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Cluster mutation via quiver representations

Aslak Bakke Buan® Robert J. Marsh and Idun Reiten
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on the occasion of her 60th birthday

Abstract. Matrix mutation appears in the definition of cluster algebras of Fomin and Zelevinsky.
We give arepresentation theoretic interpretation of matrix mutation, using tilting theory in cluster
categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation
of cluster mutation in case of acyclic cluster algebras.
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Introduction

This paper was motivated by the interplay between the recent development of the
theory of cluster algebras defined by Fomin and Zelevinsky in [FZ1] (see [Z] for
an introduction) and the subsequent theory of cluster categories and cluster-tilted
algebras [BMRRT], [BMR]. Our main results can be considered to be interpretations
within cluster categories of important concepts in the theory of cluster algebras.
Cluster algebras were introduced in order to explain the connection between the
canonical basis of a quantised enveloping algebra as defined by Kashiwara and Lusztig
and total positivity for algebraic groups. It was also expected that cluster algebras
should model the classical and quantised coordinate rings of varieties associated to
algebraic groups — see [BFZ] for an example of this phenomenon (double Bruhat
cells). Cluster algebras have been used to define generalisations of the Stasheff poly-
topes (associahedra) to other Dynkin types [CFZ], [FZ3]; consequently there are
likely to be interesting links with operad theory. They have been used to provide the
solution [FZ3] of a conjecture of Zamolodchikov concerning Y-systems, a class of

*Aslak Bakke Buan was supported by a grant from the Norwegian Research Council
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functional relations important in the theory of the thermodynamic Bethe Ansatz, as
well as solution [FFZ4] of various recurrence problems involving Laurent polynomi-
als, including a conjecture of Gale and Robinson on the integrality of generalised
Somos sequences. Here the remarkable Laurent properties of the distinguished gen-
erators of a cluster algebra play an important role. Cluster algebras have also been
related to Poisson geometry [GS V1], Teichmiiller spaces [GSV2], positive spaces and
stacks [FG], dual braid monoids [BES], ad-nilpotent ideals of a Borel subalgebra of a
simple Lie algebra [P] as well as representation theory, see amongst others [BMRRT],
[BMR], [CC], [CCS1], [CCS2], [MRZ].

A cluster algebra (without coefficients) is defined via a choice of free generating
set x = {x1,...,x,} in the field ¥ of rational polynomials over @ and a skew-
symmetrizable integer matrix B indexed by the elements of x. The pair (x, B), called
a seed, determines the cluster algebra as a subring of F. More specifically, for each
i = 1,...,n,anew seed u;i(x, B) = (x’, B’) is obtained by replacing x; in x by
x;" € F, where x;’ is obtained by a so-called exchange multiplication rule and B’ is
obtained from B by applying so-called matrix mutation at row/column ;. Mutation
in any direction 1s also defined for the new seed, and by iterating this process one
obtains a countable (sometimes finite) number of seeds. For a seed (x, B), the set
x 18 called a cluster, and the elements in x are called cluster variables. The desired
subring of ¥ 1s by definition generated by the cluster variables.

[t 1s an interesting problem (o try to find a categorical/ module theoretical setting
with a nice interpretation of the concepts of clusters and cluster variables, and of
the matrix mutation and multiplication exchange rule for cluster variables. For the
case of acyclic cluster variables so-called cluster categories were introduced as a
candidate for such a model [BMRRT]. Skew-symmetric matrices are in one-one
correspondence with finite quivers with no loops or cycles of length two, and the
corresponding cluster algebra is called acyclic if there 1s a seed (x, B) such that B
corresponds to a quiver Q without oriented cycles. There is then, for a field K, an
associated finite dimensional path algebra K (0. The corresponding cluster category C
is defined in [BMRRT] as a certain quotient of the bounded derived category of K Q,
which is shown to be canonically triangulated by [K]. In [BMRRT] (cluster-)tilting
theory is developed in €, with emphasis on connections to cluster algebras. The
analogs of clusters are (cluster-)tilting objects, and the analogs of cluster variables
are exceptional objects. In case @ 1s a Dynkin quiver, it was shown in [BMRRT] that
there is a one-one correspondence between cluster variables and exceptional objects
in C (in this case all indecomposables are exceptional) which takes clusters to tilting
objects. This was conjectured to hold more generally.

In this paper we show that also the matrix mutation for cluster algebras has a
nice interpretation within cluster categories, 1n terms of the associated cluster-tilted
algebras, investigated in [BMR]. Cluster-tilted algebras are endomorphism algebras
of tilting objects in cluster categories. It follows from our results that the quivers of
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the cluster-tilted algebras arising from a given cluster category are exactly the quivers
corresponding to the exchange matrices of the associated cluster algebra. This has
further applications to cluster algebras (see [BR]). Another main result of this paper
is an interpretation within cluster categories of the exchange multiplication rule of an
(acyclic) cluster algebra. So, together with the results from [BMRRT], all the major
ingredients involved in the construction of acyclic cluster algebras have now been
interpreted in the cluster category.

Tilting theory for hereditary algebras has been a central topic within representa-
tion theory since the early eighties. This involves the study of tilted algebras, and
various generalisations. An important motivation for this theory was to compare the
representation theory of hereditary algebras with the representation theory of other
homologically more complex algebras. The main result of [BMR] is also in this
spirit, showing a close connection between the representation theory of cluster-tilted
algebras and hereditary algebras. It is the hope of the authors that our “dictionary”
also can be used to obtain further developments in the representation theory of finite
dimensional algebras. Also new links between this field and other fields of math-
ematics can be expected, having in mind the influence of cluster algebras on other
areas.

In [CCST] an alternative description of the cluster category 1s given for type A.
The cluster category was also the motivation for a Hall-algebra type definition of a
cluster algebra of finite type [CC], [CK].

The paper is organised as follows. In Section 1 we give some preliminaries,
allowing us to state the main result more precisely. Most of the necessary background
on cluster algebras is however postponed until later (Section 6), since most of the paper
does not involve cluster algebras. In Section 2 we prove the following: If I' is cluster-
tilted, then so 1s I'/ I'el” for an idempotent ¢ in I". This is an essential ingredient
in the proof of the main result, and also an interesting fact in itself. In Section 3
some consequences of this are given. In Section 4 we prepare for the proof of our
main result. This involves studying cluster-tilted algebras of rank 3, and a crucial
result of Kerner [Ke] on hereditary algebras. The main result 1s proved in Section 3,
while Section 6 deals with the connection to cluster algebras, including necessary
background.

The results of this paper have been presented at conferences in Uppsala (June
2004), Mexico (August 2004) and Northeastern University (October 2004).

The first named author spent most of 2004 at the University of Leicester, and
would like to thank the Department of Mathematics, and especially Robert J. Marsh,
for their kind hospitality. We would like to thank the referee for pointing out an error
in an earlier version of this paper, and Bernhard Keller and Otto Kerner for helpful
comments and conversations.
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1. Preliminaries

1.1. Finite-dimensional algebras. In this section let A be a finite dimensional K -
algebra, where K is afield. Then 1y = ¢1 +e3 4 -+ - 4 €5, where all ¢; are primitive
idempotents. We always assume that A is basic, that is, Ae; % Ae; wheni # j.
There are then (up to isomorphism) » indecomposable projective A-modules, given
by Ae;, and n simple modules, given by Ae;/re;, where 1 is the Jacobson radical
of A.

If K is an algebraically closed field, then there is a finite quiver Q, such that A
is isomorphic to K @/, where K Q is the path-algebra, and [ is an admissible ideal,
that is there is some m, such that i’ < [ < 2. We call Q the quiver of A. In case A
is hereditary, the ideal [ is 0. For the rest of this paper, except in Section 2, we always
assume that K 1s algebraically closed.

The category mod A of finite dimensional left A-modules is an abelian category
having almost split sequences. In case A 1s hereditary there is a translation functor 7,
which is defined on all modules with no projective (non-zero) direct summands.

The bounded derived category of A, denoted D”(mod A), is a triangulated cat-
egory, with suspension given by the shift-functor [1], which is an autoequivalence.
We denote its inverse by [—1]. In this paper, we only consider derived categories
of hereditary algebras f/. They have an especially nice structure, since the inde-
composable objects are given by shifts of indecomposable modules. In this case we
also have a translation functor v : D? (mod H) — D?(mod H), extending the functor
mentioned above. We have almost split triangles A — B — C — in D”(mod H),
where tC = A, for each indecomposable C in D = D! (mod H). We also have
the formula Hom g (X, tY) >~ D EXt:@(Y , X), see [H]. Here D denotes the ordinary
duality for finite-dimensional algebras. Let H be a hereditary finite-dimensional al-
gebra. Then a module 7" in mod H is called a filting module if Ext}{(T, T)=0and
T has, up to isomorphism, » indecomposable direct summands. The endomorphism
ring End g (T)°P 1s called a tilred algebra.

