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Stability of isometric maps in the Heisenberg group

Nicola Arcozzi* and Daniele Morbidelli

To the memory of Juha Heinonen

Abstract. In this paper we prove approximation results for bilLipschitz maps in the Heisenberg
group. Namely, we show that a bilLipschitz map with bilipschitz constant close to one can
be pointwise approximated, quantitatively in any fixed ball, by an isometry. This leads to
an approximation in BMO norm for the map’s Pansu derivative. We also prove that a global
quasigeodesic can be approximated by a geodesic on any fixed segment.

Mathematics Subject Classification (2000). 22E30, 53C17, 58F10.

Keywords. Heisenberg group, subRiemannian geometry, bil.ipschitz maps.

1. Introduction

In 1961 Fritz John proved the following stability estimates. Let f: R* — R" be a
biLipschitz map such that f(0) = O and the Lipschitz constant of f and f —1 s less
than 1 4 &, where ¢ > 01is small. Then for any ball B = B(0, R), thereis T € O(n)
such that

|f(x) —Tx| <C,eR forallx € B (1.1)
and

1 ‘ /
m[B |f/(x) = Tldx < Cle. (1.2)

Here C, and C] are dimensional constants, f’ is the differential of f and £ denotes
the Lebesgue measure. Estimates (1.1) and (1.2) and their improvements are object
of considerable interest in geometric function theory and nonlinear elasticity; see for
example [Ko], [R], [FIM], [GM], [ATV], [Ma], [CFM].

In this article we study approximation results extending (1.1) and (1.2) from
Euclidean space to the Heisenberg group H = {(z; t) € C x R} equipped with its Lie
group structure and its control distance 4. See Section 2 for all the background.

*Partially supported by the COFIN project “Harmonic Analysis”, funded by the Italian Minister of Research.
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The first issue is to establish what the correct extensions are. It is well known that
an isometry 7' : T — H which fixes the origin has the form (z; ) — (Az; (det A)t)
where A € O(2). Morcover, a notion of differentiability for maps in the Heisenberg
group has been introduced by Pansu [P3] and the Pansu differential can be identified
with a 2 x 2 matrix. Therefore it is reasonable to guess that the extensions of (1.1)
and (1.2) have the form

d(f(z; t), (Az, (det A)t) < C(g)R forall (z;1) € B(O, R) (1.3)

and
1

LB, R)) Jpo,r)

Here f is a (1 + ¢)-biLipschitz map from H onto itself fixing the origin and once
R > 0 1s chosen, there s A € O(2) such that both esumates hold. Jf is the
Jacobian of f in the sense of Pansu, see Section 2. 4 is the control distance and
BO,R) = {(z;t) e H : d((0;0), (z;)) < R}. Lebesgue measure £ 18 the Haar
measure of H.

The main goal of our paper is to prove both (1.3) and (1.4), with a quantitative
estimate on the constant C(e) and C’(g). A gualitative version of the first inequality
(1.3) can rather easily be obtained by Arzela’s Theorem, but it does not give any
estimate of the rate of convergence to 0 of C(g). Our search for quantitative estimates
for C(e)and C’(¢),as e — Oinvolves the understanding of a number of fine properties
of the Carnot—Carath¢odory distance in H which may have some independent interest
in subRiemannian geometry.

John’s proof of (1.1), see [J, Lemma IV and Theorem 3], is rather elementary,
but it heavily relies on the Euclidean structure on R”, in particular on the isotropic
nature of its geometry. Due to the non isotropic structure of the Heisenberg group, the
proof of (1.3) cannot be obtained so easily. In order to get estimate (1.3), we examine
the behaviour under biLipschitz maps of different subsets of I and in so doing we
consider H as a metri¢ space, making very little use of its differential structure. The
geometry of subsets of the Heisenberg group and more generally of Carnot groups is
very rich and intricate and it has been object of many recent papers. See for instance
[G], [FSSC], [BHT], [BRSC], [Bal, [AF], just to quote a few.

We shall make a substantial use of the explicit form of the geodesics for the
metric d; see Section 2. Although their equations are known, they are not easy to
handle, and this introduces several new difficulties with respect to the Euclidean
situation. Geodesics in the Heisenberg group have been recently used by several
authors, in order to discuss a number of different properties of H with its control
distance. See for instance Gaveau [Gav], Koranyi [Kor], Monti and Serra Cassano
[MSC], Ambrosio and Rigot [AR], Arcozzi and Ferrari [AF].

The first result we prove concerns the behaviour of Heisenberg quasigeodesics.
Quasigeodesics are especially studied in hyperbolic spaces (see, e.g. [GH], [Bo]). It

|Jf(z; 1) — Aldzdt < C'(g). (1.4)
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is well known that for any 6 € [0, 2x], t € IR, the straight line y (s) = (se'?; 1),
s € R, is a global geodesic for the control metric in H, i.e. d(y(s), y(s)) = |s — &’
for s, s € R. Moreover, all global geodesics have this form. A (1 4 &)-quasigeodesic
is, by definition, any path y : R — H, such that (1 4+&)~!s —s'| < d(y(s), y(s")) <
(1+¢&)|s — 5’|, for any s, s" € R.

It is known that any quasigeodesic y is a horizontal path (see the definition in
Section 2). Denote by yg = (a, b) the invariant components of y in the standard
horizontal orthonormal frame {X, Y}: vy = aX(y) 4+ bY(y) almost everywhere.
Then

Theorem A (Approximation of quasigeodesics). There are eg > 0 and Co absolute
constants such that, given a (1 4 &)-quasigeodesic y : R — H with ¢ < &g, then its
horizontal speed yyr satisfies

1

0 ). <1+ Ce, (1.5)

1—c&ﬂ5‘ v (s)ds

Contrary to the Euclidean case, (1.5) is not trivially equivalent to the definition of
quasigeodesic. A peculiarly subRiemannian consequence of (1.5) is that, for small ¢,
any (1 + &)-quasigeodesic y passing through a point Py in H at time s 15 forever
forced to avoid a certain metric cone; extrinsically speaking, a paraboloid, having
vertex at Fy. See Corollary 3.3. If ¢ = 0 in (1.5), y is a global geodesic.

It is likely that the constant £'/? does not exhibit the right order of growth with
respect to £. In proving Theorem A and all the results stated below, we use the known
comparison between the control distance 4 and the FEuclidean one stated in (2.1),
which usually is not sharp. This forces us to take several times square roots of €. The
problem of getting sharp asymptotics as ¢ — 0 seems to be rather complicated and
it probably requires new ideas.

In H there are two different kind of Euclidean planes: laterals of two-dimensional
subgroups of H and planes with a characteristic point. Our second step is studying how
a biLipschitz map transforms a plane with a characteristic point. Up to a translation,
it suffices to consider the plane r+ = 0. We prove the following.

Theorem B (BilLipschitz image of a horizontal plane). There is 9 > O and C > 0
such that, if f is an (14 ¢€)-biLipschitz self map of the Heisenberg group with e < gg
and f(0) =0, forany R > O there is A € O(2) such rhat

A(f(z:0), (Az; 0)) < Ce!/1°R forany z e R%, |z < R. (1.6)

Then, we examine how a biLipschitz map transforms the ¢ axis {(0; t) € C x R},
the center of H. Recall that, from the point of view of the metric d, the r-axis is
unrectifiable and its Hausdorft dimension is 2, see (2.8). The behaviour of the 7-axis
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under quasiconformal mappings has been object of some interest. See especially
Heinonen and Semmes [HS], Question 25. Here we show that the image of the £-axis
under a (1 + &)-bilipschitz map lays in a metric cone around the ¢-axis itself. Note
that bil.ipschitz is a smaller class than quasiconformal.

Theorem C (biLipschitz image of the t-axis). There exists a constant o > 0 with
the following property. Let f be a (1 + e)-biLipschitz map such thar f(0) = 0 and
& < gg. Then, after possibly applying the isometry (x, y, t) — (x, —y, —t), we have,
for some absolute C = (),

d(f(0;0).(0;0) < Ce'P2d((0;0),(0; 1)) forallt € R.

Finally, combining all the results obtained, we obtain the extension of John’s
pointwise approximation theorem.

Theorem D (Pointwise approximation). There exist ey > O and C > 0 such that, if
0 < e <ey fisa(l+e)-biLipschitzmap of H, R > 0 and Py is a fixed point in H,
then there exists an isometry T of H such that

d(f(P), T(P)) < Cs'?"R, (1.7)
whenever d( P, Py) < R.

As in the Euclidean case, Theorem D and Rademacher’s Theorem, which was
proved in the Heisenberg group by Pansu [P3], imply that the Jacobian of f in the
sense of Pansu (see Section 2) can be approximated by means of an isometry.

Theorem E (Approximation of derivatives). There are constants eg > O and C > ()
such that, if f is (1 + e)-biLipschitz with 0 < ¢ < gy, f(0) = 0 and Jf is the
Jacobian matrix of f in the sense of Pansu, then for R > O there exists A € O(2)

such that i

S S T£(Q)— AldQ < Ce'/?". 1.
LT fmm 11£(Q) — AlldQ < (1)

Equation (1.8) says that J f belongs to BMO(H). By the John—Nirenberg inequal-
ity which holds in this setting [Bu], local uniform exponential integrability can be
casily obtained, see¢ Corollary 6.3.

John’s result in Euclidean space is stronger in at least two respects. First, he only
assumed f to be (locally) biLipschitz in a bounded, open subset of R". In order to
avoid further complication in the proofs, we chose to work with globally bilipschitz
maps. More importantly, John deduced the validity of (1.7) and (1.8) with a factor
¢ on the right-hand side, instead of our nonsharp power of . The example at the
beginning of Section 7 shows that in H the power can not be better than &'/
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John-type estimates (1.1) and (1.2) in R” have been improved in recent literature.
Concerning estimate (1.1), we mention the papers [ATV], [Ma], [Ka], [GM]. See also
the monograph [R]. For estimate (1.2) see e.g. the papers [Ko], [FIM] and [CFM].
It seems that a similar stability theory for maps in a subRiemannian settings is still
essentially lacking (with the exception of the qualitative results in [D]). Here we give
a first contribution to research 1n this direction.

Before closing this introduction, we mention that biLipschitz maps are quasi-
conformal. A characterization of bil.ipschitz maps among quasiconformal ones has
been given by Balogh, Holopainen and Tyson [BHT] by means of some modulus
estimates. Geometric function theory in homogeneous groups has been developed by
several authors, see Koranyi and Reimann [KR1], [KR2], Pansu [P3], Heinonen and
Koskela [HK], Capogna [C1], [C2], Capogna and Tang [CT], Capogna and Cowling
[CC], Balogh [Bal, just to quote a few.

The article 1s structured as follows. In §2 we recall some background on the
geometry of H and we prove several lemmata which will be used in subsequent
sections. In §3 we prove Theorem A. In §4 we prove Theorem B. In §5 we prove
Theorem C and D. In §6 we prove Theorem E and in §7 we discuss some examples.
In the Appendix we provide an elementary proof of the known classification theorem
of H’s isometries, which corresponds to the case ¢ = 0 in Theorem D. The proof of
this very special case guided us towards the proof of Theorem D and it might help
the reader to follow the general structure of the article.

After this paper was submitted, D. Isangulova and S. Vodopyanov announced
that they proved by means of different techniques that Theorem D holds in the higher
dimensional Heisenberg groups H”, n > 2. Their techniques provide a sharp estimate
of the power of & but they do not work in H'. Geometric properties of quasigeodesics
and biLipschitz images of horizontal planes (see our Theorems A, B, C) do not follow
from their results.

