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Curvature integrals on the real Milnor fibre

Nicolas Dutertre

Abstract. Let f: R"'! — R be a polynomial with an isolated critical point at 0 and let
fi: B"t!1 — R be a one-parameter deformation of f. We study the differential geometry of the
real Milnor fiber C; = f;l (0) N BT, More precisely, we express the limits

1
lim lim — - d
fmfm 5 [ vk .

where s, ¢ 18 the (n — k)-th symmetric function of curvature, in terms of the following averages
of topological degrees:

f _ dego V(S 1n) dH,
Gn+1

where Gﬁ 1 is the Grassmann manifold of k-dimensional planes through the origin of R
When 0 is an algebraically isolated critical point, we study the limits

1
lim lim — figy d
o, L /Cf n—k(x) dx,

where the /1, are positive extrinsic curvature functions. We prove that these limits are finite
and that they are bounded in terms of the Milnor—Teissier numbers of the complexification of f.

Mathematics Subject Classification (2000). 14P25, 58K15, 53C65.

Keywords. Real Milnor fibre, curvatures, topological degree.

1. Introduction

Tet f: C*l — Chea polynomial such that f(0) = 0 and 0 is an isolated singularity
in £710). Let C£ = £~1(x) N B2 be the Milnor fibre of this singularity. It can
be viewed as a 2n-dimensional manifold with boundary in R***2 and therefore, with
each point of its interior, we can associate a curvature, namely the Lipschitz—Killing
curvature introduced by Fenchel in [Fe]. Let us recall what this curvature is. Given
a point x belonging to a smooth p-dimensional manifold V in RY and a unit normal
vector v to V atx, we will denote by 7, the orthogonal projection from V to the (p+1)-
dimensional vector space spanned by 7,V and v. The image of this projection is a
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hypersurface non-singular at x, we denote by K (x, 7, (V)) its Gaussian curvature
at x. The Lipschitz—Killing curvature at x is

LK(x)=c(N, p) K{(x,m,(V)) dv,
NU,V
where NU, V is the unitary normal space of V at x and where ¢(N, p) depends only
on N and p. When V is an open bounded subset of a complex hypersurface in C**1,
Langevin [Lal], [La3] gave a nice way to compute |, v L K (x)dx using Morse theory
and orthogonal projections on complex lines. More precisely, for almost all complex
lines L < CP”, the restriction to V of the orthogonal projection on L admits only
non-degenerate critical points. Denoting by [p(V, L)| the number of these critical
points, we have the following equality, called the exchange formula:

fc4WLKuwx=dm]'UAWang
1% Cpr

where c(n) depends only on n. Such a result is interesting because it provides a link
between the differential geometry and the intersection theory.
Applying this principle to the Milnor fibre, Langevin [Lal] obtained

[ (—D'"LK(x)dx = c(n) | (CY, LY dL.
: Cpn

A lemma due to Teissier [ Te2] asserts that, as € and i tend to 0, the number |1 (C5, L)|
tends to T 4+ 4 where "+ is the Milnor number of f at 0 and 1" the
first Milnor—Teissier number, namely the Milnor number of f restricted to a generic
hyperplane section at 0. These last two numbers are integers. Furthermore p#*+1
depends only on the topological type of the germ of £~1(0) at the origin. Combining
these two results, Langevin [Lal] proved that

1

lim lim [ (—D"LK(x)dx = = vol($*) (" 4 p ™).
e—=0A1—=0 cs 2

Thus Langevin’s formula states that the asymptotic behaviour of the Lipschitz—Killing

curvature of C;, more precisely the “amount” of curvature that concentrates around

the singularity, is described in terms of analytic invariants of this singularity.

Similar formulas for the other symmetric functions of curvature were announced
by Griffiths [Gr] and proved by Loeser [Lo], who showed

(=D ke(n, k)
lim lim
=0 A—=0 82k Ci

eni(Qe ) Agh = p DL 00 e 1 n),

where ¢, _;(S2¢, ) 15 the (n — k)-th Chernformon C;, = £~ (x), ¢ is the Kiihler form
on C**1, ¢(n, k) is an universal constant depending only on » and k and p‘"+1-0
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denotes the k-th Milnor—Teissier number [ Tel]. This last number is the Milnor number
of f restricted to a generic plane of codimension k. One should mention that Loeser’s
paper concerns a more general situation from which the above formulas are special
cases.

Adding up these equalities with alternating signs simplifies, and we get

n

S k)
1+ (—1)ﬂu(n+1) — ;E)%)P_I)% 82k f cn—k(S2c,) /\q§

and we recover Kennedy’s formula [Ke] for the Euler characteristic of the Milnor
fibre:

(CS) : l 1 c(n, k)
= 1m lim
X1 e—0r—0 82k

cnr(Qe) A ¢F.

— cs

All these results concern curvatures of the complex Milnor fibre. Let us focus now
on the real situation whose study was initiated by Risler [Ri] and the author [Du2].

Let f: R* — Rbea polynomial such that f(0) = 0 and 0 is an isolated critical
pointof f. Let f;: R**! — R be a one-parameter deformation of f such that f[l(())
is smooth near 0 for ¢ small. The real Milnor fibre C; is ft_l(O) N BQH, where |{|
1s much smaller than ¢ in such a way that ft_l(()) is transverse to d B*+1 = 57 This
definition is different from the complex one. Actually, we could have defined the
complex Milnor fibre as the set f,~1(0) N B2"*2_ |1| « &. However, this is not usual
because this set has the same homotopy type as C;, namely the homotopy type of
a wedge of u"+1 spheres S*, and complex geometers only consider deformations
given by f = A. In the real case, the topology of C; does depend on the deformation,
which explains our definition of the real Milnor fibre.

Risler proved that lim,_, o lim;_¢ fcf |K (x)|dx (where K is the curvature, i.e.
the Jacobian determinant of the Gauss map) was finite and that it was bounded from
above by

vol($") . 1rn[ LK ()ldx = ~vol(S) (W™ (fe) + u® (o),
vol(S2n) e—>0 1=0J - lo)nB2+2 2

where fc (resp. fr ) is the complexification of f (resp. fr).
In [Du2], we studied lim,_,¢lim;_.¢ f, cs Kdv, for a deformation f; given by

Ji(x) = F(t, x), where (1, x) 1s a coordinate system for R**? and F: R"*? > R
is a polynomial such that for all x € ]R”“ f(x) = F (0, x). We assumed that the
mapping H : R"t? — R"*2 defined by H = (F, 2 ax ey ax Ty had an isolated
zero at the origin. This implies that V F, the gradient vector of F, "has an isolated zero
at the origin as well. For ¢ # O, the set f;~ (O) is smooth in a neighborhood of O (see
[Du2], Lemma 3.1) and the real Milnor fibre C; is a smooth manifold with boundary
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(possibly empty). Orientating it by V f;, we proved a real version of Langevin’s
formula ([Du2], Theorem 5.3):

1 — |l
lim lim [ K(x)dx = — vol(S")[ deg, VF-+deg, H]+—[ dego V(f|mdH,
e—0r—0"t ce 2 2 Gﬁ+1

1 _ 1
lim lim | K(x)dx = —Evol(s”)[degOVF—degO H]+§f dego V(f|m)d 1.
010" Jop a

Here G| | | denotes the Grassmann manifold of n-dimensional vector spaces in R+

and degoH (resp. degoV F, dego( f|)) is the topological degree of ﬁ around a

v
small sphere (resp. ||g§|| i ||Vgﬂggll )-

In that paper, we adapted to the real case the method developed by Langevin. We
needed the following real version of the exchange theorem. If V' is an open bounded
subset of a smooth oriented hypersurface in R” then, for almost all lines L. C RP",
the restriction to V' of the orthogonal projection on L. admits only non-degenerate
critical points. To each of these points one can assign an index, the local topological
degree of the Gauss mapping at the point. Let . (V, L) be the sum of all these indices.
We have (see [La3], [LS])

[K(x)dx:[ w(V, LydL.
14 RP*

Applied to C;, this formula gives

fK(x)dx:/ (C5 LydL.
s pn

Then we showed that, as € and ¢ tend to zero, 1 (Cy, L) tends to — degy V F£deg H+
dego V(f|; L), where L1 is the orthogonal of L. Note that unlike the complex case
this last term does depend on L.

The purpose of this paper is to give real versions of the Griffiths—Loeser formulas
and of Kennedy’s formula. We will use the following notations:

s fork € {0,...,n}, G’,fL 1 1s the Grassmann manifold of k-dimensional linear
subspaces in R and g, 41 1 is its volume,

o fork € {0, ..., n}, sg is the k-th symmetric function of curvature,

+ for k € N, by, is the volume of the k-dimensional unit ball and oy, is the volume
of the k-dimensional unit sphere.
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Figure 1. The exchange principle.

With the same assumptions as in the previous paragraph, we shall prove that (Theo-
rem7.1). forke {l,...,n —1},

1
lim li _ d
(ﬁ)on EI—IR) [1—I>r(l) bké‘k _/(;tg S k(X) *
1 1
_ _—[ dego V(f1x) dK + 7f deg V(f|) dH.
8n+ln—k+2 JGo K2 En+ln—k JGI X
Furthermore,

1 1
lim lim f so(x) dx = — f degq V(flx) dK + 1.
e—=01—=0 by ce 8n+1,2 G%H g0

From this and degree formulas for x (C7) due to Fukui [Fu], we will deduce the
following Gauss—Bonnet formula for the real Milnor fibre (Corollary 7.2): if n 1s

even,
n/2

o2% .. .. 1
x(CH) = Z (n— lim lim —F [C Sp_ak (x) dx,
i

=0 Zk)O” e—=01t—=0 by
and if » 1s odd,

]
Z 02k+1 1
L fim fim ——— [ Sn_op_1(x) dx.
CS

n

x(C;) =
et (2k+1)0” e—=01r—0 bzk+18
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In the complex case, all the curvatures involved have a constant sign, whereas
in the real case the sign of the symmetric functions of curvature may vary. How-
ever, Langevin and Shifrin [LS] defined, for a hypersurface V C R*H, a sequence
of positive curvatures Ay, ..., h, such that ip(x) = 1 and 4, (x) = |K(x)| for all
x € V. Moreover they proved that these curvatures satisfied the same reproducibil-
ity formulas as the s;’s. We will work with them in order to get generalizations of
Risler’s inequality. More precisely, adding the assumption that f admits an alge-
braically isolated critical point at the origin, we shall show that (Theorem 7.1): for
kef{l,...,n—1},

B _ _
Fon S0 0 7 o7 f Rk (x) dx < p" D (fe) + u 0 (fo).
©)on —0f— Cts

Furthermore,

lim lim
e—=0t—0 b, "

[ 0w dx <u® g +uO 0.

In order to establish our results, we use a method for the computation of
[ Sn—k(x)dx and [}, h,_i(x)dx, where V is a smooth bounded hypersurface in
R, due to Langevin and Shifrin [LS]. Let us explain briefly this method. The main
idea is to refine the exchange principle by studying generic projections on higher
dimensional vector spaces. Let P € Gﬁﬂ, O<k<n—landletmp: V — Pbe
the restriction of the orthogonal projection on FP. Generically the set I'p of critical
values of mp 1s almost everywhere a k-dimensional manifold. With each regular point
yin I'p, we can associate two “curvature” indices A(y) € Z and p(y) € N. The

integrals i, s,—r(x)dx and [y, h,_g(x)dx are related to these indices as follows:
[ simtydx = cin ko ( / A(y)dy) ap,
v okt e

f bl e = i, 1 f ([ u(y)dy)dP.
v ot \Ur,

Our strategy is to apply Langevin and Shifrin’s machinery to the variety Co = £~ (0).
Since f is algebraic, I'p is a semi-algebraic set of dimension k (or empty) in the
neighborhood of 0. There exists a semi-algebraic set Wp C T'p of dimension less
than k such that the indices A(y) and p(y) are constant on each connected component
of I'p \ Wp. Writing ['» \ Wp = UX/ and denoting by A/ and 4/ the common

values of A(y) and (y) on each X%, we get

1 vol(X? n BY)
f su—k(x)dx = c(n, k) Z)LP : J £
brek Jezvqop G+ J bek

nt+l j

dP,
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1 vol(X? N BF)
F L e =cn b [ Y,
be® Jezyqo) Gh+l / bie

n+1 J

where BY is the ball of radius ¢ in P. Applying Fubini’s theorem leads to

lim -— f
e—0 be CE\{0})

Sp_p(x)dx = c(n,k)fk+1 Zx}’ - Or(XE,0)dP,
G

n+1 ]

- 1 P P
;%mfcg\{o} hy k(%) dx = c(n, k) /GM Z“j - OXF,0)aP.

n+1 J

We recall that O (X JP ,0) is the density of X JP , which does exist for X J‘.p is semi-
algebraic (see [KR]). The remainder of the method is technical and difficult to present
briefly. We use the Cauchy—Crofton formula for the density due to Comte [Co], the
fact that the AJP ’s are related to Morse critical points of some projections and some

identifications between flag varieties in order to express |, GhH1 > i KJP OpXP 0P
o

in terms of mean-values of Euler characteristics of affine sections of Cj. Using
degree formulas for Euler characteristics, these last mean-values are easily seen to be
mean-values of topological degrees.