For an algebra I', 1t will be convenient to call the quiver of I', what 1s usually
called the quiver of I"°P

See [ARS] and [R] for further information on the representation theory of finite
dimensional algebras and almost split sequences.

1.2. Approximations. Let & be an additive category, and X a full subcategory.
Let £ be an object in €. If there is an object X in X, and amap f: X — E, such
that for every object X" in X andeverymap g: X’ — FE, thereisamaph: X' — X,
such that g = f#, then f is called a right X -approximation [AS]. The approximation
map f: X — FE is called minimal if no non-zero direct summand of X is mapped
to 0. The concept of (minimal) left X -approximations is defined dually. If there is a
field K, such that Homg (X, Y) is finite dimensional over K, for all X, Y € &, and
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if X = add M for an object M in &, then (minimal) left and right X -approximations
always exist. Here, for an object M in any additive category, we let add M denote
the smallest full additive subcategory closed under direct sums and containing M.

1.3. Cluster categories and cluster-tilted algebras. We remind the reader of the
basic definitions and results from [BMRRT]. Let /{ be a hereditary algebra, and let
D = D”(mod H) be the bounded derived category.

The cluster category is defined as the orbit category Gy = D /F, where F =
t~1[1]. The objects of € are the same as the objects of £, but maps are given by

Home (X, Y) = [ [, Homp (X, F'Y).

Let @: O — € be the canonical functor. We often denote Q(X) by X , and use the
same notation for maps. Let X be an indecomposable object in the cluster-category.
We callmod H v add H[1] = mod H v H[1] the standard domain.

There iAs (up to isomorphism) a unique object X inmod 1 v H[1] € D such that
Q(X) =

Assume X1, X7 are indecomposable in the standard domain, then a map f X 1 —
X, 2, can uniquely be written as a sum of maps f1 + fz 4+ -4 fr, such that f; isin
Homyp (X1, F%X5), for integers d;. In this case 4; is Called the degree of f,

The following summarises properties about cluster categories that will be freely
used later.

Theorem 1.1. Let H be a hereditary algebra, and C g the cluster category of H.
Then

(@) Cpg is a Krull-Schmidr category and Q preserves indecomposable objects;
(b) Cpg is triangulated and Q is exact;

(¢) Cg has AR-rtriangles and Q preserves AR-triangles.

Proof. (b) is due to Keller [K], while (a) and (¢) are proved in [BMRRT]. O

Let us now fix a hereditary algebra H, and assume it has, up to isomorphism, »
simple modules. A cluster tilting objecr (or for short, tilting object) in the cluster
category is an object ' with Ext}E (', T) = 0, and with » non-isomorphic indecom-
posable direct summands. Two tilting objects 7 and 7" are said to be equivalent
if and only if add T = add T’. We only consider tilting objects up to equivalence,
and therefore we always assume that if 7 = [ [, 7; is a tilting object, with each 7;
indecomposable, then 7; £ T; for: # j.

There 1s a natural embedding of the module category into the bounded derived
category, which extends to an embedding of the module category into €. This em-
bedding is in general not full. It was shown in [BMRRT] that the image of a tilting
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module in mod H is a tilting object in Cg. It was also shown that if we choose
a tilting object 7" in Gy, then there is a hereditary algebra H’ and an equivalence
DP(H') — D>(H), such that T is the image of a tilting module, under the embedding
of mod H' into Gy =~ Cg.

If T 1I X is a tilting object, and X is indecomposable, then T is called an almost
complete tilting object.

The following was shown in [BMRRT].

Theorem 1.2. Let T be an almost complete tilting object in Cg. Then there are
exactly two complements M and M*. There are uniquely defined non-split triangles

M*— B—> M —,

and
M—> B — M*— .

The maps B — M and B’ — M* are minimal right add T -approximations, and the
maps M* — B and M — B’ are minimal left add T -approximations.

The endomorphism ring End (77)°P of a tilting object in € is called a cluster-tilted
algebra. Using the notation of Theorem 1.2, we want to compare the quivers of the

endomorphism rings 1" = Ende(T LI M)°P and IV = Ende(T U M*)°P.

1.4. Matrix mutation. Let X = (x;;) be an n x n-skew-symmetric matrix with
integer entries. Choose k € {1,2,...,n} and define a new matrix p;(X) = X’ =
(x;;) by

, {xij ifk=iork=j,

Ly Xip | Xpj X | X <
tj xij + ik k}z ik| k]' OthefWISe.

The matrix g (X) = X’ is called the mutation of X in direction &, and one can show
that

— ur(X) 1s skew-symmetric, and

~ (X)) = X.

Matrix mutation appears in the definition of cluster algebras by Fomin and Zelevin-
sky [FZ1].

1.5. Main result. At this point, we have the necessary notation to state the main
result of this paper. There are no loops in the quiver of a cluster-tilted algebra
[BMRRT], and we also later show that there are no (oriented) cycles of length two. It
follows that one can assign to I a skew-symmetric integer matrix X . Actually, there
is a 1-1 correspondence between the skew-symmetric integer matrices and quivers
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with no loops and no cycles of length two. Fixing an ordering of the vertices of the
quiver, this 1-1 correspondence determines mutations g also on finite quivers (with
no loops and no cycles of length 2). The following will be proved in Section 5. The
notation is as earlier in this section, especially the field K is algebraically closed.

Theorem 1.3. Let T be an almost complete tilting object with complements M and
M* and let ' = Ende (T T M) and IV = Ende (T 11 M*)°P. Let k be the vertex of
I" corresponding to M. Then the quivers Qr and Qrv, or equivalently the matrices
Xr = (x;;) and X = (xlf J.), are related by the formulas

o = —Xij l‘kaiOT'kIj,
i Xk \ Xk Xk (X5 ,
¥ Xij 1 | ik | ka ik |7k | otherwise.

This is the central result from which the connections with cluster algebras men-
tioned in the introduction follow. An independent proof of Theorem 1.3 in the case
of finite representation type is given by Caldero, Chapoton and Schiffler [CCS2].

2. Factors of cluster-tilted algebras

In this section, our main result 1s that for any cluster-tilted algebra I', and any primi-
tive idempotent e, the factor-algebra 1"/ el is in a natural way also a cluster-tilted
algebra. This will give us a powerful reduction-technique, which is of independent
interest, and which we use in the proof of our main result in this paper.

Suppose that I' 1s the endomorphism algebra of a tilting object T" in the clus-
ter category corresponding to a hereditary algebra /1. The main idea of the proof
is to show that if we localise & = D’(mod H) at the smallest thick subcategory
containing a fixed indecomposable summand M of 7', then we obtain a category
triangle-equivalent to the derived category of a hereditary algebra H’. The factor-
algebra I'/ I'el” (where e is the primitive idempotent of I" corresponding to M) is
then shown to be isomorphic to the endomorphism algebra of a tilting object in the
cluster category corresponding to H’.

2.1. Localisation of triangulated categories. We review the basics of localisation
in triangulated categories. Let 7 be a triangulated category. A subcategory M of T
1s called a thick subcaregory of 7 if 1t 1s a full triangulated subcategory of 7 closed
under taking direct summands.

When M 1s a thick subcategory of 7, one can form a new triangulated category
Ty = T/ M, and there is a canonical exact functor L 4 : 7 — T . See [Ric] and
[V] for details.
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For every M’ in M, we have L 4 (M’) = 0, and L 4 is universal with respect to
this property. We also have the following.

Lemma 2.1. Assume T is a triangulated category, and M is a thick subcategory
of 7. Then, foranymap f in T we have L y(f) = Qif and only if f factors through
an object in M.

We will need the following result of Verdier [V, Ch. 2, 5-3], [V2]:

Proposition 2.2. Let T be a triangulated category with thick subcategory M, and let
Ty be the quotient category with quotient functor Ly . T — Ty Fix an object Y
of T. Then every morphism from an object of M to'Y is zero if and only if for every
object X of T the canonical map

Homy (X, Y) — Homg, (L 4 (X), L y(Y))
is an isomorphism.

In particular, we note that this implies that L 4 is fully faithful on the full subcate-
gory of 7 with objects given by those objects of 7 which have only zero morphisms
from objects of M.

2.2. Equivalences of module categories. Let H be a hereditary algebra and M an
indecomposable [{-module with Ext}q(M , M) = 0. Then there is (up to isomor-
phism) a unique module E with the following properties:

B1) E is a complement of M (thatis, E I M 1s a tilting module).

B2) For any module X in mod /, we have that Ext}, (M, X) = 0 implies also
Exth (E, X) = 0.