Acknowledgements. We thank the referce for carefully reading the manuscript and
for several comments which improved its presentation.

2. Preliminary facts

Notation. We write (x, v, 1) ~ (x +iv: 1) = (z:1) € R? ~ C x R to denote
points in the Heisenberg group H. Sometimes we use a synthetic notation P, @, ...
to denote points in H. Clearly O = (0,0,0). Amap f: H — H will be some-
times split in its coordinate projections as follows: f(z:f) = ({(z:t);1(z: 1)) =
€z 1), n(z3 1), T(z: 0).

Since we will take several times the square root of & > 0, we fix for brevity
the notation &; = &/2°, 50 that ;41 = /&r. We denote by C positive absolute



106 N. Arcozzi and ID. Morbidelli CMH

constants. The symbol & will denote any real or complex function bounded by an
absolute constant, |b| < C. Both C and b may change even in the same formula.

Finally, denote by |v| the Euclidean norm of a vector v € R”, forn = 2,3, ....
Write do(P) = d(0, P). Denote spheres by S(P,r) = {Q : d(P,Q) = r}.
ST(0,r) = S(0,7) N {t = 0). Spheres and balls centered at the origin are also
denoted by S, := S(0,r), and B, := B(0, r).

The control distance in the Heisenberg group. Let H = R3 be the first Heisenberg
group with the product

()C, Yy, I) ' ()C/, yla tf) — ()C +xla y +y/a t +tl+ z(xly _xyl))’

for any (x, v, 1), (x, ¥/, t") € R3. Denote by L p the left translation LpQ := P - Q,
P, 0 ¢ H. Consider on H the left invariant vector fields X = 9, + 2y0d; and
Y = d, —2x09;. The bundle #¢ spanned by X and Y 1s called the horizontal bundle. A
path v : [«, B] — His said to be a horizontal curve if y is absolutely continuous and
there are a, b measurable functions such that y (1) = a(1) X, + b(1)Y, ) for ae.
{ € [, B]. The length of y is length(y) := ff Va?(t) + b2(1)dt. Given P, Q € H,
the control distance d(P, Q) is defined as the infimum (actually minimum) among
the lengths of horizontal paths connecting P and ¢. Later on we will discuss the
family of the corresponding geodesics.

The ball of center P and radius R > 0 in H is denoted by B(P, R) = {Q € H :
d(P, Q) < R}. The Lebesgue measure dxdydt on H is, at the same, the bi-invariant
Haar measure on H and, modulo a multiplicative constant, the Hausdorff measure
Hj associated with 4. Note the exponent 4, which comes from the homogeneous
dimension of H. L(F) denotes the Lebesgue measure of £ C HL

The control distance (see [NSW]) locally satisfies the estimates

kl(z ) — (@) <d((z ), @& ) <kl — OV @1

(z: 1), (z/:t") € K where K C His compact and k1, k7 depend on K. More precisely,

d(z:0), & ) = |z — 7| + |t —t —2Im 77|12, (2.2)

with global equivalence constants.
A map f from H to itself is (1 4 ¢)-biLipschitz, ¢ > 0, if

1
md(P, Q) =d(f(P), f(Q) =1 +e)d(P,Q), P,Qecl (2.3)
An isometry is a 1-biLipschitz map from I to itself.

Isometries and dilations. The left translations L p : Q +— P - Q are isometries of the
Heisenberg group and they preserve the length of a curve. Let ¢ € R. The rotation
by an angle of € around the ¢-axis, is the map Ry : (z;¢) (elgz; t). It is known,
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see [KR1], [C1], [T] and [Ki], that the only isometries of I are the compositions of
rotations, left translations and of the map J : (z; 1) — (T; —f). A simple proof of this
fact, relying directly on properties of geodesics, 1s given in the Appendix.

The dilation with parameter A > O of H is the map 8, : (z:1) — (rz; A%1).
The length of a curve is homogeneous of degree 1 with respect to §;, that is,
length(3; (y)) = Alength(y), hence the same 1s true for the distance function,
A8, P, 5, 0) = Ad(P, Q).

Pansu calculus. These notions will be used in Section 6. Let f: H — H be a
Lipschitz map. The Pansu differential Df (P) of f at P € H is the map from I to
defined by

Df(PYQ) = lim &,+{f(P)7" f(P 8 Q).

where the limit must be uniform in @ belonging to compact sets of H ~ R
Pansu proved that the differential of a Lipschitz map exists almost everywhere and
it 1s a endomorphism of the group (I, -) into itself which commutes with dila-
tions. It is rather easy to check that any such morphism of H must have the form
(u, v, w) — (cu+ pv, yu+dv, («d —PBy)w), for suitable constants «, g, v, 6 € R.

Therefore it can be identified with the matrix A = ( ;‘ g ) and written as (i, v, w) >

(A(%): det(A)w) . Given a point P where the differential of f exists and is a group
endomorphism which commutes with dilations, we denote by Jf(P) its associated
2 x 2 matrix, so that

! JFPy(
Df(P) ;}) = (det(]f)(gg%w) ) (2.4)

Note that a smooth function need not be differentiable in Pansu sense: the function
f(x,y, 1) = (0,0, y) is not differentiable at (0, 0, 0). Moreover the mere existence
of the Pansu differential at a point does not ensure that the latter is a morphism of H,
as the function f(x, y, ) = (x, v, 2t) shows at the origin.

But, if we know that f is differentiable in Pansu sense at P and D is a morphism,
writing f(P) = (§(P), n(P), t(P)), its Pansu Jacobian matrix has the form

X&(P) Y&E(P)

Jf(P) = (Xn(P) Yn(P)) : (2.5)
Geodesics and balls. We say that a curve y : I — H defined on an open interval /
of R, is a geodesic if it is absolutely continuous in the Euclidean sense and for any
t € [ thereis J C I containing ¢ such thatforall ¢ < B, a, f € J,d(y (), ¥y (B)) =
length(y|[a’ﬁ]). Let P € H. If P = (z;t) with z # 0, then there 1s a unique curve y
joining O and P, such that length(y) = d(0O, P). If P = (0; 1), there are infinitely
many curves with this property.
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The explicit form of geodesics in the Heisenberg group has been calculated by
several authors: see e.g. [Gav], [Kor], [Str], [Bel], [Mon]. For each ¢ € R and
a € [0, 2 |, we have the unit-speed geodesic from the origin

x(s) = sin(@) 5P 4 cos(e) P,

Vpa(s) = § 3(s) = sin(e) TF — cos(e) G, (2.6)
1(s) = N Ps— Zg(ﬁf’f)
In the limiting case ¢ = (), geodesics are straight lines. The geodesic yy o 18 length-
minimizing for s varying over any interval / with |/| < | | We say that 257 /|| 1s the
total lifetime of the geodesic y. The geodesics between arbitrary pairs of points can
be obtained by left translation. The parameter |¢| has an intrinsic geometric meaning,
because 2 Tl =~ is the length over which y is length-minimizing. Hence, |¢| is invariant
under isometries and covariant under dilations. The geodesics for which ¢ > 0 are
the ones pointing upward (this means that as s grows, #(s) grows).
From the equation of the geodesics, we obtain the equation of the geodesic sphere
centered at the origin. We denote it by S, or S(0, r). It contains all (z; r) in H such
that

{z|—|z|<r,¢>—2m<f;f/2>, {|z|2 |21 (r ) = (1 —cos(gr)),
or

{=1(r, ) = 22400 P =i(r, ) = 22500

(2.7)
for some ¢ € [—27/r, 2 /r]. See Figure 1.

A |[|

2r/m; 2r /)

= (0; r*/7) §

(r: 0)

Figure 1. The sphere of radius r.
: 2
Observe that ¢ = 0 = (|z]; 1) = (: 0), while ¢ = ZTH = (|z]; 1) = (0; %), SO

that
d((0;1),(0;9)) = /7 |t —s|. (2.8)
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The maximum and minimum values for ¢ are reached when ¢r = Zx (note that
1(r, @) = r*t(1, ¢r) and take a derivative of £(1, £) with respect to £).

The upper half of the unit sphere ST(0, 1) := S(0,1) N {r > 0O} will be also
written as a graph of the form ¢ = u(|z|). Although the function « is not explicit it
can be easily seen, looking at (2.7), that

u(0) = %, u(%) — % and u’(g) =0. (2.9)

Vi T

A more careful look shows that 1 (0) = % The local behaviour of u near 0 is

1 2
u(lz]) = — 4+ —[z[(L+ O(z).  aslz] - 0. (2.10)

Moreover an easy dilation argument shows that the equation of the upper half sphere

of radius r > O 1is
t
- = u(ﬂ) lz| < r. (2.11)

r ¥

We may also write the unit sphere as a graph of the |z| variable, locally near
(|z]; ) = (1;0). The set S(0, 1) N (C x (—1/=, 1/7r)) can be written as {(z: 1) :
|z| = v(¥), |t| < 1/}, where the function v satisfies, for some C > 0,

v(th) =1 — Ci2 + o), ast — 0. (2.12)

A portion of the Heisenberg ball 1s convex in the Euclidean sense. The following
lemma is implicit in [AF], but its proof is elementary, so we will give it here.

Lemma 2.1. The convex envelope B.,(O,r), in the Euclidean sense, of the ball
B(O, r) is the solid having as boundary the union of the portion of S(O, r) corre-
sponding to |¢r| < m in (2.7) and the two discs {(z; 1Yi = i%rz, |z| < %r}

Proof. Consider the equation of ST(O.r) = 3B(O,r) N {t > 0} in (2.7). As
functions of ¢r € [0, 2], |z 1s decreasing while ¢ increases on [(), 7] and decreases
on [, 2], Hence, t increases as |z| varies in [0, 2] and decreases as |z| varies in
[%r, r]. This shows that the disc {(z:7) : 1 = %rz, 1z| < %r} is contained in the
convex envelope’s boundary.

Let now P = (z; ) be a point on ST(Q, r) such that r¢p € [0, x]. The total
lifetime of the geodesic y between P and O is 27 /¢. Since r¢p < 7, this means
that the length of the path y from O to P is less or equal than one half of y’s
lifetime. Consider the arc of y starting at P, containing O and having length 7 /¢,
exactly one half of the lifetime of y. Let A be its other endpoint. Apply now the left
translation L mapping A to O, letting LP = P’ and LO = O’. Consider the ball
LB(A, R) = B(O, R),where R = = /¢p. P € dB(0O, R) is the pointin (2.7), with R
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instead of r, corresponding to ¢ = 7t/ R: one of the point having maximum height.
Hence, B(O, R) stays below the set {t = %Rz}, its tangent plane at P’. Finally, we
show that B(O’,r) = LB(0O, r) is contained in B(O, R). In fact, if O € B(O’, r),
then

A(Q, 0) <d(Q,0)Y+d(0O',0) <d(P',0Y+d(0',0)=d(P’, O) =R,

where we have used the triangle inequality, the fact that P’ € 9 B(O’, r), the alignment
of P/, 0’ and O on the same length minimizing geodesic and the fact that P’ €
dB(0, R). The inequality is strict forany Q # P’ ontheclosedball {Q : d(Q, O') <
d(P’, O")}. Then, B(O', r) stays on one side of its tangent plane at P’. By translation
invariance, the same must hold with P and O replacing P’ and O’, a

Cones. The cone with center at O and aperture ¢ € R is the set
Ly ={zneH: t =alz|*}.