The method for %, _ is roughly the same; instead of degree formulas for Euler
characteristics, we use Teissier’s lemma [Te2] which enables us to bound generically
a number of critical points in terms of the Milnor—Teissier numbers.

The last step is to prove that

1 1
lim lim — Sp_p(x)dx = lim — Sp_r(x)dx,
e—=0rt—0 Sk Ce e—0 Sk CS\{O}

e—=01t—=0 Sk e—0 Sk

1 1
lim lim —f hp—i(x)dx = lim —f By i (x) dx.
cs CE\{0)

Throughout the paper, we will use the following notations and conventions (some
of them have already appeared in this introduction):

¢ oy is the volume of S¥, by, is the volume of the unit ball in R,

. Gﬁ 41 is the Grassmann manifold of k-dimensional linear spaces in REEL 8n+1k
1s 1ts volume (see [Sa] for an explicit expression of g,41 k).

. A’é o1 18 the affine grassmannian of k-dimensional affine spaces in R+

o If H is a linear subspace of R*+1, Gi}{ 1s the Grassmann manifold of k-dimen-
sional linear spaces in I, I L is its orthogonal, Bf 1s the ball of radius ¢
centered at Oin H. If K C H is a linear subspace of H, K is the orthogonal
of K in H.
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« If vy, ..., v, are vectors in R**!, Span(vy, ..., v, ) 18 the linear space spanned
by v1, ..., vy.

. If X ¢ R*! Sing(X) is the singular set of X, X is its topological closure, X is
its interior and BA(X) is its boundary.

« If M c R**H! is a submanifold, Fra( M) is the set of adapted frames for M.
« A universal constant that we do not want to specify will be denoted by “cst”.

« We will often say orthogonal projection for the restriction of an orthogonal
projection to a submanifold in R"+1,

The paper is organized as follows: in Section 2, we present the background in dif-
ferential geometry necessary for our work. In Section 3, we study generic projections
and polar varietics. In Section 4, we give the relations between topological degrees
and Fuler characteristics. Section 5 is devoted to the proof of the formulas dealing
with lim,—g bk% fcg\{o} sn—k(x)dx and lim,_.q bkl7 fcg\ ) Fu—k(x)dx. Section 6

relates lim,_, ¢ lim;_ ¢ bﬁ Jes $Sn—k(¥)dx and lim,_,o lim; bk% Jes i (x)dxx o
the previous limits. The real versions of the Griffiths—Loeser formulas and of Kenne-
dy’s formula are given in Section 7.

Several authors have worked on this subject of curvatures and invariants of sin-
gularitics. Besides the ones already stated in the introduction, one can also mention
the following papers: [G-B.T], [La2], [LL], [ST], [Ne], [Va] in the complex case and
[BB],JCGM], [Du3] in the real case.

The author is grateful to Georges Comite for valuable discussions on this topic and
to David Trotman for his careful reading of this manuscript.

2. Differential geometric preliminaries

In this section, we recall differential geometric results obtained by Langevin and
Shifrin [LLS] (see also [LR]). We will restrict ourselves to the case of a smooth oriented
hypersurface.

Let V < R"*! be an oriented hypersurface of class C2. A moving frame on an
open subset U  V* is a set of smooth mappings ¢; : U — R*+1 such that for each
xinU,e;(x),..., e, (x) form an orthonormal basis for T, V and ¢, 41(x) is the unit
normal vectorin N,V = (1% V)l orienting V. Let w; be the 1-form dual to ¢; (note
that w, 1 = 0) and let w; ; be defined by de; = > w; je;, where de; is seen as a
R"*+!_valued 1-form. We have w; ; = (de;, e;), where (, ) denotes the usual scalar
product in R"*! (note that @; ; = —w; ;).

The (Gaussian) curvature K is the Jacobian determinant of the Gaussmapy : V —
S*, v (x) = eyp1(x). We can consider de, 41 as an endomorphism of 7,V and we
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have
KdV =Koy A~ Awy = (depy1) (@1) A - A (degy1) (wy),

where (deyy1)*: (T, V)* — (T, V)™ is the transpose map of de, 1. Since de, 1 =
Y i wnglie, wefind thatfori € {1, ..., n}, (depy1)™(w;) = wi(dept1) = wnyi,i
and that

n n
KdV =Koy A Aoy = N\ onsri = (D" N\ o001,
i=1 i=l1

The endomorphism de, 41 of T,V is self-adjoint and its eigenvalues ki, ..., k;
are called the principal curvatures of V at x. The symmeitric functions of curvature
so(x), ..., sy(x) are defined as the coefficients of the following polynomial:

i

det (Id +tdeny1(x)) = [ [ + kiG)e) = si(x) 1

i=1 i=0

We note that s, is the curvature K and that so(x) = 1. Langevin and Shifrin give a
geometric interpretation of the other symmetric functions.

Letx € Vandlet! € G‘%XV be ag-plane (¢ = 1,...,n). Let L be the (g 4 1)-
plane I @ y(x). Let (e1. ..., e;) be a direct orthonormal basis of [, we orientate L
choosing (e1, ..., e4, ¥(x)) as a direct orthonormal basis. The section V N L can
be viewed as a hypersurface in L. Let K (x, [) be its curvature at x. Note that if we
change the orientation of /, the orientation of L is reversed and so K (x, ) does not
change.

Proposition 2.1. Let x € V and let] € G7. ,,. We have

sq(x):(”) 1] K(x.D)dl.
4/ 8n.g JG

q
IV

Proof. The proof is given in [LS], p560. We repeat it here with more details. Let
€1s .- s g €gil, -+ €n; enp1 be an adapted frame for VN L C V C R**! (e
er,...,egaretangentto VN L and ey, ..., e, to V). Letus denote by E the tangent
space Ty V and by A: I — E the linear map dey41: 1,V — T, V. The g-vectors
eiy Ao Ney, L <0 < - <1y < n, form an orthonormal basis of the space ANE
and we have

NAEIA - ANeg) =K@ Dlet Ao Aegd+ D aiyigen Ao A,
i #Lig 4

Let (vy, ..., vy) be an orthonormal basis of eigenvectors of A, each v; being associ-
ated with the eigenvalue k;. The g-vectors v;, A - - ~/\viq,1 <i < - <1y <n,form
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an orthonormal basis of eigenvectors of A7A, each v, A -+ A y; v being associated
with the eigenvalue k;, ... k;,. Let (, ), denote the usual scalar product in NE. We
have

AT Aer Ao Ney)

[]

(el/\m/\eg,vil/\~~~/\viq)g/\qA(uil,...,viq),

1<y < <ig<n

[]

(81 N N ey, Uy /\"'/\Uiq>gki1 ---kiqvh /\~~'/\Uiq,

1<ij<--<ig=<n
hence,

K(x,1) = Z {er Av o Aeg, v A Ay Yaki L.k

q lg>

1<ij<--<ig=<n

= Y (detflen o] o, ) R Ky

I<ii<-<ig=<n

We can write

/GK(x,l)dl: > ([G

g
xV 1<ij<-<ig<n

. I(l,Uil/\...U,‘q)dl)~kil...kiq,
IV

where (L, vi; A+ Awg ) = (det[(e, vy,)] 2 does not depend on the choice

lELJSq)
of the direct orthonormal basis (e, ..., ¢;) of I. Since GqTxV is SO(T), V)-invariant,

the integral

does not depend on the g-vector vy, A- - - Av;, . This gives the result, the multiplicative
constant being computed by taking V = S". O

By analogy, Langevin and Shifrin [L.S] (see also [I.LR]) define other curvature
functions hg, ..., h, on V.

Definition 2.2, Forq =0,...,nandforallx € V,

1
hy(x) = (”) f K (x, D)l dl.
q/ Bn,g G%CV

Note that for all x € V, h,(x) = |K(x)| = |su(x)| and hg(x) = 1. In order
to study the functions s, and /1, we need a general version of Meusnier’s theorem
about surfaces. Let x € V and let L be a (g 4+ 1)-affine plane (g = 0, ..., n)
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passing through x, L ¢ T, V, whose direction is the (g + 1)-vector plane /. Let m;
be the orthogonal projection on / and let (e, ..., ¢;) be a direct orthonormal basis
of T,(V N L). We orientate L m such a way that (e, ..., e;, m;(y(x)) 1s a direct
basis for /. The section V N L is a hypersurface of L, we denote by K (x, V N L) its
curvature. It does not depend on the orientation chosen for 7, (V N L).

Proposition 2.3.
Kx, .VNL) = |lmyenl? K, VNL).
(Here T,V N L is seen as a g-vector plane in T,V as in Proposition 2.1.)

Proof. The proof for g = n — 1 is given in [LS], p. 561. We prove the general case.

Lete,....ep el 13 o, ..., €, beanadapted frame for VNL C L C R+l

(e; 42r -+ €y are normal to L) in a neighborhood of x. Furthermore we take
o _my)

€q+1 = Tmoon We have

q q
Kx.vnL) N\ o, =N\,
a=1

a=1

since e’q 41 isnormal to V N L in L. Hence

q
Kx.VNL) = )\ @ &), ... e

a=1

Now let ey, ..., e4; €541; €442, . . ., ex+1 be an adapted frame for VN (T, VN L) C
V c R such that ey = ¢/, at x for 1 < o < g. We have

q q
K, TVNL) \ oo = )\ @410

a=1 a=1

hence

q
Kx,T,VNL) = /\ ®g11,0(X) (€], .., €}).
a=1
Foreach 1 < o < g, wpy1.4 18 equal to (de,11, €),) at x. Since {e,41, €,,) = 0, we
obtain
n+1
(dentr, ) = —(dey, ensn) = —{defy 3 lensr, efhep)
B=q+1

= —{ent1, € 11) @ g1 = (Cntls &) V41,00

because (de,,, e:g) = —(de:g, e,) = 0for f > g + 2, the vectors e}s being constant.

O
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We can state reproducibility formulas for the functions s, and A,,.

Proposition 2.4. Let V. R* be a bounded hypersurface. Then:

f sq(x)dx :Cstf (/ K(x,VﬂL)dx) dL,

% AT \JvnL

[hq(x)dxzcst/ (f |K(x,VﬂL)|dx) AL .
v AT \JvnL

Proof. The case g = n—11s proved in [LS], p577. We adapt this proof to the general
case. Consider the incidence relation

[r,L) eV x AT | xeL)

and the bundle of adapted frames

' Lot A . .
((x, €15 cxns €ys Cypiyensy by Eimd e s € o 5 ow Biglh gL s w1 05 Bl en+1))
g+1
€ Fra (A}7)) x Fra(V),
such thate; = ¢}, ..., ¢4 = e, 18 a frame for VN L.

