK ^O^0è2,+ 1£2A + 1 Jr:

The term in the right-hand side of this equality is y(Cf). Since Cf is an odd-
dimensional manifold with boundary, we have that y l'Cf) ^x(Q H S" But Co
intersects S" transversally if 0 < e <C 1, hence Co n S" is diffeomorphic to Ct n Sg
tor 0 ' /1 <<C « <7 1. This proves the third equality of the corollary.

We end this paper with two remarks. In [BB], the authors dehne spherical densities

&i(X, x), 1 1 N — 1, for a point x belonging to a definable set X c KA

They are generalizations of the classical density. Michel Coste asked the author about
the relations between these densities and our limits of curvature integrals. Using the

following formula ([Ar], [Wa]):

X ({/ < 0} n Sf) 1 - dego Vf Iy ({/ 0} n s:j if n is odd),

the spherical Gauss-Bonnet formula ([BB], Theorem 1.2, [Sa], p. 302-303) and the

spherical kinematic formula ([BB], Theorem 4.4), it is possible to express the mean-
values frk deg0V(f\H)dH in terms of the ©,:({/ < 0], 0) and ©,:({/ 0], 0).

ft+1
For example, if n + 1 2,

I dego V(f\H)dH 2.t - ©2({/ < 0].0i

and if « + 1 3,

I dego V(f\aldH 2tt (l - ©2({/ 0},0)).
Ja\

This makes the link between the spherical densities and the limits of curvature integrals
on the real Milnor hbre.

We have restricted ourselves to the case of a polynomial. Except for Bezout's
inequality, everything works in the analytic case. It is possible to prove Proposition 5.1

in the analytic case (even in the subanalytic case) using a more sophisticated argument
based on the Thorn-Mather first isotopy lemma as is done in [CGM] (see also [CY],
p. 157). However the spirit of this paper is to apply techniques of integral geometry
to singularity theory rather than to focus on the category of functions we work with.
That is why we have chosen to present our results only in flic algebraic case.
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