We could also consider the degenerate cones 'y = {(0:2) @ 1 € R*} U {O).
The cones centered at O in I are the orbits of the group generated by rotations and
dilations centered at O, acting on H, closed by adding the origin. I'p , = Lpl'; 18
the cone with center at £ and aperture a.

We introduce now a coordinate for points in H, which will be useful in Section 3.

Definition 2.2. A point P = (z; t) has coordinate A > 1 if the geodesic y starting
at O and passing through P has a total lifetime A - d(O, P).

Let O be the other endpoint of y, the geodesic starting at O and going trough P.
Then, 4(O, O') = A -d(0, P). The definition of A is dilation invariant, A(5, P) =
A(P), r > 0. The relation between A and the parameter ¢ of y in (2.6) is

2
A= —
|p|r

The points P for which A(FP) = A 18 constant lay on the union of two cones, I'+,;).
We mention that from (2.6) or (2.7) one deduces that a(x) ~ %—1’ as A — 00 and that
ORI

a(i) R as A — 1.
Lemma 2.3. The following two facts hold.

(A) Given P =(z; 1) € ST, t >0,and R > 1, if \(P) < R, then dist(P, Sg) >
R — 1. Moreover, if M(P) < R, then the distance dist(P, Sg) is realized by the
North Pole Ng = (0: R*/n) € Sg, and by it only. Finally, if A(P) > R, then
dist(P, Sg) = R — 1 and the distance is realized by a point different from the north
pole.
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(B) There exist Ry > 0 and Co > O, large but absolute constants, such that, for
all R > Ro, (z;0) e W andr € [1,2],

Az 1) = R, t < CoR7T,
(z:0) € SF 0<r—lz] < CoR™

Proof. (A). Suppose that A(P) < R and let Q be a point realizing the distance
d(Q, P) =dist(P, Sg). Then14+d(P, Q) =d(O, P)+d(P, Q) > d(0O, Q) =R,
the strict inequality holding since there is no geodesic passing through O, P, Q. Thus
d(P, Q) =dist(P, Sg) > R — 1, as desired.

In order to prove the second statement, call 7 the closed, smooth surface obtained
by taking the union of all the geodesics joining O and Ng. Observe that 7 — {Np} C
B(O, R) and that, since A(P) < R, P lies in the closure of the open set bounded by
7. Let Q be any pointin S —{Ng}. Take a geodesic y between P and Q andlet U be
the last point where y meets 7. Since O, U and Np lie on the same geodesic, while
O, U and Q donot, we have thatd(O, U)+d(U, Ngr) = R < d(0,U)+d(U, Q),
hence d(U, Ng) < d(U, Q). Thus,

d(P,Np) <d(P,U)+d(U,Np) <d(P,U)+dU, Q) =4d(P, Q).

The second statement in (A) is proved.
The third statement follows easily from the definition of lifetime of a geodesic.
(B). We prove (B) for r = 1. The proof for r € [%, 2] is analogous. Take a
geodesic of lifetime R, i.e. with ¢ = 2%. By (2.7) with r = 1, we have

R* /2 2 2
(1) = —(—” _ sin (—”)) — ZaR 4 o(R7Y), while

272\ R R 3
R 7T 7l
1) = = si (-):1—— R™2).
|z(1)] —sin | — R +o(R™7)
as R — +oo. This immediately proves the statement (B ). O

The properties of the set 7 in the proof are related to the fact that all points in the
vertical axis are conjugate to O. It was conjectured by Pansu [P1], [P2] that 7 is the
extremal for the isoperimetric inequality in H.

3. Quasigeodesics in the Heisenberg group
A (global) (1 + &)-quasigeodesic in H is a curve ¥ : R — H such that

(1+e) s —o] <d(y@is),y(6) <(1+e)s—o| foralls,c eR.  (3.1)
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A quasigeodesic is in particular a Lipschitz embedding of R into H equipped with the
control distance. By the differentiability theoremin [P3], or by [HK, Proposition 11.4]
the path vy is horizontal, i.e. y(s) = a(s)X (v (s)) + b(s)Y(y(s)) a.e. Denote yy =
(a,b).

Theorem 3.1. There exist g9 > 0, C > 0 such that for any (1 + e)-quasigeodesic v,
e < gg, and for any interval I in R
[ s
1

The statement of Theorem 3.1 can be explained as follows. Let I = [s1, s7] and
v(s) = (£(s); (s)), where ¢ 1s nothing but the Euclidean orthogonal projection of y
on the plane + = 0. Then (3.2) reads

1—(:\/555 <1+e. (3.2)

|y < |£(s2) — L(s1)] <14e (3.3)
52— 81
which implies that ¢ is a (1 + C/e)-biLipschitz embedding of R in the plane t = 0
endowed with the Euclidean metric.
Theorem 3.1 clearly will follow from the following statement.

Proposition 3.2. There exist eg > 0, C > O such that for any (1 + &)-quasigeodesic
v:R — H & < gy, such that y(0) =0, if y(s) = (¢(s); T(s)), then

1—CJe <& <14 g,
‘f—l b= s eR. (3.4)
t(s)] < Csl/4s?,

We formulated here a statement for a global geodesic. Actually Theorem 3.1 holds
on [ = [0, L] for a quasigeodesic y : [ — %, %] — [ satisfying (3.1) for any s, o
in the mentioned interval.

From the previous results we get that given a (1 + ¢)-quasigeodesic y = (¢; 1)
with ¢ (0) = 0, we have for some & € [0, 27 ] and some b € R, with |b| < C,

(&) T(1)) = (" (1 + b/2): bel/H). (3.5)
Therefore, in view of (2.1), the estimate
d((¢(1); (1)), (¢(1); 0)) < Cel/® (3.6)

holds. Using (3.6) it is easy to show that the distance of y (1) from the plane t = 0
satisfies the estimate dist(y (1), {t = 0}) < Ce/*, with an exponent which is better
than (3.6).

By dilation invariance, this last remark implies that for £ < &g, a (1 4 &)-quasi-
geodesic y starting at O 1s forced to stay outside a cone.
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Corollary 3.3. There exist eg > 0, C > O such that for any (1 + g)-quasigeodesic
v, & < &g, ¥ never intersects the (dilation invariant) set {(z: 1) : |t| > Cel/%|z|?}.

The proof of Proposition 3.2 1s based on the fact that the distance between a point
on the metric sphere S( O, r) and the larger, concentric sphere S(O, R) can be larger
than R — r. On a qualitative level, this is a consequence of the fact that all spheres
centered at O contain points P which are conjugate to O along a geodesic.

Proof of Proposition 3.2. It is enough to prove the statement for s = 1. Introduce
the numbers

o =4, R=—. (3.7)

Recall that y (1) € Sy, and y(R) € Sy, r, where n; € [(1 + &)L, (1 + &)]. Without
loss of generality, one can assume that ¥ (1) is on the northern hemisphere of S,.

Denote by N,z = (0: (”%T—R)Z) the north pole of Sp,g. Denote y (1) := (z; 1), recall
Definition 2.2 of the A-coordinate and distinguish the following two cases.

1
Case A Mz, 1) > ——

2 /5

1
Case B. AM(z,1) < ——.
(z,1) < WG
In Case A, the required estimates (3.4) follow immediately from Lemma 2.3,
part (B), which provides the estimates [¢| < C./e and | |z| — n1| < & (even with

better powers than the ones in (3.4)).

The discussion of Case B is articulated in 3 steps. The following three statements
hold for £ < g9, where gp and C are absolute constants.

Step B.1: (z;1) = y(1) € B(Ny,g, Rz —m1 +0) := B,.
Step B.2: z satisfies
lz| > 1—-C4e (3.8)

and, as a consequence, the first line of (3.4) holds.

Step B.3: t satisfies the estimate |t| < Cel/#, so that the second line of (3.4) holds
£00.

Proof of Step B.1. Assume by contradiction that y (1) = (z; ¢) ¢ B,. Then it would

be d (y (1), Npyr) > Rz — 1 + o. Since we are assuming A(z; 1) < % = 1R,

if £ 1s small enough we can assert by Lemma 2.3, part A, that the distance between
v (1) and S, r 1s realized by the point N,,g. Then

d(y(R), y (1)) = dist(y (1), S;pr) = d (y (1), Njpr) > Rz —m + o,
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because we are assuming y (1) ¢ B,. On the other hand, the quasigeodesic property
givesd(y(R), y(1)) < (R—1)(1+¢). Thusweget Ripp —n1+0 < (R—1)(1+4¢).
Since n; € [(1 + g)~!1, 1+ e]and R and o are prescribed in (3.7), we get

1 1
ﬁﬁz—ﬁ1+4ﬁ§ (ﬁ —1)(1+8)

—(14¢e)+4/e < (%—1)(1%).

It1s now casy to see that the last inequality can not hold for small . This contradiction
finishes the proof of Step B.1.

~ (1 +e)/e

mR

NﬂzR s

+
Sﬁl

\; y ()

0 B,

Figure 2. A graphic description of Case B.

Proof of Step B.2. 'The idea here is to study the shape of the boundary of the ball
2
B. = B((0; "2 Ryp — 1 + o), for small e, with R and o given by (3.7). Recall

that the center (;Tf B, 1s Ny, . Note that if we would choose o = 0, then the boundary
of B, would touch 0 B(0, n1) exactly along a circle. Choosing o > 0 we enlarge the
ball exactly by the amount prescribed by (3.7). The next computation provides some
information about the intersection of the two balls. In Figure 2, we represented the
small upper hemisphere S,Tl, the hemisphere 0~ B, the lower boundary of B, and
the largest upper hemisphere S;; »- The point (z: 7) belongs to the very small region
given by the intersection of B, and B, .

The equation of the (lower hemi)sphere S~(0, o) is t = —Qzu(é), z| < o,
where u satisfies (2.10). Taking ¢ = n2 R — n1 + o and translating upwards by the
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amount ("2 i , we get that any point belonging to B, should satisfy

(mR)* 2 ]
_{mR —
i (2 n+o) u(an—m—l—U)
_ (mR)? of1 2 2| 1
=g~ (mR—mto) [;Jr;an—era(lJrO(E))]
1 e 2
= ;[2(171 —o)mR—(m —o)°] - ;(an —m+ao)(1+01/R) |zl

(3.9)

We have used here expansion (2.10), then we made only algebraic simplifications
and we wrote O(1/R) instead of O(|z|/(n2 R — 11 + o)) (this is correct because we
know that |z| < 2 and we may choose R = £~1/2 large enough).

To prove (3.8), use the fact that n; € [(1 4 &)™, (1 4+ &)]. Thus (3.9) implies

t>%|:2((1—|—8) 1 f)

2(1+8 1
Je o l+e

Some short computations show that, as ¢ — 0,

—(l+s—4
)f (1+e¢ f)]
+4ﬁ) 1+ 0o Ia.

oA

2((14 &) 4ﬂ(1+8 f_7(1_4f+ O(e)),

and (1 +& —4./8)2 = 1 + O(/¢). Morcover, since (1% — = +4/E) = 8(1 =
€+ O(g)), we have
(1 + e 1
N l+e

where the constant € is positive and ¢ is small enough.
Therefore (3.9) becomes

1
+4JE)<1 +OWR) < =1+ 1),

t > %7[1—4f+ 0(8)—£(1+0(I>)] \;5[1+C1\/E+ O(e)] Izl
> %%[1—(:2f]——7[ + C14/¢] |zl

The latter implies |z| > —C3./et + 1 — Cy/e, which immediately provides (3.8)
(note that (z; t) € Byy. ensures |f| < C). Step B.2. is finished.