This 1s due to Bongartz [B], and the module E 1s sometimes called the Bongariz-
complement of M. For a module X in mod H, we denote by X the full subcategory
of mod 1 with objects ¥ satisfying Ext}],(X LYy = 0. It T is a tilting module,
then it is well known that T+ = Fac T, where Fac T is the full subcategory of all
modules that are factors of objects in add 7. Note that B2) can be reformulated as
MLt =M1 E)L.

The following result can be found in [H] and [HRS].

Proposition 2.3. (a) Assume M is an indecomposable non-projective H-module with
EXt}I(M M) =0, and let E be the complement as above. Then the endomorphism
ring H' = Endy (E)°P is hereditary, and Homy (M, E) = 0.

(b) Ler U denote the full subcategory of mod H with objects X satisfving
Hompy (M, X) =0 = ExtL, (M, X).
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Then U is an exact subcategory of mod H and the functor Homg (E, —) from mod H
to mod H' restricts to an exact equivalence between U and mod H'.

We note that the above result does not hold in general in the case when M 1s
projective. For example, consider the quiver of type A3 with vertices 1, 2 and 3 and
arrows from 1 to 2and 2to 3. Let M = P>. Then E = P; @ P; and Endg (E)“? has
three indecomposable objects while U has only two. The only other complement of
Mis £/ = Py & (Py/P3). Then Homg(E’, P3) = 0 although P lies in U and is
non-zero. So also in this case the functor Homg (£’, ) from U to mod End g (E)°P
is not an equivalence. However, we will need the following result which is along
stmilar lines for the case when M 1s projective.

Lemma 2.4, Let M be an indecomposable projective H-module with corresponding
idempotent epy € H. Let H' = H/Hep H.

(a) We have Tor{{ (H',U) = 0, for any object U in U, where U is as defined above.

(by We have that U is an exact subcategory of mod H and the functor H' @ g — from
mod H to mod H' restricts to an exact equivalence between U and mod H'.

Proof. We have that U 1s an exact subcategory of mod 1 as in Proposition 2.3. Tt is
easy to see that the functor H' ® g — is an equivalence between U and mod H'. To
see that it is exact, we consider the following projective resolution of H' as a right
H-module:

0— HeyH — H— H — 0.

Applying — &g U to this sequence, where U is an object in U, we obtain the long
exact sequence:

Tor'(H, Uy — Tor¥ (H',U) > Hey H@p U > HOpy U - H @y U — 0.
Since H is projective, Tor{f (H,U) = 0. We also have
Heyy HQupU = H®yg HepyyU =0

since ey U = 0. Tt follows that Tor{f(H’, U) = 0 and hence that [/’ ® gy — is an
exact functor on U, O

2.3. Localising with respect to an exceptional module. Fix a hereditary algebra
H, and an indecomposable module M in mod H, with Ext}q (M, M) =0.

Lemma 2.5. Let M = add{M[i]}icz. Then M isa thick subcategory in DY (mod H).

Proof. Straightforward from the fact that any map between indecomposable objects
in M is either zero or an isomorphism. 0
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Let D = D?(mod H), let D 4 be the category obtained from &£ by localising
with respect to M, and let L 4 : D — D 4 be the localisation functor. Note that U
1s the full subcategory of mod H consisting of modules X with Homg (M, X[i]) = 0
forall z.

Theorem 2.6. Let H be a hereditary algebra with n simple modules up to isomor-
phism. Let M be an indecomposable H-module with Ext}q(M M) =0, and let M
denote the thick subcategory generated by M. Then D y is equivalent to the derived
category of a hereditary algebra with n — 1 simple modules (up to isomorphism).

To prove this we show that D 4 1s equivalent to the subcategory D¢ = add{X[i] €
D | X € U,1 € Z} of D, and that Dy is equivalent to the derived category of a
hereditary algebra with n — 1 simple modules. This is the content of the following
three propositions. We usually denote the object L 4 (X) by X.

Proposition 2.7. In the setting of Theorem 2.6, the localisation functor L y induces
an equivalence Doy — D .

Proof. Tirst note that by Proposition 2.2 we have that L 4 : Do — Dy 1s fully
faithful. Any object in D 4 is of the form L 4 (X) for some object X in D. Let X
be an arbitrary object in D 4 (where X is in D). Then consider the minimal right
M-approximation Mx — X, and the induced triangle My — X — Xo —. Itis
clear that X = X. We claim that Xg is in Dg, that is Homgp (M, X¢[i]) = Oforall ;.
To see this, consider the long exact sequence obtained by applying Homgp (M, )
to the triangle My — X — Xo —. For any i, the map Homgp (M, Mx[i]) —
Homgp (M, X[i]) is an epimorphism, since My — X is a right M-approximation.
The map 18 injective since any element in Homgp (M, Mx([i]) is either zero or an
1somorphism. Thus, X¢ 1s in Dg. This completes the proof that L 4 induces an
equivalence Dg — D 4. O

The next result 1s an extension of Proposition 2.3 to the setting of derived cate-
gories.

Proposition 2.8. In the setting of Theorem 2.6, assume M is non-projective. Let E
be the Bongartz-complement of M, and let H' = Endy(E)°?. Then RHom(E, )
induces an equivalence Do — D' = D’ (mod H').

Proof. Recall that U C M+ = (M 1 E)l. This implies that for X € U, we have
that RHom(F, X) 1s concentrated in degree zero with zero-term Homy (E, X). Since
Homyg (E, ) is a dense functor from U to mod H’, and RHom(F, ) commutes with
[1], it follows that RHom( £, ) restricted to D¢ is dense.
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Assume X, Y are indecomposable objects in the same degree in Dg. By the above
it now follows directly from Proposition 2.3 that

Homgp (X, Y) >~ Hom g (RHom(Z, X), RHom(E, Y)).
We also need to show that
Homyp (X, Y[1]) = Hom o (RHom(E, X), RHom(E, Y[1])).
For this note that by Proposition 2.3, the equivalence Homg (£, ): U — mod H’ is
exact, and that the embedding U — mod H is exact. This implies that
Homp (X, Y[1]) = Homqy,; (X, Y[1])
~ Hom g (Homy (E, X), Homg(E, Y)[1])
~ Hom g/ (RHom(E, X), RHom(E, Y)[1])
~ Hom g (RHom(FE, X), RHom(E, Y[1])).

Thus the restriction of RHom(Z, ) to Dy is fully faithful. This completes the proof.
g

Proposition 2.9. In the setting of Theorem 2.6, assume M is projective. Assume
M >~ Heys for the primitive idempotent eps in H and let H' = H/Hepy H. Then
L(H' ®p —) induces an equivalence Do — D’ = D”(mod H).

Proof. First recall from Lemma 2.4 that Torfl (H',U) = 0 for any U in U. This
means that the image L(H’' ®y U) is just H' ® U concentrated in degree 0.
It now follows that L.(H’ ® gy —) restricted to Dy is dense, by using that the functor
H ®py —: U — mod H' is dense and that L(H’ ® y —) commutes with [1].
Assume X, Y are indecomposable objects in the same degree in Dg. It follows
from Lemma 2.4 that

Homgp(X,Y) >~ Hom@f(]L(H’ @ X).LIH @y ¥)).
We need also to show that
Homgp (X, Y[1]) ~ Hom@/(]L(H’ g X)), L(H @y Y[1]).

For this recall that the embedding of U into mod H is exact, and that H' ®p — is
exact on U by Lemma 2.4. Thus it follows that:

Homgp (X, Y[1]) =~ Homqy,; (X, Y[1])
~ Homgp (H' @p X, H @y Y[1])
~ Homp (L(H' @y X), L(H" @y Y)[1])
~ Homp (L(H @y X), L(H @5 Y[1])).
This shows that the functor is fully faithful and finishes the proof. O
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For the remainder of this section, we view the induced equivalence between D
and D’ as an identification.

2.4. The factor construction. As before, let M be an indecomposable H-module
with Ext}q (M, M) = 0, where H is hereditary, and let £ be the Bongartz complement

of M. We investigate the image of an arbitrary complement T of M under the functor
L 4. TFor an object X 1n D, we use the notation X = L 4 (X), as before. Note that

Ly(T) =Ly(T)=T,whereT =TL M.

Lemma 2.10. Let the notation be as above.
(@) La(T) =T isinmod H' v H'[1].
(b) Hom @/(T T ) =0.

Proof. (a)Let f: M’ — T be a minimal right M-approximation, and consider the
induced triangle:

Mt 5T L s )

in . Since Homgp(M[—1], T) = 0, we have that M’ is in add M. It is clear that
T ~ ﬁ} Now, as in the proof of Proposition 2.7, we get that Uy 1s in &Dg. Here it
is clear that UT = U1 I U3[1], where Uy = Coker f and Uy = Kerf arein U. It
is clear that U1 and Uz are H’-modules. We only need to show that U2 is projective.
For an arbitrary U in U, we have that EX’[}{(UQ, U) = 0, since Extl gM,U) =0
and U3 is a submodule of M’. Using that U is an exact subcategory of mod 1, and
that the equivalence U — mod H’ is also exact, it follows that U, is projective in
mod H’. Hence T ~ lff} is in mod H’ v H'[1].
(b) Using again the triangle (1) we obtain the long exact sequence

Homp(T, T[1]) = Homg (T, Ur[1]) — Homgp (T, M'[2]).

