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Asymptotic bounds for separating systoles on surfaces

Stéphane Sabourau

Abstract. The separating systole on a closed Riemannian surface M, denoted by sys0(M), is
defined as the length of the shortest noncontractible loops which are homologically trivial. We

answer positively a question of M. Gromov [Gr96, 2.C.2.(d)] about the asymptotic estimate on
the separating systole. Specifically, we show that the separating systole of a closed Riemannian
surface M of genus and area g satisfies an upper bound similar to M. Gromov's asymptotic
estimate on the (homotopy) systole. That is, sys0(M) < log g.

Mathematics Subject Classification (2000). Primary 53C22; Secondary 05C38.

Keywords. Systole, separating systole, systolic area, systolic ratio, asymptotic bound, surface,
graph.

1. Introduction

Let M be a nonsimply connected closed Riemannian surface. The (homotopy) systole
of M, denoted by sys ti\(M) or sys(M) for short, is defined as the length of lite shortest
noncontractible loops in M.

We define the optimal systolic area of a nonsimply connected closed surface M
as

Area (M)
o(M) inf —Ä (1.1)V

'

sys (M)2
K '

where the infimum is taken over the space of all the metrics on M. The optimal
systolic area is a topological invariant of surfaces.

The exact value of the optimal systolic area is known for the torus, cf. [Be93],
the projective plane [Pu52] and the Klein bottle [Ba86]. For a notion of systole
extended to the isometry groups of Riemannian manifolds, the optimal systolic area
has also been computed for the 17 crystallographic groups of the plane and the triangle
groups [Ba93]. No other exact value of the optimal systolic area is known.

However, nontrivial lower bounds on the optimal systolic area of every nonsimply
connected closed surface have been established, cf. [Gr83], [Gr96], [KS06a], [KS05],
[ KS06b] and [Sa06a] for recent developments. For instance, we deduce from [Pu52]
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and [Gr83, 5.2.B] that every nonsimply connected closed surface M satisfies

2
a (M) > - (1.2)

71

with equality if and only if M is homeomorphic to the projective plane. Such an

inequality is called a systolic inequality.
In higher dimension, nonoptimal systolic inequalities exist for essential manifolds

[Gr83] and optimal systolic inequalities exist for the notions of one-dimensional stable
and conformai systoles, cf. [Gr99], [IK04], [BCIK], We refer to the expository texts

[Be93], [Gr96], [Gr99] and [CK03], and the references therein for an account on the

subject and other generalizations in higher dimensions.
The systolic inequality (1.2) can be improved by taking into account the topology

of M. For instance, the following result of M. Gromov shows that closed surfaces of
large genus have a large optimal systolic area.

Theorem 1.1 ([Gr83, 6.4.1)'|, [Gr96,3.C.3]). There exists a positive constant C such

that every closed surface M of genus g satisfies

o(M) > Ç—Ç-(1.3)(In0
It is shown in [KS05], using different techniques, that (1.3) holds for every C < tt

provided than g is large enough. We refer to the end of this section for a discussion
about the different proofs of this result. See also [Gr83], [Gr96] and [Sa06b] for
generalizations in higher dimensions.

An upper bound on the optimal systolic area of surfaces of large genus has been

found by P. Buser and P. Samak [BS94], Namely, they construct hyperbolic
surfaces (M. hyp) of genus g, obtained as coverings of an arithmetic Riemann surface,
such that

sys(M.hyp) > In g (1.4)

Other constructions and higher dimension generalizations can be found in [KSV],
Combining the inequalities (1.3) and (1.4), we obtain

C-^-2 <or(M)<C—^2 (1.5)
(In g)z (In g)z

where C and C' are two universal positive constants.
In particular, there is no lower bound on a (M) linear in the genus g (see [BB05]

for a generalization in higher dimension).
Given a closed Riemannian surface M of genus g > 2, we define the separating

systole, denoted by sys0 (M), as the length of the shortest noncontractible loops in M
which are homologically trivial. That is,

sys0(M) inf{length(y) | y induces a nontrivial class in
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In this definition, the homology coefficients are in Z and the commutator of the
fundamental group of M is noted [jti(M),

Similar to the optimal systolic area ct(M), we dehne

Area (M
crû (M) inf ^4

syso(M)2

where the infimum is taken over the space of all the metrics on M.
We clearly have sys(M) < sys0(M), cf. (1.8) for a more precise estimate, hence

ct(M)>ct0(M).
Lower bounds on cto(M) can be deduced from [Gr83, 5.4] (indeed, the length of

the commutator of two independent loops gives an upper bound on the separating
systole). In particular, for surfaces of large genus, M. Gromov showed the following.