Proof of Step B.3. Now we know that (1) = (z; f) satisfies (3.8). To better under-
stand the situation, note that, as ¢ — 0, (3.8) becomes |z| > 1. Together with the
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shape of the unit ball, which is convex near |z| = 1, this suggests that the point (z; )
stays near the circle |z|] = 1,1 = 0, as & approaches (0. To make this statement quanti-
tative, recall also that our point y (1) belongs to the set S, by the biLipschitz property,
mell+e) ™ 14¢] To prove Step B.3 write, in a neighborhood of |z| = 11 and
t = 0, the sphere S, in the form |z| = v(t/n%), where |z| = v(f) 1s the equation
of S1 near |z| = 1, which satisfies (2.12). Recall that n1 € ((14+¢)~!, (1+&)). Thus
we have the estimate

£2 2

<1+e>4}:1+8_c<1+e>3'

|z|<(1+s>v( )§<1+8>[1_c

t
(1+¢)?

This, together with (3.8), implies the estimate in the second line of (3.4). The proof
of Proposition 3.2 1s completed. O

Proof of Theorem 3.1. 1t suffices to prove it for I = [0, 1]. Write again (z; 1) =
y (1), where y satisfy the ODE y = aX(y) + b¥(y), y(O) = (0,0,0) with
\/a(s)2 +b(s)2 € [(14+&)~1, (1 +&)]ae Then z = z(1) = fol(a(s), b(s))ds.
Therefore the first estimate of (3.4) (with s = 1) implies

1-Ce< <1+ Ce.

1
f (als), b(s))ds
0

The proof is finished. O

4. BiLipschitz image of a horizontal plane

In this section we prove Theorem B. This requires the understanding of how the
different quasigeodesics, (se¢'?:0) and (se'?: 0), s € R, are transformed by f, as
0, ¢ € [0, 2 ]. The key point is in the following geometric result.

Proposition 4.1. Define o(9) = d((1; 0), (¢'?: 0)), 6 € [—m, w]. The function o is
even, smooth on 10, [ and for any A > O there is C;, > 0 such that:

o0 > C,0™Y? forallo €10, 7 — Al (4.1)
An immediate consequence of (4.1) s the estimate
l0(0) —o(P)| = C}|0 — |¢l| foralld € [0, — AL, € [ + A, 7 —A]. (4.2)

The fact that ¢ has a maximum at 6 = 7 suggests that estimate (4.2) no longer
holds for A = 0.
We postpone the proof of the proposition to the second part of the section.
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Proof of Theorem B. By dilation invariance it suffices to prove the statement for
R=1.

Step 1. Proof of estimate (1.6) for |z| = 1. After a rotation we may assume by
Proposition 3.2, that f(1,0,0) = (1 + bey; bey). Observe that an information on
the position of the point f(—1; 0) can be easily extracted. Indeed, write as usual
J(1;0) = (¢(1;0), (1; 0)). Formula (3.3) applied on the interval (—1, 1) gives

1
12(=1:0) = (1 + ben)| = [E(=1:0) = £(1; 0)| = Ulc =2+be;. (43)

Here we denoted c(s) = “£(£(s; 0)). Moreover, (3.4) gives [¢(—1;0)| = 1 + bey,
which means ¢(—1; 0) = (1 + bey)e'?, for some . Inserting into (4.3) we get
Yr = m + bey. Therefore

F(=1:0) = (1 + bep)e ") bey). (4.4)

In order to prove the required estimate (1.6), we will prove that, after possibly
applying the isometry (x, y, ) — (x, —y, —t), we can write

f(€9:0) = (1 +be)e! ) bey), 0 € [—, 7). (4.5)

Note that, by (2.2), (4.5) implies d(f(¢'?; 0), (¢'?; 0)) < Cey, which is (1.6) when
|zl =1and A = I.

Note first that we already know that (4.5) holds for¢ = (and 6 = m. This follows
from the assumption f(1; 0) = (1 4 beq; bey) and from (4.4), which implies

d(f(1;0),(1:0)) < Cez and

, 4.6
d(f(=1;0), (=1 0) = d(((1 + be)e' "2 bey), (=1;0)) < Ces. e

We firstprove (4.5) for 6 € [0, %zr]. Estimate (4.2) with A = 7 /4 will be used. By
the results of the previous section we may write f(¢'; 0) = ((1 4 bep)e'??); bey),
where the function 8 — ¢ (%) is defined by the last equality and satisfies ¢(0) = 0.
After possibly applying the isometry (x, y, ) — (x, —y, —t) we may assume that
sin(¢(/2)) > 0, i.e. the second coordinate of ¢!/ ig positive. The biLipschitz
property gives

d(f(e:0), fF(1;00) = (1 +be)d((e': 0), (1: 0)) = 0(O)(1 + be),

by the definition of p. By the triangle inequality and the first line of (4.6), we also
have

d(f(€?;0), f(1:0)

d{f(e':0), (1: 0)) + bes
d(((1 4 be1)e'? @ bey), (1; 0)) + bes
d{(e'??; bey), (1: 0)) + bes = o($(6)) + bes.
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Therefore we have proved that o(¢(¢)) = o(¢) + bes. Thus, estimate (4.2) gives
|0 — 1¢(0)]| < Ces. Since the function ¢ is continuous and ¢(/2) > 0, we can
drop the absolute value:

B
6 — ()] < Ces. 0 € [0, Zn]. @.7)

The same argument works for 8 € [—%zr, 0] and estimate (4.7) also holds in the
latter interval.

In order to prove (4.5) for the values of & near @ (say 7n/2 < |6] < =), an
analogous argument can be used, changing the “central” point (1; 0) with its opposite
(—1; 0), whose image’s position is narrowed down by the second line of (4.6). Step 1
1s concluded.

Step 2. Proof of (1.6) for |z] < 1. We now assume (4.5). Also, we may assume
that (z: 0) = (»;0), r € [0,1]. We know from (2.2} that d(f(r:0), (r; 0)) =~
1€(r: 0) — r| + |7(r: 0) 4+ 2r Im £ (r: 0)| /2, thus we can estimate the two summands
separately. We begin with | (r; 0) —r|. Let P be the point on the segment between O
and £(1; 0) such that | P — O] = r. Since, by (4.5), the angle with vertex O and rays
0¢(1;0), O(1; 0) has amplitude be3 and we have the relations |(r; 0) — O| = r, we
have | P — (r; 0)| = be3. Consider now the case when r > 1/2. First we estimate the
angle « having vertex in O and rays O¢(1; 0), O¢(r; 0). We claim that |«¢| = bej.
Indeed, by the Generalized Pythagorean Theorem (GPT),

1£(1;0) — £(r O)* = [2(LO) 2 4 £ (s OV — 2[¢(1: 0)] |2 0)] cos(cr).

Butnow, by Theorem 3.1, we have | (1; 0) — ¢ (r; 0)| = (1 —r)(1+bey), |¢(1:0)| =
1 + bey and |¢(r; 0)] = r(1 + bep). Inserting these estimates into the previous
equation and taking » > 1/2 into account, we get |1 — cosa| < Cer, which ensures
a = bgy. Again the GPT applied (o the triangle O ¢(r; 0) P gives | P — & (r; 0)| = bes.
Therefore, the triangle inequality in the plane gives |(r; 0) — ¢ (r; 0)| = bes.

In the case r < 1/2 we proceed much the same way, considering the triangle
P¢(1;0)¢(r; 0) and its angle g having vertex in ¢(1; O) instead, in order to have the
estimate for | P — £(r; 0)|.

Finally, to estimate the second term, |t (r; 0)42r Im ¢ (r; 0)| /=, observe first that
|7(r;0)] < Cey, if r < 1. We also know now that ¢(r: 0) = r(1 + bgp)e!?3, so that
|Im ¢(r, 0)| < Ces. Hence |t(r; 0) + 2r Im ¢(r; 0)]1/? < Cey. This ends the proof
of Theorem B. O

1/2

Proof of Proposition 4.1. Recall first that the geodesic balls with center at the origin
are radial in both |z| and |7|, 1.e. do(z; t) = do(|z]; |£]). The group law gives

0(0) = d((1; 0), (¢'%; 0)) = do(25in(0/2); 4sin(0/2) cos(0/2)). 4.8)
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The equation of the upper half of the sphere S, is given by (2.7) and has the explicit
form |z|2 = %(1 — cosa{)rz, [ = %(a — sinoz)rz, where 0 < o < 27. Here
we use the coordinate |z|? instead of |z|, in order to make computations easier. It is
convenient to introduce the functions & and g by the equations:

2 2
Glo, r) = (E(l —cosa)r?, E(og — sina)rz) =r2g(e), r >0, 0<a< 27

(4.9)
Moreover, the point (z; r) appearing in the right hand side of (4.8) satisfies g/ =
(2sin(8/2)%, t = 4sin(9/2) cos(6/2), where O < & < 7. Define the path

6 2 2
H(#) = (4sin2 (5),43111 (5) CcOS (5)) =2(1 —cosf,sinf), 0<6 <m.

(4.10)
Observe that H (6) describes the upper half of the circle of radius 2 centered at (2, 0).
By definition of H and G, po(0) is the unique number with the property that

Gla, 0(0)) = H(O) (4.11)

for some « € [0, 2z]. In fact, (4.11) uniquely determines («, ¢) as a function of 6.
To see this, observe that G(x, 01) = G(wp, 02) only when («q, 01) = (w2, 02),
otherwise we would have either two intersecting metric spheres with the same center
and different radii, or a point on a metric sphere whose distance from the center is
realized by geodesics with different values of the parameter ¢.

The proof of Proposition 4.1 is articulated as follows.

Step 1. There exist Co, C; > 0 such that C10Y? < p(8) < Co#'/? for any 6 in
[0, ].

Step 2. o is smooth on |0, [ and ¢’(0) is strictly positive for any 6 € 10, = |[.
Step 3. There exist oy > 0, Co > 0 such that o’ (8) = Co6~ /2 for any 6 < oy

Proof of Step 1. H parametrizes a circle with speed 2 and it is easy to verify that
30 < |H(6)] < 20, forany 0 € [0, 7]. On the other side we have the estimate

0(0)* inf |g| < |G(a, 0(0))] < 0(0)* sup |g| forall @ € [0, 27],
[0,27] [0,27]

where g is defined in (4.9). The required inequalities follow from the fact that

0 < inf |g| < sup |g| < +o0.
[0,27] [0,27]

Proof of Step 2. Let 6y € 10, w[. Write pg = ¢(6p). Then we have for a suitable
cg € 10, 2z the equation G(wgp, o) = H(6y). The idea is to study the equation
(4.11) for @ near a value 8 = 6y. We already know that there 1s a unique solution
(x(0), p(0)) for any & in [0, 7 ]. Moreover we will show that the function o satisfies
o'(0g) > 0.
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In order to apply the inverse function theorem to the function &, which is smooth
near («g, 0g) we compute

4
9, G, 00) = —2(1 — cos g, wg — sincg)  and
[04
0

2 ) (4.12)
405 ; 205 . .
3, G (g, 00) = ——3(1 — COS oy, &g — SIn ) + —Z(SIIIC((), 1 — cos ap).
o 4
Then
3203
det[ 8, Glaw, po) 3 Glow, 0o)] = —#[sm (@) _ (@) cos (@)] sin (@)
o 2 2 2 2

It is easy to see that the function in the square bracket is strictly positive for any
ay € 10, 2z [. Thus, by the inverse function theorem, equation (4.11) can be solved
for any 6 near 6p. Denote by (), o(#) the solutions. The functions 6 — «(f) and
e(6) are smooth near 6.