Therefore, Hom@(T Ur(l]) = 0. Now, by Proposition 2.2, it follows that

Hom@f(T UT [1]) = O since Ur[1] is in Doy, and hence Homd@/(T T [1]) = 0.
O

Denote as before by F' the functor 1] D — D. When it is not clear which
derived category & we are dealing with, we will denote this functor by Fp and the
functor t=! by 5.

Lemma 2.11. Let H be a hereditary algebra, and let X be an object in D such that
Xisinmod H v H[1]. Then Homyg (X, X[1]) = 0 if and only ifExt}gH(X, X)=0.



Vol. 83 (2008) Cluster mutation via quiver representations 155

Proof. Assume X isin mod H v I [1] and let X be the image of X in the cluster
category Cp of H. Then Ext@(X X) ~ Homqp (X, X[1]) I D Homgp (X, X[1]).
This follows from Homgp (X, F~'X[1]) = Homyp (X, tX) ~ DHomgp(X, X[1])
and the easily checked fact that Homg (X, F'X[1]) = 0, whenever i g {—1,0}.

O

Combining these lemmas, and using that a tilting H-module induces a tilting
object in the cluster category [BMRRT, 3.3], we obtain the following.

Proposition 2.12. Let T = M 1 T be a tilting H-module as before. Then the image
T of T in the cluster category Cp is a tilting object.

Proof. By Lemmas 2.10 and 2.11 we have that Ext}gH/(T, /T\) = 0, and that 7 is in

mod H’ v H'[1]. It follows from Lemma 2.1 that 7}, is non-zero when 77, is a direct
summand in 7', Thus, it suffices to show the followmg For two indecomposable non-
isomorphic dlrect summands T, and 7T} of T, we have T * Tb We first show that for
any map «: T — Tb, thereis amap B: T, — T such that L 4 (8) = ,8 = «. Maps
in O’ from T, to T}, can be viewed as certain equivalence classes of pairs (¢, ¢2) of
maps in &, where X is some objectin D, the map ¢y : X — T} is a map, which when
completedtoatriaggleX — T, > M —-inD,hasM inM,andwy: X — Tpisa
map in P. Since M = 0, we can assume that M does not occur as a direct summand
of X. Hence, M’ must be in add M, since Homgp (7,,, M[1]) = 0. Then there is an
exact sequence Homp (15, 7)) — Homgp (X, 1) — Homgp(M’, Tp[1]) = 0. Thus,
there is some B: T, — Tp such that @y = B o «q. It is casily seen that the map in
D’, represented by the pair (idr,, 8) is equivalent to (o1, z). But the pair (idz,, )
represents 5 , by the definition of the localisation functor, and we have ,5 =14

Now assume f is an isomorphism. Then the corresponding triangle 7, — 1}, —
M"” — in D has M” in M. It is clear that M” actually is in add M, since otherwise
some M[i] would be a direct summand of 7,. This means that M” = 0, since
Homgp (M, T;[1]) = 0. Hence f 1s an isomorphism. O

We can now complete the main result of this section. Let e be the idempotent
in " = Ende(T)°P, such that I'e >~ Home (T, M).

Theorem 2.13. With the above notation, there is a natural isomorphism I/ Tel’ >~
Ende,, (7).

The remainder of this section will be devoted to proving this theorem. Since the

cluster category is defined using the functor F = v~ ![1], we need to compare t 051 (X)

and t ,X for an indecomposable object X in D. In general rD,DlX of D@,IX but with
extra COIIdlthIlS on X, sufficient for our purposes, everything behaves nicely. We



156 A. B. Buan, Robert J. Marsh and I. Reiten CMH

do not include our proof of the next lemma, since it has been generalised by Keller,
with a simpler proof [K]. Note that the existence of minimal left almost split maps is
equivalent to the existence of a left Serre functor G by [RV], and that G = ¢ —1-11.

Lemma 2.14. Let X be an indecomposable object in Dy C D. Then X is indecom-

— e

posable and réng % rég,l)?.

Let 7 be an indecomposable direct summand in 7', not isomorphic to M. Let
M, — T, be a minimal right add M-approximation, and consider as before the
induced triangle

My —->T, - U, —

in O, where we know that Uy is in D¢ by the proof of Proposition 2.7. Thus, by
applying the above lemma to each of the indecomposable direct summands of U,

we obtain ti_)lUx o~ rég,lﬁ;, and thus FpU, ~ F@:ﬁ;. It is also clear that ﬁ; o~ T;
Now, pick two (not necessarily different) indecomposable direct summands 7,
and Tj, of T. Construct the triangle

My — Ty — Up —,
as above, and apply F to it, to obtain the triangle
My — Ty — FU, — .
Apply Homp (T,, ) to this triangle, to obtain the long exact sequence

Hom o (T,, FM,) — Homyp (T,, F1j)

2
— Homyp (1, FUp) — Homyp (T,, FMp[1]). )

The last term vanishes, since 7, and M}, are modules. Since M — T} is a minimal
right add M -approximation, it follows that M, — F1} is a minimal right add /' M -
approximation. We have that Hom g (7, F'Up) >~ Homyp (1, FTy,)/(FM), where
for an object Z we use the notation Hom (X, Y)/(Z) to denote the Hom-space modulo
maps factoring through an object in add Z.

We claim there is an exact sequence

Homyp (T, FMp)/(M) — Homg (Ta, F1p) /(M) — Homgp (1o, FUp) /(M) — 0

induced from the exact sequence (2). For this it is sufficient to show that the kernel of
the second map is contained in the image of the first. Solete € Homg (T, F'T;,)/(M),
and assume there is a commutative diagram

T, — 2~ FT, — = FU,

NS
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for some M’ in add M. Since Homgp (M, FM,[1]) = 0O, there is pr: M' — FTj,

such that M’ 53 FT, > FU, = M’ — FUy. Tn Homp (T, FTy)/(M) we have
a = o — ff1. By using the long exact sequence (2), we obtain that « = o« — 261
factors through M, — FT;, so the sequence is exact. It follows from this that
Homgq (T, FTp)/(M U FM) ~ Homg(T,, FU)/(M).

Let f: My — FU, be a minimal right M-approximation, and complete to a

triangle M, —f> FUp, — (FUp)'. Applying Homp (T, ), we get an exact sequence
Homp (7, M1) — Homgp (1, FUp) — Homp (T, (FUp)") — Homp (T, My[1]).

Since Uy, 1s in degree O or 1, then FUp, is in degree 1,2 or 3, so M7 is indegree 0, 1, 2
or 3. Hence the indecomposable direct summands of M1[1] are in degree at least 1,
sothat Homgp (1,, M1[1]) = 0. Sinceamap h: 1, — F U} factors through an object
in M if and only if it factors through the minimal right M-approximation of F'Up,
we get the isomorphism

Homp (1, FpUp)/(M) = Homp (1, (FpUp)").

We get that this 1s isomorphic to Hom@/(]z, E)\-U;), since (FpUy) is in Dg. By
Lemma 2.14 this is isomorphic to Hom o/ (1, Fp/15). We thus obtain that

Homp (T FpTp)/(M U FM) =~ Homg (Ty. FrTp).

We have Homgp (1, T3) /(M U FM) >~ Homgp (T, T5) /(M ). Consider again the

triangle M;, ﬂi T, — Up in D, where f;,: My, — 1, is a minimal right M-approxi-
mation. Applying Homgp (7, ) gives an exact sequence

Homg (1,, My) — Homg (T}, 1) — Homp (T, Up) — Homgp (T, Mp[1]).

Since M, is a module, we have Homgp(71,, Mp[l]) = O, and hence
Homgp (1,, T3) /(M) =~ Homgp (T,, Up), which is isomorphic to Hom@/(Ta, Ub) by
Proposition 2.2. We obtain that:

Homp (T, 7)/(M 1 F M) ~ Hom 5, (T, 1)

Hencel'/T'el” = Homg (T, T)UHomp (T, FT)/(MUFM) ~ HomD@f(T T)LI
Hom 4 (T F c@/T ) as vector spaces. It is straightforward to check that the map is also
a ring map. Theorem 2.13 1s proved.

2.5. Comparison with tilted algebras. We give an example showing that a result
similar to Theorem 2.13 does not hold for tilted algebras. We would like to thank
Dieter Happel for providing us with this example. There is a tilting module for
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the path algebra of a Dynkin quiver of type Ds, such that the corresponding tilted

algebra A has the quiver
3
V X
1——2 5
4

with relations o = By — 3¢ = 0. If we let e4 be the primitive idempotent cor-
responding to vertex 4, then A/AeqA 1is not tilted, since it has global dimension
three.