Theorem 1.2 ([Gr83, 5.4.B], [Gr96, 2.C.2.(d)]). For every a 1, there exists a

positive constant Ca such that every closed surface M of genus g > 2 satisfies

cto(M) > Caga

Hie hyperbolic surfaces (M, hyp) constructed in [BS94] satisfy

sys0(M,hyp) > lng. (1.6)

Ilierefore, Theorem 1.2 does not hold for a 1.

M. Gromov asked in [Gr96, 2.C.2.(d)] whether a lower bound on ctq(M) similar

to (1.3) exits. We answer this question positively. Specifically, we prove the

following.

Main Theorem 1.3. There exists a positive constant C such that every closed
surface M ofgenus g > 2 satisfies

&a{M) > (1.7)
(lng)2

The estimate (1.6) shows that the inequality (1.7) yields the right asymptotic
bound. More precisely, a double inequality similar to (1.5) holds for cto(M

Such a double inequality also holds for ct^(M), where ct//(.V7) is defined by
replacing in (1.1) the systole with the homology systole, cf. [Gr96]. Recall that the

homology systole, denoted by sysH(M), is the length of the shortest homologically
nontrivial loops in M.

We clearly have sys(M) < sysH(M) but no lower bound on cto(M) can immediately

be deduced from a lower bound on ct# (M
Note also that

sys(Af) min{sys0(Af), sysH(M)}. (1.8)
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The systolic inequality (1.3) was first proved in [Gr83, p. 74] by using a technique
known as "diffusion of chains". It was then improved in [KS05], where an upper
bound for the entropy of a systolically extremal surface in terms of its systole is

established. As observed by F. Balacheff [B04], the inequality (1.3) can also be

derived by combining the works of S. Kodani | Ko87 |, and B. Bollobàs, E. Szemerédi
and A. Thomason [BT97], [BS02] on systolic inequalities of graphs.

We will follow this latter approach to prove Main Theorem 1.3. More precisely,
we construct a graph on a surface (Section 4), establish systolic inequalities on this

graph (Section 2), relate the length of cycles on the graph to the separating systole on
the surface (Section 5) and deduce a lower bound on the area of the surface through
a corea formula as in [Ko87] (Section 6).

Acknowledgment. The author would like to thank the referee for her/his comments,
especially on systolic inequalities on graphs, cf. Remark 2.3.

2. Systolic inequalities on graphs

By definition, a metric graph is a graph (i.e., a finite 1-dimensional simplicial complex)
endowed with a length structure.

The homotopy class of a graph F is characterized by its first Betti number h(V),
which can be computed as follows:

b(T) .ctFi I'd') • //il'i (2.1)

where ri IT. u(F) and «(T) are respectively the number of edges, vertices and
connected components of F.

Definition 2.1. The systole and the total length of a metric graph F, denoted by sys F
and length(r), are respectively defined as the length of the shortest noncontractible

loop of T and the sum of the lengths of the edges of F. These two metric invariants
do not depend on the simplicial structure of the graph.

We define the systolic length of F as

length T
a'( r)

sys(F)

For every b > 1, we also define a homotopy invariant of a graph as

a'(b) =inf{a/(r) | F metric graph with first Betti number b}.

We put a ' when we deal With graphs (as in a'(T) or cr'ih)) and no ' when we deal

with surfaces (as in a (A/)).
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In [BS02], B. Bollobàs and E. Szemerédi improved the multiplicative constant of
a systolic inequality for graphs established by B. Bollobàs and A. Thomason [BT97].
Specifically, they proved

Theorem 2.2 ([BS02]). For every b > 3, we have

3 b - 1

n i» > (2.2)~ 2 log2 (b - 1 + log2 log2lb- 1 + 4

where log2 is the logarithm to the base 2.

In particular, for every b > 2, we have

o'(b) :
'

[' (2.3)
4 In b

Strictly speaking (2.3) is a consequence of (2.2) only for b > 5. When 2 < b < 4,
the bound (2.3) still holds because the systolic length of a graph is at least 1, that
is <y'{b) > 1.