In order to get the estimate ¢’ (6g) #£ 0 differentiate equation (4.11). This gives
3 G (g, 00) o' (Bg) + 8, G (g, Bo) o’ (By) = H'(Hp). By Cramer’s rule

3 det|d, G («p, 00) H’(Q())]
o (6p) = .
det[0, G (g, 00) 0-G(wo, 00)]

Observe that the second line of (4.12) can be simplified as follows:

e e =2 [(%) eos () - sn ()]0 (). ~en (3))

(4.13)

Therefore
det [, G (. ro) H'(6g)] = ifg[(@) cos (@) — sin (@)] sin (@ n 90),
@ L\2 3 3 2
so that
o) = —— %2 (@ + 90). (4.14)
0(fy) sin(ap/2) 2

Now we are in a position to prove that ¢’ # 0. Assume by contradiction that
o' (6p) = 0 forsome 6y € 10, #[. Thenitmustbe 32 +6g = 7. Equation G (wo, 00) =
H(6y) and the explicit form of G and H immediately furnish

1 —cosap (90) T cos(up/4) sin(wg/2)
—— =tan| — ) = tan (— — —) = =
g — SN g

B 2 2 4/ sin(wo/d) 1 — cos(ao/2)
Observe that sin(cg/4) # 0 as «g € 10, 27[. Now let «p/2 = s € 10, r[. Then

2sin? s sin s

2s —2sinscoss 1 —coss.
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But it is easy to see that the latter fails for any s € ]0, #[. Therefore ¢’ # 0 and
Step 2 is accomplished.

Proof of Step 3. We are interested in studying equation (4.11) near ¢ = 0. If (4.11)

holds, then i 5 i
_ —cost 1 —cosw — R(e).

sinf o —sine
Note that L(6) = tan (6 /2) increases on [0, ], from L(0) = 0 to L(m—) = 4.
One readily verifies that R is a strictly monotone function decreasing from R(0%) =
+o0 to R(2m) = (. Hence « 1s a monotonically decreasing function of 6, «(0) = 2,
a(mr) = 0. Keeping into account that 6 = 2 arctan R(«), a calculation shows that
(i) 92 < Oforall 6 € ]0,7]; (i) 22 = —5"—(1 4+ o(1)),as 0 — 0 (& o — 27);
(1ii) g—g = —%(1 +o(1)),as 6 — 7 (& o — 0). As a consequence, there are Cy
and C» > 0 so that,

2 —
C14/8 < ”2 Y < CVE. (4.15)

Finally we go back to (4.14). For & close to O (which means % close to 7 ), we have
the estimates sin § < (7 — %) and sin (§ +60) > C3(w — § — 6). Therefore,

Q’(Q)Eﬁn(j%(ﬂ—%—e).

The latter, together with (4.15) and the estimate o(6) ~ 62, as 6 — 0, concludes
the proof of Proposition 4.1. O

5. Image of points outside the plane ¢t = (0

Let f be a biLipschitz map as in Theorem B. By Theorem B we know how the plane
t = 0 transforms: for any R > 0 there is a suitable A € O(2) such that,

d((f(z:0), (Az; 0)) = CeqR, |zl = R. &.D

In the current section, in order to study where points outside the plane {r = 0}
arec mapped, we will make a systematic use of the following family of geodesics
s > y(s) = (x(s), y(s), 1(s)), where

x(s) = qcosa(l — COS$ (i)) — g Sin « sin (i),
q q

v(s) = qsina(l — COS (3)) + g cos « sin (3), (5.2)

((s) = 2q2(3 _ 7 —sin (2))
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The parameter g is positive, while ¢ € [0, 27]. Note that for 0 < s/g < 27,
d(y(s), O) ~ g. The path y is a unit speed geodesics with lifetime 27 ¢g. It can be
obtained from (2.6) with a translation and by changing ¢ with 1/4. Moreover

y(0) = (0,0, —2¢*n), y(rq) = (2gcosa, 2gsine, 0), and

(5.3)
y(2mq) = (0,0,2¢"m).

The distance dist((O; anz), g = 0}) is realized by any point of the form (2¢ ¢l )
and its value 1s

dist((0; 27 g*)), {t = 0}) = d((0; 27¢*), 2q€'?; 0)) =g forall 6 € [0, 27].

All the points of the circle (2¢¢'?: 0), & € [0, 2] are “projections” of (0: 27742) on
the plane {r = 0}. This is the reason why statement 1 in Proposition 5.1 below is
false for s = 0.

By means of an accurate analysis of the mentioned geodesics, we will obtain the
following quantitative result, whose technical proof will be given in Subsection 5.3.

Proposition 5.1. There exist universal constants oo > 0 and Co > 0 such that,
for any o < oq the following statement holds. For any g € 10, oo[ consider the
unit speed geodesic y of total lifetime 2w q such that y(0) = (0,0, —2g%7) and
v(img) = (2¢,0,0) := Q. Take any number s with

1/8

o8 < s/g <7 —ol/16 (5.4)

and denote P = y(s). Then:

1. The closure of the ball B(P,d(P, Q)) touches the plane t = O only in Q.

2. Let Tly(z;t) = z be the vertical projection on {t = O}. The enlarged ball
B(P, (14+0)d(P, Q)) satisfies the following property.

Q=T (B(P, (1+0)d(P, 9))N{t > 0}) C {z € C: [z—2g| < Cogo'/*}. (5.5)
5.1. Points on the 7-axis. Next we analyze the position of points of the form f(0; 7).
Our result is the following

Theorem 5.2. There are gy > 0 and C > O such that, ife < g, (z:1) — f(z: 1) =
(&(z; 1); t(z: 1)) is (1 4 e)-biLipschitz on H and satisfies f(0) = 0, then

12(0,0,1)] < Cealt|* and ||t —12(0,0,1)|| < Ceslt| forallt e R. (5.6)

The proof of Theorem 5.2 involves only values of f on the set K := {f =0} U
{t-axis}. This does not contain information enough to determine the sign of 7(0, 0, t)
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Ay

<

ST(P, (1 +a)d(P, 0))

y(0) = (0; —2¢°m) 4

Figure 3. A bidimensional qualitative representation of inclusion (5.5).

(the map f(x,y,t) = (x,y, —t), which is far from being an isometry in H, is an
isometry while restricted to K). In order to determine the sign of t(0, 0, 1), we need
to take into account values of f outside the set K. This is done in Proposition 5.3
below.

Proposition 5.3. If f is (1 + &)-biLipschitz, € < eg, f(0) = 0and det(A) = +1 in
(5.1) for some R > O, then

(0,0, 1)

; >0 forallt eR, t #0Q.

Before giving the proof of Theorem 5.2 and Proposition 5.3, observe that, putting
the mentioned statements together, we immediately get the proof of Theorem C.

Proof of Theorem C. Let f be a (1+4¢)-biLipschitz self map of H such that f(0) = 0.
By Proposition 5.3, after possibly applying a rigid motion (x, y, 1) — (x, —y, —1),
we may delete the absolute value in the second inequality in (5.6) Thus,

1£(0,0,8)] < Ceqlt|V? and |t —7(0,0,1)| < Ceylt| forallr e R,
which implies

d(f(0; 1), (0: 1)) < Ces|t|Y? forallt € R, (5.7)

as desired. 0
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Proof of Theorem 5.2. Since the statement is dilation invariant, we prove it for the
point (0; 2r). By Theorem B with R = 2, we may assume that (5.1) holds with
A =1T1for R =2 Write f(0;27) = (£,0,7), & > 0 (the proof which follows
can be easily modified to cover the general case f(0, 0, 27) = (&, n, v)). Note that
(0,0, 27) = y(2m), where y is one among the geodesics in (5.2), with g = 1, see
(5.3). Morcover, we know that the distance of the point (O; 27) from the plane r = 0
is realized by all the points of the form (2¢'%; 0) and its value is 7.

The idea of the proof is the following. We will choose 6 = = /2 and 6 = %n.
We will show that, by the biLipschitz property, the point (£, 0, ) has distance 7 4+
o(power of &) fromboth the points (0, 2, 0) and (0, —2, 0). This information, together
with the one about the distance of (£, 0, t) from the origin, d( f(0; 27), (0; 0)) =
(1 + be)d((0; 2m), (0; 0)), will give a rigid estimate of the position of the point
(&£,0, 7).

Take ¢ = % By the triangle inequality and the bil.ipschitz property we have

d((£,0,71),(0,2,00) =d(f(0; 2), (0, 2, 0))
=d(f(0; 2), £(0,2,0)) + bd(f(0,2,0),(0,2,0)) (5.8)
=7n(l + be) + bey = m + bey,

where we used (5.1), which holds for R = 2. The same computation for the opposite
point (0, —2, 0) shows that

d((£,0,7), (0, =2,0)) =7 (1 + bes). (5.9)

Write again (5.8) and (5.9) using the group law and recalling that the distance from
the origin satisfies d((0; 0), (z; 1)) 1= do(z; t) = do(|z]; |t]) for any (z; ¢) € H. This
gives

do(VEZ+ 4.7 —48) = m(1 + bey) = do(VE2 + 4.7 + 45). (5.10)

Denote now ¢ = /£2+4, 1 = v — 4& and 7. = 7 + 4£. The equivalences in
(5.10) can be written as

do(o; 1) = (1 + bey) and dple; 1—) = (1 + bey). (5.11)

Next we prove that || > 1o for some small but absolute constant tp > 0, uni-
formly for small £. In order to get this property we add to (5.10) (or the equivalent
(5.11)) the third information given by the biLipschitz property

do(£,0, 1) = do(f(0; 2m)) = (1 + be)dp(0; 2) = (1 +bhe) 12 (5.12)

(see (2.8), for the last equality). By (5.10), since the ball B(0, r) is contained in the
cylinder {|z| < r} forallr > 0, wehave £ +4 < 72(1+ Csy4). Since 7> —4 < 2m,
this gives for small & the estimate

£2 <27, thatis & < +/27. (5.13)
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It is immediate to see (note that 7+4/2 > /27 ) that (5.13) and (5.12) together imply
|| = 7o, (5.14)

for some absolute constant 7.
Now, given Cy > 0 introduce the ring domain

Ag = B0, (14 Coea)) \ B (0, (1l — Coeq)),

and let A7 = A, N{r > 0}, A; = A, N {t < 0}. By (5.11), we may choose an
absolute constant Co > 0 such that (p; 74), (0; 7—) € A.. Note that (5.14) says that
if ¢ 1s small enough, it can not happen that (p; 71) € Aj and (0; 7—) € A_. Thus it
should be (¢: 74), (0; 7=) € AT or (g: 74), (0; T=) € A].

It is not difficult to check the following claim by means of the properties of the
unit ball described in Section 2.

Claim. 1f o > 01s given, then there exists og and Cy > 0O such that, for any o < oy,
given any pair of point (p; 7_), (0: 74) € B(O,14+0)\ B(0,1 —0¢), t_ < 74 with
4+ > 19 (or7— < —19), then 4 — 17— < Cypo.

Rescaling the claim (with o = Cpey) from the unit radius to the radius 7, we get
the estimate 74 — 7_ < Cegq, which by the definition of 74, 7_ gives 4& < Cey, that
is & < Cegy. This ends the proof of the first inequality in (5.6).

In order to prove the second inequality in (5.6), recall that, by (5.11),

(\/52 +4,7 —45) € S0, (1 +bey)) and & < Cey.