We have to compute the density dvyny AdL where dvyny is the volume element
on V N L and dL is the invariant measure on AZE. We have

dUVﬂL:/\C’)ay azly"°’Q7

and (see [Sa], p. 202)
dL= N A Nahn Ny ;0 B=1....q.i.j=q+2.....n+1.
But ] is equal to Zzzq +1(€}, ex)wx (remember that w, 11 = 0), hence we get

’ ’
dvy A /\a’ﬂ,j oy /\‘“q+1,;‘-

dvvor AdL = |det [{e], ex)] g1zt
g+2=i=n+1

For each £, we have

n+1

Wpj = (e, &) =(deg. I (¢]. erbe)
t=g+1
n+1 n

— Z (3}, et)a)ﬁ,t = Z (8}, et)wﬁ,r mod (@1, ..., wy).

t=qg+1 t=g+1
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This implies that
dvynr ANdL = ‘ det [(e;, ek)] q+1=k=n
g+2=i<n+l1
’ q ’
x‘det e, & +l<t= dUV/\/\G) ;/\/\a) ;
[< i >:| inSifﬂil B, g+1,j°

hence

g+1
dvynr AdL = ‘det [<ez{’ ek)] g+1=k=n dvy A /\CU,B,t A /\a);-l-l,j'

g+2=i=n+41

By a result on orthogonal matrices, we get

g+1
dvynr AdL = |<€é+1y en+l)| dvy A /\wﬁ,t A /\C’)Z‘H-l,j‘

We see that /\G)ﬁ,t» g=1,...,q9,t =g+ 1,...,nis the measure d! of the space
G y. Moreover, A} o, j =g +2,...,n+1,is the measure dp of the space

Gy (v Finally,

[1<] K(x,VﬂL)dx)dL
AT \JvnL

Ny (VL)

|(e)41r €nst1) \dp)\<e’q+1, ent1)|"K(x, VN L)dLdx.

From Proposition 2.3 we have |(e;+1, enr)IK(x, VNL) = Kx, T, VNL) =
K(x,l)with! = T,V N L. Furthermore, the integral

/(;1 |<3;~+1’ enH)‘ dp,

Ny (VL)

where e;, 41 1s an unit vector of p, does not depend neither on N, (V N L) noron ¢4
and is equal to

fl (e(p), )| dp.

Gn+1fq

where w is an unit vector in R**1=¢ and e(p) an unit vector of p. This implies the
result for K. The same argument holds for | K. O

Langevin and Shifrin’s idea is to relate f v ¢ (x)dx and f v h1q (x)dx to polar vari-
eties of generic projections and to generalize somehow the exchange formulas. First
we recall some results on polar varieties. Let P € G'Z 4 k=1,...,n, and let
7p:. V — P be the orthogonal projection on P. We denote by X p the set of critical
points of wp and I'p = wp(Xp) the set of critical values. Usually Xp is called a

polar set or polar variety.
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Figure 2. The sets X p and I'p.

Lemma 2.5. For almost all P € G

nt1 2p is a smooth (k — 1)-dimensional sub-
manifold of V (or is empty).

Proof. We can refer to Mather’s work [Ma] on generic projections. Here we give an
alternative proof due to Slavskii [SI]. We canassumethatV = {x € R**L| £(x) =0}
where f: R**1 — Ris C? and V f does not vanish on V. Let us putg =n+1—-k%
and let us consider

F: R (rhe o e+l

(X, 01, ..., v9) = (fL (Vv .. {Vfiug)) .

Since V is non-singular, it is easy to see that 4F (x, vy, ..., v,) has rank ¢ + 1 if
F(x,v1,...,v5) = 0. The set F —1(0) is then a smooth manifold of dimension
n(g +1). Letm: R"™! x R"17 — (R™+1)? be the projection (x, v, ..., v;) —>
(V1. ..., vy). Sard’s theorem implies that almost all (vq, ..., v,) are regular values
of 7| ;14 which means that F~1(0) N7~ ((v1, ..., vg)) is a smooth manifold of
dimensionn —g = k—1foralmostall (vy, ..., v,). But F=HO) N7~ (w1, ..., vy)
is exactly p where P = [Span(vy, ..., vq)]l. O
k

Lemma 2.6. For almostall P € G, _,, the set
Yo = {x € Xp | mp|x, is not regular at x}

is a union of submanifolds of Xp of codimension greater than or equal to 1 (when
2p is not empty).
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Proof (due to Slavskii [S1]). Let (v, ..., vy) be aregular value of the map 7 | g1,
defined in the previous lemma and let P be [Span(vy, ..., vq)]L. We have

Tp = {x e R™ | f(x) =0, (Vf(x),v1) = - = (Vf(x), ;) = 0and there is
w € Span(vy, . .., v,) such that (V(V f (x), v;), w) = 0 fori € {1,...,q}}.

The last condition 1s equivalent to

n+l 42
9
do[ 30 STV

¢ ] YL—I—l)
ax 8)@3 i 1=<i, j<q '

=0 where v; :(vil,..., v

a,B=1
2 2+q

Letus call 8, ~ R¥ the space of symmetric (g x g)-matrices and let £2; C R
q p ¥ 2

be the subset of matrices with corank ¢, =1, ..., g. Itis a submanifold of R¥0f

codimension +’ . Let Qg be the set of matrices in 4, with determinant zero, g is

equal to J7_, Q . We can write
p={xe R™ | f(x) =0, (Vf(x),v1) = = (VI(x),v5) =0,
+1 *F) P
[Zz,ﬁﬂ axaajccﬁ “z%f ]151',]'5@ < QO}'

Let %y be the critical set of 7| g1, and let U = F~1(0) \ ©;. The mapping

n+1

82
0[5 210
o pal Xy 0Xg 1<i,j=<g

is regular on Y. This is due to the fact that on U the vectors with » + 1 components
ui, ..., Uy, defined by

n+1 n+1
(XZZ dxydx1 (x)vf, o X:: Bxa8xn+1 (x)v )

are linearly independent. Locally the set €9 = ®~1(Q0) N U has the same structure
as 2o, that 1s for alli € {0,...,q}, € = & 1(Q:) N U is a submanifold of U of

codimension ‘H . Let 52: c ; be the subset where 7 |5, 1s not regular. From Sard’s

theorem, H(Qg ) has measure zero and then A = 7(2;) U U?zl n(flg) has measure
zero, If (vy, ..., vy) ¢ A thenz 1 ((vy, ..., vg))ﬂﬁi is a submanifold of dimension
k—1— (izzri). Since X, = 77 ((v1, ..., vy)) N Qo, the lemma is proved. O

In the following preliminary results, we will assume that V' is a smooth bounded
semi-algebraic variety.
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k

Lemma 2.7. Foralmostall P € G, |,

I"p is a semi-algebraic set of dimension k—1.

Proof. The set I' p 1s semi-algebraic as the projection of the semi-algebraic set Xp.
MoreoverdimI'p <dimXp = k—1. Letx beapointin Zp \Ejp. From the previous
lemma, there exists a semi-algebraic neighborhood U, of x, Uy C Xp\ X}, onwhich
7 p 18 a diffeomorphism and then dim 7p(Uy) = k — 1. But wp(U;) is included in
I" p hence dim I' p 1s greater than or equal to k — 1. O

We define now an index associated with each point x € Zp C E},. For this, we
Pley ()

consider the normal section VN (PL @y (x)) and the orthogonal projection T,

of this section on the line oriented by y (x).

PLoy(x)

Lemma 2.8. The point x is a non-degenerate critical point of )

Proof. It is clearly critical. We can assume that V' is defined by {f = 0} around x.
Let us choose coordinates (x, ..., x,) around x such that pPL = {xg41 = -+ =

Xp+1 = 0} (¢ = n 4+ 1 — k) and such that %(x) = Vx,4+1(x). In that case, a

local coordinates system at x for V N (Pt & y(x) is given by (x1,...,x,). The

implicit function theorem together with some derivative computations shows that

PL@y(x) . . . 82f ..
00 is non-degenerate at x if and only if det [ 5 (x)],_; ;. # 0. Writing

Ox;0x;
PL = Span(vy, ..., vy) where Vi € {1, ..., ¢}, v = Vx; and keeping the notations
of Lemma 2.6, we see that

oy 4

8 f (X) — Z ﬁ(x)vav‘g
ax; axJ' o el 8x£¥xﬂ b
2
Since x ¢ %/, we conclude that det [aiiaj;j (X)]1<,- i<q 7 0. -

We define i p (x) to be the number of positive eigenvalues of my, (y).
Lemma 2.9. We have (—1)?™) =sign K (x, P1).

Proof. According to [Du2] Lemma 2.3, one has

sign K (x, PJ‘) = (—1)7 - sign (8 of (x))q ' (_1)q—ip(x)’

Xn+1

keeping the above coordinate system. But, in that system, axa,il (x) 1s equal to

IV £ (x)||, which is strictly positive. (.

Following Langevin and Shifrin, we can define the g-length and the oriented
g-length of V (this terminology appears in [LLR]).
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PL

y(x)

PLoy@)

I'p

-
7 p(x) \
P

Figure 3. The index ip (x).

g+1

it 10 We set

Definition 2.10. Foreachg € {0,...,n — 1}, foralmostall P € G

mt(P) :/; ( Z (_l)ip(x)) dy

JTP|EP (x):y

and
m(P) = | #(zpls,) L (y)dy.
Tp
We define
1
L;(V):—f mt(P)dP,
8n+1,g+1 Gzi
and
1
Lq(V):—[ m(P)dP.
8n+1,g+1 GIt

Furthermore, we set L (V) = Ly(V) = vol(V). We call L} (V) the oriented
g-length of V and L, (V) the g-length of V.

First we note that m ™+ (P) and m( P) are well defined because dim 7 p (Zp) <n-—2
and almost all y in I"p are regular values of 7p|x,. Forsucha y, (mp |gp)_1 (v)isa
O-dimensional semi-algebraic set, hence a finite number of points. We also note that
LE(WV) = fy K(x)dx and Lo(V) = [, |K(x)|dx by the exchange formula.
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In order to relate the oriented g-length (resp. the g-length) to the curvature s,
(resp. h, ), we have to study the local situation at a pointin Xp \ X,. Let us consider
an (n —qg 4+ 1)-affine plane L (0 < ¢ < n—1). Generically VN L is a smooth (n —g)-
dimensional manifold. Let P be a (g + 1)-vector plane containing the orthogonal
of the direction of L. The intersection / = P M L is an affine line in P. In L, let
ml: VN L — I be the orthogonal projection on /.

Lemma 2.11. A point x in (Zp \ X%) N L is a critical point ofzrlL.

Proof. Tetus assume that V = {f = 0} near x. We can choose a coordinate system

suchthat P = {xy41 = =xy41 =0tand L = {x1 = a1, ...,x; = o). In
that case x is a critical point of 7p if and only if V f(x) is a linear combination of
el,...,eg+1 (i = Vx;). In L, x is a critical point of JrlL if and only if ¢,11 1S a
linear combination of e1, ..., ¢; and V f(x). We conclude using the fact that V £ (x)
is not in the vector space spanned by e1, .. ., ¢, since V and L intersect transversally
at x. O

Lemma 2.12. Such a point x is non-degenerate for zrlL. Moreover,
sign K (x, VN L) = (=1)"P%),

Proof. With the notations of the previous lemma, x is non-degenerate for nlL if and
only if

9% £ (x
det{ A )} = ().
%1055 1510 j<ns1
In the frame (eq, ..., ¢4, %(x), eg+2, - - -5 epq1) With coordinate system
(25 3 om0 s s xéH, Bt Bs s 955 Bt )s
] \v} ;
PListhe set {x; = 0, .. sy =0 x;H = 0} and ”V—];”(x) is equal to Vx;H(x),
i.e. y(x). Asin Lemma 2.8, we see that
82
det [ / (x)} £0,
9xi0%5 1o 40<i j<ntl

since x ¢ X. Finally, (—1)?™ = sign K (x, P1) = sign K (x, 7xV N L) for
P+ =T,V N L. We conclude with Proposition 2.3. O

We need a last lemma which describes the structure of I'p.
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Lemma 2.13. There exists a semi-algebraic set Wp C Tpwith dim Wp < k — 1
such that the following functions in v,

ST (=DPY and t(mplz,)” ),

x | mplzp (X)=y

are defined and constant on each connected component of U'p \ Wp and such that
I'p \ Wp is a smooth manifold of dimension k — 1.

Proof. et

Wp = Sing(I'p) Up(E}) Urp(BA(Ep)) UBA(Ip).