Remark 2.3. The referee of this article pointed out to the author that a bound similar
to (2.3) (with a slightly worse constant but this does not matter for our purpose) can
be obtained from elementary arguments that do not rely on the main result of [BS02],
Indeed, the estimates (1 and (2) of [BS02, §2] allow us to extend the inequality [BT97,
Theorem 5] stated for non-weighted graphs to metric graphs.

Combined with the upper bound on the systolic length of graphs established
in [BB05], we have, for every b > 2,

lb, b

7rT <or'(fe) < 81n(2) —.4 In b In b

Definition 2.4. A metric graph F is said to be admissible if the first Betti number of
each of its connected components is at least 2.

As in the case of surfaces, we define the separating systole of an admissible graph F

as

sys0(r) inf{length(y) | y induces a nontrivial class in »(A), 7ri (A)]}
A

where A runs over the connected components of F.
As previously, we also define

length T
CTo(F) ^pT (2-4)

syso(F)

and, for every b > 2,

ctq(b) inl»/,! F) I F admissible metric graph with first Betti number b).
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Using Theorem 2.2, we obtain a lower bound on o^b). More precisely, we show

Proposition 2.5. For every b > 2, we have

"im>0 ~ 64 ln£>

Proof. Let T be an admissible metric graph whose first Betti number equals b. Without

loss of generality, we can assume that F is connected and that sys0(r) 1.

Denote by k the number of "small cycles", i.e., the number of simple loops of length
less than |.

Suppose that two "small cycles", c\ and intersect each other. The liomotopy
classes of these two loops (based at the same point) do not commute. Therefore, the

loop ci U ça U if1 U cf1, of length

1

2 length(c j + 2 length! o> < -,
which represents their commutator, is not contractible in F. Thus, syso(F) < j,
hence a contradiction.

Therefore, the "small cycles" of F are disjoint.
Let c be a shortest path between two "small cycles" c\ and o (recall that F

is connected). The commutator of the homotopy classes of c\ and c U cj U c~l
can be represented by a loop of length at most i + 21ength(c). Thus, sys0(r) <

' + 2 length(V Therefore, the length of e is at least

We deduce that the |-(open)-neighborhoods of the "small cycles" are disjoint.
Since F is connected, tire length of the |-neighborhood of each "Small cycle" eg is at

least length (c,) + Therefore, length (r) > |.
If A" > I then length(F) > ^. Tlrus, for every b > 2, we have

b lbctfi(b) > — >0 " 16 " 64 In b

If k < |, we remove an edge from each "small cycle". This gives rise to a

graph F' c F with first Betti number b' b — k (recall that the "small cycles" are

disjoint). By construction, the systole of F' is at least |, i.e., 8fs(P#j > |. Further,
length(r) > Icngthi F'). ITrerefore,

4<n > ^'(r').
Since the inequality (2.3) implies that

1 b/2
0 ~ 8 4 In b

Hence the result.
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3. Morse functions and first Betti numbers

Recall the definition of a topological Morse function. We refer to [Mo59] and [Mo75]
for a general study and applications.

Definition 3.1. Let / be a continuous function on a closed «-manifold M. A point £
of M is said to be regular (resp. critical of index p) if there exists a topological chart c,p

at x such that / of~1 — f(x) is a linear projection (resp. the restriction of a quadratic
form of signature (« — p, p)). In these definitions, the chart f is not necessarily
a diffeomorphism, only a homeomorphism. Furthermore, these definitions do not
depend on the choice of the chart f.

Hie function / is a topological Morse function if every point of M is regular or
critical of index p for some integer p. Note that a topological Morse function on a

closed manifold has finitely many critical points.

Let / be a topological Morse function on a surface M of genus g with only one
critical point on each critical level. Let x be a critical point of index 1 and y fix).
Since / is a topological Morse function with only one critical point on each critical
level, the connected component of f~l(y) containing the point x is a union Zx of
two simple loops intersecting only at x.

Definition 3.2. We say that x is of type I if the intersection of every r -neighborhood
Ur Zx of Zx with / ~1 (] y — r, y [) has one Connected component (one cylinder) for r
small enough.

Otherwise, we say that x is of type II. In this case, the intersection of every r-
neighborhood Ur(Zx) of Zx with /_1(]y — r, yf) has two connected components
(two cylinders) for r small enough. Recall that M is orientable, / is a topological
Morse function and x is of index 1.

llie following result can be found in [Ko87, (4.9)]. We include a proof for the
sake of completeness.