Inserting this information into equation (2.11) of the sphere of radius 7 (1 4- beg), we

get
T+ bey V4 + bes
I it (5.15)
m2(1 4+ bey)? (1 4+ bey)

Assume first that the quantity inside the absolute value 1s positive. Recall that, by

2.9), u(w) = 2+ O(w — 2)* as w — 2. After a short manipulation (5.15)

e T
becomes T = 27 4 bey, which is the required estimate. If instead the number in the

absolute value in the left hand side of (5.15) is negative, then we get v = —2m 4 bey.
Ultimately, the second estimate of (5.6) holds and the proof of the theorem is finished.
g

Proof of Proposition 5.3. By dilation invariance it suffices to prove the proposition
for R = 2, i.e. assume that (5.1) holds with A = I, the 2 x 2 identity matrix,
and R = 2. We prove that the point P = (0,0, —2x7) goes into a point whose
t-coordinate 7(0; —2x) satisfies 7(0; —27) < 0. By continuity, since the second
inequality of (5.6) ensures that 7 (0; 1) # 0, forall ¢ # 0, this will be enough to prove
the proposition.
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In the proof of this proposition, which is qualitative, o(1) always denotes (scalar or
vector) functions such that |o(1)] < Ce¥ for some absolute but unimportant positive
constants C and k, which may change at each occurrence.

By (5.6) we know that it should be ¢(0,0, —27) = o(1) and |7 (0,0, —27)| =
2 +o(1). Assume by contradiction that t (0, 0, —27) = 427 4 o(1). Consider the
geodesic (5.2) with ¢ = 0 and ¢ = 1, which has the form

y(s) = (1 —coss,sins,2(s —m —sins)). (5.16)

Note that P = ¢ (0). Write Q = y (1) = (2,0,0) andnote also that y (27) = — P =
(0,0, 2m). Take now the intermediate point M = (y(w/2)) = (1 +i; —(7 + 2)).
Our assumption 7 (0; —27) = 427 +o(1) implies also 7 (0; —(w +2)) = 4+7 +2+
o(1). Moreover, (5.6) gives also £(0; —(7 + 2)) = o(1). Our knowledge on global

quasigeodesics, applied to the quasigeodesic A(s) := f (1—ji’s; —(mr + 2)), s € R

(note that A(0) = £(0; —(r 4+ 2)) and A(+/2) = F(M)), tells us that it should be
FM) = (14D 7 +2)+ o), (5.17)

for some 6 € [0, 2 ]. Furthermore, we may also assert that, by (5.1), with the matrix
A =1, f(Q) = Q+o(1). Then, the triangle inequality and the biLipschitz property
give

d(f(M), Q) =d(f(M), f(Q) +o(l) =d(M, Q) +o(l) = % +o(l). (5.18)

To get some information on &, we use Proposition 5.1. Indeed, since both (5.17) and
(5.18) hold, it must be

F(M) = 'y(%n) +o(1) =, -1, 7 +2) +o(l), (5.19)

where y is defined in (5.16). To check (5.19), consider the geodesic v restricted
to [7/2, 2w +m/2]. Since y () = Q, f(M)+o(l) e {t = +2}, y(Bn/2) € {t =
742}, f(M) € B(Q,7/24 o(1)), Proposition 5.1 says that d( f (M), y (3/27)) =
o(1), hence (5.19) holds.

Finally use the biLipschitz property d{f (M), f(1,1,0)) = d(M,(1.1,0)) +
o(1), that is d((1, =1, 7 + 2),(1,1,0)) = d((1. 1, —(= + 2)), (1, 1, 0)) + o(1).
Translating in term of the distance from the origin dp,

do(O, -2, n—z) = do(O, 0, —(n+2))+o(l) =3 do(z; 77,'—2) = r(m + 2)+o(l).

(5.20)
We have concluded that the point (2; 7= —2) has distance from the origin /7 (7w + 2)+
o(1). The latter number is greater than 4 if o(1) is small enough. But the ball of
radius 4 contains the rectangle [0, 2] x [0, 2] (see Section 2). The point (2; 7 — 2)
is strictly inside the mentioned rectangle. This is in contradiction with (5.20). O



Vol. 83 (2008) Stability of isometric maps in the Heisenberg group 127

5.2. Image of points outside the ¢-axis

Theorem 5.4 (Theorem D). There are o and Cgy absolute constant such that, if f is
(14 e)-biLipschitz, ¢ < &g, f(0) =0and A = I in Theorem B ai the scale R > 0,
then

d(f(z;0).(z:0) < CenR,
for any (z: t) such that [z]? + 71172 < CoR.

Proof. We prove the statement for R = 1. Consider a point P = (z; ), outside the
set {r = 0} U {r-axis}. To locate quantitatively the position of f(F), we will use
Proposition 5.1. Therefore it is convenient to think the point P in the form P = y (s),
where y 1s the geodesic in (5.2), for some g > 0 and 0 < s < wg. We may also
choose ¢ = 0. The choice R = 1 means g ~ dp(z;t) < Cy, Cp absolute.

Roughly speaking, if the point is near z = 0 or near the r-axis, we will get the
required estimate by means of the previous results and the triangle inequality. If
instead the point is “far” from {t = 0} U {¢-axis}, then we will invoke Proposition 5.1.

To be more precise, we will distinguish the following cases:

Case A.1: 0 < g < eq11 ((z; 1) close to the origin).

Case A2 e11 <g <Cpand 0 < % < &9 ((z: t) close to the r-axis).

Case A3: e1) <q < Coandw —ejp < o <7 ((z: 1) close to the plane {r = 0}).

Case B:e11 <g < Cpand g9 < 3 <1 — e10 ((z; 1) far from {r = 0} U r-axis).
We discuss first the cases A, which all will be treated by the triangle inequality.

Case A.1. Recall that f£(0) =0 and y(s) = (z; t). The triangle inequality gives

d(f(z:0), (1) <d(f(z: 1), (0:0)) +d((0: 0, (z: 1))
< 2+ e)d((z 1), 0,0) < Cey.

Case A.2. We have 0 < 3 < g9. Then

d(f(z:0), (z:0)) <d{f(z:0). f0:0)) +d(f(0: 1), (0: ) +d((0: 1), (z: 1))
< (2+e)d((z,1),(0; 1)) + Ces < Cl|z| + Ces,

where we used biLipschitz property, triangle inequality and (5.7). Moreover, since
8

7 =89 (5.2) gives, for small ¢, |z] < Cegg. Therefore the right-hand side can be
estimated by Ceg which 1s clearly smaller than Ceqy.

Case A.3. Use the triangle inequality and (3.6).

d(f(z:0), (z0) <d(f(z0). f(z:0) +d(f(z:0), (z:0)) +d((z: 0). (z: 1))
< (24e)d((z:0), (z: 1)) + Ce3 < (24 &)/t 4 Cs3.
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Since 7 > £ > 7w — g19, we have, by (5.2), if ¢ is small enough, |¢| < e19. Therefore
the last line can be estimated by Ceg.

Case B. Write again (z; t) = y (s) and, as usual f = (¢; t). The key point is to show
that, since, by hypothesis, (5.1) holds with A = [ and R = 1, then

((zit) =z+beg and t(z:1) =1+ bey, (3.21)

for any (z: ) such that |z|> + || < Co and Case B holds.
To prove (5.21), recall that we know that f(0; 1) = (bea; t+bey), by Theorem 5.2.
Then, by our result on the image of a horizontal plane, Theorem B,

FO:07 fz0) = (2(1 + be))e?; bey),

for some B € [0, 2]. Therefore, writing f'(z; 1) = f(0; 1) - (z(1 + bep)e'?; bey), it
turns out that t(z; ) = t + bey. This 1s the second equality in (5.21).

In order to get the first one, we need to locate ¢(z; t) with the help of Proposi-
tion 5.1. This will provide information on the angle 8. Recall first that, if @ = y(;rgq),
thend(f(Q), Q) < Ce4. The triangle inequality, the biLipschitz assumption and the
(already proved) second equation of (5.21) give

d((&(z )0, Q) <d((C(z )i ), flz D) +d(f(z:0), () +d(f(Q), Q)
< Ces + (1 +e)d((z;1), Q) + Ceqg = d((z:1), @) + Ces.
(522)

To write (5.22) in a form which 1s more suitable for the application of Proposition 5.1,
recall that (Case B) we are assuming g > €11 and m — g > g19. Then, since
(z;1) = y(s) and Q = (y(7rq), we have

s
d((z;1), Q) =mqg — s = q(n — ;) > £11€10 = &6.

Then g5 = 8% < g6d((z: 1), ). Thus (5.22) takes the more dilation invariant form
d((¢(z,0):0), Q) <d((z: 1), O){1 + Ceg}. (5.23)

Looking at (5.23) and recalling ¢(z: 1) = ze'® + beq, we get by triangle inequality
that
Q € B((ze'; 1), d((z: 1), Q)(1 + Ceg)), ie.
R_pQ € B((z:1),d((z: 1), @)1 + Ceg)),

where R_g(w; 5) = (¢~ w; s). This, together with the assumption of Case B, which
provides (5.4) with o = Ceg, enables us to apply (5.5) with o = Cegg, which reads
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IR_pQ— Q| < Cqe* = Cqes. Dividing both members by g gives ¢/ —1| < Ces,
hence |¢(z; 1) — z| < Ceg. Thus (5.21) is proved.
Finally, write f(z; t) in the form given by (5.21). Then

d(f(z:0), (z:0)) = do ((—z: —1) - (z + beg: t + bey)) < Ceg < Ceyy,

as desired. The proof of the theorem is concluded. O

5.3. Proof of Proposition 5.1. Observe first that statement 1 follows from the proof
of Lemma 2.1. In order to prove statement 2, note that, by dilation invariance, we
may choose g = 1. Letting « = 0 and g = 1 in the geodesic (5.2) gives

P =y(s) = ((1 —coss),sins, 2(s — 7 — sins)).

Itisd(P,Q)=a—s.PutR:=(1+0)d(P,Q)=(1+0)(m —s).
Before proving (5.5), we show that 27 = 2, where 2 is the seemingly smaller
set
Q.= B(P, (14+0)d(P, Q)) N{r =0}

The equality €21 = €2holdsif the surface Syp = S(P, R)N{r > 0} canbe viewed as the
graph of a function, (z; 1) € Sy ifff = 1(z), and this is true if and only if the “equator”
Eof S(P, R)liesin{r < 0}. By equator, wemeantheset £ = P-(S(O, R)yN{t = 0}),
the set of the points in S(FP, R) which have parameter ¢ = 0 (see Section 2). The
equator of S(O, R) has parametrization (Rcosw, Rsina, 0), 0 < o < 27. After a
left translation by P, we see that the 7-coordinate of a point in /£ has equation

t(s,) =2(s —m —sins) + 2Rsinscose — 2R sin (1 — coss)
=2(s —m —sins) + 4R sin(s/2) cos(s /2 + «)
<2(s —m —sins) +4Rsin(s/2) = k(s).

We want then to show that k(s) < 0 when o/® < 5 < 7 — ¢!/1°. Passing to the
coordinate # = 7 — s and replacing R by its explicit expression, the inequality holds
if

0 < u—+sinu —2u(l + o)cos(u/2) = h(n), ifc/1® <u <. (5.24)
A Taylor expansion shows that, for u = o /16 (5.24) becomes
1 1
20,1/16 . 101/16+1/8(1 +0(1)) - 20,1/16 . 80_3/16(1 _|_0(1)),

whichis true if o < o9 1s small enough. For the other values of u, we take a derivative
in (5.24),

h(u) = ZCosz(u/Z) —2cos(u/2) +usin(u/2) —bo = g(u) — bo.
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Observe that g(¢ /19 = 1/4 - 61/3(1 4 bo) and that
e (u) = 2sin(u/2) — 2sin(u/2) cos(u/2) + %cos(u/2) > 0when O <u <m.