Since Sing(I'p), wp(X}), mp(Bd(Xp)) and BA(I"p) are semi-algebraic sets of di-
mension less than k — 1, dim Wp < k& — 1. Moreover, Wp is a closed set in P
which contains Bd(I'p), hence I'p \ Wp 1s an open set in I'p included in I'p. The
setI'p \ Wp is a smooth (k — 1)-dimensional manifold for Sing(I'p) C Wp and the
two functions are well-defined because « p(E})) C Wp. Let ybeapoint I'p \ Wp
and let {xq, ..., xu,} be (JTP|EP)_1()7). For each j € {1, ..., ny}, we can choose
an open neighborhood U; C X p such that wp|y; is a diffeomorphism and such that
(—1)P® = (—1)P0) for each x € U (the function K (x, P1) is continuous in x).
Let A be the following set:

fly
A=\ U,
j=1

It 1s a compact subset of ¥ p, hence wp(A) is compact in Tp. The point vy does not
belong to 7 p(A), for otherwise it would belong to wp (Bd(X p)). There exists an open
neighborhood V of y in T'p which does not intersect 7w p(A). Since y is an interior
point of I'p, we can choose V open in I'p. Then the two functions are constant on
VN(p\ Wp). O

We can state now reproducibility formulas for the oriented g-length L; and the
g-length L.

Proposition 2.14. Forg € {0, ..., n} we have

LI(V) = Cstf

e LE(VNnL)dL,

n+1
and

L,(V)= cstf

v, LoV LydL.
A

n+1
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Proof. For g = n, this is just the Cauchy—Crofton formula because L(J{ (VNL) =
LolVNL)y=g{VNL} Forq <n — 1, we have

L (V) f f (—1)iP(x))dydP.
gn+1 g+1 JGL Jrp x|71'P|): it
P
But it is clear that
[ S comaf (T con
PP "2 wplsp 0=y PPAWP "3 | mplsp )=y

Let us decompose I'p \ Wp into the finite union of its connected components, i.e.,
Fp\Wp =X JP . For each j, let us denote by A}p the common value

Z (_l)iP(x).

x| wplzp (X)=y

> (-1)”30‘)) dy =Y i vol(x?).
j

x| wplgp (X)=y

We have

Tp

The Cauchy—Crofton formula in P gives
vol(X7) :cst[1 X7 Nl
Ap

and so

LIV = Cst[

(f > oAl opxf m)dl) dp.
Gat! Al

n+1 J

Let y be apointin XJP M. If VN L is smooth, where L is the (n —g + 1)-affine plane
PL @1, then each preimage x of y by 7|y, is a non-degenerate critical point of the
orthogonal projection TL’l VNL — I fory ¢ mp(X}). Furthermore (— 1ir) =
sign K (x, V N L). Hence we get

Soalgxfnnp= Y signK@. VNL).
j

X | x non degenerate
critical point of T[iL

Let ¥ be the flag variety of pairs (P,[), P € Gﬁi and / € A}). The mapping

(P,1) — (L.l) where L = P+ @1 enables us to identify # with the flag variety of
pairs (L, 1), L € A"79%" and 1 € G}, Since for almost all L € A4+ v 1 Lis
smooth, we find

LE(V) :csthan [[Gl ( 3 signK(x, VmL)) dl}dL.

n+l L X | x non degenerate
critical point of J'KiL
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But we have

f( > SignK(x,VﬂL))dl:f K(x,VNLydx =LI(VNL),
G} v

X | x non degenerate
critical point of J'riL

by the exchange formula and the fact that for almost all [ € G, TL’ZL 1s a Morse

function. O

Theorem 2.15. forq € {0, ..., n},

f g () dlx = (”)0—”L+(v>

V n—yg q 0q g ]

f Iy (x) dx = (")@LQ(V).
Vv q/ Og4

Proof. By the reproducibility formula for s,_,, we have that

[ Sn_g(x)dx:cst[ ([ K(x,VﬂL)dx) dL.
14 At NJvner

Hence, by the previous proposition, |, v Sn—g (x)dx isequal to cst.L;' (V). We compute
the constant by taking V = S”. O

This theorem leads to a geometric interpretation of || v Pn—g(x)dx as explained
in [LR], p. 5397. Moreover, in [LS] and [LR], it is stated in the C2_case. In that
situation, Lemma 2.7 relies on deep results of Mather on generic projections [Ma].
The semi-algebraic case allows an easier proof.

3. Generic projections and polar varieties

Let /:R"™! > Rbea polynomial such that £(0) = 0 and O is an isolated critical
point of f. Let Co be £=1(0). For any (n+ 1 —g)-vectorplane H,1 <g <n —1,
we denote by 75,1 : Cop — H-+ the orthogonal projection on 1. We set also H, for
the (n 4+ 1 — ¢)-affine plane parallel to H and passing through y € H+ (Hy = H).
Let ! be a vector line in H and let [ be the line parallel to [ passing through y. We
will denote by an’y : Co N Hy — [ the orthogonal projection on /,. We will show
that for a “generic” choice of I and /, the following property holds: the function
zrlH’y admits only Morse critical points in Co N H, N B;H‘l for0 < |y| € e < 1. We
will establish this result studying generic projections and polar varieties.
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Lemma 3.1. For almost all H € GZi%_q, 1 <qg <n—1, flg has an isolated

critical point at Q.

Proof. Let G be the map defined by
G: R x (R*TH — R
()C, Uly - v v Uq) = (fa ()C, Ul)a LR 8 <)C, Uq))-

The set G~ 1(0)\ ({0} x (R**t1)7 is a smooth manifold of dimension n —g + (n+1)q.
Then we use the projection on (R**+1)¢ and the Bertini—Sard theorem [BCR] and we
choose H = [Span(vy, ..., vq)]l. We conclude recalling that {V(f|g) = 0} C

{flg =0}. O

The following results are proved in the same way as Lemmas 2.5, 2.6 and 2.7,
considering the smooth manifold Cy \ {0}.
Lemma 3.2. For almost all H € G177 1 < ¢ < n — 1, g1 is a smooth
(g — 1)-dimensional or empty semi-algebraic set in the neighborhood of 0 (Xg1 is
the critical set of g1 ).

Corollary 3.3. Foralmostall H € G' 7% 1 < g <n—1, Ty =g (Sy0) is

a (g — 1)-dimensional or empty semi-algebraic set in the neighborhood of 0.

In the sequel, we fix a generic (n + 1 — g)-plane H satisfying Lemmas 3.1, 3.2
and Corollary 3.3. We will assume that H = {x € R |y =0 = x, = 0} and
SO g (x) = (x1,...,x,). Therefore the set Xy 1 18

{x € Co| rank(V S, e1,...,e5) < q+1}

Foralll G}{, there exists v € " N H such that the orthogonal projection H — [
is given by (v, x) = v*(x). We will work with S N H and v*. Forallv € S" N H,
we define

T, = {x e R | £(x) = 0 and rank(V £(x), e1, ..., eq. v) < g + 2.

Itis clear that O € T;,.

Proposition 3.4. For almostallv € S" N H, T, \ g1 is a smooth q-dimensional
or emply semi-algebraic set in the neighborhood of 0.

Proof. Let G be the map defined by
G: R x @Iy 5 RO

(x,ugy2, - ung 1) = (F(V fougy2)s oo (VL ung)),
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where for i € {g +2.....n+ 1} u; = (0,..., 0™ . a1 It x ¢ Ty

!
then there exists j € {g+ 1, ..., n+ 1} such that g—}é(x) #0. Hence X = G~1(0)\
[Zp1 % (R*+H1—ayn—=4] s a smooth [(n —q ) (n+1—q )+q]-dimensional or empty semi-
algebraic set. Letv: R*H x (RHH1—¢)n—¢ _ (R"*+1-2)"4 pe the projection. By the

Bertini—Sard theorem, almost every (ug42. ..., Uny1) € (R"*+1-9)7=4 5 a regular
value of v| y which means that X Nyl ((ttg42. ..., py1)) s a smooth g-dimensional
or emply semi-algebraic set. We choose v in[Span(u, 2, ..., tyyq1 NENSTNH., O

Proposition 3.5. Let T be the subset of T, \ X1 where the mapping wgy1: Ty \
Xl — H is not regular. For almostall v € "N H, the set T2 is a union of smooth
semi-algebraic sets of codimension greater than or equal fo 1 in the neighborhood
of 0.

Proof. Let v € S" N H be a generic vector for the previous proposition and let
(g42. ..., upy1) bea(n—qg)-tuplesuchthatv € [Span(u, 42, ..., un_H)]J'ﬂS”ﬂH.
The set T, is described as follows:

T)={x¢Zp. | f(X) =0, (V) ugqa) = = (Vf(x), upq1) =0,
there is w € H such that {(V f(x), w) = 0 and
(V(VS(x),ui),w)=0fori € {g+2.....n+1}}.

Butatx € T, \ 2y 1, v belongs to Vect(V f(x), e1, ..., e4) hence (V f(x),v) #0
for otherwise (v, v) = 0. If we write the element w of H as a linear combination

of v and the u;’s, we see that at x € T}, \ XLy, (Vf(x), w) = 0 if and only if
w € Vect(ugy2, ..., upy1). Therefore

Ty ={x ¢ go | F(x) =0, (Vf (%), ugq2) = --- = (VF(x), ttny1) = 0, there
18 w € Vect(uy42, ..., uzs1) such that (V f(x), w) = 0 and
(VIVf(x),u),w)=0~fori e {q—|—2,...,n+l}}.

We conclude mimicking Lemma 2.6. O

Corollary 3.6. For almost all v € S" N H, w1 (T)) is a semi-algebraic set of H+
of dimension at most g — 1 in the neighborhood of 0.

Proof. Itis clear. O

Lemma 3.7. Foralmostall v € S"NH, f|gnp =0y admits an isolated critical point
at 0.
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Proof. Letus consider the following mapping:

G: RV x prtl-a _, pat2

8 ) o (5 R e m s Xy s (e X))

Since f|g has an isolated critical point, for all x € f 10y N H \ {0}, there exists
je{g+1,..., n+1}suchthat g_gx) # 0. We deduce that G~1(0)\ ({0} x R**+1-2)
is a smooth manifold of dimension 2n — 24 and we conclude using a projection. O

Corollary 3.8. Foralmostall H € G'7 1 < g <n —1, for almost all | € G,
the following properties hold: there exists a semi-algebraic set A  HL which
contains O and of dimension smaller than or equal to g — 1 in the neighborhood of 0,
there exists O < & < 1 such that for all 0 < & < &', there exists 0 < y. < & such

that for all y € H-\ A with O < |y| < y., Co N Hy N B"Y is a manifold with
boundary and zrlH’y admits only Morse critical points in Co N H, N Bg‘“.

Proof. We choose H generic for Lemmas 3.1, 3.2 and Corollary 3.3. Therefore f| gy
has an isolated critical point and there exists 0 < &’ <« 1 suchthatforall0 < & < &,
Co N H N ST is smooth. By transversality, there exists 0 < y” < ¢ such that for all y
with O < |y| < ¥/, Con H,N S is also smooth. Then we take v € S"N H generic for
Propositions 3.4 and 3.5 and we set! = Span(v). Let Abe 'yt Ny (T)). Itisa
semi-algebraic set in H1 of dimension at most ¢ — 1 in the neighborhood of 0, which
means that there exists 0 < y” < 1 such that A N By 'm HL is a semi-algebraic

set of dimension at most ¢ — 1. We set y. = min (y/,y”). If y € H-\ A and
0 < |yl < y.then Co N Hy N ij“ is a smooth manifold with boundary because

y & 'y and Co N Hy N ST is smooth. Furthermore an’y is Morse in B*! since
y ¢ (T). L

We will need also this lemma:

1

Lemma 3.9. For almost alll € G, "

point at Q.

(withl L H, fl|uer has an isolated critical

Proof. 1et & be the mapping defined by

G: R x (R?)271 5 RY,
()C, w1, -~~,wq—1) = (fa ()C, wl) LR <)C, wg—l))-
As usual, for almost all (wq, ..., wy_1) € (R, Co N {twy,x) = 0,...,

(wy—1,x) = 0} is smooth of codimension ¢ outside H. But if x # 0 belongs
to HNCoN {{wy,x) = 0,..., (wy—1,x) = 0} then rank(V f(x), e1,...,¢4) =
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g + 1 and therefore rank(V f (x), wy, ..., wy—1) = g since Span(wy, ..., w,_1) C
Span(ey, ..., e;). We choose [ insuch a way that H &1 = [Span(wn, ..., wq_l)]L.
O

The second part of our study on polar varieties consists in localizing the results
on polar varieties of Section 2. Letkbein {0, ..., n — 1} and let P be in Gﬁfl Let
mp: Co — P be the orthogonal projection on P. We recall that X p is the set of
critical points of mp and I'p = wp(Zp).