Type I: one leg Type II: two legs
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Lemma 3.3. Suppose that f has only one local minimum. Then, the function f has

exactly g points of type II.

Proof. Let N; be the number of critical points of index i. From Morse formula
[Mo59], [Mo75, Theorem 10.1], we have

where A'] and A'n are the numbers of critical points of type I or II. We can lower the

critical points of type I (as in [Ma02, Theorem 2.34] for instance), preserving the total
number of critical points, their index and their type, so that all the critical points of
type I for the new function, still denoted /, lie in /_1(] — oo, toll arid all the critical
points of type II or index 2 lie in f~1 |/q. oo[) for some to. Ast increases, every time
we pass a critical value corresponding to a critical point of type I, the number of holes
of f~] (] — oo, / [) increases by one. Therefore, /_1(] — ce, /o[) is homeomorphic
to a sphere with + 1 holes. On tire other hand, since no critical point of type I
lies in /_1 (]tQ, Oo[), the space /_1 (ho. oo[) has no handle. Further, each connected

component of /_1(ho. co[) has only one critical point of index 2. We conclude as

previously that / (ho. oo[) is a union of punctured spheres with Nu + AA boundary
components. Therefore,

Ni + 1 Mi + N2,

Combining this equation with (3.1) and (3.2), we derive the desired result, i.e.,
Nu 8 D

4. Construction of graphs on the surface

Let M be a real analytic Riemannian surface of genus g > 2. Fix a point xq lying
in a systolic loop of M. Denote by F the distance function from xo, i.e., F(x)
distÇïo- x) for every x M.

Proposition 4.1. The function F is a topological Morse function.

Proof. Every point lying outside the cut locus of xq is regular. Therefore, we will
only consider points in the cut locus Of icq.

Now the result follows from the study of the cut locus in [Be77, pp. 194-198] (see

also [Fi40]), where [Be77, Lemme 3] is replaced by [He82, Lemma 1.2], As observed
in [He82], the condition of bisection and the structure of the cut locus, cf. [My35],
|My36], used in [Be77] hold for every closed analytic surface.

1 - Nx + N2 2 - 2g. (3.1)

We also have

Ni M + Nii. (3.2)
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Given a critical point x of index 1 of F, there exists a unique (simple) geodesic
loop yx of index 0 based at xo formed of two minimizing arcs, y'x and y", joining xq
to x. Conversely, if a (simple) geodesic loop of index 0 based at .to is formed of two
minimizing arcs joining xo to x, the point x is a critical point of index 1. See the two
figures in Section 3.

For technical reasons, it would be convenient if F had only one critical point on
each critical level. To achieve this condition, we can raise some critical points of F as

in [Ma02, Theorem 2.34], More precisely, for every e e]0, inj(M)/2[ small enough,
we can approximate F by a topological Morse function / on M preserving the critical
points with only one critical point on each critical level and with xo as its only local
minimum, such that

• /(xo) 0;

• 11/ — F|| < £ on M;
• / is (1 + s)-Lipschitz.

We can also assume that for every critical point x of index 1, with y := f(x), the

loop yx satisfies the following:
• yx lies in/"1 ([0,y]);
• yx cannot be deformed into /_1 ([0, y[) in f~l ([0, v]);

as well as

length(yy n ./' 'i|/. oo[)) < 2(y - t) + 2s, (4.1)

for every t e [0, y]. The height of yx, defined as max f(yx), is equal to /(x) y.
Note that there are finitely many loops yx.

Definition 4.2. Using the notations and definitions of Section 3, we say that the

loop yx is of type I or II if the critical point x is of type I or II. Furthermore, if x is

of type II, the two trajectories yx and yx Pass through the two cylinders of Ur(Zx) D

/_1 (]v — r, y [) for r small enough. See the two figures in Section 3.

Let us construct by induction a "short" system F of loops ,yt] based at xo.
The loop yi is the noncontractible loop with the least height among the yx's. We define

by induction yj as the loop with the least height among the yx's whose homotopy class
does not lie in the subgroup G, _i generated by yj y[ZJ in 7t\ (M, xq). Here, by
definition, Go is the trivial subgroup of xo). The loop yj passes through two
critical points, namely xo and xj. Its height max f(yï) is equal to vj := f(xf).