It is well known that the endomorphism-ring of a partial tilting module is a tilted
algebra. However, a similar result does not hold for cluster-tilted algebras. An
example of this is the path algebra of an oriented 4-cycle, modulo the cube of its
radical. This is a cluster-tilted algebra of type Dj.

3. Cluster-tilted algebras of rank at most 2

In this section we apply the main result of the previous section to show that (oriented)
cycles in the quiver of a cluster-tilted algebra have length at least three. For the rest
of the paper, the field K is assumed to be algebraically closed. Let 77 U7, 10-- - I T,
be a tilting object in the cluster category €. We denote by 8;(7T') the tilting object
T’ obtained by exchanging 7} with the second complement of 77 1T - I T3 _; 11
Trpg - UT,. LetI’ = Ende (1) and IV = Ende (T7)°P be the corresponding
cluster-tilted algebras. Passing from I to I/ depends on the choice of tilting object 7.
But we still write gk(F) = 1", when either it is clear from the context which tilting
object T' gives rise to I', or when this is irrelevant. We also say that I/ is obtained
from 1" by mutation at .

From [BMRRT] we know that all tilting objects in Cy can be obtained from
performing a finite number of operations 8, to H, where H is the hereditary algebra
considered as a tilting object in Cz.

If £ is a source or a sink in the quiver of a hereditary algebra, then mutation
at k coincides with so-called APR-tilting [APR] (see [BMR]), and the quiver of the

mutated algebra 8 (/) is obtained by reversing all arrows ending or starting in k.
Lemma 3.1. The cluster-tilted algebras of rank at most 2 are hereditary.

Proof. This follows from the fact that any cluster-tilted algebra can be obtained by
starting with a hereditary algebra, and performing a finite number of mutations. If we
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start with a hereditary algebra H of rank at most 2, the algebra obtained by mutating
at one of the vertices is isomorphic to H. O

Proposition 3.2. The quiver of a cluster-tilted algebra has no loops and no cycles of
length 2.

Proof. This follows directly from combining Lemma 3.1 with Theorem 2.13. O

Note that the assertion of no loops was proven in [BMRRT, Cor. 6.15], while the
second assertion was first proven by Gordana Todorov in case of finite representation

type.

4. Cluster-tilted algebras of rank 3

In this section we specialize (o connected hereditary algebras of rank 3, and the cluster-
tilted algebras obtained from them. We describe the possible quivers, and give some
information on the relation-spaces. Later, this will be used to show our main result
for algebras of rank 3. In the proof of our main theorem, we use Theorem 2.13 to
reduce to the case of rank 3. For hereditary algebras of finite representation type,
there 1s up to derived equivalence only one connected algebra of rank 3, and thus up to
equivalence only one cluster category €. In this case the technically involved results
of this section reduce to just checking one case: The only cluster-tilted algebra of
rank 3 which is not hereditary is given by a quiver which is a cycle of length 3, and
with the relations that the composition of any two arrows 1 zero.

4.1. The quivers. We consider quivers of the form

o

wherer > 0, s > OQand ¢ > 0 denote the number of arrows as indicated in the above
figure. For short, we denote such a quiver by Q.

Up to derived equivalence, all connected finite dimensional hereditary algebras
of rank 3 have a quiver given as above. We first note that factors of path-algebras
of such quivers by non-zero admissible ideals are never cluster-tilted. We omit our
original proof of this fact since it is a consequence of the more general (recently
proven) fact from [KR] that any cluster-tilted algebra is either hereditary or of infinite
global dimension. Hence, since Q,; has no oriented cycles, it follows that if 1t 1s the
quiver of a cluster-tilted algebra, there can be no proper relations. So we have the
following.
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Lemma 4.1. If I is a cluster-tilted algebra with gquiver of tvpe Q,g, then I' is
hereditary.

This has the following consequence.

Corollary 4.2. The quiver of a non-hereditary connected cluster-tilted algebra of

rank 3 is of the form
t
1 : 3
2

Proof. Combine Lemma 4.1 with Proposition 3.2, O

withr,s,t > 0.

In view of this we refer to the cluster-tilted algebras of rank 3 which are non-
hereditary as cyclic cluster-tilted algebras.

4.2. The relations. We first show that relations are homogeneous.

Proposition 4.3. Let I" be a cluster-tilted algebra of rank 3 with Jacobson radical r.

Then r® = 0, and the relations are homogeneous.

Proof. Without loss of generality we can assume that there is a tilting module T =
X I Y I Z for a hereditary algebra f1, such that I' = Ende,, (T)°F.

Using Corollary 4.2 1t is clear that we can assume that the quiver of I" has the
form

t
1 : 3
X,
withr, s, 1t > 0.

Let A = End g (T)°P be the corresponding tilted algebra. There are no cyclesin the
quiver of a tilted algebra. We can therefore assume that there is a sink in the quiver of
A, and we assume that this vertex corresponds to Z, that1s, Homg(Z, X 1Y) = 0.
We assume that X, ¥, Z correspond to the vertices 1, 2, 3, respectively. If hisa
non-zero map in Irr,gq 7(Z, X), it must be of degree 1, that is, the lifting £ is in
Homgp (Z, FX). Since this holds for all maps in Irraqq 7(Z, X), any composition
of 6 arrows will correspond to a map of degree > 2 from an indecomposable to
itself, and therefore must be the zero-map. This follows from the fact that for any
indecomposable module M, we have Homp (M, F>M) = 0. This gives r® = 0.
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We can assume that at least one of the arrows (irreducible maps) X — Y and at
least one of the arrows ¥ — Z are of degree (). Otherwise, the tilted algebra A would
not be connected.

Now let ¢ be a map in Irrgq 7 (Y, Z). We want to show that it must be of de-
gree (0. Since X LI Y 1s an almost complete tilting object in C g, there are exactly two
complements. Denote as usual the second one by Z*. The complement Z* is either
the image of a module or the image of an object of the form /[—1] for an injective
indecomposable module /. Furthermore, there is a triangle in C

7" =>Y - 7 —, (3)

for some s > 0, which can be lifted to a triangle

oy
ol (3%) YSU(FlY)y2 - Z —
in O for some integer ¢ and with s = 51 + s2. We need to show that sp = 0. It is
sufficient to show that the map «p = 0. We have 51 # 0, and thus by minimality
a1 £ 0. Itis clear that if also wr # O, theni =0ori = —1.
Assume first Z* >~ [[—1], then

Homg(I[—1], F~'Y) = Homp (I, t¥) = 0,

soi =0 gives ap = 0. On the other hand, it is clear that i = —1 gives o = 0.
Assume now that Z* is the image of a module. Then there is an exact sequence
of modules
0=>72">Y' - Z >0,

and since dimy Home(Z, Z*[1]) = 1 (by [BMRRTY), it follows that the triangle (3)
is induced by this sequence, and thus s1 = v and s = 0.

Now we show that all the irreducible maps X — Y in Cg are of degree 0. For
this, consider the almost complete tilting object X LI Z in Cg, with complements Y
and Y*. Consider the triangle

YV* > X" - Y —,
and the preimage in D,

B1

Fiys 2

XTU(FIX)? > Y .

We need to show that r; = (). The case where Y* ~ I[—1] is completely similar
as for irreducible maps Y — Z. In case Y™ is the image of a module, it is now more
complicated since we have two possibilities. Either there 1s an exact sequence in
mod H of the form

0-Y" > X>Y =0,
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or there is an exact sequence of the form
0—=Y =272 - v* >0

If we are in the first case, we can use the same argument as for irreducible maps
Y — Z. If we are in the second case, note that Homg(Y*, X) = 0, since
Homg (Z, X) = 0. Thus, either g1 = 0 or g2 = 0 in our triangle. This com-
pletes the proof that all irreducible maps X — Y are induced by module maps, and
thus are of degree 0.

Given that r® = 0, the only possibility for a non-homogeneous relation must
involve maps in r2 \ r> and maps in r’. But, by our description of irreducible maps,
this is not possible, because it would involve a relation between maps of ditferent
degrees. O

Fix a cyclic cluster-tilted algebra of rank 3, and fix a vertex k. Let « be an arrow
ending in k, and p an arrow starting in k. If B« = 0, as an element of the algebra,

for any choice of « and £, then we call k a zero vertex.

Proposition 4.4. Ler I" be a cyclic cluster-tilted algebra, and fix a vertex k. Then k
is a zero-vertex if and only if 8; (1) is hereditary.

Proof. We assume the quiver of I" is

7

Let I' = Ende(T)P, and let T; be the direct summand of T corresponding to the
vertex i. Assume that 2 is a zero-vertex. Then it is clear that Home (77, 73) = 0, so
the quiver of >(1") must be

t/

S

with t > 0. Now 8,(T") is hereditary, by Lemma 4.1.