Lemma 3.10. For almost all P € Gﬁﬂ 2p \ {0} is a k-dimensional submanifold
in the neighborhood of Q.

Proof. See Lemma 2.5. O

Lemma 3.11. For almost all P € Gﬁﬂ the set

Xp ={x € Zp | mplx, is not regular at x}

is a union of submanifolds of Xp of codimension greater than or equal to 1 in the
neighborhood of 0.

Proof. See Lemma 2.6. O
Lemma 3.12. For almost all P € Gﬁﬂ I'p is a semi-algebraic set of dimension k
in the neighborhood of 0.

Proof. See Lemma 2.7, O

With the definition of i p(x) given in Section 2, we have:

Lemma 3.13. For almost all P € Gﬁﬂ there exists a semi-algebraic set Wp C T'p

of dimension smaller than k in the neighborhood of O such that I'p \ Wp is a smooth
k-dimensional manifold in the neighborhood of O and the following functions in y,

Yo =DPY and gGrply,) T (),
x| wplnp(x)=y
are defined and constant on each connected component of I'p \ Wp whose closure

contains 0.

Proof. Apply Lemma 2.13 to the manifold Co N B!\ {0}, O

In the rest of this section, we assume that f admits an algebraically isolated critical
point and we will denote by fr 1ts complexification (the same notation will be used
for the complexification of any real algebraic mapping or set). Let us recall first two
general lemmas.
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Lemma 3.14. Let N ¢ M < RN be analytic sets and let Nc and Mc be their
respective complexifications. Assume that Mc \ Nc is a smooth complex manifold
of dimension K. Let m: RY — R?, with P < K, be an analytic mapping and let
e be its complexification. Then for almost all « € RY, n'@l(af) NMc\ Neisa
smooth manifold of dimension K — P and =~ («) " M \ N is a smooth manifold of
dimension K — P (or empty).

Proof. Let X¢ be the critical set of 7oy v and let % be the critical set of 3 v
Then 7¢ (Z¢) has at most dimension P — 1 and ne(Ze) NRY s a subanalytic set of
dimension at most P — 1, which contains 7 (X). O

Lemma 3.15, et g = (g1, ..., gn): R" — R" be an analytic mapping such that 0
is algebraically isolated in g~ '(0). Then, for all sufficiently small regular values 8

of g
Cl{x1, ..., x5}

810 -+ &ne)

g 1(8) < dimc

Proof. Let I'y (resp. I'g.) be the discriminant of g (resp. gc); I'g is included in
g NIR™,If & does not belong to I'g. NIR™ then § 1s also a regular value of g¢ and
the result is clear. If § € (I'y,. NIR™) \ I', & is a regular value of g and the function
% — g ~1(%) is locally constant around 8. Since dim I’ oo NR" < n, there are regular
values of g¢ in the neighborhood of § in R”, O

Using these two lemmas and the machinery developed in the first part of this
section, we obtain:

Corollary 3.16. For almost all H GZH_Q, 1 <qg<n—1,foralmostalll € GL,

+1
the properties of Corollary 3.8 hold. Furthermore, Coc N Hy N Bg ety is a smooth
manifold with boundary and the projection ng’ycz Coc N Hyp N Bg(”H) — lye

admits only non-degenerate critical points. The number of critical points of zrlH’y is
smaller than or equal to the number of critical points of Jrlg’y = O

4. Euler characteristics and topological degrees

Let g: (RYF1 Q) — (R, 0) be an analytic function with an isolated critical point
at 0. Let us assume that g|(y, o) has also an isolated critical point.

Lemma 4.1. The function x1|,-10y\j0y hats no critical point in a neighborhood of 0.
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Proof. Using the Curve Selection Lemma, it is easy to prove that the critical set of
x1lg-1(0y lies in {x; = O}. Similarly the critical set of g|, =0} lies in ¢~ 1(0). Hence

these two critical sets are the same. O
This lemma implies l;lalat 0 is an isolgted root of the mapping G : (RV+1 () —
N+1 g g

RV 0)x > (2(0), 72— (x), -, g ().

Theorem 4.2. Ler 3, 0 < |8] < e « 1, be a regular value of x1| g1\ 0 Then, if
N — 1 is even, we have

x(g71(0) N {x1 = 8) N BYHY) = 1 — deg, Vg — sign(3) - deg, G,
x({g = 03N {x1 =8N BN*Y) — x ({2 < 03N {1 = 83 B

= degy V(glix, =0})-
If N —1is odd, we have

x(e71 O N {xr = 8N BYTY) =1 — degy Vgl o))
x(lg = 0)n{x1 =8y N BY) — x({g < 01N fy = 8y n BN
= degy Vg 4 sign(d) - degy G.

Proof. This i1s an immediate consequence of Fukui’s formula [Fu]. See [Du2], The-
orem 3.2 for details. O

We will use these results in the following form:

Corollary 4.3. Ler§, 0 < 6 < ¢ < 1, be a regular value OfX]lg—l(O)\{O}. Then, if
N — 1 is even, we have

x (7O N{x =8N BY T + ¢ (¢7 O N = =8N BYT) =2 —2deg, Ve,

x({g = 0iNf{x; = 01N SY) — x({e <0 N {x1 =0} N SY) = 2degy V(g =0))-
If N —1is odd, we have

x(g70) N {x; =0} N SN) =2 — 2degy Viglix, =0

[x(fe = 03N {er =8N BYH) — x({e < 01N fx1 = 8} N BY )]
+[x({e 20N = =3 N B — x({e =03 N {y = =8} N BIH)]
= 2deg, Vg.

Proof. 1tis easy. However the reader will find in [Dul], Theorem 5.2, the argument
necessary for the proof of the second point of the case N — 1 even. O
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5. Integrals on the singular level

We recall that £: R"H — Risa polynomial such that f(0) = 0 and O is an isolated
critical point of f. Let Co be £~1(0) and let C, be Co N B+, In this section, we

express
1

lim—f Sa—k(x)dx, 1<k <n,
g—0 bkek CE\{0} .

in terms of mean values of topological degrees, and we bound from above

1
lim —f Ry (x)dx
g—=0 kak CE\{0} .
in terms of the Milnor—Teissier numbers of fi.

5.1. Study of s,,_;. First we study the case 1 < k < n. From Theorem 2.15,

143 o
gl bl = CZLHCE N\ {OD).
[(;g\{O}S () dx (k) L LF(C5\ (O]

We keep the notations of Sections2and 3: P € Gﬁﬂ ,mp:. Cyp — Pistheorthogonal

projection on P, X p is the polar variety and I'p = 7p(2Xp). We will write

m+,s:f ( > (—1)iP(x))dy for0 < e < 1.
rpnBP

7p |5, (X)=y

Here BY is the ball of radius & in P. Then, we have

| 1 m e
— L (Co\{0}) = ——— dp.
brek gnt1k+1 JGit! brek
With the notations of Lemma 3.13, letus write I'p \ Wp = J”; 1 X J‘.p in the neighbor-

hood of 0. Moreover, on each XJ.P the integer Zﬂ,ﬂzp o=y (—D'PE where y € X T,

does not depend on y. We will denote it by AJP . Then the following equality holds:
rp rp
mte =3 A2 vol(xP N BD) =3l f1 4xP nin By,
j=1 j=1 Ap
hence,

rp
mtHe :[1 YAl @xPninBlyadl.
Ap j=1
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But 3777 A7 - (¢X[ N 1N BE) is generically the number of critical points of the
orthogonal projection wf: Co N L N B**! — [ where L = P+ @ (. By Bezout’s

theorem, this number 1s smaller than or equal to D = deg f(deg f — 1)*~*. Since

XPnBF c BF, there exists a constant cst such that [m*?] < cst- D - & and

;& R .
|m8k | < ¢st - D, this last term does not depend neither on P nor on . We can apply

Fubini’s theorem to get

Jim, — LE(CE\ (o) = ! f im " ap
20 byek &0 gl kil Ght1 e—0 biek

1 P vol(XP n BF)
:7/ Z,\;’.hm i " dpr.
En+1k+1 Joht! e—0 bek

n+1 J:]_

Each set X JP is semi-algebraic of dimension k, hence by the Kurduka—Raby theorem
[KR], we obtain the following proposition:

Proposition 5.1, Fork € {1,...,n—1}, lim,_ bkle;r(Cg \ {0V) exists and equals
1 i
— AP opXP,00dP. O
gnt1,k+1 fGﬁﬂ ; !

Now we have to compute O (X J‘.p ,0) for a generic (k 4 1)-plane P. We will
use the Cauchy—Crofton formula for the density due to Comte [Co], which can be
summarized in this way in the semi-algebraic case:

Proposition 5.2. Let X be a semi-algebraic set in RY whose closure contains 0,
d-dimensional in the neighborhood of 0. For every d-dimensional vector plane Q in
RY, we denote bymg: X — Q the orthogonal projection on Q. There exists a dense
open semi-algebraic set Ex in va such that for all Q € Ex, the following holds:

(1) The complement of the discriminant of wg is a dense open semi-algebraic set
of Q. We call local polar profiles its connected components whose closure
contains 0. We denote them by KIQ, vy Kan.

(2) Foralli € {1, ..., ng}, the cardinal of the fibre nél(y) does not depend on 'y
ifv € KiQ and y is close enough to 0. We call this integer multiplicity of the
polar profile and denote if by eiQ.

Moreover, we have

ngQ

1

®,(X,0) = —[ > ef  O4(KF. 0)dQ. O
8N.d JGY
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Applied to X7, this gives

np.Q.j

ka > e e @(KPQ())dQ

P i=1

Or(X;
8k+1 k

Q

where the K/ ’Q’s are the polar profiles and the ¢, ;*’s are the multiplicities of

J.PQ. XP — Q. Hence for a fixed P, we obtain
rp "P.Q.j

ZKP Op(X?, 0) = [ N AL e ok 2 0)d0.
Sk+1k JGh T 4

Now let us fix a k-plane Q in P and let us set [ = QL. As in Section 3, we
denote by /, the line parallel to / passing by y and H, the (n — k + 1)-affine plane
PL@l,. Fory e K;9 close 1o 0 (ie. [y| < &), (r;"%)7!(y) is included in
X and therefore is dlS]Olnt from 7p(X%) (see the notations in Sections 2 and 3).

Each point in 7 (zr Q) L(y)] is a non- degenerate critical point of the projection

Y. ¢ n H, — I, (by Corollary 3.8, we can assume that C5 N H,, is smooth).
Let Ql, .. be the connected components, whose Closure contains O, of the
complement of the union of the discriminants of the projections JTJP’Q These con-

nected components are the non-empty intersections ﬂ ¢ where i ; ranges in

]l
{1,...,np o} The set Uﬁ:l Qg 15 a dense semi- algebralc set in Q. For each
Bell,....a}l, Qp isequaltoﬂ i apck?;
to 0, then using Lemma 2.12 we have
P, .
¥ b s P > signK(x, N Hyy).

L. P.O X | x non degenerate
i QﬁCKj’i Hys

critical point of 7;

P.Q K; ’Q . Let yg be a point in Q24 close

Let us denote by I this integer depending only on 8. Since

OK2.00= > Or(R,0),
ﬁmﬁcKﬁ,’Q
we get
ZAP oKL =D "0 e YT 02, 0)
5 ﬁ\QﬁCK.P.’Q

= Z Z )LP @k(Qﬁ,O)

i P.Q
b opg QpCK;

= Ip- O(S2p,0).
g
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Finally this gives
o, P 1
jng Or(XT, 0) — [Gg%:lﬁ Or(Qp,0)d 0,
and
lim %L,j(cg\{()}) = : [ (f Zlﬁ.@k(gﬁ,())dg) dP.
#—0 bre ntlk+l - 8k+Lk S \JGh

The mapping Q@ — [ = QJ- identifies G( P, k) with G(P, 1), hence
([1 Zlﬁ.@)k(gﬁ,())dl) dP.
Gp 3

Let F' be the flag variety of pairs (P.1), P € GAT} and ! € GL. The mapping

(P,I) - (H,l)where H = P ®/and P = H' @1 enables us to identify F” with
the flag variety of pairs (H,1), I € Gﬁ;’f“ and ! € G},. With the notations used

above, we see that H1 = Q ¢ P. Finally, we find

1 1
lim —L;(C5\ {0)) = / (f IH,gdl) dH,
e=0 bek K0 Entlk+1 - 8k+1,1 Jo A N Jgl,

n+1

1
lim b—kL,j(cg \ {0} =

1 ]
e=0 bre Sn+1.k+1 * 8k+1,1 JGAH]

where Iy is defined as follows. There exists a semi-algebraic set Y < H' of
dimension smaller than & such that, if H+\ X = U%:l £2p 18 the decomposition of
[+ \ £ into its connected components, then for yg close to 0 in g, the following
sum:

> signK(x, CjN Hyy)

X | x non degenerate

e . H,
critical point of 7, o

does not depend on the choice of yg. Denoting it by Ig, we set

Ip =Y Ip - Or(Q,0).
g
By Corollary 3.8, we know that for almost every pair (7, [), there exists a semi-
algebraicset A € H L dim A < k,suchthatforall y ¢ A close enough to 0, CiN H,y

is a smooth manifold with boundary and an’y : Cg N Hy — [y is a Morse function.
In that case, if n — k is even, one has

> signK(x, C5NHy) = x(Hy,NCE — x(Hy N C§N Y = 8)).
X | x non degenerate
critical point oerlH’y
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Figure 4. The casen =2 and k = 1.