Proposition 4.3. i) The system T generates tï\(M, xq). In particular, F contains at
least 2g loops.

ii) The system F contains at least g loops of type t
iii) If the homotopy class ofa piecewi.se smooth loop y based at xo does not lie

in Gj-1, then max/(y) > max f(jyj).
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Proof. Suppose that there exists a piecewise smooth loop y based at xq whose ho-

motopy class does not lie in G,-_i. Using a height decreasing deformation of y if
necessary, we can assume that y passes through a critical point ,t of index 1 such that

maxf(y) f(x) y. (4.2)

Thus, we can take y (passing through a critical point x of index 1 satisfying (4.2)) so

that its height is minimal.
The loop yx passing through the critical point x of index 1 such that /(x) agrees

with the height of y satisfies the following.

Lemma 4.4. The homotopy class of yx does not lie in (f-\.

Proof. The loop y passes finitely many times through x. Thus, we can take y so that

it passes a minimal number of times through x.
Dehne to hif{f | y(t) x}. Either yp.ro] W Yx or yp.rol u Yx can be deformed

into a loop a of /([0, y[).
Suppose that the former case occurs (similar arguments work in the latter case).

The height of a is less than y 's. Since the height of y is minimal, the homotopy class

of a lies in (f-\. Therefore, we can assume that yp.io] agrees with y'x. Since y
passes a minimal number of times through x, the loop y" U y|pp,i] can be deformed
into a loop of height at most /(x), which passes fewer times through x than y (one
should examine separately the type I and II cases; see the two figures in Section 3).
Therefore, the homotopy class of the loop y" U yipgj] lies in G,_i. Thus, we can
assume that ytatJt agrees with y". That is, y agrees with yx. Hence the desired
result.

Let us now prove i). Recall that n is the number of elements of T. Suppose that
there exists a piecewise smooth loop y based at xo whose homotopy class does not
lie in the subgroup G„ generated by F. By Lemma 4.4, there exists a loop y, whose

homotopy class does not lie in Gn. There tore, yn+\ exists (and agrees with vv), which
is absurd. Hence i).

To establish iii), we argue by contradiction again. By Lemma 4.4, there exists a

loop yx with y /(x) < maxf(yï) whose homotopy class does not lie in G,_i.
This yields a contradiction with the definition of yi. Hence iii).

Lrom Lemma 3.3, the number of loops of type II in F is at most g. Since F has

exactly 2g loops (each of them of type I or II), the system F contains at least g loops
of type I.

Let T be the system of the g shortest loops y\ y,A of type I in F. Denote by
y,; max /(y, the height of y,-. Permuting the indices if necessary, we can assume
that y i < yi < • • • < yg.
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Let to 0, t) _vi and tk yi + (k — 1 )r for k > 2, where

läf(g-l)r ;= sysQ(M)
6 g - 1

and
1 t

fo(t) '=0 64 ln(2 + t)
for every real / > 0.

Remark 4.5. The loop yi agrees with yj. Further, since xq lies in a systolic loop
of M, the height of yi is bounded by \ sys(M) + e. That is, (\ < \ sys(M) + e.

Denote by yf. yf the loops of T such that

tk < max f(yy) < tk+\

and let yf max /(y;A) be the height of y(A'.

Let K be the minimal integer k such that yg < tk+i. We have

K

J^gk g- (4.5)
A 1

A real t is said to be generic if the preimage f~l(t) is formed of a (possibly
empty) finite union of disjoint circles. Since / is a topological Morse function (with
linitely many critical points), almost every t is generic.

For a generic t with tg < t < tk+1 and 1 < k < K — 1, we dehne the graph

Äj-i
rf := r\t) U (J {yf' - 1

n +»|>). (4.6)
1=1

The graph rf is endowed with the length structure induced by the inclusion in M.
The metric graph obtained from Pf by removing the connected components homeo-

morphic to circles is an admissible graph, cf. Definition 2.4, noted i f (assuming that
it is nonempty). We have

ff c rf.
Note that the graphs rf and ff differ from the graphs defined in [Ko87, §6] (these

latter may contain arcs of loops of type I). In particular, the fundamental group of ff
is a subgroup of tz\ (M), cf. Section 5.

The vertices of ff agree with the intersection points of f~1(t) and [J(if y(H '.

Tims, the graph ff is 3-regular (i.e., the valence of each vertex equals 3) with 2gA+i
vertices and 3gA+i edges. Recall that ff lies in /_1([r, +oo[). Hence, the first
Betti number of ff is equal to g/,+ i plus the number of connected components of ff,
cf. (2.1). In particular, if ff is nonempty, its first Betti number is at least 1 + gA+i-

(4.3)

(4.4)



46 S. Sabourau CMH

5. Fundamental groups of graphs and surfaces

In this section, where we use the previous constructions and notations, we show that
the fundamental group of ff lies in the fundamental group of M.