Conversely, assume Si(I) is hereditary. The quiver of 8x(I") must be as above,
with #/ > 0. This means Home (77, 73) = 0, so 2 is a zero-vertex. O
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4.3. Kerner’s Theorem. The following result by Kerner [Ke] turns out to be crucial
for the proof of the main theorem of this section. There is a more general version
of this theorem in [Ke]. We include a proof, for the convenience of the reader. This
proof is also due to Kerner, and we thank him for providing us with it.

Theorem 4.5. Let X, Y be regular indecomposable modules over a wild hereditary
algebra H of rank 3. If Hompy (X, t¥) = 0, then also Hompg (X, r_lY) = Q.

Proof. We first prove the following.

Lemma 4.6. Let U be an indecomposable regular module over a wild hereditary
algebra of rank 3. Then Homg (U, t2U) # 0.

Proof. Assume first that Ext},(U, U) # 0. Then also Homg (U, tU) # 0 by the
AR-formula. Assume now Hom g (U, t2U) = 0. Then also EXt}{(‘C U,U) =0and,
by the Happel-Ringel lemma [HR], a non-zero map f: U — t U is either surjective
or injective. In either case, g = t(f) o f: U — 72U is non-zero. This contradicts
Homg (U, t2U) = 0.

Now assume Ext}q(U , U) = 0. Then by [Ho], U is quasi-simple. Thus, there is
an almost split sequence 0 — tUU — V — U — 0, where V is indecomposable, and
by [Ke2] we have Endg (V) >~ K, while Ext}{(V, V) # 0. Applying Homg (U, ) to
the almost split sequence, we obtain the exact sequence

Hompg (U, tU) - Homg (U, V) - Homyg (U, U) — Ext}q(U, tl).

Since Homy (U, U) — Ext}{(U, tU) is an isomorphism and Homg (U, tU) = 0,
we have that also Homg (U, V) = 0. The long exact sequence obtained by applying
Homyg (, tU) to the almost split sequence, gives Homg(V, tU) = 0. Now, this
gives Homy (V, t2U7) # 0, since there is an exact sequence

0 — Homp(V, 72U) — Homp (V, V) — Hompg(V, tU)
and the last term is zero. There is also the long exact sequence
0 — Homp(U, t*U) — Homp(V, t2U) — Hompy (U, t*U)
where the last term is zero. This proves Hompg (U, 2U) £ 0. O

Letus now complete the proof of the theorem. Let X, ¥ beregular indecomposable
modules. It suffices to show that Homy (X, Y) # 0 implies Homy (X, 2Y) =5 ),
Letz: X — Y be a non-zero map. Then we can assume there is an indecomposable

regular module U, such that z factors as X LUSy , where p is surjective and i
is injective. Also t%i: U — 7?Y is injective. By Lemma 4.6, there is a non-zero
map f: U — t2U. The composition 72 o f o p is non-zero. This completes the
proof of the theorem. 0
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4.4. The dimensions of relation-spaces. Let H be a connected hereditary algebra
of rank 3. The following notation is used for the rest of this section. Let 7 be an almost
complete tilting object with complements M and M*, and assume there are triangles
asin Theorem 1.2. Let T =T U Mand 7' =T U M* and let T = Ende (T)°P and
I = Ende(17)°P. By now, we know that the quiver of I' is either

WV

with r, s, 1 > 0 or the quiver Q,

N

with ,s > Qand r > 0. We let M correspond to vertex 2. Then T = T I Ty
where T'g corresponds to the vertex 1 and Ty to 3. Itis then clear that B = (Tg)” and
B’ = (T'g:)*. We label the vertices with the corresponding modules, then the arrows
represent irreducible maps in add 7'.

We let I denote the ideal such that 1" ~ K Q/1. In case I is cyclic, we say that
1" is balanced at the vertex 2 if

dim((Iee(Tp, M) @ (M, Ty N 1) =1t.

We will show that any vertex of a cyclic cluster-tilted algebra is either balanced or a
zero-vertex. We first discuss the algebras obtained by mutating hereditary algebras.

Lemma 4.7. Let H be a hereditary algebra with quiver Qg where r,s > 0 and
t > 0. Then the following hold.

(a) The cluster-tilted algebra I = 8> (H) is balanced at the vertices 1 and 3.
(b) The new vertex 2* is a zero-vertex.
(¢} The quiver of I is
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Proof. Part (b) and (¢) follow directly from Lemma 4.1 and Proposition 4.4. Let P;
be the indecomposable projective H-module corresponding to vertex i, and S; the
simple H-module P;/r P;. Then Py = Sy is simple. Consider Py LI P3 as an almost
complete tilting object. There is an exact sequence

00— P2—>(P1)S—>P2*—>(),

such that the induced triangle in € is the exchange-triangle of Theorem 1.2, Let
T’ = Py I Py 11 P5. Using the definition of , one can show that S, = 7 P, and thus
Homp (Py, P3) = 0. Since 2* is a zero-vertex, lrrygq 7/(P1, P3) = Hompg (P, P3),
with dimension rs 4-t. We want to compute Irr,qq 7/ (P, P1) @ Ity 7 (P11, P3) =
Home (P, P3) =~ Homp (F~1P5, P3). We have

Hom@(F‘le*, P3) = Homp (t PS[—1], P3) = Ext}{(Sg, P3).
There is an exact sequence
0= (P) - Ph— S — 0.
Apply Homg (, P3) to it, to obtain the long exact sequence

0 — Homg(S,, P3) — Homy (Ps, P3)
— Homp ((P)’, P3) — Exty (S, P3) — 0.

Since dim Homg (P, P3) = s, and dim Homg ((P1)", P3) = (rs + t)r, it follows
that dim(Irrygq 7/ ( Py, P1) @ Iitgqa 7 (P1, P3)) = r(rs +t) — s, and therefore
dimIrtaqq 7/ (P5, P1) @k Ittaqa (P, P3) NI = s, and I is balanced at 3.

Now apply Homy (P1, ) to the exact sequence 0 — P, — (P3)° — P — 010
obtain the exact sequence

0 — Homy (P1, P») - Hompy (P1, P5) — Homy(P1, Py) — 0.
Since dim Homg (P, ) = r and dim Homg ( Py, P3S) = (rs +t)s, we have
dim(Irrogq 7/ (P1, P3) ®r Ittagq 77(P3, Py)) = dimHome (Py, PY) = (rs +t)s —r.

This means dim(Irrqq 7/ (P1, P3) ®x Ittaqa 7/ (P3, P) N 1) = r, and I'” is balanced
alsoat 1. O

Proposition 4.8. Let I" be a non-hereditary cluster-tilted algebra with quiver

7
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(@) If I is balanced at the vertex 2, then I = 5(I") is non-hereditary, and thus
cyelic, with quiver

5—

rs—t
1 3
It is balanced at the new vertex 2*. Each of the other vertices of I is either
balanced or a zero-veriex.

(b) If 1" has a zero-vertex at 2, then 8,(I") is hereditary with quiver
3
f

NV

Proof. Part (b) follows from Propositions 4.3 and 4 .4.
To prove part (a), we adopt our earlier notation and conventions. Especially,
I' = Ende(Tp U Tp I M)°P, and we have the quiver

rs
2*

t

B\\M /B,

The quiver of the mutated algebra So(I'Yy = Ende(Tg U Ty LI M*)OP is
Tg

\f;\\ //STB,

Using that I" is balanced at 2, and Proposition 4.3, it follows that 1" = rs — . Also by
assumption, M does not correspond to a zero-veriex, so there 1s at least one non-zero
composition I — M — Tp/. Therefore rs — ¢ > 0.

We have dim(Irtoqq 7 (T, M) @ Ittaqa 7/ (M*, Tg)) = dim Irtaqq 7 (T3, Tp) +
dim(Irraqq 7(Tp/, M)@rIttaqa 7 (M, Tg)) = 1+0. Hence dim(Irrogq 7 (T3, M*)®k
Irr g7 (M*, Tg) N I) = rs — 1,50 I'" is balanced at 2*.

We now proceed to show that for each of the vertices 1 and 3, I/ is either balanced,
or a zero-vertex. We assume 7'p is not a zero-vertex in I,

[/

M*
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The tilted algebra A = Endgy (T U Ty I M)°P has a unique sink. There is an
induced total ordering on the triple Ty, T, M, where the last element in the ordering
corresponds to the sink. Also, by considering the preimage of M* in the standard
domain of D, the ordering can be extended to the quadruple B’, M*, B, M. Note
that we get the following four possible orderings

- (Ma TBfa M*a TB))
- (TB/a M*a TBa M)a
- (M*s TBs Ma TB")&
— (Tp, M, Tp:, M*).