If » — k 1s odd, one has

> signK(x, C5N Hy)

x | x non degenerate
¥

= —{x(Hy N B N{f = 0}) — x(Hy N B: N {f <0p}
+{x(HyN BN {f = 04N ()" =8}
— x(HyN BN {f <0} {2 = sp).

critical point of n’iH’

Here § is a small regular value of JTZH’y (18] < |»]). These two equalities require some
explanations. By Lemma 2.3 in [Du2], we can relate the sign of K (x, C;N H,) to the

Morse index of JrlH’y at x. Then we can apply Morse theory to JrlH’y : CoNMHy — 1
as 1s done in the proof of Lemma 5.1 in [Du2]. However, as in this lemma, we have
to take care about the critical points on f~(0) N Hy N S" and on Hy N S™. If we
write [ = Span(v), then by Lemma 3.7, f| (=0 has an isolated critical point at 0.
This implies that U*lcg ng has an isolated critical point at O by Lemma 4.1. But with

our notations, v*|czng 18 :I:arlH 0, Cy N Hy — lyp. We can apply the same arguments
as [Dul], Lemma 4.1, to get rid of these critical points on the boundary.

We will study in detail the case n —k even. Since dim A < k, the set U%:l Qp\A
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is dense in H' and then

lim LH(CS \ {0}
e—0 bkek & .

1 f
. —k+1
8n+1,k+1 " 8k+1,1 JG k

1
N ] [ ZX(HYIS NGy ﬂ{anaYﬁ = 8})Or(Q2p. 0) dIdH.
gn+1,k+1 " 8k+1,1 /67 M JGl, 5

f > x(Hy, N CHOKQp, 0y dIdH
1y F

Let us compute the second term on the right-hand side. The manifold with boundary

Hy,NCyN {zrlH’y # — 8} has dimension n —k — 1, which is odd. Its Euler characteristic
is half the Euler characteristic of its boundary. If yg and & are sufficiently small,
this last Euler characteristic is the Euler characteristic of / N Cj N {v* = 0}. By
Lemma 3.1 and Lemma 3.7, f|g and f|pny+=0; have an isolated critical point at
the origin. Denoting H N {v* = 0} by I (the orthogonal of / in H) and applying
Corollary 4.3, we get

= H’
X (Hy, NCHN {7 = 8)) = 1 — degy V(flj1a).

Since 2,5 O (Qp,0) = 1, we have

1
X (Hyy N C§ N (), = 8})Ou(Q2p. 0) dldH
End+1,k+1 - Bk+1,1 /;;Z+Ilc+l /;}}fiﬁ: ( yg 0 yg ) B
1
- f f dego V(f12n) dIdH
En+1,k+1 * 8k+1,1 szlm G}q

1
=1- [ [ degy V(flx)dKdH.
En+l.k+1 - Bk+1,1 Gﬁl’f“ G’;;k

Let § be the flag variety of pairs (H, K), H € G!.i"! and K € G, *. This variety

1s a bundle over Gerll‘ , each fibre being a G,lc 41 Hence, we find

f k+1[ kdegOV(flK)deH:[ k[ degy V([flk)dldK
Clly GhY Gt JGl

n+1 n+1 k+1

:8k+1,1] kdegOV(ﬂK)dK.
(g

n+1

So our second term equals

1

- —f dego V(fx) dK .
En+l.n—k z;’f
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Let us have a look now at the first integral:

1
= f f X (Hyy N CE)Or(Q2p. 0) dld H.
En+1,k+1 - k41,1 G:jlcﬂ G}{ Xﬁ: g 0 B

The sets €21, ..., S, depend on the pair (H, ) but x (Hy, N C§) depends only on yg
and H. We can write

04
Bn—k+1,1
t= ’ [ x(H,, NC)O(Qp,0)dH
En+1,k+1 ° 8k+1,1 Gn1]1€+1 ; Y8 0 B
1 o
~ Bl X (Hy, 0 C5YO(Qp, 0) A,
En+l,n—k+1 /GL!;H ; Ye 0 B

where, with an abuse of notation, the €2;’s are the connected components of 1 L \ F”H 1

whose closure contains 0 (771 18 the orthogonal projection on f1 L and Iz, isits
discriminant).

Let us compute Y 5_; x (Hy, N CHO(Qp, 0). First, replacing H-\ T | by
H+ \ (I‘HHL U _FfrHﬂ’ we can assume that for all k € {1, ..., «}, there exists

7 €{l,..., «} such that —€2; = €2;. Here the notation —X for X C H means the
symmetric of X by the symmetry whose center is the origin. We have

1 1
Ou(24.0) = lim —— vol(Qz N BXY = lim ——— vol(Q g N S 1y,
(629, 0 = Jimy g ol @9 N B = fimy e Y0l N T

But vol(Q4 N S*~1) is equal to £ [ | #(Qs N ST N 1)dl and therefore
H

Or(Qs,0) = lim 8 NS npal.

Ok—1 ¢—=0 Jg!
HL

Since #(2 N SF=1 N1) is smaller than or equal to 2 forall [ € G} |, we have

O (R, 0) = f lim [£(Qs NS nn]al
gl =0

Ok—1

and

D x(Hy,NCHOK(2p, 0) =

i k—1
3 fG1 ) [Zx(ﬂyﬁﬂcé)glglloﬁ(ﬂﬁﬂé‘g ml)] dl.
H

Of—1 3

On g, x (Hy, N Cj) does not depend on yg provided it is sufficiently small.
Let Co(I'y;1) be the tangent cone of 'y 1 at O (see [KR] for the definition of
the tangent cone). Since I'y; 1 = —I'p1, Co(l' 1) is an homogeneous set, i.e, if
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u # 0 belongs to Co(I'f1), then R -« is included in Co(I'f;1). Let PCo(I'f 1) be
its projectivisation in G}{L, we have dim PCy(I'y;1) < £ — 1 for dim Co(I'y;1) <
dimI'; 1 < k. Let! be a line not belonging to PCo(I"g 1), we can decompose it in
the following way: { = /™ U {0} U /™. We assert that there exist ¢ = £(IT) and Qp

such that i+ N BH i Qp. Let us suppose that is not true. Then for all £ > 0 and
for all B, there 18 xg . In 1 such that |xge| < € and xg . ¢ Qp. But for £ small

enough, It N BA ~ is not included in I L because otherwise [T would be included
in Co(I"f1) and I would belong to PCo(I' ;). Hence for € small enough, there exist
Po = Pole) and xy _ in Qg such that x, . € /¥ N BZ". Let I be the interval in

[T with extretmhes Xy .o and xg, 0. 111 m I'y;1 = ¢ then, since I is connected and
INQg, #0,11s included in Qg,, which is impossible for xg, , ¢ Qg,. So I NIy

and It N Bf N I'y; 1 are not empty. Finally, for e small enough, there exists x, in

tn B;LIL NI andso !t C Col'yy 1, which contradicts the fact that! ¢ PCo(I"j1).
Our assertion 1s proven. It clearly implies that! C Qg U {0} U —Qg.

Let us compute 34 x (Hy, N CH limg_o 8(Qp N SE N1 for I ¢ PCo(T ).
Since there exists £ such that [ C Q25 U {0} U —Qg, this sum is equal to

x (Hy, N CG) + x( yﬁ,ﬂCS), where Qg = —Qj4.

Let us suppose that I = {x1 = 0,...,xx = 0}, in that case HLt = {xkt41 =
0,...,xp41 = 0} = Span(eq, ..., er). Suppose that ! = Span(eq) = {x2 = - =
xp = 0}in H+. Sincel Q5 U {0} U Qg , we can choose yg and yg of the form
yg =(8,0,...,0)and yg = —yg = —(8,0,...,0), where 0 < § « & « 1. Then,
we have

HyﬁﬂCS =CiN{x1 =8, x=0,....,x =0}

and
Hyﬁ,ﬂC(ﬁ:C(g)ﬂ{xl:—5,x2:0,...,xk:0}.

By Lemma 3.1 and Lemma 3.9, f|g and f|pg4y have an isolated critical point at 0.
We can apply Corollary 4.3 and get

x (Hy,NCo)+x (Hy, NC) = 2—2degy V([ 1{xy=0,....5=01) = 2—2degy V(frat)-

Finally, we find:

> x(Hy, 1 CHO(Qp, 0) =
B

Ok—1

fGl (1 — degy V(S lnan) dl

=1~

f degy V(S uar)dl
Gl
HL

Ok—1
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and

1
I=1-— / f dego V(f|meat) dldH.
gnt+1,n—k+1 ° 8k,1 ng{“ GLL

Let # be the flag variety of pairs (K, H), K € G5 and H e G5 **1. This
variety is a bundle over G”:’f“, each fibre being a G,lc. Hence, we have

[nk+1[1 degov(le@l)dldH:[
G GHJ_ s

a+l

n—l42 [Gr}(kﬂ degg V(flgk)dHdK

n+1

= 8n—k+2,n—k+1 f dego V(flx)dK,
Grsz+2

n+1
and
7 o1 Sn—ktlakil f dego V(f|x)dK
En+ln—k+1 " 8k1 JGIhT?
1
=1-

SEEE— dego V(flx)dK.

En+1,n—k+2 j;}ﬁj*z =0

We can study the case of » — k odd in the same way, using the second part of
Corollary 4.3. We have proved:

Theorem 5.3. forl <k < n,

1
lim —L+(CS\{O}):——f dego V(f|x)dK
s—0 bek K0 Bn+1,n—k+2 JGI K12 80

1

7[ degoy V(f|u)dH. O
En+l,n—k -k

n+1

_|_

Corollary 5.4. For1 <k < n,

1

) n On 1
lim f s_k(x)dx:—( )——f degy V(flk)dK
=0 bre* Jez\ (o) ' k) ok gntin-k+2 Jor kv =

n\ oy, 1
—|—()—7[ dego V(flg)dH. O
k) or guiin-k Jon*

a+1

It remains to consider the case & = n. Here, we have

1 1(Co N B!
lim / sl = lim e VS e e 5,
e—0 bye’ C5\{0} e—0 bye"
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We use the Cauchy—Crofton formula for the density:

1 =
O (Co, 0) = f D¢ Ok 0)dP,
En+1.n v

n+1 J:]_

where the K;’s are the polar profiles and ¢;’s are the multiplicities of 7p: Cy — P.
Let I' p be the discriminant of rp. As before, we can assume thatI'p = —I"p and so
forall j € {1,...,np}, thereexits i € {1, ..., np}such that KJP = —K[. We have

1
O (KF,0) = [ [lim (K P N st=tnn]di,
Opn—1 Gl g—0

and

np 1 np
e @,(KF.0) = / [ ef.limu(KPﬂS;‘_lﬂl)}dl.
. on—-1 Jgl - =0 I

j=1 " P =1

Let I be a line not belonging to PCy(I'p), then there exist j and k in {1,...,np}
such that K = —K[ and such that /| ¢ K/ U K[ U {0}. Let us assume that
P = {x;4+1 = 0} and that [ = Span(e;) = {x = -+ = x, = 0} in P. Let
y=(50,...,0,0 < § <& <« 1,bein KJP M 1. Then —y belongs to K N L.

