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On the generalized Nielsen realization problem

Jonathan Block and Shmuel Weinberger™

Abstract. The main goal of this paper is to give the first examples of equivariant aspherical
Poincaré complexes, that are not realized by group actions on closed aspherical manifolds M.
These will also provide new counterexamples to the Nielsen realization problem about lifting
homotopy actions of finite groups to honest group actions. Our examples show that one cannot
guarantee that a given action of a finitely generated group = on Euclidean space extends to an
action of T1, a group containing 7 as a subgroup of finite index, even when all the torsion of T1
lives in 7.

Mathematics Subject Classification (2000). 57N.
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1. Introduction

Consider a closed aspherical manifold M. Then mg(FH(M)), where # (M) is the
space of self homotopy equivalences of M, is isomorphic to the group Out(mr(M))
of outer automorphisms of 71 (M). The celebrated Borel conjecture ([12]) implies
that any ¢ € #(M) is homotopic to a homeomorphism. In general, it asserts that
homotopy equivalences between homotopy equivalent compact aspherical manifolds
ar¢ homotopic to homeomorphisms.

The generalized Nielsen realization problem is stated as follows.

Problem 1.1. Given a finite subgroup G of Out(m(M)), does there exist a group
action of G on M realizing this outer action on w1 (M).

Nielsen’s original question was whether for a closed Riemann surface S of genus
greater than one, any finite subgroup G of Out(sr1(S)) could be lifted to a group of
isometries for some hyperbolic structure on S. Nielsen solved this himself for &
cyclic, [25]. Further partial results were obtained by others, e.g. Zieschang, [36]
and the full problem was finally solved positively by Kerckhoff [20]. Subsequently,

*The authors would like to thank the referee for helpful comments that improved the exposition of the paper.
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Tromba [31], Gabai [17] and Wolpert [35] gave new proofs of Kerckhoft’s theorem.
Gabai’s proof is a consequence of his solution of the convergence subgroup problem.

In high dimensions, it is easy to give smooth counterexamples to the generalized
Nielsen realization problem using exotic differential structures on the sphere. For
example, consider M = (T7 # 27) x S the product of a circle with the connected
sum of the 7-torus with an exotic 7 sphere. Then, 71 (M) = Z® and there is no group
of diffeomorphisms that lifts the permutation group action on Z®. Thus, it makes
most sense to consider this problem in topological settings.

A first obstruction to G acting on M realizing a given outer action comes from
the nonexistence of certain group extensions. More precisely, if the outer action lifts
to an actual action, then there is an extension of groups

l>n—->I1—-6G—1 (1.1)

where m = 71 (M) and the outer action of G on 1 (M) arising from the extension 1s
the given one. This condition can be nontrivial. Raymond and Scott, [26], produced
examples where 7 s the fundamental group of a nilmanifold, and for some cyclic G,
there exists no such extension (1.1). However, if the center 3(;r) = O there always
exists a unique such an extension, up to isomorphism, [3], Corollary 6.8, page 106.

Positive results for the generalized Nielsen problem have been obtained by Farrell
and Jones. See [12], page 282, where a survey of the problem and their positive results
are described. In particular, they assume that the fundamental group is centerless and
thus the obstruction of Raymond and Scott vanishes.

Henceforth we assume that the obstruction of Raymond and Scott vanishes, that
is, there is an extension (1.1). Some of our examples will even produce centerless 7.
Thus one reformulates the Nielsen realization problem and asks if this is enough to
guarantee the existence of an action of &G on M. We note that, before us, there was no
example of nonrealization even for infinite . There are still no examples for torsion
free G. (However, sece [24] for the differentiable failure of this infinite “Nielsen
problem” for surfaces.)

If IT is torsion free there is a good conjectural reason to expect the answer to be
positive:

Proposition 1.2, If T1 is torsion free then it is a Poincaré duality group if and only
if mis. If Bm = M is a closed manifold of dimension at least 5, and the Borel
conjecture holds for Tl and 7, then BIl is a manifold as well and the normal cover
corresponding to G is M; thus M has a free G action.