First we show the claim for the vertex corresponding to Tp.

Lemma 4.9, Assume that Ty does not correspond to a zero-vertex in U and that M*
is before Ty in the above ordering. Then Hom ¢ (T'g, My = 0.

Proof. Since 5, (I") is not hereditary, we have Homg (M™*, Tg) # 0. Assume now
that Homy (T, t—'M*) £ 0. Assume first that Tp is regular, then M* is also
regular. In case f1 is tame, then there are at most two exceptional modules which
are regular. This follows from the fact that [ has three simples. But in case there
are two exceptional modules which are regular, there is an extension between them.
This gives a contradiction. In case I 1s wild we can apply Kerner’s Theorem, which
says that Homy (Tp, tM™) # 0. We have a contradiction, since Hompy (g, tM*) =~
D Extl,(M*, Tp) = 0.

If B is a preprojective or a preinjective module, then Homg (M*, Tg) # 0 and
Homy (Tg, ~'M*) # 0 implies that the map M* — Tp isirreducible in the module-
category. Thus M* LI Ty can be complemented to a tilting module with hereditary
endomorphism ring. We have seen that the mutated algebra 8>(T") is by assumption
not hereditary, i.e., 75 must correspond to a zero-vertex, so we have a contradiction
to Homy (B, =1 M*) # 0 also for Ty being preprojective or preinjective. O

Now, let M — B’ — M* — be the usual triangle. We recall that 7 = T LI T/,
Let Hom(Tg, M) = Ittaqq 7(Tg, M), let Hom(Tg, B") = Irraddf(TB, By and let

I/-IT)?ﬁ(TB, M™*) = Irraqq 7/(Tp, M*). Then we claim that there is an exact sequence
0 — Hom(T, M) = Hom(Z. B') — Hom(Tg, M*) — 0. (4)
It is clear from Proposition 4.3, and the fact that
Homgp (T, M) — Homgp(Tg, B') — Homqp(Tp, M*) — 0

is exact, that we only need to show that the map « is a monomorphism. We first
assume M* is a module. To prove the claim for this case, we consider the four
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orderings on the quadruple {M, B’, M*, B}. For each case we show that a map in
Itt,qa 7 (T, M) cannot factor via M*[—1] in C.

(M, Tg, M*, Tg): 1In this case, a map in Irraqq (T, M) is of degree 1. Assume
the lifting is f: tTp[—1] — M. There is a non-split exact sequence 0 — M —
B’ — M* — 0. We have dim Home (M*, M[1]) = 1, by [BMRRT], and therefore
Homp (FM*, M[1]) = Homyp (v —'M*, M) = 0. Therefore, if /: Ty — M factors
through M*[—1] in C, there mustbe amap g: tTp[—1] — M in D, such that there
1s a commutative diagram

By Lemma 4.9, we have that Homg (t 75, M*) = Homygp (7}, t=IM*) = 0, and
thus we obtain f = 0,

(T, M*, Ty, M) or (M*, Ty, M, Tg/): In these cases, a map in Irryqq 7 (T, M) is
of degree 0. Assume the lifting of itis f: T — M. The preimage of M* in D is a
module in these cases, so a factorisation of f must be of the form

>

rTIMt— M.

Lemma 4.9 gives f = 0.

(Tp, M, Ty, M*): In this case the preimage of M™* in D is either a module or
P[1], for an indecomposable projective H-module P. In both cases, a map in
Irraga 7 (T, M) 1s a map of degree 0. Assume the lifting 1s f: Tp — M. In the
first case there is a non-split exact sequence 0 - M — B’ — M* — 0. There-
fore, since dim Home (M*, M[1]) = 1, we have Homgp(r ~'M*, M) = 0. Since
Homg (T, M*[—1]) = 0, we must have f = 0, if f factors as below

e
M*[—1] — M.
Assume M* ~ P[1], with P projective. If Homg(Tg, P) # 0, then Tp is also

projective. Therefore Hom gy (T, P[1]) = 0, and thus Home (T3, M™*) = 0, which
means that 7’5 is a zero-vertex in I'/, a contradiction. Then Hom 4 (T, P) = 0, but
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this means that f: Tp — M factors through M*[—1] >~ P only for f = 0. Thus,
the map « is a monomorphism, and the sequence (4) is exact.

Thus, dim Hom (75, M*) = dim Hom(Tg, B') — dim Hom(Tg, M) = t's — r.
This means that dim(Trrugq 7/(Ts, Tp) @k Irtgqa 7 (Tg, MY N 1) = r, so I is
balanced at the vertex 3, corresponding to Tpr.

We now show that 1" is balanced at the vertex 1, corresponding to 7z, or 1 is a
zero-verlex. Assume it 18 not a zero-vertex. We have the dual version of Lemma 4.9,

Lemma 4.10. Assume that Ty does not correspond to a zero-vertex and that M* is
before Ty in the above ordering. Then Homp (M*, tTg/) = Q.

Proof. Similar to the proof of Lemma 4.9. O
Now, consider the triangle
M*—B—-> M— .
We need to show that there 1s an exact sequence
0 — Hom(M, Tp) — Hom(B, Tg) — Hom(M*, Tp) — 0, (5)
where Hom(M, Tp:) = Ittaaa (M, T), while Hom(B, Tg) = Irr_,, =(B, Tg’) and

I/-IT)?n(M *, Tgr) = Irragq 7 (M™, Tgr). The proof of this is parallel to the proof for the
sequence (4), and therefore omitted. Using the exact sequence (5), one obtains that
I/ is balanced at the vertex 1. O

We summarise the results of this section.

Theorem 4.11. Let I" be a cluster-tilted algebra of rank 3.
(a) I is either hereditary, or it is cyclic.
(b) If I is cvclic, then each vertex of 1 is either balanced or a zero-vertex.
(¢} Letk beavertexof I', let 8 (1) be the mutation in direction k, and let k* be the
new vertex of 8i(I'). Then there are the following possible cases.
1. Both T and 8;(T") are hereditary.

IL I is hereditary, while 8;(I') is cyclic with a zero-vertex at k*,

IIL. T is cyclic with a zero-vertex at k, and 8;(") is hereditary, or

IV. T is cyelic and balanced at k, and 5¢(I') is cyclic and balanced at k*.

Proof. This follows directly from the previous results in this section, and the fact that
all cluster-tilted algebras can be obtained by starting with a hereditary algebra, and
then performing a finite number of mutations [BMRRT], [BMR]. O

The above theorem is very easily verified for algebras of finite type, as indicated
in the introduction of this section.
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5. Mutation

As mentioned in the introduction, in view of Proposition 3.2 it is possible to assign
to a cluster-tilted algebra I' a skew-symmetric matrix Xr = (x;;). More precisely, if
there is at least one arrow from / to j in the quiver of the endomorphism-algebra 1°,
let x;; be the number of arrows from : to j. If there are no arrows between ¢ and j,
let Xij = 0. Let Xij = —Xji otherwise.

Now let 7 be an almost complete tilting object in the cluster category € with
complements M and M*. Tet T =T U M,letT’ =T 11 M*, let I" = Ende (7)°P
and let I'" = Ende (T7)°P. Then we want to show that the quivers of I and ' are
related by the cluster-mutation formula. We use the results of Section 4 to show this
for cluster-tilted algebras of rank 3, and Theorem 2.13 to extend to the general case.
There 1s an independent proof of this for finite representation type in [CCS2].

Theorem 5.1. Let H be a hereditary algebra, and let T, M, M*,T and '’ be as
above. Then the quivers of I and I/, or equivalently the matrices Xr and X, are
related by the cluster mutation formula.

Proof. First, assume {1 has rank 3. In case f is not connected, the claim is easily

checked. Assume H is connected. Fix &, the vertex where we mutate. By Theo-

rem 1.2, itis clear that x, = —x;rfori = 1,2, 3, andthatx,’cj = —xpjforj=1,2,3.
Now assume i # k and j # k. By Theorem 4.11, there are four possible cases.

Case I: This happens if and only if k is a source or a sink. In this case it 1s clear that
either x;;z = 0orxy; = 0. Fori # kand j # k, 1t 1s clear that x;; = xi’j, since in this
case mutation at k is the same as so-called APR-tilting at &. Thus the formula holds.

Case II: Since k 1s now not a source or a sink, we can assume I is the path algebra of

7

where r > O and s > Oand ¢ > 0 and with k£ = 2. Then, by Lemma 4.7, the quiver
of 5(T") is

/

<




Vol. 83 (2008) Cluster mutation via quiver representations 171
witht' =rs+t. Sox;y =1 =rs 4+, and

|x12]x23 + x12]%23] rs +rs
2 it

X13 =14rs.