First, we show the following.

Lemma 5.1. No simple loop of ff is contractible in M for every generic t with
tk < t < tk+1 and. 1 < k < K — 1. In particular,

sys(ff) > sys(M).

Proof. We argue by contradiction. Let y be a simple loop of i f contractible in M.
The loop y bounds a disk D in M.

The function / admits no local minimum in the interior of D. Otherwise, such a

local minimum agrees with the unique local minimum of /, which is xq. In this case,
D contains /~ ([0, f[) and so yi since max f(y\) t\ < t. rFhus, yi is contractible
in M. Hence a contr adiction.

Now, two cases may occur:

Case I. rIhe loop y is not contained in /_1(f), Then, y passes through an arc

Yio n +oo[) of some loop y;0 of T. Changing the index if necessary, we can
assume that y passes through no arc of y, with v,: > v;(J (recall that / has only one
critical point on each critical level). By construction, the simple arc y is composed of
arcs y, n/-1 (]L +oo[) where y, g F and of subarcs of/-1 (f). Since y is contractible
in M, the loop y,0 is homotopic to a loop based at .to lying in /_1 ([0, y;lt [). rFhus, the

homotopy class of y,0 lies in a subgroup generated by loops of height less than y,0's.
This is impossible by definition of y(Q, cf.. Proposition 4.3.iii).

Case II. The loop y is contained in f~i(l). Since / has no local minimum in the

interior of D, the disk D lies in /_1([f, +oo[). There exists a loop y(- of F, with
y>i > t, which intersects y (recall that y lies in i f and that no connected component
of i f is homeomorphic to a circle). Hie arc y(: n /_1([f, +cxd[) lies in I). Therefore,
the loop y; is homotopic to a loop based at xq lying in f~l ([0, t]). As previously, we
derive a contradiction.

Let us introduce some notations. Fix a generic real t with % < t « p+\ and
1 < k < K — 1 such that i f is nonempty. Ever}' sufficiently small open tubular

neighborhood )V of a connected component A of ff deformation retracts onto A
through {rv} with r t [0,1] such that ro is the identity map on N and rf '

(p) DdN
has three or two elements depending whether the point p of A is a vertex or not (recall
that i f is 3-regular; see the figure below). We set r =r\.
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A

3N

The connected components of the boundary fjV of N arc formed of finitely many
(disjoint) simple loops. Furthermore, since M is orientable and the first Betti number
of A is at least two, the set 8N has at least three connected components. Thus,
N is homeomorphic to a sphere with at least three holes. In particular, N is not
homeomorphic to a cylinder.

The following result will be useful in the proof of Proposition 5.4.

Lemma 5.2. The simple loops forming the boundary ciff of N are noncontractible
in M.

Proof. Suppose that there exists a simple loop y of 3 N which is contractible in M.
The image y of y by the (deformation) retraction r is not simple, otherwise it would
be noncontractible in M from Lenuna 5.1 (and so would be y). Thus, r takes two
points of y to the same image. Since the graph A is 3-regular, the (deformation)
retraction r takes two arcs of y to the same edge cof A.

Remark 5.3. Changing the edge ë if necessary, we will assume that the height of c
is maximal among the edges of A onto which r sends two arcs of y.

Removing < from y decomposes the loop y into two loops c\ and o with

The loops e\ and cj intersect the edge c only at its endpoints. Since y is the

boundary of an open disk in M, the loops ej and cj are the boundaries of an open
cylinder C in M containing c. In particular, the boundary 3C of C agrees with c\ U c%.

The arcs c and q have different heights for i 1,2. Otherwise, their common
height would be t (recall that / has at most one critical point on each level set) and

e U C{ would be contained in f~l(t), which is impossible since /"' (7 is formed of

y cUcj Uc
1

U C2-
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a union of disjoint simple loops. Hie same argument also shows that e\ and o have

different heights, unless they botli lie in
Now, we consider two cases.

Case I. Assume that the height of c is greater than «'s and «'s. Note that yc :=
max f(c) > t. The connected component Z of f~l (ye) intersecting c lies in the

cylinder Ç and is disjoint from 3C. Tlius, cutting Ç along the two noncontractible
simple loops forming the component Z gives rise to two cylinders, at the bottom, and

one disk, at the top (see figure below).