Moreover ef is equal to 47, (y) and e/ to £z, (—y), hence ej‘.D is equal to 3C5 N

x1=8,x0=0,...,x, =O}ande]f to#C5 N{x1 = —8,x =0,...,x, =0}. By
Corollary 4.3, we find that

ef +ef =2—2degy V(fl{u=0,...x,=01) = 2 — 2degg V(fligpL),

np
ZQ}D ;EI%)H(KJP = Sg_l NI =2 —2degy V(fligpL),

and, finally,

1
0, (Co, 0) =1 — —[
&n+1,n * &8n,1 JG

The same argument as above shows that:

/1 degov(fh@PL)dldP‘
G

n
n+1 P

Theorem 5.5.

O, (Co.0) =1 —

f degy V(fl|k) dK. O
G2
n+

En+1,2 i
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5.2. Study of k,_;. We study the case 1 < k < n. Theorem 2.15 gives

nY oy
f i () dx = (k) O L (CEN (0D,
CaV0} Ok

With the notations used in Subsection 5.1., we can prove that

G i me(P)
sl = —— [ )

X
byek gnt1k+1 Jortt brek

where
m8<P>:[ dCrpls,) "1 () dy
rnB?

for 0 < & « 1. With the method applied in the previous subsection, we get:
Proposition 5.6. Fork € {1,...,n— 1}, lim._g b,}?Lk(CS \ {0}) exists and equals
L f iu?’ - OXE, 0 dP
gntt it Joko o ’ ’

where ,uf is the integer §i(mwp|x P)_1 (v), which does not depend on the choice of the
point yin X J‘.D , provided v is close enough 10 0. O

Then, everywhere replacing k}p by ,LL;) , we obtain

1 1
lim —— Lg(C§\ {0}) = f f A TS
e—0 by ek ¢ Bn+1k+1 " 8k+11 Ja" A+ JGL

where Jg; is defined as follows. There exists a semi-algebraic set > c Ht of
dimension smaller than k such that, if H+\ ¥ = U%:l Q2p 1s the decomposition of

H+ \ Y in its connected components, then for yg close to 0 in g, the following
integer:
.. . H. vz
#{x | x non degenerate critical point of 7r; "}

does not depend on the choice of yg. Denoting it by Jg, we set

Tai =Y _Jp - Or(Q2p,0).
p

By Corollary 3.16, we know that for almost all pairs (H, /), there exists a semi-alge-

braicset A ¢ HL,dim A < k, such that for all ynotin A and close to 0, C§ MH, and

CocNHy-N B2 are smooth manifolds with boundary and JTlH’y : CiNHy — 1
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and zrlg’y C: Coc N Hy - N Bg(”H) — Iy are Morse functions. Furthermore, the
following inequality holds:

#{x | x non degenerate critical point of ,"} N B+

. : H
< tt{z | z non degenerate critical point of nlc’y C} N Bgz(”“).

Let us express the right hand side of the inequality in terms of the Milnor—Teissier
numbers. For convenience we will assume that # = {x; = 0,...,x; = 0} and
that I = Vect(egy1) = {xi42 = 0, ..., xp41 = 0}, Thus, our right-hand side is the
number of elements in

Ue=00nta =y, cm= 0l N {50 =0, o2 = 0] n B,
0Xp42 0% 41
where O < ||(¥1, ..., )| < e < 1. Generically this is the dimension of the algebra
CE s = 2 v Pt }
(f,xl, e, Xk, aiﬁz,..., aiﬁl)‘

Applying Teissier’s lemma [Te] to fr|g, it follows that this dimension is equal (0
p D (fe) + p "R (). This enables us to bound Jg generically and since
Zﬁ Or(Q2p,0) =1, we get:

Theorem 5.7. Fork e {l,...,n — 1},

g—0

lim e Le(C\ (O] = w0 o)+ 1D (fe). 0
bre

Corollary 5.8. Forke {1,...,n — 1},

1
lim f hik(dx < ()= (0O ) + 0P fr). o
=0 brek Jes\ o) k) o

It remains to study the case k = n, i.e. to bound ©,(Cq, 0) in terms of the
Milnor-Teissier numbers. We will not go into details but just mention that using the
Cauchy—Crofton formula for the density and the fact that generically ej‘-D < e(fr)
(e( fr) 1s the multiplicity of fr), we get:

Theorem 5.9,
OV, 0) < e(fe) = uV(fe) + 1V (fo). m
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6. Integrals on the Milnor fibre and on the singular level

Werecall that (¢, x1, ..., x,41) isa coordinate system in R*+" and that F : R**" — R
is a polynomial such that for all x € R f(x) = F(0,x). We assume that

H = (F, %, L aiﬁ 1) has an isolated zero at O which implies that VF also

has an isolated zero at 0. We denote by f;: R**! — R the deformation given
by fi(x) = F(t,x). Let Co = f~10), C§ = Con B, ¢, = £71(0) and
Cf =GN B

Proposition 6.1. Fork € {1,..., n}, one has:
o1 1
Iim lim < Sp—k(x)dx = Iim — Sp—k(x)dx,
e—=0t—=0¢ C? =0 ¢ CE\{0}
g—01—0 Sk £—0 Sk

1 1
lim lim —f hy_i(x)dx = lim —f By (x) dox.
c; CE\0)

Proof We prove the result for s,_r. For 0 < &’ < &, we will denote by C>° the
set Oy N{e’ < w < ¢}, where w = \/xlz—l—m—l—xﬁﬂ. Then for 0 < &’ « & <« 1,

CS’SI is a smooth manifold with boundary (possibly empty). This implies that for

0 <1 <&, C> is also a smooth manifold with boundary.
The proof decomposes into three steps.

First step. If0 < &’ « g, 1.e. &’ = o(e), then

1 1
lim —f Sp—k(x)dx = lim —f Sp—k(x) dx.
e—0 Sk CS\{O} e—0 Sk Cg’g/

We have
1 1 1
— Sp_p(x)dx = = /.. Sp—k(x)dx + -1 Sp_k(x)dx.
€8 Jcg\o) € Jey £ JC\O)

The second term of the right-hand side can be written as follows:

1 e\ /1
-1 Sp—k(x)dx = | — — Sp_k(x)dx ).
€% Jeg\{oy £ €7 JCE\0)

We have proved in the previous section that lim,/_,q E%k f e Sn—k(x) dx exists and
0

7
\{O}
is finite. Since as & tends to 0, ¢’ and ‘% tend to 0, it 1s easy to see that

1
lim _k_[ / Sp—ik(x)dx = 0.
e=0&% Jeg'\(o)
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Second step. If 0 < |t] « &’ « ¢, then

1 1
Iim hm — Sy (x)dx = Iim llm — Sy_p(x)dx.
o0t —0 Sk Cf H k( ) o070 Sk Cr&&/ H k( )

As above, we have

1 1 e"\*/ 1
= Sp—i{x)dx = — CSp—(x)dx + | — — Sp—r(x)dx ).
& Cte £ Cze’s & & Cf/

Applying the argument of Proposition 5.1 to Cf/ instead of Cj \ {0}, we find that
1
ok o Sp—k(x) dx
But deg f; is smaller than deg F', hence
1
oF - Sr_ilx) dx

Since (£) tends to 0, this proves the second step.

< cst - deg fi(deg fi — 1324,

< cst - deg F(deg F — 1)" %,

Third step. Tt 0 < |1] < &' < &, then

lim CSp—k(x)dx :f Sk (x) dx.
ol

s,8
t—0 CJ,‘ ;

In order to prove this equality, we will first show that

lim K (x)dx :[ K (x)dx,
CS

t—0 &,& &,
G 0

and then we will use the reproducibility formula for s, (Proposition 2.4).

Let us explain briefly why the above equality is true. Let W = F~1(0) and for
0<ée el let Wo* =Wn{e <w < e} Ford such that 0 < |8] « &', let
D{® be the smooth manifold with boundary Wee N {1 = 8). The restriction of the
projection 77 : R2** — R+ (¢, x) — x to the manifold D?‘g/ is a diffeomorphism

onto Cj’gf.

Let us recall that for all v € $" and for x € R*T!, v*(x) = (v, x). We will also
denote by v* the function R*t" — R, (1, x) — (v, x). Forall v € $", we define the
following polar set:

Zy = {(t, x) € W& | rank(Vt, VF, v) < 3}.

Using techniques similar to the ones developed in Section 3 and in [Du2] p. 8548535,
we can prove the following results.
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Lemma 6.2. There exists an open dense semi-algebraic set O in S™ such that for all
/
v € O, Z, is empty or a smooth semi-algebraic curve in a neighborhood of D{* .

Lemma 6.3. For all v € O, there exists & with O < & < &’ such that for all 5 with
0 < |8] < &, the critical points of v*| .. lying in the interior of D" are Morse
critical points. ’

The last lemma has this direct corollary.

Lemma 6.4. For all v € O, there exists t' with O < t' < &’ such that for all t with
iz
0 < |1] < 1, the critical points of v*lcg,gf lying in the interior of C;°° are Morse
I
critical points.

Let y; be the Gauss mapping:

Vil Cf’gf — S”,
V fi(x)
X —
IV fi ()|

Let us {ix v in the open dense semi-algebraic set O \ (yo(Co N ) U yo(Co N S7)).

'
Let {p}, ..., pj } be the set of points in the interior of C;>* that are sent to v or —v

by y;. Let I, be defined by 1,,, = Y 7' deg(y;., p}) where deg(y;. p}) is the local
topological degree of y; at the point p!. By the exchange formula, we have

1
ffKqu:—/me.
(o 2 Jsn

By Bezout’s theorem, | I, | is lower than deg F'- (deg I’ —1)" and then, by Lebesgue’s
theorem,

1
lim K@Mx:—[]mﬂmdu
% 2 S )

t—0 Cl‘?ss n t—0

It remains to prove that lim; .o I, ; = I, o. Observe that the set 7 (£, ) has a finite
number of connected components Z, 1, . .., Z, , which are either O-dimensional or 1-
dimensional. Furthermore these connected components do not intersect the boundary

of CS’S/ because v ¢ yp(Co N S U yo(CoN S”). Hence for ¢ such that 0 < 1] < &/,
they do not intersect the boundary of C ' Furthermore each of the Zy.i’s Intersects
C; “in exactly one point and the union of these intersection points is exactly the set
{p].....pL}. Therefore, r; is equal to r and we can write {p!} = Z, ; N Cy “ where

pl tends to p? ast tends to 0. Since for ¢ sufficiently small, deg(y;, p) = deg(yo. p?),
it is easy to conclude that lim,_,¢ I, ; = I, o.
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Figure 5. The sets Z, ;.

By the reproducibility formula for s,_j, we have that for 0 < |t| < &’ < e:

/ A%Mﬂdx:whj,kl([ / KuxﬁgmLyu)w;
ol ArTT O AL

Using Bezout’s theorem and the exchange formula, we see that

/'/ K(x,Co% N Lydx
&5 ML

is bounded by a constant which does not depend neither on ¢ nor on L. Applying
Lebesgue’s theorem, we obtain

lim San—k(x)dx = CSt‘/ (limf ) K(x,Cf’g/ N L) dx) dL.
1—0 Jeoe AL 300 JeiP

Replacing R+ by the affine subspace L in the above study, we find that

lim [ K@nyﬂmdx:],/ K(x, Co% N L)dx.
t=0Jco* ni CoonL
This ends the proof of the third step and the proof of the proposition. O

7. Curvature integrals on the real Milnor fibre

In this section we state our main results. First we state real versions of the Griffiths—
Loeser formulas.
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Theorem 7.1. Fork c{l,...,n —1},

o 1 1
—limlim—f Sl . ——f deg, V(f|x)dK
(D)on e=0—0 bek Jeoe ™ Bn+1,n—k+2 JGh+? =
1
+ —[ dego V(f|n)dH,
Ent+l.n—k il

n+1

Ok

o ] ]
i tim i [ oy = u D () + 00 )
(k)0” 2—=01—0 bk&‘ e

Furthermore,
1
lim lim so(x)dx = — f degy V(flxk)dK +1,
e=>01=0Jcs gn+1,2 JG2 |

lim lim | ho(x)dx < uP(fe) + 19 (fo) = e(fr).