Remark 1.3. We understand the Borel conjecture to assert that if BI™ is any compact
manifold with boundary and

$: (M,dM) — T" x (BI', aBI")
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is a homotopy equivalence of pairs that is already a homeomorphism on the boundary,
then ¢ is homotopic rel boundary to a homeomorphism. When BT is a finite complex,
this 1s well known to be equivalent to various vanishing statements of Whitehead
groups and isomorphism statements of L-theory assembly maps. In particular, it
does not matter which compact manifold with boundary model of BI" one chooses.

Proof. The first statement is Proposition 10.2, page 224 of [3]. As for the second, first
observe that BT1 is a finite complex by the vanishing of the Wall finiteness obstruction
that lies in the vanishing group K¢o(ZI1). Now, the existence of the manifold structure
on BII follows from the theory of the total surgery obstruction: the obstruction to
the existence of a homology manifold realizing BIT lies in a group which the Borel
conjecture asserts is trivial (for this version, see [4]). This homology manifold is
actually a manifold, because it is covered by one. O

Remark 1.4. We shall see that the analogue of this proposition for non-free actions
is not true.

One can view the Nielsen problem as one of extending group actions as follows:
If 7 is the fundamental group of M, then 7 naturally acts freely on M; Assuming the
extension [1 exists, the Nielsen problem asks whether the original 7 action extends
to a IT action?. ('The IT action will be free, if and only if I is torsion free, as in the
proposition just discussed.) Modifying this somewhat, one can ask these extension
questions wherein we demand more on the IT action, e.g. that all fixed sets are
empty or contractible (we call this an aspherical action, and such an extension of a
group action, an aspherical extension), cf. e.g. [22], [23]. On the way to giving our
counterexample to Nielsen, we prove the following theorem which can be thought of
as giving a counterexample to Nielsen realization of free actions on orbifolds.

Theorem 1.5. There is a group extension
l>n—->IT1—-G—>1

sartisfying the following properties.
(1) Any torsion element in Il is in 7, that is I1 is relatively forsion free.
(2) = is virtually torsion free.
(3) We can guarantee either
a) 1 acts properly discontinuously and cocompactly on Euclidean space such

thar the fixed sets of all finite subgroups are Euclidean spaces, so w is acting
aspherically;

1Unfortunately, standard mathematical terminology forces us to overuse the word “extension”.
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or

b) m acts properly discontinuously and cocompactly on a contractible manifold
such that the fixed sets of all finite subgroups are contractible manifolds, so
7 s acting aspherically. In this case, one can construct our example ro have
centerless fundamental group.

(4) The action of m does not extend to one of Il. In fact, there is no properly
discontinuous action of Il on Euclidean space with only contractible fixed-point
sers.

(5) There is a properly discontinuous action of Il on a contractible space such that
all of the fixed sets of all finite subgroups are contractible.

Point (4) above discusses both the statement about free actions on nonmanifolds
and nonfree actions on manifolds. We give two constructions. They in fact give a
cyclic group of prime order (of order two for the first construction), Z/ p, which does
not act aspherically on a suitable aspherical manifold.

We also derive

Theorem 1.6. There is a counter example to the Nielsen realization problem with
group )2 and centerless fundamental group.

For a finitely generated discrete group I1 one can define the asymptotic homology
H X .(IT) of TT considered as a metric space. One has the following dichotomy.

Proposition 1.7 ([1]). If I1is a group of virtual finite type, then either H X .(I1) = Z
for = = n and zero otherwise (Which we will call simple) or HX . (I1) is infinitely
generated in some dimension.

We warn the reader that there are finitely generated groups of infinite type whose
asymptotic homology vanishes in all dimensions. For a discrete group I there is a
space LTI, which is universal for proper actions. which is unique up to equivariant
homotopy equivalence, [22] and [23]. If there is a model for BI1 = ETI/I1 which
is a compact manifold, then the asymptotic homology is simple. It is natural to ask
if this 1s also sufficient. Our examples answer this as well.