More precisely, /_1([0, ye[) n C is composed of two cylinders whose boundary
components agree with the connected components of 3C and the simple loops forming

Z. We derive that the loop yc of F with max f{yt) yc, which agrees with c in
the neighborhood of f~l(yc), cf. (4.6), is of type II. Hence a contradiction since the

loops of F are of type I.

Case II. Assume that the height of <\ is greater than t's and «'s. In particular,
max f ie i) > t. There exists a loop y(Q of F, with the same height as «, such that

cl n y,0 agrees with the arc y,'0 n f~l ([t, +oo[). The loop y,0 is formed of two arcs,
y! and y!' of the same height, arising from xq and ending at the same endpoint.
From Remark 5.3, the loop y passes only once through c\ n y,:0 Let c\ and c'[ be the

arcs of c\ \ yi0 (possibly reduced to points) joining y! tö c and y(." to c.
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The loop Yi0 is homotopic to

(x/0 U 4 u c'f1 U (V, D y,:0) U c'{ U cf"1 U \ rj).

which agrees witli

(x/0 \ Uc^UciU r'l
1

U (yg \^
By assumption, the loop ci is homotopic to the loop c U C2 U c_1. Therefore, y,0 is

homotopic to the loop

ak (Xio \ ®ï3 U c'l U c U 02 U C_1 U c"\ U \ C1 )'•

We derive a contradiction from Proposition 4.3.iii) since the height of a/,, is less

than Yi0's.

Let us recall some facts about the disk flow. Denote by Mo the surface M endowed
with a fixed hyperbolic metric. The disk flow defined in [HS94] (see also [Sa04] for
a similar flow) deforms a piecewise smooth loop y of Mo through yt with t > 0. Let
G be a finite collection of piecewise smooth loops in Mo. Throughout the disk flow,
the loops of C satisfy the following:

• simple loops remain simple;

• disjoint loops remain disjoint;

• for every y e. G, the family yt either disappears (i.e., yt converges to a point)
in finite time or converges to a (unique) noncontractible geodesic loop of Mo
as t bo.

Using this flow and Lemma 5.2, we can prove the main result of this section.

Proposition 5.4. The inclusion i: A ^ M of every connected component of fy
induces a monomorphem between the fundamental groups. That is,

iL : ri i (A) —> m (M);

is infective.

Proof. The boundary '<) N of N c Mo decomposes into simple loops c\,... ,Ck.
We can assume that the normal vectors of the two-sided loops &ï point toward N.
Consider a piecewise smooth loop y of A c N contractible in M and apply the disk
flow to ci ex and y.

The loop ci converges to the unique noncontractible geodesic loop of Mo freely
homotopic to q through the disk flow noted c[. For every t > 0, the loops c-, which
are simple and disjoint as are the loops q, bound an open set Nt ~ N toward which
point the normal vectors of the two-sided loops cf.
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On the other hand, the loops yt remain disjoint from the loops c\ through the disk
flow. In particular, the loops y, lie in Nt. Note that there exists a homeomorphism
between Nt and N which takes c[ to a and the free homotopy class of y, to y 's.

Since y is contractible in M, the flow yt c Nt disappears in hnite time. Therefore,

ft is contractible in Nt for some /. Tliis implies that y is contractible in N and so

in A since N deformation retracts onto A. Thus, the homomorphism A : jt\(A J —>
7i i (M is injective.

We inunediately deduce the following.

Corollary 5.5. We have

sys0(ff) > sys0(M). (5.1)

Remark 5.6. Contrary to i f, (he fundamental groups of the graphs defined in [Ko87]
are not necessarily isomorphic subgroups of nt (M). Without this property, it is still
possible to bound the systole of these graphs, cf. Lemma 5.1, but a bound similar
to (5.1) does not hold in general.

6. Proof of the main theorem

Using the previous notations and results, we show the main result of this article

following [Ko87].

ProofofMain Theorem 1.3. Since every smooth metric can be approximated by a

real analytic one and since the area and the systole are continuous on the space of all
metrics, we can assume that M is a real analytic Riemannian surface of genus g > 2.

Keeping the same notations as in the previous sections, we can also assume that

sys(M) «j ^ sys(:,i .1/i. otherwise the inequality (1.3) yields the result.