Hence, /' (1) = g(u) — bo > g(o1/1%) —bo = 0, if 61/1% < 4 < 7. This shows
that k(s) < O, hence that 2 = €27.

We now return to the proof of (5.5) for €21 = €2. The generic point A of the upper
half sphere ST (0, R) has coordinates

Ala, p) = (2% o8 zsm(iﬂ sina, 228 —;izn(fsz)),

where |¢| < 2m, and 0 < ¢ R < 2m. Denote by (x, v, £) the coordinates of the point
P-A:=(x,y, 1) e ST(P,R). Then

(5.25)

in(pR/2 in(pR/2
x:(l—COSS)—I—ZMCOSOé, y:sins+2Wsina
2R : in(¢pR 8 . , R
t:2(s—7r)—|—?—2{sms—|—smq(;§ )}—|—asm(%)sm(%)cos(a—l—%).
(5.26)
Note that letting « = —5, ¢ =lando =0,ie. R =7 — s, we have 1 = 0 for all

s € (0, ), as expected.

To prove the proposition, take a small o, fix s satisfying (5.4) and consider the
function f = 1 («, ¢) defined in the last line of (5.26). We prove the following two
statements.

Step 1. For small o, the t-coordinate corresponding to ¢ = —35 and ¢ = 1 is positive.
Step 2. For any point of the form

() = (@, b) = (—% tocos g, 1 +al/t sinv,b), (5.27)

itis t < O forany ¢ € [0, 27 ].

Once the described steps are proved, we will show that they ensure the proof of
the proposition.

Proof of Step 1. Puta = —%, ¢ =1and R = (1 + o )(wr — s) into the third equation
of (5.26). After some simplifications and a Taylor expansion near o = 0, we get

, . e s 0o
t =20(m —s)—2sins —2s8in(s — o (m — 5)) + 8sin (5) coS (5 — 5(71’ —s))
§

= Yo — s)(l 4 cos s + 2sin? (2)) +o(o(r —5))
=4do(m —s)+ (m —s)o(o),
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as o — (. Then ¢t > 0, if o 1s smaller than an absolute constant og.
Proof of Step 2. We introduce the more comfortable variables x, 8, A,

x=m—s5, ¢=14+8, oa=-—-s5/24Ai.

Then R = (1+B)(1+0)x. PutalsopR —x := § = (B8 +o0 +oB)x. Then, starting
again from the last line of (5.26), we get

((1+ )

7 = (1+ B)o — B)x — (1 + B)*sinx — sin(x + &)

)
+4(1 4 B)cos (%) sin (% s 5) COS A.
Expanding the right hand side for ¢ and § near 0, we get

1(1+8)°

5 =0() = px - B2x —sinx — 28sinx — BZsinx

52
= sin(x) — cos(x)8 + sinx— + 05

X

+ 4 cos (g){(l +ﬁ)cosk(sin(2)

reos (3)2 —sin (5)2 4 009)]

Another Taylor expansion at the second order in f, A, 8, gives

{. i }1 = sin (g) + ﬁ sin (%) + Ccos (g)% + Ccos (%)5%

Coxn8E A x R
Sm(z) g 2 Sm(z) T,

with the estimate Ry < Co(|B)° + |A]> +|8]), as soonas B+ & + 8 < og. Co and
og are absolute constants. Observe in particular that all these expansions are uniform
in the variable x € [0, 7]. Now recall that § = (8 + o +0B)x = px + O(o). Then
we can write Bx instead of 8 and 2x? instead of 8%, making an error of O (o). Then

t(1+ B)? ’
(—J; A) = —ﬁz{ SINX — X COSX — %Sinx} — A%sinx + Ry,

with Ry < Co(o + |81 + |A[%), as before, if #+ 4 + 8 < og.
. : 2 L.
To conclude the argument, note that the function x +— sinx —x cos x — 7 sinx is

increasing on (0, ) (it has positive derivative). Therefore, since it behaves as C1x3,
. . 2
C1 > 0,near O, it turns out that sin x —x cos x — 7 sinx > C1x3,forany 0 < x < 7.
Then 5
t(1+8)

7 < —p2C1x* — A% sinx 4+ Carfo + |81 + A1),
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provided o, £, A are small enough. Now hypothesis (5.4), in term of our variable x,
becomes x > o/ and x < 7 — o178, so that it is also x* > 7710 and sinx >
C30 /8, Write 8 = V% cos r, » = o /*sin . Then

1(1 2
% < —Cro 1716 cos? i — C30°/% gin? i+ Cro?/4,

Now if & is small enough with respect to the absolute constants C;’s, we have proved
that # < 0. This ends the proof of Step 2.

Now, if the Carnot sphere were convex, then Steps 1 and 2 would give almost
immediately inclusion (5.5). This is not the case, but we will show that all of the
interesting action takes place in the convex part of the ball’s boundary.

We claim that A(u(y)) < ST(O, R) N 8B.,(0, R), where B, denotes the
convex envelope, in the Euclidean sense, of B(O, R). By Lemma 2.1, this amounts
to showing that |A; (e ()| > IR \where we decomposed A = (Aj; Ap). Clearly

g
A(a, ) = 2@4@, where (¢, ) are of the form (5.27). This implies ¢ €
[1 —ol/4 1464 Moreover, R = (m — s)(1 + &) and s satisfies (5.4). Then we
have ¢ R/2 € 10, w/2[. Thus, the elementary inequality sin(x) > %x, x € [0,7/2],
provides the required lower estimate on |Aq|.

Let pu* = (u7: 13) := P - A(p). After a translation, the fact that the curve A()
lies in the convex part of ST(O, R) implies that Q' = B.,(P,R)N{t = 0} isa
convex set contained inside the curve u}. A fortiori, @ C Q' is contained inside 1].

To finish the proof, we have to show the inclusion in (5.5). Since €2 1s contained
inside p47, it suffices to prove that

() — 2| < Coatt, € [0, 2], (5.28)

for some absolute Cy > 0. After a translation, this amounts to showing that
|AL () — A1(—=3, 1)| < Coo'/*. The lauer follows from the definition (5.27)
of p and the elementary estimate |Dg, A1(¢, )| < CR < C for the Euclidean
derivative’s norm of Aj. U]

6. Approximation of derivatives

We prove here the following theorem:

Theorem 6.1. There are universal constants C > Qand ey > Osuchthat the following
statement holds. Let f be (1 4 &)-bilLipschitz with ¢ < gy, f(0) = 0. Assume rhat
for somer > 0,k € N,

d(f(z:0), (z:0) < Cspr,  (z:1) € B(O, 7).
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Denote by Jf the Jacobian matrix of f in the sense of Pansu. Then,

f 1S (x, y. 1) — | dxdyds < Cegqar®. (6.1)
B(0,C—1p)

In the above estimate, I = (|} {) and || - || denotes the norm of a 2 x 2 matrix.
By the elementary properties of Pansu derivative, see Section 2, if a given map

f = (&, n, t) is Pansu-differentiable at a point P and J f = (;’j f ), then we have

d
Eg(esx(m))\szo = X&(P) = (Df(P)(1,0,0))), = a(P). (6.2)

Here we used the notation (x, y, t)1 = x for the first component and s — "X (P)
denotes the integral curve of X emanating from P at s = 0. An analogous formula
holds for Y.

Proof of Theorem 6.1. 1t is not restrictive to choose r = 1. First we show thatif f 18
(1 4 e)-biLipschitz, then the Jacobian matrix J f satisfies

Jf(PYTTf(PYy=1I,+bs forae P e, (6.3)

where the entries of » are bounded by an absolute constant. In particular its diagonal
components, whose sum plays the role of the divergence that appears in John’s proof,
satisfy the estimate

le(P)| <14+ Cre, |86(P)| <1+ Cie forae. P. (6.4)
To prove (6.3), recall that for a.e. P there are «, £, v, & such that

(au + Bu, vu + dv, (ad — ﬁy)w) =Df(P)(u,v, w)
= lim dy/0 { F(P)™" £ (P8 (ut, v, w))}.

Then, letting as usual dp to indicate the distance from the origin

do(oeu + Bv, yu + dv, (xd — ﬁy)w)
= lim do (815 {/(P)™" - [ (P - 8, v, w))})
= (1 4+ be)dy(u, v, w),
by the biLipschitz property. Taking w = 0 we get, at any differentiability point P,

‘(ﬁ)| (1 +be) =dp(u, v, 0)(1+ be) = do(au + Bv, yu + dv, ()) — |Jf(P)(Z)| ’
(6.5)
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for all (i, v) € R2. Equality (6.3) then follows by simple considerations of linear
algebra in the Fuclidean plane. Finally, (6.4) follows immediately from (6.3).

Our next task 1s to follow John’s argument, starting from a one dimensional
estimate and integrating it by Fubini’s Theorem.

Consider the set Q1 = {%X(0, v, 1) : ||, |z]. |s| < 1}. Here and in the following
we denote by e*X(0, y, t) the integral curve of X starting at s = 0 from the point
(0, v,¢). The map (s, y, ) — X0, v, 1) = (s, y, t + 2ys) is volume preserving.
By the change of variable formula and Fubini Theorem, we get the formula

1
f ¢ [ dydt [ ds g(e*X (0, v, 1)), 6.6)
§21 l¥l,]t]=<1 -1

for any function g. By Pansu’s Theorem, there is ¥ C [—1,1] x [—1, 1] of full
2-dimensional measure such that, given any (v, f) € X, the map f is Pansu differen-
tiable at the point ¢*X (0, y, ) fora.e. s € [—1,1].

Introduce the function

Ox, v, 1) = flo,y, 07 o,y t) o= (ulx, vy, 0, v0x, v, 1), wix, v, 1)

Note immediately thatu(x, v, ) = x—=&(x, y,0),v(x, y,t) = y—nlx, y, t). Inspite
of the fact that & may be neither Lipschitz, nor Pansu differentiable, see Remark 6.2,
we can define at any P where f 1s Pansu differentiable, the 2 x 2 matrix

JO(P)y:= 1, — Jf(P),

a(r) E(P)) _ (1 —a(P)  —B(P) )

or, letting Jb = (

So T

y(P) 5(P) —y(P) 1-8(P)

By the formula for Jf in (2.5), given (y, f) € %, we have for almost any s € [—1, 1],
d d
—u(e(0, v, 1)) = <=(s = &0, y, 1)) =by (6.2)
ds ds
=1 —a(e™0,y,0) > 1 — a0, y,0)| = —Cye,

/—\ < R

by estimate (6.4). Therefore %u(eSX(O, v, 1))+ Cre = 0.
Now we are ready to integrate: take (v, 1) € 2. Then

_M(eSX((), Yy, t)) ds
S

1 1 d
f 30, y, 1))lds =[
-1 -1 d

! d sX
sf H—u(e ©, v, 1)) + Cie
_ ds

1

+ C]S}ds

! { d s X
:f —u(e (O,y,t))—|—2C18}ds
_1 lds

1
= u(eX(0, y, 1)) — u(e (0, y, 1)) + 4C;¢.
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By hypothesis d(f(P), P) < Cgg. Since (f(P)~'. P) = u(P), the first two terms
can be estimated by Cegy. Thus

1
f 12(e°X(0, v, 1)|ds < Cep  forae. (v,1) € [—1, 1%
]

Integrating over [—1, 112, see (6.6), le |&| < Ce. The same argument can be used
with the field Y instead of X. Then we get, for a suitable Q2 C €2,

f & + 18] < Cay.
Q

The estimate of the trace of J & is accomplished.
The remaining part of the proof can be concluded exactly as in John’s paper (see
[J p. 407]). We just sketch it. Recall that Jo=1—Jf. PatlU =Jd+ (TP and
= (JOYT TP, Thus |V = U|| = |(JAHTTf —I|| < Ce, by (6.3). Ultimately

]||J<I>||2 [||V||<[ tr( V>|<Cf ()] < Cey.