Theorem 1.8. There is a group 11 of virtual finite type with H X, (I1) simple and
which has no proper cocompact action on a contractible manifold.

2. The construction

For all the theorems above, the constructions are of the following sort. We will
construct I directly via a Z/ p action on an aspherical complex, so that properties (2),
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(4) and (5) either hold directly by construction, or by computation of a relevant
obstruction. Since this obstruction will vanish on passing to a finite cover one also
obtains the finite index subgroup 7 as in (3).

We will give two different constructions of such Il. While they differ in some
details, they both are of the following form. We will have two aspherical manifolds
with boundary W; and W», both boundaries being tori and so that the fundamental
group of the boundary injects. (Or one manifold with two boundary components. )
These manifolds possess Z/p actions, but the key feature 1s that, while the action
on d Wy is affine, the action on @ W5 is not topologically equivalent to an affine one.
However the actions on the boundaries are equivariantly homotopy equivalent. Gluing
Wi and W, together by a homeomorphism homotopic to the equivariant homotopy
equivalence gives a closed manifold V with a homotopy action of Z/p on it, and
gluing them together by the equivariant homotopy equivalence gives the homotopy
equivalent complex X with a genuine Z/p action. Since the geometric actions on Wy
and W, are not conjugate, it would seem unlikely that there would be a corresponding
action on the manifold V = W7 Uy W5, and showing that will be one of our tasks. Our
debt to [18] and [19] for inspiration should be apparent.

Actions on tori with the properties asserted are counterexamples to the “equivariant
Borel conjecture”. By now, many of these are known, [8], [9], [33], [34], [28]. We
shall use two examples: one based on surgery theory (Cappell’s UNils) and another
based on embedding theory. The exotic aspherical manifolds are built by Gromov’s
hyperbolization, [10], [11].

2.1. Surgery theory technique. We will construct our example to satisfy condi-
tion (3) a) of Theorem 1.5, so that 7 acts on Euclidean space, but is not centerless. It
will still have vanishing Raymond—Scott invariant. After the proofs of Theorem 1.5,
we will describe how to make changes to handle condition (3)b).

Consider Z/2 acting on the torus

by complex conjugation on the first 4» factors and trivially on the last. The orbifold
fundamental group of T/(Z/2) (i.e. the group of lifts of the action of Z/2 on the
universal cover is

L= (Z*" x7/2) x Z.

Leta € La(Z/2 % Z/2) be one of Cappell’s UNil elements, that do not lie in the
image of
Ly(Z/2) @ L2(Z/2),

[5],[6]. Notethat Z/2 x Z/2 = Z x Z/2. I retracts onto (Z X Z/2) x Z and so this
class gives rise to a non-zero class @ € Lo(I'). So far we have (T, Z/2) with fixed
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set /' a disjoint union of circles. Let K be the complement of a tubular neighborhood
Nbd(#). Then =1 (K /Z/2) = I". By Wall realization there is a structure

wic) € 8(K/Z/21el §) = 822 (K rel 9).

Now set
T/ = Nbd(F) U w(w).

We have thus obtained a new involution on the torus. Moreover 7" and 7" are built
equivariantly normally cobordant, call this normal cobordism W. It is not hard to see
that the action is not topologically conjugate to the original affine action, although it
is equivariantly homotopically equivalent to it. ([8], [9], [33]). This can be detected
by an element of the isovariant (that is stratified) structure set in the sense of [33].

Now according to [11], we can relatively equivariantly hyperbolize this normal
cobordism W relative to 7 U 77 to get Wy, and furthermore, the fundamental groups
of the boundaries still inject into the hyperbolization. The fixed sets on the boundaries
are circles and so the fixed sets in the cobordism is a surface (of high genus). Now we
glue the boundary components 7 and 77 as described above to get a manifold V and
acomplex X. X is a Z/2-1sovariant aspherical Poincaré complex and V' is a manifold
with a Z/2-homotopy action. Let

1= 7P (X)

be the orbifold fundamental group of X.