Let yI and yf be two loops of T based at .vq such that max /' (y,1 j zj <

\ sys(M) + e and max/lyf) < t\ + r, cf. Remark 4.5. The commutator of the

homotopy classes of y/ and ff can be represented by a loop c of length less than

4fi + 2r. As t\ < I sys(M) < fg sys0(M) and r < | sys0(M), the length of c is

less than sysq(M). Tlius, c is contractible and the homotopy classes of y/ and yf
commute. Since the centralizer of every nontrivial element of jti (M is isomorphic
to Z (recall that g > 2), the homotopy classes of y/ and y\ are proportional. Furthermore,

the homotopy class of a simple loop on the orientable surface M is indivisible.
Therefore, the two noncontractible loops yf and y,2 of F agree. Thus, the index gi
defined in Section 4 is equal to 1, i.e.,

gi 1-
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Let t be generic with % < t < tk+\ and \ < k < K - 1.

If ff is nonempty, i.e., gA+i > 0, then ff" is art admissible graph, cf. Definition 2.4
and Section 4, with first Betti number at least 1 + g/c+i > 2. Thus, since n'{) is

nondecreasing, cf. (2.4), we have

length(ff) > ctq(1 + gk+i)sys0(ff).

From Proposition 2.5, we derive that Oq{ 1 + gA+i) > &b(gk+1), $ (4.4), where

3$ (gA+1 — g*_+1 r • (6.1)
64 ln(2 + gk+1)

Hence, from the inclusion ff C If and Corollary 5.5, we have

length(Pf) > CTo(gA+i)sys0(M).

Furthermore, this inequality holds when gA+i vanishes.
fk
t

Sk+l

Thus, from the dehnition of if, cf. (4.6), we have

length f l(t) + J2 len§th WP1 n f +°°D) > ^o(gk+i) sysof«)
i 1

Combined witli the estimate (4.1), we derive

gr+i

length f~Ht) + J2 2(tî+1 ~ + 2£»+] - 4Csfefl) sys0(M)
i=1

where tf+1 max /(yf+1). Note that tk < f < ?A+i < ?.:+l < rA+2-

Integrating from tk to tk+1 for 1 < Ä" < K — 1, we obtain

/ length f~ dt + 2 ^2 / P?+ " 0 dt + 2egA-+i r > äo(gA+i)sys0(M)T
J tf i=\ &

rtk+1 3
I t; - t dt < -x we have

Jti- 2
Since

^tk

p'*

Jit
length / dt > of (gA.+i) sys0(M)r - 3gA+] r2 - 2sgA+] r.

Now, apply the coarea formula to the (1 + e)-Lipschitz function /, cf. [Fe69, 3.2.11],
One obtains

1 P30 -1Area(M) > / length / (t)dt.
1 + « Jo
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Hence,

* 1

-ft+i
(1 + é) Area (M) > ^ / length dt

A=1

1—1 À' • • 1 1-î
>

A=1 A=1 A=1

K K K

>
'A=2 'A=2

'

A=2

Since gi 1, the inequality (4.5) yields

K

I ~ 1-

A=2

Furthermore, for every p, q e N,

1 / P Ä

A. — 1 A — 1 A—1

XI ^ofe+i)) sYsoÇM)r-3( J] gA-+i)r2-2e( gA+i)i
A=1 A=1 A=1

A' K K

XsysoWr ~3 X gA')7-2 ~2s X gA)r-

<%(#+43 77 r 71 - ; h
64 \ln(2 + p + q) ln(2 + p + q)
1 p \ q< TT^T +

64 ln(2 + p) 64 ln(2 + q)
< ëô(p) +

In particular,

Hence,

K K

YlaÔ(gk) > °é'( X gA) CTo(§ -
k=2 k=2

a + e) Area (M) > Sg(g - 1) sys0(M)r - 3(g - l)r2 - 2e(g - l)r.
Passing to the limit as e -> 0, we obtain

Area(M) > öfa - 1) sys0(M)r - 3(g - l)r2
1 ÖL(g — l)2 r.

> - 0 ' - sys0(M)2
12 g - 1

1 Ön (g — 1)
since r —— sys0(M), c/; (4.3). Therefore,

6 g - 1

Area(M) > —-—-—Tsys0(M)2,~ 216 (ln(l + g))2

Ilius, the inequality (1.7) holds for g > 2 with C 2~18. Note that the value of the

constant C can be improved, especially for large values of g.
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