£—=01t—=0 ¢F

Proof. Use Corollary 5.2, Theorem 5.3, Corollary 5.6, Theorem 5.7 and the results
of Section 6. O

Let us recall the main result we proved in [Du2]:

1 _
lim lim [ s,(x)dx = —[degy VF + sign(r) degy H |
gn+1,n e=>01=0 Jeo

1
En+l.n

_|_

/ degy V(flk) dK,
G

b
A+l

where the mappings F and H are defined in the introduction. Using this, Theorem 7.1
and the formula for x (C;) given in [Du2] Theorem 3.2 , we obtain real versions of
Kennedy’s formula, that 1s to say Gauss—Bonnet type formulas for the real Milnor
fibre.

Corollary 7.2, If n is even, then

n/2

2] S 1
¥ (CH = lim lim 7f Sp_ok(x)dx.
! k:ZO (an)on g—01r—0 b2k82k G .

If nis odd, then

n—1
2

0%+l .. .. 1
——— lim lim P Es1 j;g Sp—2k—1(x) dx.
f

1
x(CH) = sx(CoNS;) =
! 2 & P (2k+1)0” =010 bopy1
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Proof. Letus prove first the case n even. Theorem 3.2 in [Du?2] states that
x(C?) =1 — degy VF — sign(r) deg,, H.
We have

lim lim Spx)dx = — [dego VF + sign(t) deg, H]
gntl,n g—01—0 &

1
En+l,n

+

|, deesVsIs)a.
G

n
n+1

By Theorem 7.1, we know that for k € {1, ..., *52}:

0% . . 1 / 1
—— lim lim —— | sp—2(x)dx = ——[ deg, V(f|x)dK
(J)on 5=01—0 boge?* Jee ™" 8nt1,n—2k+2 J G 2442 50
1
+ —f degy V(flm) dH,
&n+1,n—2k J G173

and that

lim lim so(x)dx = — [ dego V(flk)dK + 1.

e=>01-0 Jce 8n+12 JG2 |

Adding these % + 1 equalities, we obtain that

n/2

O v 1 j‘ | B
— lim lim ——— sp—ae(x)dx =1 — [deg, VF + sign(t) deg, H].
g (2nk)0” =010 b2k82k cs g [ 0 g 20 ]

The term in the right-hand side of this equality is x (C7). If n is odd, Theorem 3.2 in
[Du?2] states that
2(CH =1—degy V.

By Theorem 7.1, we know that for k € {0, .. ., %}

O2%k+1 . .. 1
1 B lim lim ———+—— Sn_2k_1(x) dx
( n )0 e—=0t—=0h g2Zk+1 2
2k+1/%7 2k+1 Ci

1
= - —f degy V(flk)dK
En+1,n—2k+1 J G173

1
+ —f dego V(f|n)dH,
8n+1,n-2k—1 JGI 2!

and that

degy V(f|x)dK + 1.

+1

lim lim sol(x)dx = — f
e=01—=0Jce gn+12 JG?2
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Adding these % equalities, we obtain that

n—1

2
021 1 o
(" )on Jim, bogr12 L J oo Sn—2k—1(x) dx = 1 —degy V f.
k=0 2k+1/0n :

The term in the right-hand side of this equality is ¥ (C;). Since C; is an odd-
dimensional manifold with boundary, we have that x (C;) = % x(Cy N ST). But Cy
intersects S; transversally if O < & « 1, hence Cy N S] is diffeomorphic to C; N ST
for 0 < [t| <« & <« 1. This proves the third equality of the corollary. O

We end this paper with two remarks. In [BB], the authors define spherical densities
C:)i(X,x), i =1,...,N — 1, for a point x belonging to a definable set X C RY,
They are generalizations of the classical density. Michel Coste asked the author about
the relations between these densities and our limits of curvature integrals. Using the
following formula ([Ar], [Wa]):

x({f <0INS") =1—degy VS (= 1x({f =01nSHifnis odd),

the spherical Gauss—Bonnet formula ([BB], Theorem 1.2, [Sa], p. 302-303) and the
spherical kinematic formula ([BB], Theorem 4.4), it is possible to express the mean-
values kaH degy V(f|m)d H in terms of the @;({f < 0}, 0) and ©;({f = 0}, 0).

For example, if n + 1 = 2,

1 -
fl dego V(f|m)dH = 2n(5 —By({f <0}, o>),
G

2

andifn+1 =3,

]G degy V(fladH =27(1 — B2((f = 0}.0).

3

This makes the link between the spherical densities and the limits of curvature integrals
on the real Milnor fibre.

We have restricted ourselves to the case of a polynomial. Except for Bezout’s
inequality, everything works in the analytic case. Itis possible to prove Proposition 5.1
in the analytic case (even in the subanalytic case) using a more sophisticated argument
based on the Thom—Mather first isotopy lemma as is done in [CGM] (see also [CY],
p. 157). However the spirit of this paper is to apply techniques of integral geometry
to singularity theory rather than to focus on the category of functions we work with.
That is why we have chosen to present our results only in the algebraic case.



Vol. 83 (2008) Curvature integrals on the real Milnor fibre 287

References

[Ar]

[BB]

[BCR]

[Co]

[CGM]

[CY]

[Dul]

[Du2]

[Fe]

[Fu]

[G-B.T]

[Gr]

[KR]

[Ke]

[Lal]

[T.a2]

[La3]

V.1. Arnold, Index of a singular point of a vector field, the Petrovski-Oleinik inequality,
and mixed Hodge structures. Funct. Anal. Appl. 12 (1978), 1-14. Zbl 0407.57025
MR 0498592

A. Bernig, L. Brocker, Courbures intrinséques dans les catégories analytico-géo-
métriques. Ann. Inst. Fourier (Grenoble) 53 (6) (2003), 1897-1924. 7Zbl 1053.53053
MR 2038783

J. Bochnak, M. Coste, M. E Roy, Géomérrie algébrigue réelle. Ergeb. Math. Grenzgeb.
12, Springer-Verlag, 1987. Zbl1 0633.14016 MR 0949442

G. Comte, Equisingularité réelle: nombres de Lelong et images polaires. Ann. Sci.
Ecole Norm. Sup (4) 33 (6), (2000) 757-788. Zbl 0981.32018 MR 1832990

G. Comte, P. Graftieaux, M. Merle, Equisingularité réelle: invariants locaux et condi-
tions de régularité. Preprint.

G. Comte, Y. Yomdin, Tame geomeiry with application in smooth anlysis. Lecture
Notes in Math. 1834, Springer-Verlag, Berlin 2004. Zbl 1076.14079 MR 2041428

N. Dutertre, Degree formulas for a topological invariant of bifurcations of function-
germs. Kodai Math. J. 23 (3) (2000), 442-461. Zbl 0982.58025 MR 1787676

N. Dutertre, Courbures et singularités réelles. Comment. Math. Helv. 77 (4) (2002),
846-863. Zbl 1022.58017 MR 1949116

W. Fenchel, On total curvature of riemannian manifolds 1. J. London Math. Soc. 15
(19403, 15-22. Zbl 0026.26401 MR 0002252

T. Fukui, An algebraic formula for a topological invariant of bifurcation of 1-parameter
family of function-germs. In Strafifications, singularities, and differential equations,
1T (Marseille, 1990; Honolulu, HI, 1990), Travaux en cours 55, Hermann, Paris 1997,
45-54. 7Zbl 0887.57037 MR 1473240

E. Garcia Barroso, B. Teissier, Concentration multi-échelles de courbure dans des
fibres de Milnor. Comment. Math. Helv. 74 (3) (1999), 398—418. Zbl 0956.32028
MR 1710694

P. A. Griffiths, Complex differential and integral geometry and curvature integrals
associated to singularities of complex analytic varieties. Duke Math. J. 45 (3) (1978)
427-512. 7bl 0409.53048 MR 0507455

K. Kurdyka, G. Raby, Densité des ensembles sous-analytiques. Ann. Inst. Fourier
(Grenoble) 39 (3) (1989) 753-771. Zbl 0673.32015 MR 1030848

G. Kennedy, Griffiths” integral formula for the Milnor number. Duke Math. J. 48 (1)
(1981), 159-165. Zbl 0467.32006 MR 0610181

R. Langevin, Courbure et singularités complexes. Comment. Math. Helv. 54 (1) (1979),
6—16. Zbl 0429.32008 MR 0522029

R.Langevin, Classe moyenne d’une sous-variété d’une sphere ou d’un espace projectif.
Rend. Circ. Mat. Palermo (2) 28 (2) (1979), 313-318. Zbl 0459.53048 MR 0580266

R. Langevin, Courbures, feuilletages et surfaces. Dissertation, Université Paris-Sud,
Orsay 1980; Publications Mathématiques d’Orsay 80, 3, Université de Paris-Sud, Dé-
partement de Mathématiques, Orsay 1980. Zbl 0466.53036 MR 0584793



288

[LL]

[LR]

[LS]

[Lo]

[MA]

[Mi]

[Ne]

[Ri]

[Sa]

[ST]

[S1]

[Tel]

[Te2]

[Va]

[Wa]

N. Dutertre CMH

R. Langevin, D. T. L&, Courbure au voisinage d’une singularité. C. R. Acad. Sci. Paris
Sér. A-B 290 (2) (1980), 95-98. 7Zbl 0429.32009 MR 0563947

R. Langevin, H. Rosenberg, Fenchel types theorems for submanifolds of $*. Comment.
Marth. Helv. 71 (4) (1996), 594-616. Zbl 0880.53047 MR 1420512

R. Langevin, T. Shifrin, Polar varieties and integral geometry. Amer. J. Marh. 104 (3)
(1982), 553—-605. Zbl 0504.53048 MR 0658546

E. Loeser, Formules intégrales pour certains invariants locaux des espaces analy-
tiques complexes. Comment. Math. Helv. 59 (2) (1984), 204-225. 7Zbl 0579.32009
MR 0749105

J. N. Mather, Generic projections. Ann. of Math. (2) 98 (1978), 226-245.
Zbl 0242.58001 MR 0362393

I. Milnor, Singular points of complex hypersurfaces. Ann. Math. Stud. 61, Princeton
University Press, Princeton, NJ, 1968. Zbl 0184.48405 MR 0239612

L. Ness, Curvature on algebraic plane curves I. Compositio Math. 35 (1) (1977), 57-63.
7Zbl 0369.32003 MR 0453752

J.-I. Risler, On the curvature of the Milnor fiber, Bull. London Math. Soc. 35 (4) (2003),
445-454. 7Zbl 1030.32024 MR 1978997

L. A. Santalo, Integral geomeiry and geometric probability. Encyclopedia of Mathe-
matics and its Applications, Vol 1. Addison-Wesley Publishing Co., Reading, Mass.
1976. 7Zbl 0342.53049 MR 0433364

D. Siersma, M. Tibar, The Gauss-Bonnet defect of complex affine hypersurfaces. Bull.
Sci. Math. 130 (2) (2006), 110-122. Zb1 1093.53080 MR 2200641

V. V. Slavskii, Integral relations with an orthogonal projection for hypersurfaces.
Siberian Math. J. 16 (1) (1975), 82-98. 7Zbl 0314.53037 MR 0375191

B. Teissier, Cycles évanescents, sections planes et conditions de Whitney. In Singutla-
rités a Cargése, 1972, Astérisque T-8 (1973), 285-362. 7Zbl 0295.14003 MR 0374482

B. Teissier, Introduction to equisingularity problems. In Algebraic geometry (Ar-
cata 1974), Proc. Sympos. Pure Math. 29, Amer. Math. Soc., Providence, R.L., 1975,
593-632. Zbl 0322.14008 MR 0422256

N. A. Varchenko, The integrality of the limit of the integral of the curvature along the
boundary of an isolated singularity of a surface in C>. Russian Math. Surveys 33 (6)
(1978), 263-264. Zbl 0473.57022 MR 0526016

C.T.C. Wall, Topological invariance of the Milnor number mod 2. Topology 22 (1983),
345-350. Zbl 0516.58010 MR 0710107

Received March 2, 2005; revised November 17, 2005

Nicolas Dutertre, Université de Provence, Centre de Mathématiques et Informatique, 39 rue
Joliot-Curie, 13453 Marseille Cedex 13, France

E-mail: dutertre @cmi.univ-mrs.fr



	Curvature integrals on the real Milnor fibre