Now, elements of UNil die on passage to suitable finite covers. This follows from
[30], Corollary 1. Indeed that corollary directly asserts the topological equivalence
of suitable covers of homotopy affine G-tori, which is what we are asserting here.
Thus our element « dies when lifted to some finite cover of T'. So over X or V,
the corresponding cover X or V has an honest manifold structure with an honest
Zi/2-action. Set

T = n?rb(f}).

Then we get
l>7—-=I1T1—-6G—=1

where G is the group of the finite cover. 7 is centerless since it is an HNN extension,
where the big group comes from hyperbolization.
We now verify the properties (1)—(5) of Theorem 1.5.

(1) The conjugacy classes of finite order in IT correspond to fixed sets in X and
thus occur already in 7.

(2) 7 is virtually torsion free since w — Z/2 has torsion free kernel 7 (Y ) (and
X 1is an aspherical finite complex).
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(3) We know that X and V are contractible. Moreover, so are all of their fixed sets.
Up until now, the group 7 is centerless and therefore the Raymond-Scott obstruction
vanishes. In order to ensure that the action is on Euclidean space, we can cross X and
V with S! (and change 7 to 7 x Z and IT to TT x Z). This ensures that these universal
covers are simply connected at infinity and are thus homeomorphic to Euclidean
space, [29], Corollary 2. The Raymond—Scott obstruction still vanishes.

Remark 2.1. If we do not cross with S, we get a centerless fundamental group at
the expense of the being on a contractible manifold, not necessarily Euclidean space.

(4) We show that IT can not act on V, _as in the statement of the theorem, with
contractible fixed point sets. If it did, then Vis equivariantly homotopy equivalent to
X, since V is a model for ETI, the classifying space for proper actions and such are
unique up to equivariant homotopy equivalence, [22] and [23]. Thus V and its Z/2-
action is equivariantly homotopy equivalent to X with its action. Note that whenever
a finite group acts on a manifold with manifold fixed sets, then it also admits such
an action with homeomorphic fixed set which 1s locally flatly embedded. For a proof
of taming theory which generalizes verbatim to the equivariant situation, see [13].
Now we can apply a theorem of Browder, [34], recently proved in print by Schultz,
[27], which says that under suitable gap and tameness hypotheses, that isovariant
and equivariant homotopy equivalence are the same. So we conclude that our tamed
[T-space V would be isovariantly homotopy equivalent to X.

Hence it suffices to show that X 1s not isovariantly homotopy equivalent to a
7,/2-manifold. Further it therefore suffices to show that ¥ = (X — (XZ/2))/(Z/2)
does not have the proper homotopy type of a manifold. We thus calculate the proper
total surgery obstruction of Y. Since the fundamental group at infinity of the proper
Poincaré complex ¥ has vanishing K invariant, the proper surgery obstruction 1s
equivalent to the more familiar version of the total surgery obstruction of a compact
Poincaré pair. We have the following diagram:

Wy — " W @2.1)
\ iw
7

All three maps are degree one normal maps. By [10], W}, is normally cobordant
to W and hence ¢ has zero surgery obstruction. ¥ on the other hand has surgery
obstruction the original element a € Lo(I').
Now set
Wy = Wy Urqir (—W)

gluing the boundaries together as before. But this time we get a manifold. The
surgery obstruction of W;, — X is still the original a. This obstruction is an element
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of Lo(I', m°(Y)) where of course 7 [°(Y) is a groupoid and not a group since Y is
not connected at infinity. This maps to

LZ(Z X (Z/2 %« Z/2), || Z x Z/Z’s).
We can analyze this by looking at the exact sequence of a pair

= Ly(11Z x Z/2’s) = Ly(Z x (Z/2 % Z/2))
— Ly(Z x (Z/2 % Z/2), | | Z x Z/2’s) - - - .

According to Shaneson for any G (ignoring decorations which we can do since
Z/2 % 7Z/2 has vanishing K -theory)

Ly(Zx G) = Ly(G) x Ly_1(G)
and according to Cappell for any & and H
L(G x H) = L(G) x L(H) x UNil(e: G, H).