Itnow suffices to apply Holder’s inequality fQ ||J~ bl <C ( fQ ||J~ <I>||2) . The proof
is concluded. O

Remark 6.2. Consider f(x, y,t) = (2x, v, 2t), (x, y,t) € H. The function f has
Lipschitz constant 2. The corresponding map ®(P) = f (P)~1. P has the form

CD()C, Y, t) = f(xa Y t)_l ¥ ()C, v, t) — (_X,O, —f —|—2xy)

Let x # 0. Testing the Lipschitz condition for & for the points P = (x, y, 1),
Q= (x,vy+3d,t—2xd)as d — 0, we see that the Lipschitz constant of ¢ at (x, v, )
can not be finite. Moreover, & is not Pansu differentiable at P.

Theorem 6.1 says that J f belongs to BMO(H). In the Euclidean case, the John—
Nirenberg inequality [JN] allowed John to deduce a local exponential integrability
result for the Jacobian of a biLipschitz map. In the context of the Heisenberg group the
same conclusion holds, due to the far-reaching generalization of the John—Nirenberg
inequality due to Buckley [Bu].

Corollary 6.3. There exist constants o, C > 0 such that, if ¢ < &g, f is (1 + &)-bi-
Lipschitz onH and B is a ball in H, then

I 17£(Q) - (JH)5
. fB e ( Jag <2 6.7)

Cerp

In (6.7), (Jf)p is the average of Jf on B and the constant 2 on the right hand
side could be replaced by any constant A > 1, changing the value of C.
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7. Examples

In this section we discuss some examples.

Example 7.1. We show here that, in Theorems C and D, the powers of ¢ on the right
hand side of the inequalities can not be improved to be !, but have to be at least &'/2.
Consider the dilation

flz.t) =bd1ye(zt) = (L+ &)z (1+8)"1) (7.8)

which is (1 + ¢)-biLipschitz in reason of the homogeneity of the distance function. It
is obvious that d{( f(0; 1), (0; 1)) = ¢ /ed((0; 0), (0; 1)) for some explicit absolute
¢ > 0. This shows that the estimate of Theorem C can not hold with ¢! in the
right-hand side.

Next, we consider again the function f in (7.8) and we show that for any isometry
I" of H there is a point P such that (P, O) < /7 and d(f(P), ['(P)) > c. /e for
some absolute ¢ > . By the proof of the isometries’ classification in the Appendix,
any 1sometry 1" of I can be written as 1" = L, 5 © Ry o J, for some 60 € R,
(w,s) € Hand m € {0, 1}. We assume m = 0, the other case being similar. We
have I'(0; 0) = (w; s) and I'(0; 1) = (w:; s + 1), hence A := d(f(0;0), I'(0; 0)) =
do(w; s)and B := d(f(0; 1), (T'(0; 1)) = do(w, s — (2e +&?)). From the geodesic
equations, (2.6) or (2.7), we deduce that, for fixed w, max{A, B} is minimized when
5= %(28 +¢2), hence A = B. Keeping s = %(28 + £2) fixed, it is easy to see that
A is minimized when |w| = \/2s/7 and A = \/7s/2 ~ /me/2, for small ¢.

Next we briefly describes two procedures for producing contact maps, devised
respectively by Kordnyi and Reimann [KR1] and by Capogna and Tang [CT]. Recall
that a C! diffeomorphism f: H — H is contact if its differential sends horizontal
vectors to horizontal vectors. Before introducing the procedures we observe the
following standard fact. Let f: H — H be a C' map and assume that f is contact.
Denote by Jf the invariant components of its Jacobian, see formula (2.5). Then,
letting

L =sup |[Jf(P)I, (1.5}
pel
the map f is L-Lipschitz. Here || - || is the operator norm of the matrix, acting on

FEuclidean R2. We omit the standard proof (but see [AM, Theorem 3.2], where a more
general statement is proved).

Example 7.2 (Kordnyi and Reimann type maps.). In [KR1], Kordnyi and Reimann
show how to produce quasiconformal maps as flows of a suitable vector field.
Consider a function p: H — R, say C?-smooth. Define the vector field

1 1
v=—2Yp)X + 2 (Xp)Y + pT, (7.10)
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Denote by f;(P), P € H, the solution of the Cauchy problem % Js(P) =v(fs(P)),
Jo(P) = P. Tt is known that such a vector field generates a contact flow. The
differential of the map f; at P € H sends #p mto #¢py. See [KR1, Theorem 3,
p.331].

It is not difficult to check, by a slight modification of the argument in [KR1], that
a condition on p which ensures the biLipschitz property is an estimate of the form

supl|X2p| + |Y2p| + | XYp| + Y Xp|} = Cy < . (7.11)
R3
In that hypothesis, for all s € R the map f; is biLipschitz and the bil.ipschitz constant
is controlled by L = £€1hs!,
Note that, in order to obtain an estimate on the Lipschitz constant, we assume

(7.11), which is slightly stronger than the one in [KR1], which involves only a bound
onsup|Z?p|,Z =X —iY.

Example 7.3 (Maps which preserve vertical lines.). We follow [CT], [BHT]. Con-
sider a nonsingular contact map f: H — H of the form f(z:¢) = (¢{; 1) =
(¢(z); t(z;1)). We say that f is vip, vertical lines preserving. If f is vlp, then
Jf(P) coincides with the Euclidean Jacobian of ¢. If f as above is C?, a standard
calculation shows that f is vlp if and only if detJ¢(P) = y is constant, y # 0,
and t = B(z) + vt, where B can be recovered from its Euclidean differential,
1/2dB = (xdy — ydx) — y(udv — vdu), where x +iy =zand u +iv = ¢.

By (7.9), we have that the biLipschitz norm of the vlp map f = (¢; ) equals
the Euclidean biLipschitz norm of the map ¢ : R — R?. Observe that the dilation
814« considered above is vlp. Other interesting examples of vlp maps arise when we
consider ¢ to be one of the spiral-like plane maps in [GM]. By lifting their maps to
I we obtain, for k£ < 0, the vlp maps:

Si(z, 1) = (ze'*18 1 ¢ k|72,

By the results in [GM], Sy is e-biLipschitz, with @ = FEVEEY — 3 4 3114 (k).
The image of the plane {t = O} under Sk is the cone {(w,s) : s = |k||w|?}, hence
this class of examples dos not say anything new on the power of ¢ in Corollary 3.3.

Appendix: the case ¢ = ()

We show here that any isometry of H which fixes the origin has the form f(z;¢) =
J" Ry forsome & € Rand m € {0, 1}, see Section 2. There are at least two proofs in
the literature. The first 1s by noting that 1sometries are 1-Quasiconformal maps and
that the latter are described in [KR1] and [C1]. The second consists in analyzing the
geometry of the group H at the level of its Lie algebra [Ki].
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The simple proof we provide below relies on properties of the distance d alone. We
were interested in finding such a proof to have a clue at how to investigate bilLipschitz
mappings of H from a purely metric point of view.

Let f: I — H an isometry such that f(0) = 0. Consider the geodesic y (s) =
(s,0,0),s € R. This is a globally minimizing geodesic and it is sent by the isometry
f to another globally minimizing geodesic, which has the form f (s, 0, 0) = (sv; 0),
v% + v% = 1. Up to a rotation we may choose v = (1, 0). In other words we may
assume that f is the identity on the line y = ¢ = 0. The same argument shows that
the image of the plane {r = 0} is the plane itself.

Next, look at the set S = {(x, y,0) : x2 + y* = 1}. Since rotations are isome-
tries and (—1,0;0), O, (1,0;0) are collinear, f(S) = S, f(1,0,0) = (1,0,0)
and f(—1,0,0) = (—1,0,0). Up to a transformation of the form (x, y, ) —
(x, —y, —t) we can assume that ST := SN {y > 0} is mapped onto itself. We claim
that f is the identity on S. Suppose there is a point (¢/“; 0), 6y € 10, [ which is not
sent onto itself by £, say f((¢/%;0)) = (/%; 0) with #; > 6 (the opposite case can
be treated in the same way). Inductively (e!%+1; 0) = f((¢!%: 0)). Since the map is
one-to-one, the sequence of angles is strictly increasing: g < 01 < -+ < Gy < -+
Either there is 6 such that 6; < 7 and 6,41 > m, but this contradicts the fact that
f(ST) C ST, or the sequence (6,),0 is infinite. Since f is an isomeltry,

A((e150), (¢1%0;0)) = d((e™; 0), (¢ 0)) = -+ = (e 0), (e/1;.0)) = .-

Now 6, — 6 < m, which implies d((¢'%; 0), (¢!%~1; 0)) — 0, as n — oo. But this
contradicts the fact that 4((&'%: 0), (¢!%1: 0)) is the same for all n.

From the above it follows that, up to a composition with a map J, the map f,
when restricted to the plane + = 0, is the identity.

Next consider the plane ¢ = 7, where ¢ > 0. This plane is sent in a left translate
of the plane + = 0. But the only left translates of + = 0 which do not intersect the
plane ¢ = O itself (this would violate the injectivity of f) have the form ¢ =constant.
Therefore f({t =1}) = {t =}, for a suitable f # 0.

Now we claim that f(0,0,7) = (0, 0, r). This follows as (0, 0, 1) is the unique
point of the plane 1 = ¢ which can be connected through geodesics lying in the
plane 1 = ¢ to any other point (z; 1), z € C, the same happens to its image. Thus,
£(0,0,1) = (0,0, ). Formula (2.8) tells also that it must be f = =¢.

Assume first that 7 = 7 (the opposite case will be discussed later). The image of
the global geodesic (s, 0, 1), s € R, is of the form f (s, 0, 1) = (sv; 1), where |v| = 1.
To recognize that v = (1, 0), observe that

d((s,0,1),(s,0,0)=d(f(s,0,7), f(5,0,0)) =d((vs: 1),(s,0,0)) foralls e R.
After a left translation (write as usual dy for the distance from the origin),

do(0,0,7) = do((—1 + vy)s, vas. T +2vas?) forall s € R.
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But this can hold only if v) = 0 and v; = 1 (otherwise the point ((—1+vq)s, vys, [+
v252) would go to infinity, as s — o0).

Then, if (0,0, 1) = (0,0, 1), f is the identity on ¢ = 7. The same argument can
be repeated at any quote 1 = t*, t* € R and the proof is finished.

Finally, consider the case f(0,0,7) = (0,0, —f). Arguing as before, write
f(5,0,7) = (vs: —1), s € R. Then

d((s, 0,0, (s,0,0)) =d(f(s,0,2), f(s,0,0)) = d((vs: =), (s, 0,0))
=do((v1 — s, vas, = + 2v2s%), s eR,

which implies v1 = 1 and vo = 0. Now we discover that in this case f cannot be
an isometry. Without loss of generality suppose ¢ = 1 and choose (z: 1) = (1,0, 1).
This gives

d((1,0,1),(1,1,0)) =d(f(1,0, 1), £(1,1,0)) =4((1,0, -1), (1, 1,0)),

which implies do(0, 1, 1) = dp(0, 1, 3), a false equality. ]
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