Case III: We assume that the quiver of I" 1s

<7

By Proposition 4.8, the quiver of I is

N

with 1" = — rs. That is x{; =t —rs, and

|x12]x23 JZrX12|x23| L |—r|(—s) er (=r)l—sl _ S

and the formula holds.
Case TV: We assume the quiver of I" is the same as in case ITT. Now the quiver of I is

/

7

where 1’ =rs —¢. Thatis x|y = —t' =1 — rs, while

lx12]x23 + x12]x23] |—r|[(—s) + (—7)|—s5]
2 =it 2

= F— s,

thus the formula holds true also in this case.

Now, assume that /7 has arbitrary rank. Fix k, the vertex where we mutate. By
Theorem 1.2, it is clear that x;, = —x;; for any value of i, and that x,’cj = —xy; for
any value of j. Assume now that k # 1 and k # j. Lel ¢;, e;, e, be the primitive
idempotents in I' corresponding to the vertices i, j, k of the quiver of I'. Assume
Ip = f+e +e +e. andlet 'y = I'/TfT. Let e, ¢j, ¢f be the primitive
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idempotents corresponding to the vertices i, j, k* of the quiver of I/, Assume 1 =
f' e +ej+epr.andlet I ; =T/ TV fT. Tt is clear that the number of arrows
from i to j in the quiver of I'req 18 x;; and the number of arrows from : to j i the
quiver of I'|_y is x/;. So, by the first part of the proof, x;; and x;; are related by the
matrix mutation formula. U

There are some nice direct consequences of this. For the first one, one uses in
addition to Theorem 5.1 that the tilting graph (see [BMRRT, Section 3]) is connected,
[BMRRT, Prop. 3.5].

Corollary 5.2. Let Q be a finite quiver with no oriented cycles. Then a quiver Q'
can be obtained from Q by repeated mutation if and only if Q' is the quiver of a
cluster-tilted algebra Ende (T)F for some tilting object T in C = Ck .

We thank A. Seven for pointing out to us the following direct consequence of
Theorem 2.13, and Corollary 5.2.

Corollary 5.3. Let Q be a quiver which can be obtained by repeated mutation from
an acyclic quiver. Then all full subquivers of Q have the same property.

6. Connections to cluster algebras

Our main motivation for studying matrix mutation for quivers/matrices associated
with tilting objects in cluster categories is the connection to cluster algebras. In this
section we explain how Theorem 5.1 gives such a connection. In order to formulate
our result we first need to give a short introduction to a special type of cluster algebras
[FZ1], relevant to our setting [BFZ]. See also [FZ2] for an overview of the theory of
cluster algebras.

Let # = Q(uy,...,u,) be the field of rational functions in indeterminates
"i, ..., ug,letx ={x1, ..., x,} C F beatranscendence basis over Q,and B = (b;;)
an n x n skew-symmetric integer matrix. A pair (x, B) is called a seed. The cluster
algebra associated to the seed (x, B) is by definition a certain subring 4 (x, B) of
as we shall describe. Given such a seed (x, B) and some i, with 1 <1 < n, define a
new element of x| of ¥ by

Eax, = l_[ xPit 1_[ x Vi,
j;bﬁ>0 j;bﬁ<0

We say that x;, x] form an exchange pair. We obtain a new transcendence basis
x' = {x1, ..., 6, U{x/}\ {x;} of F. Then define a new matrix B’ = (bgj) associated
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with B by

ij — bik|brj+big|brj |

, b ; itk=iork=j,
bij + 5 otherwise.

The pair (x’, B') is called the mutation of the seed (x, B) in direction i, written
wilx, B) = (x/, B’). Let 4 be the set of seeds obtained by iterated mutations of
(x, B) (in all possible directions). The set of cluster variables 1s by definition the
union of all transcendence bases appearing in all the seeds in 4, and the cluster algebra
A(x, B) is the subring of # generated by the cluster variables. The transcendence
bases appearing in the sceds are called clusters.

As mentioned earlier, there is a 1-1 correspondence between finite quivers with
no loops and no oriented cycle of length two and skew-symimetric integer matrices
(up to reordering the columns). The vertices of the quiver of a matrix B = (b;;)
are 1, ..., n, and there are b;; arrows from ¢ to j if b;; > 0. The cluster algebra is
said to be acyclic if there is some seed where the quiver associated with the matrix
has no oriented cycles [BFZ]. We take the corresponding seed as an initial seed. In
this case, let If = K Q be the hereditary path algebra associated with an initial seed
(x, B). Let € = Cg be the corresponding cluster category, and let 7' be a tilting
object in €. Similar to the above we can associate with T a tilting seed (T, Or),
where Q7 is the quiver of the endomorphism algebra Ende (T)P. Let 11, ..., T, be
the non-isomorphic indecomposable direct summands of 7'. Fix k, and let as before
6x(T) = T’ be the tilting object of € obtained by exchanging 7} with 77" (using our
earlier notation from Theorem 1.2). Define mutation of (T, () in direction k (o be
given by 8¢(7, Q) = (I", Q).

We now want to associate tilting seeds with seeds for acyclic cluster algebras. We
first associate (H[1], Qp) with a fixed initial seed (x, B), where @ is the quiver for B
and H = K Q. Let (x/, B") be some seed. We then have (x’, B") = g, ... piy (x, B)
for some ordered sequence (kq, ..., k). There are in general several such sequences,
and we choose one of minimal length. Associated with (x, B) is the sequence of
length O, that is the empty set . We define «((x, B),¥) = (H[1], Oy), and
a((x', B'), (ky,.... ki) = 8k, ... 0, (HI1], Q) = (T, Q7). Fix an ordering on
the cluster variables in the cluster x = {x1, ..., x,} of the chosen initial seed and
choose a corresponding indexing for the H; in H = Hy 11 --- 1 H,, so that we have
a correspondence between x; and f;. This induces a correspondence between the
cluster variables x/ in the cluster x” and the indecomposable direct summands 77/
in 7’, which we also denote by «. We do not know in general if the definition of «
only depends on the seed (x’, B).

We can now formulate the connection between cluster algebras and tilting in
cluster categories implied by our main result.

Theorem 6.1. Let the notation be as above, with (x, B) an initial seed for an acyclic
cluster algebra, and (T', Q1) a tilting seed corresponding to a seed (x', B"), via
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the correspondence «, inducing a correspondence x; < T/ for x] € x" and T! an
indecomposable direct summand of T'.

(a) Forany k € {1, ..., n} we have a commutative diagram

(', Bkt o k) ——=(T", Qp)

S

((x”, B")(k1, ..., ke, k) === (T"”, Qr»)

where x" is the cluster obtained from x' by replacing x; € x' by x/, and T" is
the tilting object in C obtained by exchanging the indecomposable summand T},
by T where T' = T U T, and T" = T U T} are non-isomorphic tilting objects.

(b) Identifying x, with T} and x;/ with T], the multiplication rule for x;x; is given
by
Ly =T lape +TlaHe

where a; and c; are determined by the minimal respectively right and lefr add r-
approximations U(T))% — T/ and T} — T(T/)*.

Proof. (a): This follows by induction, using Theorem 5.1, where 8; is interpreted as
given by a mutation rule like z.

(b) Let T} be the direct summand of 7" corresponding to x;. By (a), Q7 is the
quiver of B’, and the monomials M and M; are given by the entries of the matrix B’,
hence by the arrows in the quiver Q7-. In particular, the arrows entering and leaving &,
are given by the minimal right and minimal left add 7 -approximations of i O

Note that with the appropriate formulation, this solves Conjecture 9.3 in [BMRRT].

For algebras of finite type we know from [BMRRT] that the map « gives a one-one
correspondence between the seeds and tilting seeds, in particular it does not depend
on the ¢-tuple (iq, ..., i;). Infact, we have in this case a 1-1 correspondence between
cluster variables and indecomposable objects of C, inducing a 1-1 correspondence
between clusters and tilting objects.

Two cluster variables x; and x;" are said to form an exchange pair if there are n — 1
cluster variables {y1, ..., y,—1} such that {xz, y1, ..., yo—1} and {x}, y1, ..., ya—1}
are clusters. Similarly we have exchange pairs with respect to tilting objects. If «
identifies x; and x; with 7} and 177, respectively, we then have the following.

Theorem 6.2. For a cluster algebra of finite type, let « be the above correspondence
between seeds and tilting seeds, and between cluster variables and indecomposable
objects in the cluster category.
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(@) Forany k € {1, ..., n} we have a commutative diagram

(x', By —=(T', Q7)
Mkl 5]{1
", B"Yy —=(T", Q).

(b) Identify the cluster variables with the indecomposable objects in C via «. We
have

Tka* _ l_[(Tj)aj 4 l_[(Tl*)cz

Jor an exchange pair Ty and T where the a; and ¢; appear in the unique non-split

triangles '
1 — H]}a" — T —,
and
T — HTlcl - T —
in C.
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