Hence the original element of UNil survives inclusion into the relative group. There-
fore the surgery obstruction of this normal map is non-zero.

Of course for any other degree one normal map the same reasoning shows that
the difference between its surgery obstruction and the one above lies in the image of
the assembly map for

H,(B(Z x (Z/2 % Z/2)), | | B(Z x Z/2): L(e))
— L(Z x (Z/2 % Z/2), |1 Z x Z/2’s).

But now, as noted above, the image of this latter group in UNil is trivial, so we are
done. O

Remark 2.2. Connolly—Davis ([7]) completed the computation of L,,(Z/2 x Z/2, )
for all » and all orientation characters @. As a result, one can modify the above
construction using orientation reversing involutions on tori with isolated fixed sets,
to produce different examples.

Proof of Theorem 1.6. We begin with the aspherical manifold V' constructed above.
In this case set # = m V. If we use the example, satisfying condition (3)a) of
Theorem 1.5 then we argue as follows. V also has its Z/2-homotopy action and
therefore acts on r and I1 is the semi-direct product. We now argue that the -action
does not extend to IT. This 1s simply a matter of showing that any action of IT on V
automatically has contractible manifold fixed sets so that we can appeal to the proof
of Theorem 1.5.
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Now, by Smith theory, the fixed set is a Z/2-homology manifold homology equiva-
lent mod 2 to R? (by comparison with the Poincaré model X .) By [2], Theorem 16.32,
page 388, for any p, any second countable Z/p-homology manifold of dimension
less than or equal to two 1s a topological manifold. Thus, the fixed set is a 2-manifold
which the classification of surfaces implies that any mod 2 acyclic surface is RZ,

If instead, we want a centerless example and thus assume condition (3) b) holds,
then given the calculations of Connolly and Davis, the proof that these examples work
is even more elementary with regard to the verification of manifoldness of putative
fixed sets: the characterization of the circle is much more straightforward. O

2.2. Embedding theory technique. We now give a construction, based on embed-
ding theory, that suffices for an alternate proof of Theorem 1.5, which gives examples
for Z/p for p odd. These are insufficient for the Nielsen problem since the fixed
sets will be of higher dimension and so we have no way of seeing that they are
automatically manifolds, as in the proof of Theorem 1.6.

Let Wi = T" x S° where S° is a punctured surface and n = 2p — 4. Now Z/p
acts on W1 by permuting the first p circles of 7" leaving the other factors fixed. Let
P = WiZ/p. Then dim(W;) =2p — 2 and dim(F) = p — 1.

We now build a second manifold W, with a group action by first producing a
new embedding of the fixed set in the boundary torus 77" using the following general
construction, called a finger move, [28]: Let M* ¢ NZ*! be an embedding of

Figure 1. A submanifold M of N together with a curve, as data for a finger move.

manifolds. Let [y] € 71(N) be a class represented by a path y which intersects M
only in its two distinct endpoints, which are assumed (o lie in a little ball. Let R
be a regular neighborhood of y, a 2k + 1-disk. Then RN M = D* U D*, Move
one of the disks D¥ along ¥ to have rel 8 linking number one with the other disk.
Remove one disk of intersection and glue in the other one. We thus arrive at a new
manifold pair (Fing(N, M, v), M) where Fing(N, M, y) is homeomorphic to N and
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< v

D

Figure 2. The result after the finger move.

M 1s embedded differently. We can perform the same construction relative to any

finite collection of disjoint curves y1, ..., V.
Back to our manifold Wi withits Z/ p-action. Lety beacurveind W, = T atorus.
We may arrange this curve so thatitand all its translates v, gy, ..., g° 1y are disjoint.

Now perform the finger move Wy = Fing(dWy, dW1 N F, y, gy, ..., gp_ly). We
get a new embedding F’ ¢ W, and moreover g I’ is isotopic to F.

By the main theorem of [33], at the cost of repeating all of these finger moves some
number p* of times, we can find an equivariantly homotopy equivalent group action
on T with fixed point set /. This action, while a priori only continuous, can be made
PL locally linear (even smooth) and equivariantly cobordant to the original action
on T'. This is because equivariant smoothing theory [21] and cobordism theory re-
duces such problems to the tangent bundle, but [16] (see [15] shows that equivariantly
homotopy equivalent G-tori have topologically equivalent tangent bundles.

Now we can do our relative hyperbolizations and equivariant glueing as before
to obtain a Z/p-CW complex unequivariantly homotopy equivalent to an aspherical
manifold W. We claim that this Z/p-CW complex 1s not equivariantly homotopy
equivalent to a manifold. The reason 1s simple: the inclusion of the fixed set /7 in the
Z] p-CW complex homotopy equivalent to W is not homotopic to an embedding in W.
To check this, we consider the self intersections of any immersion homotopic to this
inclusion. Note that we are in a non-simply connected situation, so it is appropriate
to use the Z[x ]-intersection numbers as in [32]; however, since the subobject F is
non-simply connected, they are not as well defined as in Wall’s situation, as explained
in [28]. The indeterminacy replaces the Z[x ] by Z[7'\7 /7] (double cosets) where
7’ is the fundamental group of F, because one can change the path from basepoint
to intersection point either on the way there or on the way back.

Since we are in the middle dimension, there 1s a Z’s worth of ambiguity, which 1s
reflected in the coefficient of the trivial double coset 7’exr’ = 7/, so we ignore this
coefficient. Of course, the finger move construction gives us a nontrivial element of
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Zm(T) /7 (FNT)]: this is the usual relation between linking numbers of chains in
a boundary and the intersection number of bounding cycles. We only need to see that
nothing 1s lost on passing to the larger group. Here we have a trick available because
m1(F NT) is normal in 71(71"): the double cosets of 71 (F) in 71 (F U T) =(the
group!) (1) /71 (F NT). Now, general nonsense about amalgamated free products
tells us that 71 (F U T') injects into 71 (W), so we lose no information at this stage of
our formation of intersection numbers.

Thus, /" does not embed in W, and therefore neither does any manifold homotopy
equivalent to /' in any manifold homotopy equivalent to W (see ¢.g. Wall, [32],
chapter 11 on embeddings). A forteriori, the group action does not exist and our
proof is complete. O
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Asymptotic bounds for separating systoles on surfaces

Stéphane Sabourau

Abstract. The separating systole on a closed Riemannian surface M, denoted by sys, (M), is
defined as the length of the shortest noncontractible loops which are homologically trivial. We
answer positively a question of M. Gromov [Gr96, 2.C.2.(d)] about the asymptotic estimate on
the separating systole. Specifically, we show that the separating systole of a closed Riemannian
surface M of genus and area g satisfies an upper bound similar to M. Gromov’s asymptotic
estimate on the (homotopy) systole. That is, sysy(M) < log g.
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1. Introduction

Let M be anonsimply connected closed Riemannian surface. The (homotopy) systole
of M, denoted by sys 1 (M) or sys(M) for short, 1s defined as the length of the shortest
noncontractible loops in M.

We define the optimal systolic area of a nonsimply connected closed surface M
* Area(M)
sys(M)?2

where the infimum is taken over the space of all the metrics on M. The optimal
systolic area 1s a topological invariant of surfaces.

The exact value of the optimal systolic area 18 known for the torus, ¢f. [Be93],
the projective plane [Pu52] and the Klein bottle [Ba86]. For a notion of systole
extended to the isometry groups of Riemannian manifolds, the optimal systolic area
has also been computed for the 17 crystallographic groups of the plane and the triangle
groups [Ba93]. No other exact value of the optimal systolic area is known.

However, nontrivial lower bounds on the optimal systolic area of every nonsimply
connected closed surface have been established, cf. [Gr83], [Gr96], [KSO6a], [KS03],
[KS06b] and [Sa06a] for recent developments. For instance, we deduce from [Pu52]

o(M) = inf (1.1)
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